Nonparametric Clustering with Variational Inference

for Tumor Heterogeneity
Brown University, Math-CS Sc.B Honors Thesis
David Liu

Advisor: Professor Ben Raphael

Reader: Professor Erik Sudderth

May 1, 2017



Contents

1 Introduction

2 General Model
2.1 Variant Allele Frequency . . . . . . . . . .. ... ... ... ..
2.2 Clonal Membership and Generation of Reads . . . . .. ... ... ..

3 Existing methods

4 Binomial Mixture Model with DP prior

5 Overview of Variational Inference
51 The ELBO . . . . . . . . . . e
5.2 The mean-field variational family . . . . ... ... .. ... ... ...
5.3 Coordinate ascent . . . . . . . . ... e
5.4 Exponential family distributions yield a general formula

6 Variational Inference on DP Binomial Model
6.1 The model andits ELBO . . .. ... ... ... ... .. .......
6.2 Coordinate ascent algorithm . . . . . .. .. ... ... ... .. ....
6.3 MAP estimates . . . . . . . . ... ...
6.4 Implementation . . . . . . .. . ...

7 Experiments and Results

8 Discussion

9 Acknowledgements

References

Appendices

A Allocation model update equations

B

Observation model update equations

B.1 Exponential factorization of data model . . . . . . .. ... ... ...
B.2 Sufficient statistics . . . . . ... oo o
B.3 Obs Model Likelihoods . . . . . . .. ... ... .. ... ........

Computing the ELBO

C.1 Observation model contribution to ELBO . . . .. ... ... .....
C.2 Allocation model contribution to ELBO . . . . . .. ... ... ....
C.3 Entropy contribution to ELBO . . . . ... ... ... .........

D Examples of clustering posterior plots (DP/VI)

© 0o 0o o @

10
10
11
12
12

13

20

20

21

23

23

24
25
26
26

27
27
27
27

28

Page 2 of 32



1 Introduction

Cancer results from an evolutionary process where somatic mutations occur and accumulate in a population
of cells. There are many types of mutations that can cause cancer. A mutation that causes genetic variation
at a single genomic site is called a single nucleotide variant (SNV). The different lineages which comprise a
tumor are known as clones, and the phenomenon of clonal admixture is known as intratumor heterogeneity
[1]. The relation of clones with each other is best visualized with a phylogenetic tree, since mutations
accumulate within and across subpopulations.

Sample 2
Sample 1 @
Mormal cell —— o
% Mutation (SNV) @@
Founder clone —3» @ ’ @ @ ‘-"
Subclones @ @ O
Figure 1: Left: Fxample of a clonal tree caused by tumor heterogeneity. Right: Spatial samples from a
tumor. Figure from [2].

Sample 3

The sequencing and analysis of tumors has revealed extensive intratumor heterogeneity in cancers. This
is a clinically relevant problem, as the genetic profile of a tumor can lead to treatment failure and drug
resistance; increased tumor heterogeneity has been linked with more aggressive cancers [3], [4]. The ability
to genetically profile a tumor would improve physicians’ ability to tailor treatments according to the
subpopulations and mutations present [5].

One of the most studied problems in tumor heterogeneity is tree inference, in which we estimate the
evolutionary history and mixing proportions of clones [2]. To do so, we must know which mutations
belong to each clone—to have a tree, we must know what the constituent nodes are. This problem is
made more tractable by incorporating multiple samples from the tumor (eg. biopsies separated physically
or temporally), which provides more information for inference, since the clonal membership of SNVs is
invariant across samples. We view the problem of assigning mutations to clones as a general machine
learning clustering problem.
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2 General Model

2.1 Variant Allele Frequency

The data typically used for tree inference is called the variant allele frequency (VAF), which is a measure
of how much a mutation occurs in a population. The VAF is determined by sequencing a sample from a
tumor, so that the reads represent the sample’s mixture of clones [6]. By comparing to a control sample,
if a read contains the mutated allele at a SNV, it is called a variant read; otherwise it is called a reference
read. The VAF is defined for each SNV in each sample, as, in each sample, the number of variant reads at
an SNV divided by the number of total reads at that SNV. Across multiple samples, each mutation that
belongs to a clone should be observed to have about the same variant allele frequency, because the clone
frequency is the same; thus a clustering should be true for each clone across all samples.

