
Brown University

RIPPED: Recursive Intent Propagation
using Pretrained Embedding Distances

A framework for bootstrapping natural language understanding in
data-poor domains

by
Michael Ball

A thesis submitted in partial fulfillment for the degree of
Bachelor of Science in Computer Science with Honors.

in the
Department of Computer Science

Advisor: Michael L. Littman; Reader: Stephen H. Bach

April, 2019

Contents
Abstract iii

Acknowledgements iv

List of Figures v

List of Tables v

1 Introduction 1

2 Related Work 3
2.1 Semi-Supervised Learning . 3
2.2 Transfer Learning . 4
2.3 Few-Shot Learning . 4

3 Background 5
3.1 Intent Classification . 5
3.2 Semi-Supervised Learning . 5

3.2.1 Label Propagation . 6
3.2.2 Self-Training . 6
3.2.3 k-Nearest Neighbour . 6
3.2.4 k-Means . 7

3.3 Text Embedding . 7
3.3.1 Universal Embedding Models . 7
3.3.2 Evaluation of Representational Ability . 8

4 Proposed Method 10
4.1 Overview . 10
4.2 Sentence Embedding . 10

4.2.1 Universal Sentence Embeddings . 11
4.2.2 STS-Trained Embeddings . 11

4.3 Label Propagation . 12
4.3.1 Distance Function . 13
4.3.2 LP Variants . 13
4.3.3 Parameter Setting . 16

5 Experiments 18
5.1 Datasets . 18
5.2 Evaluating our Continuity Assumption . 19
5.3 Intent Classification . 20

5.3.1 Experimental Setup . 20
5.3.2 Baseline Semi-Supervised Algorithms . 21

5.4 Impact of σ . 22

6 Results 23
6.1 Evaluating our Continuity Assumption . 23
6.2 Intent Classification . 24

6.2.1 Semi-Supervised Algorithm Comparison . 26
6.2.2 Embedding Type Comparison . 28
6.2.3 Transductive Setting . 30

6.3 Impact of σ . 31

6.3.1 Robustness . 31
6.3.2 Performance . 32

7 Discussion 35
7.1 Recursive Label Propagation . 35
7.2 Pre-trained Embedding Models . 35
7.3 Future Work . 36

8 Conclusion 37

9 Bibliography 38

10 Supplementary Material 41
10.1 Pretrained Embedding Evaluation Sources . 41
10.2 Dataset Intent Statistics . 42
10.3 Additional Training Details . 43
10.4 Semi-Supervised Algorithm Comparison - Extra Examples 44
10.5 Embedding Type Comparison - Extra Examples . 45

ii

Abstract

In this paper, we introduce a novel framework for improv-
ing intent classification performance in domains with limited labeled
data. We call our framework RIPPED: Recursive Intent Propagation
using Pretrained Embedding Distances. Unlike most graph-based semi-
supervised approaches, RIPPED uses dense pretrained embeddings to
construct the representation graph. In combining this representation
scheme with a recursive variant of the label propagation algorithm,
RIPPED is able to accurately propagate labels throughout the unla-
beled dataset in domains with a large number of unbalanced classes
and complex, noisy decision boundaries. In a given data-poor do-
main, RIPPED acts as an augmentation system, adding to the labeled
dataset by classifying unlabeled examples, thus allowing a more effec-
tive inductive classifier to be trained. As a result, RIPPED can be
easily incorporated into any classification pipeline.

RIPPED is simple to apply to new domains, and our results in-
dicate its empirical effectiveness. On four intent classification datasets,
given access to only a few labeled examples per class, RIPPED achieved
performance comparable to state-of-the-art classifiers given access to
the entire training dataset. In some cases (including the one-shot set-
ting), RIPPED outperformed the next-best semi-supervised methods
by more than 70%. We propose that RIPPED can be used as an
out-of-the-box tool for bootstrapping natural language understanding
systems in data-poor domains.

iii

Acknowledgements

First and foremost, I’d like to thank my advisor, Michael Littman for his guidance and sensible
advice. Michael, your ability to clarify the mess in my head allowed the ideas to flow, and I thank
you for reminding me in the moments of chaos that it’s all really just fun and games.

To Stephen Bach, thank you for your pedagogy and masterful management of discussion in introduc-
ing me to the world of limited labeled data. Many aspects of this work were inspired by tangential
discussions only made possible by your support of intellectual curiosity.

I want to thank my partner Lauren, my constant source of inspiration. Her limitless patience and
loving encouragement are what made this all possible.

I am also grateful for the support of my family and friends here and in New Zealand. Special thanks
to my mum Kate and dad Craig for their relentless encouragement, and to Nick, Phil, and Jae for
telling me to go outside.

I am very fortunate to have met a mentor along the way in Nicolas Santini who took a chance and
helped me grow. And to all my colleagues at Ambit, I am grateful for your constant positivity and
determination to make things happen.

Finally, I want to thank Brown. The last four years have been a whirlwind, all thanks to the people
whose paths I’ve been lucky enough to cross. I am forever grateful for the friends I’ve made and the
experiences I’ve shared in this incredible melting-pot.

iv

List of Figures
4.1 STS embedding training architecture . 12
4.2 Visualisation of propagation process . 15
6.1 Intent-semantic representational ability of embedding models 24
6.2 F1 scores per semi-supervised algorithm . 25
6.3 Augmentation accuracy vs fraction of unlabeled data used 27
6.4 F1 scores per embedding type . 29
6.5 σ ablation study (f1) . 32
6.6 σ ablation study (aug acc / frac used) . 33

List of Tables
3.1 Universal sentence embedding comparison . 9
5.1 Dataset statistics . 18
5.2 Dataset example sentences . 19
6.1 Intent-semantic representational power of embeddings 23
6.2 Area between the f1 curves . 26
6.3 One-Shot Performance . 28
6.4 Average & maximum f1 curve areas for different embedding types 30
6.5 Transductive setting results . 31
6.6 Robustness of the entropy heuristic for setting σ . 31

v

1 Introduction
The desire to build a computer capable of holding human-level conversation has been ingrained
in artificial intelligence research since the field’s inception; in 1950, Alan Turing proposed this
challenge as the key criterion for assessing a machine’s intelligence (Turing, 1950). In recent years,
the combination of online chat service proliferation and relentless advances in natural language
processing have stoked a resurgence of interest in conversational agents, or chatbots. Evidence of
the recent focus can be seen both in academic literature (Ferrara et al., 2016; Vinyals and Le, 2015;
Mazaré et al., 2018) and in industry1,2 (Zhou et al., 2018).

At the core of conversational intelligence is natural language understanding (NLU), the ability to
extract important semantic information from raw sequences of text (or audio). The first step in
this process is intent classification (IC), a subset of text classification in which short sequences
of text (utterances) are classified according to the action or dialogue the utterance is intended
to prompt. Assuming the purpose of language in a conversation is to communicate informa-
tion, we can view the semantic meaning of an utterance as the result it is intended to have on the
recipient. In this intuitive framing, intents are simply collections of utterances with similar meanings.

The IC task has some key challenges that we believe to be under-explored:

1. In building NLU systems for new domains, labeled data is often very limited. By contrast,
unlabeled data is generally accessible, for example, by parsing human-to-human chat logs or
scraping unstructured text online

2. Many domains in which NLU systems are desired contain complex, domain-specific language
(for example, in building a medical chatbot or a virtual legal assistant).

3. IC is generally a many-class problem, as a large number of intents are needed to define the
scope of conversation in even a heavily-restricted domain

4. Intents are defined purely by semantics, independent of syntactic or lexical features. This
contrasts with many general text classification problems, where classes are often determined
by high-level themes or stylistic features.

In light of the first three challenges and motivated by the need to develop more effective techniques
for bootstrapping NLU in new domains, we are especially interested in the few-shot IC setting, where
we only have access to a few labeled examples per class. The combination of limited labeled data and
relatively prevalent unlabeled data lends this setting to semi-supervised learning (SSL), the broad
collection of learning strategies that make use of the structure of unlabeled data in addition to the
few given labels. Many SSL approaches to text classification have been proposed (Wang et al., 2013,
2016), demonstrating varying levels of success in a variety of classification domains. But there are two
unifying problems with these methods. Firstly, they often still require a substantial amount of labeled
data to be successful, and are therefore unsuitable for the few-shot setting. Secondly, they are typi-
cally unable to handle many-class problems, especially those with complex, noisy decision boundaries.

One possible solution to the latter problem could be the use of neural transfer learning, the trans-
ferring of linguistic knowledge from models trained on large corpora to the specific task at hand,
perhaps improving the ability of SSL approaches to handle semantically complex problem spaces.
A variety of such models and strategies have been suggested in recent years that both improve
performance on text classification tasks and reduce the number of labeled examples required to train

1https://www.drift.com/chatbots/
2Google trends reports a 10-fold increase in searches for ‘chatbot’ since the end of 2015

1

https://www.drift.com/chatbots/

classifiers in downstream domains (Ruder, 2019). However, neither the incorporation of features
extracted from pretrained representations nor the fine-tuning of entire pretrained models is feasible
when faced with only a few labeled examples per class, especially in the many-class setting.

In this paper, we outline a framework for substantially improving few-shot intent classification by
proposing RIPPED: Recursive Intent Propagation using Pretrained Embedding Distances. Our
method is designed specifically to address the aforementioned challenges of the intent classification
task, and as such it outlines a framework for bootstrapping NLU in data-poor domains. RIPPED
combines a variant of pretrained feature extraction specific to limited labeled data domains with a
recursive extension of the semi-supervised label propagation algorithm. The method is an inductive
approach that expands the labeled dataset by classifying a subset of the unlabeled examples, thus
allowing a more effective classifier to be trained than would have been possible with access to only
the original labeled data.

The principal contributions of this paper are as follows:

• We emphasize that pairwise distance functions between pretrained sentence representations
are able to reflect sophisticated semantic relations, and use this to demonstrate that the
knowledge contained in these distance values, computed over embeddings untuned to the
specific downstream task at hand, is able to accurately represent the semantic structure of the
intent classes in a number of IC domains.

• We show that our recursive extension of the label propagation algorithm significantly out-
performs other semi-supervised algorithms in many-class, few-shot classification domains,
especially in tasks with noisy decision boundaries.

• On four benchmark IC datasets, using only a few labeled examples per class, we achieve
comparable performance to state-of-the-art supervised methods given access to the entire
training dataset. We conduct experiments along a number of axes to investigate the relative
importance of the key components of RIPPED, demonstrating the robustness of our method.

• We present RIPPED as a general framework for boostrapping NLU in novel domains. The
method acts as an augmentation tool, applied to the task at hand prior to classifier training,
and as such it can be incorporated into any IC pipeline. Code for our model can be found on
the author’s Github.3.

The remainder of the document proceeds as follows. In §2 we give an overview of work related to
our work, thereby framing our motivation for this research. We outline some necessary theoretical
background in §3, before giving a comprehensive account of our proposed method in §4. In §5 and §6
we describe and present the results of our experiments, before discussing some additional takeaways
in §7. We add some concluding remarks in §8, and include a collection of supplementary information
in §10.

3https://github.com/michaelhball/Recursive-Intent-Propagation-using-Pretrained-Embedding-Distances.
Full documentation and a packaged library are forthcoming.

2

https://github.com/michaelhball/Recursive-Intent-Propagation-using-Pretrained-Embedding-Distances

2 Related Work
The principal intention of our research was to develop a system for improving IC performance in
domains with limited labeled data. There are a variety of related approaches that share that goal,
though most target text classification rather than the more specific IC. The two most relevant
categories of techniques are semi-supervised learning (SSL) and transfer learning, outlined in §2.1
and §2.2 respectively. We also describe several related approaches that specifically target few-shot
text classification in §2.3. Throughout this section, we reference the drawbacks of the approaches
discussed relative to their application in our specific setting. These are not intended as criticisms
of the work – the mentioned approaches were generally not designed for this domain in the first
place – but rather as motivating examples of the problems we sought to address in designing RIPPED.

2.1 Semi-Supervised Learning
Semi-supervised learning can be broadly divided into three main approaches: generative mod-
els, low-density separation models, and graph-based models. The seminal generative approach is
outlined by (Nigam et al., 2006), whereby a bag-of-words text representation is combined with
various expectation-maximisation algorithms4 to propagate labels. A major drawback of generative
approaches is that they struggle with local maxima when dealing with many-class problems and
domains with complex decision boundaries (Liu et al., 2002).

Low-density separation models typically construct a structured representation of the input domain,
before using some variant of the Transductive Support Vector Machine algorithm (TSVM; Gammer-
man et al., 1998) to label the unlabeled data such that the decision boundary margin is maximised
over the entire dataset. Three previously state-of-the-art examples are (Chapelle and Zien, 2005;
Sindhwani and Keerthi, 2006; Keerthi et al., 2012), where the latter is the most relevant to our work
as it extends the standard TSVM algorithm to the multi-class setting. These approaches typically op-
erate over sparse representations of text, as SVMs in general are especially well-suited to this setting
(Joachims, 1998). Although some work has been done towards improving these methods’ robustness
(Li and Zhou, 2011), TSVM-based approaches suffer from inconsistent performance: the use of
unlabeled examples sometimes degrades performance when compared with a supervised SVM, often
in ways that are unpredictable. These issues are exacerbated in the many-class setting, we believe due
to the inability of sparse representations to capture the complex semantics of the representation space.

