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Abstract

The development of personalized treatments for diseases is increasingly plausible due to the

increased availability of genomic data. For such efforts to be impactful, it is essential that they

reflect the population of individuals that may be affected by a given disease. Amidst claims

that there may be racial disparities in research populations, there have been no direct studies

to explore this disparity in current research projects that involve genomic sequencing. The pre-

cise relationship between underrepresentation of certain races in genomic sequencing studies

and health outcomes relative to these races is thus unknown. Here I examine the disparities

in racial representation of national datasets pertaining to clinical data, mortality rates, and of a

major initiative involving genomic sequence analysis (The Cancer Genome Atlas [TCGA]). The

results suggest that Black Americans (BA) are severely underrepresented for most cancers in

TCGA compared to clinical and mortality datasets, whereas Asian Americans (AA) were signif-

icantly overrepresented. Additionally, male Black Americans tend to be especially underrep-

resented in such genomic sequencing studies compared to their female counterparts. These

findings accentuate the importance of targeted efforts to actively recruit representative patient

populations into studies involving genomic sequencing.

In conjunction with these efforts to increase representation of racial minorities in genomic se-

quencing, I use the Health Care Utilization Program (HCUP) clinical dataset to examine the most

frequently occurring cancers associated with patients of different races and comorbidities. I find

that given the same combination of comorbidities, patients are at higher risk for different can-

cers based on their race, implying that race plays an important role in the onset of cancer and

its progression.

Isaac Elijah Kim Jr.



Chapter 1

Racial Disparity of Genomic Sequencing

1.1 Introduction and Background

1.1.1 Genomic Sequencing

Genomic sequencing initiatives such as TCGA aim to catalogue cancer-associated genetic mu-

tations towards the overall goal to diagnose, treat, and prevent cancer through better genetic

understanding. While different genetic variants may result in similar symptoms, they could lead

to diseases that require distinct, “personalized” treatments (Aronson, 2015). Genomic sequenc-

ing studies have led to major breakthroughs in the understanding of various types of cancer. In

particular, research using TCGA has revealed that the genetic mutations responsible for breast

cancer can be categorized into four major subtypes.

1.1.2 All of Us Research Program

As precision medicine initiatives are embarked upon, such as the All of Us Research Program

in the United States, it will be essential to be aware of the potential gaps in genetic knowledge.

The All of Us Research Program is designed to treat patients based on individual differences

in lifestyle, environment, and biology including factors such as race. Studies have shown that

genetic makeup across races can impact treatment regimens as well as outcomes. For example,

some patients with localized prostate cancer are prescribed active surveillance as opposed to

immediate treatment. Other studies have shown, however, that Black American candidates for

1



CHAPTER 1. RACIAL DISPARITY OF GENOMIC SEQUENCING 2

active surveillance had worse clinicopathological features on final surgical pathology than their

white counterparts, suggesting that the criteria for active surveillance should be more rigorous

for Black Americans(Ha, 2013).

1.1.3 Precision Medicine

The advancement of precision medicine requires genetic information on patients of all races.

Adequate racial representation in these studies will lead to more effective targeted therapies

and at least address the issue of racial disparities in national health measures. In this study, I

highlight the current level of underrepresentation of racial minorities such as Black Americans

in genomic sequencing studies, as well as identifying that Asian Americans are overrepresented,

in the hopes of compelling researchers leading these studies to actively ensure appropriate bal-

ance of racial minorities. Specifically, a comparison of TCGA racial distribution to three national

incidence databases (Health Care Utilization Program [HCUP] from the Agency for Healthcare

Research Quality; mortality data mortality data from the Centers for Disease Control and Pre-

vention [CDC]; and the National Cancer Institute’s Surveillance, Epidemiology, and End Results

Program [SEER]) reveals a notable discordance.

