
Teaching Robots Using Mixed Reality

Samir Yitzhak Gadre

Brown University, Department of Computer Science

samir_yitzhak_gadre@brown.edu

April 19, 2018

Advisor & First Reader: Prof. George Konidaris
Second Reader: Prof. Stefanie Tellex

samir_yitzhak_gadre@brown.edu

Contents

Abstract 3

1 Introduction 3

2 Background 4
2.1 Learning from Demonstration . 4
2.2 Dynamic Movement Primitives . 5
2.3 User Interfaces . 5

3 Approach 6
3.1 Calibration . 6
3.2 Representation . 7
3.3 Demonstration . 7
3.4 Data Processing . 10
3.5 Execution . 11

4 System 11
4.1 HoloControl . 12
4.2 DMP Node . 14

5 Demos 14
5.1 Experimental Setup . 14
5.2 Task Descriptions . 15
5.3 Results and Discussion . 16

6 Future Work 17

7 Conclusion 18

References 19

2

Abstract

Learning from Demonstration (LfD) is an emerging field in robotics wherein a
robot learns a skill given demonstrations from a teacher. We present a novel method
for providing expert training data for robot manipulators. We use a Mixed Reality
(MR) head mounted device (HMD) that presents a holographic sphere on the end-
effector. The sphere can be manipulated to move the robot arm. Our system allows
the user to specify the importance of specific moments in their demonstration and
segment a demonstration into multiple skills. It also allows the user to visualize
and manipulate various parameters between training and testing time to adapt to
environment changes. We demonstrate the efficacy of our system by training a robot
to perform pick and place tasks autonomously.

1. Introduction

As robots become integrated into everyday life, it will be necessary to develop channels
for humans to teach machines with actions and words rather than with programming
languages. Learning from Demonstration (LfD) fills this void, in that it allows people to
teach robots with their own actions. While there is room for algorithmic improvement
within the field of LfD, training interfaces are a major bottleneck.

Existing training methods are often not scalable. Current approaches involve moving
joints by hand or via 2D graphical user interfaces (GUIs). However, physically manip-
ulating a robot is not always practical as the robot can be large, heavy, or its operating
environment dangerous. For example, robots are useful in high radiation environments
where humans cannot travel safely. If someone wanted to teach a robot a new skill in
such an environment, it would be better to do so virtually. 2D GUIs are in wide use but
require an external monitor, split attention between robot and screen, and are awkward
to use.

Traditional methods also put strain on teachers to iterate on their teaching style and
provide completely new demonstrations to clear up ambiguity. This is particularly a
problem if the teacher is unskilled. Currently, it is also hard to visualize what a robot
has learned prior to actual execution. So, it is difficult for a teacher to detect and prevent
failure.

There is a unique opportunity to use Mixed Reality (MR)—also known as augmented
reality—to address these limitations. As MR devices such as the Microsoft HoloLens
become prevalent and affordable, they turn into viable interfaces for human and robot
interaction. The current and future states of the robot can be shown by a hologram.
Furthermore, a user can interact with the hologram to change the state of the real robot.
In this way, a robot operator can get realistic representation of the robot without being
in physical proximity to the robot and without requiring the robot to actually execute
a motion. Because MR augments the world view, a user is still able to pay attention to
the real world. Since it is possible to represent the robot directly, the interface does not

3

pose an additional barrier between the teacher and the robot. Finally, holograms can be
used by the robot to convey its level of understanding before it executes a task in the real
world. We describe an approach that uses MR to collect training data for LfD.

2. Background

We are concerned with the problem of allowing humans to train robots without having
to worry about low-level implementation details. Our approach is based on a procedure
called Learning from Demonstration (LfD).

2.1. Learning from Demonstration

In LfD, we model the world as a Markov Decision Process (MDP). The goal is to learn
a policy π, as defined in (1), which describes how to act in the MDP to maximize a reward
function (minimize a loss function). We adapt our notation from that of Argall et. al. [1]:

π : S→ A. (1)

Here S ⊆ Rn is the set of states that the agent can take, where each state is represented
by an n dimensional vector. A ⊆ Rm is the set of actions the robot can take, where each
action is represented by an m dimensional vector. Transitions between states are modeled
by a probabilistic transition function T:

T(s′|s, a) : S× A× S→ [0, 1]. (2)