Our proposed method is a graph-based approach that extends the original label propagation (LP)
algorithm outlined by (Zhu, 2002). An approach similarly motivated to ours is the dynamic LP
variant of (Wang et al., 2013), also designed to extend LP to multi-class problems (though DLP
operates in the transductive setting). Other related approaches in this area are (Yang et al., 2016),
which learns graph embeddings over the representation graph to understand neighbourhood context,
and (Pawar et al., 2016) which combines LDA (Pritchard et al., 2000) with LP to perform weakly-
supervised text classification. The key difference between RIPPED and these related approaches is
the choice of text representation (pretrained dense representations vs. sparse, bag-of-words-based
representations). The representation method used in graph-based approaches is especially important,
as (Jebara et al., 2009) indicates that strong classification performance is more dependent on robust
graph construction than a sophisticated propagation algorithm.

A number of recent proposals incorporate the representational power of neural networks (NNs) into
the semi-supervised learning process. For example, (Wang et al., 2016) suggest an iterative algorithm

4We refer the reader to Andrew Ng’s excellent lecture on the fundamentals of EM: http://cs229.stanford.edu/
notes/cs229-notes8.pdf

3

http://cs229.stanford.edu/notes/cs229-notes8.pdf
http://cs229.stanford.edu/notes/cs229-notes8.pdf

to optimise an objective function combining k-means and the learning of sequence embeddings,
(Johnson and Zhang, 2015) train a CNN using both supervised learning over the labeled examples
and unsupervised learning over the unlabeled examples, and (Johnson and Zhang, 2016) use a
similar unsupervised CNN in conjunction with an LSTM trained to represent ’region embeddings.’
While all three methods surpass the performance of a number of semi-supervised baselines on several
classification tasks, they require a relatively large number of labeled examples to be successful. For
example, the embedding method of (Wang et al., 2016) achieves state-of-the-art performance on
the TREC dataset (Li and Roth, 2002) when given 10% of the labels (550 examples over 6 classes),
but classification performance plummets (from an adjusted mutual index of 43 to 12) when this is
reduced to 1% of the labels (55 examples).

2.2 Transfer Learning
We take transfer learning here to refer to the definition of sequential transfer learning given in
(Ruder, 2019): “the setting where source and target tasks are different and training is performed
in sequence." In general, this encompasses the entire collection of recent advances in using large
corpora to learn universal representations that can be incorporated downstream both to improve
performance and to expedite training. Therefore, these approaches are especially useful in limited
labeled data domains. One particularly successful collection of transfer-learning approaches are
pretrained language models (Radford, 2018; Ruder and Howard, 2018; Chronopoulou et al., 2019),
whereby general linguistic representations are trained on millions of tokens of text. Almost every
benchmark in NLP has been advanced in recent years through the incorporation of pretrained
language models in downstream architectures. Universal embedding methods such as BERT (Devlin
et al., 2018) and ELMo (Peters et al., 2018) also fall under the umbrella of transfer learning, as
these can be incorporated into downstream architectures either out-of-the-box or with fine-tuning.

The main drawback of these transfer learning approaches in the context of our intended domain
is that in very data-limited settings there often isn’t enough data to either train a classifier using
features extracted from pretrained embeddings or to fine-tune an entire pretrained model. For
example, ULMFiT was unable to achieve a validation error below 35% when fine-tuned on the
six-class TREC dataset with 16 examples per class (Ruder and Howard, 2018). Even training a
binary, linear classifier using the smallest pretrained embeddings (generally 50 dimensions) requires
training 50 parameters, a challenging task if we only have a few labeled examples in each class.

2.3 Few-Shot Learning
A variety of approaches have been proposed for few-shot learning in text classification. (Bailey and
Chopra, 2018) incorporate topic modelling and a human-in-the-loop to select the ‘most representative’
labeled examples in each class, before the remaining examples are classified using simple distance
calculations. As a transfer learning-related approach to the few-shot setting, (Pushp and Srivastava,
2017) propose learning a collection of binary tag classifiers on a large corpora. To perform text
classification in a new domain, these tags are mapped to classes, and then a thresholded vote is used
to determine the classification of each unlabeled example. (Yu et al., 2018) also suggest training
models on general tasks before adapating these to the target domain, in their case by considering
‘meta-training tasks.’ These works all report strong results on a variety of classification tasks, though
they don’t experiment in the many-class setting.

4

3 Background
This section provides a theoretical overview of key concepts, algorithms, and models that our research
uses and extends.

3.1 Intent Classification
RIPPED is designed for use in intent classification (IC), a subset of text classification where the
class of a given short sequence of text (utterance) is defined according to the action or dialogue that
that utterance is intended to produce. For example, in a banking customer support system, a user’s
message “I want to open a new savings account" might have the intent ‘NewAccount’, while another
message “What are your standard weekend hours?" could have the intent ‘GeneralInquiry.’

We reproduce here (from the introduction) the four key challenges in intent classification that
motivated our work:

1. In building NLU systems for new domains, labeled data is often very limited. By contrast,
unlabeled data is generally accessible, for example by parsing human-to-human chat logs or
scraping unstructured text online

2. Many domains in which NLU systems are desired contain complex, domain-specific language.
For example, consider building a medical chatbot, or designing a virtual legal assistant

3. IC is generally a many-class problem, as a large number of intents are needed to define the
scope of conversation in even a heavily-restricted domain

4. Intents are defined purely by semantics, independent of syntactic or lexical features. This
contrasts with many general text classification problems, where classes are often determined
by high-level themes or categorical features.

3.2 Semi-Supervised Learning
Semi-supervised learning (SSL) is a class of learning that makes use of both labeled and unlabeled
data. Although this spans all problem spaces between fully-supervised and fully-unsupervised
learning, SSL is usually taken to refer to the more specific case where the number of unlabeled
examples substantially outweighs the number of labeled examples.

Any semi-supervised approach works on the assumption that some property of the inherent structure
of the domain, X, is useful in learning the function mapping points to their labels, f : X Ñ Y .
Most commonly, these methods utilize the continuity assumption: that points closer together
are more likely to have the same label. In addition, these methods can be used for either of
the two fundamental types of learning: inductive or transductive. In inductive learning, labeled
training data (and unlabeled data) are used to learn a general classifier that can be applied to
unseen examples, while in transductive learning the goal is to label only a defined set of test examples.

As noted in §2, a wide range of semi-supervised methods have been proposed in the text classification
domain. We outline the theory behind several here that are explicitly used in our work. The following
sub-sections only describe the core theory underlying each algorithm. For our specific implementation
of label propagation and extensions of the algorithm, refer to §4.3. For implementation-specific
details on all other semi-supervised algorithms, refer to §5.3.2.

5

3.2.1 Label Propagation

Label Propagation (LP; Zhu, 2002) is an algorithm that classifies unlabeled data using the underlying
structure of all labeled and unlabeled data points, typically applied in the transductive setting. LP
operates over a fully-connected graph where nodes are data points and edges are weighted such that
pairs of points, i, j, that are close in space according to some distance function, dij , are given a large
edge weight, wij .

More specifically, let the number of classes C be known. Let XL “ tx1, . . . , xlu and YL “ ty1, . . . , ylu
be the labeled data, and XU “ tx1, . . . , xuu, YU “ ty1, . . . , yuu be the unlabeled data, where YU are
unknown. Let each xi P Rm. Then our edge weights between each pair of points are given by

wij “ expp´
d2ij
σ2
q “ expp ´

řm
d“1

∥∥xdi ´ xdj∥∥2
σ2

q (1)

where dij here is the pairwise euclidean distance, and the weights are controlled by the normalising
parameter σ.

We then define two matrices: a label matrix, Y P Rpl`uqˆC , whose ith row represents the soft label
distribution of node xi (probabilities of being in classes 1, . . . , C), and a probabilistic transition
matrix, T P Rpl`uqˆpl`uq, that specifies how easily a node’s label distribution will propagate to its
neighbours. T is given by

Tij “ Prpj Ñ iq “
wij

řl`u
k“1 wkj

(2)

. Given these two matrices, one iteration of the LP algorithm consists of the following three steps:

1. Propagate Y Ð TY

2. Row normalise Y

3. Clamp the labeled data (concentrate soft label distribution around ground-truth label)

where step 2 is required to maintain the interpretation of Y as label distributions and step 3 enforces
a constant signal from correct labels. Intuitively, the labeled nodes ‘push’ their labels through
high-density regions of the graph, allowing class boundaries to naturally settle in low-density gaps.
The algorithm proceeds until some task-specific convergence criterion is met.

3.2.2 Self-Training

Self-training is one of the oldest semi-supervised algorithms. In this approach, a supervised classifier
is trained on the labeled data alone, before the trained classifier is used to label the unlabeled data.
Any examples that are classified with a probability higher than some threshold t are added to the
labeled dataset. This process is repeated iteratively until either all the unlabeled data has labeled,
or no new unlabeled examples are labeled in a given iteration.

3.2.3 k-Nearest Neighbour

The k-nearest neighbours (KNN) classification algorithm is one of the simplest classification tech-
niques, whereby a point is classified according to a weighted ‘vote’ over the classes of the k nearest
labeled points in XL (where ‘nearest’ is determined by some distance function). Let x be the point
to classify, xi P XL, i “ 1, . . . , k be the k neighbours in consideration, di be the distance between
x and xi, and wi be the weight given to xi’s vote for the class of x. The most common weighting

6

scheme is simply to weight each of the k neighbours’ votes equally, namely by setting wi “ 1
k . An-

other common scheme is to set wi “ 1
di
, thereby weighting the votes of closer neighbours more highly.

3.2.4 k-Means

The k-means algorithm is generally used for unsupervised clustering, though it can be adapted to the
SSL setting. Given a set of data points, X “ tx1, . . . , xnu, where each xi P Rd, k-means attempts
to partition the data into k clusters. More concretely, the objective is to partition X into the k sets
S1, . . . , Sk that minimize the within-cluster sum of squares (a.k.a variance or inertia) according to

arg min
S

k
ÿ

i“1

ÿ

xPSi

‖x´ µi‖2 (3)

where µi is the centroid of cluster Si and can be used as a prototype for the cluster as a whole. We re-
fer the reader to the scikit-learn documentation for a thorough explanation of the k-means algorithm5.

More recently, (Gowda et al., 2016) proposed the use of a recursive extension of the k-means
algorithm for semi-supervised text classification. In their approach, the k-means algorithm is applied
recursively on each cluster until the clusters contain only labeled examples from a single class.
The initial clustering sets k “ C, where C is the number of classes, while each recursive k-means
application on cluster Si sets k “ Ci, where Ci is the number of different classes in Si.

3.3 Text Embedding
Any semi-supervised method that relies on the continuity assumption needs a representation for each
data point that defines the structure of X. As described previously, we use pretrained embeddings
for our representation scheme. In this section, we outline the general process for learning dense
embeddings to represent text, as well as the theory specific to the four universal embedding models
we use in our intent classification framework.

Text embedding is a collective term referring to any system for mapping sequences of text to
real-numbered vectors, though we use the term to refer to the specific case where embeddings
1) are learned, either in an unsupervised or a supervised setting, and 2) are dense, fixed-length,
high-dimensional vectors. A recent trend has been the development of ‘universal embeddings,’
representations that are pretrained on large corpora and are useful in a variety of downstream
applications. We make use of four such universal embeddings in this work, two word embedding
models and two sentence embedding models.

3.3.1 Universal Embedding Models

In this section we outline the four universal embedding models we use in this paper. For details on
our implementation of these models within RIPPED, refer to §4.2.1.

GloVe (Pennington et al., 2014) is a word embedding model trained on data from the Common
Crawl corpus6. GloVe is a log-bilinear regression model that incorporates both local context windows
and global matrix factorisation into its objective for training embeddings. The model itself begins

5https://scikit-learn.org/stable/modules/clustering.html#k-means
6http://commoncrawl.org/the-data/

7

https://scikit-learn.org/stable/modules/clustering.html#k-means
http://commoncrawl.org/the-data/

by constructing a matrix of ratios of co-occurrence probabilities between words, and can be most
generally expressed as

wTi w̃k ` bi ` b̃k “ logpXikq (4)

where w P Rd are the word vectors to learn, w̃ P Rd are ‘context’ word vectors, b are bias terms, and
Xik contains the number of times word i occurs in the context of word k in the entire training corpus.
This objective is solved via a weighted least-squares regression algorithm, yielding a word vector wi
for every word in the corpus that can be extracted and used as a universal representation downstream.