2.2 Clonal Membership and Generation of Reads

We can express the mathematical dependencies in our model in terms of the processes that generate them:
SNVs (labels) are assigned to clones (clusters), and variant reads are generated according to clone-specific
parameters. From here on, we will use SNVs to refer to labels, and we will use clusters to refer to
clones.

Each SNV n € {1, ..., N} belongs to a cluster k € {1,..., K}, K < N. Note that we do not know the true
number of clusters in advance, since we do not know how the tumor mutated. These cluster memberships
are described by the latent variables z,, a 1-of-K indicator vector that denotes the cluster assignment of
SNV n to cluster k.

Now suppose that for each sample m € {1,... M}, we have total reads d,,, drawn from a Poisson with
expected value equal to the coverage [7]. Let SNV n belong to cluster k. Then an integer number of variant
reads vy, are generated according to distribution V (v ; dimn, @mk ), where V' is any probability distribution
that depends on w,,,, and has parameters d,,,, ®.,r. By vectorizing, it is clear that the clustering for a
SNV n is fixed across samples m.

din Vin

do= || e [ (1)
_dj\.m_ UJ\'M
[ v1n | V(vin; din, 1)

- v?n N V(vzn;cfzn,cﬁ%) V() @)
oain] LV rtni datn, da0)

Let x, be general notation for {d,,v,}, where the use of the total or variant reads will be clear from
context. Generalizing notation further, let x = {x1,...,X,}, ® = {¢1,...,¢n}, and z = {z1,...,2,}.
Then we wish to discover the underlying z, ¢ for the model given some observations x.
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Problem (SNV clustering problem). Suppose that for SNVs n € {1,..., N} in samples m € {1,...M}.
Further suppose that there exists clones (clusters) k € {1,..., K} and a true clustering z. Given total reads
di,...,d, and variant reads v1,...,v,, we seek to infer z and ¢.

3 Existing methods

There are existing clustering methods in bioinformatics such as SciClone and PyClone [8, 9]. These methods
follow the model described above; two popular choices for V' are the binomial and beta distributions. The
binomial distribution is a natural choice due to the binary nature of read data. It is also attractive because
the number of reads which belong to a cluster naturally weighs the cluster’s mixing proportion, which is
not necessarily true for the beta model. The beta distribution is also a natural choice for V' because variant
allele frequencies are in the range (0,1). That is, V is beta with data fp, = 7==.

mn

However, these methods differ in the prior for the cluster assignments and inference. For example, SciClone
uses a fixed number of clusters through a Dirichlet prior and an ad-hoc heuristic for K, with inference
through variational inference. PyClone uses a Dirichlet Process prior, and MCMC for inference. Thus
PyClone has the same model, but uses a slower inference technique that may have poor convergence
properties. On the other hand, SciClone has a different model, but the same inference technique.

State of the art clustering methods use the Dirichlet process to select the number of clusters, since as a
nonparametric model, it is more rigorous when the true number of clusters is unknown. MCMC, while
accurate in the long run, may be slow and have poor convergence properties, while variational inference is
a faster technique that potentially trades off some accuracy for speed and scalability [10]. In this thesis,
I attempt to augment existing approaches by proposing and implementing a method to cluster mutations
using variational inference for a binomial mixture model with Dirichlet process prior, which is suited for
the multi-sample clone mixing problem.

