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Chapter 1

Introduction

Neural networks have become both a staple and a standard in the field of machine

learning. From reinventing solutions to classic use cases such as audiovisual recog-

nition [1–3], decision making in games [4, 5], and language processing [6, 7], to

more contemporary use cases such as mimicking creativity in music [8], pictures [9],

and paintings [10], neural networks have permeated everyday life at an astounding

rate. We already rely on them in some security critical areas, such as detection

and decision systems in self-driving cars, pattern detection authentication services,

and parsing privileged commands from speech. As they continue integrating into

society, the risks of leaving vulnerabilities in the technology grows exponentially.

Thus, it is imperative that we thoroughly understand the vulnerabilities that ad-

versaries can exploit and employ countermeasure defenses accordingly.

1.1 History

The first published mention of adversarial examples by Biggio et al. [11] introduces

the concept of and mandates a strong consideration for the security of machine

learning systems. In particular, Biggio et al. describes a so-called evasion attack,

which can be formulated as non-linear (and generally non-convex) optimization

1
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problem in both perfect knowledge and limited knowledge scenarios. An immedi-

ate followup by Szegedy et al. [12] detailed an evasion attack in the image clas-

sification domain. While their work focused mainly on the neural network space,

the concepts are the same. By introducing minor perturbations undetectable by

the human eye, their adversarial examples were able to fool then-state of the art

image classifiers.

Perhaps it is a phenomenon of academics that a topic is introduced, mysteriously

disappears for some number of years, and then resurges with great popularity. Such

is the case with adversarial examples. In the previous year, attacks and defenses

have been proposed step in step at such a pace that a defense [13] was published

several months after an attack that already broke it [14]. As the synthesizing

of 3-D adversarial examples has proven to be successful [14], the search for a

robust defense against adversarial examples has become an increasingly important

question.

1.2 Organization

We will begin by formally describing what neural networks are, along with their

associated constructs. Then, we will introduce the notion of adversarial examples

and notable attacks and defenses relating to them. From a security perspective,

we will illuminate aspects of the threat model particular to neural networks. We

then transition to a more applied setting of the recent state of adversarial examples

and their prior barrier in being able to persist as a physical form in the real world.

Finally, we attempt to extend the threat models to persist through real world

perturbations, reproducing the state-of-the-art results [14, 15].

In this work, we focus primarily on classification networks in the computer vision

space as this is the space where adversarial examples have been most researched.



Chapter 2

Background

2.1 Neural Networks

Definition 2.1. Given some n-dimensional input space D ⊆ Rd and a set of valid

discrete labels L = {1, . . . , k}, we define a classifier as f : D → L. In short,

for some input x ∈ D and label ` ∈ L, f(x) = ` is equivalent to saying that the

classifier believes l is the most-likely label of x. Typically, there is an intermediate

step where a probability vector is produced which contains the likelihood of any

given ` ∈ L; these are called soft labels. Then, f(x) = arg max
`

P (`|x) is called a

hard label.

In general, a distance function d : D ×D → R≥0 is provided such that (D, d) is a

metric space.

Definition 2.2. Let F be the underlying ground truth function we are trying to

model with f . Then, F (x) = ytrue is equivalent to saying that ytrue is the ground

truth label for x.

Definition 2.3. It is presumed that f has an associated loss function lossf :

D×L→ R≥0 which denotes a measure on the cost of incorrectness in our model.

For classification problems, cross-entropy is a widely used choice.

3
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Definition 2.4. The classification rate or accuracy of a classifier, f , on a distri-

bution of inputs, X, is defined as

Cf (X) =
∑
x∈X

1true(f(x) = F (x))

|X|

Then, the misclassification rate is simply 1− Cf (X) or defined as

Mf (X) =
∑
x∈X

1true(f(x) 6= F (x))

|X|

2.1.1 Layers

Neural networks are composed of the input layer, hidden layers (computational

layers between input and output layers), and the output layer. Each layer is a

collection of nodes which store computed values and the edges between nodes

represent some nonlinear transformation, i.e. each hidden layer is some nonlinear

transformation of the previous layer(s). For our purposes, we will briefly discuss

the softmax layer.

Where 〈xi〉 is some vector of values (presumably the final hidden layer before the

softmax layer) and ` is some label, the softmax function σ : Rn → [0, 1]n is defined

as

σx(x`) =
ex`∑

x`∈x
ex`

In short, the softmax function normalizes the element-wise exponentiation of a

vector of values and forces the sum of them to be one. The softmax layer is simply

the softmax function applied to each element of the previous layer, which is a

vector of values in R representing the confidence of each label. Thus, we treat the

result of the softmax layer as the probabilities of the classifier even though the

output is parameterized by the model itself.



Contents 5

2.1.2 Backpropagation

In discussing neural networks, the term “learning” typically refers to the training of

parameters in fitting f to F on the training set and validation set. Specifically, the

backpropagation algorithm is used for neural networks to update their parameters.