ELMo (Peters et al., 2018) is a word embedding model that learns vector representations for words
by training a bi-directional LSTM7 as a language model8 on the 1B Word Benchmark (Chelba et al.,
2013). The output word embeddings are learned functions of the internal states of the LSTM, and
are therefore specific to the context in which a word appears (as opposed to GloVe which learns
single embeddings for each word to be used in all cases). For each token tk, the 2-layer LSTM used
in ELMo computes five representations given by

Rk “ tx
LM
k ,

ÝÝÑ
hLMk,j ,

ÐÝÝÝÝ
hLk,jM |j “ 1, 2u (5)

where j is the layer index, xLMk is the input layer, and the hLMk,j terms are the hidden states in layer
j for the forward and reverse LSTM directions. The function combining these representations into a
single embedding is then learned for a specific downstream task.

BERT (Devlin et al., 2018) is a sentence embedding model that learns vector representations
by training a deep, bi-directional Transformer9 network on a collection of data from Wikipedia
and BookCorpus (Zhu et al., 2015). The network is simultaneously trained on both next-sentence
prediction and the prediction of ‘masked’ words in a given sentence, and output sentence embeddings
are simply the final hidden state of the first token in the input sequence.

InferSent (Conneau et al., 2017) is a sentence embedding model that learns vector representations
by training a wide, bi-directional LSTM in a supervised setting on the SNLI dataset, described in the
next section. Output sentence embeddings are learned combinations of the output layer hidden states.

3.3.2 Evaluation of Representational Ability

To understand the representational power and relative strengths of these four embedding models,
we compiled results evaluating them on a range of tasks, presented in Table 3.1. As far as possible,
we report results that use these four models in an ‘untuned’ manner, meaning the pre-trained
representations are applied without modification to the downstream task. The sources of all listed
results are given in §10. Note that these results do not represent the findings of any experiments we
conducted; we are merely compiling results from various sources to provide insight into the relative
ability of the four embedding models.

The tasks we use for this evaluation can be categorised into three main groups: semantic-textual
similarity (STS), inference (Inf), and paraphrase detection (Para). We also include one probing tasks,
semantic odd-man-out (SOMO), a binary classification task where the goal is to predict whether a
single noun or verb in a sentence has been replaced with another, semantically out-of-place word.
SOMO comes from the SentEval suite of datasets designed to evaluate embeddings (Conneau et al.,

7We refer the reader to Colah’s blog for a detailed explanation of LSTM networks: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/

8A language model is trained to predict the next word in a sequence given a context sequence of previous words.
9http://jalammar.github.io/illustrated-transformer/

8

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://jalammar.github.io/illustrated-transformer/

Emb Avg. STS Inf Para Probe
SICK-R STS-B SICK-E QNLI MNLI MRPC QQP SOMO

GloVe 72.8 80.0 65.0 79.0 75.1 58.7 72.6 79.4 54.2
ELMo 81.2 86.1 75.9 86.3 79.9 79.6 76.0 84.8 58.2
BERT 85.2 86.4 82.9 84.8 90.1 84.6 78.1 89.4 –
InfSnt 79.9 89.0 77.0 86.4 79.8 65.1 75.7 86.1 55.8

Table 3.1: Universal sentence embedding performance on a range of NLP tasks. For STS tasks, we
report Pearson correlation, scaled to be in r´100, 100s; for MNLI we report accuracy (%) on the
mismatched test split; for all other tasks we report accuracy (%) on the standard test set. Avg.
is the unweighted average of all two-sentence tasks. Bold denotes best result per task; underline
denotes best result per task among methods where the given result was achieved with untuned
embeddings.

2018).

In STS, the goal is to predict the semantic similarity between two given sentences. We report results
on the Sentences Involving Compositional Knowledge relatedness subtask (SICK-R; Marelli et al.,
2014) and the STS-Benchmark (Cer et al., 2017). In paraphrase detection, the goal is to determine
whether two sentences are semantically equivalent. We present results on the Microsoft Research
Paraphrase Corpus (MRPC) and the Quora Question Pairs dataset (QQP), both from the GLUE
suite of language tasks (Wang et al., 2018). In Inf tasks, the goal is to make some inference as to the
relation of two input sentences. We report results on two natural language inference (NLI) tasks,
the Multi-Genre Natural Language Inference Corpus (MNLI; Williams et al., 2018) and the SICK
entailment sub-task (SICK-E). The goal in NLI is to predict whether the given premise sentence
contradicts the given hypothesis sentence, entails it, or neither. We also present results on the
Question NLI (QNLI) dataset from GLUE, where the goal is to determine whether the given context
sentence contains the answer to the given question sentence.

These tasks were deliberately selected to test the ability of each embedding model to represent
semantic properties that are relevant to their use in our semi-supervised setting. As was out-
lined in §3.1, the classes in intent classification are defined by semantics. In order to use these
embeddings to compute distances between sentences that correspond to class boundaries, the em-
bedding model will have to capture complex semantic features in its representation. We predict
that the STS and Para tasks will be the most reliable indicators of the performance of a given
embedding model in our framework, as strong performance on these tasks requires the ability to
predict pairwise semantic similarity, independent of syntactic or lexical differences. Success on the
Inf and SOMO tasks also requires the representation of subtle semantic features, hence their inclusion.

As can be seen, all four models demonstrate the ability to represent relevant semantic features of
sentences. BERT appears to be the most effective across a range of tasks, though many of the
given results using BERT were obtained by tuning embeddings on the specific downstream task. By
contrast, all results reported for InferSent were achieved using the untuned embeddings, indicating
its effectiveness as a universal, out-of-the-box representation solution.

9

4 Proposed Method
In this section we describe our proposed method for improving intent classification performance in
limited labeled data domains. §4.1 contains a high-level overview of our approach, before §4.2 and
§4.3 outline the two key components of our approach in turn.

4.1 Overview
Our method, RIPPED, is designed for use in the inductive semi-supervised setting, where we have
some labeled data XL and some unlabeled data XU (XL ăă XU) and the goal is to train a general
classifier for use on unseen examples. In this setting, RIPPED acts as a tool to add unlabeled
examples to the labeled dataset for use prior to classifier-training, and as such can be incorporated
into any existing classification pipeline. In addition, the method can be applied to a new domain with
no ‘training’, the only required domain-specific decision being the choice of sentence representation.

RIPPED consists of a given sentence representation scheme used in combination with our recursive
implementation of label propagation. In lieu of the recent success obtained by transferring the
knowledge encoded in pretrained embeddings to a wide range of natural language processing tasks,
we use pretrained embeddings as our sentence representation scheme in all cases. In §4.2, we outline
the seven different sentence embedding models we experiment with. Although RIPPED uses a
recursive implementation of label propagation, we also define and test two other label propagation
variants in our work, outlined in §4.3.2.

We implement RIPPED as an augmentation system, improving classification performance by
classifying sentences in XU in order to augment XL, thus allowing a stronger classifier to be trained
than would have been possible using only the original labeled data. The process can be summarised
as follows

1. Transform all sentences in XL and XU into embedding space using one of the pretrained
embedding models outlined in 4.2.

2. Compute the distance between each pair of embeddings and initialise the two matrices needed
for label propagation.

3. Set the key parameter, σ, according to the entropy heuristic detailed in §4.3.3.

4. Recursively propagate intent labels using the lp-R algorithm outlined in §4.3.2, transferring
newly labeled sentences from XU to XL.

4.2 Sentence Embedding
We use two categories of sentence embedding models in our approach: the four state-of-the-art
universal embeddings described in §3.3.1, and our own embeddings trained from scratch on the
STS task, outlined in §3.3.2. In both cases, the embeddings are pretrained prior to their use in a
specific classification task and receive no fine-tuning. The motivation for using the embeddings in
an untuned fashion is twofold: 1) RIPPED is intended for use on datasets with very few labeled
examples, generally too few for effective fine-tuning, and 2) we designed RIPPED such that it can
be incorporated into new classification pipelines as easily as possible.

To extend the continuity assumption that is central to the label propagation algorithm, our approach
assumes that pretrained embedding models can convert the task domain into an embedding space in

10

which pairwise distance calculations between data points reflect the intent class boundaries. Given
that we use untuned embeddings, this is a hefty assumption, and one that we evaluate in depth in
our experiments.

4.2.1 Universal Sentence Embeddings

Background on the four universal embedding models we use, as well as a comprehensive evaluation
of the representational ability of each model, is provided in §3.3. This section describes our imple-
mentation of the four models.

For GloVe, we use the 300d-840B model, available for download10. To extract sentence repre-
sentations from the given word embeddings, we max-pool the word embeddings for each token
in a sentence, resulting in 300-dimensional embeddings. For ELMo, we use AllenNLP’s default
implementation11. The original paper recommends learning the optimal function over the five
different LSTM representations for each downstream task, but in order to use these embeddings in
an untuned fashion, we use only the hidden states of the highest layer in all cases. We max-pool
over the states for each word to get 3072-dimensional embeddings.

For BERT, we use the HuggingFace implementation of the base-uncased variant12. To extract
sentence representations, we use the default final hidden state of the first token in the input sequence,
resulting in 3072-dimensional embeddings. For InferSent, we use the InferSent1 model whose embed-
ding layer was initialised with GloVe 300d-840B vectors13. To extract sentence representations, we
max-pool the output layer hidden states, resulting in 4096-dimensional embeddings.

As was outlined in §3.3.2, this selection of embedding models was motivated by a slate of recent
work asserting their ability to represent important semantic features. In addition to the results we
compiled in Table 3.1, we reference here some indications of the strength of these embeddings when
applied untuned to downstream tasks. Firstly, our pooling implementation of GloVe and ELMo has
been shown to be a strong baseline on a wide range of benchmark NLP tasks, despite sacrificing
all knowledge of word order (Wieting et al., 2016; Arora et al., 2017). Secondly, although BERT
generally performs better with fine-tuning as opposed to untuned feature-extraction, (Peters et al.,
2019) demonstrated that the untuned embeddings still yield close to state-of-the-art results on a
variety of tasks. Finally, (Zhu et al., 2018) found that out-of-the-box InferSent embeddings excel at
distinguishing subtle semantic relations between sentences such as negation, synonymy, and semantic
equivalence.

4.2.2 STS-Trained Embeddings

In addition to the universal sentence embeddings, we also train several embedding models from
scratch on the STS task (the STS task is described in §3.3.2 as one of the tasks used to evaluate the
universal embedding models). We use three datasets – SICK, the STS-Benchmark, and a random,
equal combination of the two – to train three models, referred to as STS-sick, STS-bench, and
STS-both. Our motivation behind this approach was simple: explicit training on semantic similarity
prediction should result in embeddings that are better able to express pairwise semantic similarity.
Since the label propagation algorithm only uses these embeddings to calculate distance between
points, we hope that these STS-trained embeddings will express the desired correspondence between

10https://nlp.stanford.edu/projects/glove/
11https://allennlp.org/elmo
12https://github.com/huggingface/pytorch-pretrained-BERT
13https://github.com/facebookresearch/InferSent

11

https://nlp.stanford.edu/projects/glove/
https://allennlp.org/elmo
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/facebookresearch/InferSent

semantic distance and intent class boundaries.

encoder encoder

Figure 4.1: STS embedding
training architecture.

Model Architecture

We use the same general training architecture as (Conneau
et al., 2017), illustrated in Figure 4.1. For each train-
ing example, a sentence encoder is used to embed both sen-
tences. The absolute difference and element-wise product of
these two embeddings are fed into a small feed-forward multi-
layer perceptron (MLP) that we call the ‘prediction network,’
which in turn outputs a real-valued semantic similarity predic-
tion.

For the encoder, we use a one-layer, bi-directional LSTM with adap-
tive max-pooling over hidden states. We use a hidden size of 300
and initialise the input layer with GloVe 300d-840B embeddings
(which are kept frozen throughout training, as we saw no perfor-
mance gain through fine-tuning). The prediction network contains a
single hidden layer of size 300, with dropout and ReLu non-linearity
(Glorot et al., 2011) following the input and hidden layers. At training completion, we extract the
encoder to use as an untuned embedding model in our semi-supervised intent classification framework.

Training

As we trained these models purely for downstream use (not to evaluate on the STS task itself),
we use the test dataset for hyper-parameter tuning and early stopping. The architecture was
trained end-to-end using the Adam optimiser (Kingma and Ba, 2015) with a learning rate of
6e´4 and batch-size of 64. Weights were regularised using per-batch L2-regularisation of 5e´3,
and the prediction network dropout was set to 0.2. After pooling the hidden states for both
the forward and reverse directions, each of these three encoding models outputs 600-dimensional
embeddings. The three trained models achieved Pearson correlations of 0.872, 0.820, and 0.843 on
their respective test sets, and while these results are not comparable to the results given in Table
3.1 evaluating the universal embeddings (due to our tuning on the test set), they do give an in-
dication that our encoders learn representations that capture a strong intuition of semantic similarity.