1.1.4 Personal Contributions

I accessed anonymous clinical information from the HCUP database through the BCBI’s secure

Stronghold network. Using SQL, I extracted the relevant patient records and computed basic

counts and ratios for each demographic. Having separated and placed the patient records of

each demographic into their own CSV files, I used Julia to parse through the information and

determine the sinuosity indices for each cancer. Finally, I used Excel to plot the curves and an

online statistics tool to calculate analysis of variance (ANOVA) statistics.
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Figure 1.1: Sinuosity Curves

1.2 Results

1.2.1 Representation

For the cancers included in TCGA, black Americans comprised less of the total sample popula-

tion in TCGA as compared to HCUP, CDC, and SEER for 15 out of 19 cancers, while White Amer-

icans and Asian Americans were underrepresented in 11 and 4 out of 19, respectively. While

prostate cancer showed the most underrepresentation in TCGA across all examined races, cer-

tain female-dominated cancers such as breast and uterus showed the highest representation of

Black Americans in TCGA compared to HCUP, CDC, and SEER.

1.2.2 Sinuosity Index

I used sinuosity index, which is a measure of steepness of a curve, as a measure for racial dis-

cordance across the studied databases. The relative difference was quantified as the slope be-

tween the relative lowest and highest occurrence of a given population group. For the 16 can-

cers in which data in TCGA and at least two other datasets were listed, the mean sinuosity in-

dices for White Americans, Black Americans, and Asian Americans respectively were 1.00642±
00879[1.00023−1.03608],1.04298±02936[1.00128−1.09715], and1.15744±09114[1.03703−1.33156];

the mean slopes were respectively 31.0961±0.1401[30.9656−31.5034],32.4931±1.22428[31.0915−
34.7281],33.5291±1.0569[31.7173−35.3975]. Figures 1.1 and 1.2 depicts the sinuosity curves piv-

oted according to their respective slope angles. As indicated by Figures 1.3-1.6, the p values for

the variation between racial groups were 0.0000.
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Figure 1.2: Pivoted Sinuosity Curves

1.2.3 ANOVA Statistics

1.3 Discussion

1.3.1 Current Literature

The underrepresentation of Black Americans in genomic sequencing potentially impacts racial

disparities in U.S. health care, especially for complex genetic conditions. As a step towards over-

coming these challenges toward developing genetically informatics healthcare regimens, it is of

the utmost importance that the research community actively recruits more Black Americans

into national genomic sequencing efforts, such as the All of Us Research Program. Efforts such

as TCGA require patient consent in the procurement of tissue samples, which implies that Black

Americans tend to withhold their samples from researchers. Previous studies have shown that

Black Americans are significantly less likely than their white counterparts to participate in re-

search that used their DNA, share their DNA with a private company, and permit their DNA to

be used to generate cell lines for future research(Dye T., 2016). Moreover, studies have shown

that Black Americans are much less likely to want the results of their genetic testing and indicate

that the use of genetic testing should be promoted and available for those who seek them. This

trend may derive from a general distrust in the medical system by the Black American commu-

nity due to a history of research abuse and social injustice such as the case of Henrietta Lacks
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Figure 1.3: ANOVA Statistics for CDC Dataset

Figure 1.4: ANOVA Statistics for HCUP Dataset
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Figure 1.5: ANOVA Statistics for SEERS Dataset

Figure 1.6: ANOVA Statistics for TCGA Dataset
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and the Tuskegee syphilis experiment(Dye T., 2016).

1.3.2 Recommendations

Racial disparities in genomic sequencing may either be related to or are the direct results of the

perception of how healthcare systems and research communities. For results of initiatives like

the All of Us Research Program to have practical meaning to the general population, the scien-

tific community must intently ensure that large-scale genomic sequencing efforts are represen-

tative of the range of racial backgrounds. For example, the adequate representation of female

Black Americans relative to their male counterparts in TCGA indicates that these recruitment

efforts into genomic sequencing studies should especially target male Black Americans. For

prostate cancer, the sinuosity indices for White Americans, Black Americans, and Asian Ameri-

cans were 1.01355, 1.08430, and 1.23926, indicating that Black Americans and Asian Americans

were more underrepresented in TCGA compared to White Americans. Interestingly, prostate

cancer mortality for Black Americans is more than twice the rate observed in White Ameri-

cans(I.J., 2007). In contrast, Asian Americans showed overrepresentation in genomic sequenc-

ing studies, leading to disproportionately high sinuosity indices across examined cancers. My

findings suggest that recruiting efforts to target Asian Americans in genomic sequencing studies

may not be nearly as vital as those seeking Black Americans.

