
Deep Recurrent and Convolutional Neural Networks
for Automated Behavior Classification

Zachary Nado

Advisor: Erik Sudderth, Reader: Thomas Serre

Abstract

In this thesis we investigate different methods of automating behavioral analysis
in animal videos using shape- and motion-based models, with a focus on classi-
fying large datasets of rodent footage. In order to leverage the recent advances in
deep learning techniques a massive number of training samples is required, which
has lead to the development of a data transfer pipeline to gather footage from
multiple video sources and a custom-built web-based video annotation tool to cre-
ate annotation datasets. Finally we develop and compare new deep convolutional
and recurrent-convolutional neural network architectures that outperform existing
systems.

1 Introduction

As the digitalization of society increases so does the amount of data available and the need to process
it. This is best seen in the scientific community with studies that have grown in scale to where it
would be unreasonable for humans alone to analyze all of the information produced. As computer
vision techniques improve in accuracy and efficiency scientists can use them more often in their
research, including autism diagnosis [1], medical diagnosis [24], and animal behavioral analysis [4].
These are all examples of areas where computer vision is improving the productivity of scientific
study through the automation of classification.

This thesis focuses on behavioral analysis, a process that is a bottleneck in many areas of science but
especially in biomedical research. Until recently humans were vital to the data gathering process.
They would typically watch many hours of footage or comb through many pages of records, an error
prone and laborious process that was still central to the experiments. An example of this bottleneck
is that it currently takes twenty five minutes of human analysis to analyze one minute of mouse
behaviors. With the experiments in the lab there are several dozen streams of continuous footage
being recorded, generating far too much data for humans to process in a reasonable time. In contrast
the models developed in this paper perform at human level and take approximately twelve seconds
to process one minute of video, indicating there is great opportunity for automation in this area.

To truly leverage the power of new deep learning models one requires very large training datasets,
such as the popular ImageNet database which contains over fourteen million images in twenty one
thousand categories [21]. Unfortunately there do not exist any tools that are effective at annotat-
ing behaviors in videos; most video annotation interfaces [22] are focused on object classification,
which make them ill-suited for the wide range of interactions and experiment setups that behavioral
analysis requires. Thus in order to gather enough data to train deep models a web based annotation
system was also developed that lets users from all over the world stream videos and detail what is
happening on a frame by frame basis. While still much slower than a computer model, this tool has
noticeably improved the speed at which human annotators can process videos.

2 Related Work

Animal behavioral analysis is being used more frequently for varying fields of research and the need
for automating its monitoring and analysis is growing rapidly. While it is useful for many fields

1



of science including ecology, neuroscience, psychology, and pharmacology it is only recently that
computer vision techniques have been developed to create truly robust systems.

Many animal species are commonly used in experiments, such as rodents which are very popular
for modeling neurological functions in mammals [11] and zebrafish [2] which are often involved
in pharmacology and genetic research [5]. Previously these studies required special hardware in
order to record animal activity [7] or relied upon human observation. While there has been work
in automating these practices with computer vision [8] often times the algorithms are very problem
dependent ([4], [19]) and susceptible to failure from small changes in the experimental setup. For
example, the current classification system [16] relies on background subtraction methods that many
times must be tuned to the specific environment.

The work in this paper hopes to move beyond the many experiment-based restrictions and compli-
cations of current behavioral analysis systems by using a deep learning approach. By using a system
that can adapt to the study’s environment, it should not have the current difficulties of adapting to
experimental fluctuations or, given new data, generalizing to new types of experiments. Instead of
relying on multiple stages of analysis such as background subtraction, feature extraction, and classi-
fication it will be able to learn a single end-to-end classification system; thus in addition to increasing
the robustness of setups it will also be easier for scientists that do not have as much knowledge about
computer vision to feed their data into a deep learning blackbox rather than develop a novel pipeline
for each of their studies.

3 Background

3.1 Neural Networks

Multi-layer perceptrons, more generally known as neural networks, go as far back as the 1960s
[20] yet in recent years they have fueled an explosion of advances in the field of computer vision.
Increases in GPU computing power to new neural network techniques have pushed these models to
consistently do very well in large scale computer vision competitions for the last several years [21].
Composed of layers of neurons much like in the mammalian brain, it has been shown [14] that under
certain conditions neural networks can approximate any function in Rn with arbitrarily accuracy.