4.3 Label Propagation
In this section, we discuss theory and implementation details related to our use of the label propaga-
tion (LP) algorithm. We begin in §4.3.1 by outlining our choice of the distance function that is used
to convert pretrained embedding representations into the graph over which LP operates. In §4.3.2,
we outline the three label propagation variants we experiment with in our framework: basic (lp-B),
threshold (lp-T), and recursive (lp-R). Our proposed method, RIPPED, uses the lp-R variant, while
the other two are included both in order to outline the process by which we arrived at lp-R and
because we compare lp-R to these variants in our experiments. Finally, §4.3.3 describes the heuristic
we use to set the key parameter used in LP.

12

4.3.1 Distance Function

In order to initialise the transition matrix T that is needed in LP, we need a pairwise distance
function with which to compute distances between every pair of sentence embeddings. We considered
Euclidean and Cosine distance, the two distance functions most widely used with embedding represen-
tations. We note that, if the embeddings are normalised, cosine distance can be defined as euclidean
distance with the application of an additional monotonic transformation, meaning that comparing
distances between pairs of points will result in the same relative ‘ordering’ when using either function.

More concretely, let u, v be two sentence embeddings, then the euclidean distance between them is
defined as

‖u´ v‖2 “

g

f

f

e

m
ÿ

i“0

pui ´ viq2 (6)

where m is the dimensionality of the embeddings. Using the LHS as shorthand for the euclidean
distance, we get that

‖u´ v‖22 “ pu´ vq
T pu´ vq “ ‖u‖22 ` ‖v‖22 ´ 2uT v (7)

And when u, v are normalised, ‖u‖22 “ ‖v‖22 “ 1, so ‖u´ v‖22 “ 2uT v “ 2p1 ´ cospu, vqq, where
1´ cospu, vq is the cosine distance. This means squared euclidean distance is proportional to cosine
distance, and since squaring is a monotonic function, the relative ordering of values obtained using
either distance function will be the same.

We found in our implementation that euclidean distance was orders of magnitude faster when com-
puting nˆ n distance values, and since the two measures produce the same relative results, we use
euclidean distance in all our algorithms. We also experimented with using the STS similarity output
by our pretrained STS prediction networks, p, to produce a measure of distance, 1´ p, but we found
this to yield poor results. We suspect this is because the learned network was too closely aligned to the
sentence structure and language of its training domain. This is an interesting area for future research.

4.3.2 LP Variants

In this section we describe the recursive algorithm used by RIPPED – lp-R – by first outlining two
simpler variants, where each successive algorithm builds off the previous.

The first variant, lp-B, follows the standard algorithm outlined in §3.2.1. Given labeled and unlabeled
data, it constructs a fully-connected graph, weighting edges using the pairwise euclidean distance
between embeddings, before propagating labels through the graph. We define convergence of the
propagation to be ‖Yi ´ Yi´1‖2 ă tol, where Yi is the label matrix after iteration i. This tolerance
value is set experimentally depending on dataset size, primarily in order to manage run-time; we
found performance to be robust to a range of tolerance values. After convergence, we classify the
unlabeled data according to

yl`i “ arg max
j
Yl`i (8)

where l is the number of labeled examples, i indexes over unlabeled examples, and j “ 1, . . . , C,
where C is the number of classes. This variant labels all unlabeled examples with their most
probable class, adding these to the labeled set for classifier training.

Extending the basic variant slightly, lp-T makes use of the interpretation of Y as a distribution over
classes to enforce a stricter constraint on the labeling process. The same core LP algorithm is used

13

Algorithm 1: Recursive label propagation algorithm (lp-R)
1 while not complete do
2 initialise Y using YL, T using wij ;
3 set YL “ Y:l;
4 while

∥∥Y i ´ Y i´1
∥∥
2
ątol do

5 Y Ð TY (propagate);
6 Y Ð ‖Y ‖´1

2 Y (row-normalise);
7 Y:l Ð YL (clamp ground-truth labels);
8 end
9 yl`i “ arg maxj Yl`i ðñ yl`i ą t;

10 transfer all new y’s from XU to XL;
11 end

until convergence, though now the following classification criteria is used

yl`i “ arg max
j
Yl`i ðñ yi`1 ą t (9)

where t is a threshold parameter. Put simply, we no longer force the algorithm to use all unlabeled
examples, instead selecting only those classifications that the algorithm is confident in. The mo-
tivation here is to pull the algorithm back from attempting to label all examples at the complex
decision boundaries, allowing it to achieve higher accuracy.

The final variant, lp-R, is a recursive extension of lp-T. For each lp-R iteration, we apply the entire
lp-T propagation process, classifying some unlabeled examples using (9) and augmenting the labeled
dataset. We then take this new labeled/unlabeled split and use it as input to the next lp-R iteration.
More concretely: lp-B and lp-T both apply the core label propagation algorithm a single time, and
only differ in terms of the criteria they use after convergence to classify unlabeled examples into
the labeled dataset. By contrast, lp-R applies the core LP algorithm recursively, using the newly
augmented labeled dataset after one iteration as the input to the next. The recursion continues
until either there are no unlabeled examples left, or no unlabeled examples are classified in a given
iteration. A complete outline of the lp-R algorithm is shown in Algorithm 1.

The progression of these three variants was designed to address the challenges specific to intent
classification, principally that the problem space is many-class and unbalanced, often with complex
class boundaries. Since our method is used as a data augmentation tool as part of the pipeline for
training an inductive classifier, there is no requirement to use all unlabeled data. Therefore, the
introduction of a threshold allows the algorithm to achieve far greater accuracy on the examples it
does choose to classify. The motivation for lp-R (and therefore RIPPED) is that by performing only
a single propagation run, lp-B and lp-T will likely miss some unlabeled examples they could have
classified if they were certain of a few more labels to begin with.

The single propagation run of lp-T slowly pushes the initial labels through dense regions of the
graph, before the threshold pulls back the labels to only those the algorithm is most confident
in, thus avoiding the complex decision boundaries. Instead of stopping here, lp-R takes this new
labeled dataset (where the class probabilities of the newly labeled examples have been fixed to their
predicted label, i.e. they are no longer soft distributions) and repeats the entire lp-T process. The
hope is that lp-R can push labels further through the graph while maintaining high accuracy. To
clarify these intuitions, we include a visualisation of the propagation process in Figure 4.2, outlining
the classifications that would be returned by lp-B, lp-T, and lp-R.

14

1 6

2 7

3 8

4 9

5 10

Figure 4.2: Intent label propagation process visualisation. 1 shows the true labels and 2 shows a randomly sampled starting
point with one labeled example per class. 3 gives the output of lp-B, where labels are propagated throughout the graph with
different confidences (and many classifications are incorrect). 4 gives the output of lp-T, showing how the threshold pulls back
the labels to only those with high confidence. 5-10 show the recursions of lp-R, with 10 giving the final output. As can be
seen, lp-R involves a gradual high-confidence of push of labels, resulting in high accuracy and high labelling coverage.

4.3.3 Parameter Setting

The critical parameter in the label propagation algorithm is σ, the normalising value used to initialise
the transition matrix before each propagation run. We also introduce a threshold parameter t in
two of our LP variants. The challenge in setting these parameters experimentally is that we have
very little information about the distribution of classes over the representation graph. This section
outlines the heuristic we use to do so.

Firstly, we reproduce the equation for the edge weights between two points in the embedding graph
from §3.2.1. Recall that we want wij to be inversely proportional to the distance between points i
and j

wij “ expp´
d2ij
σ2
q “ expp ´

řD
d“1

∥∥xdi ´ xdj∥∥2
σ2

q (10)

We can see that as σÑ 0 the influence of the nearest labeled point dominates, and therefore the
algorithm propagates labels to unlabeled points based only on their single nearest neighbour. And
as σÑ 8, the edge weights tend to zero, concentrating the entire graph around a single point,
and therefore all unlabeled points will have soft label probabilities reflecting the labeled dataset
class frequency. The optimal value of σ clearly lies in between these values, and it seems that we
intuitively want it to correspond in some way to the distances between intent classes.

Before discussing our heuristic for setting σ, we note that our threshold parameter t simply defines
the cutoff at which our method decides it is confident enough in the classification of a given unlabeled
example; it does not affect the propagation process itself. Furthermore, t is explicitly related to σ. σ
is used to define the transition matrix, T , which is multiplied by Y at each iteration until convergence.
The lower the value of σ, the more confident the algorithm will be in making classifications, and
therefore the higher t will have to be in order to ensure high augmentation accuracy. Because of the
interdependence of these two parameters, we set t “ 0.99 in all cases, and focus on designing a sophis-
ticated heuristic for σ to ensure that easy classification decisions result in very high confidence values.

We build off several methods proposed in (Zhu, 2002) to develop a heuristic that reliably sets σ given
very little knowledge of how the true class labels relate to the overall embedding graph structure. As
a starting point, we use the minimum-spanning tree (MST) heuristic, whereby we first construct the
MST using Kruskal’s Algorithm (Kruskal, 1956) and the pairwise euclidean distances dij between
every pair of points, both labeled and unlabeled. We then define the distance of the shortest edge
connecting two labeled points in different classes as d0. We define the output of the MST heuristic,
σ0, as

σ0 “
d0
3

(11)

where the division by three comes from the 3σ rule of Normal Distributions14. The motivation here
is that, by setting σ “ σ0, the edge weight wij between the two points defining the minimum arc
will be close to zero, thereby hopefully confining propagation to occur within intent classes.

However, σ0 is completely dependent on the location of the initial labeled examples within the
underlying graph class structure, and therefore setting σ using the MST heuristic is highly variable.
Assuming that a good σ value will make classification decisions with high confidence (and therefore
low entropy), we refine σ0 by minimising the entropy of YU , the output probability distribution
predicting labels over the the unlabeled data. Entropy in this case is defined as

HpYU q “ ´
ÿ

ij

Y ijU logpY ijU q (12)

14https://www.encyclopediaofmath.org/index.php/Three-sigma_rule

16

https://www.encyclopediaofmath.org/index.php/Three-sigma_rule

. However, there is a complication in that entropy is minimised by setting σ“ 0 (because this assigns
hard labels using the single nearest neighbour, as discussed above). To avoid this, we smooth the
transition matrix by interpolating it with the uniform transition matrix. More concretely, let the
transition matrix be T , the uniform matrix be U (where Uij “ 1

l`u), and interpolation parameter
be ε. We then replace the transition matrix T with the smoothed transition matrix T̃ , defined as

T̃ “ εU ` p1´ εqT (13)

When σÑ 0, the uniform matrix dominates T̃ , thus generating almost uniform class probabilities.
This means YU will have high entropy, consequently avoiding the minima at σ“ 0. By introducing
this interpolation, we’ve added another parameter ε. However, we discovered that by arbitrarily
setting ε to be extremely small, we avoid the minima at σ“ 0 and yield extremely consistent σ val-
ues for a given dataset. The complete sigma-setting process is summarised in the following paragraph.

Given a specific labeled/unlabeled dataset split, XL{XU (e.g. a real-life classification problem, or
a single trial in our experiments), we use the MST heuristic to get σ0. We then set ε“ e´50 and
perform a single label propagation run for each value of σ̂P r0.01, σ0s in intervals of 0.001. This
range of values was chosen because 1) we don’t want σÑ 0, and 2) the minimum-distance edge
found using the MST-heuristic can’t be higher than the actual minimim distance between classes in
the complete graph. The propagation run using each value of σ̂ produces a YU matrix, and we then
set σ as follows

σ “ argmin
σ̂Pr0.01, σ0s

HpYU q (14)

where we refer to the entire heuristic process yielding this final value of σ as the entropy heuristic.
Finally, to perform the actual augmentation process, we set σ as given in (14), set ε “ 0 (no
interpolation), and run our recursive label propagation algorithm.

In §5.4 we outline several experiments designed to test both the consistency of our entropy heuristic
(the variability in the σ values returned) and the impact of different σ settings on the performance
of our augmentation method.

17

5 Experiments
Our principal hypothesis in performing this research was that RIPPED, the integration of pretrained
embeddings into a recursive label propagation algorithm, could be used to improve few-shot intent
classification by augmenting the small labeled dataset with unlabeled examples, thus allowing a
stronger classifier to be trained. In §5.1 we outline the intent classification datasets used, before
assessing the validity of our continuity assumption in §5.2. We do so by investigating the ability of the
untuned embeddings to construct an embedding graph that corresponds to the intent class semantics.

We then turn to our core experimentation in §5.3, comparing the performance of a classifier aug-
mented with RIPPED to that of the fully-supervised baseline (i.e. only using the initial labeled
data), as well as to the performance of a number of other semi-supervised algorithms and data
augmentation techniques. We also perform several ablation studies investigating the impact of the
critical parameter used in our label propagation variants.