First, the “forward pass” consists of evaluating the network on the input, thus

storing computed values in the nodes of the graph. Let θ denote the trainable

parameters of our classifier, f , and η be the learning rate. The backpropagation

step is defined as follows

θi = θi−1 − η∇θi−1
lossfθ(x, ytrue)

In other words, for our trainable parameters θ, take a step of magnitude scaled

with η in the direction which minimizes the loss of classifying x as ytrue.

2.1.3 Assumptions

As many (if not all) of the attacks are gradient based, we merely require that the

neural network is differentiable to launch an attack on it. However, it should be

noted that the gradient does not even need to necessarily be usable, it just needs

to exist. Such an assumption is fairly reasonable as neural networks widely use

the backpropagation algorithm, which relies on the gradient existing through the

network, to update its parameters. Moreover, it is assumed that we can query the

classifier at some reasonable rate, i.e. the ability to sample the input and output

pairs it is defined on.

2.2 Adversarial Examples

Definition 2.5. An adversarial example [11, 12], x′ = x+ε, is any combination

of an original input x and some small perturbation ε, such that f(x′) 6= ytrue. This
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definition is quite broad as it trivially includes inputs that f simply fails to classify

correctly. Generally, we are interested in the cases where f(x) = ytrue, forcing

ε > 0, and will be addressing these in this work.

Definition 2.6. A targeted attack is an adversarial example such that f(x′) =

ytarget for some target label, ytarget, that we choose. An untargeted attack is an

adversarial example where we do not pick ytarget and simply achieve f(x′) 6= ytrue.

2.3 Threat Models

Definition 2.7. A white box attack is when the attacker has access to the

parameters and architecture of the model. A black box attack is the opposite,

where the attacker knows nothing about the internals of the model except its

input and output specification. Unless explicitly stated, the attacks detailed are

in a white box setting. This is due to the transferability property of adversarial

examples which we will address in the black box attack (3.1.6). In general an attack

needs only the ability to query the black box as a function at some reasonable rate,

which we reasonably assume to be provided, to construct an adversarial attack on

it.

2.4 A Brief on Optimization

2.4.1 Optimization Problem of a Targeted Attack

We first recall the initial proposed notion of a targeted attack on a classifier f ,

input x ∈ D, perturbed input x′ = x+ε, and target label ytarget, as an optimization

problem [12].
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minimize
x′

d(x, x′)

subject to f(x′) = ytarget

x′ ∈ D

A more specific formulation used in the typical case of soft labels is

maximize
x′

P (ytarget|x′)

subject to d(x, x′) ≤ ε

x′ ∈ D

2.4.2 Lagrangian Relaxation

One common theme in the loss functions for generating adversarial examples is

the utilization of the Lagrangian relaxation technique. Lagrangian relaxation is

the process of relaxing a typical “hard” constraint and introducing it as a “soft”

constraint in the objective function with the Lagrangian multiplier denoted as λ.

It is an easier version of the problem, due to both an expanded search space and

more “allowable paths”. For example in the case of images, a hard constraint on

the norm could restrict the optimizer to a local minimum despite there existing

a path to the solution which goes through the unrestricted space. Moreover, the

solution to the relaxed version of the problem approximates that of the original

problem, and in practice, performing a line search (typically binary search of

sorts) on λ yields the optimal solution. Finally, we note that the terms that the

Lagrangian multipliers are attached to do not matter much so long as the ratio

between the terms remain the same. We will make this more concrete in the

following examples.
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Attacks and Defenses

3.1 Selected Attacks

3.1.1 The Original (Unnamed) Targeted Attack

Szegedy et al. [12] originally addressed adversarial examples in the neural network

space and proposed the following optimization problem and its Lagrangian relaxed

version to generate them.

minimize
x′

||x− x′||2

subject to f(x′) = ytarget

x′ ∈ D

Lagrangian Relaxed:

minimize
x′

λ|x− x′|2 + lossf (x
′, y),

subject to x′ ∈ D

8
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Here, the hard constraint of x′ being classified as ytarget directly correlates with

the minimization of lossf (x
′, y), and for some threshold β

lossf (x
′, y) ≤ β =⇒ f(x′) = ytarget

Intuitively, λ is simply a scaling factor for how severely we wish to penalize the

magnitude of the perturbation and is used as a counterweight to the consideration

of lossf . If λ = 0, then we would expect x′ = x + ε to be f ’s interpretation of y

which, assuming f ∼ F , would be rather useless as x′ is likely clearly distinguish-

able from x. On the other hand, if λ is arbitrarily large then we severely limit

our exploration space of ε = ||x− x′|| (the adversarial perturbation layer) causing

f(x′) = y to be unsatisfiable as the optimizer would be unwilling to explore a

space which contains the solution. Of course, the value of λ as a counterweight is

dependent on the distribution of values that lossf can take.

