
Similar-Part Approximation Using Invariant

Feature Descriptors

Sarah Marqusee Sachs

Advisor: Pedro Felzenszwalb

Abstract

This thesis describes the implementation of a new algorithm for iden-
tifying similar parts in multiple images. Visual words of Scale Invariant
Feature Transform descriptors are used to describe parts of images and
Locality Sensitive Hashing is utilized for quick similar-part lookup. This
algorithm proves very effective on identical items of different sizes and
rotations, and moderately effective on similar yet unidentical items of the
same class. Suggestions are made for apply this approximation to building
object grammars. Further exploration on feature descriptors and distance
functions are needed for better performance accuracy.

Introduction

This paper presents an approach for estimating similar parts in a set of images.
Imagine you want to search Google Images for a certain object, but you cannot
think of the name of that object. Instead, you might have ten other photographs
that all happen to contain that object somewhere in the image – the images
have different backgrounds and may have other things in the foreground, but
nonetheless share this object in common. The search engine should recognize
that the images all share your unnamed object in common. Consequently, the
search engine should be focusing its search on that particular object. The object
that each image contains can be thought of as the most similar part among all
the images.

For example, imagine that you forget the name of President Barack Obama,
but you provide the search engine with the ten photographs in Figure 0.1a on
the following page. It is clear to the human eye that Barack Obama is in all
ten images. However, the images also share other things. Multiple images have
an American flag and multiple have repeating characters like Malia Obama or
Hillary Clinton. Google Images might return the search query with images of
Hillary Clinton without Barack Obama, which would be an incorrect identifi-
cation of the similar part. We want to develop an algorithm that can realize,
without any training from humans or manual image annotation, that Barack

1

(a) Selection of photographs provided to the algorithm

(b) Yellow boxes indicate the parts of the images that the algorithm should select
as being similar parts

Figure 0.1: Sample of photos and their ideal similar-part selection

2

Obama is the most common thing in all of these images. If our algorithm can
determine that the most similar part in these photos is Barack Obama’s face,
we have enough information to do an informed and accurate image search for
things that are similar to Barack Obama’s face. An ideal output of the algo-
rithm is illustrated in Figure 0.1b on the previous page, where the highlighted
boxes represent which part of each image the algorithm should choose as the
similar part.

The ability to recognize a shared object in multiple images has importance
for many areas of research. Consider the field of research that focuses on de-
tecting humans in images. Research has already been done in utilizing the parts
of an object to improve human detection in images, for example in the work of
Girshick, Felzenszwalb, and McAllester [1]. In their study, if the common parts
of a person are already known (forming an “object grammar” for the structure
of a person), then an algorithm can have more information on how to detect a
person in an image and can perform with significantly better accuracy.

However, work on person detection with object grammars currently relies on
manually created grammars for objects. Experts in this field have noted that
“automatically learning the structure of grammar models remains a significant
challenge for future work.”[1] If we can estimate similar parts in images automat-
ically without human intervention, then we can estimate multiple similar parts
in images. This thesis presents an efficient implementation of this automatic
estimation.

To visualize how this estimation can automate grammar modeling, consider
the following example. The most similar part among a series of photographs
of humans may be a head. A similar-part approximation algorithm may then
recognize that the legs in each image are the second most similar part. Third,
the algorithm may notice that a long torso is a similar part among the images
of humans. Eventually, the algorithm will have noticed a series of similar parts
and has enough information to build an object grammar and understand the
parts of a human body. Note that this process needs no human annotation or
involvement. Hypothetically, the same process could be done on other objects,
such as trees, dogs, cars, etc. We now have a process to create object grammars
and detect almost any item, provided that the approximation algorithm is run
on many photos of that item.

This work in person detection using object grammars is particularly relevant
today as we advance the technology for self-driving cars. In order for self-
driving cars to safely navigate roads, we need to be confident in their pedestrian
detection systems. The real-time algorithms that provide a self-driving car with
environmental information should be well-equipped to recognize if something is
a dog, a human, a tree, or a car. This information is crucial for safe navigation,
as a tree has different movement patterns than a pedestrian or a dog. Part-
based models of detection have proved to be paramount in the development of
robust models for pedestrian detection systems in advanced driver assistance
systems (like self-driving cars or autonomous parallel parking cars) [2, 3]. The
work of this thesis provides a first step into a large-scale process of automating
the grammars of these models to make comprehensive detection systems.

3

VOCABULARY

Cluster all
descriptors
from VOC

images

Collect SIFT
Descriptors

Assign each

descriptor to a
word from the

vocabulary

Create a
frequency

histogram for the
object over all the

words in the
vocabulary Object

Figure 0.2: Overview of the object description process. An object is described
using SIFT descriptor matrices (which are visualized with green grids). Each
descriptor is assigned to the closest word in a predetermined vocabulary, which
is created over a large set of images. The collection of words used to describe
the object is transformed into a word frequency histogram.

From a theoretical perspective, part similarity is measured by minimizing
an objective function over pairwise costs. This thesis presents an efficient im-
plementation of an approximation of this algorithm, developed by Felzenszwalb
[4], which estimates the optimal solution to the objective without calculating all
pairwise costs. Through this approximation, the algorithm is able to approach
the problem at large scales.

However, in order to even compare the similarity of objects in different im-
ages, a shared “vocabulary” needs to be developed that can provide consistent
measures of similarity and difference. For instance, just looking at the pixel
values of an image will not provide information about the key curves and tex-
tures in the image that describe the objects. Moreover, objects that only vary
in rotation, illumination, and size should still be viewed as extremely similar.
In Section4, this thesis explores the use of SIFT feature descriptors to provide
this invariant description of objects.

