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0 Abstract

Human-robot communication is flawed because robots lack perfect knowledge of the
world and human language is inherently imprecise. Therefore, we must develop novel
frameworks for robots to overcome ambiguity in dialogue with humans. Given previ-
ous work by Whitney et al. [2017] towards asking simple questions to clarify intents in
an object-fetching scenario using a POMDDP, we describe a further extension to allow for
clarifying dialogue with object attributes. Specifically, we define a model using predi-
cates over attributes and their values as potential questions. This allows the model to
clarify uncertainty efficiently. We show that this model is effective in a remote operation

object-fetching scenario.

1 Introduction

In just the past ten years, applications of artificial intelligence and robotics have spread
to a ever-growing diverse set of industries: robots are home cleaners, medical assistants,
drivers, and more. However, in order to take advantage of the unique strengths of both
people in their creativity and innovation and robots with their precision and ability to
process massive amounts of data, robots must be able to successfully collaborate with

human peers.

While voice assistants such as Google Home, Siri, and Alexa have found their way into the
regular life of millions, such agents typically follow a one-way communication dialogue,
with strictly the human operator prompting the assistant to take action. Furthermore,
these dialogue systems often follow a one-directional tree of decisions, without room for
backtracking or error correction. In order to allow robots to tackle more a complex set
of tasks and ultimately act in seamless collaboration with humans, we look to provide
a framework for the robot agent to prompt the operator as well, in order to efficiently

clarify the desired task in the face of uncertainty. Object-picking tasks are found in almost
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all industries, from washing dishes, to picking olives or assembling cars. Using a natural
language input space and constructing the robot’s action space to optimize for object-
picking, we are able to provide a novel dialogue framework focusing on optimizing the

clarification capabilities of a robotic agent.

The POMDP model establishes a natural framework for handling uncertainty: it enables
both question-asking when uncertain and acting when the task is clear. Following pre-
vious work by Whitney et al. [2017], we examine FETCH-POMDP as a starting point for
using natural language to ask for objects and using clarifying questions as social feed-
back. One of the limitations of FETCH-POMDP, however, is its restriction to a single
type of question for the robot. This type of question, called point, allows the robot to
point to an object to ask the operator if this is the object desired. To give the robot more
informative questions, we want to allow for clarifying questions about an ambiguously
referenced object with regards to its specific attributes. We are motivated by our personal
experience with using language to eliminate uncertainty for object picking tasks. When
there are multiple spoons in a specific scene, when referring to a specific spoon, people are
likely to communicate a specific spoon using its characteristics, such as ”the blue spoon”.
With this in mind, our framework aims to include attribute-specifying questions to the

robots’ arsenal.

The object-picking scenario in Whitney et al. [2017] has the objects visible to both the
user and the robot. In scenarios such as this, the user will typically describe their desired
object with the necessary specificity to distinguish it from other objects. In the scenario
above, the user will often say “the blue spoon” without being prompted to say its color.
Therefore, the robot’s ability to ask questions about the attributes of the objects is not
very useful in this scenario. Furthermore, gesture (such as the user pointing) is very

informative and can eliminate the need for attribute questions in many interactions.

However, in an object-picking scenario where the user and robot aren’t in the same room,

the user can’t see the set of objects that the robot is choosing between. Therefore, they



might not be as specific as they need to be to distinguish their desired object from the
other objects that the robot is comparing it to. If there are two spoons of different colors,
the user might just say “Get me the spoon.” In this case, it would be ideal for the robot to
ask what color spoon they want, as this would lead to the fastest retrieval of the object.
Therefore, we chose to apply our model to a remote object-fetching scenario rather than

an in-person one.

We evaluated the model using a webapp interface and a scenario using six bowls with
overlapping attributes. We had 15 subjects use the system for three interactions each, and

we show that the system is effective for remote object-picking.

2 Related Works

Whitney et al. [2017] provides the most comprehensive and similar social feedback di-
alogue model for object picking. Based on this alone, question asking alongside the
POMDP formulation for dialogue system has huge potential towards navigating the am-
biguity of language in human-robot interactions. This work serves as the starting point
for expanding the POMDP formulation towards navigating ambiguity with a more pow-

erful set of questions.