It should be noted that the ANOVA statistics indicate a statistically significant difference, but

it is difficult to fully characterize the magnitude of the difference given the p-values of 0. Thus,

I recommend the development and use of alternative statistical measures such as the sinuosity

index and slope to quantify this magnitude.

It is worth noting that the difference in the network complexities between races may be due

to data availability, not necessary race per se. This issue may be related to the complexity of

considering race and analyzing the phenotypes. In particular, are the observed correlations due

to genetics, healthcare access, or environmental factors including socioeconomic status? This

question raises the argument that race is not biological but is rather a social construct.
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1.3.3 Related Studies

The challenge in ensuring diversity in large scale initiatives has been acknowledged. For in-

stance, the 1000 Genomes Project analyzed the genomes of 1,092 individuals from 14 popula-

tions ranging from people with African ancestry in Southwest United States to Han Chinese in

Beijing, China to British from England and Scotland. Given the importance of racial makeup

in patient treatment and health outcomes, all genomic sequencing studies should follow suit to

initiatives such as the 1000 Genomes Project and contain racial diversity(Consortium, 2012).

However, it is important to note that as initiatives like All of Us launch into recruitment ef-

forts, diversity alone is not sufficient. Diversity must be complemented with ensuring that it

is with comparable frequencies relative to actual population. Otherwise, the research and clin-

ical community risk the challenge of arriving at putative treatments that are of little utility to

significant portions of the population who would benefit the most from personalized medicine

approaches.

1.4 Methods

1.4.1 Datasets

I analyzed and compared four datasets: (1) the 2012 National Inpatient Sample (NIS) from the

Healthcare Cost and Utilization Project (HCUP), (2) 2012 mortality data from the Centers for

Disease Control and Prevention’s (CDC) National Vital Statistics Report, (3) genomic sequencing

data from TCGA, and (4) 1973-2014 incidence data from the National Cancer Institute’s Surveil-

lance, Epidemiology, and End Results Program (SEER). Based on the disease codes outlined in

the Clinical Classifications Software for the International Statistical Classification of Diseases

and Related Health Problems, I extracted patient race information according to cancer groups

from HCUP and SEER.

HCUP included the races White, Black, Hispanic, Asian or Pacific Islander, Native American,

Other, and Invalid, while SEER catalogued a patient’s race as White, Black, American Indian, as

well as a range of ethnicities belonging to the Asian or Pacific Islander demographic, Other, or
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Unknown. I directly analyzed the CDC’s mortality data from its corresponding website, while

TCGA’s genomic sequencing data was found in the National Cancer Institute’s Genomic Data

Commons Data Portal. CDC divided race into White, Black, American Indian or Alaska Native,

and Asian or Pacific Islander, whereas TCGA listed the races White, Black or African American,

Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Other, and

Not Reported. I graphed the tallies according to overall cancer (see Supplementary Figures 1-27)

and cancer, gender, and race for white, black, and Asian Americans (see Supplementary Figures

28-109) using the Plotly.jl Julia package. For certain cancers, data only existed in a single dataset,

leading to the omission of the following codes in the plotted graphs: 23 (other non-epithelial

cancer of skin), 28 (cancer of other female genital organs), 31 (cancer of other male genital or-

gans), and 34 (cancer of other urinary organs).

For each given cancer and race in which at least three datasets were represented, I sorted all

percentage values in ascending order into an array. I then assigned the highest value an ad-

justed value of 1, while all other values were divided by the highest value.

1.4.2 Sinuosity Index

For the adjusted sinuosity index of each examined cancer and race, in traversing a sorted array

of three values, I gave the lowest value an x-value of 1 and set it to the front index of a new 2D

array, the second an x-value of 3 and set it to the last, and the third an x-value of 2 and set it to

the middle index. In traversing a sorted array of four values, I gave the lowest value an x-value

of 1 and pushed it to the front index of a new 2D array, the second an x-value of 4 and set it to

the last index, the third an x-value of 2 and to the second index, and the fourth an x-value of 3

and set it to the third index. I calculated the euclidean distance between the first and last points

in the sorted 2D array and designated it as the B value. I calculated the sum of the euclidean

distances between neighboring points (i.e., first and second, second and third, third and fourth,

etc.) in the sorted 2D array and designated it as the A value. I calculated the sinuosity index as

A/B.