Model Selection

g Dirichlet Prior + Heuristic | Dirichlet Process Prior
% (Fixed K) (countably infinite K)
=

g | MCMC (Many older methods) PyClone

()

E V1 SciClone This thesis

g

Table 1: A comparison of methods used to solve the clonal mixture problem.
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4 Binomial Mixture Model with DP prior

Figure 2 on the next page shows a graphical model representation of the model.

Suppose that each clone in each sample emits variant reads according to a binomial distribution. Thus,
for cluster k, some SNV n which belongs to this cluster, and reads d,,,, we have variant reads distributed
according to Bin(vmn; dmn, @mk). Call ¢ the cluster frequency for sample m in cluster k. By the
independence of reads across samples, the joint probability of reads for an SNV is the product across all
samples. Using our vectorized notation,

M
PI‘(Xn|¢)k) = H Bin(vmm dmn, ¢k) (3)

m=1

Let the cluster memberships z,, and weights 7, be generated by a Dirichlet process prior. The reader is
referred to [11] for more mathematical detail on the DP. By truncating the DP at K = N, K € {1,...,N}
with probability 1.

The likelihood of x,, depends on the latent variables in a straightforward way from (3):

>

Pr(xn|z, 1) = | | Pr(xnl¢x)**

i
I

>
=

Bin('umn; Amn, ¢mk)znk (4)

k 1

Il
—

m

Then the joint likelihood of the observed data and cluster memberships, follows from (4):
K M
Pr(xp,z|m, ¢) = H Tk H (Bin(vmn; dmn, Pmk) )" (5)
k=1 m=1

As described in [12], the Dirichlet Process can be described constructively with a stick-breaking process as
follows, for some base measure H and concentration parameter «:

1—1
mi(v) = o [[(1 - v)) ©)
j=1
DP =Y "mi(v)d, (7)
=1

1. Draw vg|a ~ Beta(l,a), k={1,2,...}
2. Draw ¢y|H ~ HM, E={1,2,...}
3. For the nth data point:

(a) Draw z,|{m1,mo,...} ~ Cat(w(v)).

(b) Draw Xn|zn ~ p(Xn‘(pk)
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The full cluster assignment posterior

=
N
x

- fp(z,x) dz (8)

involves a Dirichlet Process and is thus analytically intractable. We must use some sort of computational
technique, such as variational inference, to perform inference on this posterior.

@
Se]

Figure 2: Graphical model for the VAFs.

m=1..... M
n=1,....N

n=1,...,N: SNVs

m=1,...,M: samples

k=1,...,K: clusters

« = Hyperparameter for the stick-breaking process

H ~ U(0,1) ~ Beta(1,1) = Base distribution for cluster frequencies (¢,i)

m, = Cluster weights, generated from the stick-breaking process

zn €{1,...,K,...} ~ Cate(m1,...,7K,...) = Cluster membership for SNV n

dmi = Cluster frequency

Umn ™~ Binom(vmn; dmn, quk) = Observed variant reads for sample m, SNV n, belonging to cluster k.

dmn ~ Pois(Coverage) = Observed total reads for sample m, SNV n
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5 Overview of Variational Inference

Variational inference (V1) is an alternative to MCMC-based inference methods. At a high level, variational
inference factors a posterior using the mean-field approximation, which approximates the posterior in a
higher-dimensional space using simpler independent functions. Then a simple coordinate ascent can be
performed in order to infer the model parameters. The following is a general treatment of VI, where latent
variables refer to cluster memberships.

5.1 The ELBO

The following is from [12]. Let z denote the latent variables, and x denote the data. We seek to approximate
the posterior p(z|x) from a family of distributions D by solving the following optimization problem:

¢ (2) = argqgl)iélp KL ((¢(2)||p(z[x))) - (9)

where KL is the KL-divergence, which measures the “distance” between two distributions.

However, (9) requires us to compute the log evidence (which is intractable over the space of all z) since
KL (q(2)||p(z | x)) = E [log q(2)] — E [log p(z,x)] + log p(x). (10)

Instead, we optimize an objective function which is not dependent on log p(x). We call this the evidence
lower bound (ELBO), which is equal to the negative KL-divergence plus the log evidence.