Whitney et al. [2017] presents a POMDP model that defines the state as (i, i;), where i; is
the desired object and i, is the last object asked about. The action space consists of three
types of actions: wait, point, and pick, where point; asks if the user desires object i and
pick; retrieves an object i. This model observes both speech and gesture from the user.
The FETCH-POMDP model defined rewards such that wait is the least costly, point is
more costly, picking the wrong object is extremely costly, and picking the correct object

is extremely rewarding.
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They evaluated their model in two different 6-object scenarios: one with the objects spread
far apart (the unambiguous configuration), and one with them close together (the am-
biguous configuration). In both of these scenarios, the model was evaluated in terms of
speed and accuracy against two baseline models: one that always asks a question (always-
ask), and one that never asks a question (never-ask). In the ambiguous configuration, the
model was not slower than the never-ask model, but significantly faster than the always-
ask model. It was not more accurate than always-ask, but significantly more accurate
than never-ask. In the unambiguous configuration, their model was faster than always-
ask, and not faster than never-ask. There was no significant difference in accuracy in this

scenario.

Deits et al. [2013] provides a base reference for creating an entropy-based heuristic for
measuring uncertainty and determining the appropriate action a robotic agent should
take. This approach could be used in the future to create an entropy heuristic-based solver

for choosing the question that would reduce the uncertainty the most. This could poten-



tially speed up computation time and improve accuracy compared to a POMDP solution.

Abbasnejad et al. [2018] also provides an interesting path forward by defining a Bayesian
Deep Learning method for quantifying the uncertainty in the internal representation of
a Reinforcement Learning model. They created an information-seeking decoder for a
seq2seq question generation model. They evaluate their model on goal-oriented visual
dialogue problems, which were a mix of cooperative and adversarial. They found their

model outperformed baselines in both kinds of problems.

3 Technical Approach

3.1 POMDP Definition

Bellman [1957] introduces the Markov Decision Process (MDP), which is a model for
decision-making at discrete time steps. At each time step, the agent observes the cur-
rent state of the environment with perfect certainty, and takes an action, which affects
the state at the next time step. An MDP is defined by (S, A, T,R) where S is the set of
environment states, A is the set of possible actions the agent can take, T(s,a,s’) is the
probability of transitioning to state s’ conditioned on the agent taking action a in state s,
and R(s,a,s’) is the reward for transitioning from s to s’ after taking action a. The agent

seeks to maximize the expected future reward.

A Partially Observable Markov Decision Process (POMDP) (described in Kaelbling et al.
[1998]) is a generalization of an MDP which doesn’t assume the state can be directly ob-
served. Instead, at every time step the agent observes an element 0 € (), where () is the
observation set. We assume that the observation at each timestep is taken from an obser-
vation function O(o, s), which is the probability of observing o conditioned on state s. We

define a POMDP by (S, A, T,R,Q,0).

We also define I, our set of objects, K, the set of attributes that are defined for each object,



and V4, the values that an attribute k € K can have. For example, if we have a red and
a blue marker, we would define I = {R,B}, K = {color}, and V¢o1or = {red, blue}. We

would say that R has attributes {color : red} and B has attributes {color : blue}.

3.2 Action Space

The action set A contains four different types of actions. The first is wait, which means

that the agent does nothing for a short period of time before selecting a new action.

The second type of action is point; - the robot asks if the user desires a specific object.

This is parameterized by an object i € I.

Here, we introduce a second type of question - an attribute question, attry,. This is
parameterized by an attribute k € K and a value for this attribute v € Vj. The agent will
ask about this specific attribute-value pair: “Does attribute k have value v?” In a scenario
with two markers, one red and one blue, the robot might ask “is it blue?”, where “it’ refers

to the user’s desired object.
The last action is pick; - retrieve an object i € I. This action ends the interaction.

The action space is A = {wait} U {point;}ic; U {attri, brekocv, U {Pick;}ier.

3.3 State Space

Our states are (D, Qt,Qy) € S, where D is the user’s desired object, Q; is the type of

question last asked by the robot, and Q, is the question value.

Q: € {none, point, attr}. If no question has been asked yet, then Q; = none. If a question

has been asked, then Q; is the type of the last question asked.

Qo takes on different types of values depending on the values of Q;. If Q; = none, then
we assign Q, = none. If Q; = point, then Q, is the object that was asked about. If

Qt = attr, then Q, is a predicate that represents the attribute-value pair that the robot



asked about. For example, if the robot asked if the color of the desired object was blue,

then Q, = Ax color-blue(x).

3.4 Transition Function

D never changes. If a question is asked, Q; and Q, will change deterministically to reflect

that.

3.5 Reward Function

We originally assigned a cost to wait, point, and attr based on the time each action
takes. These values were then fine tuned to produce a smoother interaction. We set a

high reward for a correct pick and a high cost for an incorrect pick.

