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Energy consumption is the dominant factor in many computing systems. Voltage scal-

ing is a widely used technique to lower power dissipation, which exploits supply voltage

margins that ensure reliable circuit execution. Aggressive voltage scaling will slow signal

propagation; without coherent frequency relaxation, timing violations may be generated.

Hardware Transactional Memory (HTM) offers an error recovery mechanism that allows

reliable execution and power savings with modest overhead. We examine how timing

violations may be generated in specific hardware environments such as floating point

adders and multipliers and develop Critical Bit error model to accurately model erro-

neous behavior when timing violations are permitted. Simulating from such error model,

we propose a hardware/software environment IgnoreTM, where timing violations are op-

portunistically ignored, allowing for more aggressive voltage scaling. Experiments show

our technique allows 32% to 45% power savings compared to non-voltage-scaled simu-

lations, and 5% to 15% additional power savings compared to existing HTM solutions

without impacting runtime and fine-tuned accuracy loss.
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Chapter 1

Introduction

Energy consumption is a dominant constraint of any computing system, from improving

the battery life of embedded systems to reducing the power demands of servers. Tran-

sistor sizes are minimized in order to maximize performance of such systems, that lead

to devices being more susceptible to the effects of static and dynamic variability [1]. To

ensure reliable operation regarding these variability, designers have conservatively added

safety margins, or guardbands, of clock frequency, supply voltage and temperature that

constrain the system to operate in non-optimal fashion. The choice of guardband design

accommodated with simple error correction/detection mechanisms (such as in SRAMs)

provided robustness and reliability of the system at the cost of reduced yield, perfor-

mance and energy efficiency. Previous works have proposed various ways of timing error

detection and correction techniques at hardware and software levels in order to obtain

energy efficiency with voltage scaling. Latest work from our research group [13] de-

veloped methodologies of utilizing Hardware Transactional Memory(HTM) - originally

designed for memory synchronization - as an error recovery mechanism to easily control

supply voltage levels and ensure correct computation.

However, these previous work do not investigate energy reductions from exploiting the

inexact-ness of computation. Approximate computing is a newly researched area based

on the observation that exact computation and perfect accuracy are not always neces-

sary. Inherent tolerance to inaccurate computation exists for specific applications in the

areas including but not limited to: machine learning, signal processing, image process-

ing, scientific computing, data mining, and data analysis. These applications can be

examined further than exact applications by trading accuracy with both performance

and energy consumption. However, the approximation in hardware level poses some key

challenges as it requires understanding of which specific instructions and data can be

approximated, and not introducing severe control flow glitches that can possibly crash

the program and even, the system.

1



1. Introduction 2

This thesis investigates the biggest challenges of exploiting timing violations and al-

lowing approximation using HTM and voltage scaling in order to save energy. By

configuring a target platform and performing timing error analysis, we introduce Ig-

noreTM, a hardware-software co-design framework that connects approximation with

timing-induced errors, using the lightweight error recovery mechanism from HTM to

reach maximum energy efficiency.

This thesis makes the following contributions:

• We analyze high-level implementations of floating point adder and multiplier aim-

ing to realistically simulate bit-level timing violations from voltage scaling, and

introduce the Critical Bit error model.

• We develop a simple interface for the programmer to clarify what level of approxi-

mation is wanted, to the level of how many timing errors per specific code snippet,

with flexibility to differ approximation thresholds throughout different code por-

tions while being able to integrate HTM for concurrency.

• We create a hardware-software environment that supports the above interface,

and develop an algorithm that dynamically optimizes energy consumption from a

combination of static and dynamic monitors to determine appropriate conditions

for voltage adjustments such that approximate result is within tolerable bounds of

the exact result.

• We concentrate on floating-point applications, which have potential of inherent tol-

erance to inaccuracy, and demonstrate these applications can benefit from voltage

scaling with controlled accuracy loss.

• We show that an additional 4-15% energy savings is possible using our approach,

compared to always correcting errors, with a very modest 1% performance overhead

compared to no voltage scaling.

The organization of the remainder of this thesis is as follows: Chapter 2 explains the

background and previous work done in approximation and Transactional Memory; Chap-

ter 3 explains the target architecture and implementation of system necessary to utilize

our technique; Chapter 4 characterize timing violation behavior of floating point adder

and multiplier and compare it to previously used timing error models; Chapter 5 ex-

plains how approximation and energy consumption is controlled in the target platform,

comparing them to previous voltage scaling policies; Chapter 6 presents simulation re-

sults of our proposed design and discusses the benefits of our approach compared to

previous solutions; Chapter 7 concludes this thesis and introduce interesting problems

for future work.



Chapter 2

Background

Approximate computing is based on the observation that for many applications, delib-

erately allowing some level of computational inaccuracy and providing an approximate

result is acceptable, and can improve performance and energy consumption. Many

application domains, including video, signal and image processing, machine learning,

computer vision, data mining and analysis, and gaming, are inherently tolerant to in-

accuracy and have an intrinsic resilience to errors. Studies have shown that many of

these applications have portions which are more resilient to hardware and software er-

rors, and other portions that are critical and must be protected from errors. With

approximate programming we can exploit the relaxed precision requirements of such

applications in order to increase performance and reduce energy. Various approximate

computing techniques have been proposed in literature, on different levels of the sys-

tem design. Software approaches propose approximate programming models combined

with programming level techniques for approximating code regions, such as loop per-

foration, memoization, task skipping, data packing, relax synchronization, etc. They

suggest real benefits from approximate computation, and are focused on modifying the

code itself to compute approximate versions of the output. At the hardware level, there

have been proposals for inexact circuits and faulty hardware, such as adders, multi-

pliers, dividers, and other components [14, 12, 11, 10, 9, 16]. These approaches differ

from our work that they all require either some algorithmic changes to the software, or

integration of complex dedicated approximate hardware. Instead, we propose minimal

change to the software such that the burden for the programmer is low, while utiliz-

ing minimal hardware transactional memory circuitry and voltage rails to enable pure

voltage-scaling-induced approximation, and focusing on energy reduction as our goal.