T gives the probability of being in current state s′ ∈ S given the previous state s ∈ S and
the action a ∈ A taken at s. There is a set of demonstration examples E for a skill, where
ei ∈ E represents the i-th example. Each example trajectory ei then is the sequence shown
in (3) with k observations:

ei = [(si
1, ai

1), (s
i
2, ai

2), . . . , (si
k, ai

k)]. (3)

Here si
j ∈ S is the j-th observed state and ai

j ∈ A is the j-th observed action in example
trajectory ei. By training on E, the goal is to reproduce the policy that generated the
example trajectories:

π∗ : S→ A. (4)

Given this framework, there are many experimental and algorithmic choices to be
made—for example the representation of observations and the action spaces, which
determine the demonstration space. One might use all reachable coordinates (x, y, z) ∈ R3

to represent the observation space and the corresponding displacement vectors (dx, dy, dz)
between any two observations to define the set of actions.

Whereas the above formulation lets us decide what information to collect, the teacher
and robot relationship determines how the demonstrations will be collected. One common
approach is to use kinesthetic teaching where a teacher manipulates a robot while it

4

records observations about its state [2]. This kind of demonstration has been used to
learn striking motions for table tennis [3]. Other popular approaches use teleoperation
and mimicking. In the former, a human demonstrates a motion by moving the robot via
a controller. In the latter, a rig might be used so a human’s motion is captured for robotic
imitation. A mapping between human and robot joints is then used [2]. Mimicking has
been show to be effective method to teach hand and arm movements [4, 5, 6]. Once E is
collected, supervised learning is often used to learn π∗ [7].

2.2. Dynamic Movement Primitives

DMPs are a type of policy often used with LfD. They were first formulated as a control
mechanism for decoupled degrees of freedom (DOFs) and take inspiration from the
mechanics of a damped spring [7]. The following is the formulation of DMPs presented
by Pastor et al. [8]:

τv̇ = P(g− x)− Dv + (g− x0) f , (5)

τẋ = v, (6)

where x0 is the start, x is the current position, g is the goal, v is the velocity, τ, D, and P
are scaling factors, and f is a non-linear forcing function. The system is loosely non-linear.
Without the f term, (1) represent the linear dynamics of a spring-damper. The linear
portion of (1) is essentially a PD controller governed by parameters P and D, where P is
the proportional gain and D scales the damping term. In practice, it is important that D
is set such that the spring analog is critically damped to preventing oscillations [2]. The
linear portion of (1) ensures that we steadily make progress from x to g. The function f
takes the following form and determines the shape of the curve we take from x0 to g:

f (φ) = ∑n
i=1 ψi(φ)wiφ

∑n
i=1 ψi(φ)

. (7)

φ is a phase variable, each ψi is a basis function such as the Radial or Fourier basis [2][8].
Each wi is a weight that can be learned using supervised regression methods on a set of
training examples E [9]. The number n of basis functions captures the trade-off between
being able to represent more complex functions and over-fitting on E as n becomes larger.

2.3. User Interfaces

Our work is particularly influenced by the findings of Akgun et. al. [10] that discuss
the usefulness of keyframes in a LfD framework. Here keyframes are taken to be a sparse
set of data points, such that moving from point to point will complete the desired task.
This work on keyframes inspired us to create Critical Points (CPs)1, which are states in
the demonstration that are critical to performing a skill. We also draw inspiration from
work of Elliott et. al. [11], which uses 2D GUIs to allow for "adaptation" after training,

1CPs are discussed in more detail in section 3.3 and 3.4.

5

where a teacher is able to tweak a demonstration offline to create more robust motion
plans. The concept of "adaptation" influences our MR endpoint visualization approach
presented in section 3.5.

User studies by Rosen et. al. show that MR is an effective platform for robots to
communicate future movements to human trainers. Time-lapse animation of a robot
arm’s motion in MR were displayed so a human observer could understand the intent of
the robot [15]. Furthermore the use of MR has obvious safety benefits, both for the robot
and for the teacher. By training and simulating on a hologram, it is possible to isolate
failure modes.

Other methods explore MR for motion planning in industrial robots. MR has been
used to allow users to mark obstacles, starting, and goal positions within a state space
[12]. MR via-points points generated by users have been used for Bayesian network based
path fitting algorithms [13, 14]. There have also been methods to visualize trajectories,
where there are options for user feedback and retraining [14].