5.1 Datasets
We use four intent classification datasets to evaluate our method, deliberately chosen to span a
variety of semantic domains, difficulties, and dataset sizes. Dataset statistics are summarised in
Table 5.1, while a few example sentences from each dataset are provided in Table 5.2

Stat Dataset
Chatbot AskUbuntu Webapps Sied

train 100 53 30 992
test 106 109 54 121
classes 2 5 8 21
eg/class 50 10 4 42

vocab 132 191 122 461
oov 52 245 165 29
sent len 9.4/19/4 8.8/21/3 8.3/21/3 8.5/28/2

Table 5.1: Dataset statistics. ‘# eg/class’ is the average number of training examples per intent class;
‘vocab’ is the number of unique words; ‘# oov’ is the number of words in the test set that don’t
appear in the training set; the values for ‘sent len’ denote average/maximum/minimum sentence
length.

The first three datasets – Chatbot, AskUbuntu, and Webapps – come from the NLU Evaluation
Corpora (Braun et al., 2017). This corpus was designed for evaluating the natural language under-
standing capability of conversational agents, and as such the datasets are constructed to contain
primarily ‘chatty’ language. The sentences in Chatbot comes from a Telegram chatbot for public
transport queries in Munich, those in AskUbuntu come from a selection of software-related posts on
AskUbuntu, and those in Webapps come from the Web Applications topic forum on StackExchange.
The fourth dataset, Sied, contains customer-support focused queries extracted from a variety of
banking and business chatbot interactions15. In all cases, the only preprocessing we applied was
Spacy16 tokenisation to obtain a list of tokens for each sentence.

15https://github.com/sebischair/NLU-Evaluation-Corpora
16https://spacy.io/

18

https://github.com/sebischair/NLU-Evaluation-Corpora
https://spacy.io/

Dataset Sentences Intent-Class

Chatbot “how i can get from marienplatz to garching" ‘FindConnection’
“when is the next bus from ostbahnhof?" ‘DepartureTime’

AskUbuntu “How do I update Xubuntu 11.10 to Xubuntu 12.04 LTS?" ‘MakeUpdate’
“Is there a lightweight tool to crop images quickly?" ‘SoftwareRecom’

Webapps “Change subject line in new Gmail compose window" ‘None’
“Get rid of Russian junk from my Gmail" ‘FilterSpam’

Sied “What can I use the loan money for?" ‘BorrowUse’
“Where can I register for a company direct?" ‘AppProcess’

Table 5.2: Example sentences and their intent classes from each of the four datasets.

The small size of the datasets is deliberate, as our motivation for RIPPED was to design a frame-
work for bootstrapping natural language understanding systems, starting from domains with only
very few labeled examples. The four datasets have differing numbers of classes, allowing us to
assess the robustness of our method to classification problems of varying complexity. In addi-
tion, the classes in each dataset are unbalanced, in some cases exceedingly so. This presents
our model with a substantial challenge, as semi-supervised learning approaches in general are
known to struggle on many-class problems with complex decision boundaries, especially given that
we assume no knowledge of class distribution. We outline the class breakdowns of each dataset in §10.

5.2 Evaluating our Continuity Assumption
One of the core assumptions we made in designing our method was our specific extension of the
continuity assumption: that the structure of the graph created by using untuned embedding models
in a given domain would correspond to that domain’s intent class semantics. In order to test
this assumption, we use the complete train and test datasets to compute a measure of statistical
separation between the embedded sentences in each intent class. These labels are not available in
the practical application for which our model is intended. However, we believe this exploratory
experiment to be useful in assessing the validity of one of our core assumptions. Furthermore, it
allows for a useful comparison of the ability of the different embedding models when used in our
framework.

For a given embedding method on a given dataset, we embed all sentences and compute the mean
(centroid) and variance of each intent class (cluster). More concretely, let Ek be the set of indices
of the examples belonging to intent class k, and zi be the sentence embedding of sentence i. We
calculate the centroid and variance of each intent class as follows

µk “
1

|Ek|

ÿ

iPEk

zi (15)

σ2
k “

1

|Ek|

ÿ

iPEk

‖zi ´ µk‖2 (16)

19

We then define a measure, I, to capture an embedding model’s ‘intent-semantic representational
ability’, a measure of how well the semantics encoded by the model align with the intent class
boundaries. For embedding type e on dataset d, we define Iepdq as

Iepdq “
1

C

C
ÿ

i

σ2
i

mint‖µi ´ µj‖ | j ‰ iu
(17)

where C is the number of intent classes, and µi and σ2
i are the centroid and variance of cluster i.

Intuitively, I measures the average ‘overlap’ between intent clusters in embedded space, a low value
thereby indicating that a given method naturally separates the sentences into their respective intent
classes.

To clarify the intuition behind these findings, we also analyse these results visually. We apply PCA17

to reduce the embeddings to their 50 principal components before using t-SNE18 on the reduced
embeddings to get two-dimensional points. We found this approach to be more consistent than
using either reduction technique in isolation, though to counteract the remaining variability we
repeat the process 10 times for each embedding method. Note that the numerical I calculations
are performed on the original embeddings (with all dimensions) and therefore show no such variability.

5.3 Intent Classification
This section outlines the primary experiments conducted in our research.

5.3.1 Experimental Setup

Our experimental setup consists of four independent variable axes: embedding type, semi-supervised
algorithm, dataset, and the fraction of training examples used as labeled data. The dependent vari-
ables are the test statistics representing intent classification performance. For each dataset, we use the
standard train/test split before splitting the training data into labeled and unlabeled datasets (XL

and XU) to give us a semi-supervised setting. We experiment with a large range of labeled fractions,
from using 90% of the training data labels down to the one-shot setting, with a single labeled example
per class. In all cases, we enforce the constraint thatXL contains at least one example from each class.

As the core baseline against which we evaluate our semi-supervised approach, we use the best
fully-supervised classifier on each dataset, determined via a grid search over classifier types in tNaive
Bayes, SGD, MLP, RNNu. Full details of this process are outlined in §10. We use the optimal
fully-supervised classifier to ensure that our baseline, when given access to the complete training
dataset, equals the state-of-the-art results outlined by (Braun et al., 2017) and discussed in a more
recent blog post19.

In our experimental framework, a ‘method’ consists of an embedding type in tGloVe, ELMo, BERT,
InferSent, STS-sick, STS-bench, STS-bothu and a semi-supervised algorithm in tKNN, kmeans-B,
kmeans-R, lp-B, lp-T, lp-Ru, where the first three algorithms are semi-supervised baselines with
which to compare our LP variants, described in §5.3.2. As explained in §4.3, RIPPED is defined
as the combination of any embedding type with lp-R. Each method acts as an augmentation tool,
expanding the labeled dataset using the unlabeled examples, before the same classifier as used

17A lovely visual explanation of PCA: http://setosa.io/ev/principal-component-analysis/
18https://lvdmaaten.github.io/tsne/
19https://medium.com/botfuel/benchmarking-intent-classification-services-june-2018-eb8684a1e55f

20

http://setosa.io/ev/principal-component-analysis/
https://lvdmaaten.github.io/tsne/
https://medium.com/botfuel/benchmarking-intent-classification-services-june-2018-eb8684a1e55f

in the supervised baseline is trained on the expanded labeled set and evaluated on the test data.
The seven embedding types used are outlined in §4.2, and our three label propagation variants are
outlined in §4.3. The addition of the three semi-supervised baselines gives us a total of 42 methods,
each of which we evaluate on the four datasets using a range of fractions of labeled data. While
our experiments constitute a holistic comparative evaluation of these 42 methods, we are primarily
seeking to compare the performance of RIPPED to the other approaches. In order to best assess
our hypotheses, we perform separate analyses isolating the impact of the two constituents of each
method (semi-supervised algorithm and embedding model) in turn.

As our framework constitutes an inductive application of the semi-supervised algorithms, the result
of each method is a general classifier intended for use on unseen examples. We perform an experiment
comparing this approach to the standard transductive setting by using the entire training dataset as
labeled data and the test dataset as unlabeled data that needs to be classified. Note that in this
setting, each method is required to label all unlabeled data, meaning that of our LP variants we are
restricted to using only lp-B.

In all experiments, we measure both the accuracy of the augmentation process and the fraction of
unlabeled data used in the augmentation, as well as the intent classification accuracy on the test
data. Since the datasets are unbalanced multi-class problems, we also measure precision, recall, and
f1 score, the latter being our primary target statistic. For these three statistics, we use a weighted
averaging scheme across classes, taking all classes to have equal importance. For each ‘method’ on
each dataset, using each fraction of labeled data, we perform 200 trials (50 for Sied) to take into
account the variability due to the initial set of labeled examples (where this is randomly sampled
from the training set in each trial).

5.3.2 Baseline Semi-Supervised Algorithms

To implement the k-nearest neighbors algorithm in our framework, we use a knn classifier to classify
XU , adding all newly labeled points to XL

20. For each dataset, we find the best knn classifier using
a grid search over all parameters: number of neighbours, neighbour weighting scheme, and knn
algorithm. Full details of this process are provided in §10.

We also experiment with two variants of the k-means semi-supervised algorithm, in both cases
using the ‘k-means++’ algorithm for initialisation (Arthur and Vassilvitskii, 2007). In the base
variant (kmeans-B), we apply k-means clustering over all labeled and unlabeled data, labeling all
unlabeled points in a given cluster with the majority label of the labeled points. For the recursive
variant (kmeans-R), we use the implementation proposed in (Gowda et al., 2016), whereby k-means
clustering is applied recursively on each partition until each cluster contains labeled points of a
single class. Background on both variants is given in 3.2.4.

We also implemented the standard self-training algorithm, a nice overview of which is given in
(Triguero et al., 2013). This algorithm saw improvements over the fully-supervised baseline on
the Chatbot dataset (2 classes), but significantly degraded performance on all others (with all
settings of the threshold), hence we don’t include it as one of the core semi-supervised algorithms in
the set above. Self-training is conceptually similar to our lp-R variant, recursively using the new
labeled/unlabeled dataset splits it generates after one iteration to initialise the next, but we believe
the poor performance in this case is due to the classification decisions being simply too hard (with

20We also tested a thresholded variant (with threshold t), whereby points are only added to XL if more than t ˚ n
of their n neighbors are in the same class. However, this was outperformed by the basic variant in all cases, so results
are not reported.

21

so little data) for a supervised classifier to feed itself new data with high accuracy.

Finally, we tested a range of data augmentation techniques as approaches to improve classification
performance without the use of unlabeled data. We experimented with synonym replacement using
WordNet (Miller, 1992; Zhang et al., 2015), Easy Data Augmentation (Wei and Zou, 2019), and
back-translation (Sennrich et al., 2016). However, despite testing a range of parameter settings
in each case, none of these approaches came close to achieving the performance of the supervised
baseline. We believe that these techniques struggle to preserve class labels when performing the
augmentation, likely due to the specificity of the intent classes and the complexity of their decision
boundaries. As such, we do not report results using these techniques.

5.4 Impact of σ
We also conduct two experiments to investigate the impact of the σ parameter on the performance
of RIPPED. Firstly, we test the robustness of the entropy heuristic we use to set σ (described in
§4.3.3). For a given fraction of labeled data, we run 200 σ-setting trials, where each trial consists
of a random sampling of points in the training data as the labeled examples. We perform these
experiments on four different fractions of labeled data for each dataset. The aim here is that, for a
given labeled fraction, the heuristic returns consistent σ values across the 200 trials, not showing
substantial variation relative to the initial selection of labeled examples.

Secondly, we perform an ablation study to investigate the impact of σ on the intent classification
process itself. We use RIPPED with a range of different σ values, recording for each the accuracy
of the augmentation, the fraction of unlabeled examples used in the augmentation, and the final
classification f1. We compare the results using the σ values selected by our entropy heuristic to
the best-performing σ values from this study to assess whether our approach could be improved
through developing a stronger σ-setting heuristic.

22

6 Results
This section presents the results of all experiments outlined in §5.

6.1 Evaluating our Continuity Assumption
In this section we present the numerical and visual results of our exploratory experiments. The
intent-semantic representational ability (I) of each embedding method is shown in Table 6.1, while
in Figure 6.1 we present an example visualisation comparing the best and worst of each embedding
category on the Chatbot dataset (visualisations with dim-reduced embeddings are a mess on all
other datasets as they have too many classes). Note that while ordinal comparison of I values
between datasets is possible, these values are not scaled to allow any form of ratio or multiplicative
comparison. Furthermore, the I values of the two categories of embedding don’t appear to be
directly comparable: the best STS-models have lower I but show substantially worse performance.
This discrepancy is due to the clusters using STS embeddings having far greater distances between
centroids, where this in turn is caused by the STS embeddings expressing far more variability in
general than those in the universal category. This indicates a flaw with our I measurement, though
comparisons within categories seem generally reliable.