Another aspect that differentiates our project from existing works is the accuracy of the

error models used. Many of these works follow simplistic error models such as single

bit-flip probabilities, uniform distribution models or random values [4, 16, 17] that are

not able to fully capture the error behavior of functional units (FUs). For example,

3



2. Background 4

the error models considered in EnerJ [16] are basic fault injection error models with

single bit flips at the output using uniform distribution, random selection or previously

seen values for the output. The work in [4] relies on uniform bit-error models with set

error probabilities per component. In [6] the authors develop a model for the expected

probability of errors due to timing violations when the supply voltage is reduced in

integer adders and multipliers, but this model does not take into account bit location

and history of computation. Most of the existing error models do not cover important

families of FUs, such as Floating Point Units (FPUs) and bit-wise logic operation units,

which have different behavior than integer adders. Moreover, these models ignore three

important factors: value correlation, computation history, and bit-wise error variabil-

ity [18]. Tziantzioulis et al. [18] introduced b-HiVE, an error model that considers these

three factors and showed that the bit-wise error rate of a functional unit’s operation can

be predicted more accurately. However, b-Hive relies on the independence of bit-wise

error rates. In our recent work [19] which is summarized in Chapter 4, we address these

limitations and introduce a new error model that entails these concerns by analyzing spe-

cific hardware and critical timing paths. Constructing these error models is paramount

in understanding and characterizing the error tolerance of applications under different

approximations.



Chapter 3

Target Architecture and

High-Level Implementation

3.1 PULP Architecture
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Figure 3.1: PULP System-on-Chip architecture.

While we believe that our approach is applicable to a range of platforms, we focus here

on a cluster-based many-core system appropriate for embedded platforms. We chose

this particular testbed both because it is highly parallel, and because embedded systems

tend to be energy-constrained. The target architecture is based on PULP (Parallel

Ultra Low Power platform), a scalable computing platform designed to operate on a

large range of operating voltages [15]. PULP leverages tightly-coupled shared-memory
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3. Target Architecture and High-Level Implementation 6

clusters as a main building block. The latest physical implementation of the platform,

the PULP3 SoC, is shown in Figure 3.1. PULP3 features a single computing cluster

integrated with 64 kB of L2 SRAM memory and several I/O peripherals (e.g., DMA)

accessible through a system bus. The core is based on a power-optimized implementation

of the OpenRISC-ISA; multiple cores share a single instruction cache (I$). To avoid the

energy overhead of memory coherency, the cores do not have private data caches; they

all share a multi-banked tightly coupled data memory (TCDM ) configured as a shared

data scratchpad. Intra-cluster communication is based on a high bandwidth low-latency

interconnect, implementing a word-level interleaving scheme to reduce access contention

to the TCDM.

3.2 HTM Infrastructure

An underlying runtime system (RTS) transparently manages the transactions with a

core-level policy that optimistically lowers the voltage in small steps. A snapshot of

the system state is taken before each transaction is started so that if the allowed error

threshold is exceeded during transaction execution, this safe state can be restored. For

error detection, we assume that each core is equipped with runtime error-detection

circuitry, such as error-detection sequential (EDS) [2]. We handle these errors at the

granularity of a transaction. If the acceptable error threshold is exceeded while executing

a transaction, the system aborts that transaction, takes the required countermeasures

in terms of voltage settings, and restarts the transaction.

Traditionally, HTM design is based on three key components: (1) a bookkeeping mecha-

nism to keep track of read/write data accesses and detect conflicts, (2) a data versioning

technique to keep track of original and speculative data versions for recovery in case of

conflicts and (3) a check-pointing and rollback mechanism to recover from data conflicts

and retry failed transactions. Since we are not using HTM for memory synchronization,

for this preliminary study we bypass the bookkeeping mechanism, obtaining a more

lightweight design.

Checkpointing and Rollback We enclose each block of the program that has in-

structions that can be approximated, within a transaction. At the beginning of each

transaction, we save the core’s internal state (program counter, stack pointer, registers,

stack contents) to be able to roll back in case the allowed error threshold is exceeded.

If the error threshold is not exceeded, the transaction commits, the checkpoint is dis-

carded, and speculative changes to the data become permanent. If the error threshold

is exceeded, the transaction aborts, and a rollback mechanism restores the internal core

state. In addition, data are restored to their original values and speculative copies are

discarded.
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Data Versioning We use a distributed logging scheme to enable data versioning [13].

Logs are distributed among the TCDM banks and each bank keeps a fixed-size log space

for each core in the system. Note that only the first time an address is written does its

original value need to be saved in the log, so the log size is quite modest. In practice,

the logs have been shown to occupy only about 3% of the total TCDM space. The log

saving and restoration process is done independently at each memory bank and does

not require interaction with other banks, which makes it very fast and efficient.

3.3 Floating Point Unit Integration

Each processor is coupled with a floating point unit following the specifications of VFP

coprocessor instruction set of ARMv3 and higher. Each coprocessor is modeled with

realistic delay for each instruction following the ARM7100 floating point coprocessor

specification, as floating point instructions generally need more propagation delay as

the circuitry is more complex. For example, multiply-accumulate is modeled as 8 cycles,

multiply is modeled as 5 cycles, and add is modeled as 4 cycles. These cycles are not

pipelined, and each instruction that takes more than 1 cycle would block the processor

instruction stream until it is finished, which models the behavior of a fully combinatoric

design of a simple ARM processor.

We use the floating point unit as the core of approximation, of non-critical errors. Chap-

ter 4 analyzes floating point timing violations and Chapter 5 introduces critical and non

critical timing violations - as differentiation of critical and non-critical errors in a nor-

mal integer instruction stream is complex, we standardize the differentiation through the

module-level such that any floating point instruction can be approximated, while other

instructions we assume that they are critical. Hence, to fully exploit the approximation

boundaries of the floating point unit, we employ separate voltage rails for the floating

point unit and the processor, such that the processor can stay in a higher supply volt-

age (which is scaled) as they execute critical instructions, while the floating point unit

supply voltage can be more aggressively scaled as they execute non-critical instructions.