ELBO(q) = Ellog p(z, x)] — E[log q(z)]. (11)

and thus we see that log p(x) is a constant with respect to ¢. The ELBO gets its name from the fact that
it is a lower bound for the log evidence.

5.2 The mean-field variational family
The standard technique is to select a simple family of distributions for D, the mean-field variational

family [12]. In this family, the latent variables z are mutually independent so that the joint distribution
factorizes:

q(z) = H q;(z5). (12)

where ¢; is a bounded variation dependent only on z;. The structure of the model will dictate the optimal
form of g;.

5.3 Coordinate ascent

The optimization is solved using a coordinate ascent algorithm, where via the mean-field assumption, the
independence of the latent variables gives us something similar to orthogonality. Let z_; denote the set of
latent variables z; such that [ # j. Consider the complete conditional probability of z;, which is a function
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of the other latent variables and the data, p(z; |z_;,x). Since the expectation in the ELBO is with respect
to ¢(z), which we have assumed factorizes, then we can dissect out the dependence [13] with respect to z;
by using (11) and (12):

ELBO(q) = /Hq,(z,) <logp(z,x) — Zlog ql-(zl-)) dz
S /Qj(zj)Ej log p(x, )] dz; — /(Jj(zj)log%(zj)dzj (13)

Now suppose that we fix z_; and maximize the ELBO. Then the ELBO is maximized when log ¢;(z;) o<
E_; [logp(x,2)], by the positivity of the KL-divergence. Thus the optimal ¢*(z;) occurs when

q; (z;) o< exp (E_; [log p(x, 2)]) (14)

(14) underlies the coordinate-ascent variational inference algorithm. By iterating through each variational
factor, fixing the others, and performing coordinate ascent (similar to Gibbs sampling), then we eventually
reach a local optimum of the ELBO.

5.4 Exponential family distributions yield a general formula

If the posterior is in the exponential family, then the computation of coordinate ascent and ELBO can be
generalized. Recall that a distribution is in exponential form if it can parameterized by

fx(@ | 0) = h(z)exp (67 - T(x) — A(0)) (15)

where T'(z) is the sufficient statistic vector, 6 is the natural parameter vector, and A() is the cumulant. The
details are in [14], but the intuition is that because the optimal variational updates (14) are proportional
to exp(E[log(.)]) then writing the distribution in exponential form reveals dependencies that hold for all
exponential family members.

Page 9 of 32



6 Variational Inference on DP Binomial Model

Now we apply the variational inference framework to the model we developed.

6.1 The model and its ELBO

We write the ELBO as a function of the data and latent variables:

ELBO (q(x, 2|y, a0, Bo)) =Eq4[log p(v]v)] + E,llog p(é|ao, Bo)]+
N

Y (Eqllogp(za|v)] + Eyllog p(wnl2n)]) (16)

n=1

- Eq [log Q(Z7 \Z ¢)]

where A represents the hyperparameter governing the stick-breaking process, and ag, 5y are the hyperpa-
rameters governing the base beta distribution. By the mean-field assumption, the joint distribution for the
last term in the ELBO factors as follows:

K K N
q(z,v, ¢) = 1T a(ex) X 1T a(ve) X q(2n)
k=1 k=1 n=1
Observation: likelihoods Allocation: cluster proportions  Allocation: cluster responsibilities
Product of betas Product of betas Product of categoricals
2M K variational parameters 2K variational parameters NK variational parameters
{omp Bk Y2y { He i} VK
mksPmk fm=1 k=1 Mk0>Mk1 S =1 {Tnk}n’:Lk:l

Note that the cluster proportions and data assignments are dictated by the Dirichlet Process—we call this
the allocation model. On the other hand, the observation parameters vary depending on the structure of
the generative model—we call this the observation model (Hughes 2015). Here we derive the form of the
q(¢r) is a function of ¢, as the observation model is specific to our multi-sample binomial model.