3. Approach

We describe key elements of our approach—calibration, representation, demonstration,
data processing, and execution—to address the task of allowing a teacher to train a
manipulator to autonomously perform pick and place objectives. Calibration takes place
by moving a hologram of the robot onto the real robot. The representation section
presents our choices of state and action spaces. The demonstration section discusses how
the MR system is used to collect a demonstration. The data processing section addresses
the preprocessing on a demonstration before a policy is created. Finally, the execution
section explains how a user gets the robot to generalize demonstrated motion trajectories.

3.1. Calibration

We rely on two main coordinate systems, the Unity2 coordinate system U and the
ROS coordinate system R. Both have position (x, y, z), orientation (r, p, y), and equivalent
scales. U and R are global frames for the HoloLens application and Baxter respectively.
The origin of U is determine by the position and orientation of the HoloLens at the start
of the application. The origin of R is determined by the base link of the Baxter robot,
which is located at the center of the robot’s torso. Hence there is a critical calibration
step in which the user must, implicitly, determine the transforms between these two
frames. We solve this problem by having a holographic rendering of the robot, dubbed
the shadow, appear with its base link at the origin of U. The shadow is initialized such
that it has all of the same joint angles as the real robot.

The user is tasked with calibrating the system by moving the shadow until it is flush
with the real robot, thereby generating the a transform T f and T f−1:

T f : U → R, (8)
2Unity is 3D game engine used to develop applications for HoloLens.

6

(T f)−1 : R→ U. (9)

3.2. Representation

The state of the robot arm is specified by the position of the Baxter end-effector in R
concatenated with two booleans g and cp. It is easy to find the location of the end-effector
in the R by applying successively transforms that start at the base link and move through
the Baxter arm. g takes value 1 if the gripper is open and 0 otherwise. cp takes value 1 if
the user determines the position is a CP in the demonstration and 0 otherwise. Here a
CP is used as a key-point or support for the demonstration, signifying that the particular
state achieved is crucial to the integrity of the demonstrated skill.

Actions are displacement vectors that take the end effector from starting state s to
next state s′ over a timestep. The timestep is determine by the frame rate of our Unity
application as well as networking speed that enables connection between the holographic
application and the Baxter base station. A sequence of observations of states and actions
over multiple timesteps constitutes a demonstration.

3.3. Demonstration

Once calibrated, a transparent sphere appears at the location of the of the end-effector
as in Figure 1. The sphere acts as a controller for the end-effector. As a user moves
the sphere in MR, the real gripper follows. As the arm moves, the shadow is updated.
T f and T f−1 are used to deal with change of coordinate systems. Baxter is put into
zero-gravity mode to ensure that the ending location of the sphere is the end location of
the end-effector. Voice commands "open" and "close" can be used to toggle the gripper.

Our teleoperation system can be used to collect demonstrations for learning. Using
the key word "start" enables recording of the state over time. The (x, y, z) location in R is
recorded after the robot has been moved and the corresponding gripper state is saved.
We assume that the user is unskilled, and hence the each recorded position has default
cp value 0. This signifies that the specific position is not important, but rather a point’s
relative position in the demonstration.

However, by clicking on the sphere during the demonstration, the user specifies that
the particular position is important. To represent this the cp value associated with the
position is set to 1. The notion of CPs becomes useful for demonstrating a fine motor skill
in which exact placement is important. Alternatively, it is a helpful notion for someone
who is unskilled and provides noisy demonstration. Being able to specify CPs allows the
system to smooth out motion trajectories.

When the user clicks on the sphere a snapshot of the shadow is saved at the given
time step as in Figure 2. The rendering of this shadow stays in the user’s holographic
vision to provide both a visual reminder of the CP and a marker that shows where the
arm was in the past.

To make our system more robust to chained demonstrations, where a user wants to
execute many skills that they deem different, we train several DMPs for various pieces of

7

(a) The start position with a superimposed transparent control sphere.

(b) The arm is teleoperated downwards to clamp the cup.

(c) The user continues to manipulate the sphere to pick up the cup.

Figure 1: An example of teleoperation to pick up a cup using our system.

8

(a) The start state of the arm, where the sphere is initially clicked.

(b) An Intermediate CP point after start. Notice that the position during
the first CP is saved for visualization.

(c) A third CP is saved, in this case, at the stop location.

Figure 2: Three saved CPs over time.