Chapter 4

Timing Error Model of Floating

Point Units

We consider a variety of error models from earlier work [16, 17, 7, 18], as well as our

Critical Bit model, to generate erroneous behavior of floating point arithmetic units.

This chapter summarizes a significant portion of [19].

4.1 Previuos Error Models

We examine the following previously used error models:

• Random Model: EnerJ [16] introduced 3 widely used error injection models: Ran-

dom, Previous and Single [17, 18]. Each model assumes an error rate p, and when

the error occurs, the result is switched to a random value, the previous operations’

result, or a randomly selected single-bit-flipped value, respectively. For our test-

ing purposes, we consider the random value model to compare with other error

models.

• Uniform Model: b-HiVE’s interpretation of Lane-Decouple’s model [7, 18] used a

uniform error model, where each bit of the result is independently flipped for a

bit-wise uniform error rate p. Rahimi [14] added a bit-boundary, assuming only bits

between a range from bit location a to bit location b have probability of flipping

with a bit-wise uniform error rate, while the remaining bit locations do not flip.

The bit-boundary is implemented in OpenMP on an FPU architecture by removing

the fault detection circuitry of certain result bit locations.

• b-HiVE Model: b-HiVE (bit-level History-based Error model with Value Correla-

tion) runs a trace on a functional unit under a low-voltage environment and for

8



4. Timing Error Model of Floating Point Units 9

each bit, observes the previous computational result, the previous latched result,

the current computational result and the current latched result, and classifies the

4-tuple into 5 categories: Correct, Previous Observed, Previous Correct, Glitch,

and Ambiguous. Using this model, [18] and [8] compute the bit-wise flip rates

of integer addition and floating point addition and multiplication. We use these

results to model the behavior of floating point multiplication and addition by

specifying bit-wise error rates for each voltage level, without taking history into

account.

4.2 Critical Bit Model

In this paper, we also introduce a new bit-wise dependent error model of floating point

operations, called ‘Critical bit flip’ model, where the flip rate at each bit location is

dependent on the current and the previous computation of the critical bit. We assume

that, based on the architecture of floating point arithmetic units, bit flips should be

dependent on some intermediate bit/wire that is on the critical path of the computation.

The critical bits of an arithmetic unit are responsible for the simultaneous bit flips in

the result when the voltage is gradually scaled down. Next, we explain in detail how

we choose these critical bits in different arithmetic units and how we construct an error

model based on that choice. We construct our error models using the following process:

1. We assume a specific architecture for each arithmetic operation,

2. We determine the critical paths of the architecture,

3. We determine sensitive critical paths with similar delays, and the intermediate bits

(i.e., ‘critical bits’ ) responsible for those paths,

4. We assume that the critical bit is the only possible destination of the timing error,

thus if unchanged from the previous operation, it would latch the correct result,

5. We assume that the critical bit changed from the previous operation would latch

the result computed with the critical bit flipped.

In order to design error models for each arithmetic operation, we next define the critical

bit paths for each arithmetic unit, i.e. for floating-point addition and multiplication.

4.2.1 Critical Bits of Floating Point Multiplier

A 32-bit floating point number is represented with 3 parts: a 1-bit sign (1 for negative,

0 for positive), an 8-bit exponent (00000000 for –127, 11111111 for +128, biased by –

127), and a 23-bit mantissa. A 32-bit floating point multiplier appends a 1 to the 23-bit
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mantissa and multiplies the two 24-bit mantissas treating them as fixed point integers.

The result becomes the mantissa of the output. The exponents are separately added to

determine the result’s exponent (Fig 4.1).

Figure 4.1: Floating-point multiplication architecture

Each operand of the 24-bit fixed point multiplier belongs in the range [223, 224), as the

hidden 1 always exists on both operands. Hence, the result of the multiplier belongs in

the range [246, 248), a 48-bit fixed point integer. The result is treated as a fraction with

a decimal point between bit 45 and bit 46. The value of bit 47 determines whether the

multiplication of the two fractions being greater than 2 or not. If the result is greater

than 2 (i.e., bit 47 is 1) then the mantissa and the exponent of the result are normalized,

such that the mantissa is bit 46 to bit 24 of the multiplication. The exponent addition

result is increased by 1. From this characterization of the floating point multiplier, we

assume that voltage scaling would result in a timing error on the 24-bit multiplication,
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specifically in the most significant bit of the result, the 47-th bit. Since this critical bit

is added to the sum of the two operands’ exponent part, if the critical bit is flipped,

the result would differ from the correct output by a factor of 2 (i.e., it would either be

multiplied or divided by 2).

Thus, we assume the following error model, for timing miss rate p,

FP MUL : R = (!p)? C : 2±1C

where R denotes the latched result and C denotes the current correct result of the

computation. The selection of the factor being 2 or 0.5 is determined whether the

critical bit was flipped from 0 to 1, or 1 to 0, as the critical bit being flipped propagates

to the result’s exponent being added by 1 when it should remain the same, or remained

the same when it should be added by 1.

4.2.2 Critical Bits of Floating Point Adder

A 32-bit floating point adder consists of normalization of the operands, so that the

mantissa with smaller exponent is aligned with the mantissa with the larger exponent

by shifting right the difference of the exponents. The exponent of the result is selected

to be the larger exponent of the two operands, and the normalized mantissas is inputted

into the 24-bit fixed point adder. The result of the 24-bit fixed point addition is also

normalized again such that the result has 1 in its most significant bit, either shifting

right or left. (Fig 4.2).

Since a variable length right/left shifter (a barrel shifter) is costly in terms of per-

formance, the process is divided into cases to designate which operands use the first

variable-length right shifter for normalization, and which operands use the second vari-

able length left shifter for normalization.