3.6 Observation Model

Our observations are (I, 1) € Q. The response utterance /, contains all affirmative /negative
words from the most recent speech detected, such as “yes”, “yeah”, “nope”, etc. The base
utterance [, contains all words that appear in V' = Uycg V4, the set of all values for all

attributes.

We define our observation function by O(o, s), which is the probability of observing o € ()
conditioned on state s € S. We assume that the observation is conditionally independent

of the last action taken given s.
O(O,S) = ]P(lb/ Iy | D,Q:, Qv) (1)

We assume that [, and /, are conditionally independent given the state.

O(o,5) = P(ly | D, Qr, Qo)P(Ir | D, Qt, Qo) 2)



3.6.1 Base Utterance Model

We assume that [}, is conditionally independent from Q; and Q, given D.

P(l, | D,Qt, Qo) =P(l, | D) (3)

We then define the distribution as follows. p; is a fixed parameter representing the prob-
ability of observing an utterance. Recall that /;, contains only the words that are in our
vocabulary, V.

I P(w | D) [is not empt
P, | D) = pillwe, P(w | D) 1 pty @

1—-p; I is empty
We then define the distribution of individual words. Here, Vp is the desired object’s
vocabulary, or the values that D takes on for each attribute. V' = UycgVk is the set of all

values for all attributes, and « is a fixed smoothing parameter.

_ ]lVD(w) + o

P(w | D) =
(w| D) Vbl + a|V]

(5)

3.6.2 Response Utterance Model

We use a simplified model for I,: we say it has to be positive, negative, or neither. If we
observe an affirmative word, then I, = yes. If we observe a negative word, then /, = no.

If we observe neither or both, then I, = none.

1”7 i 1”7

We defined our set of affirmative words as {"yes”, “yeah”, “sure”, "yup”, “yep” } and our

set of negative words as {"no”, "nope”, “not”, “nah”, “other” }.
When Q; = none, we define IP(I, | D, Q;, Qy) to be uniform over {yes,no,none}.

For the following cases, we define a parameter € that represents the small probability that
the person doesn’t answer a question in the way we assume they would - they lie, or
there was a miscommunication that caused them to answer incorrectly. Recall that p; is

the probability of observing an utterance.



For the case when Q; = point, we define two different distributions for P(I, | D, Q:, Qy)

for the two cases when Q, = D and Q, # D:

P(l; | D,Qt Qo)

¢ (

Pl(l —€) Q=D
l, = yes

\ple Qu#D

)

pI€ Qv =D (6)
[, = no

\Pl(l —€) Qu#D

1—p I, = none

\

Now we consider the case where Q; = attr and Q, = Ax attr-val(x) is the predicate

that represents the attribute and value the robot asked about. We define two different

distributions for P(I, | D, Q;, Qy) for the two cases when attr-val(D) is true (the desired

object has that value for that attribute) and when it’s false:

P(lr | D, Q, Qv) =

4 Belief Update Tests

(

\
p

\

pi(1—¢€) attr-val(D)
I, = yes
pi€ —attr-val(D)
pi€ attr-val(D) )
I, = no
pi(1—e€) —attr-val(D)
1—p I, = none

Here, we verify that our model works as expected by examining how the POMDP belief

state reacts in a variety of scenarios. There are several variations that need to be made in

order to cover the full scope of interactions: vary number of attributes, vary the question

type, vary the utterance (observation), etc.

For all tests, we assume the initial belief distribution is uniform. We use parameters € =
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0.01, p; = 0.95, and &« = 0.2.

4.1 Two objects and one attribute

We have two objects, one red and one blue. Color is the only attribute.
I ={R,B} K= {color} Vcoior = {red,blue} sy = (D,none, none)
zog ="blue” I, =[“blue”] [, = none

Result: b(B) = 0.857 b(R) = 0.143

4.2 Two objects and two attributes

The two attributes are color and orientation.

K = {color,orientation} Vioior = {red,blue} Vorientation = {x-aligned,y-aligned}
so = (D, none, none)

421 “blue” with no overlap

We have two objects, one blue x-aligned and one red y-aligned.

I = {MLB)(, MLRy} zo = “blue” I, =[“blue”] [, = none

Result b(MLpx) = 0.857 b(MLgy) = 0.143

4.2.2 “blue” with overlapping characteristic

We have two objects, one blue x-aligned and one red x-aligned.