For the adjusted slope angle of each cancer and race, I gave the lowest value an x-value of 1,
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the second lowest an x-value of 2, and so forth. Then, I calculated the euclidean distance be-

tween the points with the lowest and highest y-values and designated it as the D value. Next,

I calculated the difference between the points with the lowest and highest x-values and desig-

nated it as the C value. I calculated the slope angle using cos(C/D).

For each race, I plotted the sinuosity curve based on the median sinuosity index and then piv-

oted it according to its respective median slope angle. First, I graphed the sinuosity curve by

assigning two points with coordinates (1,0) and (3,0) and a third point with an x-value of 2 and

y-value of the median sinuosity index. Then, I pivoted the sinuosity curve so that the line con-

necting the points (1,0) and (3,0) now corresponded to the median slope angle.

1.4.3 ANOVA Statistics

I used an online statistics tool to calculate analysis of variance (ANOVA) statistics and compute

p-values (Pezzullo).

1.5 Supplementary Tables
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Table 1.1: Sinuosity Index and Slope Angle

Cancer (ICD-9-CM Code) Race %-Adjusted Sinuosity Index %-Adjusted Slope Angle (Degrees)

Head and Neck (11) White 1.00438 31.0737
Head and Neck (11) Black 1.01063 31.3418
Head and Neck (11) Asian 1.12017 33.1793

Esophagus (12) White 1.01167 31.2422
Esophagus (12) Black 1.06297 33.6537
Esophagus (12) Asian 1.33156 35.3975

Stomach (13) White 1.00507 31.1776
Stomach (13) Black 1.07589 34.3908
Stomach (13) Asian 1.14658 33.5137

Colon (14) White 1.00142 30.9756
Colon (14) Black 1.03610 31.5895
Colon (14) Asian 1.08045 31.7173

Liver and Intraheptic Bile Duct (16) White 1.03608 31.5034
Liver and Intraheptic Bile Duct (16) Black 1.04369 33.2769
Liver and Intraheptic Bile Duct (16) Asian 1.24043 34.5932

Pancreas (17) White 1.00770 31.1781
Pancreas (17) Black 1.07147 33.6909
Pancreas (17) Asian 1.07419 33.1019

Bronchus; Lung (19) White 1.00149 31.0110
Bronchus; Lung (19) Black 1.00697 31.0915
Bronchus; Lung (19) Asian 1.10552 32.3497

Skin Melanomas (22) White 1.00023 30.9656
Skin Melanomas (22) Black 1.09715 34.7281
Skin Melanomas (22) Asian 1.09512 34.0309
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Table 1.2: Sinuosity Index and Slope Angle

Cancer (ICD-9-CM Code) Race %-Adjusted Sinuosity Index %-Adjusted Slope Angle (Degrees)

Breast (24) White 1.00198 30.9822
Breast (24) Black 1.04249 31.6611
Breast (24) Asian 1.03703 31.9721

Uterus (25) White 1.00066 30.9778
Uterus (25) Black 1.03717 32.2554
Uterus (25) Asian 1.06960 32.7279

Cervix (26) White 1.00128 30.9941
Cervix (26) Black 1.06337 31.9875
Cervix (26) Asian 1.06368 32.9994

Ovary (27) White 1.00344 31.0783
Ovary (27) Black 1.01553 31.7026
Ovary (27) Asian 1.15474 33.2923

Prostate (29) White 1.01355 31.1755
Prostate (29) Black 1.08430 33.8490
Prostate (29) Asian 1.23926 34.0319

Bladder (32) White 1.00247 31.0048
Bladder (32) Black 1.01656 31.1584
Bladder (32) Asian 1.24861 34.8000

Kidney and Renal Pelvis (33) White 1.00571 31.0647
Kidney and Renal Pelvis (33) Black 1.05650 31.9157
Kidney and Renal Pelvis (33) Asian 1.27815 34.6854

Brain and Nervous System (35) White 1.00565 31.1334
Brain and Nervous System (35) Black 1.02892 31.5980
Brain and Nervous System (35) Asian 1.23394 34.0738