This differentiation is possible as the variable-length left shift at the end of the addition

only occurs when the two operands are subtracted in a close range, and these ‘close

range’ operands need not go through a variable-length right shifter before the addition,

as the normalization is bounded by either 0 or 1 difference of the operand. We consider

three cases: (i) ADD : The signs of the two operands are the same, (ii) SUB-FAR :

The signs are different and the exponent difference of the two operands is bigger than

1, (iii) SUB-CLOSE : The signs are different and the exponent difference is either 0

or 1.

In the first case, the larger operand’s mantissa (appended with the hidden bit 1) would

be a 24-bit fixed point number ranging from [223, 224), and the smaller mantissa would

also be a 24-bit long normalized fixed point number in the range [0, 224). Therefore,
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Figure 4.2: Floating-point addition architecture

the result of the mantissa addition would be a 24-bit long fixed point number, with a

carry-out bit, belonging in range [223, 225). In this case, we assume the critical path is

the computation of the carry out bit of the result, which similarly to the floating point

multiplier architecture, is added to the larger exponent of the two operands. Therefore,

if there is a timing miss, we assume that the latched exponent is diverging by 1 from

the correct exponent, where the direction is dependent on whether the carry out bit has

flipped from 0 to 1 or from 1 to 0.

In the second case where the exponent difference is bigger than 1, the less normalized

operand of the mantissa subtraction belongs in range: [0, 222), and the result of the

24-bit mantissa subtraction belongs in range: [222, 224). We assume the critical path is

the computation of the 23-rd bit, which is the most significant bit of the subtraction

result. If this bit is 1, the result exponent would be the same as the larger exponent,

but if the bit is 0, the result exponent would be smaller from the larger exponent by 1.

In the last case, the number of normalization (right shifts) after the subtraction is

computed in the LZA (Leading Zero Anticipation) unit, and NLZ (Number of Leading

Zeroes) in range [0, 24) shifts the mantissa and subtracts to the larger exponent of

operands. We assume the simultaneous critical path is computing the 5 bits consisting

of the NLZ, and the divergence of the result is 2NLZ multiplied or divided.
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Thus, we assume the following error model, for some timing miss rate p,

FP ADD : R =(!p)? C :

(S1 = S2 or |E1 − E2| > 1)? 2±1C :

2∆NLZC

where R denotes the latched result, C denotes the current correct result of the compu-

tation, S and E denotes the operands’ sign and exponent and NLZ denotes the number

of leading zeros of the result of mantissa subtraction.

4.2.3 Critical Bit Error Model Behavior Analysis

By using the Critical Bit model, we can explain the bit-wise error behavior of a random

trace of FP ADD and FP MUL, obtained by b-HiVE and Liu and can characterize the

bit-wise error behavior as follows:

• The mantissa bits (bit 0 to bit 51) have uniform probability, increasing from 0%

to 50% as voltage decreases.

• The exponent bits (bit 52 to 62) show an exponential decrease as the bit location

increases, with a peak at the most significant bit.

• The sign (bit 63) is always correct.

For floating point multiplication, the mantissa’s bit-wise uniform error rate can be ex-

plained through the critical bit, the most significant bit of the mantissa multiplication,

being delayed and flipped. The probability of the critical bit being flipped here would

increase as the supply voltage decreases, as different operands would exhibit slightly

different delay in the computation of the critical bit, and the flip would propagate to

both the exponent being added or subtracted by 1 and the mantissa being shifted left

or right by 1. The mantissa being shifted left or right by 1 would result in a bit-wise

random mantissa, as there is no bit-wise correlation between the bit values before the

shift and after the shift. This also explains the exponential decrease of the exponent

bit-wise error rate. As for a higher order bit to flip from an addition or subtraction of 1,

all bits before the bit has to be respectively 11..1 or 00..0. Hence, adding or subtracting

1 from a timing error of the critical bit would have have exponentially less impact on the

bit-flip rate of higher order bits of the exponent. The peak in the most significant bit of

the exponent can be explained by the timing error of the exponent adder fitting inside

a single pipeline stage of the floating point addition. We do not consider the timing

violation of the addition of the operands’ exponents in our Critical Bit model, as the

adder can be stretched out multiple stages which the mantissa multiplier inevitably goes

through.
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For floating point addition, the mantissa’s bit-wise uniform error rate can be similarly

explained as above, except that floating point addition shows more discrepancy between

the mantissa’s error rate and the exponent’s error rate. As a result, the mantissa’s uni-

form error rate increases to 50% while the exponent stays accurate. Since the exponent

is accurate, we can infer from Fig 4.2 that the adder works fast enough and correctly,

but the L1/R1 shifter, the rounding circuitry, and the multiplexer of the mantissa has

a critical path that results to a uniform bit-wise error rate. The exponents exponen-

tial decrease of bit-wise error rate can be explained with the critical bit being flipped,

equivalent to floating point multiplication. The peak in the most significant bit of the

exponent can be explained by the comparator of the operands’ exponents, and selecting

the larger exponent as a result of the comparison. If the compare result of the exponent

is flipped, the smaller exponent would be selected as the result. While this timing error

adds bit-wise randomness in the other bits of the exponent, the most significant bit is

biased such that the larger exponent has higher probability of 1 and the less exponent

has higher probability of 0, which indicates that the most significant bit has higher

chance to flip due to value anti-correlation of the most significant bit.

From the above observations, we conclude that Critical Bit error model can explain the

error behavior of each arithmetic operation in a small, specific range of voltages, i.e.

from 0.7V to 0.8V for floating point multiplication and addition.

4.3 Comparing Critical Bit with Other Error Models

We select a few well-known fault-tolerant applications Gaussian Filter, Sobel Operate

and Fast Fourier Transform to test how the selection of error model from 6 different

options (Critical Bit, b-HiVE, Random, Uniform on the mantissa, Uniform on the ex-

ponent, and Uniform on all bit locations) affects the characterization of error tolerance

of such benchmark applications. We count how many times each operation of the an-

notated approximate region returned a different output to calculate the observed error

rate. We expect UniformM to be close to b-HiVE (and the actual processor behavior

under voltage closer to nominal voltage) for small error rates, UniformE to be very pes-

simistic as the exponent being different drastically changes the output, and UniformA

somewhere in the middle. The output image or signal of each benchmark is collected

and compared to the accurate output with the above measurements, and projected with

the observed error rate.