Once all of the objects in an image can be described using these SIFT de-
scriptors (which are expressed as matrices), we need to develop a system for
measuring similarity among descriptors in all images. This provides the need to
simplify our descriptors to a fixed and limited set. We can think about this by
providing an analogy where descriptors aren’t matrices but words in the English
language. Assume we have two images, each with one person in the image. In
one image we describe the person’s hair as “platinum” and in another image
we describe the person’s hair as “golden”. We can assume these two descriptors
are describing the same color and we want an increased measure of similarity

4

between the people in both images. However, if we describe one person’s hair
as “platinum” and the other person’s hair as “brunette”, we have less confidence
in their similarity. We must make a system that recognizes “platinum” and
“golden” as the same descriptor but “platinum” and “brunette” as different. In
the case of this analogy, if we only had the words “blonde” and “brown” in our
vocabulary, it would be much easier to determine if the people’s hair colors are
similar or different because there would be no ambiguity among synonyms. It
is important to note that we may also lose some descriptive ability, but we gain
the ability to make consistent comparisons. This example illustrates the need to
create a limited vocabulary of feature descriptors so we can better discriminate
object similarity. The creation of this vocabulary is described in Section 5.1 on
page 12.

If we count how often each vocabulary word is used to describe a given object,
the object can be described with a word-frequency histogram. An overview of
this process is defined in Figure 0.2 on the previous page and described in much
greater detail in Part II. These histograms are what we will use to determine the
similarity of objects. Histograms with a small l1 distance from each other imply
similarity, while histograms with a large l1 distance imply stark difference.

This thesis explains the implementation of an approximation algorithm to
find similar parts. First by breaking images down into subpatches (Section 3),
extracting SIFT descriptors from the subpatches (Section 4), describing sub-
patches by a set of visual words (Section 5), and then approximating the op-
timal solution using LSH nearest neighbor search (Section 6) and star-graph
objectives (Section 2).

Part I

Algorithm overview

1 Objective
Consider a set of I items with some distance metric d that measures the distance
between two items. Let B1, ..., Bk

be K subsets of I. We will refer to these
subsets as “bags” of items. It is possible, but not necessary, that B

j

\ B
k

6= ;,
j 6= k. The motivation for this thesis is to find a set of elements x = (x1, ..., xk

)

where x
i

2 B
i

and the elements of x are as similar as possible. We formalize
our objective as the sum of pairwise distances among selected items using our
distance metric, d. Let V = {1, ...,K}. V ⇥V is expressed as V 2. The objective
is defined as:

c(x) =
X

(i,j)2V

2

d(x
i

, x
j

) . (1.1)

Let x⇤
= argmin

x

c(x) be the optimal solution to this optimization. Brute
force computation of argmin over all possible x’s is intractable. The cost of
calculating c(x) for any given x is O(k2). Let X be the set of all feasible x’s.

5

If each subset B
i

has at most N items, then |X| = NK . Thus, the cost of
calculating c(x) for every x 2 X is O(NK · K2

). This slow runtime motivates
an approximation of our objective.

2 Approximation

2.1 Overview of Approximation
An optimization of c(x) is difficult when all pairwise distances must be calcu-
lated. Instead we consider a tractable approximation proposed by Felzenszwalb
[4]. Consider the same space of possible solutions to the initial optimization,
but with K “star-graph” objective functions.

For r 2 V we define the “star-graph” objective as

cr(x) =
X

j2V \{r}

d(x
r

, x
j

) . (2.1)

Let xr

= argmin

x

cr(x) be the optimal solution for this optimization problem.
Using dynamic programming, cr(x) can be solved efficiently by first computing
xr

r

and then solving for xr

j

:

xr

r

= argmin
xr2Br

X

j2V \{r}

min

xj2Bj

d(x
r,

x
j

) (2.2)

xr

j

= argmin
xj2Bj

d(x
r

, x
j

) . (2.3)

After calculating xr for 1  r  K we have x1, . . . , xk that represent K
solutions to the “star-graph” objective. Each solution, described by the items
in xi, contains an item xi

r

that has the smallest distance to items in the other
bags. Also in xi are the K � 1 items, each being the closest to xi

r

in their
respective bags. Each collection of items xi leads to a possible solution to our
initial objective c(x). Thus, we can choose among x1, . . . , xk by defining our
approximate solution as

x̂ = argmin
x

r
c(xr

) 1  r  K .

The initial objective pairwise cost function is only calculated K times, as
opposed to the brute force solution to the objective 1.1 which calculates c(x)
NK times. Pseudocode for an implementation of this approximation can be
seen in Algorithm 1 on the following page. A deeper analysis of the runtime of
this approximation can be found in Section 2.3.