We note that for an individual allelic site in a sample, the data likelihood is binomial. With a beta
prior, we know that the resulting posterior for q(¢,,) is conjugate to the binomial, and thus q(¢m,x) ~
Beta(@k|mk, Bmk) where aug, Bk are variational parameters. Because reads across samples at a site are
assumed to be independent, then we have

=

q(Pr) = q(Pmk)

m=1

M
— H Beta(@r|mks Bmk)

m=1
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6.2 Coordinate ascent algorithm

The derivations of the coordinate ascent algorithm are in Appendices A and B. The derivations for the
ELBO are in Appendix C.

The initial responsibilities of the cluster were chosen by setting 7, = 1 if n was set to be in cluster k by
the k-means++ algorithm with % initial clusters [14], with the other 7, set to be % These responsibilities
were then normalized. For the other parameters, we assume that they are set to their prior or uniform
values. Thus the truncation level of K was set to be N, with all K > N having zero probability.

Since we assumed a uniform prior, ag = Sy = 1. The other parameters were chosen empirically. We let
71 =m = 1.0 and v = np = 1.5.

We declare the coordinate ascent procedure to be complete when the difference in ELBO between two
iterations is less than some convergence threshold. Empirically, we chose the threshold to be equal to
0.01.

The following pseudocode follows the format of [14].

Algorithm 1: CAVI FOR THE DP BINOMIAL MIXTURE MODEL
Input: Data x,,, where each z; is an integer vector with M entries.
Y0, Y1, @0, Bo, hyperparameters
Output: Converged variational parameters {c,k, Bmk}n]‘fﬁ,k:p {nko, nkl}le, {fnk}gjikzl

Initialize: ag = By = amr = Bk = 1, Ym, k
y1=m=10,7%=mn =15
Tnk <— kmeans++(x)

while the ELBO has not converged do

> Compute data-specific (local) parameters
Eq[log p(xn|amk, Bmk)] < Eqllog ((d’"””’"”) (¢r) (1 — ¢k)dm")}

Vmn
f’nk <— exp(Sk)
> Compute sufficient statistics
Sk =2 my Fuks(@n) = Sony Pk [[Vin din] - [oan dam]]
Ny = ZnNzl Tnk
Nk> = ZkKH Ny
> Compute cluster-specific (global) parameters
M1 — 1+>, Tk = 1+ Nj,
Mo <=7+ 2, ZJK:kH Pnj = Ni
Uk, ¢ (a0 — 1) + Skm
Bmk < (Bo — 1) + Skm
Compute ELBO(q) = E [log p(z,x)] — E [log q(z)]
end
return Converged variational parameters
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6.3 MAP estimates

For each cluster we pool reads by cluster membership:

pPocled > (Vmn) ™ (17)

n

AP =N () (18)

n

and we can make MAP estimates by converting from the variational parameters back to the original
parameters of the posterior:

zMAY — arg max Tk (19)
led
pe - o o~ 0
" dl:;)];)led + ke + Bk — 2

6.4 Implementation

The VI coordinate ascent algorithm was implemented in Python. The code is available on Github.
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https://github.com/daviddliu/thesis/tree/master/clustering

7 Experiments and Results

The DP/VI coordinate ascent algorithm was benchmarked against SciClone (VI) and PyClone (DP/MCMC)
(see Table 1). These methods were first run on simulated data with the following parameters:

Number of clusters (K) | 10

Number of SNVs (V) 100

Number of samples (M) | 4, 5, 6
Coverage 50, 100, 1000

Table 2: Parameters for the simulated datasets.

To evaluate the accuracy of cluster assignments (zMAF), we used the adjusted Rand Index (ARI), which
is defined in [15]. The ARI takes as input two clusterings and returns a number in [0, 1], where 0 indicates
a totally random clustering, and 1 indicates that the two clusterings are the same. Thus, for a putative
clustering C and the true clustering IC, we are interested in ARI(C, K).