3.1.2 Fast Gradient Sign Method (FGSM)

For the purposes of adversarial training (3.2.1), Goodfellow et al. [16] proposed a

single step untargeted adversarial example generator. We note explicitly that this

method is not intended to produce optimal adversarial examples (of minimal norm

and maximal classification probability) but rather is intended to quickly produce

adversarial examples for defensive training.

x′ = x+ ε[sign(∇xlossf (x, ytrue))]

Simply put, in our input image, x, we take a step of ε magnitude away from the

direction of the gradient which classifies x as y. Goodfellow et al. mention that

the surprising effectiveness of a single step attack is due to the inherent underlying

linearity of neural networks.
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Adversarial attacks are typically split into single step attacks and iterative at-

tacks, with the former being more efficient and transferable [17] for a trade-off of

optimality in the attack to the latter. One possible explanation for this is that

iterative methods, being more explorative than single step methods, converge on

local minima unique to certain models whereas the single step method converges

on a more general, local minima cluster which is specific to the class at hand.

3.1.3 iFGSM (Basic Iterative Method), iFGM, Projected Gradient

Descent (PGD)

We discuss a number of variants of FGSM which have been popularized and their

respective uses. Kurakin et al. [17] proposed the Basic Iterative Method (popularly

known as iFGSM), an iterative version of FGSM which simply reduces the step size

to some new value α and clips the resulting tensor by ε distance from the original

image, assigning x in the next step to be the x′ computed in the previous step.

So, the total magnitude of difference is still limited to ε but iterative sampling of

the gradient allows for more optimal results.

x′0 = x, x′n+1 = clipx,ε(x
′
n + αsign(∇x′n lossf (x

′
n, ytrue)))

We briefly mention FGM and iFGM which are simply the unsigned versions of

FGSM and iFGSM, i.e. they step along the gradient. Moreover, the targeted

versions of these attacks are created by substituting ytrue for ytarget and negating

the gradient (as we are now stepping to the target label rather than stepping away

from the true label).

In essence, these iterative methods are just instances of projected gradient descent,

where the clipping of the output by ε enforces a constraint of d(x, x′) ≤ ε. This

is notable as Madry et al. [18] presents empirical evidence for why PGD should

be considered a universal first order adversary, that is, no other adversaries which

merely depend on the gradient should expect to do significantly better than PGD.
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Thus, Madry et al. claim that training a network to be robust against PGD attacks

should implicate its robustness against a wide-range of first-order attacks.

3.1.4 Carlini & Wagner

Carlini et al. [19] propose an attack which is similar to the one proposed by Szegedy

et al. but replaces the loss function with a transformation of the classifier (or more

specifically a function of either its softmax layer or its logits layer) parametrized

by a label y, call it fTy (x), with the property that fTy (x) ≤ 0 if and only if f(x) =

y. Carlini et al. propose numerous choices for fT , selecting the best one from

empirical testing. As the selection of fT as an adversarial example optimization

specific loss function is one of the main features of this attack, we refer the reader

to their paper for further details on its selection.

minimize
x′

d(x′, x) + λfTy (x′),

subject to x′ ∈ D

3.1.5 Interesting Constrained Attacks: One Pixel Attack and Univer-

sal Adversarial Perturbations

We briefly review, on a high level, some more interesting attacks with specific

properties and encourage the reader to read the respective papers for more detail.

One might wonder what a lower bound for the number of modified pixels required

for mounting a successful attack may be. By constraining the l0 distance, i.e. the

number of pixels modified, to be no more than one in the optimization procedure,

Su et al. [20] show not only that it is possible with one pixel but that it is probable

as well.
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maximize
x′

P (ytarget|x′)

subject to ||x, x′||0 ≤ 1

x′ ∈ D

While the feasibility of the attack is fairly reduced in doing so, both in the number

of possible target classes for a given input and the confidence that can be invoked

in the classifier, it is still surprising that over 65% of CIFAR-10 and over 40% of

ImageNet validation images were susceptible to this attack under common network

architectures for those tasks [20].

Another question one might wonder is if there exist general adversarial perturba-

tions which cause misclassifications regardless of the input they are superimposed

on. With an adversarial perturbation layer v generated on a distribution X, define

the fooling rate M(X, v) as an extension of the misclassification rate for a specific

perturbation layer as:

M(X, v) =
∑
x∈X

1truef(x+ v) 6= ytrue
|X|

That is, the percentage the misclassifications that v incurs on X. For a δ we pick,

say that v is universal on X if M(X, v) ≥ 1− δ.

Moosavi-Dezfooli et al. [21] formulated the following algorithm to generate uni-

versal adversarial perturbations with the constraint that ||v||k < ε.

1. initialize v = 0

2. while M(X, v) ≤ 1− δ

(a) for each xi ∈ X

i. compute the minimal vi by a chosen norm metric s.t. f(xi+v+vi) 6=

ytrue

ii. set v = clipε(v + vi)
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In short, Moosavi-Dezfooli et al. [21] showed that a greedy averaging of adversar-

ial perturbations constrained in a projection space of radius ε can be individually

adversarial for each of the samples it averaged on. Notably, for ImageNet classi-

fiers and |X| = 10000 (on average 10 pictures per class), they report at least an

80% fooling rate on both the initial set X and the validation set (50000 images).