2.2 Justification of Approximation
Approximating the initial objective has little use unless the approximation’s
solution is bounded by the objective’s optimal solution. An unbounded ap-
proximation cannot be used confidently in practice. However, as described by

6

Algorithm 1 Similar item approximation
Input: K bags B1, . . . , Bk

, each with up to n items
Output: Graph of similar items, x̂ = x1, . . . , xk

where x
i

2 B
i

for K bags, B
i

, i = 1 : K do

minCost = 1 and minStar = null
for each of N items in bag, xi

j

, j = 1 : N do

cr(xi

j

) = 0

stari
j

2 RK , stari
j

(j) = xi

j

for K bags, B
m

, m = 1 : K do

find xm

closest

2 B
m

that minimizes d(xm

closest

, xi

j

)

add d(xm

closest

, xi

j

) to cr(xi

j

)

end for

if cr(xi

j

) < minCost then

minCost = cr(xi

j

) and minStar = stari
j

end if

end for

set the min-star for B
i

such that xi

= minStar
end for

x̂ = null
c(x̂) = 1
for K bags, B

i

, i = 1 : K do

c(xi

) = 0

for item xi

j

, j = 1 : K do

for item xi

k

, k = j : K do

c(xi

) = c(xi

) + d(xi

j

, xi

k

)

end for

end for

if c(xi

) < c(x̂) then

x̂ = xi

c(x̂) = c(xi

)

end if

end for

return x̂

7

Felzenszwalb [4], this approximation objective’s optimal solution is no more
than twice as large as the original objective’s optimal solution.

Theorem 1. This approximation of the objective leads to a 2-approximation

algorithm s.t.

c(x̂)  2c(x⇤
)

where c(x) is described by 1.1, x⇤ is the optimal solution found by argmin
x

c(x),
and x̂ is the approximation described in Section 2.1.

Proof.

Since the minimum of a set is as most the average,

c(x̂) = min

x

r
c(xr

)  1

N

X

r2V

c(xr

) .

And by the triangle inequality, for any xr,

c(xr

) =

X

j,k2V

2

d(xr

j,

xr

k

) 
X

j,k2V

2

(d(xr

r

, xr

j

) + d(xr

r

, xr

k

))

=

X

j2V

X

k2V

(d(xr

r

, xr

j

) + d(xr

r

, xr

k

))

=

X

j2V

X

k2V

d(xr

r

, xr

j

) +

X

j2V

X

k2V

d(xr

r

, xr

k

)

= N ·
X

j2V

d(xr

r

, xr

j

) +N ·
X

k2V

d(xr

r

, xr

k

)

= 2N ·
X

j2V

d(xr

r

, xr

j

)

= 2N · cr(xr

) .

Thus, c(xr

)  2N · cr(xr

).
Therefore,

1

N

X

r2V

c(xr

)  2

X

r2V

cr(xr

)

and we can conclude that

c(x̂)  2

X

r2V

cr(xr

) .

8

Given the dynamic programming solution used to compute xr

cr(xr

) = min

xr2Br

X

j2V

min

xj2Bj

d(x
r

, x
j

)

we can simplify our inequality into

c(x̂)  2 ·
X

r2V

min

xr2Br

X

j2V

min

xj2Bj

d(x
r

, x
j

)

 2 ·min

x̄

X

r2V

min

xr2Br

X

j2V

d(x
r

, x̄
j

)

 2 ·min

x̄

X

r2V

X

j2V

d(x̄
r

, x̄
j

)

= 2 ·min

x̄

X

r,j2V

2

d(x̄
r

, x̄
j

)

= 2 · c(x⇤
) .

Thus, c(x̂)  2 · c(x⇤
).

2.3 Runtime Analysis
Consider the runtime for this approximation. Assume that upon implementa-
tion, items are represented by vectors of length J (see Section 5 on page 12).

For K bags, a star is formed for each of the N items in each bag. In order to
form that star, each item must look at K�1 other bags, find the closest item in
each bag (which is done in a constant amount of time, see Section 6), find the
current item’s vector’s distance to that closest item’s vector of length J , and
add that distance to the cost of that star. This process will end with a collection
of possible approximations, x1, . . . , xk

. Thus, the process of calculating these
K solutions takes K2 ·N · J time.

Now consider the process of choosing the best approximation, x̂, that has the
lowest c(x) among all possible solutions x1, . . . , xk

. To calculate argmin

x

c(x),
each of the K possible approximations must look at each of its K items. For
each item, a distance is calculated from the item’s vector of length J to all of
the other K�1 items in the possible approximation. Thus, finding argmin

x

c(x)
takes K3 · J time.

Thus, the runtime of this approximation algorithm is O(K2NJ + K3J).
Assuming N � K, this algorithm runs in O(K2NJ) time. This is significantly
faster1 than the brute force solution for the objective, which runs in O(NK ·K2

),
as discussed in Section 1.

1Assuming N > K.

9

Remark. M-root Selection
In analyzing datasets larger than K = 10, consider a � such that |c(xi

) �
c(xj

)| < �, 8i, j 2 V . In practice, this � is not very large. Thus, it does not
drastically increase the cost of our approximation if we don’t evaluate all sets xi

8i 2 V , but only find the set xi for 8i 2 V st imod(m) = 0. Worst case, our ap-
proximation will cost �more than x̂. Thus, order to increase the efficiency of the
algorithm, only every mth bag was considered to create a star-graph when over
ten images were analyzed. Thus, x̂ was selected as the argmin of K

m

stars, not
K stars. This did not dramatically change the results of the algorithm, though
it did significantly decrease the runtime. However, it is important to note that
this optimization delegitimizes the theoretical approximation argument made in
Section 2.2.