Fig 4.3, Fig 4.4 and Fig 4.5 shows the PSNR and error rate of 3 benchmark applications

injected with 6 different error models. The defining characteristic of all error models

is that PSNR (accuracy) decreases as the error rate increases from 0, which validates

each error model as the lower the voltage should have higher error rate and thus less

accurate results. We also note that from Fig 4.5, the 3 models Random, UniformE and
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Figure 4.3: PSNR(dB) vs. Error Rate of Gaussian filter

Figure 4.4: PSNR(dB) vs. Error Rate of Sobel operator

UniformA are excluded from the graph due to all having outputs of PSNR = −∞ for

any error injection rate. This shows that while FFT has a strictly lower error tolerance

than Gaussian-filter or Sobel-operator, these 3 error models Random, UniformE and

UniformA that change bits outside of the mantissa show significantly different behavior

from the other 3 models CriticalBit, b-HiVE and UniformM. The FFT algorithm differs

from the Gaussian filter and Sobel in its error tolerance because each of its computa-

tions is non-discrete; so errors, if catastrophic, will propagate to all of the output values.
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Figure 4.5: PSNR(dB) vs. Error Rate of FFT

Fig 4.3 and Fig 4.4 shows that of the 6 error models, UniformM and the b-HiVE model

project the highest accuracy, followed by CriticalBit, UniformA, and then UniformE and

Random, both projecting lowest accuracy. The order of accuracy is predictable, since

UniformM and b-HiVE are bit-wise mantissa-only (for low error injection rates) indepen-

dent error models which include the case where the less significant bits of the mantissa

are flipped as errors, while other models handle timing violations in the exponent. The

CriticalBit is the most accurate from the remaining models, while CriticalBit is bounded

to change the output by a ratio of 2, UniformE, Random and UniformA have no limits on

changing the exponent, even up to 2256 ratios. The UniformA produces more accurate

outputs than Random and UniromE as UniformA counts errors that happen only in the

mantissa. While the b-HiVE model is close to a UniformM model, it is clearly different

from CriticalBit. b-HiVE and UniformM both assume a low bit-wise independent error

rate, while CriticalBit assumes a single critical bit flip error rate. Hence, as explained

in Section, the discrepancy of the models comes from the assumption of the rounding

hardware being the critical path, while CriticalBit assumes that the 24-bit adder and

multiplier’s result is the critical path. Therefore from the architectural explorations, an

adequate FPU architecture that supports fast rounding can assume that the exponent

and mantissa shift should be correlated to the critical bit.
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Figure 4.6: Gaussian-filter output with 6 error models, each image PSNR=20dB

Fig 4.6 shows sample outputs of Gaussian-filter injected with each error model when

PSNR of 20dB is selected. While the difference from the original Gaussian-filter output

is significant, we can also acknowledge that while CriticalBit, b-HiVE and UniformM

(top) produce similar images, Random, UniformA and UniformE (bottom) produce

different kind of images, where the glitches are very clear.

We see that each error model shows largely different behavior in each application. For

example, when we assume a 0.01 error rate due to voltage scaling, Gaussian-filter can

output images of PSNR from 10dB (the lowest) to 50dB (the highest), depending on

which error model is applied; when we assume we can only tolerate 30dB PSNR outputs

from timing errors due to voltage scaling, the Sobel-operator can tolerate error rates

from 0.0001 to 0.3. Since these differences lead to great divergence in estimation of both

power savings and performance enhancements from voltage scaling, the selection of error

injection model is crucial for correct analysis. For the above reasons, we use the Critical

Bit error model for the simulation of our voltage scaling policies.



Chapter 5

Dynamic Voltage Scaling Policy

5.1 Error Model

Many works focusing on error-tolerant and approximate computing follow simplistic

error models such as single bit-flip probabilities, uniform distribution models or random

values [4, 16, 17] that are not able to fully capture the error behavior of functional

units (FUs). For example, the error models considered in EnerJ [16] are basic fault

injection error models with single bit flips at the output using uniform distribution,

random selection or previously seen values for the output. The work of Esmaeilzadeh

et al. [4] relies on uniform bit-error models with set error probabilities per component.

In [6] Krimer et al. developed a model for the expected probability of errors due to

timing violations when the supply voltage is reduced in integer adders and multipliers,

but this model does not take into account bit location and history of computation.

Most of the existing error models do not cover important families of FUs, such as Floating

Point Units (FPUs) and bit-wise logic operation units, which have different behavior than

integer adders. Moreover, these models ignore value correlation, computation history,

and bit-wise error variability. Tziantzioulis et al. [18] introduced b-HiVE, an error

model that considers these three factors and showed that the bit-wise error rate of a

functional unit’s operation can be predicted more accurately. However, b-Hive relies

on the independence of bit-wise error rates. Whang et al. [19] address this limitation

by tying the error to the critical path in the floating point unit. In particular, the flip

rate at each bit location is dependent on the current and previous computation of the

signals on the critical path of the computation. These “critical bits” are responsible for

the bit flips in the result when the voltage is gradually scaled down. For floating point

multiplication, this translates to a potential timing error on the most-significant bit of

the mantissa. In other words, if this critical bit is flipped, the result would differ from

the correct output by a factor of 2. For floating point addition, this translates to errors

18
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in the most-significant bits of the mantissa from the addition/subtraction phase or the

adjustment to the exponent needed in the normalization phase. We believe the work

of [19] offers the most accurate model for capturing error error behavior in floating point

units and therefore we incorporate this model into our implementation and evaluation.

5.2 Non-approximating DVS Policies

On top of the HTM infrastructure described in Section 3.2, we are proposing an approximation-

aware error management Dynamic Voltage Scaling (DVS) policy. To evaluate the capa-

bility of our approximation-aware policy to save energy and improve performance, we

compare it to existing error-management policies, that do not apply approximations and

instead correct all occurring errors.