9

the demonstration. For example, Figure 3 shows a 2D example of what different segments
of a demonstration might look like. The user has the ability to start a new segment of a
demonstration by using the voice command "new". When the user opens or closes the
gripper during demonstration, it is automatically assumed that the system should start
start an entry to store data for a new DMP. Each segment then has its own data points.
The user says the word "stop" to indicate that they have finished their demonstration.

Figure 3: This figure shows the movement of a gripper over time and voice commands in quotation. A user
starts a new segment of a demonstration using keywords. Datai represents observations between successive
letters in the diagram. This data is used to train the i-th DMP. Keywords are uttered at each letter to begin
a new segment of the demonstration. We hence have endpoints labeled (a)–(e).

3.4. Data Processing

Instead of learning a DMP for each segment based on the raw data, we opt to do the
following based on stored CPs. We start by parameterizing data points in each dimension
(x, y, z) by time step for a given segment of the demonstration. Without loss of generality,
we discuss the x dimension on the j-th segment. We get a function x(t) that is defined
at integral points [1, ..., n] where t = 1 is the first time step and t = n is the n-th time
step. We assume that the user provided us with with a noisy demonstration and only
the positions that are specified as CPs need to be achieved. We define the residual in the
standard way:

rx(i) = x(i)− fx(i), (10)

where rx(i) is the i-th residual in the x dimension, i is the i-th time step, and fx is the
function we are trying to approximate. The degree of fx is the minimum of (1) the number
of CPs + 1, (2) 10, and (3) n. We then use a weighted least square objective function to

10

account for CPs. Our objective is to minimize the following error function errx:

errx =

(
n

∑
i=1

rx(i)
ki

)2

. (11)

Here ki takes value 0.01 if the user deemed the i-th position a CP and 1 otherwise. Hence
error associated with CPs will be weighted more heavily and our minimization of errx
will naturally result in a curve that is close to important parts of the demonstration.
Figure 4 shows an example of biased curve fitting to smooth over data for one DMP in
all three dimension. Three CPs have been chosen.

Figure 4: Noisy data from the demonstration in Figure 2. However, CPs support the demonstration and
allow us to conduct path smoothing.

Once we have found fx, fy, and fz. We pass our sequence of filtered data points
(fx(i), fy(i), fz(i)) for i = 1 : n into a DMP solver which gives us a model for the segment,
parameterized by a start and end state [16].

3.5. Execution

After training, smaller spheres appear to the user, as shown in Figure 5. These spheres
take the position of the endpoints of segments of the demonstration. Between each
successive pair of spheres there is a policy defined by the DMP. It is now possible for
the user to perturb these spheres, perhaps to adapt to change in the real world. For
example, if a user has trained the robot to pickup a cup, perhaps the location of the cup
has changed. The system works in such a way that, in the general case, the end of one
segment is the beginning of the next. The relative order of the actions is preserved. To
execute the motion plan, the user says the command "execute", and the robot moves
linearly to the start position to executes the DMP motion plans and gripper actions. The
plans take roughly the same amount of time to execute as the demonstration itself.

4. System

Source code for our implementations can be found on the holocontrol_baxter branch
of holobot, and on the dmp branch of ROS Reality Bridge. Both of these repositories are

11

Figure 5: The white spheres represent endpoints with separate DMPs in between them. This figure is the
actualization of Figure 3 after a similar training scenario. Shadows are shown over the spheres to give an
idea of the orientation of the arm.

located on the H2R Github [17, 18]. We use ROS Reality Bridge [19, 20], which allows our
Unity app to Advertise, Publish, and Subscribe to ROS topics. We now give a description
of the architecture, summarized in Figure 6.

4.1. HoloControl

The HoloControl Application has five main components: the shadow mesh, Websock-
etClient, TFListener, SpeechManager, and GestureManager.

The Unity rendering of the shadow is created by parsing a Unified Robot Description
Format (URDF) of the Baxter. The WebsocketClient connects to the ROS Reality Bridge
Server, which is an interface to the Baxter. The WebsocketClient marshals data and
sends it to the bridge. The bridge publishes this information to the desired ROS topic.
The bridge also forwards all messages via the Unity Node. The TFListener uses the
WebscocketClient to subscribe to a transforms topic, which the Baxter publishes to when
its joints move. When there is an update, the TFListener updates the shadow.