Part II

Implementation

3 Defining the “parts” of an image
Images provide a great landscape for discussing similar parts, particularly be-
cause different images of the same item will be similar but not identical. In order
to apply our algorithm to images, we convert the colored images to grayscale
where each pixel is defined by a value in the range [0, 255]. Consequently, the
images are now matrices with elements in range [0, 255]. Consider applying the
algorithm to k images, img1, . . . , img

k

. Consider a grayscale image img
i

with
size 300 ⇥ 450. The corresponding matrix to img

i

is expressed as the m ⇥ n
matrix D

i

with m = 300, n = 450, and 8x 2 D
i

, x is in range [0, 255]. Note
that not all images need to be the same size.

For this algorithm, each image can be thought of as an individual bag. The
items of the bag can be thought of as “patches” of the image In particular, for
some w, the bag will contain all possible patches of the image of size w⇥w. One
way to visualize this is to imagine a window of size w ⇥ w. The window slides
horizontally and vertically, taking “snapshots” of the part of the image that the
window contains.

In practice, the algorithm adopts the approach used by Agarwal and Roth
[5] in which the window moves by 20% of the window size each iteration. For
example, a square window of size 100 pixels would move 20 pixels on each it-
eration. There are, however, limitations to this approach. Consider the case
where the item similar among all images is larger than w ⇥ w. To ensure that
every object in an image can be fully included in the window, we reduce the
dimension of the image. With reduced image size (which results in a grainier
image), a window of size w ⇥ w can now capture larger objects. This size re-
duction continues until the image itself is the size of the window. The collection
of these “snapshots” at every size constitute the n items inside the bag. This

10

method of item generation allows objects of different sizes in different images to
still be considered similar.

4 Scale Invariant Feature Transform Descriptors
Pixel-by-pixel descriptions of a subpatch of an image are not sufficient descrip-
tors for identifying commonalities between subpatches. Because pixel-by-pixel
descriptions only examine grayscale values, a set of identical images with differ-
ent light exposures would be seen as completely different. In order to describe
subpatches accurately and with informational descriptors, images are described
using features attainted through Scale-Invariant Feature Transform (SIFT) fil-
ters. The goal of SIFT filters is to provide invariant descriptors of patches. These
descriptors are intended to be robust to changes in illumination and viewpoint.
Initially developed by Lowe [6], SIFT descriptors provide the perfect tool for
subpatch description. This thesis used the SIFT feature descriptor implemented
in the open-source library VLFeat [7].

SIFT descriptors utilize gradients to attain illumination, rotation, and size
invariance. SIFT key points are initially detected by looking for local maxima
or minima among a difference-of-gaussians function. Each feature is described
by its key point center (in x,y coordinates), its rotation (described in radians),
the radius of its region, and a descriptor. The descriptor of a feature describes
the image gradients of a key point with a 3-D spatial histogram. Gradients
that are farther from the key point are given less importance by a Gaussian
weighting function over all the gradients. SIFT features have the advantage of
being invariant to rotation, scale, translation, and some illumination changes.
Therefore, SIFT features are ideal for recognizing similar yet rotated objects
that vary in size, which is common in the sets of images this algorithm is an-
alyzing. An example of an image and a random selection of some of its SIFT
descriptors and keypoints can be found in Figure. In this figure, 800 descriptors
are visualized. This image has over 50,000 keypoints and descriptors.

Another similar option for image feature description are Dense-SIFT fea-
tures, however they lack the ability to make invariant descriptions. Unlike SIFT
filters, Dense-SIFT filters do not identify interest points. Rather, they divide
the image into a grid of cells and describe the histogram at each cell. These
cells may overlap, allowing a comprehensive description of an image. While
comprehensive, Dense-SIFT features lack both scale and rotational invariance.
Consequently, they were not nearly as effective in recognizing similar features
among similar images. Figures 4.2 and 4.3 show the performance of this algo-
rithm while using SIFT and Dense-SIFT features respectively.

11

Figure 4.1: Original image and a random selection of 800 keypoints (in yellow)
and their descriptors (in green)

5 Visual Words

5.1 Building a Vocabulary to Describe Images
In practice, the SIFT features of a given image or subpatch can be summarized
in a low dimensional space using visual words. Visual words are an attempt to
provide generic visual categorization of images. These visual words create a vo-
cabulary of words that can be used to describe any image. Consequently, visual
words allow for easy cross-image comparisons. An image may contain multiple
visual words, often called a “bag of words”. This thesis attempts to create a
vocabulary, or codebook, of visual words using SIFT descriptors. Assuming a
vocabulary can be formed, using the “bag of words” approach to describe the
SIFT features of a given region allows similarity measurements to be done more
quickly and consistently.

Research has already proved the success of using affine invariant point de-
scriptors in a “bag of words” model. Csurka et al. [8] showed the utility of this
method in object classification. By describing patches of images with invariant
features and clustering those patches into one of 100 visual words, Csurka et
al. created a “bag of key points” which counts the number of patches in each
image assigned to each visual word. This “bag of key points” was then used as a
feature vector to be analyzed by a multi-class classifier. Their approach proved
most successful in classifying faces with only a 2% error rate.

Similarly, Agarwal and Roth [5] used a “bag of words” approach on interest
points to create binary vectors that describe each image by the visual words

12

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

Original
Image

Item
selected

Figure 4.2: Item approximation using SIFT features

13

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

500 1000 1500 2000

500

1000

1500

2000

2500

3000

200 400 600

100

200

300

400

500

600

Orginal
Image

Item
Selected

Figure 4.3: Item approximation using Dense-SIFT features

14

contained in the image. They were able to use this approach for classification
with similarly high accuracy. However, unlike Csurka et al., Agarwal and Roth
chose to embed spatial relationships among the interest points in the feature
vector.