Perhaps more surprising is the attaining of an above 30% fooling rate on the val-

idation set with |X| = 500, fooling the classifier even on images of classes that

were not included in X. Figure 3.1 shows an example of a universal adversarial

perturbation from their results.
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Figure 3.1: Universal Adversarial Perturbation Example
Left : Original Image

Middle: Universal Adversarial Perturbation
Right : Adversarial Image

Moosavi-Dezfooli et al. [21]
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3.1.6 Black Box Attacks

Due to the transferability property of neural networks, the attacks we have de-

scribed and most of the attacks introduced are in the context of a white box threat

model. The concept of transferability is that different classifiers which encompass

the same input-output pairs ultimately approximate the same function. Of course,

the functions are the same if the input-output pairs cover the whole domain and

codomain-spaces but empirical results show that the approximation is still no-

ticeable even under small subsampling. For example, classifiers which perform

the same task are thought to learn approximately equivalent features. This leads

to adversarial examples generated on a particular classifier trained on a particu-

lar training set still being adversarial for different classifiers of the same problem

trained on different training sets.

Thus, given a black box classifier f , an attack would first architect and train their

own white box model on the input-label pairs (x, f(x)), generate adversarial ex-

amples using some chosen white box attack, and apply that example to f . The

architecture of f can typically be posited from the problem space f is in (say convo-

lutional networks for spatial problems, recurrent networks for temporal problems,

etc.) and the training data can be generated similarly, the only requirement being

that the attacker can reasonably sample f to train their model [11, 12]. In fact,

excluding the One Pixel attack, the attacks above report successful transferring of

adversarial examples.

3.1.7 Backward Pass Differential Approximation (BPDA)

Certain defenses involve inserting a preprocessor layer, g, to “clean” the input of

adversarial impurities before passing it along to the classifier, f . If g is smooth

and differentiable, then any attack on f can be modified to work on f ◦ g by

inserting g in its forward pass and ∇xg(x) in its backpropagation pass. However,

if g is neither smooth nor differentiable and g(x) ≈ x, Athalye et al. [22] propose
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to approximate ∇xg(x) = ∇xx = 1 in the backpropagation step, and the attack is

shown to still succeed.

3.1.8 Expectation over Transformation (EOT)

Thus far, the adversarial examples we have discussed have remained in the digi-

tal realm. In the following defenses section, we see that adversarial examples are

spatially fragile, that is, the generated adversarial perturbation layer relies on a

fixed spatial component of the underlying image. Then, attempting to transfer

these adversarial examples to the physical world incurs various forms of spatial

transformations which mitigate the adversarial nature altogether. Athalye et al.

[14] proposed the idea of modelling the distribution of transformations on a dig-

ital image to a physical image. For this purpose, the EOT algorithm generates

adversarial examples which survive such a distribution of transformations. In par-

ticular, given a distribution of transformations T , we approximate the expectation

of the loss function of our adversarial example by sampling it over transformations

t← T .

arg min
x′

Et←T [lossf (ytarget, t(x
′)) + λd(x, x′)]

Extending the algorithm, Athalye et al. [14] were able to approximate the transfor-

mation from the digital to real world as a composition of differentiable transforma-

tions and consequently showed that they could generate 3-D adversarial objects,

print them, and have them maintain their adversarial nature from viewing condi-

tions within the distribution of transformations they modeled.

3.2 Selected Defenses

As the attacks themselves are fairly recent, the defenses are also in development,

with many of them having been broken already [22–24]. To our knowledge, there
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does not yet exist a robust defense against adversarial examples. Although the de-

fenses mentioned below have been broken, there is a persisting theme of attempting

to “hide” the problem. That is, instead of generally fixing the adversarial classi-

fication spaces to be classified as the correct label, the current defenses attempt

to hide them, either by means of gradient masking (rendering the gradient un-

usable in some sense) or relocating the adversarial spaces by some selection of

transformations.

3.2.1 Adversarial Training (Hardening)

Recall that Goodfellow et al. [16] proposed the FGSM attack to efficiently gener-

ate adversarial examples for the purpose of adversarial training (sometimes called

adversarial hardening). Adversarial training is simply the incorporation of adver-

sarial examples into the training set of the classifier. However, as Kurakin et al.

[25] found, such training only patches individual adversarial regions resulting in a

local smoothing of the decision boundary and gradient. While the gradients local

to valid classification spaces may be unusable, the positions of the adversarial ex-

amples outside the locally “patched” space remain unchanged. As Kurakin et al.,

Papernot et al., and Athalye et al. have discovered [22, 25, 26], gradient masking

merely hides the problem and does not fix it.

General gradient masking methods are prone to black box transfer attacks by

generating an attack outside of the locally smooth gradient on a substitute model.

Figure 3.2 shows an example in one dimension.

Figure 3.2: Papernot et al. [27] illustrate the 1-D case
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As an aside, Tramèr et al. [25] bypass local gradient masking by modifying the

FGSM algorithm to initialize with a step in a random direction of some small

magnitude sufficient enough to escape the local smoothing.