The SpeechManager is used to control the flow of the application and is critical for
starting up the processes of collecting data and moving autonomously. It responds to
various voice commands detailed in sections 3.3–3.5. Using the WebsocketClient, the
SpeechManager publishes commands interpreted by the DMP Node and the Inverse
Kinematics (IK) Interface running on the bridge. The SpeechManager sends commands to
the DMP node to record arm state, create a data log for a new skill, and execute motion
plans. The SpeechManager sends communicates with the IK interface to make the Baxter
arm gripper open and close.

The GestureManager also sends messages used in both the DMP Node and the IK
Interface. During normal teleopperation, every time the sphere is moved, its coordinates
in R are sent to the IK Interface to update the arm. When HoloControl is in recording
mode to collect a demonstration, messages are sent to the DMP node to record a trajectory
and to save CPs as the user clicks.

12

Figure 6: During runtime, the system relies on communication between the Baxter robot and the HoloCon-
trol client via ROS Reality Bridge. All components are connected to the same network. ROS
Reality Bridge is also responsible for making LfD request and handling data logging upon request
from the client. It forwards all movement commands sent by the client to Baxter.

13

4.2. DMP Node

The DMP Node responds to requests related to collecting demonstration data: end-
effector position, gripper state, and CPs. When a skill is completed, it uses a data filter to
fit a biased least square model through the skill data, as supported by the CPs. It then
makes a request to the ROS DMP service [16] to create a motion plan for the skill. After
training and user parameter manipulation, the DMP Node executes each of the skill plans
and publishes the resulting end-effect positions to move the arm autonomously.

5. Demos

To highlight features of our system, we follow a similar experimental model to that of
Elliott et. al. [11]. We evaluated our MR LfD system on five pick and place tasks shown
in Figure 7. Our tasks determine the extent to which the manipulator could behave
autonomously after training. A summary of our results can be found in Table 1.

(a) The pick item is displaced. (b) The pick item is swapped. (c) Both pick and place locations dis-
placed for a fine-grain motion.

(d) The place location is displaced. (e) Chained demonstrations are recon-
figured.

Figure 7: Diagrams showing our various task. For each task, (a)-(e), the right image represents the
training objective and the left image shows the testing goal objective. An arrow starting at an object signifies
that we must pick up this item. An arrow terminating on an object signifies that a picked item should be
placed on it.

5.1. Experimental Setup

For our pick and place tasks, we work with wooden cubes that have side length 2.54
cm, house keys that have maximum length 6 cm, a plastic coin with diameter 3.2 cm
and thickness 0.3 cm, and a plastic cup with external diameter, height 7.62 cm and rim
thickness 0.6 cm. We also use a 15.24 cm x 15.24 cm x 7.62 cm box as a raised square
surface on which to place items. There is no stipulation about where on the box objects
must be placed. Figure 8 shows our objects.

14

(a) Cubes (b) Keys (c) Coin (d) Cup (e) Box

Figure 8: (a)-(e) show the various objects used for our demo.

For a given task, an expert demonstrator was asked to teleoperate the Baxter arm to
achieve a training objective. After this initial demonstration, the user was asked to adapt
the DMP segments to achieve a test objective. The train time (excluding calibration time),
number of skills, adaptation time, and success rate of picks and places were recorded.

5.2. Task Descriptions

(a): Training: A cube is in front of the Baxter and must be placed on the box to the
right of the cube. The cube must make contact with the box before it is released. Tape of
thickness 2.54 cm was placed around the cube to make sure it could be returned to the
same position. Testing: The cube is moved 10 cm to the right, and hence closer to the box.
The goal is still to place the cube on the box.

(b): Training: In this case the training setup is the same as that of (a). Testing: The cube
is replaced with three house keys on a ring. The location of the keys is roughly the same
as that of the cube from training time.

(c): Training: Two cubes are placed 7.6 cm apart and in front of the Baxter. The
rightmost cube must be picked and placed on top of the second cube. Testing: Both cubes
are moved left by 5 cm and the right most cube is again to be placed on the second cube.
The placement was considered a failure if the gripper knocked off the top block even
after placing it.

(d): Training: In this case the training setup is the same as that of (a). Testing: The
position of the cube does not change. However, the box is moved to the left of the cube
and hence the place site changes.