Chapter 2

Race-Comorbidity-Cancer Network

2.1 Introduction and Background

2.1.1 Related Studies

Numerous recent studies have demonstrated the connection between race and higher risk for

certain diseases. Foy et al. discovered that African American women have a 42% higher breast

cancer death rate relative to white women. Even after adjusting for confounding factors in-

cluding age, grade, and surgery, Foy et al. determined that overall survival probability of breast

cancer was significantly associated with race (Foy K.C., 2018). Relatedly, Tal et al . found that

pubertal timing, infertility, outcomes after assisted reproductive technology treatment, and re-

productive aging were all impacted by racial differences (Tal R., 2013). Beyond studies involving

women, Hirsch et al . found that blacks and Mexican Americans generally had more excess heart

age in relation to white where heart age acted as an estimate for the age of a person’s cardiovas-

cular system (Hirsch, 2018).

2.1.2 Controversy over Relationship Between Race and Disease

Such studies connecting race and variable risk for certain diseases, however, have generated

considerable controversy, as the correlation between these two factors has long been disputed

among members of the scientific community and the general public. In a 2016 Science article

entitled Taking race out of human genetics, Yudell et al. boldly asserted, "We believe the use

13
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of biological concepts of race in human genetic research - so disputed and so mired in confu-

sion - is problematic at best and harmful at worst. It is time for biologists to find a better way"

(Yudell, 2016). This widely distributed article made headlines, as the authors beseeched the U.S.

National Academies of Sciences, Engineering and Medicine to direct researchers away from the

preconceived notion of race in genetics research. To further support these claims, other scien-

tists and writers cited the works of past researchers such as W.E.B. Du Bois who argued that "the

human species so shade and mingle with each other that... it is impossible to draw a color line

between black and other races" (Yudell, 2014).

In contrast, Harvard Professor of Genetics David Reich points out in his New York Times op-ed

How Genetics Is Changing Our Understanding of ‘Race’ that it is time for the scientific commu-

nity to legitimize and incorporate these claims into genetic studies while working to provide the

same freedoms and opportunities to individuals irrespective of their race. Reich cites recent ge-

netic studies, which have shown distinct differences across populations in traits such as bodily

dimensions and susceptibility to diseases. For instance, clinical studies have demonstrated that

multiple sclerosis is more prevalent in European-Americans, while end-stage kidney disease is

more common in African-Americans. Reich reiterates his own findings that prostate cancer oc-

curs 1.7 times more often in African-Americans than European-Americans. More importantly,

Reich and his colleagues located a portion of the genome that contains 2.8 percent more African

ancestry than the average and also entails seven independent risk factors for prostate cancer.

Reich concludes his article with the counterclaim that "it will be impossible - indeed, anti-

scientific, foolish, and absurd - to deny the differences [between populations]" (Reich, 2018).

2.1.3 Personal Contributions

Much of the data extraction for this Chapter was derived from the work in Chapter 1, namely

the use of anonymous clinical information from the HCUP database through the BCBI’s secure

Stronghold network with the programming language SQL. To determine statistically significant

combinations of co-morbidities from the data within a reasonable runtime, I used the Associa-

tion Rules Package written by Dr. Paul Stey from the Brown Center for Biomedical Informatics.

I then used the Gephi software to illustrate the networks corresponding to each demographic
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and cancer.

2.2 Results

2.2.1 Sample Network

A sample network containing three kinds of cancer is shown below. The nodes at the center

of the clusters represent cancers (each color represents a different cancer). Connected to the

cancer nodes by directed edges are nodes that represent combinations of comorbidities found

frequently associated with their respective cancers.

Figure 2.1: White Network for Brain, Bone, and Cervix Cancer

2.2.2 Tables of Notable Comorbidity Combinations

The following tables depict notable comorbidity combinations associated with different cancers

for the white, black, Hispanic, and Asian demographics. From the tables, some key differences

across the races should be further noted:
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1. I found that white patients with nervous disorders and hypertension frequently had can-

cers of the head and neck, esophagus, stomach, rectum, liver, pancreas, gastrointestinal

tract, bone, skin, uterus, cervix, ovary, female genital, testis, brain, thyroid, Hodgkin’s lym-

phoma, myeloma, and primary. In contrast, black patients had thyroid cancer, while His-

panic patients had testis and brain cancer.