To evaluate the accuracy of the cluster parameters (¢MAT), we define the cluster frequency error (CFE),
which is the expected error between the putative cluster parameters ¢2/IAP and the true cluster param-
eters ¢ over the putative clusters. Suppose that a clustering algorithm estimates C' putative clusters.

Then

C

a1 :
£ mmK} qulc\/IAP — ¢kH ) (21)

CFE(pMAP)
C = ke{l,

To graphically illustrate a clustering, plots for clusterings were generated, as shown in Figure 3. More
examples of plots for data at varying coverages and dimensionality are available in Appendix D. The
vertical lines of each color indicate the values of each true cluster parameter. The colored curves are
Beta(vmn, dmn — Umn) plots of each data point x,,, in order to show the weight of z,, in a cluster. The thick
black curves are the estimated cluster posteriors.

To compare the different methods, violin plots were generated to compare the accuracy measures described
above, across the coverages and number of samples outlined in Table 2. These plots follow in Figures 4, 5,
6. PyClone was run with 10000 iterations and a burn-in length of 1000 samples; these were the parameters
recommended by PyClone’s documentation. SciClone was also run with its default parameters, and a
convergence threshold of 0.01.
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Figure 3: Cluster posteriors (black) and true clusters (colored, vertical lines) with x,, (colored beta curves).
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Figure 4: Comparison of cluster frequency errors on simulated data.

Page 15 of 32



ARI

ARI

ARI

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

num samples
. 4
B 5
N 6

num samples
I 4
B 5
Il 6

num samples
I 4
B 5
Il 6

50

50

50

Figure 5:

DP+VI | ARI

100
coverage

SciClone_BMM | ARI

100
coverage

PyClone | ARI

100
coverage

Comparison of adjusted Rand Index on simulated data.

1000

1000

v

1000

Page 16 of 32



clusters

clusters

clusters

16

14

12

10

16

14

12

10

16

14

12

10

50

50

50

DP+VI | Number of clusters

100
coverage

SciClone_BMM | Number of clusters

100
coverage

PyClone | Number of clusters

100
coverage

num samples

[=2 &) I

1000
num samples
[
B 5
N 6
1000

num samples

o G

1000

Figure 6: Comparison of number of clusters on simulated data. There are 10 true clusters.
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Recall that PyClone is DP/MCMC, while SciClone has a Dirichlet prior and uses variational inference. As
can be seen from the violin plots, the variational methods outperform MCMC, and the DP/VI method is
comparable to SciClone.

The variational methods outperform the MCMC methods in CFE. In the variational methods, the cluster
frequency error decreases with both coverage and sample size, whereas the decrease in CFE in PyClone
is quite modest. Greater coverage seems to have a larger effect on reducing CFE than adding more
samples does. The DP/VI method has a lower cluster frequency error at lower to medium coverage than
SciClone.

In terms of ARI, the variational methods have a higher mean ARI that gets closer to 1 as coverage increases.
It is somewhat unexpected that the ARI does not increase as the number of samples increases. In fact,
in PyClone, the ARI decreases as the number of samples increases, which is likely due to the length of
the MCMC run needing to increase to maintain performance as dimensionality increases. However, the
DP/VI method seem to be about the same, with SciClone’s mean ARI being tighter around 1 as coverage
increases than the DP/VI method’s. PyClone does not have any clustering with an ARI equal to 1, which
means it failed to captures the correct clustering in all cases.

The number of clusters is also an important statistic to consider, since it is tells us how many clones
there are in the sample. There are 10 true clusters in each simulation, so we want to know how close the
average number of clusters gets to 10. The DP/VI method tends to overestimate the correct number of
clusters at low coverage, but gets closer to the true number of clusters as the coverage increases. SciClone
and PyClone both underestimate the number of clusters, and the PyClone never correctly recovers all 10
clusters. The number of samples also seems to bring the estimated number of clusters to the true value,
so sample size makes a bigger difference here with the number of clusters than in CFE or ARI.
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Figure 7: Mean convergence times and standard error in simulated data sets.