(e): Training: A plastic coin and box are positioned in line; a cup is positioned in
between them. The cup is at an angle with respect to the coin and the box such that it
is farther away from the Baxter. The coin must be picked and dropped (not necessarily
placed) in the cup. The cup must then be picked and placed on the box. Testing: The cup
now forms an angle with the coin and the box such that it is closer to the Baxter. The
sequence of sub-goals within the demonstration remains the same.

15

5.3. Results and Discussion

(a): The training task took an average of 55.3 s over three trials using our system. In
all three trials, the demonstration used three skills, with two CPs in the first and second
skill and none in the third. In the first skill the trainer centered the end-effector over the
cube, lowered the arm, and then closed the gripper around the cube. In the second skill,
the trainer moved the arm over the box and then more slowly positioned the cube on the
box. In the third skill, the arm was moved away from the place site.

During the tests, the user took an average of 18.9 s to move the endpoint spheres. The
trainer noted that it was useful to have the tape surrounding the cube as a landmark to
deal with calibration issues. The arm successfully picked up and placed the cube all three
times, following the general motion from the training.

(b): The training time averaged 55.3 s, which was slightly faster than that of (a). This
is perhaps because the trainer had already completed three trials of this training task to
complete (a). The motions in these training trials looked like those in (a) with the same
distribution of skills and CPs.

The user opted not to move the endpoints, as the key was in roughly the same location
as the cube. The keys were picked up successfully twice and placed on the box once. Due
to the irregular nature of the keys, it was sometimes hard for the Baxter arms to pick up
the keys. There were two different failure modes that were observed when placing the
key on the box. First, when the gripper was not making a lot of contact with the keys, a
slight jerk resulted in the keys slipping. Second, the keys were placed in such a way that
they slipped off of the box. We believe that building a more intelligent system, which
works based on visual feedback, and not just DMP endpoints will be more successful at
this task.

(c): It took an average of 55.0 s to complete training. Because of the precise nature of
this task, much of the time as spend placing the cube on top of the other cube. The user
again opted to use 2 CPs for the pick up skill and 2 CPs for the place skill. No CPs were
specified when moving the gripper away from the place site. During the first skill, the
user consistently opted to reach a high position over the cube and then go downwards.
After the pick, the end-effector was also move upwards to avoid hitting the adjacent place
cube.

An average of 38.7 s were used to move the two spheres defining the pick site at the
first cube and the place site at the second cube. The user again noted that the tape around
the blocks was a critical reference point for dealing with calibration issues. The pick
task was successful all three times. However, the place task was never successful. We
noticed two failure modes. In the first the cube was placed at an offset and hence fell off
immediately. In the second, the cube was placed correctly initially, however, the process
of the gripper moving away knocked the cube over.

(d): The training time took an average of 39.5 s. The motions in these training trials
looked like those in (a) with the same distribution of skills and CPs. We note the apparent
time benefit associated with frequently using our system.

Adjustment time was also quick and took an average of 17.5 s. The user moved the

16

place point and the end point of the demonstration, but not the start point. The pick
was successful all three times, however, the place failed once. This failure mode occurred
because the arm arced downwards, instead of upwards as in the demonstration, and
hence made contact with the box before reaching the place site. This result seems to
support the fact that DMP plans can be more error prone if start and end points are
shifted significantly.

(e): The training task took 72.5 s on average. The user specified 2 CPs en route to pick
up the coin and 2 more in getting above the cup. After the drop no CPs were specified
when motioning to grip the cup. After this pick, two more CPs were specified in a large
arc that put the cup in position on the box. After the cup was released, no CPs were
specified to move the end-effector away from the cup. This pattern was consistent on all
three trials.

Adjustment time took 32.0 s on average, and was focused on the drop point for the
coin and the pick point for the cup. The coin was picked up all three times, which was
expected considering this skill was essentially a replay of the demonstration. The drop
and grab were also successful all three times. The place of the cup was successful only
two out of three times. The failure mode was similar to that of (d), in that the arced path
ended up approaching the cup place point from the bottom as opposed to the top.

Task
Letter

Avg. Train
Time [s]

Std. Train
Time [s]

Num.
Skills

Avg. Added
Test Time [s]

Std. Added
Test Time [s]

Frac.
Picks

Frac.
Place

a 55.3 9.0 3 18.9 6.8 3/3 3/3
b 50.1 4.8 3 0.0 0.0 2/3 1/3
c 55.0 4.6 3 38.7 7.1 3/3 0/3
d 39.5 2.3 3 17.5 2.9 2/3 3/3
e 72.5 1.7 5 32.0 3.6 6/6 5/6

Table 1: Results across the five tasks, showing the relative strengths and weaknesses of the system.