2. It seemed that white patients with mental health disorders and hypertension frequently

had cancers of the head and neck, esophagus, and uterus. Black patients had cancers of

the head and neck, stomach, rectum, liver, and thyroid, while Hispanic patients had rectal

cancer.

3. Given secondary malignancies and hypertension, black patients had cancers of the rec-

tum, liver, uterus, and thyroid, while Hispanic patients had cancers of the pancreas and

ovary.
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Table 2.1: Notable Comorbidity Combinations Associated With Cancers for White Demographic

Comorb Codes Comorbidities Cancer Codes Cancer

{97,99} {cardiomyopathy, hypertension} {11,15,40} {head, rectum, myeloma}

{95,98} {nervous disorder, hypertension} {11,12,13,15,16, {head, esophagus, stomach, rectum, liver,
17,18,21,22,25, pancreas, GI, bone, skin, uterus,

26,27,28, cervix, ovary, female genital,
30,35,36,37, testis, brain, thyroid, Hodgkin’s

40,41} myeloma, primary}

{58,651,663,98} {metabolic, anxiety disorders, {11,12,25} {head, esophagus
mental health, hypertension} uterus}

{58,651,657} {metabolic, anxiety, {11,12,13,18,25, {head, esophagus, stomach, GI, uterus
mood disorders} 26,27,36,40} cervix, ovary, thyroid, myeloma}

{158,244,53} {kidney, ext injuries, lipid} {11,16,40,41} {head, liver, myeloma, primary}

{106,108,131} {cardiac dysrhythmias, {11,12,13,15, {head, esophagus, stomach, rectum,
heart failure, respiratory failure} 16,27,40,41} liver, ovary, myeloma, primary}

Table 2.2: Notable Comorbidity Combinations Associated With Cancers for Black Demographic

Comorb Codes Comorbidities Cancer Codes Cancer

{95,98} {nervous disorder, hypertension} {36} {thyroid}

{663,98} {mental health, hypertension} {11,13,15,16,36} {head, stomach, rectum, liver, thyroid}

{158,99} {kidney disease, hypertension} {11,13,16,40} {head, stomach, liver, myeloma}

{106,138} {cardiac dysrhythmia, esophogeal} {16,36} {liver, thyroid}

{257,98} {aftercare, hypertension} {16,25,36} { liver, uterus, thyroid}

{42,98} {secondary malignancies, hypertension} {15,16,25,36} {rectum, liver, uterus, thyroid}
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Table 2.3: Notable Comorbidity Combinations Associated With Cancers for Hispanic Demo-
graphic

Comorb Codes Comorbidities Cancer Codes Cancer

{95,98} {nervous disorder, hypertension} {30,35} {testis, brain}

{663,98} {mental health, hypertension} {15} {rectum}

{158,98} {kidney disease, hypertension} {15,17,35} {rectum, pancreas, brain}

{257,98} {aftercare, hypertension} {18} {GI}

{42,98} {secondary malignancies, hypertension} {17,27} {pancreas, ovary}

{55,98} {electrolyte disorder, hypertension} {15,16,17,27} {rectum, liver, pancreas, ovary}

Table 2.4: Notable Comorbidity Combinations Associated With Cancers for Asian Demographic

Comorb Codes Comorbidities Cancer Codes Cancer

{42} {secondary malignancies} {16,27} {liver, ovary}

{151,257} {liver disorders, aftercare} {16} {liver}

{42,55} {secondary malig, electrolyte dis} {16} {liver}

{257,59} {aftercare, anemia} {16} {liver}

{49,55} {diabetes, electrolyte disorders} {16} {liver}

{151,49} {GI disorders, diabetes} {16} {liver}
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2.2.3 Full Networks

From the national HCUP data set as compared to the Rhode Island data set, I mapped out the

following networks, which contain the most frequently found comorbidity combinations asso-

ciated with different cancers across the white, black, Hispanic, and Asian demographics:



White
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2.3 Discussion

2.3.1 Current Studies and Literature

The term "precision medicine" has garnered much support, as the National Institutes of Health

has heavily invested in recent studies related to precision medicine. In particular, the National

Institute on Minority Health and Health Disparities (NIMHD) has placed particular emphasis

on the following research areas:

1. Developing analytic methods to integrate patient data and other factors to influence health

outcomes

2. Developing tools to identify biomarkers for disease progression and drug responses

3. Understanding disease mechanisms that lead to differential health outcomes in minori-

ties

In conjunction with the NIH, institutions such as the Vanderbilt University Medical Center and

Stanford University have been working towards establishing centers dedicated to developing

precision medicine and further research in the aforementioned areas. In particular, Vanderbilt

University Medical Center will investigate genetic and phenotype markers for asthma, pre-term

birth, cancer, and Body Mass Index in African American and Hispanics/Latino populations (nih,

2016).