I = {MLBX/ MLRX} zp = “blue” I, =[“blue”] [, = none
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Result b(MLgx) = 0.857 b(MLRx) =0.143

4.2.3 “blue x-aligned” with no overlap

We have two objects, one blue x-aligned and one red y-aligned.

I = {MLpx,MLry} zo = “blue x-aligned” [, =[“blue”, “x-aligned”] I, = none

Result b(MLpx) = 0.973 b(MLgy) = 0.027

424 “blue x-aligned” with overlapping characteristic

We have two objects, one blue x-aligned and one red x-aligned.

I = {MLpx,MLrx} zo = “blue x-aligned” [, =[“blue”, “x-aligned”] I, = none

Result b(MLpx) = 0.857 b(MLgx) = 0.143

4.3 Point question

We have two objects, one red and one blue. The robot has just pointed at MLg.

I ={MLg,MLg} K = {color} Vcopior = {red,blue} sy = (D,point,MLp)

431 “yes”

zo="yes” I,=[] I, =yes

Result b(MLp) =0.99 b(MLg) = 0.01
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4.3.2 “yes the blue one”

zo = “yes the blue one” [, = ["blue”] [, = yes

Result b(MLg) =0.998 b(MLR) = 0.002

4.3.3 “no”

Result b(MLp) =0.01 b(MLg) = 0.99

4.3.4 “no not the blue one”

zp = “no not the blue one” [, = [“blue”] [, =no

Result b(MLp) = 0.057 b(MLg) = 0.943

4.3.5 “no the red one”

zp = “no thered one” [, =[“red”] [, =no

Result b(MLp) = 0.002 b(MLg) = 0.998

4.4 Attribute question

If we use only two objects, this case is the same as above. So we will only test it on the

case where there are three objects, and two of them have the same color.

I = {MLgy,MLgo,MLp} K = {color} Vio1or = {red,blue} sy = (D,attr,color-blue(x))
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441 “yes”

zo ="yes” I,=[] I, =yes

Result b(MLgy) =0.010 b(MLgy) = 0.010 b(MLp) = 0.980

4.4.2 “yes the blue one”

zo ="yes the blue one” [, =[“blue”] [, = yes

Result b(MLgy) = 0.002 b(MLgp) = 0.002 b(MLp) = 0.997

44.3 “no”

zo="n0". =[] I, =no

Result b(MLgy) = 0.497 b(MLgry) = 0.497 b(MLp) = 0.005

44.4 “no notthe blue one”

zg ="no not the blue one”. [, = [“blue”] [, =no

Result b(MLgy) =0.485 b(MLry) = 0485 b(MLp) = 0.029

4.4.5 “no the red one”

zo ="no thered one”. [, =[“red”] [, =no

Result b(MLgy) =0.500 b(MLgy) = 0.500 b(MLg) = 0.001

The belief distribution reacts as expected in all scenarios.
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5 Initial Evaluation

We evaluated the model defined above with a setup similar to that in Whitney et al. [2017].
We used the Baxter robot from Rethink Robotics as the robotic agent, and used a few

random students as test subjects. We set up six objects in front of Baxter:

To validate our hypothesis that attribute questions would reduce the speed of these in-
teractions, we compared the performance of our model in this scenario with that of a
baseline model. The baseline model is equivalent to our model except it cannot ask at-

tribute questions: it only has access to the wait, point, and pick actions.

To evaluate the performance of our model and compare it to the baseline model, we
specifically looked at the ability for each model to clarify uncertainty from an initial con-
fused state. This means that the robot begins the interaction with a clarifying question,

rather than the user beginning the interaction with an instruction.
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Given that robotic agents will almost inevitably encounter situations in which the user
agent provided information is incomplete, not well defined, or otherwise not understood
perfectly by the robotic agent, we sought to highlight the differences in each model’s
ability to provide meaningful social feedback. This way, we specifically highlight and

examine social feedback capabilities.

With this in mind, we define the start of an interaction as the time when Baxter begins its
tirst action and the end of the interaction as the time when Baxter finishes handing off the
object to the user. Furthermore, we define a correct pick as a handoff of the user’s desired

object, and all other handoffs as an incorrect pick.

We tested both models with three subjects. With the first subject, our model took 63
seconds and the baseline model took 29. For the second subject, our model took 57s
and the baseline model took 33s. With the third subject, our model took 62s and the
baseline model took 91s. Furthermore, we note that in both models and across all three

test subjects, the desired object was always correctly identified.