In [13] the authors suggest two such policies on top of an HTM infrastructure: The Point

of First Failure (POFF) and Thrifty Uncle/Reckless Nephew (TURN) policies. The

POFF policy is a pessimistic approach in which the supply voltage is gradually scaled

down in steps until the first failure occurs, in which case the voltage is immediately

scaled up a step. Hence, with POFF any detected timing error results in the ongoing

transaction being immediately aborted and re-executed after the voltage is increased.

This policy leads to execution just above the edge of failure. While the abort rate is

minimized and the energy consumption is improved, this approach does not reach the

maximum potential in energy savings.

Consecutive
Commits > C ?

No Voltage
Change

Reduce 
Voltage

C = C / 2 No change

New ?

Twice
w/o aborts ?

Start Transaction

No

No

No

Yes

Yes

Increase 
Voltage

C = C x 2

No Voltage
Change

Consecutive
Aborts > A ?

NoYes

Yes

Figure 5.1: Flow Diagram of TURN DVS Policy [13]

To address these shortcomings, the authors of [13] propose the Thrifty Uncle-Reckless

Nephew or TURN policy. This policy optimistically scales the voltage beyond the point
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of first failure with the goal to achieve better energy savings. Since the error rate is

increased beyond the point of first failure, the transaction abort rate increases as well,

which in turn leads to an increase in energy consumption and execution time due to

more transactions recoveries and re-executions. This policy thus has two parts:

• The reckless nephew optimistically scales the voltage down for better energy sav-

ings, based on the number of consecutive successful transaction commits.

• The thrifty uncle moderates the energy loss from the increased number of aborts

(due to over-aggressive voltage scaling), by setting up a threshold based on the

number of transaction aborts and commits.

This policy leads to execution beyond the edge of failure and better energy savings.

However, the policy still incurs a significant runtime overhead ( 8%) and it still does not

reach the maximum energy saving potential. The flow diagram of the TURN policy is

described in Figure 5.1

In this paper, we propose an error management scheme that opportunistically ignores

errors in order to save more energy. It does so by allowing a certain rate of errors to

be left uncorrected and aborting only when the acceptable error threshold has been

reached. In the following section, we describe in detail our proposed error management

policy called IgnoreTM.

5.3 Approximating DVS Policy with IgnoreTM

We now consider which instructions can be approximated. For a DVS policy to be able

to approximate instructions by ignoring timing errors, consideration of which instruction

can be approximated is necessary.

We place instructions into two categories: ”approximatable” and ”non-approximatable”.

For our experiments, we define approximatable instructions as floating point add, mul-

tiply, copy, negate (but not load/store, CPU to/from FPU register moves), and non-

approximatable instructions as any other instructions that if approximated would result

in significant loss in output quality, hence they must be kept accurate. In general, users

should be able to annotate each instruction in their programs where approximation will

be applied and those where computations will be kept accurate. Then, on top of that

annotation, we use HTM transaction boundaries to only apply voltage scaling under

these boundaries and keep all other program parts protected. The program regions that

are not approximated must have HTM protection so that if a timing violation occurs

there, the HTM support mechanism can correct it. The instructions that are annotated

as approximatable and cause timing violations are potentially ignored and left uncor-

rected. However, these regions are also protected with HTM transaction boundaries, so
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that if the error threshold tolerance is exceeded, the HTM support can start recovering

from timing violations and potentially adjust the voltage level based on the IgnoreTM

policy.

Voltage adjustments are determined based on the number of completed transactions

between aborts. In our IgnoreTM policy, we take into account the frequency of a timing

violation during a transaction that has to be corrected, and its effect on the total system

energy consumption (analyzed in Section 5.4). When such frequency of a timing violation

is too high (thus increasing the number of aborts and total energy consumption), we

increase our operating voltage in order to save energy by lowering the abort rate. The

IgnoreTM policy balances ignoring timing violations, correcting timing violations, and

changing voltage levels to opimize energy savings while maintaining acceptable program

output accuracy.

Figure 5.2: Flow Diagram of IgnoreTM DVS Policy on Commit

Figure 5.2 and 5.3 shows the execution flow of our proposed policy. Here, we discard

the notion of consecutive aborts, as we aim to have no transaction with multiple retries.

Rather, we set two thresholds for consecutive commits, Chigh and Clow. The Chigh

threshold determines how many consecutive commits are necessary in order to safely

scale down the operating voltage by one step. The Clow threshold determines how many

consecutive commits must happen between two aborts. If this number is not reached,

then the policy realizes that the current operating voltage is dangerous and increases

the voltage by one step. By aiming for an abort rate between 1% and 10%, we set

Chigh = 100 and Clow = 10, to allow exploring lower voltages when 100 consecutive

commits were successful, and retain a higher voltage when the previous abort was less

than 10 commits away.
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Figure 5.3: Flow Diagram of IgnoreTM DVS Policy on Timing Violation

We also define another threshold, E, the maximum number of ignored timing errors in

a single run of a transaction. E determines the level of approximation the transaction

will tolerate. Since every benchmark and every use case of each benchmark can have

different error thresholds, we implement E as a user input: a parameter set in by a

specially encoded instruction. The user can set a threshold for the number of ignored

timing errors per each transaction. While running each transaction, IgnoreTM will

accumulate the number of ignored timing errors, and abort to retry when the threshold

E is crossed. Hence, we allow the software to decide E for each transaction, which

gives the user some control over the level of expected approximation. We assume that

compilers never mark system calls as approximatable, so any timing violation in a system

call will be caught and reverted via the HTM recovery mechanism explained below.

The parameters for the TURN and IgnoreTM policy are summarized below in Table 5.1.
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General measures

CC # Consecutive successful commits without aborts
CA # Retries for one transaction
CE # Ignored timing errors during single run of transaction

POFF

- V ↓ until first timing error

TURN

Cturn V ↓ if CC > Cturn

Aturn V ↑ if CA > Aturn

IgnoreTM

Chigh V ↓ if CC > Chigh

Clow V ↑ if CC < Clow

E Abort transaction if CE > E

Table 5.1: Parameters and Summaries of DVS Policies

5.4 Characterizing Chigh and Clow

We now calculate the expected energy consumption per successful transaction and the

expected number of consecutive commits based on the scaled voltage level. We then

analyze the optimal expected consecutive commits to deterimine Chigh and Clow.