In order to form a vocabulary that can apply to most images, a comprehen-
sive dataset was needed. The Pascal VOC[9] dataset provided a wide range of
images in multiple categories.2

SIFT features were gathered from all of the images in the VOC dataset.
These SIFT features were then used to create a generic vocabulary using K-
means clustering with J clusters. The selection of J is discussed in Section 5.2.
This thesis implemented clustering of visual words using open-source code from
[7]. After clustering, we have J centers of each cluster. Each center represents
the canonical SIFT descriptor of that cluster. These J descriptors of features
form a codebook, or dictionary, of J visual words.

With this codebook, any given image can be defined by frequency histograms
of these J visual words. This practice of describing parts with a histogram of
gradients has already been done, notably by Leibe and Schiele [10] and Dalal
and Triggs [11]. After calculating the SIFT features of a given image, we have
a collection of SIFT features. Those features are then assigned to the closest
cluster center using distance metric d. We now have a collection of visual words
in an image, with each visual word associated with a feature center. With
this information, a histogram of visual word frequency can be made for each
subwindow. The histograms are normalized so the histogram for a subpatch
represents the frequency of each visual word appearing in that subpatch. This
histogram for subwindow i in image j will be the “item” x

i

added to the “bag” B
j

.
When looking for similar items, our approximation algorithm will be calculating
similarities between these different histograms.

5.2 Selecting the Number of Visual Words
Selecting the number of visual words can often seem like black magic. Using a
codebook that is too small weakens the algorithm’s ability to notice differences
in images. With such a limited vocabulary, very different items are discussed us-
ing the same small collection of words, over exaggerating the similarity between
items. On the contrary, using a codebook that is too large weakens the algo-
rithm’s ability to recognize similarity in images. If there are many visual words
that describe extremely similar features, two items that are almost identical
can be described using completely different visual words. Because the algo-
rithm does not decipher the similarity of visual words themselves, we are stuck
viewing the two similar items as starkly different. This weakens the algorithm’s
ability to notice similar items.

After experimenting with different values, the final results of this thesis were
created with J = 1000 unless otherwise stated. This value was derived from

2All images were labeled with one or more of the following tags: ’aeroplane’, ’bicycle’,
’bird’, ’boat’, ’bottle’, ’bus’, ’car’, ’cat’, ’chair’, ’cow’, ’diningtable’, ’dog’, ’horse’, ’motorbike’,
’person’, ’pottedplant’, ’sheep’, ’sofa’, ’train’, ’tvmonitor’;

15

200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000

Item
selected

with
J=200

Item
selected
with 200

visual
words

Item
selected

with 1000
visual
words

200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000
200 400 600 800 1000

200

400

600

800

1000

Item
selected

with
J=1000

Original
Image

1000 2000 3000

500

1000

1500

2000
1000 2000 3000

200

400

600

800

1000

1200

1400

1600

1000 2000 3000

500

1000

1500

2000

500 1000 1500 2000

500

1000

1500

2000

2500

3000
1000 2000 3000

500

1000

1500

2000

Original
Image

Figure 5.1: Sample of five results from similar-part approximation of ten images
with 200 and 1000 visual words

a process of trial and error. An example of how results differ with different J
values can be found in Figure 5.1. We see that there are two images where
the algorithm does not capture anything with J = 200 but captures Obama’s
face with J = 1000. Without a quantitative approach to measuring algorithm
accuracy (which goes beyond the scope of this thesis), the other results can
be qualitatively identified as having equal performance. The topic literature
suggests other more advanced approaches to cluster words. Agarwal and Roth
[5] implement bottom-up clustering and cluster merging while Csurka et. al [8]
select J based on algorithm accuracy when compared to other J values.

6 Locality Sensitive Hashing (LSH)
The similar-item approximation algorithm requires finding an item’s nearest
neighbor in each bag. This nearest neighbor search can be time-intensive work-
ing in high dimensions, where conventional nearest-neighbor search optimiza-
tions, such as K-D trees, rarely perform better than brute-force search. In

16

practice, though, the exact nearest-neighbor is not necessary for the function-
ality of this algorithm. Nearest neighbor approximations suffice, particularly
because in each bag there are many items that are extremely similar.3

Locality Sensitive Hashing, first developed by Gionis, Indyk and Motwani
[12], achieves nearest-neighbor approximations in sub-linear time. The algo-
rithm creates a series of hash functions such that images that are similar have
a high chance of collision. The probability of collision of two items is tied to
the distance of those items. Thus, if items are very similar, they have a high
chance of being hashed to the same “bucket”.4 Consequently, looking up a new
item in the LSH scheme will hash the item to a particular “bucket”. LSH will
retrieve the closet item to the query in that bucket. This functionally returns
the nearest neighbor to a given query point.

In this algorithm, an LSH table is created for each bag. These tables
(T1, . . . , TK

) are formed after items are added to each bag but before the similar-
item approximation begins. During the approximation algorithm, when an item
x
i

2 B
i

is looking for the nearest item in B
j

, x
i

is queried in T
j

. The result of
the lookup, x

j

, is accepted as the nearest neighbor to x
i

in B
j

.
This thesis used the LSH implementation created by Andoni and Indyk [13].

