
BROWN UNIVERSITY

HONORS THESIS

Grounding Natural Language to Goals for
Abstraction, Generalization, and Interpretability

Author:
Siddharth KARAMCHETI

Advisors:
Dr. Eugene CHARNIAK

Dr. Stefanie TELLEX

Reader:
Dr. George KONIDARIS

A thesis submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Computer Science with Honors

April 15, 2018

https://www.brown.edu/
http://siddkaramcheti.com/
https://cs.brown.edu/~ec/
https://cs.brown.edu/~stefie10/
http://cs.brown.edu/people/gdk/

i

Abstract
Language is universal and powerful: it allows people to communicate their
ideas, telegraph their intents, and interact with the world around them in an
incredibly natural way. Therefore, as new technology is developed and inte-
grated into everyday life, it is necessary to factor in language, and build inter-
faces that bridge the gap between human users and arbitrarily complex sys-
tems. Language grounding is an instrumental part of this process, defined as
the problem of mapping natural language to behavior on an underlying system
or environment. These systems and environments can take many forms, in-
cluding physical systems like robots (mapping language to low-level actuators),
software systems like databases and constraint solvers (translating language to
programs and structured queries), or environments like real-world landscapes
and photographic images (bridging language and perception).

In this thesis, we examine the general problem of language grounding as it re-
lates to two separate and important application areas: the first is the problem of
grounding in the context of human-robot interaction, while the second is the
problem of grounding in the context of question-answering on short stories.
We use these two application areas to guide our exploration of three different
themes in language as a whole, and how they manifest themselves in the prob-
lem of language grounding: 1) abstraction, or how to interpret language of vary-
ing complexities, 2) generalization, or how to extrapolate and map language to
new behaviors, and 3) interpretability, or how to reason about language in an
understandable way.

Each chapter of this thesis explores one of the aforementioned themes in greater
detail and motivates its utility before surveying related approaches and evalu-
ating a proposed, novel approach that better addresses the theme in question.
Building on techniques from deep learning, natural language processing, rein-
forcement learning, and planning, we introduce a full suite of diverse models for
language grounding, each demonstrating state-of-the-art performance on tasks
spanning human-robot interaction and question-answering. Finally, we discuss
next steps, describing the limitations of the current work in language grounding
before outlining several important open problems that motivate future research
directions.

ii

Acknowledgements
First and foremost, I want to thank my advisors, Professors Eugene Charniak
and Stefanie Tellex: My love of research, my passion for language, and all the
work contained in this thesis are a result of their mentorship. Thank you so
much for taking a chance on me, and instilling in me the confidence and excite-
ment for language and robots you carry with you every day. Thank you for the
random chats in the lab or your office about my latest crazy ideas, the countless
hours editing and re-editing before paper deadlines, and for everything else that
I’m forgetting – I’ll forever be grateful.

To my reader, Professor George Konidaris: thank you so much for all the random
office chats, answering my late-night emails asking for advice, and for forcing
me to think about the big questions – about what it really means to work in AI.

To my collaborators and friends, Dilip, Nakul, Lawson, Eddie, and Mina: Thanks
so much for helping me succeed – for the countless hours spent collecting data,
troubleshooting deep nets, and getting tables to fit on one page the hour before
a paper deadline. Nakul and Lawson, thank you so much for your wisdom and
your mentorship, and for teaching me the ins and outs of the research process.
Eddie and Mina, thank you for all your help throughout this last year. And last,
but definitely not least, Dilip – thank you brother, for the countless late nights
writing and hacking, for always grounding me and giving perspective, and for
always being willing to go out and see a movie when I need it the most.

To my dear friends, at Brown and back home. Arun, Helen, Julie, Victoria, and
everyone else (you know who you are) – thank you for always standing by me,
and for stubbornly resisting my desire to stay inside and work, pulling me out
into the world for some truly unforgettable experiences. Thank you for always
being willing to talk about the little and the not-so-little things, for the late night
car rides, and for the much-needed reality checks – I’m so incredibly lucky and
grateful to have you all in my life.

Lastly, to my family. Sanjana and Meena, thank you for being the best sisters
I could have asked for – you two shaped me into the person I am today. And
finally, to my parents: Amma and Nana, there aren’t enough words to do this
justice, so I’ll just say this: thank you for always loving and supporting me,
through good, bad, and everything in between.

iii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

1 A Grounded Introduction 1

2 Hierarchical Language Grounding 3
2.1 Abstract . 3
2.2 Introduction . 4
2.3 Related Work . 5
2.4 Approach . 7
2.5 Language Models . 9

2.5.1 IBM Model 2 . 10
2.5.2 Neural Network Language Models 11

Multi-NN: Multiple Output Feed-Forward Network . . . 11
Multi-RNN: Multiple Output Recurrent Network 12
Single-RNN: Single Output Recurrent Network 13

2.5.3 Grounding Module . 14
2.6 Evaluation . 14

2.6.1 Mobile-Manipulation Robot Domain 14
2.6.2 Procedure . 15
2.6.3 Robot Task Grounding . 16
2.6.4 Robot Response Time . 18
2.6.5 Robot Demonstration . 20

2.7 Discussion . 21
2.8 Conclusion . 22

3 Grounding Actions and Goals 23
3.1 Abstract . 23
3.2 Introduction . 24
3.3 Related Work . 25
3.4 Problem Setting . 26

iv

3.5 Approach . 28
3.5.1 Semantic Representation . 28
3.5.2 Deep Recurrent Action/Goal Grounding Network 29
3.5.3 Joint DRAGGN (J-DRAGGN) 30
3.5.4 Independent DRAGGN (I-DRAGGN) 32
3.5.5 Grounding Module . 32

3.6 Experiments . 32
3.6.1 Procedure . 33
3.6.2 Results . 34
3.6.3 Action Prediction . 34
3.6.4 Goal Prediction . 35
3.6.5 Unseen Action Prediction 35

3.7 Discussion . 35
3.8 Conclusion . 36

4 Iterative Language Grounding 37
4.1 Abstract . 37
4.2 Introduction . 38
4.3 Related Work . 39
4.4 Problem Setting . 41
4.5 Approach . 41

4.5.1 Iterative Grounding Networks 41
4.5.2 World Model . 42
4.5.3 Interaction Engine Training Objective 42
4.5.4 Interaction Engine Neural Architecture 46
4.5.5 Training with Annotated Examples 47

4.6 Experiments . 47
4.6.1 Cleanup World Language Grounding 48

Results . 49
4.6.2 Hybrid bAbI Grounding and Question-Answering 49

Results . 51
4.7 Discussion . 52
4.8 Conclusion . 54

5 Conclusion: Looking Forward 55

A Iterative Grounding Details 56
A.1 Interaction Engine Neural Architecture 56
A.2 Experiments . 57

A.2.1 Cleanup World Language Grounding 57
A.2.2 Hybrid bAbI Grounding and Question-Answering 58

Bibliography 61

v

List of Figures

2.1 Hierarchical Language Command Examples 4
2.2 Grounding Model Architectures 11
2.3 Cleanup World Starting Instance 14
2.4 IBM 2 Grounding Results . 16
2.5 Single-RNN Grounding Results . 17
2.6 10-Fold Cross Validation Results 18
2.7 Relative Inference and Planning Times 19

3.1 Sample Configuration of Cleanup World 24
3.2 Full End-to-End Grounding System 27
3.3 DRAGGN Neural Architecture Diagrams 31

4.1 Iterative Grounding System Pipeline 38
4.2 Iterative Grounding Network Neural Architecture 46
4.3 Cleanup World Weakly Supervised Dataset 48
4.4 Hybrid bAbI Learning Curves . 52

A.1 Neural Architecture . 57

vi

List of Tables

2.1 Example Commands and Reward Functions 15

3.1 Callable Unit Examples . 29
3.2 Labelled Language Examples . 33
3.3 DRAGGN Accuracy Results . 34

4.1 Weakly Supervised Cleanup World Results 49
4.2 Hybrid bAbI Accuracy Results . 51

A.1 Hybrid bAbI Dataset Statistics . 60
A.2 State Functions for Hybrid bAbI Tasks 60

1

Chapter 1

A Grounded Introduction
Technology is everywhere: we live in a world of self-driving cars, household
robotics, and smart gadgets – technology that has been deeply integrated into
our lives. In the years to come, these advancements will only continue, and
we will see more and more solutions to countless important problems spanning
application areas in manufacturing, healthcare, transportation, and education,
amongst others. However, to fully realize and appreciate the magnitude of these
advancements, the underlying technologies must be accessible, so that they can
be used by everyday people.

At the core of realizing true accessibility is language. Language is both universal
and extraordinarily powerful – it allows people to communicate their ideas with
others and interact with the world around them in a natural way. Therefore, it
is necessary to build powerful tools and natural language interfaces, capable of
bridging the gap between everyday users and these arbitrarily complex techno-
logical systems.

In this thesis, we build these natural language interfaces through examination
of language grounding, or the problem of mapping language to behaviors on an
underlying system or environment, as it relates to two separate and important
application areas: the first is the problem of grounding in the context of human-
robot interaction, while the second is the problem of grounding in the context
of question-answering on short stories. We use these two application areas to
guide our exploration of three different themes in language as a whole, and how
they manifest themselves in the problem of language grounding: 1) abstraction,
or how to interpret language of varying complexities, 2) generalization, or how
to extrapolate and map language to new behaviors, and 3) interpretability, or
how to reason about language in an understandable way.

In the first chapter, we tackle abstraction through the lens of hierarchical lan-
guage grounding for robotics. Here, the key realization is that users might
give natural language instructions that exist at different complexities: someone
might give a general, high-level instruction like “Take the chair to the kitchen,”
or a low-level, granular instruction like “Take three steps forward, turn left, raise
your arm six inches, and turn the doorknob.” To accurately and efficiently map
to the correct behavior, a language grounding system needs to take this explicit

Chapter 1. A Grounded Introduction 2

abstraction into account, and use the hierarchy informed by language to im-
prove reliability. We present a series of models for tackling this problem, and
show that we can significantly improve upon prior language grounding work,
grounding natural language instructions from real-world users to robot behav-
ior in a fast and accurate manner.

The second chapter examines generalization, also in application to robotics.
Here, the key realization is that there is a difference in how users specify behav-
ior: someone give an instruction that either specifies a goal condition (or some
target state), or they could provide an instruction that specifies a set sequence
of actions to take. Generalizing across actions and goals is incredibly important,
as in some cases, it matters exactly how a robot agent performs a task, while
in others, it may only serve to slow down the grounding process. To this end,
we present a new suite of grounding models in tandem with a new, modular
representation for language. Our results show that not only can our grounding
models more accurately ground action-oriented and goal-oriented commands,
but that our models can also generalize effectively, and map language to new
tasks that the models have never seen before.

Finally, the third chapter examines interpretability, through application short
story understanding. The key realization here is that in many existing models
for question-answering, the reasoning necessary for answering complex ques-
tions about short stories or news articles happens in an opaque, unintuitive
form, inside of a deep neural network model. This is a huge problem, in case
we want users to be able to trust, question, and interact with these models.
To this end, we reformulate the problem of question-answering as one of lan-
guage grounding, where we learn to map sentences of stories to updates on a
human-readable database. We then answer questions by querying this database,
allowing human users insight into the reasoning process. Our results show
that our models are not only capable of superior performance, but that they
also require significantly less data than existing state-of-the-art techniques for
question-answering.

All together, the goal of this thesis is to expand upon the state-of-the-art and
introduce new problems and initial solutions for several important areas of lan-
guage grounding. By thinking about these problems, the hope is that we can
build more robust, accurate, and efficient language grounding systems, closing
the accessibility gap between everyday users and complex technology.

3

Chapter 2

Hierarchical Language Grounding
This chapter consists of work that was done jointly with Dilip Arumugam, Nakul
Gopalan, Lawson L.S. Wong, and Stefanie Tellex1, presented as a conference pa-
per at Robotics: Science and Systems 2017.

The central theme of this chapter is abstraction. We present a series of methods
for interpreting language instructions that exist at varying levels of complexity;
specifically, we show how to leverage the resulting task hierarchy to obtain more
accurate and efficient grounding.

2.1 Abstract

Humans can ground natural language commands to tasks at both abstract and
fine-grained levels of specificity. For instance, a human forklift operator can
be instructed to perform a high-level action, like “grab a pallet” or a low-level
action like “tilt back a little bit.” While robots are also capable of grounding
language commands to tasks, previous methods implicitly assume that all com-
mands and tasks reside at a single, fixed level of abstraction. Additionally, meth-
ods that do not use multiple levels of abstraction encounter inefficient planning
and execution times as they solve tasks at a single level of abstraction with large,
intractable state-action spaces closely resembling real world complexity. In this
work, by grounding commands to all the tasks or subtasks available in a hi-
erarchical planning framework, we arrive at a model capable of interpreting
language at multiple levels of specificity ranging from coarse to more granu-
lar. We show that the accuracy of the grounding procedure is improved when
simultaneously inferring the degree of abstraction in language used to commu-
nicate the task. Leveraging hierarchy also improves efficiency: our proposed
approach enables a robot to respond to a command within one second on 90%
of our tasks, while baselines take over twenty seconds on half the tasks. Finally,
we demonstrate that a real, physical robot can ground commands at multiple
levels of abstraction allowing it to efficiently plan different subtasks within the
same planning hierarchy.

1Dilip Arumugam*, Siddharth Karamcheti*, Nakul Gopalan, Lawson L. S. Wong, Stefanie
Tellex: “Accurately and Efficiently Interpreting Human-Robot Instructions of Varying Granu-
larities”. Robotics: Science and Systems 2017

Chapter 2. Hierarchical Language Grounding 4

FIGURE 2.1: Examples of high-level and fine-grained commands issued to the
Turtlebot robot in a mobile-manipulation task.

2.2 Introduction

In everyday speech, humans use language at multiple levels of abstraction. For
example, a brief transcript from an expert human forklift operator instructing a
human trainee has very abstract commands such as “Grab a pallet,” mid-level
commands such as “Make sure your forks are centered,” and very fine-grained
commands such as “Tilt back a little bit” all within thirty seconds of dialog. Hu-
mans use these varied granularities to specify and reason about a large variety
of tasks with a wide range of difficulties. Furthermore, these abstractions in lan-
guage map to subgoals that are useful when interpreting and executing a task.
In the case of the forklift trainee above, the sub-goals of moving to the pallet,
placing the forks under the object, then lifting it up are all implicitly encoded
in the command “Grab a pallet.” By decomposing generic, abstract commands
into modular sub-goals, humans exert more organization, efficiency, and con-
trol in their planning and execution of tasks. A robotic system that can identify
and leverage the degree of specificity used to communicate instructions would
be more accurate in its task grounding and more robust towards varied human
communication.

Existing approaches map between natural language commands and a formal
representation at some fixed level of abstraction (Chen and Mooney, 2011; Ma-
tuszek et al., 2012; Tellex et al., 2011). While effective at directing robots to com-
plete predefined tasks, mapping to fixed sequences of robot actions is unreli-
able in changing or stochastic environments. Accordingly, MacGlashan et al.

Chapter 2. Hierarchical Language Grounding 5

(2015) decouple the problem and use a statistical language model to map be-
tween language and robot goals, expressed as reward functions in a Markov
Decision Process (MDP). Then, an arbitrary planner solves the MDP, resolving
any environment-specific challenges with execution. As a result, the learned
language model can transfer to other robots with different action sets so long as
there is consistency in the task representation (i.e., reward functions). However,
MDPs for complex, real-world environments face an inherent tradeoff between
including low-level task representations and increasing the time needed to plan
in the presence of both low- and high-level reward functions (Gopalan et al.,
2017).

To address these problems, we present an approach for mapping natural lan-
guage commands of varying complexities to reward functions at different levels
of abstraction within a hierarchical planning framework. This approach enables
the system to quickly and accurately interpret both abstract and fine-grained
commands. Our system uses a deep neural network language model that maps
natural language commands to the appropriate level of the planning hierarchy.
By coupling abstraction-level inference with the overall grounding problem, we
exploit the subsequent hierarchical planner to efficiently execute the grounded
tasks. To our knowledge, we are the first to contribute a system for grounding
language at multiple levels of abstraction, as well as the first to contribute a deep
learning system for improved robotic language understanding.

Our evaluation shows that deep neural network language models can infer re-
ward functions more accurately than statistical language model baselines. We
present results comparing a traditional statistical language model to three differ-
ent neural architectures that are commonly used in natural language processing.
Furthermore, we show that a hierarchical approach allows the planner to map
to a larger, richer space of reward functions more quickly and more accurately
than non-hierarchical baselines. This speedup allows the robot to respond faster
and more accurately to a user’s request, with a much larger set of potential com-
mands than previous approaches. We also demonstrate on a Turtlebot the rapid
and accurate response of our system to natural language commands at varying
levels of abstraction.

2.3 Related Work

Humans use natural language to communicate ideas, motivations, task descrip-
tions, etc. with other humans. Some of the earliest works in this area mapped
tasks to another planning language, which then grounded to the actions per-
formed by the robots (Dzifcak et al., 2009a; Chen and Mooney, 2011). More
recent methods ground natural language commands to tasks using features that
describe correspondences between natural language phrases present in the task

Chapter 2. Hierarchical Language Grounding 6

description to the physical objects (Howard, Tellex, and Roy, 2014; Matuszek
et al., 2012; Tellex et al., 2011; Brooks et al., 2012; Raman and Kress-Gazit, 2011),
or abstract spatial concepts Paul et al., 2016, present in the world and the actions
available in the world. This featurized representation can then describe the se-
quence of actions needed to complete the task. All these approaches ground
commands to action sequences, leading to brittle behavior if the environment is
stochastic.