3.2.2 Defensive Distillation

Just as humans learn better through the seasoned intuition of effective teachers,

Hinton et al. proposed distilling the learned information from some trained heavy

(computation wise) deep model teacher M to some lighter more shallow model

learner M ′ by training M ′ on the output of M ’s softmax layer [28]. The underlying

intuition is that the perceived probability distribution of labels for each training

input is vastly richer than the hard ground truth label that is originally provided to

the teacher, and in fact contains the learned details necessary for the classification

task.

Recall the softmax function for an input vector, 〈x〉. We introduce a new param-

eter T for the temperature of the softmax function.

σx(x`) =
ex`/T∑

x`∈x
ex`/T

T can be described as a measure for how “soft” the output probabilities are.

Specifically, a higher T will “smooth” the labels, i.e. cause a lower variance in the

probabilities as their exponential differences are scaled down and thereby prevents

the learner from overfitting [28]. Of course, the value of T is relative to the

magnitude of values in 〈x〉. For the distillation method, M ′ is trained with T >

1 but restored to T = 1 for validation and classification such that it produces

“harder” labels.

The defensive distillation method proposed by Papernot et al. [29] is the dis-

tillation method described above with an abnormally high temperature during

training. Put simply, smoothing of the labels in the learner M ′ has the secondary

effect of smoothing the gradient in the space of each label. Then, an abnormally
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high temperature smooths the gradient so much so that any gradient based ad-

versary is presented with a useless gradient on any valid classification in the white

box attack model.

While Carlini et al. [30] successfully attacked the white box model by artificially

reinstating the training temperature into the classifier, thereby restoring the gra-

dient, we note that because this is a gradient masking defense it is generally prone

to black box attacks [26, 27].

3.2.3 Random Transformations

As adversarial attacks typically target specific minima which are close to the ex-

amples, perhaps transforming the input space will be able to move or altogether

remove the minima. Guo et al. [31] propose transformations such as bit-depth

reduction (rounding pixel values to omit the least significant bits), JPEG compres-

sion and decompression, variance minimization, etc. for this purpose. In exploiting

the spatial dependency of adversarial perturbations, such defenses seemed to work.

Xie et al. [13] similarly concluded that random resizing and random padding suc-

cessfully mitigate adversarial attacks.

Recall from the attacks section that the EOT (3.1.8) algorithm bypasses transfor-

mations such as resizing, random padding, scaling, etc. Then, JPEG compression,

bit-depth reduction, and variance minimization are all transformations which ap-

proximately minimally alter the input image, thus the BPDA (3.1.7) algorithm

bypasses these defenses.

3.2.4 Feature Squeezing

The defenses mentioned thus far have relied on modifying the neural network it-

self in some sense. Xu et al. [32] propose a defense with external detectors which

operate on a lower fidelity or “squeezed” version of the input. They proposed bit-

depth reduction and spatial smoothing (convolutional blurring) to reduce the size
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of the input space thereby reducing the feasibility of adversarial examples. The

resulting classifier outputs a label only if the differences between the original clas-

sifier’s outputted probabilities of that label between the input and its “squeezed”

versions are below a certain threshold.

Under the stronger threat model of an adaptive adversary, one which knows about

the defenses (in this case, the squeezing transformations) present in the network,

He et al. [33] propose bypassing each detector individually and composing those

attacks. In both detectors, they employ the Carlini & Wagner attack (3.1.4). For

the bit-depth reduction, they simply randomize multiple starting points for the

attack. For the spatial smoothing, they employ a median filter (smoothing filter)

inside the classifier itself such that their adversarial example is generated under a

model that smooths the image. For the composition of these attacks, we refer the

reader to the original work.

3.2.5 Ensemble Adversarial Training

We stated earlier that due to the transferability of black-box attacks, the threat

model most commonly considered is the white-box threat model. Tramèr et al. [25]

propose a defense purely for black-box attacks by training the undefended model

on adversarial perturbations generated from other, equivalent models. With the

initial goal of “decoupling” adversarial example generation from the undefended

model, Tramèr et al. simultaneously provide a solution for scaling adversarial

training by establishing the efficacy of predefined adversarial training sets for a

given problem domain as well as increasing robustness to black box attacks in

exposing the undefended model to weaknesses of other models.

One surprising result is that ensemble adversarial training did not help at all with

defending against white box constructed attacks. One interpretation of this is that

the minimum distance to the space of transferable adversarial examples is notice-

ably greater than that of white box adversarial examples, which is unsurprising as

transferable adversarial examples satisfy strictly more constraints. Then, perhaps
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it would make sense to distinguish not only attacks, but also the spaces of inputs

that they exploit, by the threat models they originate from.



Chapter 4

Experiments and Findings

4.1 Motivation

Among the many technologies that adversarial examples pose a serious threat

to, autonomous vehicles is thought to be one of the most critical. However, this

concern was momentarily relieved when Lu et al. [34] demonstrated that adver-

sarial stop signs printed into the physical world posed no real threat due to the

real world noise incurred on them. Particularly, various factors such as distance,

lighting, viewing angle, etc. rendered the adversarial nature undetectable by the

sensors on the autonomous car, leading Lu et al. to conclude that adversarial

examples, as they were, did not pose a serious threat to autonomous vehicles.