Emb Avg. Chatbot AskUbuntu Webapps Sied
GloVe 2.51 1.70 4.52 1.89 1.91
ELMo 1.04 1.23 1.22 0.76 0.94
BERT 1.28 1.21 1.33 1.63 0.95
InferSent 1.10 1.45 1.24 0.74 0.98

STS-sick 1.85 1.24 1.77 2.38 2.02
STS-bench 0.99 1.37 1.14 0.56 0.90
STS-both 1.09 1.70 1.16 0.60 0.91

Table 6.1: The ‘intent-semantic’ representational ability (I) of each embedding method on the given
datasets. Lower is better. Note that the two categories of embeddings are not comparable, as
outlined above (the STS models are worse at clustering despite lower absolute scores). Avg. is the
unweighted mean over the four datasets; bold denotes best universal embedding value per dataset;
underline denotes best STS-trained embedding value per dataset.

As can be seen, ELMo is the strongest universal embedding type across the four datasets (with
InferSent in a close second), while STS-bench is the best of the STS-trained models. This does
correspond in general to the performance using these embeddings with RIPPED. While the I values
don’t correspond perfectly to intent classification performance, there is a clear relationship between
these measures. It seems that I as a proxy for ‘intent-semantic representational ability’ is a decent
indicator as to an embedding model’s usefulness on a given dataset, although small ∆I’s can’t
accurately predict relative performance.

It’s important to note that both the numerical I calculations and the visualisations are done by
using untuned embeddings for the sentences in the dataset, and that the embedding model has
no knowledge of the intent classes when creating these embedding spaces. Yet the ability of the
embeddings to represent the intent-class boundaries out-of-the-box is clear. This validation of our
continuity assumption is fundamental to the success of RIPPED.

23

Figure 6.1: The intent-semantic representational ability of different embedding models on the
Chatbot dataset. The x and y axes represent the first and second components of PCA+tSNE
dimensionality-reduced embeddings; points are colored by intent; crosses represent the centroid of
each intent cluster (with straight lines indicating the distance between them); ellipses represent the
variance around each centroid. The I values of Table 6.1 correspond to the ratio of the size of the
ellipses to the distance of the line between the centroids; the lower I values of BERT and STS-sick
in Table 6.1 are reflected by more effective intent clustering.

6.2 Intent Classification
In this section we present the results of our intent classification experiments, a comparative evaluation
of classification performance across four independent variable axes. We structure our results to
demonstrate the impact of the two key variables – embedding type §6.2.2 and semi-supervised
algorithm §6.2.1 – across different fractions of labeled data on each of the four datasets. Results
in the transductive setting are presented in §6.2.3. In all experiments conducted, precision, recall,
f1, and classification accuracy were closely related: all measures reflect the same relative results
between methods. As such, we report f1 in all cases.

24

(a) Chatbot

(b) Sied

Figure 6.2: f1 scores for each semi-supervised algorithm on the Chatbot and Sied datasets, averaged
across embedding types. All results obtained are the mean of 200 trials; 95% confidence intervals
are shown.

25

6.2.1 Semi-Supervised Algorithm Comparison

The core hypothesis of our work was that by exploiting the knowledge contained in pretrained
sentence embeddings to construct a representation graph, recursive label propagation could be used
to substantially improve few-shot intent classification. In this section, we average over the seven
embedding types to compare the performance of the six semi-supervised algorithms.

In Figure 6.2 we present the f1 scores achieved by the supervised baseline and the different methods
on the Chatbot and Sied datasets (corresponding plots for the other two datasets are provided in
§10). As can be seen, lp-R (RIPPED) is the most effective method. It improves classification over
the supervised baseline across all fractions of labeled data, with the biggest improvements coming
when only given access to a few labeled examples per class. For reference, the lowest fractions
tested for the two given datasets correspond to roughly five and four labeled examples per class
respectively. Furthermore, notice that on the challenging 21-class Sied dataset, RIPPED was the
only method able to improve over the supervised baseline at all. Many-class classification problems
with challenging decision boundaries are known to be challenging for semi-supervised algorithms, so
this is an impressive result indicating the power of our proposed method.

To summarise the holistic performance gains achieved by each method, we compute a measure
representing this as a single value for each dataset. To this end, we use the area between the f1
curve of each augmentation method and the supervised baseline, calculated using the trapezoidal
rule21. Values for each method on each dataset are presented in Table 6.2. As can be seen, lp-R
gives the best performance across the board, especially on the two most challenging datasets where
other methods can’t outperform the baseline. lp-R achieves a gain in classification f1 of at least 9.7
percentage points over the best semi-supervised baseline across the board!

Method Avg. Chatbot AskUbuntu Webapps Sied
self-train – 12.2 – – –
knn ´7.39 14.0 8.55 ´35.3 ´16.8
kmeans-B ´36.2 ´4.14 8.43 ´56.6 ´92.3
kmeans-R ´17.0 8.34 13.1 ´46.8 ´42.8

lp-B ´7.33 13.9 12.3 ´37.5 ´18.0
lp-T 11.6 15.1 16.5 7.50 7.21
lp-R 17.5 19.9 22.8 9.02 18.3

Table 6.2: The area between the f1 curves of each augmentation method and the supervised baseline,
averaged across embedding models. This gives a holistic measure of how much a given method can
improve performance over a basic fully-supervised classifier; -ve values indicate worse performance.
The areas are scaled to be in r0, 100s, so they represent the total gain in f1 score across all fractions
of labeled data. Results for each augmentation method are the mean of 200 trials. Avg. is the
unweighted mean across the four datasets; bold denotes the best result per dataset; underline denotes
best in category (our lp methods vs others).

To further understand the success of RIPPED, we present in Figure 6.3 the trade-off between
augmentation accuracy and the fraction of unlabeled data used in the augmentation. To average
across datasets, we use the five lowest fractions of labeled data tested for each (e.g. the lowest
labeled fraction is 0.1 for Chatbot and 0.4 for Webapps; these are averaged with the corresponding

21https://en.wikipedia.org/wiki/Trapezoidal_rule

26

https://en.wikipedia.org/wiki/Trapezoidal_rule

fractions in the other two datasets and reported as index 1 on the x axis).

Figure 6.3: Augmentation accuracy and fraction of unlabeled data used for all augmentation methods,
averaged across embedding types and datasets. All results obtained are the mean of 200 trials; 95%
confidence intervals are shown. The x axis contains indices corresponding to the lowest five labeled
fractions used for each dataset.

As can be seen, the augmentation accuracies of the lp-R and lp-T variants are both substantially
higher than those of the other semi-supervised approaches, the reason for which becomes apparent
when looking at the fraction-used sub-figure: these other approaches all use 100% of the unlabeled
data. Due to the large number of classes and complexity of the problem space in these datasets,
methods attempting to label all unlabeled data are unable to do so to a high accuracy. This was
our motivation for the two lp variants in the first place. Furthermore, this diagram demonstrates
that the superior f1 performance of lp-R over lp-T is due to the former attaining the same levels of
augmentation accuracy while utilising a larger fraction of the unlabeled data. In some sense, lp-T is
‘missing out’ on labeling some data it could make confident predictions about because it only makes
a single label propagation pass. This is a clear demonstration of why we use lp-R in RIPPED, and
corresponds to the propagation visualisation we presented in §4.3.2.

In Table 6.3, we present results in the one-shot setting, where we compare the classification f1

27

Method Avg. Chatbot AskUbuntu Webapps Sied
supervised 61.7 78.3 57.9 72.4 38.0

knn 58.1 83.0 61.7 51.0 36.7
kmeans-B 54.5 81.7 67.6 41.0 27.4
kmeans-R 55.1 83.5 61.5 45.1 30.4

lp-B 58.1 82.1 62.1 51.7 36.4
lp-T 64.8 83.0 62.5 73.8 39.9
lp-R 75.4 91.3 68.9 75.0 66.4

Table 6.3: One-Shot Performance: F1 scores for each augmentation method using a single labeled
example per class. Reported results are averaged over embedding types, each embedding type +
augmentation algorithm combination being tested for 200 trials. All embedding types were used
excluding STS-sick, which showed v. poor performance with all methods. Avg. is the unweighted
mean across the four datasets; bold denotes the best result per dataset; underline denotes best in
category (our lp variants vs others).

obtained by the different semi-supervised algorithms on each dataset when given access to only one
labeled example per class (and the rest of the complete training set as unlabeled data). Once again,
these results are averaged across embedding types. The results reinforce our findings that lp-R is the
most effective algorithm, especially in the most data-poor scenarios. Using lp-R, RIPPED improves
classification f1 over the supervised baseline by 13.7 percentage points on average, an especially
promising result given that most other methods are substantially worse than the fully-supervised
classifier on the two most challenging datasets, Webapps and Sied.

6.2.2 Embedding Type Comparison

Having compared the relative performance of the different semi-supervised algorithms (one half of
each ‘method’), we now present results outlining the impact of the embedding type on performance.
In all cases in this section, we compare the performance of different embedding models using RIPPED,
as the recursive LP variant it uses was by far the best-performing semi-supervised algorithm. Given
that each pretrained embedding is used by RIPPED purely in order to compute pairwise distances,
and that success depends on the ability of these distance values to correspond to the intent class
semantics of a given dataset, classification performance is likely to show large variation depending
on the embedding model used. As a result, the results in this section are important for two reasons:
1) we want to work towards a theory for selecting the best embedding model on a given dataset in
advance, and 2) we want to evaluate the performance of our STS-trained embeddings in comparison
with state-of-the-art universal models.

We present in Figure 6.4 example results from two datasets indicating classification f1 performance
using RIPPED with each embedding type. We show the supervised baseline in both cases, as well
as the self-training baseline for Chatbot. Similar diagrams for the other two datasets are presented
in §10.

28

(a) Chatbot

(b) AskUbuntu

Figure 6.4: F1 scores using lp-R with each embedding type on the Chatbot and AskUbuntu datasets.
STS-sick is excluded from (b) because of v. poor performance. All results obtained are the mean of
200 trials; 95% confidence intervals are shown.

29

As expected, the plots show substantial variation in performance depending on the embedding model
used. In addition, it’s clear that the performance of the best embedding type on each dataset is
significantly higher than the averages using RIPPED reported in §6.2.1. For example, BERT on
the Chatbot dataset achieves an f1 score of 99.5 using 50% of the training data labels, and 97.2
using only four labeled examples per class (a decrease of only 2.8% compared with state-of-the-art
classification using the entire training dataset). Similarly, in the lowest fraction of labeled data
tested on the AskUbuntu dataset (3 labeled examples per class), InferSent achieves an f1 score of
86.1, a decrease of only 7.7% compared with fully-supervised classification using the entire training
dataset. Furthermore, it is clear that no embedding model is superior across the board: BERT is
best on Chatbot, InferSent is best on AskUbuntu (and Sied, shown in §10), and ELMo is best on
Webapps (also shown in §10). GloVe was by far the worst-performing universal embedding.

One of our hypotheses in this research was that simple sentence embedding models trained on
the STS task would work well in our label propagation framework. While STS-sick and STS-both
perform well on the Chatbot dataset (the latter being the second best method), our STS embeddings
were significantly outperformed by the universal embeddings on the other three datasets. That being
said, at least one of STS-bench or STS-both was able to outperform the supervised baseline on every
dataset. As the success of RIPPED is heavily dependent on the strength of the representation graph
constructed by a given embedding model, this suggests that training better embeddings specifically
for our framework may be an avenue for further improvement.

To solidify these results, we report in Table 6.4 the average and maximum areas between the
supervised baseline f1 curve and those using RIPPED with different embedding types (the averages
are reproduced from Table 6.2). This demonstrates the scale of the classification performance
improvements that are possible when using the best embedding model for a given domain.

Stat Avg. Chatbot AskUbuntu Webapps Sied
lp-R avg 17.5 19.9 22.8 9.02 18.3
lp-R max 28.5 22.4Ź 44.8‹ 14.9: 32.0‹

Table 6.4: The average and maximum areas between the f1 curves of the supervised baseline and
lp-R when using different embedding types. Avg. is the unweighted mean of the four datasets;
‹ denotes that the result was obtained using InferSent embeddings, Ź denotes BERT, : denotes
ELMo.

6.2.3 Transductive Setting

To illustrate the advantage of the RIPPED framework, where semi-supervised learning is used as a
data-augmentation process prior to the inductive training of a classifier, we provide transductive
results for comparison. In Table 6.5 we present the percentage difference between the supervised
baseline given access to all training data labels and the performance of each semi-supervised algo-
rithm in the transductive setting. Reported results are averaged over the results of the four universal
embedding types (the STS embeddings performed poorly in this setting). In this setting, no method
was able to outperform a fully-supervised classifier trained on the complete training dataset. This
corresponds to what we discovered in §6.2.1, whereby methods that label all unlabeled examples
perform substantially worse than those that use thresholds to more confidently label a subset, and
validates our implementation of RIPPED in the inductive setting.