MacGlashan et al. (2015) proposed grounding natural language commands to
reward functions associated with certain tasks, allowing robot agents to plan in
stochastic environments. They treat the goal reward function as a sequence of
propositional functions, much like a machine language, to which a natural lan-
guage task can be translated, using an IBM Model 2 Brown et al., 1990; Brown
et al., 1993 (IBM2) language model. While their propositional functions only lie
at one level of abstraction, we want the robot to understand commands at differ-
ent levels of specificity while still maintaining efficient planning and execution
in the face of multiple levels of abstraction.

Crucially, MacGlashan et al. (2015) actually perform inference over reward func-
tion templates, or lifted reward functions, along with environmental constraints.
A lifted reward function merely specifies a task while leaving the environment-
specific variables of the task undefined. The environmental binding constraints
then specify the properties that an object in the environment must satisfy in or-
der to be bound to a lifted reward function variable. By doing this, the output
space of the language model is never tied to any particular instantiation of the
environment, but can instead align to objects and attributes that lie within some
distribution over environments. Given a lifted reward function and environ-
ment constraints (henceforth jointly referred to as only a lifted reward function),
a subsequent model can later infer the environment-specific variables without
needing to relearn the language understanding components for each environ-
ment. In order to leverage this flexibility, all of our proposed language models
produce lifted reward functions which are then completed by a grounding mod-
ule before being passed to the planner (see Sec. 2.5).

Planning in domains with large state-action spaces is computationally expen-
sive as planners like value iteration and bounded real-time dynamic program-
ming (RTDP) need to explore the domain at the lowest, “flat” level of abstraction
(Bellman, 1957b; McMahan, Likhachev, and Gordon, 2005). Naively this might
result in an exhaustive search of the space before the goal state is found. A bet-
ter approach is to decompose the planning problem into smaller, more easily
solved subtasks. The agent can then achieve the goal by choosing a sequence
of these subtasks. A common method to describe subtasks is by using temporal
abstraction in the form of macro-actions (McGovern, Sutton, and Fagg, 1997) or
options (Sutton, Precup, and Singh, 1999). These methods achieve subgoals us-
ing either a fixed sequence of actions (McGovern, Sutton, and Fagg, 1997) or a

Chapter 2. Hierarchical Language Grounding 7

subgoal based policy (Sutton, Precup, and Singh, 1999). Planning with macro-
actions or options requires computing the policies for each option or macro-
action, which is done by exploring and backing up rewards from lowest level
actions. This “bottom-up” planning is slow, as the reward for each action taken
needs to be backed up through the hierarchy of options, which is time consum-
ing. Other methods for abstraction, like MAXQ (Dieterrich, 2000), R-MAXQ
(Jong and Stone, 2008) and Abstract Markov Decision Processes (AMDPs)
(Gopalan et al., 2017) involve providing a hierarchy of subtasks. In these meth-
ods, a subtask is associated with a subgoal and a state abstraction relevant to
achieving the subgoal (Dieterrich, 2000; Gopalan et al., 2017; Jong and Stone,
2008). Both MAXQ (Dieterrich, 2000) and R-MAXQ (Jong and Stone, 2008) are
bottom-up planners, they back up each individual action’s reward across the
hierarchy.

We use AMDPs (Gopalan et al., 2017) in this paper because they plan in a “top-
down” fashion. AMDPs offer model-based hierarchical representations in the
form of reward functions and transition functions to every subtask. An AMDP
hierarchy itself is an acyclic graph in which each node is a primitive action or
an AMDP that solves a subtask defined by its parent; the states of each subtask
AMDP are abstract representations of the environment state. AMDPs have been
shown to achieve faster planning performance than other hierarchical methods
Gopalan et al., 2017.

We use a deep neural network language model to perform language ground-
ing. Deep neural networks have had great success in many natural language
processing (NLP) tasks, such as traditional language modeling (Bengio et al.,
2000; Mikolov et al., 2010; Mikolov et al., 2011), machine translation (Cho et al.,
2014; Chung et al., 2014), and text categorization (Iyyer et al., 2015). One reason
for their success is the ability to learn meaningful input representations (Bengio
et al., 2000; Mikolov et al., 2013). These “embeddings” are dense vectors that
not only uniquely represent individual words (as opposed to otherwise sparse
approaches for word representation), but also capture semantically significant
features of the language. Another reason is the use of recurrent neural networks
(RNNs), a type of neural network cell that maps variable length inputs (i.e. com-
mands) to a fixed-size vector representation, which have been widely used in
NLP (Cho et al., 2014; Chung et al., 2014; Yamada et al., 2016). Our approach
uses both word embeddings and a state-of-the-art RNN model to map between
natural language and MDP reward functions.

2.4 Approach

To interpret a variety of natural language commands, there must be a represen-
tation for all possible tasks and subtasks. We specify an Object-oriented Markov

Chapter 2. Hierarchical Language Grounding 8

Decision Process (OO-MDP) to model the robot’s environment and actions (Diuk,
Cohen, and Littman, 2008). An MDP is a five-tuple of 〈S ,A, T ,R, γ〉 where S
represents the set of states that define an environment, A denotes the set of ac-
tions an agent can execute to transition between states, T defines the transition
probability distribution over all possible next states given a current state and ex-
ecuted action,R defines the numerical reward earned for a particular transition,
and γ represents the discount factor or effective time horizon under considera-
tion. Planning in an MDP produces a mapping between states and actions, or
policy, that maximizes the total expected discounted reward. In our framework,
as in MacGlashan et al. (2015), we will map between words in language and
specific reward functions.

An OO-MDP builds upon an MDP by adding sets of object classes and propo-
sitional functions; each object class is defined by a set of attributes and each
propositional function is parameterized by instances of object classes. For ex-
ample, an OO-MDP for the mobile robot manipulation domain seen in Fig. 2.1
might denote the robot’s successful placement of the orange block into the blue
room via the propositional function blockInRoom block0 room1, where block0 and
room1 are instances of the block and room object classes respectively and the
blockInRoom propositional function checks if the location attribute of block0 is
contained in room1. Using these propositional functions as reward functions that
encode termination conditions for each task, we arrive at a sufficient, semantic
representation for grounding language. For our evaluation, we use the Cleanup
World (Junghanns and Schaeeer, 1997; MacGlashan et al., 2015) OO-MDP, which
models a mobile manipulator robot; this domain is defined in Sec. 2.6.1.

However, this approach does not generalize well to different environment con-
figurations. At training time, any natural language command that moves objects
or agents to a specific room is conditioned to map room attributes to specific
room instances (i.e. in the case of Fig. 2.1, the blue room is always room1). With
this in mind, consider what happens if we switched the blue and green rooms at
test time, so that the green room is now room1. In this case, any language com-
mand that moves an object or agent to the blue room would fail, as the room
instances have been switched around.

To this end, we “lift” the propositional functions from before, to better gener-
alize to unseen environments. Given a command like “Take the block to blue
room,” the corresponding lifted propositional function takes the form blockIn-
Room block0 roomIsBlue, denoting that the block should end up in the room
that is blue. We then assume an environment-specific grounding module (see
Sec. 3.5.5) that consumes these lifted reward functions and performs the actual
low-level binding to specific room instances, which can then be passed to a plan-
ner.

In order to effectively ground commands across multiple levels of complex-
ity, we assume a predefined hierarchy over the state-action space of the given

Chapter 2. Hierarchical Language Grounding 9

grounding environment. Furthermore, each level of this hierarchy requires its
own set of reward functions for all relevant tasks and sub-tasks. In our work,
fast planning and the ability to ground and solve individual subtasks without
needing to solve the entire planning problem make AMDPs a reliable choice
for the hierarchical planner (Gopalan et al., 2017). Finally, we assume that all
commands are generated from a single, fixed level of abstraction.

Given a natural language command c, we find the corresponding level of the
abstraction hierarchy l, and the lifted reward function m that maximizes the
joint probability of l, m given c. Concretely, we seek the level of the state-action
hierarchy l̂ and the lifted reward function m̂ such that:

l̂, m̂ = arg max
l,m

Pr(l, m | c) (2.1)

For example, as illustrated in Fig. 2.1, a high-level natural language command
like “Take the block to the blue room” would map to the highest abstraction
level, while a low-level command like “Go north a little bit” would map to the
finest-grained level. We estimate this joint probability by learning a language
model (described in Sec. 2.5) and training on a parallel corpus that pairs natural
language commands with a corresponding reward function at a particular level
of the abstraction hierarchy.

Given this parallel corpus, we train each model by directly maximizing the joint
probability from Eqn. 2.1. Specifically, we learn parameters θ̂ that maximize the
corpus likelihood:

θ̂ = arg max
θ

∏
(c,l,m)∈C

Pr(l, m | c, θ) (2.2)

At inference time, given a language command c, we find the best l, m that max-
imize the probability Pr(l, m | c, θ̂). The lifted reward function m is then com-
pleted by the grounding module (see Sec. 3.5.5) and passed to a hierarchical
planner, which plans the corresponding task at abstraction level l.

2.5 Language Models

We compare four language models: an IBM Model 2 translation model (simi-
lar to MacGlashan et al. (2015)), a deep neural network bag-of-words language

Chapter 2. Hierarchical Language Grounding 10

model, and two recurrent neural network (RNN) language models, with vary-
ing architectures. For detailed descriptions and implementations of all the pre-
sented models, as well as the datasets used throughout this paper, please refer
to the supplemental repository: https://github.com/h2r/GLAMDP.

2.5.1 IBM Model 2

As a baseline, task grounding is formulated as a machine translation problem,
with natural language as the source language and semantic task representations
(lifted reward functions) as the target language. We use the well-known IBM
Model 2 (IBM2) machine translation model Brown et al., 1990; Brown et al., 1993
as a statistical language model for scoring reward functions given input com-
mands.

IBM2 is a generative model that solves the following objective (equivalent to
Eqn. 2.1 by Bayes’ rule):

l̂, m̂ = arg max
l,m

Pr(l, m) · Pr(c | l, m) (2.3)

This task grounding formulation follows directly from MacGlashan et al. (2015)
and we continue in an identical fashion training the IBM2 using the standard
EM algorithm.

We take a standard approach to training our IBM2 with a “bake-in” period
where the EM algorithm is run for a set number of iterations only for translation
parameter (τ) updates. We then learn follow with regular iterations of the EM
algorithm where both the translation parameters (τ) and the alignment param-
eters (δ) are updated. We estimate the length parameters (η) using Maximum-
Likelihood estimation.

At inference time, to pick the (l, m) tuple that maximizes the objective from
Equation 2.3 we calculate the IBM2 probability for every possible (l, m) com-
bination, using the IBM2 as a re-ranker over the possible reward function trans-
lations. We find this gives significantly better results than beam-search decoding
due to the relatively small size of the reward function space, as well the formu-
laic nature of each reward function string.

https://github.com/h2r/GLAMDP

Chapter 2. Hierarchical Language Grounding 11

(A) Multi-NN (B) Multi-RNN (C) Single-RNN

FIGURE 2.2: Model architectures for all three sets of deep neural network models. In
blue are the network inputs, and in red are the network outputs. Going left to right,
the green denotes significant structural differences between models.

2.5.2 Neural Network Language Models

We develop three classes of neural network architectures (see Fig. 2.2): a feed-
forward network that takes a natural language command encoded as a bag-of-
words and has separate parameters for each level of abstraction (Multi-NN), a
recurrent network that takes into account the order of words in the sequence,
also with separate parameters (Multi-RNN), and a recurrent network that takes
into account the order of words in the sequence and has a shared parameter
space across levels of abstraction (Single-RNN).

Multi-NN: Multiple Output Feed-Forward Network

We propose a feed-forward neural network (Bengio et al., 2000; Iyyer et al., 2015;
Mikolov et al., 2013) that takes in a natural language command c as a bag-of-
words vector~c, and outputs both the probability of each of the different levels of
abstraction, as well as the probability of each reward function. We decompose
the conditional probability from Eqn. 2.1 as Pr(l, m | c) = Pr(l | c) · Pr(m |
l, c). Applying this to the corpus likelihood (Eqn. 2.2) and taking logarithms,
the Multi-NN objective is to find parameters θ̂:

θ̂ = arg max
θ

∑
(~c,l,m)

log Pr(l | ~c, θ) + log Pr(m | l,~c, θ) (2.4)

To learn this set of parameters, we use the architecture shown in Fig. 2.2a. Namely,
we employ a multi-output deep neural network with an initial embedding layer,

Chapter 2. Hierarchical Language Grounding 12

a hidden layer that is shared between each of the different outputs, and then
output-specific hidden and read-out layers, respectively.

The level selection output is a k-element discrete distribution, where k is the
number of levels of abstraction in the given planning hierarchy. Similarly, the
reward function output at each level Li is an ri-element distribution, where ri is
the number of reward functions at the given level of the hierarchy.

To train the model, we minimize the sum of the cross-entropy loss on each term
in Eqn. 2.4. We train the network via backpropagation, using the Adam Opti-
mizer (Kingma and Ba, 2014), with a mini-batch size of 16, and a learning rate
of 0.001. Furthermore, to better regularize the model and encourage robustness,
we use Dropout (Srivastava et al., 2014) after the initial embedding layer, as well
as after the output-specific hidden layers with probability p = 0.5.

Multi-RNN: Multiple Output Recurrent Network

Inspired by the success of recurrent neural networks (RNNs) in NLP tasks (Cho
et al., 2014; Mikolov et al., 2010; Mikolov et al., 2011; Sutskever, Vinyals, and
Le, 2014), we propose an RNN language model that takes in a command as a
sequence of words and, like the Multi-NN bag-of-words model, outputs both the
probability of each of the different levels of abstraction, as well as the probability
of each reward function, at each level of abstraction. RNNs extend feed-forward
networks to handle variable length inputs by employing a set of one or more
hidden states, which are updated after reading in each input token. Instead
of converting natural language command c to a vector ~c, we use an RNN to
interpret it as a sequence of words s = 〈c1, c2 . . . cn〉.

The Multi-RNN objective is then:

θ̂ = arg max
θ

∑
(c,l,m)

log Pr(l | s, θ) + log Pr(m | l, s, θ) (2.5)

This modification is reflected in Fig. 2.2b, which is similar to the Multi-NN archi-
tecture, except in the lower layers where we use an RNN encoder that takes the
sequence of raw input tokens and maps them into a fixed-size state vector. We
use the gated recurrent unit (GRU) of Cho et al. (2014), a particular type of RNN
cell that have been shown to work well on natural language sequence modeling
tasks Chung et al., 2014.

Similar to the Multi-NN, we train the model by minimizing the sum of the cross-
entropy loss of each of the two terms in Eqn. 2.5, with the same optimizer setup

Chapter 2. Hierarchical Language Grounding 13

as the Multi-NN model. Dropout is used to regularize the network after the
initial embedding layer and the output-specific hidden layers.

Single-RNN: Single Output Recurrent Network

Both Multi-NN and Multi-RNN decompose the conditional probability of both
the level of abstraction l and the lifted reward function m given the natural lan-
guage command c as Pr(l, m | c) = Pr(l | c) · Pr(m | l, c), allowing for the ex-
plicit calculation of the probability of each level of abstraction given the natural
language command. As a result, both Multi-NN and Multi-RNN create separate
sets of parameters for each of the separate outputs, i.e. separate parameters for
each level of abstraction in the underlying hierarchical planner.

Alternatively, we can directly estimate the joint probability Pr(l, m | c). To do
so, we propose a different type of RNN model that takes in a natural language
command as a sequence of words s (as in Multi-RNN), and directly outputs the
joint probability of each tuple (l, m), where l denotes the level of abstraction,
and m denotes the lifted reward function at the given level.

The Single-RNN objective is to find θ̂ such that:

θ̂ = arg max
θ

∑
(n,l,m)

log Pr(l, m | s, θ) (2.6)

With this Single-RNN model, we are able to significantly improve model ef-
ficiency compared to the Multi-RNN model, as all levels of abstraction share
a single set of parameters. Furthermore, removing the explicit calculation of
the level selection probabilities allows for the possibility of positive information
transfer between levels of abstraction, which is not necessarily possible with the
previous models.

The Single-RNN architecture is shown in Fig. 2.2c. We use a single-output RNN,
similar to the Multi-RNN architecture, with the key difference being that there is
only a single output, with each element of the final output vector corresponding
to the probability of each tuple of levels of abstraction and reward functions
(l, m) given the natural language command c.

To train the model, we minimize the cross-entropy loss of the joint probability
term in Eqn. 2.6. Training hyperparameters are identical to Multi-RNN, and
dropout is applied to the initial embedding layer and the penultimate hidden
layer.

Chapter 2. Hierarchical Language Grounding 14

FIGURE 2.3: A starting instance of the Cleanup World Domain.

2.5.3 Grounding Module

In all of our models, the inferred lifted reward function template must be binded
to environment-specific variables. The grounding module maps the lifted re-
ward function to a grounded one that can be passed to an MDP planner. In our
evaluation domain (see Fig. 2.1), it is sufficient for our grounding module to be
a lookup table that maps specific environment constraints to object ID tokens.
In domains with ambiguous constraints (e.g. a “chair” argument where multi-
ple chairs exist), a more complex grounding module could be substituted. For
instance, Artzi and Zettlemoyer (2013) present a model for executing lambda-
calculus expressions generated by a combinatory categorial grammar (CCG) se-
mantic parser, which grounds ambiguous predicates and nested arguments.

2.6 Evaluation

Our evaluation tests the hypothesis that hierarchical structure improves the speed
and accuracy of language grounding at multiple levels of abstraction. We mea-
sure grounding accuracy and planning speed in simulation with a corpus-based
evaluation, and demonstrate our system on a Turtlebot robot.