This implementation allowed for both l1 and l2 distance schemes. Both were
experimented with. Ultimately, in practice, l1 norms were more effective. The
comparison of these two parameters can be seen in Figure 4.2 on page 13 and
Figure 6.1 above. Figure 4.2 on page 13 are the results of the algorithm with d
as the l1 norm and Figure 6.1 are the results with the l2 norm. In the top row of
each figure are the original set of seven images. On the second row are the items
selected for each image. In other words, the first element in column i represents
B

i

and the second element represents x̂
i

where x̂ is the optimal solution to the
approximation and x̂

i

2 B
i

.

7 Pre-processing of images using entropy
Occasionally in practice, not all subpatches of an image were included in the
final bags. After the histogram of each subpatch was calculated, a pre-processing
step excluded subpatches with extremely low histogram entropy. This exclusion
was to prevent the algorithm from determining that the most similar items in
a set of images were the subpatches with no visual words, such as the sky or a
white patch.

The entropy of an frequency histogram of visual words, h, with length J can
3This is mainly a result of our item generation. For example, sliding windows imply that

multiply items share overlapping parts of the image. Similarly, changing the resolution of an
image may not alter the visual words of the image, implying that many items contain nearly
identical histograms.

4A “bucket” can be thought of as the index that a particular hash value references. When
an item is added to hash set, a hash function is applied to that item to derive the index to
which bucket the item should be added.

17

500 1500

1000

2000

3000

200 400 600

200

400

600

200 600 1000

500

1000

1500

200 400 600

200

400

600

500 1500

1000

2000

3000

200 400 600

200

400

600

500 1500

1000

2000

3000

200 400 600

200

400

600

500 1500

1000

2000

3000

200 400 600

200

400

600

200 600 1000

500

1000

1500

200 400 600

200

400

600

500 1500

1000

2000

3000

200 400 600

200

400

600

Item
Selected

Original
Image

Figure 6.1: Item approximation using l2 distances

be described by

entropy(h) = �
JX

j=1

h
j

· log2(hj

) .

Each histogram’s entropy was compared to the mean entropy of all collected
subpatches for all images. Histograms with entropy less than 1

4 of the mean
entropy were excluded from their respective bags.

More formally, let M be the total number of items in all bags. Let B
0

i

be all
of the items for image i before pre-processing. For any x

i

2 B
0

i

x
i

2 B
i

() entropy(x
i

) � 1

4

· 1

M

KX

j=1

X

x2B

0
j

entropy(x) .

In rare cases where the similar item in question has low entropy, subpatches
with extremely high entropy were excluded. In practice, this was helpful for
images with hectic backgrounds. Highly entropic images tended to have many
visual words but very low frequency for each visual word. Consequently the
normalized histogram for a subpatch with hectic images will have many visual
words with nonzero probabilities, but most visual words will have extremely
small probabilities. Thus, the l1 distance between histograms of hectic sub-
patches will be very low because both will have an extremely small l1 distance
from the origin. Figure 7.1 shows an example of the effect of entropy filtering.

18

500 100015002000

500

1000

1500

2000

2500

3000
500 100015002000

500

1000

1500

2000

2500

3000
500 100015002000

500

1000

1500

2000

2500

3000
500 100015002000

500

1000

1500

2000

2500

3000
500 100015002000

500

1000

1500

2000

2500

3000
500 100015002000

500

1000

1500

2000

2500

3000
500 100015002000

500

1000

1500

2000

2500

3000

Original
Image

200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600

Item
selected

using
entropy
filtering

200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600

Item
selected
without
entropy
filtering

Figure 7.1: Item approximation with and without filtering out highly entropic
subpatches

19

Figure 8.1: Sample of images created using the same face

8 Datasets
The implementation of this algorithm was run on a series of different datasets,
each seeking to test the effectiveness of the algorithm in different contexts.

First, to ensure the algorithm was working, it was crucial to determine if
the algorithm could find a common element e if B1 \ B2 \ · · · \ B

k

= e. To
confirm this, the same image of a face was inserted in multiple different random
images (which were taken from the Pascal VOC dataset[9]). The insert varied
in size and location, but nevertheless existed in all images. This provided an
excellent test that the algorithm’s approximation was able to detect similar (in
this case identical) items that had different sizes in different images. The face
was taken from the Yale Face Database[14]. Example images from this dataset
can be found in Figure 8.1.

In general, the Yale Face Database provided a good dataset where images
were almost the same, but varied by individual person. Nevertheless, if each
face were superimposed on a different random busy image, the similar items in

20

each image should be the set of superimposed faces.
To ensure that the SIFT features were rotationally invariant, a small dataset

was created that included the same exact item in different scenes. A framed
photograph of a dog was placed in many different places. The dog’s face and
the frame were exactly the same in each image, the only difference being the
rotation of the object. This framed photograph was rich enough in texture to
contribute a substantial number of visual words to the histogram of a given
patch. Moreover, because the framed photograph presented itself as different
sizes in each image, it also pressed the algorithm to take advantage of image
resizing to detect similar items.

A small dataset of Barack Obama in different scenes was created to test
the algorithm’s ability to notice extremely similar yet un-identical items. As
opposed to the framed photograph, the facial expression and angle of Obama’s
face differed in each image. This presented a harder problem for the algorithm,
because depending on the structure of Obama’s face, histograms may be very
different but should still be the most similar in patches around his face.

Finally, to notice entirely different items that maintained the same structure,
the Pascal VOC dataset was used. Each class (person, dog, bicycle) presented
a set of images with similar object grammars. Thus, the algorithm was run on
items in a shared category. For example, ten images with the label “car” should
return ten similar items that all include a car. The algorithm was also run at a
large scale on 100 images of side-facing cars taken from the Pascal dataset. All
cars had a minimum size of 60x60 in an image that was around 375x500.5 This
provided a chance to see how the algorithm performed at a larger scale.