30

Method Chatbot AskUbuntu Webapps Sied

supervised 99.5 93.9 83.6 90.0

lp-B ´2.32 ´15.6 ´10.6 ´7.17
knn-B ´3.02 ´26.5 ´15.0 ´8.03
kmeans-B ´16.4 ´15.2 ´32.3 ´51.0
kmeans-R ´8.70 ´31.0 ´40.2 ´19.5

Table 6.5: Transductive Setting: %∆f1 between the supervised baseline and the four valid augmen-
tation methods when labelling all test examples using the entire training dataset as labeled data.
Reported results are the average across the four universal embedding types, each of which is the
mean of 50 trials. Bold denotes the best result per dataset, although all results are negative.

6.3 Impact of σ
In this section we present the results of our two experiments investigating the impact of the σ
parameter on the performance of RIPPED.

6.3.1 Robustness

In Table 6.6, we present example results demonstrating the robustness of our σ-setting process.
We report results using InferSent on the AskUbuntu dataset and ELMo on the Webapps dataset
in this table, though other embedding model + dataset combinations were similarly robust. For
each example, we ran 200 trials of the entropy heuristic σ-setting process for each of four different
fractions of labeled data. We recorded the σ0 value output by the MST heuristic and the σ value
output by the entropy heuristic for every trial.

Heuristic Stat 0.9 0.5 0.3 OS

MST µ 0.174 0.195 0.212 0.226
std% 5.63 7.00 7.94 9.61

Entropy µ 0.066 0.069 0.070 0.071
std% 3.02 1.27 1.24 1.20

(a) Infersent on AskUbuntu

Heuristic Stat 0.9 0.7 0.5 OS

MST µ 0.131 0.132 0.132 0.135
std% 3.35 4.78 5.56 7.06

Entropy µ 0.089 0.094 0.096 0.097
std% 3.55 2.26 1.79 1.12

(b) ELMo on Webapps

Table 6.6: σ values generated by the MST and Entropy heuristics. The columns correspond to the
fraction of the training dataset that was labeled (OS = one-shot); µ denotes the mean value of 200
trials; std% denotes the standard deviation as % of µ.

As expected, the MST heuristic becomes increasingly variable as the number of labeled examples
decreases, as the σ0 value this heuristic returns is wholly determined by the randomly-sampled
labeled examples in a given trial. By contrast, the σ values generated by the entropy heuristic
are extremely consistent, demonstrating a robustness to the different labeled example selection.
The fact that σ values increase as the fraction of labeled examples decreases is also an intuitive

31

result for both heuristics. The value returned by the MST heuristic increases simply because the
labeled dataset is less likely to contain any of the pairs of points that define the true shortest edges
when given only a few labeled examples per class. For the entropy heuristic, the value returned
increases because data points in different classes are likely to appear ‘further away’ than they really
are if we only have a few labeled points, and therefore the assumed intent class structure will
overestimate the distance between classes. Furthermore, note that the entropy heuristic σ values are
substantially lower than those returned by the MST heuristic, reflecting the entropy minimisation pro-
cess pushing σ towards a value that better corresponds to the true minimum distance between classes.

6.3.2 Performance

While illuminating, the robustness results reported above say nothing about the optimality of the
entropy heuristic in terms of augmentation or downstream classification performance.

Figure 6.5: Impact of σ on classification f1 using RIPPED with InferSent on the AskUbuntu
dataset. The different plots denote the fractions of training data that were labeled (OS=one-shot).
For each fraction, the maximum f1 attained and corresponding σ value are shown with colored,
axis-intercepting lines. The σ values set using our entropy heuristic are denoted by colored

Ś

’s on
the x axis. Error bars indicate 95% confidence intervals over the 200 trials.

32

Figure 6.6: Impact of σ on the trade-off between augmentation accuracy & the fraction of unlabeled
data used in the augmentation. The given results are obtained using RIPPED w. InferSent on the
AskUbuntu dataset. The different plots denote the different fractions of training data that were
labeled (OS=one-shot). The optimal σ values (in terms of f1 performance), ○, and those set by
the entropy heuristic,

Ś

, are shown for reference on the x axis. Error bars indicate 95% confidence
intervals over the 200 trials.

To this end, we performed a simple ablation study evaluating the impact of σ in terms of 1) the
classification f1 performance resulting from the augmentation (Figure 6.5), and 2) the trade -off
between augmentation accuracy and the fraction of unlabeled data used in the augmentation (Figure
6.6). Both experiments are performed using RIPPED with a range of σ values on four different
fractions of labeled data. Our reported results here correspond to using InferSent embeddings on the
AskUbuntu dataset, though other embedding type + dataset combinations yielded comparable results.

As can be seen, the f1 performance of the downstream intent classifier is fairly robust to changes in
σ, especially for the higher fractions of labeled data. However, there is a sharp drop in performance
that continues beyond the right-hand edge of the plot. This demonstrates that the optimal σ values
are far lower than those returned by the MST heuristic (given in Table 6.6). In addition, we can see
that the optimal σ values are higher for smaller fractions of labeled data, as expected. In terms of
the σ values output using our entropy heuristic, these have the same relative ordering as the optimal

33

values, but are too tightly clustered to approach those values. However, despite the large differences
between our σ values and the optimal ones, the percentage improvement in classification f1 by us-
ing the optimal σ over our entropy-selected value is less than 0.4% on all four fractions of labeled data.

In terms of the augmentation trade-off, there is a clear inverse relationship between these two
measures: if the algorithm uses more unlabeled examples (all else being equal), the accuracy of
the augmentation will be worse. In addition, it’s clear from looking at the these two measures for
the optimal σ values that the ideal balance between augmentation accuracy and augmentation
fraction used changes depending on the fraction of labeled examples given. When given fewer
labeled examples, it’s preferable for RIPPED to focus on accuracy while labeling a smaller chunk
of the unlabeled dataset. This is an intuitive result. The label propagation algorithm works by
slowly pushing ground-truth labels through dense regions of the embedding space, and the further
that labels are propagated through the graph, the less confident the algorithm becomes. If the σ
parameter didn’t assume larger distances between classes when the algorithm knows very little about
the overall class structure (in the few labeled example settings), RIPPED would confidently label
many more examples incorrectly. The trade-off between these two measures is explicitly controlled
by σ, and is ultimately what determines the performance of the intent classification.

However, even through the augmentation trade-off shows significant variability, it’s clear that
RIPPED is generally robust to different ratios of augmentation accuracy to fraction used. Through
comparing the two experiments, we can see that f1 performance is consistent even as augmentation
accuracy and the unlabeled fraction change by 10%. One reason for this is that we use RIPPED only
as an augmentation tool prior to classifier training: by training a general classifier on the augmented
labeled dataset (instead of classifying the test data directly), the learned classifier is able to see
enough training examples to ignore the noise generated by a few incorrectly-labeled examples.

34

7 Discussion
In this section we provide some additional discussion around the results presented in §6, relating our
findings to the original hypotheses and motivations behind this research.

The results presented comprehensively demonstrate the benefit of incorporating RIPPED into the
intent classification pipeline in limited labeled data domains. Our method outperforms a range of
competitive semi-supervised baselines on all datasets tested, and is robust to linguistic complexity,
the number of classes in a given classification domain, and noisy class boundaries, especially given
that all datasets tested have extremely unbalanced classes. These are all typically challenges that
semi-supervised approaches struggle to overcome. We believe that both core components of RIPPED
– the incorporation of pretrained embeddings and the lp-R algorithm – were significant in achieving
this performance.

7.1 Recursive Label Propagation
As demonstrated by Figure 6.3, lp-R is able to maintain the highest augmentation accuracy of
all methods while utilising a relatively high fraction of the unlabeled data. This corresponds to
our hypotheses in designing this algorithm: 1) we suspected that attempting to make use of all
unlabeled data in such complex decision spaces would degrade performance, and 2) we suspected that
a thresholded, recursive implementation would be able extend propagation further from the initial
labeled set than a non-recursive approach, while still being able to stop when labeling confidence
decreases. Both hypotheses have been validated as a result of our experiments. However, we
would like to conduct a more thorough investigation into point 2) in the future, exploring in detail
the propagation process, the areas where RIPPED makes mistakes, and the relative propagation
sequences of the lp-R, lp-T and lp-B variants.

7.2 Pre-trained Embedding Models
We believe that the incorporation of pretrained sentence representations into the label propagation
setting was the most important factor underlying the strong classification results. In our approach,
we utilised transfer learning in the few-shot domain by incorporating pretrained representations
only in terms of pairwise distance values between them. There was no upfront guarantee that these
distance calculations would even preserve the semantic knowledge contained in the embeddings,
let alone accurately model the intent class semantics of various classification tasks. However, our
results in §6.1 and §6.2.2 demonstrate that there is enough relevant semantic information encoded by
these pairwise computations to understand complex, subtle class boundaries in a variety of linguistic
domains.

We believe both ELMo and InferSent to be strong embeddings for use in our framework in general,
as these express pairwise semantic information with no fine-tuning, but it’s clear using the Chatbot
dataset as an example that other embedding models can be substantially more effective in specific
domains. A better understanding of why this is the case is one of the most important areas for
future work. In addition, there is an extensive list of untested universal sentence embedding models
that could be suitable for use in our framework. It is clear that the success of RIPPED is heavily
dependent on the representation graph created by the untuned embeddings for a given task, and
as such the choice of embedding model is the most important step in applying our method to new
domains. As outlined in the next section, this is the most pressing area for future research.

35

7.3 Future Work
The most important area for future work is the development of a more principled theory around
selecting the optimal sentence embedding model for a given problem domain. The core challenge
in this task is that, when given very few labeled examples, it is challenging to predict whether
a specific embedding model will be effective at representing the intent class semantics. Simple
heuristics could be tested, such as a measurement similar to I that operates over clusters generated
in an unsupervised manner. One approach that we are especially interested in is the development
of strong embedding models for a given linguistic domain. SciBERT (Beltagy et al., 2019) is
a recent example demonstrating the performance benefits of pretraining for a particular set of
downstream tasks using carefully-selected training data that reflects the task domain. We also
believe that our STS-training approach could be extended to yield better results in the future. For
example, we could train a universal embedding model in a multi-task framework using the datasets
compiled in our embedding evaluation in Table 3.1, thereby explicitly teaching a model to succeed at
the tasks we consider salient indicators of its ability to represent semantic relations between sentences.

Secondly, there are several extensions to the recursive label propagation algorithm used in RIPPED
that we are interested in exploring. These include using domain knowledge to perform class rebal-
ancing over the output YU matrix (Zhu, 2002) and improving the core iterative algorithm to be more
computationally efficient, thus allowing RIPPED to be easily applied to larger datasets. Perhaps
the most interesting extension we are considering for future work is the use of different σ values for
each embedding dimension. We could use σi, i “ 1, . . . , d, where all σi would be experimentally
determined using a variation of the entropy minimisation process. In high-dimensional pretrained
embeddings, it seems likely that many dimensions are irrelevant to the semantics of intent class
boundaries in a specific downstream task, and therefore σi could be learned to let RIPPED only
consider the most important dimensions.

In general, we are interested in applying RIPPED to other domains. Our choice of intent classi-
fication as an initial task by which to evaluate our method was motivated in part by the recent
success of universal sentence embedding models, as well as by the challenges specific to this problem
outlined in §3.1. As we have shown, constructing the representation graph using pretrained em-
bedding knowledge dramatically improves performance, despite these embeddings not experiencing
any domain-specific tuning. There doesn’t seem to be any comparable ‘universal’ embeddings for
document representation as of yet, though many approaches could be attempted in order to test
RIPPED on the more general task of text classification.

Finally, there are several human-in-the-loop approaches that we believe could further improve the
performance of RIPPED, an especially relevant area for future work given that our method is a tool
for bootstrapping NLU systems. For example, the unlabeled examples that lp-R doesn’t use (after
all iterations) could be annotated by a human, or a human could be asked to select representative
examples of each class from a larger unlabeled dataset to use as our initial labeled data (similar to
(Bailey and Chopra, 2018)).

36

8 Conclusion
In order to work towards general conversational intelligence, we require the ability to develop natural
language understanding systems in novel, data-poor domains. Based on the assumption that the
meaning stored in pretrained representations of text contain enough knowledge to understand the
semantic structure of a specific intent classification domain, we have proposed RIPPED, a method
for substantially improving few-shot intent classification performance. In designing our approach to
specifically address the unique challenges of intent classification, we have developed that can be
used for boostrapping NLU in new domains, beginning with only a few labeled examples per class.

We have demonstrated the effectiveness of our method in substantially improving intent classification
performance in a variety of data-poor domains, and we have presented exploratory results indicating
the method’s robustness to novel settings. The empirical results are strong, but we are excited
about the future work that needs to be done in order to better understand the conditions in which
RIPPED will thrive. In particular, we need to develop a better theoretical understanding of the
optimal embedding-selection process, as this will allow RIPPED to be easily applied to new domains
with no expert knowledge.

37

9 Bibliography
S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence embeddings. In
ICLR, 2017.

D. Arthur and S. Vassilvitskii. K-means++: the advantages of careful seeding. In SODA, 2007.

K. Bailey and S. Chopra. Few-shot text classification with pre-trained word embeddings and a
human in the loop. CoRR, abs/1804.02063, 2018.