2.6.1 Mobile-Manipulation Robot Domain

The Cleanup World domain (Junghanns and Schaeeer, 1997; MacGlashan et al.,
2015), illustrated in Fig. 2.3, is a mobile-manipulator robot domain that is parti-
tioned into rooms (denoted by unique colors) with open doors. Each room may
contain some number of objects which can be moved (pushed) by the robot.
This problem is modeled after a mobile robot that moves objects around, anal-
ogous to a robotic forklift operating in a warehouse or a pick-and-place robot

Chapter 2. Hierarchical Language Grounding 15

Level Example Command Reward Function

L0
Turn and move one spot to the right.
Go three down, four over, two up.

goWest
agentInRoom agent0 roomIsGreen

L1

Go to door, enter red room,
push chair to green room door.

Go to the door then go into the red room.

blockInRegion block0 roomIsGreen

agentInRegion agent0 roomIsRed

L2
Go to the green room.
Bring the chair to the blue room.

agentInRegion agent0 roomIsGreen
blockInRegion block0 roomIsBlue

TABLE 2.1: Example commands and corresponding reward functions.

in a home environment. We use an AMDP from Gopalan et al. (2017) for the
Cleanup World domain, which imposes a three-level abstraction hierarchy for
planning.

The combinatorially large state space of Cleanup World simulates real-world
complexity and is ideal for exploiting abstractions. At the lowest level of ab-
straction L0, the (primitive) action set available to the robot agent consists of
north, south, east, and west actions. Users directing the robot at this level of
granularity must specify lengthy step-by-step instructions for the robot to exe-
cute. At the next level of abstraction L1, the state space of Cleanup World only
consists of rooms and doors. The robot’s position is solely defined by the region
(i.e. room or door) it resides in. Abstracted actions are subroutines for moving
either the robot or a specific block to a room or door. It is impossible to tran-
sition between rooms without first transitioning through a door, and it is only
possible to transition between adjacent regions; any language guiding the robot
at L1 must adhere to these dynamics. Finally, the highest level of abstraction,
L2, removes the concept of doors, leaving only rooms as regions; all L1 transi-
tion dynamics still hold, including adjacency constraints. Subroutines exist for
moving either the robot or a block between connected rooms. The full space of
subroutines at all levels and their corresponding propositional functions are de-
fined by (Gopalan et al., 2017). Fig. 2.1 shows a few collected sample commands
at each level and the corresponding level-specific AMDP reward function.

2.6.2 Procedure

We conducted an Amazon Mechanical Turk (AMT) user study to collect natural
language samples at various levels of abstraction in Cleanup World. Annotators
were shown video demonstrations of ten tasks, always starting from the state
shown in Fig. 2.3. For each task, users provided a command that they would
give to a robot, to perform the action they saw in the video, while constraining
their language to adhere to one of three possible levels in a designated abstrac-
tion hierarchy: fine-grained, medium, and coarse. This data provided multiple

Chapter 2. Hierarchical Language Grounding 16

Evaluated L0 Evaluated L1 Evaluated L2

Trained L0 21.61% 17.20% 21.87%
Trained L1 9.83% 10.23% 13.90%
Trained L2 14.94% 12.84% 31.49%

FIGURE 2.4: IBM2 Reward Grounding Baselines

parallel corpora for the machine translation problem of task grounding. We
measured our system’s performance by passing each command to the language
grounding system and assessing whether it inferred both the correct level of ab-
straction and the reward function. We also recorded the response time of the
system, measuring from when the command was issued to the language model
to when the (simulated) robot would have started moving. Accuracy values
were computed using the mean of multiple trials of ten-fold cross validation.
The space of possible tasks included moving a single step as well as navigat-
ing to a particular room, taking a particular object to a designated room, and all
combinations thereof.

Unlike MacGlashan et al. (2015), the demonstrations shown were not only lim-
ited to simple robot navigation and object placement tasks, but also included
composite tasks (e.g. “Go to the red room, take the red chair to the green room,
go back to the red room, and return to the blue room”). Commands reflecting a
clear misunderstanding of the presented task, e.g. “please robot”, were removed
from the dataset. Such removals were rare; we removed fewer than 30 com-
mands for this reason, giving a total of 3047 commands. Per level, there were
1309 L0 commands, 872 L1 commands, and 866 L2 commands. The L0 corpus
included more commands since the tasks of moving the robot one unit in each
of the four cardinal directions do not translate to higher levels of abstraction.

2.6.3 Robot Task Grounding

We present the baseline task grounding accuracies in Fig. 2.4 and 2.5 to demon-
strate the importance of inferring the latent abstraction level in language. We
simulate the effect of an oracle that partitions all of the collected AMT com-
mands into separate corpora according to the specificity of each command. For
this experiment, any L0 commands that did not exist at all levels of the Cleanup
World hierarchy were omitted, resulting in a condensed L0 dataset of 869 com-
mands. We trained multiple IBM2 and Single-RNN models using data from one
distinct level and then evaluated using data from a separate level. Training a
model at a particular level of abstraction includes grounding solely to the re-
ward functions that exist at that same level. Reward functions at the evaluation
level were mapped to the equivalent reward functions at the training level (e.g.

Chapter 2. Hierarchical Language Grounding 17

Evaluated L0 Evaluated L1 Evaluated L2

Trained L0 77.67% 28.05% 23.26%
Trained L1 32.79% 82.99% 74.65%
Trained L2 14.19% 58.62% 87.91%

FIGURE 2.5: Single-RNN Reward Grounding Baselines

L1 agentInRegion to L0 agentInRoom). Entries along the diagonal represent the
average task grounding accuracy for multiple, random 90-10 splits of the data
at the given level. Otherwise, evaluation checked for the correct grounding of
the command to a reward function at the training level equivalent to the true
reward function at the alternate evaluation level.

Task grounding scores are uniformly quite poor for IBM2; however, IBM2 mod-
els trained using L0 and L2 data respectively result in models that substantially
outperform those trained on alternate levels of data. It is also apparent that an
IBM2 model trained on L1 data fails to identify the features of the level. We
speculate that this is caused, in part, by high variance among the language com-
mands collected at L1 as well as the large number of overlapping, repetitive
tokens that are needed for generating a valid machine language instance at L1.
While these models are worse than what MacGlashan et al. (2015) observed, we
note that we do not utilize a task or behavior model. It follows that integrat-
ing one or both of these components would only help prune the task grounding
space of highly improbable tasks and improve our performance.

Conversely, Single-RNN shows the expected maximization along diagonal en-
tries that comes from training and evaluating on data at the same level of ab-
straction. These show that a model limited to a single level of language abstrac-
tion is not flexible enough to deal with the full scope of possible commands.
Additionally, Single-RNN demonstrates more robust task grounding than sta-
tistical machine translation.

The task grounding and level inference scores for the models in Sec. 2.5 are
shown in Fig. 2.6. Attempting to embed the latent abstraction level within
the machine language of IBM2 results in weak level inference. Furthermore,
grounding accuracy falls even further due to sparse alignments and the sharing
of tokens between tasks in machine language (e.g. agentInRoom agent0 room1 at
L0 and agentInRegion agent0 room1 at L1). The fastest of all the neural models,
and the one with the fewest number of parameters overall, Multi-NN shows
notable improvement in level inference over the IBM2; however, task ground-
ing performance still suffers, as the bag-of-words representation fails to cap-
ture the sequential word dependencies critical to the intent of each command.
Multi-RNN again improves upon level prediction accuracy and leverages the
high-dimensional representation learned by initial RNN layer to train reliable

Chapter 2. Hierarchical Language Grounding 18

Level Selection Reward Grounding

IBM2 79.87% 27.26%
Multi-NN 93.51% 36.05%
Multi-RNN 95.71% 80.11%
Single-RNN 95.91% 80.46%

FIGURE 2.6: Accuracy of 10-Fold Cross Validation (averaged over 3 runs) for each of
the models on the AMT Dataset.

grounding models specific to each level of abstraction.

Finally, Single-RNN has near-perfect level prediction and demonstrates the suc-
cessful learning of abstraction level as a latent feature within the neural model.
By not using an oracle for level inference, there is a slight loss in performance
compared to the results obtained in Fig. 2.5; however, we still see improved
grounding performance over Multi-RNN that can be attributed to the full shar-
ing of parameters across all training samples allowing for positive information
transfer between abstraction levels.

2.6.4 Robot Response Time

Fast response times are important for fluid human-robot interaction, so we as-
sessed the time it would take a robot to respond to natural language commands
in our corpus. We measured the time it takes for the system to process a natural
language command, map it to a reward function, and then solve the resulting
MDP to yield a policy so that the simulated robot would start moving. We used
Single-RNN for inference since it was the most accurate grounding model, and
only correctly grounded instances were evaluated, so our results are for 2634 of
3047 commands that Single-RNN got correct.

We compared three different planners to solve the MDP:

• BASE: A state-of-the-art flat (non-hierarchical) planner, bounded real-time
dynamic programming (BRTDP (McMahan, Likhachev, and Gordon, 2005)).

• AMDP: A hierarchical planner for MDPs (Gopalan et al., 2017). At the
primitive level of the hierarchy (L0), AMDP also requires a flat planner;
we use BASE to allow for comparable planning times. Because the sub-
tasks have no compositional structure, a Manhattan-distance heuristic can
be used at L0. While BASE technically allows for heuristics, distance-based
heuristics are unsuitable for the composite tasks in our dataset. This illus-
trates another benefit of using hierarchies: to decompose composite tasks
into subtasks that are amenable to better heuristics.

Chapter 2. Hierarchical Language Grounding 19

●●

●●

●●

●●

●●

●●●
●●

●●●

●●

●●
●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●
●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●● ●●

●●●
●●

●●●
●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AMDP/BASE NH/BASE AMDP/NH

(A) Regular domain (214 states)

●●

●●●
●●

●●●
●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●
●● ●●

●●

●●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●

●●● ●●

●●

●●●

●●

●●●

●●
●●
●●

●●
●●

●●
●●●

●●●

●●●

●●

●●●

●●
●●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AMDP/BASE NH/BASE AMDP/NH

7.73,
4.42

(B) Large domain (218 states)

FIGURE 2.7: Relative inference + planning times for different planning approaches
on the same correctly grounded AMT commands. For each method pair, values less
than 1 indicate the method on the numerator (left of ‘/’) is better. Each data point is
an average of 1000 planning trials.

• NH (No Heuristic): Identical to AMDP, but without the heuristic as a fair
comparison against BASE.

We hypothesize NH is faster than BASE (due to use of hierarchy), but not as fast
as AMDP (due to lack of heuristics).

Since the actual planning times depend heavily on the actual task being grounded
(ranging from 5ms for goNorth to 180s for some high-level commands), we in-
stead evaluate the relative times used between different planning approaches.
Fig. 2.7a shows the results for all 3 pairs of planners. For example, the left-most
column shows AMDP time

BASE time ; the fact that most results were less than 1 indicates
that AMDP usually outperforms BASE. Using Wilcoxon signed-rank tests, we
find that each approach in the numerator is significantly faster (p < 10−40) than
the one in the denominator, i.e. AMDP is faster than NH, which is in turn faster
than BASE; this is consistent with our hypothesis. Comparing AMDP to BASE,
we find that AMDP is twice as fast in over half the cases, 4 times as fast in a
quarter of the cases, and can reach 20 times speedup. However, AMDP is also
slower than BASE on 23% of the cases; of these, half are within 5% of BASE, but
the other half is up to 3 times slower. Inspecting these cases suggests that the
slowdown is due to overhead from instantiating multiple planning tasks in the
hierarchy; this overhead is especially prominent in relatively small domains like
Cleanup World. Note that in the worst case this is less than a 2s absolute time
difference.

Chapter 2. Hierarchical Language Grounding 20

From a computational standpoint, the primary advantage of hierarchy is space
and time abstraction. To illustrate the potential benefit of using hierarchical
planners in larger domains, we doubled the size of the original Cleanup domain
and ran the same experiments. Ideally, this should have no effect on L1 and
L2 tasks, since these tasks are agnostic to the discretization of the world. The
results are shown in Fig. 2.7b, which again are consistent with our hypothesis.
Somewhat surprisingly though, while NH still outperforms BASE (p < 10−150),
it was much less efficient than AMDP, which shows that the hierarchy itself
was insufficient; the heuristic also plays an important role. Additionally, NH
suffered from two outliers, where the planning problem became more complex
because the solution was constrained to conform to the hierarchy; this is a well-
known tradeoff in hierarchical planning (Dieterrich, 2000). The use of heuristics
in AMDP mitigated this issue. AMDP times almost stayed the same compared
to the regular domain, hence outperforming BASE and NH (p < 10−200). The
larger domain size also reduced the effect of hierarchical planning overhead:
AMDP was only slower than BASE in 10% of the cases, all within < 4% of the
time it took for BASE. Comparing AMDP to BASE, we find that AMDP is 8
times as fast in over half the cases, 100 times as fast in a quarter of the cases,
and can reach up to 3 orders of magnitude in speedup. In absolute time, AMDP
took < 1s on 90% of the tasks; in contrast, BASE takes > 20s on half the tasks.

2.6.5 Robot Demonstration

Using the trained grounding model and the corresponding AMDP hierarchy,
we tested with a Turtlebot on a small-scale version of the Cleanup World do-
main. To accommodate the continuous action space of the Turtlebot, the low-
level, primitive actions at L0 of the AMDP were swapped out for move forward,
backward, and bidirectional rotation actions; all other levels of the AMDP re-
mained unchanged. The low level commands used closed loop control policies,
which were sent to the robot using the Robot Operating System Quigley et al.,
2009.

Spoken commands were provided by an expert human user instructing the robot
to navigate from one room to another. These verbal commands were converted
from speech to text using Google’s Speech API (Google Speech API 2017) before
being grounded with the trained Single-RNN model. The resulting ground-
ing, with both the AMDP hierarchy level and reward function, fed directly into
the AMDP planner resulting in almost-instantaneous planning and execution.
Numerous commands ranging from the low-level “Go north” all the way to
the high-level “Take the block to the green room” were planned and executed
using the AMDP with imperceivable delays after the conversion from speech
to text. A video demonstration of the end-to-end system is available online:
https://youtu.be/9bU2oE5RtvU

https://youtu.be/9bU2oE5RtvU

Chapter 2. Hierarchical Language Grounding 21

2.7 Discussion

Overall, our best grounding model, Single-RNN, performed very well, correctly
grounding commands much of the time; however, it still experienced errors. At
the lowest level of abstraction, the model experienced some confusion between
robot navigation (agentInRoom) and object manipulation (blockInRoom) tasks. In
the dataset, some users explicitly mention the desired object in object manipu-
lation tasks while others did not; without explicit mention of the object, these
commands were almost identical to those instructing the robot to navigate to
a particular room. For example, one command that was correctly identified
as instructing the robot to take the chair to the green room in Fig. 2.3 is “Go
down...west until you hit the chair, push chair north...” A misclassified com-
mand for the same task was “Go south...west...north...” These commands ask
for the same directions with the same amount of repetition (omitted) but only
one mentions the object of interest allowing for the correct grounding. Over-
all, 83.3% of green room navigation tasks were grounded correctly while 16.7%
were mistaken for green room object manipulation tasks.

Another source of error involved an interpretation issue in the video demon-
strations presented to users. The robot agent shown to users as in Fig. 2.3 faces
south and this orientation was assumed by the majority of users; however, some
users referred to this direction as north (in the perspective of the robot agent).
This confusion led to some errors in the grounding of commands instructing the
robot to move a single step in one of the four cardinal directions. Logically, these
conflicts in language caused errors for each of the cardinal directions as 31.25%
of north commands were classified as south and 15% of east commands were
labeled as west.

Finally, there were various forms of human error throughout the collected data.
In many cases, users committed typos that actually affected the grounding re-
sult (e.g. asking the robot to take the chair back to the green room instead of
the observed blue room). For some tasks, users often demonstrated some dif-
ficulty understanding the abstraction hierarchy described to them resulting in
commands that partially belong to a different level of abstraction than what was
requested. In order to avoid embedding a strong prior or limiting the natural
variation of the data, no preprocessing was performed in an attempt to correct
or remove these commands. A stronger data collection approach might involve
adding a human validation step and asking separate users to verify that the
supplied commands do translate back to the original video demonstrations un-
der the given language constraints as in MacMahon, Stankiewicz, and Kuipers
(2006).

Chapter 2. Hierarchical Language Grounding 22

2.8 Conclusion

We presented a system for interpreting and grounding natural language com-
mands to a mobile-manipulator robot at multiple levels of abstraction. To our
knowledge, our system is not only the first work to ground language at multiple
levels of abstraction, but also the first to use deep neural networks for language
grounding on robots. Our proposed language-grounding models significantly
outperform the previous state-of-the-art method for mapping natural language
commands to reward functions. By explicitly considering the level of abstrac-
tion, our system can interpret a much wider range of natural language com-
mands, as well as leverage an existing hierarchical planner for efficient planning
and execution of robot tasks. Finally, our Turtlebot evaluation demonstrates that
this system works well in real-world environments and is an encouraging step
towards seamless human-robot interaction.

To achieve natural interaction with humans, robots must be able to interpret all
possible natural language input. Therefore, we must weaken the constraints and
assumptions we place on input from users. To this end, we plan to extend our
proposed models to handle natural language commands specified at a mixture
of abstraction levels. More generally, we should not allow an existing planning
abstraction hierarchy to constrain our interpretation of language. In contrast, we
can use the space of user inputs to inform the learning of appropriate abstraction
hierarchies, aiming to find structures that both match user language and are
efficient to plan with.