Part III

Results

9 Performance of algorithm
In general, the approximation proved very effective. As seen in Figure 9.1,
the algorithm worked when the face was superimposed on various images. The
algorithm performed similarly well when different (yet almost identical) face
portraits were superimposed, which is shown in Figure 9.2. These two exam-
ples prove the heart of the problem: there is an obvious similar item that the
algorithm should be detecting.

When a key object is inserted in various scenes and rotation, size, and light-
ing are the only things that change (such as the Dog Frame dataset created
for this thesis), the algorithm still is able to choose items with the key object
with near perfect accuracy (Figure 4.2). In this case, the algorithm is less able

5Car size was determined by the size of the bounding box in the training data associated
with the label. Images varied in size and orientation, but were between 202x500 and 375x500
(the most common size).

21

100 200 300 400 500

100

200

300

400

50 100 150 200 250 300

100

200

300

400

500
50 100 150

50

100

150

100 200 300 400 500

100

200

300

50 100 150

50

100

150
100 200 300 400 500

100

200

300

50 100 150

50

100

150

100 200 300 400 500

100

200

300

50 100 150

50

100

150
100 200 300 400 500

100

200

300

50 100 150

50

100

150

100 200 300 400 500

100

200

300

50 100 150

50

100

150
100 200 300 400 500

100

200

300

50 100 150

50

100

150

100 200 300 400 500

100

200

300

50 100 150

50

100

150
100 200 300 400 500

100

200

300

50 100 150

50

100

150

50 100 150

50

100

150

Original Image Item Selected Original Image Item Selected

Figure 9.1: Performance of algorithm when the same item exists in every bag

22

100 200 300 400 500

100

200

300

400

50 100 150 200

50

100

150

200
50 100 150 200 250 300

100

200

300

400

500
50 100 150 200

50

100

150

200

100 200 300 400 500

100

200

300

50 100 150 200

50

100

150

200
100 200 300 400 500

100

200

300

50 100 150 200

50

100

150

200

100 200 300 400 500

100

200

300

50 100 150 200

50

100

150

200
100 200 300 400 500

100

200

300

50 100 150 200

50

100

150

200

100 200 300 400 500

100

200

300

50 100 150 200

50

100

150

200
100 200 300 400 500

100

200

300

50 100 150 200

50

100

150

200

Original image Item Selected Original image Item Selected

Figure 9.2: Performance of algorithm when near-identical images exist in every
bag

23

1000 2000 3000

500

1000

1500

2000

200 400 600

200

400

600

1000 2000 3000

500

1000

1500

2000

200 400 600

200

400

600

1000 2000 3000

500

1000

1500

2000

200 400 600

200

400

600

1000 2000 3000

500

1000

1500

200 400 600

200

400

600

500 1000 1500 2000

1000

2000

3000
200 400 600

200

400

600

1000 2000 3000

500

1000

1500

200 400 600

200

400

600

500 1000 1500

200

400

600

800

1000
200 400 600

200

400

600

1000 2000 3000

500

1000

1500

2000

200 400 600

200

400

600

Item selectedOriginal image Original imageItem selected

Figure 9.3: Performance of algorithm on 10 Pascal cars of different type, rota-
tion, and size

to form a bounding box around the key object but is able to choose an item
containing the key object. This is expected because the item generation schema
described in Section 3 does not actually create every possible subpatch in ev-
ery possible dimension. Consequently, the item that is a perfect bounding box
around the key object may not even exist in any of the bags. This item gen-
eration implies that we cannot expect the algorithm to do any better than a
generally zoomed-in subpatch of the key object.

The algorithm was still able to recognize similar objects from the Pascal
dataset. In the Pascal dataset, images might share an object of the same class,
but their similarity is much looser. Consequently, this proved a much harder
exercise for the algorithm. An image of a frontal facing car and a left facing car
may share similar semantic meaning. However, the similarity of the object from
the viewpoint of visual words and SIFT features is quite small. This proved a
limitation of the algorithm. Nevertheless, as seen in Figure 9.3 it was still able
to discern commonality between these rotated and different images.

At a large scale of 100 images of cars selected from the Pascal dataset, the
algorithm was able to hone in on key parts of the car in 79 of the images.6

6It is important to note that 8 of the images consisted entirely of a car. It was impossible

24

The other 11 items selected did not include parts of a car. Given how diverse
the images were, this can be viewed as good performance, though not nearly as
accurate as other experiments. A sample of 8 images and their selected items
are shown in Figure 9.4.

Part IV

Discussion

The algorithm proved effective when the key objects of similarity among images
were almost identical. SIFT was developed to find key points of an object and be
able to recognize the same object from different viewpoints. It is consequently
unsurprising that the algorithm is most effective on images that contain the
same object in different viewpoints. While the car and (in some regards) Obama
datasets had completely different objects of the same class, the algorithm was
still able to recognize similarity. Further exploration should be done on the
effects of other invariant feature descriptors.

While l1 norm proved the most effective distance measure among l
p

distance
functions, it may not be the most appropriate. For example, chi-squared dis-
tances are most often used when comparing histograms. However, due to limita-
tions given by the support code utilized in this thesis7, other distance measures
were not explored. However, they certainly would be able to improve the algo-
rithm. Because this thesis was limited to l1 and l2 distances, entropy filtering
(Section 7) was used to eliminate some of the faults of l1 distance comparisons.
However, entropy is not the best way to describe these histograms. While they
are frequency histograms, they are not probability distributions and an image
with low or high entropy does not say anything about its innate probability of
being the most similar item in a bag.