6. Future Work

While our system is a good prototype of an MR LfD system, there is rigorous work
to be done to support this claim. In all scenarios, the robot was trained by an expert
demonstrator, who was comfortable with the system and had used it over 100 times
before any results were collected. Furthermore, there was a single teacher for all demos.
We plan to do a user study to collect further statistics on the amount of time that a novice
user must spend in order to complete a set of task. We also plan to address a slew of
concerns that will make our system more usable and robust to user error.

The biggest pitfall of our system is calibration. Because of the lack of stability in
holograms, there is often drift as the user moves around the robot or looks away. The
holographic and real-world spaces do not always line up. It becomes hard to move the

17

DMP parameter spheres to precise locations. To mitigate against these sources of error,
we propose using Vuforia AR tags and HoloLens spatial anchors to better fix the location
of the shadow relative to the real robot.

We also plan to use the Baxter wrist camera to implement basic object recognition on
items that are picked up. This way we can learn a mapping from objects to actions such
that the actions center the object in our field of view. Even if the location a user specifies
in MR is off by some factor, the manipulator should be able to recognize this case and
course correct autonomously.

We also note that we are not giving the user control over all degrees of freedom of the
Baxter arm. For example, the user cannot change the orientation of the gripper. While this
simplification makes our interface less complicated, it is worth exploring if giving control
of more degrees of freedom would improve the range of tasks or reduce the amount of
time per task.

Our system allows a teacher to easily convey information to the robot. However, it
does not allow for the robot to covey its knowledge to the user. For example, the IK
solver on the Baxter works based on the current position of the arm. Hence the arm must
actually move to use the solver. However, if our application used an IK solver in a Baxter
Gazebo environment, we could update the shadow without moving the actual robot arm.
Furthermore, we could play out motion plans for the user before they are executed. If a
user were dissatisfied, then they should be able to tweak the model, perhaps by adding
or changing CPs.

It is also worth comparing our approach to one that just makes a strong key-frame
assumption: the path between CPs does not matter and can be linear. In this case there is
no explicit need for learning. The user must only provide a space set positions, specified
via MR, and the action to be taken at each point. Assuming the functionality of being
able to play back motion plans in MR and specify more points an needed, this version of
the system would help test the extent to which full demonstrations are necessary.

On an exciting note, our combination of MR DMP approach is not limited to the
Baxter arm. We plan to adapt HoloControl as an interface to other ROS enabled devices
to bring quadcopters and mobile manipulators into MR.

7. Conclusion

We propose a MR LfD system that uses holograms to control robot action. Our system
serves as a simple interface to the robot and supports touch-free teleoperation of the
robot arm. In our system, a user places a MR hologram of the robot on top of the real
robot. The position of hologram is maintained by a HoloLens HMD. The user then moves
a holographic sphere that appears on the robot end-effector and hence moves the real
end-effectors. The user collects data for—possibly—many skills within a demonstration.
A different motion plan is created for each skill. Our system also supports CPs, which
are key positions that are integral to the success of the demonstration. Data is processed
using a bias least fit method, in which CPs are weighted more heavily. Separate DMPs

18

are learned for each skill based on the filtered data. The user can then edit the endpoints
of the skills and execute the motion plans.

The main advantages of our system are that it does not involve making contact with
the robot, forces the user to pay attention to the robot, allows the user to quickly generalize
a demonstration, and effectively chains many skills together.

Acknowledgements

Big thank you to George for taking me as an advisee last minute. I am grateful for
this experience and hope to work with you in the future. Thank you Stefanie for being an
incredible mentor. Your passion for robotics is infectious. Thank you David and Eric for
sharing your gear and helping me when I was stuck. This thesis truly would not have
been possible without you both.

I would also like to thank my family and friends who have been there for me through-
out college. Thank you Fiona Stolorz for all the hours you kept me company in the lab.
Your support has meant the world to me. Thank you Mickey Zaslavsky for keeping me
in good spirits. Thank you Anthony Daoud for being my closest friend.

References

[1] Argall, B.; Chernova, S.; Veloso, M. and Browning, B. 2009. A survey of robot learning
from demonstration. Robotics and Autonomous Systems (Vol. 57, Issue 5) 469-483.