We envision that our system is applicable to a large variety of real-world scenar-
ios, particularly in environments where multiple levels of abstraction naturally
occur, such as in surgical, manufacturing, and household robotics.

23

Chapter 3

Grounding Actions and Goals
This chapter consists of work that was done jointly with Eddie Williams, Dilip
Arumugam, Mina Rhee, Nakul Gopalan, Lawson L.S. Wong, and Stefanie Tellex1,
presented as a workshop paper at Language Grounding for Robotics (RoboNLP),
at Association for Computational Linguistics 2017.

The central theme of this chapter is generalization. We present methods for
grounding language commands that either specify actions or goals to a modular
representation; specifically, we show how this representation lends itself well to
generalization to unseen tasks at test time.

3.1 Abstract

Robots operating alongside humans in diverse, stochastic environments must
be able to accurately interpret natural language commands. These instructions
often fall into one of two categories: those that specify a goal condition or tar-
get state, and those that specify explicit actions, or how to perform a given task.
Recent approaches have used reward functions as a semantic representation of
goal-based commands, which allows for the use of a state-of-the-art planner to
find a policy for the given task. However, these reward functions cannot be di-
rectly used to represent action-oriented commands. We introduce a new hybrid
approach, the Deep Recurrent Action-Goal Grounding Network (DRAGGN),
for task grounding and execution that handles natural language from either cat-
egory as input, and generalizes to unseen environments. Our robot-simulation
results demonstrate that a system successfully interpreting both goal-oriented
and action-oriented task specifications brings us closer to robust natural lan-
guage understanding for human-robot interaction.

Chapter 3. Grounding Actions and Goals 24

FIGURE 3.1: Sample configuration of the Cleanup World mobile-manipulator
domain (MacGlashan et al., 2015), used throughout this work. A possible goal-based
instruction could be “Take the chair to the green room,” while a possible
action-based instruction could be “Go three steps south, then two steps west.”

3.2 Introduction

Natural language affords a convenient choice for delivering instructions to robots,
as it offers flexibility, familiarity, and does not require users to have knowledge
of low-level programming. In the context of grounding natural language in-
structions to tasks, human-robot instructions can be interpreted as either high-
level goal specifications or low-level instructions for the robot to execute.

Goal-oriented commands define a particular target state specifying where a robot
should end up, whereas action-oriented commands specify a particular sequence
of actions to be executed. For example, a human instructing a robot to “go to the
kitchen” outlines a goal condition to check if the robot is in the kitchen. Alterna-
tively, a human providing the command “take three steps to the left” defines a
trajectory for the robot to execute. We need to consider both forms of commands
to understand the full space of natural language that humans may use to com-
municate their intent to robots. While humans also combine commands of both
types into a single instruction, we make the simplifying assumption that a com-
mand belongs entirely to a single type and leave the task of handling mixtures
and compositions to future work.

Existing approaches can be broadly divided into one of two regimes. Goal-based
approaches like MacGlashan et al. (2015) and Arumugam et al. (2017) leverage
some intermediate task representation and then automatically find a low-level

1Siddharth Karamcheti, Edward Williams, Dilip Arumugam, Mina Rhee, Nakul Gopalan,
Lawson L. S. Wong, Stefanie Tellex: “A Tale of Two DRAGGNs: A Hybrid Approach for Inter-
preting Action-Oriented and Goal-Oriented Instructions”. Workshop in Language Grounding for
Robotics (RoboNLP) at Association for Computational Linguistics 2017

Chapter 3. Grounding Actions and Goals 25

trajectory to achieve the goal using a planner. Other approaches, in the action-
oriented regime, directly infer action sequences (Tellex et al., 2011; Matuszek
et al., 2012; Artzi and Zettlemoyer, 2013; Andreas and Klein, 2015) from the
syntactic or semantic parse structure of natural language. However, these ap-
proaches can be computationally intractable for large state-action spaces or use
ad-hoc methods to execute high-level language rather than relying on a plan-
ner. Furthermore, these methods are unable to adapt to dynamic changes in
the environment; for example, consider an environment in which the wind, or
some other force moves an object that a robot has been tasked with picking.
Action sequence based approaches would fail to handle this without additional
user input, while goal-based approaches would be able to re-plan on the fly, and
complete the task.

To address the issue of dealing with both goal-oriented and action-oriented
commands, we present a new language grounding framework that, given a
natural language command, is capable of inferring the latent command type.
Recent approaches leveraging deep neural networks have formulated the lan-
guage grounding problem as sequence-to-sequence learning or multi-label clas-
sification (Mei, Bansal, and Walter, 2016; Arumugam et al., 2017). Inspired
by the recent success of neural networks to model programs that are highly
compositional and sequential in nature, we present the Deep Recurrent Ac-
tion/Goal Grounding Network (DRAGGN) framework, derived from the the
Neural Programmer-Interpreter (NPI) of Reed and Freitas (2016) and outlined
in Section 3.5.2. We introduce two instances of DRAGGN models, each with
slightly different architectures. The first, the Joint-DRAGGN (J-DRAGGN) is de-
fined in Section 3.5.3, while the second, the Independent-DRAGGN (I-DRAGGN)
is defined in Section 3.5.4.

3.3 Related Work

There has been a broad and diverse set of work examining how best to interpret
and execute natural language instructions on a robot platform (Vogel and Juraf-
sky, 2010; Tellex et al., 2011; Artzi and Zettlemoyer, 2013; Howard, Tellex, and
Roy, 2014; Andreas and Klein, 2015; Hemachandra et al., 2015; MacGlashan et
al., 2015; Paul et al., 2016; Mei, Bansal, and Walter, 2016; Arumugam et al., 2017).
Vogel and Jurafsky (2010) produce policies using language and expert trajecto-
ries based rewards, which allow for planning within a stochastic environment
along with re-planning in case of failure. (Tellex et al., 2011) instead grounds lan-
guage to trajectories satisfying the language specification. Howard, Tellex, and
Roy, 2014 chose to ground language to constraints given to an external plan-
ner, which is a much smaller space to perform inference over than trajectories.
MacGlashan et al. (2015) formulate language grounding as a machine transla-
tion problem, treating propositional logic functions as both a machine language

Chapter 3. Grounding Actions and Goals 26

and reward function. Reward functions or cost functions can allow richer de-
scriptions of trajectories than plain constraints, as they can describe preferential
paths. Additionally, Arumugam et al. (2017) simplify the problem from one
of machine translation to multi-class classification, learning a deep neural net-
work to map arbitrary natural language instructions to the corresponding re-
ward function.

Informing our distinction between action sequences and goal state representa-
tion is the division presented by Dzifcak et al. (2009b), who posited that natu-
ral language can be interpreted as both a goal state specification and an action
specification. Rather than producing both from each language command, our
DRAGGN framework makes the simplifying assumption that only one repre-
sentation captures the semantics of the language; additionally, our framework
does not require a manually pre-specified grammar.

Recently, deep neural networks have found widespread success and applica-
tion to a wide array of problems dealing with natural language (Bengio et al.,
2000; Mikolov et al., 2010; Mikolov et al., 2011; Cho et al., 2014; Chung et al.,
2014; Iyyer et al., 2015). Unsurprisingly, there have been some initial steps
taken towards applying neural networks to language grounding problems. Mei,
Bansal, and Walter (2016) uses a recurrent neural network (RNN) with long
short-term memory (LSTM) cells (Hochreiter and Schmidhuber, 1997) to learn
sequence-to-sequence mappings between natural language and robot actions.
This model augments the standard sequence-to-sequence architecture by learn-
ing parameters that represent latent alignments between natural language to-
kens and robot actions. Arumugam et al. (2017) used an RNN-based model to
produce grounded reward functions at multiple levels of an Abstract Markov
Decision Process hierarchy (Gopalan et al., 2016), varying the abstraction level
with the level of abstraction used in natural language.

Our DRAGGN framework is related to the Neural Programmer-Interpreter (NPI)
(Reed and Freitas, 2016). The original NPI model is a controller trained via
supervised learning to interpret and learn when to call specific programs (or
subprograms), which arguments to pass into the currently active program, and
when to terminate execution of the current program. We draw a parallel be-
tween inferred NPI programs and our method of predicting either lifted reward
functions or action trajectories.

3.4 Problem Setting

We consider the problem of mapping from natural language to robot actions
within the context of Markov decision processes. A Markov decision process
(MDP) is a five-tuple 〈S ,A, T ,R, γ〉 defining a state space S , action space A,

Chapter 3. Grounding Actions and Goals 27

FIGURE 3.2: System for grounding both action-oriented (left branch) and
goal-oriented (right branch) natural language instructions to executable robot tasks.
Our main contribution is the hybrid interpretation system (blue box), for which we
present two novel models based on the DRAGGN framework (J-DRAGGN and
I-DRAGGN) in Section 3.5.

state transition probabilities T , reward function R, and discount factor γ (Bell-
man, 1957a; Puterman, 1994). An MDP solver produces a policy that maps from
states to actions in order to maximize the total expected discounted reward.

While reward functions are flexible and expressive enough for a wide variety of
task specifications, they are a brittle choice for specifying an exact sequence of
actions, as enumerating every possible action sequence as a reward function (i.e.
a specific reward function for the sequence Up 3, Down 2) can quickly become
intractable. This paper introduces models that can produce desired behavior
by inferring either reward functions or primitive actions. We assume that all
available actions A and the full space of potential reward functions (i.e., the full
space of possible tasks) are known a priori. When a reward function is predicted
by the model, an MDP planner is applied to derive the resultant policy (see
system pipeline Figure 3.2).

We focus our evaluation on the the Cleanup World mobile-manipulator domain
(MacGlashan et al., 2015; Arumugam et al., 2017). The Cleanup World domain
consists of an agent in a 2-D world with uniquely colored rooms and movable
objects. A domain instance is shown in Figure 3.1. The domain itself is imple-
mented as an object-oriented Markov decision process (OO-MDP) where states
are denoted entirely by collections of objects, with each object having its own
identifier, type, and set of attributes (Diuk, Cohen, and Littman, 2008). Domain
objects include rooms and interactable objects (e.g a chair, basket, etc.) all of
which have location and color attributes. Propositional logic functions can be

Chapter 3. Grounding Actions and Goals 28

used to identify relevant pieces of an OO-MDP state and their attributes; as in
MacGlashan et al. (2015) and Arumugam et al. (2017), we treat these proposi-
tional functions as reward functions. In Figure 3.1, the goal-oriented command
“take the chair to the green room” may be represented with the reward function
blockInRoom block0 room1, where the blockInRoom propositional function checks
if the location attribute of block0 is contained in room1.

3.5 Approach

We now outline the pipeline that converts natural language input to robot be-
havior. We begin by first defining the semantic task representation used by our
grounding models that comes directly from the OO-MDP propositional func-
tions of the domain. Next, we examine our novel DRAGGN framework for lan-
guage grounding and, in particular, address the separate paths taken by action-
oriented and goal-oriented commands through the system as seen in Figure 3.2.
Finally, we discuss two different implementations of the DRAGGN framework
that make different assumptions about the relationship between tasks and con-
straints. Specifically, we introduce the Joint-DRAGGN (J-DRAGGN), that as-
sumes a probabilistic dependence between tasks (i.e. goUp) and the correspond-
ing arguments (i.e. 5 steps) based on a natural language instruction, and the
Independent-DRAGGN (I-DRAGGN) that treats tasks and arguments as inde-
pendent given a natural language instruction.

3.5.1 Semantic Representation

In order to map arbitrary natural language instructions to either action trajecto-
ries or goal conditions, we require a compact but sufficiently expressive seman-
tic representation for both. To this end, we define the callable unit, which takes
the form of a single-argument function. These functions are paired with binding
arguments whose possible values depend on the callable unit type. As in Mac-
Glashan et al. (2015) and Arumugam et al. (2017), our approach generates re-
ward function templates, or lifted reward functions, for goal-oriented tasks along
with environment-specific constraints. Once these templates and constraints are
resolved to get a grounded reward function, the associated goal-oriented tasks
can be solved by an off-the-shelf planner thereby improving transfer and gener-
alization capabilities.

Goal-oriented callable units (lifted reward functions) are paired with binding
arguments that specify properties of environment entities that must be satisfied
in order to achieve the goal. These binding arguments are later resolved by the
Grounding Module (see Section 3.5.5) to produce grounded reward functions
(OO-MDP propositional logic functions) that are handled by an MDP planner.

Chapter 3. Grounding Actions and Goals 29

Action-Oriented Goal-Oriented

goUp(numSteps) agentInRoom(room)
goDown(numSteps) blockInRoom(room)
goLeft(numSteps)
goRight(numSteps)

TABLE 3.1: Set of action-oriented and goal-oriented callable units that can be
generated by our DRAGGN models in the Cleanup World domain.

Action-oriented callable units directly correspond to the primitive actions avail-
able to the robot and are paired with binding arguments defining the number
of sequential executions of that action. The full set of callable units along with
requisite binding arguments is shown in Table 3.1.

3.5.2 Deep Recurrent Action/Goal Grounding Network

While the Single-RNN model of Arumugam et al. (2017) is effective, it cannot
model the compositional argument structure of language. A unit-argument pair
not observed at training time will not be predicted from input data, even if
the constituent pieces were observed separately. Additionally, the Single-RNN
model requires every possible unit-argument pair to be enumerated, to form the
output space. As the environment grows to include more objects with richer
attributes, this output space becomes intractable.

To resolve this, we introduce the Deep Recurrent Action/Goal Grounding Net-
work (DRAGGN) framework. Unlike previous approaches, the DRAGGN frame-
work maps natural language instructions to separate distributions over callable
units and (possibly multiple) binding constraints, generating either action se-
quences or goal conditions. By treating callable units and binding arguments
as separate entities, we circumvent the combinatorial dependence on the size of
the domain.

This unit-argument separation is inspired by the Neural Programmer-Interpreter
(NPI) of Reed and Freitas (2016). The callable units output by DRAGGN are
analogous to the subprograms output by NPI. Additionally, both NPI and
DRAGGN allow for subprograms/callable units with an arbitrary number of ar-
guments (by adding a corresponding number of Binding Argument Networks,
as shown at the top right of Figure 3.3a, each with its own output space).

We assume that each natural language instruction can be represented by a single
unit-argument pair with only one argument. Consequently, in our experiments,
we assume that sentences specifying sequences of commands have been seg-
mented, and each segment is given to the model one at a time. The limitation to
a single argument only arises because of the domain’s simplicity; as mentioned

Chapter 3. Grounding Actions and Goals 30

above, it is straightforward to extend our models to handle extra arguments by
adding extra Binding Argument Networks.

To formalize the DRAGGN objective, consider a natural language instruction l.
Our goal is to find the callable unit ĉ and binding arguments â that maximize
the following joint probability:

ĉ, â = arg max
c,a

Pr(c, a | l) (3.1)

Depending on the assumptions made about the relationship between callable
units c and binding arguments a, we can decompose the above objective in two
ways: preserving the dependence between the two, and learning the relation-
ship between the units and arguments jointly, and treating the two as indepen-
dent. These two decompositions result in the Joint-DRAGGN and Independent-
DRAGGN models respectively.

Given the training dataset of natural language and the space of unit-argument
pairs, we train our DRAGGN models end-to-end by minimizing the sum of the
cross-entropy losses between the predicted distributions and true labels for each
separate distribution (i.e. over callable units and binding arguments). At infer-
ence time, we first choose the callable unit with the highest probability given
the natural language instruction. We then choose the binding argument(s) with
highest probability from the set of valid arguments. The validity of a binding ar-
gument given a callable unit is given a priori, by the specific environment, rather
than being learned at training time.

Our models were trained using Adam (Kingma and Ba, 2014), for 125 epochs,
with a batch size of 16, and a learning rate of 0.0001.

3.5.3 Joint DRAGGN (J-DRAGGN)

The Joint DRAGGN (J-DRAGGN) models the joint probability in Equation 3.1,
coupled via the shared RNN state in the DRAGGN Core (as depicted in Figure
3.3a), but selects the optimizer sequentially, as follows:

ĉ, â = arg max
c,a

Pr(c, a | l) (3.2)

≈ arg max
a

[
arg max

c
Pr(c, a | l)

]

Chapter 3. Grounding Actions and Goals 31

(A) Joint DRAGGN (B) Independent DRAGGN

FIGURE 3.3: Architecture diagrams for the two Deep Recurrent Action/Goal
Grounding Network (DRAGGN) models, introduced in Sections 3.5.3 and 3.5.4. Both
architectures ground arbitrary natural language instructions to callable units (either
actions or lifted reward functions), and binding arguments.

We first encode the constituent words of our natural language segment into
fixed-size embedding vectors. From there, the sequence of word embeddings is
fed through an RNN denoted by the DRAGGN Core2. After processing the en-
tire segment, the current gated recurrent unit (GRU) hidden state is then treated
as a representative vector for the entire natural language segment. This single
hidden core vector is then passed to both the Callable Unit Network and the
Binding Argument Network, allowing for both networks to be trained jointly,
enforcing a dependence between the two.

The Callable Unit Network is a two-layer feed-forward network using rectified
linear unit (ReLU) activation. It takes the DRAGGN Core output vector as in-
put to produce a softmax probability distribution over all possible callable units.
The Binding Argument Network is a separate network with an identical archi-
tecture and takes the same input, but instead produces a probability distribution
over all possible binding arguments. The two models do not need to share the
same architecture; for example, callable units with multiple arguments require
multiple different argument networks, one for each possible binding constraint.