From these preliminary results, we can see that there is no guaranteed improvement from
using attribute questions in this given interaction. We can clearly note though, given a
user that answers correctly to all prompts, the upper bounds for questions needed in
our model is an improvement over that of the baseline in this scenario. Under the given
circumstances, our model would need to ask at most three questions to correctly identify

a desired object, while the baseline would need to ask at most five.

However, this theoretical guarantee does not accurately describe the difference between
the two models. In a scenario where all the objects are visible to the user, we observed
that users will always be as specific as they need to be with their instructions in order to
differentiate their desired objects from the others. The language they use to describe their
object will only be an accurate description of that object and no others. If there are two
bowls that are identical except one is slightly bigger than the other, the user will say “get

me the bigger bowl” in order to specify which of the two bowls they want. This means
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that the attribute questions were not as useful as we originally thought in this scenario,

because often they aren’t needed at all.

6 Remote Operation

After these disappointing results, we looked for a scenario in which attribute questions
would be useful, or necessary, to complete an object-picking interaction. We decided on a
scenario in which the robot and the user aren’t in the same room, and the user is operating

it remotely.

Imagine you have a robot assistant, and you need it to retrieve an object in another room.
You know what object you want, but you don’t know what other objects may be in the
other room. The robot will be comparing many different objects with different character-
istics, but you have no knowledge of what characteristics distinguish your desired object

from other objects in the room.

In this scenario, attribute questions have a clear advantage. When the user isn’t specific
enough for the robot to narrow down their search to a single object, the robot can use its
knowledge of the objects to ask an intelligent question to gain the information that the

user failed to provide initially.

For this scenario, we decided to use six bowls as our objects. The bowls have overlapping

characteristics, so the robot will be likely to face ambiguity in an average interaction.
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For this scenario we defined I = {white,white2, white3, metal, metal2, clear}. The at-
tributes are K = {color,material, size, shape,location}. Here are the full definitions
of the objects. Note that shape was included only to test whether the agent would ever

choose to ask about it (it did not).

color material | size | shape | location

white | white plastic small | round | dishwasher

white2 | white | plastic | small | round | counter

white3 | white | plastic | big | round | cabinet

metal | metallic | metal small | round | cabinet
metal2 | metallic | metal big | round | counter
clear | clear plastic | big | round | counter

We realized to test this scenario, we didn’t have to use a physical robot. Instead, we could

simulate it using a web interface. We developed one that allowed the user to speak to the
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“robot” and had the robot speak back.

Instructions: Your desired object:

1. Your goal is to instruct the robot to retrieve the desired object.

2. Once you start, you will be brought to an interface where you can
click to talk to the robot.

3. To speak to the robot: click the microphone, wait 1 second, speak,
and then when done speaking, click the microphone again.

4. Please speak clearly at a moderate volume.

In each interaction, the program chooses a bowl uniformly at random, and asks the user
to instruct the robot to retrieve it. We removed the point action here because we had no

way of translating it to this scenario.

We conducted user trials with this web interface. We had 15 participants, and we had each
of them complete three interactions. Out of the 45 total interactions, the system retrieved
the correct object in 36 of them, for a success rate of 80%. The average interaction time

was 35.8 seconds.

We noted that many of the failed interactions were due to poor timing, such as when the
user answers the robot’s question just as the robot is starting to ask a second one. This
causes the robot to interpret the user’s answer to the first question as their answer to the

second question, which leads to the robot picking the wrong object.

7 Conclusion

In this paper we present a new model for reducing confusion by asking clarifying ques-

tions during object fetching. Our model is based on the model described in Whitney et al.
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[2017], but we focus on descriptive attribute questions rather than the robot pointing at
objects or the user gesturing. We find that the POMDP is still solvable with this expanded

state-action space.

There are many ways to build on this model. We could give the robot the ability to ask
questions of the form: “What the value is of attribute k?” There are many ways the lan-
guage model could be improved, since the one we use here is simple. The system could
be augmented to include intelligent question generation like the system described in Ab-
basnejad et al. [2018]. Questions could be chosen with an entropy-based heuristic like the

one described in Deits et al. [2013].

This model can be applied to a variety of other decision making tasks. Any home robot
will need to perform complex tasks in order to be useful, and even with the current state
of the art in natural language processing and world modeling, the robot can easily become
confused. When a human user can’t clarify the ambiguity because they are unaware of
what the robot is confused about, robots can still use their own knowledge to produce

questions to clarify meaning. This will lead to more successful human-robot interactions.
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