Since one of the merits of variational inference is speed, we would also like to compare execution times.
Figure 7 shows that the variational methods are much faster than PyClone’s MCMC inference, especially
when more samples causes the dimensionality to increase. However, SciClone is faster because variational
inference with the finite-dimensional Dirichlet is faster. Further, SciClone is implemented in R, whereas
the DP/VI method is implemented in Python.
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8 Discussion

We have shown that variational inference and the Dirichlet Process is accurate, fast, and scalable for solving
the SNV clustering problem. Based on experiments, it performs faster and more accurately than the
MCMC method presented in PyClone, and performs comparably to the VI method presented in SciClone.
However, the DP offers an appealing nonparametric prior that would be better for real-life scenarios where
the number of clones is large or unknown. Thus, the DP/VI method is appropriate for real-life tumor
sequencing datasets, where the number of SNVs can be quite large (more than 3000), where there may be
many samples (ten or more), and where there is no estimate on the true number of clones.

There are natural extensions to both the binomial mixture model and the variational inference used here.
It has been shown that in some cases the negative binomial distribution can give rise to a more flexible
class of mixture models [16]. Since the negative binomial is an exponential family distribution, it would be
feasible to derive a new set of coordinate ascent equations for use with variational inference. Optimizing
the code and writing it in a faster language such as C would also close the gap between the nonparametric
DP model and the heuristic Dirichlet model in SciClone.

There have also been new developments in variational inference, such as stochastic variational inference [17]
which uses a stochastic procedure for the gradient ascent, methods which use richer classes of variational
distributions other than the mean-field family [18], and so on. Section 5.4 of [19] provides an overview of
open problems in variational inference.

The ultimate purpose of such clustering methods is to be used as part of a pipeline that reconstructs
phylogenies. There are many algorithms, such as [2] that can use such a clustering as an input. Naturally,
the clusterings produced by this method should be used in order to infer phylogenies in order to be
biologically relevant.
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Appendices

A Allocation model update equations

The coordinate ascent equations for the allocation model are standard [12], as they follow from the fact that
the stick-breaking process is in the exponential family. The allocation model has variational parameters
{nko, mka HE_, for the cluster proportions and {fnk}r]y:i( w1 for the cluster responsibilities. On each iteration,
the coordinate update is ’

Moy =14 fpp =1+ N (22)

n

K
77k0=’Y+Z Z Frj = N (23)

n j=k+1
Tk X exp(Sk) (24)

form=1,...,N, k=1,..., K, and where

k-1
Sk = Byllogvg] + > Eglog(l — v;) + Eq[log p(n|ank, Bur)] (25)
=1
and
Eq[logvi] = W(nko) — ¥ (nko + k1) (26)
Eqllog(1 — v;)] = (k1) — ¥ (nko + m1) (27)

The digamma functions come from the fact that derivative of the cumulant is the expectation, and the
cumulant of a beta has gamma functions. Since the 7,5 sum to 1 over n = 1,..., N then we renormalize
at every step as well.
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B Observation model update equations

Following the derivations in [14], we derive the coordinate ascent equations for our observation model,

taking advantage of the fact that ¢(¢y) is in the exponential family, which we show below.

Claim 1. q(¢y) is in the exponential family.