2We use the gated recurrent unit (GRU) as our RNN cell, because of its effectiveness in natural
language processing tasks, such as machine translation (Cho et al., 2014), while requiring fewer
parameters than the LSTM cell (Hochreiter and Schmidhuber, 1997).

Chapter 3. Grounding Actions and Goals 32

3.5.4 Independent DRAGGN (I-DRAGGN)

The Independent DRAGGN (I-DRAGGN), contrary to the Joint DRAGGN, de-
composes the objective from Equation 3.1 by treating callable units and binding
arguments as being independent, given the original natural language instruc-
tion. More precisely, the I-DRAGGN objective is:

ĉ, â = arg max
c,a

Pr(c | l) Pr(a | l) (3.3)

The I-DRAGGN network architecture is shown in Figure 3.3b. Beyond the dif-
ference in objective functions, there is another key difference between the I-
DRAGGN and J-DRAGGN architectures. Rather than encoding the constituent
words of the natural language instruction once, and feeding the resulting em-
beddings through a DRAGGN Core to generate a shared core vector, the I-
DRAGGN model embeds and encodes the natural language instruction twice,
using two separate embedding matrices and GRUs, one each for the callable
unit and binding argument. In this way, the I-DRAGGN model encapsulates
two disjoint neural networks, each with their own individual parameter sets
that are trained independently. The latter half of each individual network (the
Callable Unit Network and Binding Argument Network) remains the same as
that of the J-DRAGGN.

3.5.5 Grounding Module

If a goal-oriented callable unit is returned (i.e. a lifted reward function), we
require an additional step of completing the reward function with environment-
specific variables. As described in Arumugam et al. (2017), we use a Grounding
Module to perform this step. The Grounding Module maps the inferred callable
unit and binding argument(s) to a final grounded reward function that can be
passed to an MDP planner. In our implementation, the Grounding Module is a
lookup table mapping specific binding arguments to room ID tokens. A more
advanced implementation of the Grounding Module would be required in order
to handle domains with non-unique binding arguments (e.g. resolving between
multiple objects with overlapping attributes).

3.6 Experiments

We assess the effectiveness of both our J-DRAGGN and I-DRAGGN models via
instruction grounding accuracy for robot navigation and mobile-manipulation

Chapter 3. Grounding Actions and Goals 33

Natural Language Callable Unit Argument

Go to the red room. agentInRoom roomIsRed
Put the block in the green room. blockInRoom roomIsGreen
Go up three spaces. goUp 3

TABLE 3.2: Examples of natural language phrases and corresponding callable units
and arguments.

tasks. As a baseline, we compare against the state-of-the-art Single-RNN model
introduced by Arumugam et al. (2017).

3.6.1 Procedure

To conduct our evaluation, we use the dataset of natural language commands
for the single instance of Cleanup World domain seen in Figure 3.1, from Aru-
mugam et al. (2017). In the user study, Amazon Mechanical Turk users were
presented with trajectory demonstrations of a robot completing various navi-
gation and object manipulation tasks. Users were prompted to provide natural
language commands that they believed would have generated the observed be-
havior. Since the original dataset was compiled for analyzing the hierarchical
nature of language, we were easily able to filter the commands down to only
those using high-level goal specifications and low-level trajectory specifications.
This resulted in a dataset of 3734 natural language commands total.

To produce a dataset of action-specifying callable units, experts annotated low-
level trajectory specifications from the Arumugam et al. (2017) dataset. For ex-
ample, the command “Down three paces, then up two paces, finally left four
paces” was segmented into “down three spaces,” “then up two paces,” “finally
left four paces,” and was given a corresponding execution trace of goDown 3,
goUp 2, goLeft 4. The existing set of grounded reward functions in the dataset
were converted to callable units and binding arguments. Examples of both types
of language are presented in Table 3.2 with their corresponding callable unit and
binding arguments.

To fully show the capabilities of our model, we tested on two separate versions
of the dataset. The first is the standard dataset, consisting of a 90-10 split of
the collected action-oriented and goal-oriented commands We also evaluated
our models on an “unseen” dataset, which consists of a specific train-test split
that evaluates how well models can predict previously unseen action sequence
combinations. For example, in this dataset the training data might consist only
of action sequences of the form goUp 3, and goDown 4, while the test data would
only consist of the “unseen” action sequence goUp 4.

Chapter 3. Grounding Actions and Goals 34

Actions Goals Actions (Unseen) Overall

Single-RNN 95.8± 0.1% 87.2± 0.9% 0.0 + 0% 80.0± 0.2%
J-DRAGGN 96.6± 0.2% 87.9± 1.9% 20.2± 20.4% 83.7± 2.8%
I-DRAGGN 97.0± 0.2% 84.9± 1.8% 97.0 + 0.0% 94.7± 0.5%

TABLE 3.3: Action-oriented and goal-oriented accuracy results (mean and standard
deviation across 3 random initializations) on both the standard and unseen datasets.
Bold indicates the best model, whereas italics denotes models with tied performance.

3.6.2 Results

Language grounding accuracies for our two DRAGGN models, as well as the
baseline Single-RNN, are presented in Table 3.3. All three models received the
same set of training data, consisting of 2660 low-level action-oriented segments
and 693 high-level goal-based sentences. All together, there are 17 unique com-
binations action-oriented callable units and respective binding arguments, and
6 unique combinations of goal-oriented callable units and binding arguments
present in the data. Then, we evaluated all three models on the same set of held-
out data, which consisted of 295 low-level segments and 86 high-level sentences.

In aggregate, the models that use callable units for both action- and goal-based
language grounding demonstrate superior performance to the Single-RNN base-
line, largely due to their ability to generalize, and output combinations unseen
at train time. We break down the performance on each task in the following
three sections.

3.6.3 Action Prediction

We evaluate the performance of our models on low-level language that directly
specifies an action trajectory. An instruction is correctly grounded if the out-
put trajectory specification corresponds to the ground-truth action sequence. To
ensure fairness, we augment the output space of Single-RNN to include all dis-
tinct action trajectories found in the training data (an additional 17 classes, as
mentioned previously).

All models perform generally well on this task, with Single-RNN correctly iden-
tifying the correct action callable unit on 95.8% of test samples, while both DRAGGN
models slightly outperform with on 96.6% and 97.0% respectively.

Chapter 3. Grounding Actions and Goals 35

3.6.4 Goal Prediction

In addition to the action-oriented results, we evaluate the ability for each model
to ground goal-based commands. An instruction is correctly grounded if the
output of the grounding module corresponds to the ground-truth (grounded)
reward function.

In our domain, all models predict the correct grounded reward function with
an accuracy of 84.9% or higher, with the Single-RNN and J-DRAGGN models
being too close to call.

3.6.5 Unseen Action Prediction

The Single-RNN baseline model is completely unable to produce unit-argument
pairs that were never seen during training, whereas both DRAGGN models
demonstrate some capacity for generalization. The I-DRAGGN model in par-
ticular demonstrates a strong understanding of each token within the original
natural language utterances which, in large part, comes from the separate em-
bedding spaces maintained for callable units and binding constraints respec-
tively.

3.7 Discussion

Our experiments show that the DRAGGN models have a clear advantage over
the existing state-of-the-art in grounding action-oriented language. Further-
more, due to the factored nature of the output, I-DRAGGN generalizes well to
unseen combinations of callable units and binding arguments.

Nevertheless, I-DRAGGN did not perform as well as Single-RNN and J-DRAGGN
on goal-oriented language. This is possibly due to the small number of goal
types in the dataset and the strong overlap in goal-oriented language. Whereas
the Single-RNN and J-DRAGGN architectures may experience some positive
transfer of information (due to the shared parameters in each of the two models),
the I-DRAGGN model does not because of its assumed independence between
callable units and binding arguments. This ability to allow for positive infor-
mation transfer suggests that J-DRAGGN would perform best in environments
where there is a strong overlap in the instructional language, with a relatively
smaller but complex set of possible action sequences and goal conditions.

On action-oriented language, J-DRAGGN has grounding accuracy of around
20.2% while I-DRAGGN achieves a near-perfect 97.0%. Since J-DRAGGN only
encodes the input language instruction once, the resulting vector representation

Chapter 3. Grounding Actions and Goals 36

is forced to characterize both callable unit and binding argument features. While
this can result in positive information transfer and improve grounding accuracy
in some cases (e.g. goal-based language), this enforced correlation heavily bi-
ases the model towards predicting combinations it has seen before. By learning
separate representations for callable units and binding arguments, I-DRAGGN
is able to generalize significantly better. This suggests that I-DRAGGN would
perform best in situations where the instructional language consists of many
disjoint words and phrases.

While our results demonstrate that the DRAGGN framework is effective, more
experimentation is needed to fully explore the possibilities and weaknesses of
such models. One of the shortcomings in the DRAGGN models is the need for
segmented data. We found that all evaluated models were unable to handle
long, compositional instructions, such as “Go up three steps, then down two
steps, then left five steps”. Handling conjunctions of low-level commands re-
quires extending our model to learn how to perform segmentation, or producing
sequences of callable units and arguments.

3.8 Conclusion

In this paper, we presented the Deep Recurrent Action/Goal Grounding Net-
work (DRAGGN), a hybrid approach that grounds natural language commands
to either action sequences or goal conditions, depending on the language. We
presented two separate neural network architectures that can accomplish this
task, both of which factor the output space according to the compositional struc-
ture of our semantic representation.

We show that overall the DRAGGN models significantly outperform the exist-
ing state of the art. Most notably, we show that the DRAGGN models are capa-
ble of generalizing to action sequences unseen during training time.

Despite these successes, there are still open challenges with grounding language
to novel, unseen environment configurations. Furthermore, we hope to extend
our models to handle instructions that are a mixture of goal-oriented and action-
oriented language, as well as to long, sequential commands. An instruction such
as “go to the blue room, but avoid going through the red hallway” does not
map to either an action sequence or a traditional, Markovian reward function.
We believe new tools and approaches will need to be developed to handle such
instructions, in order to handle the diversity and complexity of human natural
language.

37

Chapter 4

Iterative Language Grounding
This chapter consists of work that was done jointly with Eugene Charniak and
Stefanie Tellex1, currently in submission.

The central theme of this chapter is interpretability. Specifically, we show how
to reformulate the problem of question-answering on short stories as an iterative
language grounding problem, where each sentence of a short story corresponds
to updates on an underlying world model. By stating the problem in this way,
we show how we can leverage the grounding procedure to perform the struc-
tured reasoning necessary for question-answering in an interpretable, reliable
way, with minimal amounts of training data and supervision.

4.1 Abstract

We examine the problem of interpreting sequences of natural language utter-
ances, for the goal of understanding, reasoning, and answering questions about
text. The challenge is that often, language assumes knowledge about an under-
lying environment. Existing approaches are limited in that they seek to learn
the dynamics of this environment implicitly, from incomplete information. In
this work, we address these limitations by presenting the Iterative Grounding
Network (IGN), an approach that explicitly factors in the underlying environ-
ment by mapping language utterances to concrete updates on an external world
model, via reinforcement learning. Our approach allows us to leverage pow-
erful computational abilities for reasoning and deduction inherent in the world
model. We show that by factoring in the World Model as an explicit compo-
nent, the IGN framework achieves near state-of-the-art results on three existing
human-robot interaction datasets, with a fraction of the supervision utilized by
baselines. Additionally, we show that with fewer than 20 fully annotated exam-
ples, we can augment the IGN, allowing it to understand and answer questions
about short stories of up to 20 sentences, obtaining near-perfect accuracy on a
suite of 20 language grounding tasks based on the 1000 example version of the
bAbI Question-Answering Tasks.

1Siddharth Karamcheti, Eugene Charniak, Stefanie Tellex: “Iterative Grounding Networks:
Grounding Natural Language to World Updates with Minimal Supervision”. In Submission

Chapter 4. Iterative Language Grounding 38

FIGURE 4.1: Iterative Grounding Network Example. Interaction Engine processes
utterances, and outputs a structured representation to be executed (e.g. by a robot) to
update world state. We can query the world state to answer questions.

4.2 Introduction

Many tasks across human-robot interaction and natural language processing as-
sume a unifying world model, responsible for maintaining the characteristics of
an environment. These models encode important features, ranging from static
information about the world’s attributes, to dynamic information about the rela-
tionships between the entities. In human-robot interaction, for example, a possi-
ble world model may include the locations of all the objects a robot may interact
with, along with the full set of actions it can take. In question-answering on
short stories, a possible world model could include other time-dependent infor-
mation, like the motivations and goals for each character.

In both of these cases, language acts to update the state of the world. Mapping
language to these concrete updates then becomes an important problem, as do-
ing so not only grants the ability to execute these updates (i.e. in a human-robot
interaction setting), but also reason about the dynamics of a given world (i.e. in
a question-answering setting). Furthermore, if these updates are structured in
such a way that they can all be performed on some external world model, like
a database, state machine, or the physical world, we can fully interpret how a
set of utterances changes an environment. In doing so, arbitrary users can gain
transparency into the full dynamics, and utilize complex tools and algorithms
to perform structured reasoning, and make logical deductions.

Existing approaches for human-robot interaction and question-answering either
try to map utterances to a structured representation, treating the rest of the
world as a black-box, or try learn the world dynamics in-model, directly from
the data. In the case of the former, most approaches require language that is

Chapter 4. Iterative Language Grounding 39

fully annotated with the ground truth structured representation, which is ex-
tremely expensive to collect, and not robust to representational changes. In the
case of the latter, most “end-to-end” methods are not easily interpretable, with
the current state of the world often existing as some vector representation inside
a neural network. Additionally, any structured reasoning needs to be learned,
and external tools cannot be effectively leveraged.

In this work, we address these problem by introducing a new framework, the
Iterative Grounding Network (IGN), for grounding natural language to struc-
tured updates on a pre-existing environment. Iterative Grounding Networks are
characterized by a World Model, responsible for explicitly tracking the world
state, and an Interaction Engine, that maps language to structured world up-
dates. Because all updates happen external to the learned Interaction Engine,
we present a novel reinforcement learning algorithm for training IGN models,
given minimal feedback from the world. Namely, we show that we can train
IGN models solely given the initial state, the set of (possibly numerous) lan-
guage utterances to ground, and a weak validation constraint to be run on the
final world state. We assess the efficacy of our IGN models through applica-
tion to three recently proposed datasets for human-robot instruction grounding,
as well as a hybrid task combining language grounding and text-based ques-
tion answering. For the latter, we introduce a new dataset based on the well-
known bAbI tasks to fully demonstrate the effectiveness of our framework. The
bAbI Tasks test a wide variety of skills, from tracking relations between entities,
to reasoning and deduction tasks like counting, positional reasoning, and path
finding (Weston et al., 2015), making them the perfect testbed for evaluating the
IGN.

On tasks in language grounding for human-robot interaction, we show that the
IGN can match state-of-the-art neural network methods, given less information.
We also show that because the World Model is factored out of the learning pro-
cess in the IGN, we can shift the reasoning required for question-answering
outside of the model, focusing the learning on the task of mapping language
to structured world updates. As a result, we show that given fewer than 20
fully-annotated examples (out of the full training set of 1000 examples), our
IGN models can obtain higher than 95% accuracy on 18 of the 20 tasks, match-
ing the performance of upper bound models that were given significantly more
information, and significantly beating the performance of end-to-end memory-
augmented neural network approaches.

4.3 Related Work

There is a large body of work that examines different methods for grounding
language to structured and unstructured representations.

Chapter 4. Iterative Language Grounding 40

Karamcheti et al. (2017) learn a fully supervised model, the deep recurrent ac-
tion/goal grounding network (DRAGGN) for mapping human-robot instruc-
tions specifying either actions or goal conditions to a factored representation.
We utilize the same factored representation in our work, as it is a succinct func-
tional form that grants the ability to handle a wide variety of language in a very
efficient manner, unlike other representations like action trajectories or lambda
calculus expressions. Other work is concerned with interpreting utterances in
weakly supervised settings. Instead of being provided with full annotations,
the only supervision signal is based on the final state of the world, after ground-
ing. Artzi and Zettlemoyer (2013) learn a weakly-supervised CCG Parser for
navigational instruction following. Williams et al. (2017) also learn a weakly-
supervised CCG Parser for instruction grounding, but with a smarter validation
function, eliminating the need for explicit planning. More recently, Misra, Lang-
ford, and Artzi (2017) use policy gradient methods in a contextual bandit setting
with reward shaping to map visual observations and text to actions. Guu et al.
(2017) combine REINFORCE (Williams, 1992) with Maximum Marginal Likeli-
hood to map utterances to programs that encapsulate the intent of the language
specification. Unfortunately, these newer reinforcement learning methods re-
quire significant amounts of data, and tens of thousands of training iterations to
converge.

Other work models the world implicitly, via the use of end-to-end neural net-
works. Most of the following evaluates on the bAbI Tasks (Weston et al., 2015),
a set of 20 question-answering tasks that test skills in entity tracking, reason-
ing, and deduction. End-to-End Memory Networks (Sukhbaatar et al., 2015) are
based on the more involved Memory Networks (Weston, Chopra, and Bordes,
2014), and read stories in multiple passes, attending to different sentences with
each pass. Henaff et al. (2016) develop the Recurrent Entity Network, a type of
Recurrent Neural Network (RNN) consisting of multiple independent modules,
each responsible for tracking separate entities of a story, allowing for efficient
question answering after only a single pass. Santoro et al. (2017) propose Rela-
tion Networks, for explicitly modeling relationships between entities over time.
However, such methods fail to be openly interpretable and transparent, because
the representation of the world state lives internal to the neural network. Ad-
ditionally, these models all require a significant number of training examples,
and fail to work on smaller datasets (Henaff et al., 2016). Our approach, in con-
trast, performs all language grounding in the external World Model, in a very
transparent, interpretable manner. We also show how we can use our model in
low-data situations, with extremely limited supervision.