2.3.2 Recommendations

In modern medicine, treatment for cancer is usually based on the type, the size, and whether it

has metastasized. As my results show, however, patients are at higher risk for different can-

cers based on their race and comorbidities. In particular, for the same combination of co-

morbidities (nervous disorder and hypertension), patients were at higher risk for different can-

cers based on their race. My results suggest that the future of medicine is in precision medicine

through which patients will have treatments that are tailored to them based on their unique at-

tributes such as race and pre-existing chronic conditions. Perhaps more importantly, my results

imply that patients should take preventative measures for the cancers that they are at higher risk
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for given their race and comorbidities.

My results reinforce the growing wave of support for precision medicine by the government and

academic institutions, specifically the NIMHD’s aim to understand disease mechanisms that

lead to differential health outcomes in minorities. Evidently, controlled for the same combina-

tion of comorbidities, there is a genetic component associated with race that affects the kinds

of cancer that patients are at risk for.

In response to Reich’s article, one writer argued that Reich talked about regions, not people.

To illustrate this further, individuals often self-select their racial identity in census and survey

data, and the link between self-identification and genome data is not firmly established. Fur-

thermore, many Black Americans are from socially disadvantaged backgrounds. It is not clear

then whether stratifying my data using socioeconomic status would not exhibit the same differ-

ences found in my study, which would indicate that it is indeed race that is solely responsible

for the differences identified in my cancer studies. Thus, I would like to add caution to the in-

terpretation of my findings as pinpointing race as the sole determinant of comorbidities and

cancer.

2.4 Methods

2.4.1 Association Rule-Based Machine Learning

Please note that the use of and explanation on association rule-based machine learning was

primarily derived from Tan et al (Tan, 2018). Additionally, all figures and examples were obtained

from Tan et al (Tan, 2018):

Potential Issues

In determining the most frequently occurring comorbidities and cancers associated with any

given race, there were two major issues:

1. Determining the associations of co-morbidity combinations from an expansive data set
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proved to be computationally expensive and entailed an impractical runtime. Note that

each patient had up to 25 possible co-morbidities, meaning that combinations could have

up to 25 different co-morbidities.

2. Some associations could simply have arisen from chance. These random associations

then needed to somehow be distinguished and removed.

Thus, the algorithm incorporated association analysis, a methodology designed to uncover no-

table relationships hidden in large data sets. Referred to as association rules, these relationships

defined sets of frequent items and in the context of the network, implied patients of a particular

race and combination of co-morbidities were at a significantly higher risk for certain kinds of

cancer.

Association Rule and Support

An association rule is defined as an expression in the form X −−> Y where X and Y are disjoint

itemsets. Association rules can be measured based on the support and confidence. Support

denotes how frequently a rule is found in the data set, while confidence relates how often items

in Y appear in patients’ diagnoses that contain X . Rules with low support values can be inter-

preted as occurring due to random chance. We define support and confidence as follows:

Support s(X −−> Y ) = σ(X∪Y )
N

Confidence c(X −−> Y ) = σ(X∪Y )
σ(X )

From the HCUP data set containing patients’ diagnoses, rules were found having support ≥
mi nsup and confidence ≥ mi ncon f where mi nsup and mi ncon f were defined as the thresh-

old values for support and confidence.

Theory

In the first iteration of this algorithm, I used a brute-force approach to determine all possible k

combinations of comorbidities where 0 ≤ k ≤ 25 and compute the support and confidence for

every possible rule. Given a data set of d items, the total number of possible rules is defined as
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R = 3d −2d+1 +1, showing an exponential runtime. This greedy algorithm took over 24 hours to

run on a standard data set where k = 3

To significantly reduce the runtime and candidate itemsets, I incorporated the Apriori princi-

ple was incorporated into my algorithm which states that if an itemset is frequent, then all of

its subsets must also be frequent. As a result, if an itemset is infrequent, then all of its supersets

must also be infrequent too.