[2] Chernova, S. and Andrea, L.T. 2014. Robots Learning from human teachers. Synthesis
Lectures on Artificial Intelligence and Machine Learning (Vol. 8).

[3] Mülling, K.; Kober, J.; Kroemer, O. and Peters, J. 2013. Learning to select and
generalize striking movements in robot table tennis. The International Journal of
Robotics Research (Vol. 32, Issue 3) 263-279.

[4] Pilarski, P.M.; Dick, T.B. and Sutton, R.S. 2013. Real-time prediction learning for the
simultaneous actuation of multiple prosthetic joints. IEEE International Conference on
Rehabilitation Robotics 1-8.

[5] Hung, P. N. and Yoshimi, Takashi. 2016. An approach to learn hand movements for
robot actions from human demonstrations. IEEE/SICE International Symposium on
System Integration.

[6] Vasan, G. and Pilarski, P.M. 2017. Learning from demonstration: Teaching a myoelec-
tric prosthesis with an intact limb via reinforcement learning. International Conference
on Rehabilitation Robotics 1457-1464.

[7] Ijspeert, A.J.; Nakanishi, J.; Hoffmann, H.; Pastor, P. and Schaal, S. 2013. Dynam-
ical movement primitives: learning attractor models for motor behaviors. Neural
Computation (Vol. 25, Issue 2) 328-373.

19

[8] Pastor, P.; Hoffmann, H.; Asfour, T. and Schaal, S. 2009 Learning and generalization
of motor skills by learning from demonstration. IEEE International Conference on
Robotics and Automation 763-768.

[9] Bishop, C. 2006. Pattern recognition and machine learning. Springer.

[10] Akgun, B.; Cakmak, M.; Jiang, K. and Thomaz, A. 2012. Keyframe-based learning
from demonstration. International Journal of Social Robotics. (Vol. 4, Issue 4) 343-355.

[11] Elliott, S.; Toris, R. and Cakmak, M. 2017. Efficient Programming of Manipulation
Tasks by Demonstration and Adaptation. Robot and Human Interactive Communication
(26).

[12] Chong, J.; Ong, S.; Nee, A. and Youcef-Youmi, K. 2008. Robot programming using
augmented reality: An interactive method for planning collision-free paths. Robotics
and Computer-Integrated Manufacturing (25) 689-701.

[13] Ong, S.; Chong, J. and Nee, A. 2010. A novel ar-based robot programming and path
planning methodology. Robotics and Computer-Integrated Manufacturing (26) 240-249.

[14] Fang, H.; Ong, S. and Nee, A. 2012. Interactive robot trajectory planning and
simulation using augmented reality. Robotics and Computer-Integrated Manufacturing
(28) 227-237.

[15] Rosen, E.; Whitney, D., Phillips, E.; Chien, G.; Tompkin, J.; Konidaris, G. and Tellex, S.
2017. Communicating robot arm motion intent through mixed reality head-mounted
displays. Computing Research Repository.

[16] ROS DMP. http://wiki.ros.org/dmp.

[17] Holobot: Baxter DMP Branch.
https://github.com/h2r/Holobot/tree/holocontrol_baxter.

[18] ROS Reality Bridge, DMP Branch. https://github.com/h2r/ros_reality_bridge/
tree/dmp.

[19] Crick, C.; Jay, G.; Osentoski, S. and Jenkins, O. 2012. ROS and rosbridge Human-Robot
Interaction 493-494.

[20] Whitney, D.; Rosen, E.; Phillips, E.; Konidaris, G. and Tellex, S. 2017. Comparing
Robot Grasping Teleoperation across Desktop and Virtual Reality with ROS Reality.
Robotics Research: the 17th Annual Symposium.

20

http://wiki.ros.org/dmp
https://github.com/h2r/Holobot/tree/holocontrol_baxter
https://github.com/h2r/ros_reality_bridge/tree/dmp
https://github.com/h2r/ros_reality_bridge/tree/dmp

	Abstract
	Introduction
	Background
	Learning from Demonstration
	Dynamic Movement Primitives
	User Interfaces

	Approach
	Calibration
	Representation
	Demonstration
	Data Processing
	Execution

	System
	HoloControl
	DMP Node

	Demos
	Experimental Setup
	Task Descriptions
	Results and Discussion

	Future Work
	Conclusion
	References