Chapter 4. Iterative Language Grounding 41

4.4 Problem Setting

We consider the problem of mapping natural language utterances to explicit
updates on a world model, such that after processing, we end up in a desired
target state. More concretely, given an example x = (s0, u), where s0 denotes the
initial state of the world, and u = u1, u2, . . . un are the series of natural language
utterances, we seek to find the best set of world updates ŵ = ŵ1 . . . ŵn that when
applied to the initial state s0 result in goal state y = sT. Note that in this work, all
world updates wi are completely deterministic, so sT = w(s0). Furthermore, we
assume that each utterance ui uniquely and independently specifies an update
wi. As such, our formal objective is as follows:

ŵ1 . . . ŵn = arg max
w1...wn

[n

∏
i=1

Pr(wi | si−1, ui)

]
(4.1)

We note here that this objective is similar to the way (Guu et al., 2017) formalize
their parsing objective. Specifically, we note a similarity between the selection
over programs z based on natural language utterances u utilized in their seman-
tic parser, and our selection over world updates w.

4.5 Approach

In order to decompose the problem of mapping arbitrary natural language ut-
terances to concrete world updates, we define Iterative Grounding Networks,
with the following two components: A World Model, used to track the world
state, and an Interaction Engine, responsible for mapping utterances to the cor-
responding world update.

4.5.1 Iterative Grounding Networks

In this section, we develop the Iterative Grounding Network (IGN) capable of
working with externally specified World Models. Because the World Model is
external (i.e. it takes the form of some Database, or lives in some code run-
ning on a robot), the representation output by the Interaction Engine needs to
be structured. Only from this structured representation can the external World
Model actually update the world state, to serve as the IGN input at the next time
step. Because this hand-off is non-differentiable, and the inputs to the next time
step are determined by the external update procedure, it is impossible to train
the Interaction Engine in a supervised fashion, with standard back-propagation.

Chapter 4. Iterative Language Grounding 42

Instead, we reformulate the objective in Eq. 4.1 as a reinforcement learning prob-
lem, where at every time step, the Interaction Engine receives a new observation,
or utterance ui, and picks an action wi to apply to the World Model to maximize
the total expected reward (of ending up in the desired goal state). This allows us
to use policy gradient methods (Williams, 1992), providing a gradient that can
be used to train the Interaction Engine. Specifically, we provide an algorithm
based on on Advantage Actor-Critic (A2C) (Mnih et al., 2016) for training our
Interaction Engine.

4.5.2 World Model

We assume a World Model W , consisting of a set of entities and objects. Be-
cause it is externally specified, we also assume access to the set of structured
representationsR used to represent all possible world updates.

While there are many valid structured representations we could use, including
lambda calculus, a structured query language like SQL, or even a lightweight
functional programming language (Guu et al., 2017), we opt to use the represen-
tation utilized by Karamcheti et al. (2017) in their system for language ground-
ing, where all world updates can be parameterized by a single function that
takes a variable number of arguments. Not only is this a lightweight representa-
tion, but because of it’s factored nature (arguments can be shared across different
function calls), we can perform very efficient learning. Concretely, we assume
access to the set of functions F and arguments A such that R = F ×A. Argu-
ments include the primitive objects and entities of the underlying world, as well
as simple predicates or attributes of the same. Note that in this work, we assume
that every world update w consists of a single function call f ∈ F , called with
(possibly several) arguments a = a1 . . . an ∈ A. We leave the handling of nested
function calls to future work. Given such a parameterization, we can consider
the World ModelW as a state machine consisting of a state s, where every func-
tion call f with arguments a transforms the state in a pure, deterministic manner
(st+1 = f (a, st)).

4.5.3 Interaction Engine Training Objective

We now develop the Interaction Engine objective and training algorithm given
this setup of the problem. If we return to the overall objective outlined in Eq.
4.1, we see that:

n

∏
i=1

Pr(wi | si−1, ui) =
n

∏
i=1

Pr(fi, ai | si−1, ui) (4.2)

Chapter 4. Iterative Language Grounding 43

Algorithm 1 Parallel A2C with Factored Actions
// Parameters: θ f , θa, θv (Policies and Value Function)
// Restore θ f , θa from supervised policy (if pre-training)
Set episode counter E← 1
Initialize parallel environments P with Training Examples
repeat

Initialize time step t← 1
Reset gradients: dθ f ← 0, dθa ← 0, dθv ← 0
Create 2D Arrays s, u, v, r indexed by t, p ∈ P
repeat

Get states, utterances st, ut ← P
Compute π f , πa, vt for all P in single pass
for p ∈ P do

if p is not terminal then
Sample f ∼ π f [p], a ∼ πa[p]
Perform world update w = (f , a)
Receive immediate reward rt[p]← r

end if
end for
t← t + 1

until All environments in P are done
for p ∈ P do

R← 0, Ã← 0
for i ∈ t− 1, . . . , 1 do

// Compute discounted rewards, advantages
R← ri[p] + γR
Ã←

(
ri[p] + γvi+1[p]− vi[p]

)
+ (γλ)Ã

dθ f ← dθ f +∇θ f Ã · log π f (f | si, ui; θ f)

dθa ← dθa +∇θa Ã · log πa(a | si, ui; θa)
dθv ← dθv + ∂(R− vi[p])2

end for
end for
Perform updates of θ f , θa, θv using accumulated gradients.

until E > Emax

If, at training time, we were given fully annotated data of the form (ui, fi, ai),
this would be a straightforward objective, learnable via traditional supervised
learning techniques. However, we don’t have any knowledge about the map-
ping between utterances and function-argument tuples. Instead, we are only
given examples of the form (s0, u1 . . . un, sT), which just tells us the desired goal
state of the world.

We can reformulate Eq. 4.2 to work in this setting by treating this as a model-
free reinforcement learning problem. Concretely, at each time step t, with the
current world state st, we receive a new utterance ut, that informs our selection

Chapter 4. Iterative Language Grounding 44

over actions, or world state updates wt = (ft, at). To be explicit, an action in our
setup consists of the function f to be called, and the arguments a it is to be called
with. Every time we perform an update, we receive a reward rt that is dependent
on our current state, and the chosen update. In our setup, because we do not
have a measure of the quality of performing an update wt at any intermediate
step st, the majority of our rewards rt are 0. Our only non-zero reward comes at
the last time step T− 1, where rT−1 = +1 if sT = wT−1(sT−1), and is 0 otherwise.
To smooth our rewards over all time steps, we decay our reward over the entire
time horizon by a discount factor γ, that assigns more reward to recent update
actions taken. We refer to the discounted reward received at time step t as Rt.

As such, instead of maximizing the probability of selecting the correct update
given each natural language utterance, as in Eq. 4.1, the problem now becomes
one of maximizing the total expected reward, across all natural language utter-
ances:

max J(θ) = Ew∼π(w|s,u;θ)
[
∑

t
Rt
]

(4.3)

where the expectation is over π(w | s, u) = π(f , a | s, u), the probability of gen-
erating the update represented by function-argument (f , a) given the utterance
u, and the current state of the world s. We represent this policy π with a deep
neural network parameterized by weights θ.

One way to optimize this is to use REINFORCE (Williams, 1992):

∇θ J(θ) = ∇θEπ(w|s,u;θ)
[
∑

t
Rt
]

= Eπ

[
∇θ log π(w | s, u; θ)Rt

]
Here, gradient updates are given by the gradient of the logarithm of our policy,
scaled by the discounted reward at time t. Unfortunately, a known problem with
REINFORCE is high variance, resulting in several training episodes for the pol-
icy network to converge. To remedy this, we instead use Advantage Actor-Critic
(A2C), where we reformulate the above objective by substituting the discounted
reward Rt with an estimate of the advantage At (Mnih et al., 2016; Sutton et al.,
1999):

Chapter 4. Iterative Language Grounding 45

∇θ J(θ) = Eπ

[
∇θ log π(w | s, u; θ)At

]
where: At = Qπ(s, u, w)−Vπ(s, u)

Qπ(s, u, w) = Eπ[Rt | s, u, w]

Vπ(s, u) = Eπ[Rt | s, u]

Instead of maximizing expected reward, we maximize advantage, the difference
of our state-action value function Qπ(s, u, w), and a zero-expectation baseline,
our state value function Vπ(s, u). Intuitively, this learns to prioritize update ac-
tions that result in better than average reward, and de-prioritize actions result-
ing in worse than average reward.

Because the actual state-action value function Qπ is unknown, we can estimate
it by using our discounted rewards Rt, giving us an estimate of advantage Ãt =
Rt − Vπ(s, u), where Vπ is learned along with the policy π. However, Schul-
man et al. (2015) introduce a better estimation for Advantage called Generalized
Advantage Estimation (GAE), which we utilize in this work. GAE allows us
to control the weight of the state-value function estimate and the weight of re-
cent actions with hyper-parameters, giving us more control over the learning
process.

The final piece is the decomposition of our policy π(w | s, u; θ) into two inde-
pendent policies over the functions f and arguments a (recall that w = (f , a)).
Sharma et al. (2017) show that any compositional policy π(f , a | s, u) in an actor-
critic model (like A2C/A3C) can be factored as the product of separate policies
π(f | s, u) and π(a | s, u). More importantly, they demonstrate during train
time, actions can be chosen by sampling independently from the separate sub-
policies, often leading to faster training, and more generalizable behavior . With
this in mind, our final Interaction Engine training objective is as follows:

∇θ J(θ) = Eπ

[
∇θ log π(f , a | s, u; θ)

]
· Ãt

= Eπ

[
∇θ log

(
π f (f | s, u; θ)πa(a | s, u; θ)

)]
· Ãt

= Eπ

[
(∇θ f log π f) + (∇θa log πa)

]
· Ãt

We present a variant of the A2C Algorithm for training this objective with the
factored action space in Algorithm 1.

Chapter 4. Iterative Language Grounding 46

FIGURE 4.2: Iterative Grounding Network Architecture.

4.5.4 Interaction Engine Neural Architecture

We implement our Interaction Engine with the neural network architecture shown
in Figure A.1. The Interaction Engine takes as input at every time step t the nat-
ural language utterance ut, as well as a representation of the current world state
st. The natural language utterance ut is first embedded via an embedding layer,
where the embeddings start off as random. The variable length utterance em-
beddings are then mapped into a fixed size vector with a Gated Recurrent Unit
(Cho et al., 2014), a type of Recurrent Neural Network cell popular in many nat-
ural language processing tasks, like machine translation, question answering,
as well as prior work in human-robot interaction (Cho et al., 2014; Karamcheti
et al., 2017).

The state representation st can be represented arbitrarily, and encoded with a
corresponding architecture. For example, if the state were represented as an
image, a Convolutional Neural Network (CNN) architecture would be appro-
priate. However, here we assume that the state st is represented as a vector.
We encode it via a two-layer feed-forward network, with the ReLU activation
function. The encoded state and utterance are then concatenated, and fed to a
shared hidden layer, with another ReLU. The resulting vector is then fed to mul-
tiple sub-networks, for generating the state-value function estimate Vt, as well
as the function policy π f (f | s, u), and the argument policy πa(a | s, u).

In the case of functions with multiple arguments, we allow for multiple argu-
ment sub-networks. Each sub-network consists of a single hidden layer with

Chapter 4. Iterative Language Grounding 47

a ReLU activation, followed by the output layer. In the case of the state-value
estimate, this final layer has a linear activation, while each of the policy sub-
networks have a final softmax activation, to generate probability distributions
over functions/arguments. To regularize the network, we use Dropout (Srivas-
tava et al., 2014). We train our network using the Adam Optimizer (Kingma
and Ba, 2014), with a learning rate of .00001. All models are implemented in
Tensorflow (Abadi et al., 2015).

4.5.5 Training with Annotated Examples

In many scenarios, we may have access to a small number of fully annotated
examples, where each utterance is annotated with the exact function/argument
structured update tuple. Especially in scenarios where there are a large number
of possible function/argument tuples, or where there are several utterances in
a row without a reward signal, including this small amount of information can
significantly learning.

To formalize this, we assume access to a small number of annotated examples
(u, s, w), where w = (f , a). With this, we now have a well-defined supervised
learning objective – namely, maximize the probability of generating f , a from the
given state s and utterance u. Equivalently, we minimize the sum of the cross-
entropy losses between the predicted distributions π(f | s, u), π(a | s, u) and
the true labels f , a.

At train time, we perform this training steps by initially pre-training the policy
networks π(f), π(a) to convergence on the given set of annotated examples. We
then train the rest of the IGN via Reinforcement Learning, using the procedure
outlined in Algorithm 1. To further improve the stability of the training proce-
dure, every several thousand iterations of the reinforcement learning procedure,
we run a very small number of supervised training steps on the annotated ex-
amples. We find empirically that this helps prevent catastrophic forgetting. We
train the fully-supervised pipeline with Dropout (Srivastava et al., 2014), and
the Adam Optimizer (Kingma and Ba, 2014), with a learning rate of .001.

4.6 Experiments

We evaluate the IGN on two applications: understanding natural language in-
structions in a human-robot interaction setting, and question-answering on short
stories. The first application shows that with even in cases of a single instruc-
tion, the IGN enables training with less supervision than prior approaches. The
second application shows that the IGN is able to leverage the World Model ef-
fectively, synthesizing information from multiple sentences.

Chapter 4. Iterative Language Grounding 48

(A) Cleanup World

Examples Funcs Args Tasks

WeakSup 500 1 5 5/5
Goals 779 3 5 6/15
Actions 2955 4 7 15/28

(B) Cleanup World Dataset Statistics.

FIGURE 4.3: Cleanup World Language Grounding Dataset Statistics

4.6.1 Cleanup World Language Grounding

The first set of experiments are conducted on the Cleanup World Mobile Manip-
ulator Domain (MacGlashan et al., 2015), pictured in Figure 4.3a. The Cleanup
World domain consists of a robot agent, one or more objects, and three rooms of
different colors. Possible robot actions involve fine-grained actions, like moving
some steps in a certain direction , to more general actions like having the agent
move an object between rooms. We utilize datasets put forth by recent language
grounding approaches. Statistics describing the datasets can be found in Figure
4.3b.

The first Cleanup World Experiment (WeakSup) utilizes the dataset introduced
by Williams et al. (2017) in their work on weakly-supervised CCG Semantic
Parsing. The second and third Cleanup World experiments (Goals, Actions) uti-
lize the datasets presented by Karamcheti et al. (2017), for grounding action-
oriented and goal-oriented language. These datasets consist of single natural
language utterances annotated with the states of the world before and after
grounding. Even though we only ground a single utterance before validation,
this is still a critical task, as the instruction language is rather ambiguous and
complex. A model that works in such a setting would benefit the human-robot
interaction community, as this weakly supervised data is easier to collect, while
also being transferable to other representations. To validate the structured rep-
resentation output by our IGN, we use the procedure developed by Williams
et al. (2017) that returns +1 reward if the given structured representation results
in the desired final state, and 0 otherwise. Full details about how we utilized
these datasets in our experiments can be found in the supplemental material.

To fairly evaluate the IGN, we limit ourselves to baselines that utilize the same
function/argument representation (as the complexity of the structured represen-
tation significantly affects grounding performance). As such, in addition to IGN
results, we present the DRAGGN results on each of the datasets, as an upper
bound (UB). The DRAGGN model (Karamcheti et al., 2017) gets strictly more
data than the IGN as it is trained in a fully supervised setting. In this way, it

Chapter 4. Iterative Language Grounding 49

Random IGN DRAGGN (UB)

WeakSup 20% 93.0% 93.0%
Goals 16.67% 84.8% 86.0%
Actions 6.67% 71.9% 95.9%

TABLE 4.1: Cleanup World Results. Results use model with highest validation
accuracy across three seeds.

provides a meaningful upper bound, as it is given the ground truth groundings
that the IGN is trying to learn.

Results

Table 4.1 has the IGN and DRAGGN upper bound results for the three differ-
ent Cleanup World experiments. On the Weakly Supervised dataset (WeakSup),
the IGN is able to perfectly match the upper bound performance, obtaining a
near perfect 93.0% grounding accuracy, given the small number of examples.
We note that this is especially interesting, as the validation function the IGN is
provided with contains strictly less information than the fully annotated utter-
ances the DRAGGN model is provided with. On the Goal-Oriented language
corpus (Goals), the IGN is able to achieve close to the DRAGGN performance,
obtaining a final grounding accuracy of 84.8% (compared to the maximum pos-
sible 86.0%). This dataset contains a task output space slightly larger than the
previous Weakly Supervised dataset, and contains significantly more complex
language. Again, we note the IGN’s ability to match DRAGGN performance
given significantly less information. However, on the Action-Oriented corpus
(Actions), we see that the IGN has performance that fails to match DRAGGN,
by a large margin (71.9% accuracy vs. 95.9% accuracy). Upon thorough error
analysis, we found this was due to mode collapse, as the original dataset is very
imbalanced (of the 2955 examples, 2264 all have the same argument label).

We note this as an interesting failure mode, and hope to perform more experi-
ments in future work.