Additionally, Kurakin et al. [15] showed the persistence of 2-D adversarial exam-

ples under what they coin as a black box “photo transformation”, i.e. the process

of printing adversarial examples and taking a photo of it, in a somewhat controlled

environment. Specifically, they would take pictures of the printed photos without

careful control of lighting, camera angle, camera distance, etc., but did employ

perspective transform to the captured image restoring it to its original dimension

and orientation before the photo transformation. Moreover, they examined and

plotted the destruction rate of adversarial examples with respect to various digital

transformations, such as brightness, contrast, noise, blur, and JPEG encoding.

22
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With EOT (3.1.8), we were able to bypass all of the aforementioned destructors

of adversarial examples. Such results are in line with Athalye et al. [14], with the

exception of our bypassing of JPEG encoding and decoding, which Athalye et al.

did not comment on.

4.1.1 Distribution Selection

We ran our simulations with the following composition of random transformations

used by Athalye et al. [14]:

transformation min max

scale 0.9 1.4

rotate −22.5◦ 22.5◦

lighten/darken -0.05 0.05

Gaussian noise (stdev) 0 0.1

translation -40px 40px

We also experimented with subsets of this selection on a wider range of transforma-

tion values and were successful. However, as the output space of the distribution

grows roughly exponentially with the number of dissimilar transformations com-

posed, it is necessary to reduce the bound of magnitude of each transformation

for the problem to remain tractable.

4.1.2 Methodology

The training runs consisted of a Tensorflow implementation run on a Linux distri-

bution using a single GTX1070. For the photo transformations, we used a Sam-

sung Galaxy S7 12MP camera. For printing, we used a standard color printer. For

monitor displays, we used an IPS (known for their color accuracy) monitor and a

MacBook Pro Retina display.
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We refer to 4.1.3 for the details of parameter selection and thus omit such details

in the methodology.

Our steps were as follows:

1. Pick some arbitrary starting class from ImageNet and manually find a corre-

sponding image with Google image search

2. Pick some arbitrary target class from ImageNet, ytarget

3. Generate an targeted adversarial example, x′, on the chosen target class using

EOT

a. We chose the well-known InceptionV3 architecture by Sgezedy et al.[35] as

our classifier f , importing the model1 and pretrained weights2.

b. For image preprocessing, we down-scaled the image such that either the

height or the width was 299px. Then, we cropped to 299px × 299px, the

input shape for InceptionV3, from the top left corner.

c. As no implementation was available, we implemented EOT as detailed by

Athalye et al. [14], with stochastic gradient descent as prescribed in their

work.

4. We verify the adversarial example persists under the composition of random

transformations

a. We successively apply the individual transformations in-order, from our se-

lected distribution (with the magnitude sampled uniformly from the ranges

listed), on x′ to generate x′T . We then check if ytarget is in the top-1 in the

output of f(x′T ), verifying that EOT succeeds as expected [14].

5. We verify the adversarial example persists under photo transformation from

printout and from screen, and further transformations afterward. The images

are printed and displayed at approximately 150 pixels-per-inch as we found that

1https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/

slim/nets/inception_v3.py
2http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/inception_v3.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/inception_v3.py
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
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any less results in destruction of the adversarial example. We detail the photo

transformation process and note that the verification methods are the same as

the previous step.

a. Take a picture of the image straight on, in a reasonably lit environment, and

without flash.

b. On the phone, manually crop to a square aspect ratio, maintaining the image

inside.

c. Image is automatically compressed as a JPEG file.

d. Send the file to self over Facebook messenger, which results in further JPEG

compression.

e. Save file from messenger to computer.

f. Run the verification procedure of 4.a. with our photo transformed image as

x′.

As some factors, such as contrast, viewing angle, color inaccuracy, unsaturated

colors, glare, etc., outside of our chosen distribution due to a lack of incorporation.

Thus, we attempted taking pictures directly from the screen to try and align with

our distribution more. Particularly pictures taken from the screen were from

different monitors, one glossy and full of smudges and another matte and clear,

under different brightness levels, and under different lighting levels, with some

having my shadow reflected on them. Additionally, the pixelation, light bleeding,

and vertical synchronization problems appeared on digital shots as well. Overall,

the adversarial images were fairly resilient under this transformation and managed

to maintain top-1 targeted classification. We show a selection of the best results

in appendix A.

Due to a constraints of both computational power and time (generating one ad-

versarial example under the setting described required at least several hours), and

the manual efforts required, we were unable to produce many results.
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4.1.3 Parameter Tuning

1. For an L2 norm in the loss function, we found ε = 1e−2 to be the ideal

learning rate in achieving both convergence and efficiency. For a more optimal

solution in terms of reduced norm distance, we found that ε = 1e−3, directly

recommended by Athalye, still converges, performing better but at the cost

of an order of magnitude more of training time.