First, let V be the scaled voltage level, V0 be the nominal voltage, and v = V/V0. Also,

let p be the possibility of a timing violation in 1 cycle, N be the fixed number of cycles

of the current transaction, n̄ be the expected number of cycles up to a successful commit

of transaction, and c̄ be the expected number of consecutive commits. Here, we assume

the scaled voltage level is fixed to V , and there is no additional runtime overhead for

retrying a transaction other than the lost computation cycles. Then,

c̄ =
1

1− (1− p)N
,
∂c̄

∂v
=
−Nc̄(c̄− 1)

1− p
∂p

∂v

n̄ = N(1− p)N + (1− (1− p)N )(n̄+ p+ ...+Np(1− p)N−1)

n̄ =
1− (1− p)N

p(1− p)N
=

1

p(c̄− 1)
,
∂n̄

n̄∂v
= (1− Npc̄

1− p
)
∂p

−p∂v

Let C be the effective capacitance of the processor (or voltage scaled region), C0 be the

effective capacitance of the remaining regions of the system, E0 = C0V
2

0 , M = C/C0,

and Ē be the expected energy consumption per successful transaction. Then,

Ē = n̄(C0V
2

0 + CV 2) =
E0(1 +Mv2)

p(c̄− 1)

∂Ē

Ē∂v
=

2Mv

1 +Mv2
+ (1− Npc̄

1− p
)
∂p

−p∂v
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Now, we assume a timing violation probability as exponenetially increasing as voltage

decreases (i.e., ∂p/∂v = −βp), and for V to be an optimal voltage level, ∂Ē/∂v = 0 has

to hold. Therefore,
Np

1− p
c̄ =

2Mv

β(1 +Mv2)
+ 1

Since Np/(1− p) = N(( c̄
c̄−1)1/N − 1) ≈ ln( c̄

c̄−1) ≈ 1
c̄ + 1

2c̄2
, we get

c̄ ≈ β(1 +Mv2)

4Mv

Here, we can get the soft boundaries of the optimal number of consecutive commits,

based on M = C/C0, the effective capacitance ratio between the processor vs. the rest

of the system, and β, the timing violation increase factor based on voltage drop. In our

system, we characterize M ≈ 1, and β ≈ 50 ln 10 = 115 (10× increase per 0.02V0 voltage

drop). Last, v = V/V0 is always inbetween 0.7 to 1.0, as going below 70% nominal

voltage introduces too many timing violations.

So, we can compute c̄ to be near 57 to 61. Since the voltage steps aren’t continuous, the

expected consecutive commits will change by approximately 10X each voltage increase

step, hence we should choose Chigh/Clow ≈ 10. Therefore, we use Chigh = 100 and

Clow = 10 as our commit threshold parameters. We also characterize the effect of

different parameters in Section 6.2.

Note that c̄ can be set without considering the length of the transaction, which can differ

across the program. By c̄ being agnostic to transaction length, we can provide a simpler

DVS policy with constant Chigh and Clow values and dependent only on β and M .
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Results and Discussion

6.1 Experimental Setup

We use a cycle-level SystemC simulator of a SoC with ARM processors containing float-

ing point units, private instruction caches, a tightly-coupled data memory (TCDM) and

a fast interconnect between processors and memory (Figure 3.1). To isolate the benefits

of IgnoreTM, we run all experiments with one processor core since all cores operate

independently from each other with regards to our policy, and as we will see, the total

possible energy savings are heavily dependent on the benchmark we are running. We

target the processor, including the matching floating point unit, to be voltage-scaled,

where the dynamic and static power consumption of each module is characterized by ex-

trapolation from an implementation of the platform in STMicroelectronics 28nm UTB

FD-SOI technology under operating points considered in our experiments, and back-

annotated in the simulator. Timing errors are generated on a cycle-basis, with expo-

nentially increasing probability as voltage is scaled down. Specific behavior of floating

point units under timing violations are implemented using the Critical Bit error model

(as described in Section 5.1 and [19]). Support for error correction is done through the

HTM infrastructure (as described in Section 3.2).

As benchmarks, we consider floating point implementations of Gaussian Filter [3], Fast

Fourier Transform (FFT) [20] and Matrix Multiplication [5]. We chose these applica-

tions due to their heavy reliance on floating point computation, mainly addition and

multiplication, with inherent tolerance to errors in the output. Also, these applications

lack floating point control instructions such as floating point comparisons, which could

change the control flow if the comparison was approximated. We analyze their energy

savings, runtime overhead, and quality of output loss from various DVS policies. For

Gaussian Filter and Matrix Multiplication, we define quality of output as the Peak Sig-

nal to Noise Ratio (PSNR). For Fast Fourier Transform, we define quality of output as

25
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the Average Relative Error (ARE ).

6.2 Tuning Commit Parameters

Figure 6.1: System Energy Consumption vs. Runtime with different DVS Policies.
FFT, No Approximation

As explained in Section 5.2, TURN [13] and one of its parameters Aturn is a determining

factor of how much runtime, system energy, and processor energy can be saved. The

same holds for the IgnoreTM DVS policy and its parameters Chigh and Clow. Here,

we demonstrate this importance by implemeting the following DVS policies on the FFT

benchmark:

• Point of First Failure (POFF )

• Three versions of TURN, Aturn = 3, 2, 1

• Ten versions of IgnoreTM, (Chigh, Clow) = (20, 2), ..., (200, 20) and E = 0

In [13], the TURN policy used Aturn = 3 (i.e., more than 3 consecutive timing errors

result in a voltage increase). In our experiments in this paper, we also consider increasing

the voltage in response to encountering more than 1 or 2 consecutive timing errors, in

order to measure the runtime overhead and energy savings when voltage increase is

applied more aggressively. Note also that TURN in [13] only measured energy in the

processor, which resulted in up to 57% energy savings, but since we target the whole
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Figure 6.2: Processor Energy Consumption vs. Runtime with different DVS Policies.
FFT, No Approximation

system energy savings, we reimplement TURN to compare full system energy savings

of DVS policies.