4.6.2 Hybrid bAbI Grounding and Question-Answering

The second set of experiments are conducted on a new dataset, based on the
20 well-known synthetic bAbI Question-Answering Tasks (Weston et al., 2015).
In the original bAbI dataset, each task consists of 1000 story, question, and an-
swer tuples, where stories consist of several sentences (for our work, all stories
are truncated to be no longer than 20 sentences). Note that we utilize the 1000
(1k) version of the dataset, rather than the 10,000 example (10k) version utilized

Chapter 4. Iterative Language Grounding 50

by most recent work (Henaff et al., 2016; Santoro et al., 2017). We do this to
show that IGN models can be effective given small amounts of data, unlike the
cited approaches. The tasks test varying skills, from tracking relations between
multiple entities, to the ability to deduce or induce missing information, to the
ability to reason about size, position, or geographical location. Because of this
wide variety of well-defined tasks, the bAbI dataset makes a good testbed for
the evaluation of language grounding models.

The full procedure used to convert the original bAbI dataset into the Hybrid
dataset can be found in the supplemental material. We find that we can repre-
sent a given task’s world updates with functions from up to 4 classes, and up
to three arguments from up to 14 classes. Stories are limited to be 20 sentences
long, which means that in many cases, the IGN has to choose world updates
from the set of possible functions and arguments over a horizon of 10-20 sepa-
rate examples without a reward signal. From this, it is impractical to assume that
a random policy will learn to properly ground such stories without a significant
amount of train time. However, we find that if we start with a small number of
annotated examples, we can significantly accelerate learning. As such, we test
two versions of the IGN, one where it is provided with 10 fully annotated stories
(only 1% of the total dataset), and another where it is provided with 20 stories
(only 2%). The full Hybrid bAbI QA/Language Grounding Dataset annotated
with the full set of function/argument tuples can be found at the following URL:
https://sites.google.com/site/winsupplemental/.

We implement the World Model as a state machine (implemented in code) that
consumes world updates and updates its internal fields in a pure and consis-
tent manner. Some example updates include agentToRoom(entity, location) that
moves a specified person to the given location, link(entity, object), for picking
up an object, and isA(entity, property) for assigning characteristics to an entity.
Question-Answering is done on the final state, after all updates have been pro-
cessed. Any reasoning that is necessary for answering the question is also han-
dled by the World Model. For example, if we have a question like “How many
objects is Mary carrying,” we have a function (in code) that explicitly counts
the objects that have been linked to Mary by the set of world updates, rather
than having to track the quantity implicitly, as is done in existing methods. As
mentioned previously, this ability to use external tools to perform reasoning is a
strong benefit of our approach.

To put the IGN results in context, we present a series of lower and upper bounds.
Again, this is because any strict evaluation is based on the complexity of the
underlying update representation. We present two lower bounds (LB), each
of which receive strictly less information than the IGN. These neural models
only receive story, question, answer tuples, and are trained end-to-end. The first
lower bound we present is a simple LSTM approach, while the second lower
bound model is an End-to-End Memory Network (MemN2N) (Sukhbaatar et

https://sites.google.com/site/winsupplemental/

Chapter 4. Iterative Language Grounding 51

LSTM (LB) MemN2N (LB) IGN + 10 IGN + 20 DRAGGN (UB) MemNN (UB)

1 Supporting Fact 50.0 100.0 100.0 100.0 100.0 100.0
2 Supporting Facts 20.0 91.7 96.9 99.8 99.8 100.0
3 Supporting Facts 20.0 59.7 96.7 96.7 96.7 100.0
2 Arg Relations 61.0 97.2 95.8 100.0 100.0 100.0
3 Arg Relations 70.0 86.9 53.7 85.7 85.8 98.0
Yes/No Questions 48.0 92.4 98.3 100.0 100.0 100.0
Counting 49.0 82.7 83.1 95.6 99.8 85.0
Lists/Sets 45.0 90.0 57.1 96.5 100.0 100.0
Simple Negation 64.0 86.8 92.1 100.0 100.0 100.0
Indefinite Knowledge 44.0 84.9 90.7 95.1 99.2 98.0
Basic Coreference 62.0 99.1 99.5 100.0 100.0 100.0
Conjunction 74.0 99.8 100.0 100.0 100.0 100.0
Compound Coreference 94.0 99.6 93.0 95.8 100.0 100.0
Time Reasoning 27.0 98.3 92.3 100.0 100.0 99.0
Basic Deduction 21.0 100.0 100.0 100.0 100.0 100.0
Basic Induction 23.0 98.4 100.0 100.0 100.0 100.0
Positional Reasoning 51.0 49.0 51.9 69.0 90.1 65.0
Size Reasoning 52.0 88.9 96.6 99.6 99.6 95.0
Path Finding 8.0 17.2 79.7 100.0 100.0 36.0
Agent Motivation 91.0 100.0 100.0 100.0 100.0 100.0

Solved Tasks (> 95%) 0 8 11 18 18 17

TABLE 4.2: Hybrid bAbI Results. IGN Models are trained via RL, with 10 (1%), and
20 (2%) of the stories fully annotated. Italics denote cases where IGN results are
worse than MemN2N, while Bold denotes best IGN model that solves the task
(> 95% accuracy).

al., 2015) that explicitly reads the story via multiple passes, then finally gener-
ates the answer. The two upper bounds receive strictly more information than
the IGN. The first upper bound, the DRAGGN, receives fully annotated stories.
We note that this is the most meaningful model for interpreting the IGN results,
as it directly bounds the results in the same manner as in the prior experiments.
The second upper bound is the Memory Network with Supporting Fact Supervi-
sion (MemNN) (Weston, Chopra, and Bordes, 2014). The Memory Network gets
the original sentences of the story, along with the set of sentences necessary to
answering a question. Because the subset of sentences necessary to answer are
significantly smaller than the total number of sentences in the story, the MemNN
model has the best performance on the original dataset at the cost of needing the
most annotated data.

Results

Table 4.2 has the results for both versions of the IGN, as well as all lower and
upper bounds. Notably, we show that providing just 10 annotated examples is
enough to gain greater than 95% accuracy on 11 of the 20 tasks. If we increase the
number to 20 annotated stories, we solve 18 of the hybrid tasks. In other words,
solely by providing the World Model, and a very small number of annotated
examples (2% of the total training set), we can obtain near-perfect performance.

Chapter 4. Iterative Language Grounding 52

FIGURE 4.4: Learning curves plotting accuracy on validation set vs. number of
training iterations for the Two-Arg Relations Hybrid bAbI Task.

Figure 4.4 shows learning curves on the “2 Arg Relations” Task, one of the only
tasks requiring more than 20,000 training steps. Note that with more annotated
examples, the IGN learns faster and more efficiently.

4.7 Discussion

Our evaluation shows that not only is the IGN able to successfully operate in
the context of human-robot interaction, as per our Cleanup World experiments,
but also in the context of story understanding, solving 18 out of the 20 Hybrid
bAbI question tasks.

On Cleanup World, we find that most of the time, the IGN is able to match (or
almost match) the upper bound DRAGGN state-of-the-art results. This seems
to strongly indicate the effectiveness of the IGN, as it takes minor performance
hits, with the major benefit of requiring less data to train. Not only is it signifi-
cantly easier to collect data of the form required for the IGN (namely utterance,
initial state, and final state), but it allows for the use of many different types of
structured representations with the same dataset. In the case of the fully super-
vised DRAGGN models, the language utterances all must be annotated with the
required function/argument pairs, which is not only extremely expensive, but
not robust to representational changes.

While the results of the Cleanup World experiments are strong, the crucial ben-
efits of the IGN are found in the Hybrid bAbI results. Most notable are the cases

Chapter 4. Iterative Language Grounding 53

where the IGN is able to significantly outperform the End-to-End Memory Net-
work lower bound, for example, on the tasks of “Counting”, “Indefinite Knowl-
edge”, and “Path Finding”. The key similarity between each of these three tasks
is the need for relatively complex reasoning and deduction to come up with the
answer given the story. For example, in the “Path Finding” task, stories consist
of descriptions of the world (i.e. “The kitchen is north of the hallway, the gar-
den is east of the hallway”), and questions asking to find paths between certain
locations (i.e. “How do I get from the kitchen to the garden?”). This requires
complex reasoning to go from the story information describing the world, to
the required path (i.e. “south, east”). In the case of the End-to-End Memory
Network, because this reasoning is happening internal to the neural network
model, it is hard to generate the correct answer, as the network is not structured
to perform the explicit logical steps. However, in the case of the IGN, because
the World Model is specified externally (namely, in code), any set of tools (in our
case, a simple search algorithm) can be leveraged to find the given path from the
story information.

Also important are the cases where the IGN fails to outperform the End-to-End
Memory Network lower bound, namely, on the “3 Arg Relations” and “Com-
pound Coreference” Tasks. We note that the key similarity between these tasks
is that they all require world updates that are represented with a single function,
and exactly three arguments (the maximum number of arguments we needed
across all tasks). For the “3 Arg Relations” task, this amounts to a total num-
ber of world updates equal to 4 · 5 · 14 · 14 = 3, 920 possible options. While the
IGN is clearly able to learn how to map utterances to the correct world state,
it is not able to do so efficiently, as in some sense, it is trying to solve a harder
problem than is necessary (both these tasks have a large amount of unnecessary
information in the stories). Because the End-to-End Memory Network is given
the question a priori, it can effectively search over the entire story and attend
to only the important parts, while the IGN has to ground every utterance with
high accuracy, which in these cases prove to be a harder task.

In other words, because the IGN factors out the World Model, we can not only
effectively ground language for human-robot interaction, but also answer ques-
tions for text-based story understanding. The external model allows us to not
only fully interpret and understand the grounding procedure, but also lets us
use a wide variety of specialized tools and algorithms for performing reasoning
and deduction, something that would be impossible with an end-to-end model.
Best of all, we can obtain strong results with the IGN, either matching or exceed-
ing the existing state-of-the-art, with significantly less data and supervision.

While the external World Model can clearly lead to significant benefits, it is limit-
ing because it cannot be directly learned. Not only does the World Model need to
be expertly designed, but the process of adding additional literals or actions may
require non-trivial tweaks. As such, scaling to new domains would necessitate

Chapter 4. Iterative Language Grounding 54

an updated World Model, capable of handling new update actions. However,
we argue that the interpretability, transparency, and ability to perform struc-
tured reasoning provided by the World Models exceed the cost, especially in the
use-cases we have outlined above. We hope to address some new applications
of the IGN, as well as some of the aforementioned problems in future work.

4.8 Conclusion

We present the Iterative Grounding Network (IGN), a framework for mapping
language to structured world updates. We develop the IGN using a deep neural
network to map language utterances and state observations into a representa-
tion based on functions and arguments. We also present a novel reinforcement
learning algorithm based on Advantage Actor-Critic (A2C) for training the IGN,
where the only inputs are the initial state of the world, the set of utterances to
ground, and a final validation constraint to run on the final state. Finally, our
results show that we can use the IGN to great effect in applications to tasks in
human-robot interaction, as well as text-based question answering. On the lat-
ter, the IGN grants full transparency into the grounding process, allowing for
the use of external tools to perform structured reasoning, solving 18 of the 20
Hybrid bAbI Tasks.

While the IGN is a step in the right direction, there remain open challenges. One
challenge would be to learn to compose primitive functions to represent nested
behaviors, without the need for additional hand-engineered forms. These “macro-
functions” would allow for the generalization to more tasks, with less informa-
tion. Another possible direction would be to explore the capabilities of the exter-
nal world model. Because you can use arbitrary tools in tandem with the world
model, it would be interesting to see the possibilities of the IGN framework in
combination with an external database, to do more general question answering.

55

Chapter 5

Conclusion: Looking Forward
The goal of this thesis is to explore the problem of language grounding by exam-
ining three themes in language – abstraction, generalization, and interpretabil-
ity – and their application to tasks in human-robot interaction and question-
answering. In the first chapter, we present work on hierarchical language ground-
ing, where we develop a system capable of handling abstraction in language,
grounding both high-level instructions and low-level instructions in a single
model, for the purposes of faster and more accurate grounding to robot behav-
ior. In the second chapter, we present work on generalizing across actions and
goals, where we develop a new suite of models and representations capable of
mapping language to either goal representations or actions, as well as general-
ize to unseen tasks. Finally, in the third chapter, we examine interpretability,
mapping the language in short stories to concrete database updates, allowing
for complex language reasoning to happen in an understandable way.

While the key punchlines of this work are the above themes, there are two others
that are equally important, and referenced throughout this work – modularity
and representation. To build truly effective language grounding systems, both
of these are necessary components: a language grounding system needs to be
modular, capable of interfacing with a series of tools and systems to generate
behavior (like the motion planners and databases in this work). Furthermore, a
language grounding system needs to trade in the right form of representation,
a structure that allows one to express a large variety of different tasks, with
minimal hand-engineering or domain-specificity.

While the results in this thesis are promising in regards to the aforementioned
themes, there is still a long way to go. The work in this thesis is limited for one
reason: the language interaction is one-sided. Users give instructions, a model
reads a story, and then outputs a behavior. To truly bridge the gap between hu-
man users and complex systems, language grounding needs to take interaction
into account. Grounding models needs to be able to communicate back to users,
asking questions, and gleaning information to allow for better generalization.

We ground language because we envision a world without a gap between ev-
eryday people and complex technology – where everything is truly accessible.
This thesis is a first step towards that goal, but there is so much more to do.

56

Appendix A

Iterative Grounding Details

A.1 Interaction Engine Neural Architecture

We implement our Interaction Engine with the neural network architecture shown
in Figure A.1. The Interaction Engine takes as input at every time step t the nat-
ural language utterance ut, as well as a representation of the current world state
st. The natural language utterance ut is first embedded via an embedding layer,
where the embeddings start off as random. The variable length utterance em-
beddings are then mapped into a fixed size vector with a Gated Recurrent Unit
(Cho et al., 2014), a type of Recurrent Neural Network cell popular in many nat-
ural language processing tasks, like machine translation, question answering,
as well as prior work in human-robot interaction (Cho et al., 2014; Karamcheti
et al., 2017).

The state representation st can be represented arbitrarily, and encoded with a
corresponding architecture. For example, if the state were represented as an
image, a Convolutional Neural Network (CNN) architecture would be appro-
priate. However, here we assume that the state st is represented as a vector.
We encode it via a two-layer feed-forward network, with the ReLU activation
function. The encoded state and utterance are then concatenated, and fed to a
shared hidden layer, with another ReLU. The resulting vector is then fed to mul-
tiple sub-networks, for generating the state-value function estimate Vt, as well
as the function policy π f (f | s, u), and the argument policy πa(a | s, u).

In the case of functions with multiple arguments, we allow for multiple argu-
ment sub-networks. Each sub-network consists of a single hidden layer with
a ReLU activation, followed by the output layer. In the case of the state-value
estimate, this final layer has a linear activation, while each of the policy sub-
networks have a final softmax activation, to generate probability distributions
over functions/arguments. To regularize the network, we use Dropout (Srivas-
tava et al., 2014). We train our network using the Adam Optimizer (Kingma
and Ba, 2014), with a learning rate of .00001. All models are implemented in
Tensorflow (Abadi et al., 2015).

Appendix A. Iterative Grounding Details 57

FIGURE A.1: Iterative Grounding Neural Network Architecture.

A.2 Experiments

A.2.1 Cleanup World Language Grounding

The first Cleanup World Experiment (WeakSup) utilizes the dataset introduced
by Williams et al. (2017) in their work on weakly-supervised CCG Semantic
Parsing. The dataset presented is small, containing only 500 examples, span-
ning 5 different tasks. The tasks all involve the robot agent moving to a specific
location, either a room or an object. Each example consists of a single utterance,
a set of different pre-condition states of the world prior to grounding, as well as
a set of post-condition states that are all satisfiable given the correct grounding
and respective pre-condition state. Williams et al. (2017) additionally define a
validation function that outputs 1 or 0 based on if the produced CCG parse sat-
isfies all post-condition states given each pre-condition state of the example in
question.

To apply the IGN to this dataset, we simplify the lambda calculus parse lan-
guage utilized in the original work into a language of functions and arguments,
identical to the representation used by Karamcheti et al. (2017). This structured
representation consists of a single function, and five different arguments. We
additionally modify the presented validation function to take in the modified
functional language. As such, the IGN setup involves feeding in the utterance
and initial states, generating the function/argument tuple, and then calculat-
ing the reward (via the validation function), based on if the respective update
satisfies each post-condition state of the example.

The second and third Cleanup World experiments (Goals, Actions) utilize the
datasets presented by Karamcheti et al. (2017), in their work on grounding action-
oriented and goal-oriented language. The authors present two datasets, one

Appendix A. Iterative Grounding Details 58

consisting of goal-oriented language, and the other consisting of action-oriented
language. Because Karamcheti et al. (2017) work in a fully supervised context,
each example consists of the utterance, the initial state of the world, and the
correct function/argument tuple to generate. To turn this into a weakly super-
vised problem, such that we can illustrate the effectiveness of the IGN, we cre-
ate a validation function similar to that of Williams et al. (2017), by executing
each function/argument tuple to get the final post-condition state of the world.
We then discard the ground truth function/arguments that are supposed to be
generated, and train our IGN solely using the raw utterances and validation
function.

We train the IGN only via Reinforcement Learning, for 1600 iterations of Algo-
rithm 1. The initial states of the Cleanup World domain are represented as hot-
encoded vectors that store the location of the robot agent. We use an embedding
size of 30, an RNN encoder size of 128, processing 8 separate utterances per
forward pass.