2. For sample size, we found that at least n = 20 samples were needed to have

“useful” steps towards convergence, and n = 50 samples to be a good balance

of meaningful steps and efficiency.

3. While the Lagrangian constraint is dependent on the input itself, we found

the range of optimal values to be around 0.01 ≤ λ ≤ 0.03, choosing λ = 0.015

for initial training and manually fine tuning when convergence halts. The

manual tuning consisted of raising λ if the classification probability of the

target was above 90% but the norm distance was more than desirable, and

lowering λ if the classification probability was below 90%.

4.1.4 Informal Findings

1. With regards to standalone transforms, the brightness transform was the

easiest to bypass and Gaussian noise, the hardest, by measure of required

sample size and number of training steps.

2. Just as word embeddings have given a spatial representation to the distance

between words, minimal distances between distributions of images by label

roughly correlate. For example, it’s much easier to find targeted adversarial

examples from one furry animal to another furry animal than it is from one

furry animal to some metal object. Intuitively, this roughly scales with the

choice of the Lagrangian constraint, i.e. the farther away the adversarial

example is expected to be, the smaller the constraint on the norm should be.
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3. JPEG encoding and decoding was a destructor for adversarial examples of

single transformations, but adversarial examples under the aforementioned

composition were resistant to JPEG encoding and decoding. Specifically, it

seemed like hardening adversarial examples against Gaussian noise transfor-

mation led to their hardening against JPEG encoding and decoding.

4. As Carlini et al. For adversarial examples within a small ε ball, integrality

becomes a substantial factor as the values are trained in a space of [0, 1] ∈ R

but saved to [0, 255] ∈ Z. This can be overcome either by increasing the

perturbation distance or by specifically training against integrality transfor-

mations. The former is simpler to do and in practice, the minimum satifisable

ε for EOT under a sufficiently complex distribution is large enough s.t. in-

tegrality does not need to be considered. However, this was somewhat of

an issue under single transformations where the norm loss of the adversarial

example was less than a integral unit.

5. Typically, the square norm is preferred due to two reasons. One, the square

norm penalizes quadratically more as the norm increases. This corresponds to

perception of change in pixel values being increasingly more important after

a certain threshold. Additionally, there are numerical instability issues with

the norm when it is equal to 0 in certain libraries, particularly tensorflow.

Thus explaining why the squared norm has been widely popularized.

6. Our average L2 loss per pixel was no more than 4e−2. The discrepancy from

Athalye et al.’s average loss of 5.6e−5 can be attributed to our learning rate

being an order of magnitude greater.

4.1.5 An Extension of EOT

Athalye et al. show that EOT generated adversarial examples successfully per-

sist in transformations selected from the chosen distribution they were trained on

but explicitly makes no guarantees for cases that transformations are not in the
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distribution. Empirically, we found the persistence of EOT generated adversarial

examples under some transformation to be biconditional with that transforma-

tion being in the training distribution, that is, the transformation being from the

distribution for persistence of the adversarial nature is not only sufficient, it is

necessary.

Thus, we propose the concept of an “activated” adversarial example. In particular,

where previous applications of EOT have always included the identity transfor-

mation inside the chosen distribution, we can intentionally choose to omit the

identity, and the neighboring space of transformations around it, from the train-

ing distribution to generate an adversarial example which is adversarial only under

a distribution of our choice.

As a hypothetical example, if we decided to target roadway signs, we could use

EOT to generate our adversarial stop sign under a certain lighting condition which

is atypical. Then, a self driving car would recognize it as a stop sign most of the

time, except when our chosen atypical lighting condition is present, the car would

fail to recognize the stop sign.

In this manner, an attacker would be able to dictate the conditions under which

their attack was adversarial, rendering an arguably more troublesome adversary.

As our testing was on simple transformations and verified digitally, we encourage

further work on extending this to compositions of transformations verified in the

real world.

4.1.6 Further Work

We recommend the Cleverhans library [36] to any readers who may be interested

in trying their hand in this. Additionally we have released our code3 for those

interested.

3https://github.com/steven200796/Synthesizing_Adversarial_Examples

https://github.com/steven200796/Synthesizing_Adversarial_Examples
https://github.com/steven200796/Synthesizing_Adversarial_Examples
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A.1 Cat to Guacamole

A.1.1 Initial Test

Figure A.1: Initial Image

29
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Figure A.2: Adversarial Example

Figure A.3: Composition of Transformations 1

Figure A.4: Composition of Transformations 2
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A.1.2 Photo Transformation from Printout

Figure A.5: Printout Translated

Figure A.6: Printout Rotated

Figure A.7: Printout Scaled
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A.1.3 Photo Transformation from Monitor

Figure A.8: Screen Brightened
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A.2 Chihuahua to Cockroach

A.2.1 Initial Test

Figure A.9: Initial Image

Figure A.10: Adversarial Example

Figure A.11: Composition of Transformations 1
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Figure A.12: Composition of Transformations 2