I. Beltagy, A. Cohan, and K. Lo. Scibert: Pretrained contextualized embeddings for scientific text.
CoRR, abs/1903.10676, 2019.

D. Braun, A. Hernandez-Mendez, F. Matthes, and M. Langen. Evaluating natural language under-
standing services for conversational question answering systems. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages 174–185, SaarbrÃĳcken, Germany, August 2017.
Association for Computational Linguistics. URL http://www.aclweb.org/anthology/W17-3622.

D. M. Cer, M. T. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia. Semeval-2017 task 1: Semantic
textual similarity multilingual and crosslingual focused evaluation. In SemEval@ACL, 2017.

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In AISTATS,
2005.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, and P. Koehn. One billion word benchmark
for measuring progress in statistical language modeling. In INTERSPEECH, 2013.

A. Chronopoulou, C. Baziotis, and A. Potamianos. An embarrassingly simple approach for transfer
learning from pretrained language models. CoRR, abs/1902.10547, 2019.

A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning of universal
sentence representations from natural language inference data. In EMNLP, 2017.

A. Conneau, G. Kruszewski, G. Lample, L. Barrault, and M. Baroni. What you can cram into a
single vector: Probing sentence embeddings for linguistic properties. In ACL, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

E. Ferrara, O. Varol, C. A. Davis, F. Menczer, and A. Flammini. The rise of social bots. Commun.
ACM, 59:96–104, 2016.

A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In UAI, 1998.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In AISTATS, 2011.

H. S. Gowda, M. Suhil, D. S. Guru, and L. N. Raju. Semi-supervised text categorization using
recursive k-means clustering. In RTIP2R, 2016.

T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for semi-supervised
learning. In ICML, 2009.

T. Joachims. Text categorization with support vector machines: Learning with many relevant
features. In ECML, 1998.

R. Johnson and T. Zhang. Semi-supervised convolutional neural networks for text categorization
via region embedding. Advances in neural information processing systems, 28:919–927, 2015.

38

http://www.aclweb.org/anthology/W17-3622

R. Johnson and T. Zhang. Supervised and semi-supervised text categorization using lstm for region
embeddings. In ICML, 2016.

S. S. Keerthi, S. Sellamanickam, and S. K. Shevade. Extension of tsvm to multi-class and hierarchical
text classification problems with general losses. In COLING, 2012.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015.

J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem.
In Proceedings of the American Mathematical Society, 7, 1956.

X. Li and D. Roth. Learning question classifiers. In COLING, 2002.

Y.-F. Li and Z.-H. Zhou. Improving semi-supervised support vector machines through unlabeled
instances selection. In AAAI, 2011.

B. Liu, W. S. Lee, P. S. Yu, and X. Li. Partially supervised classification of text documents. In
ICML, 2002.

M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli. A sick cure for the
evaluation of compositional distributional semantic models. In LREC, 2014.

P.-E. Mazaré, S. Humeau, M. Raison, and A. Bordes. Training millions of personalized dialogue
agents. In EMNLP, 2018.

G. A. Miller. Wordnet: A lexical database for english. In Proceedings of the Workshop on Speech
and Natural Language, 1992.

K. Nigam, A. T. McCallum, and T. M. Mitchell. Semi-supervised text classification using em. In
Semi-Supervised Learning, 2006.

S. Pawar, N. Ramrakhiyani, S. Hingmire, and G. K. Palshikar. Topics and label propagation: Best
of both worlds for weakly supervised text classification. In CICLing, 2016.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In
EMNLP, 2014.

C. S. Perone, R. Silveira, and T. S. Paula. Evaluation of sentence embeddings in downstream and
linguistic probing tasks. CoRR, abs/1806.06259, 2018.

M. Peters, S. Ruder, and N. A. Smith. To tune or not to tune? adapting pretrained representations
to diverse tasks. CoRR, abs/1903.05987, 2019.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. S. Zettlemoyer. Deep
contextualized word representations. In NAACL-HLT, 2018.

J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using multilocus
genotype data. Genetics, 155 2:945–59, 2000.

P. K. Pushp and M. M. Srivastava. Train once, test anywhere: Zero-shot learning for text classification.
CoRR, abs/1712.05972, 2017.

A. Radford. Improving language understanding by generative pre-training. 2018.

S. Ruder. Neural Transfer Learning for Natural Language Processing. PhD thesis, National University
of Ireland, Galway, 2019.

S. Ruder and J. Howard. Universal language model fine-tuning for text classification. In ACL, 2018.

39

R. Sennrich, B. Haddow, and A. Birch. Improving neural machine translation models with monolin-
gual data. CoRR, abs/1511.06709, 2016.

V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear svms. In SIGIR, 2006.

I. Triguero, S. García, and F. Herrera. Self-labeled techniques for semi-supervised learning: taxonomy,
software and empirical study. Knowledge and Information Systems, 42:245–284, 2013.

A. M. Turing. Computing machinery and intelligence. 1950.

O. Vinyals and Q. V. Le. A neural conversational model. CoRR, abs/1506.05869, 2015.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task benchmark
and analysis platform for natural language understanding. CoRR, abs/1804.07461, 2018.

B. Wang, Z. Tu, and J. K. Tsotsos. Dynamic label propagation for semi-supervised multi-class
multi-label classification. In ICCV, 2013.

Z. Wang, H. Mi, and A. Ittycheriah. Semi-supervised clustering for short text via deep representation
learning. In CoNLL, 2016.

J. W. Wei and K. Zou. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. CoRR, abs/1901.11196, 2019.

J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. Towards universal paraphrastic sentence
embeddings. CoRR, abs/1511.08198, 2016.

A. Williams, N. Nangia, and S. Bowman. A broad-coverage challenge corpus for sentence un-
derstanding through inference. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/N18-1101.

Z. Yang, W. W. Cohen, and R. R. Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. In ICML, 2016.

M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro, H. Wang, and B. Zhou. Diverse
few-shot text classification with multiple metrics. In NAACL-HLT, 2018.

X. Zhang, J. J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification.
In NIPS, 2015.

L. Zhou, J. Gao, D. Li, and H. Shum. The design and implementation of xiaoice, an empathetic
social chatbot. CoRR, abs/1812.08989, 2018.

X. Zhu. Learning from labeled and unlabeled data with label propagation. In CMU CALD tech
report CMU-CALD-02-107, 2002, 2002.

X. Zhu, T. Li, and G. Melo. Exploring semantic properties of sentence embeddings. In ACL, 2018.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning
books and movies: Towards story-like visual explanations by watching movies and reading books.
In The IEEE International Conference on Computer Vision (ICCV), December 2015.

40

http://aclweb.org/anthology/N18-1101

10 Supplementary Material
This section contains a variety of supplementary information referenced in the paper. Information
appears in the order it was referred to.

10.1 Pretrained Embedding Evaluation Sources

Emb STS Inf Para Probe
SICK-R STS-B SICK-E QNLI MNLI MRPC QQP SOMO

GloVe Per Per Per Glu Glu Glu Glu Per
ELMo Pet Pet Pet Elm Pet Pet Glu Pet
BERT Pet Pet Pet Ber Pet Pet Glu N/A
InfSnt Per Per Per Glu Glu Glu Glu Per

Table S1: Sources for the results compiled in our comparison of universal embeddings. Per=(Perone
et al., 2018), Pet=(Peters et al., 2019), Glu=(Wang et al., 2018), Elm=(Peters et al., 2018),
Ber=(Devlin et al., 2018).

41

10.2 Dataset Intent Statistics

Dataset Intent # Train # Test

Chatbot
‘DepartureTime’ 43 35
‘FindConnection’ 57 71

ř

100 106

AskUbuntu

‘MakeUpdate’ 10 37
‘SetupPrinter’ 10 13

‘ShutdownComputer’ 13 14
‘SoftwareRecom’ 17 40

‘None’ 3 5
ř

53 109

Webapps

‘ChangePassword’ 2 6
‘DeleteAccount’ 7 10
‘DownloadVideo’ 1 0
‘ExportData’ 2 3
‘FilterSpam’ 6 14

‘FindAlternative’ 7 16
‘SyncAccount’ 3 6

‘None’ 2 4
ř

30 54

Sied

‘assist’ 16 2
‘bot’ 20 3
‘how’ 9 2

‘justDetails’ 4 1
‘name’ 14 2

‘notGiving’ 8 2
‘query’ 5 1
‘wait’ 5 1

‘contact’ 108 14
‘aadhMissing’ 28 4
‘addressProof’ 47 6

‘applicationProcess’ 162 21
‘applyRegister’ 49 7
‘approvalTime’ 49 7
‘badService’ 11 2

‘bankOptionMissing’ 43 6
‘bizCategoryMissing’ 32 4

‘bizNew’ 54 7
‘bizSampler’ 75 10
‘borrowLimit’ 60 8
‘borrowUse’ 82 11

ř

881 121

Table S2: Dataset Statistics - Intent Breakdown

42

10.3 Additional Training Details

Supervised Classifier Grid Search

We performed a standard grid search, using k-fold cross validation with k “ 5. For both the
multinomial Naive Bayes and the Stochastic Gradient Descent classifiers we searched over the fol-
lowing parameters for the input representation: input format tword,char,char+wbu; max document
frequency in r0.25,1s; all ngram ranges combinations between 1 and 5; use tfidf in tTrue,Falseu; tfidf
normalisation in tl1,l2u. We searched over a wide range of α values both classifiers, as well as all
different loss functions, and normalisation for SGD.

For the MLP classifier, we tested using either zero (logistic regression) or one hidden layer, in the
latter case with sizes from 5 to 100. We tried BoW and word embedding input formats, as well
as a range of non-linearities. For the RNN, we tested a range of values for each of the standard
parameters: hidden dim, input representation, embedding initialisation, output representation etc.

The optimal classifiers for each dataset we use are as follows:

• Chatbot Tf-idf over character n-grams of range (2,3) with l2 norm and max doc frequency
of 0.5. Naive Bayes classifier with α “ 1

• AskUbuntu Tf-idf over character n-grams of range (2,3) with l2 norm and max doc freq of
0.5. Naive Bayes classifier with α “ 0.1

• Webapps Tf-idf over character n-grams of range (2,3) with l2 norm and max doc freq of 0.5.
SGD classifier with hinge loss, l2 normalisation, optimal learning rate schedule, and α “ e´2.

• Sied Tf-idf over character n-grams of range (2,5) with l2 norm and max doc freq of 0.5. SGD
classifier with hinge loss, l2 normalisation, optimal learning rate schedule, and α “ 1e´ 4

These were used in all experiments as both the supervised baselines and the classifiers used in
conjunction with the various semi-supervised methods.

KNN Grid Search

The parameter values searched over for each dataset were: k P r1, 10s, weights P tuniform, distanceu,
algorithm P tauto, ball-tree,bruteu. In all cases, the optimal KNN-classifier used k “ 1, uniform
weights, and the default algorithm.

43

10.4 Semi-Supervised Algorithm Comparison - Extra Examples

(a) AskUbuntu

(b) Webapps

Figure S1: f1 scores for each semi-supervised algorithm on the AskUbuntu and Webapps datasets,
averaged across embedding types. All results obtained are the mean of 200 trials; 95% confidence
intervals are shown.

44

10.5 Embedding Type Comparison - Extra Examples

(a) Webapps

(b) Sied

Figure S2: F1 scores using lp-R with each embedding type on the Webapps and Sied datasets.
STS-sick is excluded from both because of v. poor performance. All results obtained are the mean
of 200 trials; 95% confidence intervals are shown.

45

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Related Work
	Semi-Supervised Learning
	Transfer Learning
	Few-Shot Learning

	Background
	Intent Classification
	Semi-Supervised Learning
	Label Propagation
	Self-Training
	k-Nearest Neighbour
	k-Means

	Text Embedding
	Universal Embedding Models
	Evaluation of Representational Ability

	Proposed Method
	Overview
	Sentence Embedding
	Universal Sentence Embeddings
	STS-Trained Embeddings

	Label Propagation
	Distance Function
	LP Variants
	Parameter Setting

	Experiments
	Datasets
	Evaluating our Continuity Assumption
	Intent Classification
	Experimental Setup
	Baseline Semi-Supervised Algorithms

	Impact of Sigma

	Results
	Evaluating our Continuity Assumption
	Intent Classification
	Semi-Supervised Algorithm Comparison
	Embedding Type Comparison
	Transductive Setting

	Impact of Sigma
	Robustness
	Performance

	Discussion
	Recursive Label Propagation
	Pre-trained Embedding Models
	Future Work

	Conclusion
	Bibliography
	Supplementary Material
	Pretrained Embedding Evaluation Sources
	Dataset Intent Statistics
	Additional Training Details
	Semi-Supervised Algorithm Comparison - Extra Examples
	Embedding Type Comparison - Extra Examples