Figure 6.1 and 6.2 shows the system and processor energy consumption vs. execution

time for each policy when running the FFT benchmark. From Figure 6.1, we can see

a general trend of energy consumption being proportional to execution time. Here, the

TURN policy with Aturn = 3 produces the most runtime and system energy overhead,

which is worse than the POFF policy that ensures minimal aborts by never reducing

the voltage when timing violations start to occur. Also, decreasing Aturn from 3 to 2

and 1 for the TURN policy shows benefits for both system energy consumption and

runtime. The IgnoreTM policy being more conservative than the TURN policy results

in less energy consumption and runtime overhead than TURN for all versions. However,

the IgnoreTM policy does not become more efficient just by increasing Chigh and Clow.

There is a point of maximum return where after Chigh > 100 and Clow > 10, the

energy consumption increases without much change in execution time. This is due to

the IgnoreTM policy becoming too conservative, such that the system does not fully

exploit the voltage scaling potential, while still running without any runtime overhead

due to no reverts.

From Figure 6.2, we also observe that the processor energy consumption using the TURN

policy is actually close to optimal, clearly better than POFF. This indicates that TURN

successfully captures the correct voltage level to optimize just the processor energy



6. Results and Discussion 28

consumption, but not the whole system energy consumption.

This experiment demonstrates that the we need to consider more conservative voltage

levels and fewer abort rates than TURN to optimize both runtime and system energy

consumption. From the results of this experiment, we choose (Chigh, Clow) = (100, 10)

as the tuned commit thresholds that best explain our environment, as analyzed from

Section 5.4.

6.3 Tuning Error Tolerance Parameters

Figure 6.3: System Energy vs. PSNR with different error thresholds. Matrix Multi-
plication, IgnoreTM

Next, we want to analyze the trade-off between accuracy and energy savings. Figure 6.3

shows how energy consumption can be optimized by setting different error thresholds.

For these experiments, we choose the matrix multiplication benchmark to show clearly

how changing the error threshold E can provide fine-tuned control of the output quality

and energy savings. Recall that E is a user-determined threshold of how many timing

violations and approximations each transaction can tolerate,

For matrix multiplication with error threshold E ranging from 2 errors per transaction

to 20 errors per transaction, we observe that the PSNR of the output can be gradually

decreased from 70 to 60, while the energy consumption is also decreased from 57% to

54%. These results demonstrate how the error threshold is a flexible and simple knob
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for accuracy control that can be used as an input in the start transaction function (i.e.,

start transaction(error threshold)), thus providing the user with direct fine-tuned control

of both output accuracy level and energy consumption.

6.4 Runtime and Energy Consumption

Figure 6.4: Runtime of Different Benchmarks and DVS Policies

Given our analysis in Section 5.4, Section 6.2 and Section 6.3, we construct our IgnoreTM

policy with Chigh = 100, Clow = 10 to ensure a low enough abort rate. We run three

benchmarks: Gaussian Filter, FFT, and Matrix Multiplication, with accuracy thresholds

of 30dB PSNR, 25% ARE, and 60dB PSNR, respectively, which in turn determined

the error threshold E when running IgnoreTM approximations. We also compare our

proposed DVS policy IgnoreTM against our implementation of previous DVS policies

such as POFF and TURN [13] without approximation.

In Figure 6.4 and 6.5 we show the runtime and energy consumption results for our

simulations. These results indicate that IgnoreTM can achieve 32% to 45% energy

savings (+4% to +15% more compared to the TURN technique) with modest runtime

overhead of 1.1% to 1.8% relative to no voltage scaling. The additional energy savings

come both from being more aggressive with voltage scaling and ignoring errors and

from decreasing the number of aborts so that the system has less energy overhead from

transaction re-execution. This also explains the significant decrease of runtime overhead

compared to the TURN policy, as aborts are carefully controlled to remain low.
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Figure 6.5: System Energy Consumption of Different Benchmarks and DVS Policies



Chapter 7

Conclusion

As the supply voltage is scaled down below safe operating margins, timing violations will

be triggered. This paper first analyze floating point architecture and propose Critical

Bit error model that is used throughout the simulations for timing errors. Using the

recovery infrastructure borrowed from Hardware Transactional Memory, we introduce

IgnoreTM, a hardware-software environment that supports controlled floating point ap-

proximation with significant energy savings and insignificant overhead of circuitry or

complexity. Approximation in these scheme is created from allowing timing errors to

either be corrected via rollback and reexecution, or ignored if runtime monitors predict

the computation error will be sufficiently bounded in the output. As the end goal is to

save more energy via voltage scaling without unduly impacting runtime performance or

application accuracy, our results show up to 15% additional energy savings compared

to always correcting errors, while incurring only a 1% overhead in runtime compared

to no voltage scaling. The simplicity of the implementation of HTM and DVS policy

(where HTM can be concurrently used for data synchronization), as well as the interface

for the programmer to integrate such system in their code to easily control the level of

approximation and save energy, brings the novelty of IgnoreTM.

There is more work that can be done towards the investigation of ignoring timing vio-

lations. The impact of ignoring timing violations in the processor; in memory; in the

whole system can be investigated, and the differentiation of critical and non-critical er-

rors can be more finely defined. The integration of FPUs can be further optimized by

having multiple FPUs per processor, or having an approximate version of FPUs instead

of the full version - mapping FPU instructions to approximate integer instruction on the

hardware level can lead to significant area and energy reduction with minimal accuracy

loss. The Critical Bit error model should be further verified, not just by analysis, but by

SPICE simulations and/or circuit experiments, which is also our ongoing project. The

selection of α and β from the IgnoreTM DVS policy can be further automated for the

reduction of preliminary analysis of such hardware voltage scaling.
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