The similar item approximation can be easily extended to apply to sets of
images with multiple common parts. For example, a set of faces will have eyes,
ears, nose, and mouth all in common. By running the algorithm multiple times
on the set of faces with some small adjustments to the items B1, . . . , Bk

, we can
determine multiple common parts of image.

Consider a final star x̂, which is derived from the min-star generated by
B

r

and thus has root x̂
r

. Let x
m

= argmax

k2V r

d(x̂
r

, x̂
k

). That is, x̂
m

is the
furthest distance from the center of the star. Let us refer to that distance as
f . For every item xk

i

2 B
k

, 8k 2 V \{m}, 8i we know that if d(xk

i

, x̂
r

)  f ,
xk

i

is more similar to x̂
r

than any item in B
m

. Thus, we can assume no new
information is given by those items. They cannot represent a new aspect of the
images, as they are closer to the root of the star than other items that are in
the star. Thus, for each bag, we remove all elements that are are closer to x̂

r

than x̂
m

.

for the algorithm to fail on those images, so accuracy estimations may be artificially inflated.
7The LSH support code [12] only accepts l1 and l2 distance functions.

25

Figure 9.4: Sample of results from running algorithm on 100 side-view images
of cars. On the left are original images and on the right are the selected items

26

We now have a new set of bags B
0

1, . . . , B
0

K

that have no items close to the
similar item that is described by the star x̂ with root x̂

r

. Thus, we can run
the algorithm again on our new set of bags to find a new distinct set of items
described by a completely different star x̂

0
, whose root has at least a distance

of f from the root of our original star x̂.
Consider a set of L distinct stars represented by x̂1, . . . , x̂L

. Each star repre-
sents a distinct similar part that’s shared between bags B1, . . . , BK

. These stars
could potentially serve as the sub-parts of a new object grammar.

Conclusion

This thesis has shown that a 2-approximation algorithm can be implemented to
estimate similar items among a set of images. SIFT features and visual words aid
in describing the image beyond pixel-by-pixel values. More exploration needs
to be done in different distance functions and feature descriptors to improve
the algorithm’s accuracy on images with semantic similarity but very different
image representations. Future applications of this research include building
object grammars. Moreover, by applying this research to non-visual datasets
such as public speech transcripts, similar-part approximation can describe the
thematic emphases by honing in on similar patterns among a series of speeches.
Finally, if applying this algorithm to different scenes, similar-part approximation
can help define the canonical aspects of a given environment or location.

References
[1] Girshick, R., P. Felzenszwalb and D. McAllester. "Object Detection with

Grammar Models." 2011 Advances in Neural Information Processing Sys-
tems 24 (NIPS), 2011

[2] Prioletti, A., A. Møgelmose, P. Grisleri, M. Manubhai Trivedi, A. Broggi,
and T. B. Moeslund. “Part-Based Pedestrian Detection and Feature-
Based Tracking for Driver Assistance: Real-Time, Robust Algorithms,
and Evaluation.” IEEE Transactions on Intelligent Transportation Systems
14(3):1346-1359, 2013

[3] Gerónimo, D., A. M. López, A. D. Sappa, and T. Graf. “Survey of Pedes-
trian Detection for Advanced Driver Assistance Systems.” IEEE Transac-
tions on Pattern Analysis & Machine Intelligence, 2010

[4] Felzenszwalb, P. Personal communication.

[5] Agarwal, S., and D. Roth. "Learning a Sparse Representation for Object
Detection." ECCV Lecture Notes in Computer Science, 2002

27

[6] Lowe, D. "Object Recognition from Local Scale-invariant Features." Pro-
ceedings of the Seventh IEEE International Conference on Computer Vi-
sion, 1999

[7] Vedaldi, A. and B. Fulkerson. “VLFeat: An Open and Portable Library of
Computer Vision Algorithms.” http://www.vlfeat.org

[8] Csurka G, C Dance, L Fan, J Willamowski, C Bray. “Visual categoriza-
tion with bags of key points.” EECV Workshop on Statistical Learning in
Computer Vision, 2004Gionis, A., P. Indyk, and R. Motwani. “Similarity
search in high dimensions via hashing.” Proceedings of the 25th Interna-
tional Conference on Very Large Data Bases (VLDB), 1999

[9] Everingham, M., L. Van-Gool, C. K. I. Williams, J. Winn
and A. Zisserman. “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results". http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html

[10] Leibe, B., and B. Schiele. "Interleaved Object Categorization and Segmen-
tation." Proceedings of the British Machine Vision Conference, 2003

[11] Dalal, N., and B. Triggs. "Histograms of Oriented Gradients for Human
Detection." IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2005

[12] Gionis, A., P. Indyk, and R. Motwani. “Similarity search in high dimensions
via hashing.” Proceedings of the 25th International Conference on Very
Large Data Bases (VLDB), 1999

[13] Andoni, A., and P. Indyk. “LSH Algorithm and Implementation (E2LSH)”
http://www.mit.edu/~andoni/LSH/

[14] Belhumeur, P., J. Hespanha, and D. Kriegman. “Eigenfaces vs. Fisherfaces:
Recognition Using Class Specific Linear Projection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, July 1997, pp. 711-720.

28