Figure 2.2: Demonstrates that if itemset {c,d ,e} is frequent, then all subsets of itemset are fre-
quent

By using this strategy known as support-based pruning, the Apriori algorithm was the first

association rule mining algorithm to use this strategy to significantly reduce the exponential

growth of itemsets.

As seen in Figure 2.4, every item is initially considered a 1-itemset. Since {Col a} and {E g g s}

only appear twice and once, respectively, they are removed from the 2-itemsets in the next iter-

ation of the Apriori algorithm. This is because all supersets of infrequent 1-itemsets will also be

infrequent. The above steps are repeated for the next iteration when going from the 2-itemsets

to 3-itemsets.
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Figure 2.3: Demonstrates that if itemset {a,b} is frequent, then all supersets of {a,b} are infre-
quent

Figure 2.4: Illustrates the Apriori algorithm using an example containing market goods

We should note that without Apriori, we would need to do
(6

1

)+ (6
2

)+ (6
3

) = 41 calculations. With

Apriori, we get
(6

1

)+ (4
2

)+1 = 13 calculations.

General Outline of Algorithm

1. The entire dataset must be examined once to calculate the support of each item, after

which the set of all frequent 1-itemsets will be known.

2. Iteratively, the algorithm calculates new k−itemsets using the frequent (k − 1)−itemsets

determined from the previous iteration (this is the Apriori principle)

3. Each time the algorithm needs to determine the support of the itemsets, the algorithm

must go through the entire dataset once.
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4. For any given itemset, if its support count is less than the user’s inputted mi nsup, that

itemset is removed (and by extension, its supersets in later iterations).

Application and Observation

For this research project, I used an Association Rules Package written by Dr. Paul Stey from the

Brown Center for Biomedical Informatics (Stey). With this package, the algorithm took less than

20 minutes to run on that same standard data set where k = 3.

2.4.2 Data Sets

To compile the race-comorbidity-cancer network, I primarily used the HCUP database, as in

Section 1: Racial Disparity of Genomic Sequencing. From HCUP, I extracted national patient

records from patients of the races White, Black, Hispanic, and Asian and placed them into CSV

files using SQL. Using the programming language Julia and Dr. Stey’s Association Rules pack-

age, I computed the most frequently occurring k combinations of comorbidities associated with

each race and cancer where k ≤ 6. It should be noted that I only examined the following cancers

to limit computational runtime: bone, brain, cervix, esophagus, female genital, gastrointestinal

tract, head and neck, Hodgkin’s lymphoma, liver, male genital, multiple myeloma, ovary, pan-

creas, primary, rectum and anus, respiratory, skin, stomach, testis, thyroid, urinary, and uterus.

Then, I compared these combinations from national records to those calculated from the Rhode

Island patient records. Frequent combinations that were found in both data sets were consid-

ered significant.

2.4.3 Data Visualization Using Gephi

For each race, I re-formed these significant combinations to be visualized as a network using

Gephi, an open-source network analysis and visualization software package.
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Summary and Recommendations for

Further Work

3.1 Summary and Conclusions

My studies show that race plays an important component in determining disease progression

and even what kinds of diseases patients are at higher risk for. Thus, while genomic sequencing

studies have led to novel discoveries of disease progression, they have inevitably led to better

treatments for those races most represented in these studies. Evidently, there has been a short-

age of minorities in genomic sequencing studies, thereby contributing to racial disparities in

health outcomes. From these findings, I conclude that researchers must actively recruit Black

Americans in genomic sequencing efforts.

3.2 Recommendations for Further Work

Further work should be conducted on the genetic basis for why race seems to play an important

factor in the onset of different types of cancer. Just as Professor Reich discovered portions of

the genome containing risk factors for prostate cancer and associated with race, next steps for

these studies should investigate the human genome. For instance, given nervous disorders and

hypertension, what portions of the genome are responsible for inducing thyroid cancer in Black

Americans and testis and brain cancer in Hispanic Americans?

30
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