A.2.2 Hybrid bAbI Grounding and Question-Answering

To convert the original bAbI Question-Answering dataset into the Hybrid bAbI
Question-Answering/Language Grounding dataset, we first define a set of func-
tions and arguments that encapsulate the full set of world updates that are rep-
resented for each of the 20 tasks. We find that on average, each task’s set of
world updates can be represented with around a function from up to 4 classes,
and up to three arguments from up to 14 classes. We then modify the origi-
nal code used to generate the tasks (Weston et al., 2015), to annotate each sen-
tence of the original bAbI QA tasks (version 1.2) with the corresponding world
state update (function/argument tuple). Note that the stories in our dataset
are exactly the same as those in the original (we are not generating new sto-
ries). To generate the final validation constraint, we turn each of the ques-
tion/answer pairs from the original dataset into a boolean function, that re-
turns 1 reward if True given the final state of the world, and 0 reward other-
wise. More precisely, if we are given a question like “Where is Mary?” with
the answer “kitchen”, our validation function returns 1 reward if and only if in
the final world state, Mary ends up in the kitchen. As mentioned in the pa-
per, the full Hybrid bAbI QA/Language Grounding Dataset annotated with
the full set of function/argument tuples can be found at the following URL:
https://sites.google.com/site/winsupplemental/.

We implement the World Model as a state machine (implemented in code) that
consumes a given world update and updates its internal fields in a pure and con-
sistent manner. For example, given an utterance like “Mary went to the kitchen”
which maps to the function/arguments agentToRoom(Mary, kitchen), the state
machine merely updates its internal dictionary storing locations to have the key
“Mary” point to the location “kitchen.” This is a simple procedure that is not

https://sites.google.com/site/winsupplemental/

Appendix A. Iterative Grounding Details 59

only efficient at modeling the full state of the world, but is effective to query at
validation time. Any reasoning that needs to happen for validation is also ex-
ecuted in code, which is a crucial benefit of our approach. For example, if we
have a question like “How many objects is Mary carrying,” we have a function
(in code) that explicitly counts the objects that have been linked to Mary by the
given set of world updates, rather than having to track the quantity implicitly,
as is done in existing end-to-end methods.

We specifically use such reasoning to great effect in the following reasoning-
focused tasks: “Counting”, “Lists/Sets”, “Indefinite Knowledge”, “Basic De-
duction”, “Basic Induction”, and “Path Finding.” In the “Path Finding” task
specifically, in which we report significantly better results than the lower bound
model, we found this reasoning to be extremely important. More precisely, we
used a simple dynamic programming algorithm to take stories (of the form “The
garden is east of the hallway,” “The kitchen is north of the hallway”) and ques-
tions (of the form “How do I get from the kitchen to the garden”) and compute
the actual path necessary for the answer (namely, “south, east”). Having this
algorithm responsible for the structured reasoning allowed for perfect perfor-
mance on this task, whereas all end-to-end methods failed.

Tables 1 and 2 (next page) give exhaustive dataset statistics, and provide the full
list of all world update functions utilized for the Hybrid bAbI Tasks.

We train the IGN via the hybrid supervised learning/reinforcement learning
procedure outlined in the Approach section, for up to 250,000 iterations of Al-
gorithm 1, with early stopping after 20,000 iterations if the accuracy on the val-
idation set exceeds 95% (we find only a small number of tasks need more than
20,000 iterations). We perform an initial pre-training of 120 supervised iterations
on the limited number of annotated examples. Initial states are represented by
hot encoding any information relevant to the task (i.e. entity locations in the en-
tity relation tasks, presence of objects in reasoning tasks) in a vector. To further
improve the stability of the training procedure, every several thousand itera-
tions of the reinforcement learning procedure, we run a very small number of
supervised training steps on the annotated examples. We find empirically that
this helps prevent catastrophic forgetting. To this end, we perform 20 super-
vised iterations on the limited number of annotated examples every 2,000 rein-
forcement learning iterations. We use an embedding size of 30, with an RNN
size of 128, processing 8 separate utterances per forward pass.

Appendix A. Iterative Grounding Details 60

Max Story Length Functions Argument 1 Argument 2 Argument 3

1 Supporting Fact 10 1 5 7 -
2 Supporting Facts 20 3 5 10 -
3 Supporting Facts 20 3 5 10 -
2 Arg Relations 2 4 7 7 -
3 Arg Relations 20 4 5 14 14
Yes/No Questions 20 3 5 10 -
Counting 20 4 5 14 -
Lists/Sets 20 3 5 10 -
Simple Negation 10 1 5 7 -
Indefinite Knowledge 10 2 5 7 7
Basic Coreference 10 1 7 7 -
Conjunction 10 1 7 5 5
Compound Coreference 10 2 7 6 5
Time Reasoning 14 4 5 7 -
Basic Deduction 8 2 9 5 -
Basic Induction 9 2 6 9 -
Positional Reasoning 2 4 7 7 -
Size Reasoning 15 2 7 7 -
Path Finding 5 4 7 7 -
Agent Motivation 12 3 5 12 -

TABLE A.1: Dataset Statistics for the Hybrid bAbI Tasks Dataset

Function Signature Description

agentToRoom(entity, location) Move an entity to the given location.
link(entity, object) Link an object to an entity (for picking up objects).
unlink(entity, object) Unlink an object and entity (for dropping objects).
isNorthOf(room1, room2) Specify that room1 is north of room2 (positional reasoning).
isEastOf(room1, room2) Specify that room1 is east of room2 (positional reasoning).
isWestOf(room1, room2) Specify that room1 is west of room2 (positional reasoning).
isSouthOf(room1, room2) Specify that room1 is south of room2 (positional reasoning).
transfer(person1, person2, object) Transfer object from person1 to person2.
addMotive(person, motive) Add motivation (hungry, thirsty, etc.) to given person.
fitsInside(object1, object2) Specify that object1 fits inside object2 (size reasoning).
isBiggerThan(object1, object2) Specify that object1 is bigger than object2 (size reasoning).
isA(entity, characteristic) Assign given characteristic to entity.
isColor(entity, color) Assign given color to entity.
isAfraidOf(entity1, entity2) Specify that entity1 fears entity2.
agentToRoomYesterday(entity, location) Specify that entity went to location yesterday.
agentToRoomMorning(entity, location) Specify that entity went to location this morning.
agentToRoomAfternoon(entity, location) Specify that entity went to location this afternoon.
agentToRoomEvening(entity, location) Specify that entity went to location this evening.
agentsToRoom(entity1, entity2, location) Move entity1 and entity2 to location.
agentsMaybeIn(entity1, entity2, location) Specify that entities might be in location.

TABLE A.2: Exhaustive Set of Functions defined for Hybrid bAbI Tasks.

61

Bibliography

Abadi, Martín et al. (2015). “TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Distributed Systems”. In: CoRR abs/1603.04467.

Andreas, Jacob and Dan Klein (2015). “Alignment-based compositional seman-
tics for instruction following”. In: Conference on Empirical Methods in Natural
Language Processing.

Artzi, Yoav and Luke Zettlemoyer (2013). “Weakly supervized learning of se-
mantic parsers for mapping instructions to actions”. In: Annual Meeting of the
Association for Computational Linguistics.

Arumugam, Dilip et al. (2017). “Accurately and Efficiently Interpreting Human-
Robot Instructions of Varying Granularities”. In: CoRR abs/1704.06616.

Bellman, R. (1957a). “A Markovian decision process”. In: Indiana University Math-
ematics Journal 6 (4), pp. 679–684.

Bellman, Richard (1957b). Dynamic Programming. 1st ed. Princeton, NJ, USA:
Princeton University Press.

Bengio, Yoshua et al. (2000). “A Neural Probabilistic Language Model”. In: Jour-
nal of Machine Learning Research 3, pp. 1137–1155.

Brooks, Daniel J. et al. (2012). “Make it so: Continuous, Flexible Natural Lan-
guage Interaction with an Autonomous Robot”. In: AAAI Conference on Artifi-
cial Intelligence Workshop on Grounding Language for Physical Systems.

Brown, Peter F. et al. (1990). “A Statistical Approach to Machine Translation”. In:
Computational Linguistics 16, pp. 79–85.

Brown, Peter F. et al. (1993). “The Mathematics of Statistical Machine Transla-
tion: Parameter Estimation”. In: Computational Linguistics 19, pp. 263–311.

Chen, David L. and Raymond J. Mooney (2011). “Learning to Interpret Natural
Language Navigation Instructions from Observations.” In: AAAI Conference
on Artificial Intelligence.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation”. In: Empirical Methods in
Natural Language Processing.

Chung, Junyoung et al. (2014). “Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling”. In: CoRR abs/1412.3555.

Dieterrich, Thomas G. (2000). “Hierarchical reinforcement learning with the MAXQ
value function decomposition”. In: Journal on Artificial Intelligence Research 13,
pp. 227–303.

BIBLIOGRAPHY 62

Diuk, Carlos, Andre Cohen, and Michael L. Littman (2008). “An object-oriented
representation for efficient reinforcement learning”. In: International Conference
on Machine Learning.

Dzifcak, Juraj et al. (2009a). “What to do and how to do it: Translating natu-
ral language directives into temporal and dynamic logic representation for
goal management and action execution”. In: IEEE International Conference on
Robotics and Automation.

Dzifcak, Juraj et al. (2009b). “What to do and how to do it: Translating natu-
ral language directives into temporal and dynamic logic representation for
goal management and action execution”. In: IEEE International Conference on
Robotics and Automation.

Google Speech API (2017). https://cloud.google.com/speech/. Accessed: 2017-
01-30.

Gopalan, Nakul et al. (2016). “Planning with Abstract Markov Decision Pro-
cesses”. In: International Conference on Machine Learning Workshop on Abstrac-
tion in Reinforcement Learning.

– (2017). “Planning with Abstract Markov Decision Processes”. In: International
Conference on Automated Planning and Scheduling.

Guu, Kelvin et al. (2017). “From Language to Programs: Bridging Reinforcement
Learning and Maximum Marginal Likelihood”. In: CoRR abs/1704.07926.

Hemachandra, Sachithra et al. (2015). “Learning Models for Following Natural
Language Directions in Unknown Environments”. In: IEEE International Con-
ference on Robotics and Automation.

Henaff, Mikael et al. (2016). “Tracking the World State with Recurrent Entity
Networks”. In: CoRR abs/1612.03969.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”.
In: Neural Computation 9, pp. 1735–1780.

Howard, Thomas M., Stefanie Tellex, and Nicholas Roy (2014). “A natural lan-
guage planner interface for mobile manipulators”. In: IEEE International Con-
ference on Robotics and Automation.

Iyyer, Mohit et al. (2015). “Deep Unordered Composition Rivals Syntactic Meth-
ods for Text Classification”. In: Conference of the Association for Computational
Linguistics.

Jong, Nicholas K. and Peter Stone (2008). “Hierarchical model-based reinforce-
ment learning: R-max + MAXQ”. In: International Conference on Machine Learn-
ing.

Junghanns, Andreas and Jonathan Schaeeer (1997). “Sokoban: a Challenging
Single-agent Search Problem”. In: International Joint Conference on Artificial In-
telligence Workshop on Using Games as an Experimental Testbed for AI Reasearch.

Karamcheti, Siddharth et al. (2017). “A Tale of Two DRAGGNs: A Hybrid Ap-
proach for Interpreting Action-Oriented and Goal-Oriented Instructions”. In:
CoRR abs/1707.08668.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic Op-
timization”. In: CoRR abs/1412.6980.

https://cloud.google.com/speech/

BIBLIOGRAPHY 63

MacGlashan, James et al. (2015). “Grounding English commands to reward func-
tions”. In: Robotics: Science and Systems.

MacMahon, Matt, Brian Stankiewicz, and Benjamin Kuipers (2006). “Walk the
talk: Connecting language, knowledge, and action in route instructions”. In:
National Conference on Artificial Intelligence.

Matuszek, Cynthia et al. (2012). “Learning to parse natural language commands
to a robot control system”. In: International Symposium on Experimental Robotics.

McGovern, Amy, Richard S. Sutton, and Andrew H Fagg (1997). “Roles of macro-
actions in accelerating reinforcement learning”. In: Grace Hopper Celebration of
Women in Computing 1317.

McMahan, H. Brendan, Maxim Likhachev, and Geoffrey J. Gordon (2005). “Bounded
real-time dynamic programming: RTDP with monotone upper bounds and
performance guarantees”. In: International Conference on Machine Learning.

Mei, Hongyuan, Mohit Bansal, and Matthew R. Walter (2016). “Listen, Attend,
and Walk: Neural Mapping of Navigational Instructions to Action Sequences”.
In: AAAI Conference on Artificial Intelligence.

Mikolov, Tomas et al. (2010). “Recurrent neural network based language model”.
In: Interspeech.

Mikolov, Tomas et al. (2011). “Extensions of recurrent neural network language
model”. In: IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing.

Mikolov, Tomas et al. (2013). “Efficient Estimation of Word Representations in
Vector Space”. In: CoRR abs/1301.3781.

Misra, Dipendra, John Langford, and Yoav Artzi (2017). “Mapping Instructions
and Visual Observations to Actions with Reinforcement Learning”. In: Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Process-
ing. Vancouver, Canada: Association for Computational Linguistics.

Mnih, Volodymyr et al. (2016). “Asynchronous Methods for Deep Reinforcement
Learning”. In: ICML.

Paul, Rohan et al. (2016). “Efficient Grounding of Abstract Spatial Concepts for
Natural Language Interaction with Robot Manipulators”. In: Robotics: Science
and Systems.

Puterman, Martin L. (1994). “Markov Decision Processes: Discrete Stochastic
Dynamic Programming”. In:

Quigley, Morgan et al. (2009). “ROS: an open-source Robot Operating System”.
In: IEEE International Conference on Robotics and Automation Workshop on Open
Source Software.

Raman, Vasumathi and Hadas Kress-Gazit (2011). “Analyzing Unsynthesizable
Specifications for High-Level Robot Behavior Using LTLMoP”. In: Interna-
tional Conference on Computer-Aided Verification.

Reed, Scott E. and Nando de Freitas (2016). “Neural Programmer-Interpreters”.
In: International Conference on Learning Representations.

Santoro, Adam et al. (2017). “A simple neural network module for relational
reasoning”. In: CoRR abs/1706.01427.

BIBLIOGRAPHY 64

Schulman, John et al. (2015). “High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation”. In: CoRR abs/1506.02438.

Sharma, Sahil et al. (2017). “Learning to Factor Policies and Action-Value Func-
tions: Factored Action Space Representations for Deep Reinforcement learn-
ing”. In: CoRR abs/1705.07269.

Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent neural net-
works from overfitting”. In: Journal of Machine Learning Research 15, pp. 1929–
1958.

Sukhbaatar, Sainbayar et al. (2015). “End-To-End Memory Networks”. In: NIPS.
Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence

Learning with Neural Networks”. In: CoRR abs/1409.3215.
Sutton, Richard S., Doina Precup, and Satinder P. Singh (1999). “Between MDPs

and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement
Learning”. In: Artificial Intelligence 112, pp. 181–211.

Sutton, Richard S. et al. (1999). “Policy Gradient Methods for Reinforcement
Learning with Function Approximation”. In: NIPS.

Tellex, Stefanie et al. (2011). “Understanding Natural Language Commands for
Robotic Navigation and Mobile Manipulation”. In: AAAI Conference on Artifi-
cial Intelligence.

Vogel, Adam and Dan Jurafsky (2010). “Learning to follow navigational direc-
tions”. In: Annual Meeting of the Association for Computational Linguistics.

Weston, Jason, Sumit Chopra, and Antoine Bordes (2014). “Memory Networks”.
In: CoRR abs/1410.3916.

Weston, Jason et al. (2015). “Towards AI-Complete Question Answering: A Set
of Prerequisite Toy Tasks”. In: CoRR abs/1502.05698.

Williams, Edward C. et al. (2017). “Learning to Parse Natural Language to Grounded
Reward Functions with Weak Supervision”. In: AAAI Fall Symposium on Nat-
ural Communication for Human-Robot Collaboration.

Williams, Ronald J. (1992). “Simple Statistical Gradient-Following Algorithms
for Connectionist Reinforcement Learning”. In: Machine Learning 8, pp. 229–
256.

Yamada, Tatsuro et al. (2016). “Dynamical Linking of Positive and Negative Sen-
tences to Goal-Oriented Robot Behavior by Hierarchical RNN”. In: Interna-
tional Conference on Artificial Neural Networks.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	A Grounded Introduction
	Hierarchical Language Grounding
	Abstract
	Introduction
	Related Work
	Approach
	Language Models
	IBM Model 2
	Neural Network Language Models
	Multi-NN: Multiple Output Feed-Forward Network
	Multi-RNN: Multiple Output Recurrent Network
	Single-RNN: Single Output Recurrent Network

	Grounding Module

	Evaluation
	Mobile-Manipulation Robot Domain
	Procedure
	Robot Task Grounding
	Robot Response Time
	Robot Demonstration

	Discussion
	Conclusion

	Grounding Actions and Goals
	Abstract
	Introduction
	Related Work
	Problem Setting
	Approach
	Semantic Representation
	Deep Recurrent Action/Goal Grounding Network
	Joint DRAGGN (J-DRAGGN)
	Independent DRAGGN (I-DRAGGN)
	Grounding Module

	Experiments
	Procedure
	Results
	Action Prediction
	Goal Prediction
	Unseen Action Prediction

	Discussion
	Conclusion

	Iterative Language Grounding
	Abstract
	Introduction
	Related Work
	Problem Setting
	Approach
	Iterative Grounding Networks
	World Model
	Interaction Engine Training Objective
	Interaction Engine Neural Architecture
	Training with Annotated Examples

	Experiments
	Cleanup World Language Grounding
	Results

	Hybrid bAbI Grounding and Question-Answering
	Results

	Discussion
	Conclusion

	Conclusion: Looking Forward
	Iterative Grounding Details
	Interaction Engine Neural Architecture
	Experiments
	Cleanup World Language Grounding
	Hybrid bAbI Grounding and Question-Answering

	Bibliography