A.2.2 Photo Transformation from Printout

Figure A.13: Printout Translated

Figure A.14: Printout Rotated
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Figure A.15: Printout Scaled

A.2.3 Photo Transformation from Monitor

Figure A.16: Screen Scaled

Figure A.17: Screen Translated
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A.3 Hot Pot to Pillow

A.3.1 Initial Test

Figure A.18: Initial Image

Figure A.19: Adversarial Example

Figure A.20: Composition of Transformations 1
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Figure A.21: Composition of Transformations 2

A.3.2 Photo Transformation from Printout

Figure A.22: Printout Composition of Transformations 1

Figure A.23: Printout Composition of Transformations 2
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A.3.3 Photo Transformation from Monitor

Figure A.24: Screen Composition of Transformations 1

Figure A.25: Screen Composition of Transformations 2
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[8] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Ko-

ray Kavukcuoglu. Wavenet: A generative model for raw audio. CoRR,

abs/1609.03499, 2016. URL http://arxiv.org/abs/1609.03499.

[9] Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt

Schiele, and Honglak Lee. Generative adversarial text to image synthesis.

CoRR, abs/1605.05396, 2016. URL http://arxiv.org/abs/1605.05396.

[10] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm

of artistic style. CoRR, abs/1508.06576, 2015. URL http://arxiv.org/abs/

1508.06576.

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against

machine learning at test time. CoRR, abs/1708.06131, 2017. URL http:

//arxiv.org/abs/1708.06131.

https://doi.org/10.1038/nature14236
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1605.05396
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1708.06131
http://arxiv.org/abs/1708.06131


Bibliography 41

[12] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural

networks. CoRR, abs/1312.6199, 2013. URL http://arxiv.org/abs/1312.

6199.

[13] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan L. Yuille.

Mitigating adversarial effects through randomization. CoRR, abs/1711.01991,

2017. URL http://arxiv.org/abs/1711.01991.

[14] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Syn-

thesizing robust adversarial examples. CoRR, abs/1707.07397, 2017. URL

http://arxiv.org/abs/1707.07397.

[15] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples

in the physical world. CoRR, abs/1607.02533, 2016. URL http://arxiv.

org/abs/1607.02533.

[16] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. In International Conference on Learning

Representations, 2015. URL http://arxiv.org/abs/1412.6572.

[17] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine

learning at scale. CoRR, abs/1611.01236, 2016. URL http://arxiv.org/

abs/1611.01236.

[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards deep learning models resistant to adversarial

attacks. CoRR, abs/1706.06083, 2017. URL http://arxiv.org/abs/1706.

06083.

[19] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness

of neural networks. CoRR, abs/1608.04644, 2016. URL http://arxiv.org/

abs/1608.04644.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.01991
http://arxiv.org/abs/1707.07397
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644


Bibliography 42

[20] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack

for fooling deep neural networks. CoRR, abs/1710.08864, 2017. URL http:

//arxiv.org/abs/1710.08864.

[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. Universal adversarial perturbations. CoRR, abs/1610.08401, 2016.

URL http://arxiv.org/abs/1610.08401.

[22] Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.

CoRR, abs/1802.00420, 2018. URL http://arxiv.org/abs/1802.00420.

[23] Nicholas Carlini and David A. Wagner. Adversarial examples are not easily

detected: Bypassing ten detection methods. CoRR, abs/1705.07263, 2017.

URL http://arxiv.org/abs/1705.07263.

[24] A. Athalye and N. Carlini. On the Robustness of the CVPR 2018 White-Box

Adversarial Example Defenses. ArXiv e-prints, April 2018.

[25] Alex Kurakin, Dan Boneh, Florian Tramr, Ian Goodfellow, Nicolas Papernot,

and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses.

2018. URL https://arxiv.org/pdf/1705.07204.pdf.

[26] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,

Z. Berkay Celik, and Ananthram Swami. Practical black-box attacks against

deep learning systems using adversarial examples. CoRR, abs/1602.02697,

2016. URL http://arxiv.org/abs/1602.02697.

[27] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and Michael P. Well-

man. Towards the science of security and privacy in machine learning. CoRR,

abs/1611.03814, 2016. URL http://arxiv.org/abs/1611.03814.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge

in a neural network. In NIPS Deep Learning and Representation Learning

Workshop, 2015. URL http://arxiv.org/abs/1503.02531.

http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1610.08401
http://arxiv.org/abs/1802.00420
http://arxiv.org/abs/1705.07263
https://arxiv.org/pdf/1705.07204.pdf
http://arxiv.org/abs/1602.02697
http://arxiv.org/abs/1611.03814
http://arxiv.org/abs/1503.02531


Bibliography 43

[29] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram

Swami. Distillation as a defense to adversarial perturbations against deep

neural networks. CoRR, abs/1511.04508, 2015. URL http://arxiv.org/

abs/1511.04508.

[30] Nicholas Carlini and David A. Wagner. Defensive distillation is not robust

to adversarial examples. CoRR, abs/1607.04311, 2016. URL http://arxiv.

org/abs/1607.04311.

[31] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der
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