Proof. We know that

M M
9(dr) = I a(dmr) = ][ Betal@rlamr, Bmk)-
m=1 m=1

The beta distribution is in the exponential family, with parameterization

o 1 « o A
Beta(ok|amk, Bmk) = S (L — bt exp < [10g Gk log(1 — Gm)] |:6mk:| -
+ 10g F(amk + Bmk) - IOg F(amk) - 10gr(ﬁmk))
and thus ¢(¢y) is in the exponential family with the form

_ |:041k::| ;

M ) Bk

q(Pr) = (71_[1 ¢mk(1—¢mk)> exp < [[log p1r log(l — ¢1k:)] T [log dmr log(l — ¢Mk:)“ :

O Mk

I [BMJ 1

M

m=1

£ log Tt + fonk) — log D) — log F(Bmk))

where we have abused notation to show the tuple nature of the sufficient statistics. Thus, for our variational

distribution ¢(¢y) we have

_ [qu] -
Bk
Natural parameters = :
e
L[ Bk
M
Cumulant = Z log (i + Bmk) — log T(aumi) — log (i) O
m=1
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B.1 Exponential factorization of data model

M
p(Xn|Zn) = H Bin(van d’mmdmn)

m=1

1

(1

m=1

(1) ) o (o (s25:)

[IOg (1 - d)ln)

(I (2 ) (e

so that the sufficient statistics are

T(xn) = [[vln dln]

[oatn darn]]

[oatn darn]]

[ [log (1-— ¢1n)] i

|

" ¢
= H exXp (Umn log (1 _T;L)n ) + (dmn - Umn) log(l - ¢mn)>

Uln
log(1—¢w1n +
UMn
dln
og (1= owa)] | : | )
dMn

log<1?$;)

log (1 — darm)

10g<1?$ﬁn>

(31)

|

(34)

Thus, following (Hughes 2015) we have the following coordinate ascent updates for the observation model:

(natural parameter plus sufficient statistic S or S;ef )

N

Omk = (040 - 1) + Z'ﬁnk
n=1
N

Bmk = (BO - 1) + ank
n=1

Vin

UMn |
dln

_dMn_
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B.2 Sufficient statistics

Define
N N
Sy = Z 7A’nks(‘rn) = Zf’nk [[Uln dln] T [UMn dMnH (35)
n=1 n=1
N
Ni =Yt (36)
n=1
K
Ny =D N (37)
k+1

B.3 Obs Model Likelihoods

Amn + Vmn

Umn

B o (oo )] = Bl )@ due )

= log <<dmn * Umn)) + dimnEq[log ¢r] + vmnEq[log(1 — ¢)]

Umn
where

Eq [log ¢k] = \Ij(amk) - \Ij(amk + ﬂmkz)
Eq[log(l - d)k)] = \Ij(ﬁmk) - ‘I’(ka + Bmk)
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C Computing the ELBO

To test for convergence, we calculate the ELBO until the difference in ELBO between laps is less than some
pre-specified number. For the purpose of this model, the convergence threshold was set to 0.01. Note that
the ELBO is generally not a convex function, so we cannot make any guarantees about monotonicity.

Following [14], the ELBO can be decomposed into three terms:

ELBO = L = EObs + EDP—AHOC + EEntropy

C.1 Observation model contribution to ELBO

Lobs = Eg ¢[logp(z|2, )] + Eg[log p(¢)] — Eg[log ¢(¢)] (38)

_ FriEq[log p(xn| )]

K M
+3° ) Byllog ¢} (39)

C.2 Allocation model contribution to ELBO

K
Lop-Alioe = Y Beta(1,7) = CBeta (Tk1, Mko)
k=1

+ (Nk +1-— nkl)Eq [log uk]) (40)

M= T

(Ni 47 — ko) Eq[log(1 — uy)]

B
Il
—

where the expectations are defined above, and in (18), we showed that cpet, has the form

¢Beta(, f) = logT'(a + ) — log I'(@r) — log I'(8) (41)

C.3 Entropy contribution to ELBO

K N
EEntropy = - § § fnk log fnk

k=1n=1

Page 27 of 32



Examples of clustering posterior plots (DP/VI)
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Figure 8: Low coverage plot, fewer samples.
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Figure 9: High coverage plot, fewer samples.
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Figure 10: Medium coverage, medium number of samples.
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