The basic unit of a neural network is the neuron, represented by an activation function. Common
choices for activation functions are the sigmoid function 1

1+e−x , the hyperbolic tangent function, and
the rectifier function max (0, x). Traditionally a layer in a neural network is thought of as a group
of neurons, with layers stacked on top of each other where the bottommost layer is the raw data and
the topmost layer is the output of the model. Connections between neurons are then represented by
which activation functions in layer L − 1 are used as inputs to activation functions in layer L. The
input to the ith neuron in layer L is then

xiL = f (WxL−1 + b)

where xL−1 is the concatenated outputs of all neurons in layer L− 1 that connect to the ith neuron
and f is the chosen activation function. The matrix W is the weight matrix and b is a vector of
biases unique to each neuron; the values of these structures are what the network learns in order
to minimize the output error. Starting at the last layer in the network and using the chain rule
from calculus, adjustments to each of these can be calculated to lower the model’s error through a
technique called backpropogation.

3.1.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special kind of neural network used for image pro-
cessing and other spatial domain tasks. Instead of being arranged in rows, the convolutional layers
in a network are arranged in an n-dimensional grid that convolves over the input. Each convolu-
tional layer only has one weight matrix and bias vector shared among all the neurons, which means
that the model learns weights and biases that are effective at detecting features in regions of the
input; depending on how the input is arranged, these regions can be organized in space, time, or a
problem-specific dimension. Often times these layers are combined with pooling layers which take
the minimum or maximum value among several neurons, which in the example of image processing
allows for spatial invariance of image features.

It is not uncommon for Gabor filters to be used as initial values for the weights of convolutional
layers. Gabor filters are biologically inspired tensors that act as edge detectors when convolved over

2



an input. They are used in the HMAX system (Hierarchical Model and X, [23]), a special case of
a CNN that does not involve backpropogation. The structure of HMAX was inspired by the visual
cortex in the brain, and even though it is a feedforward-only network it is still powerful at classifying
images.

3.1.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are another type of neural network architecture that have seen
many exciting developments in recent years ([25], [6], [9]). Traditional networks treat subsequent
samples as independent of others, but RNNs allow for a hidden state to be maintained inside the
recurrent neurons that can be altered to affect future outputs. A special type of RNN unit, called a
long-short term memory (LSTM, [13]) unit, has several mechanisms that can be learned to control
this hidden state. By optimizing when to allow the hidden state to change, these units can learn to
control how long to keep information for between inputs. The ability to learn when to retain and
forget information turns out to be quite powerful in detecting patterns in sequential data, and can
even be used as a generative model [10].

A technique called backpropogation through time is used to train RNNs. It works by taking the
single neuron and “unrolling” it in time, making a layer for each time step that consist of the same
neuron but with its hidden state at that step. This can substantially increase the depth of the network,
which can lead to problems such as the unstable gradient problem [12]. Because of the multiplicative
nature of the chain rule used to backpropogate the changes in weights and biases to layers in the
network, small or large differences can explode or vanish exponentially fast. While LSTM units are
much better at stabilizing these weight and bias changes than traditional RNNs, issues still arise in
practice.

3.2 Current Behavior Classification System

The current classification system [16] was published with a 78.3% accuracy on eight classes on the
expert annotated data, yet more recent improvements have increased this to approximately 80%.
The model can be broken into three parts: image preprocessing, motion feature generation, and the
classifier which is an SVMHMM implementation.

The first thing the system does with a new mouse video is perform background subtraction on all
frames. This identifies the mouse pixels versus the cage so that the position, velocity, and acceler-
ation vectors of the mouse can be computed, which is referred to as position features in this paper.
Unfortunately this background subtraction is susceptible to failing if elements of the cage are slightly
altered such as lighting or cage position; this has caused failures in mouse identification and often
requires manual tuning.

The spatial-temporal feature maps are computed using the S1 and C1 layers of an HMAX imple-
mentation. In the S1 layer of the system there are four orientations of Gabor filters shifted over a
window of nine frames to compute four directions of motion features, followed by max pooling in
the C1 layer. In practice the frames are cropped to a tighter subwindow centered around the mouse
to remove unnecessary information and speed up computation time. Using these croppings the S2
features are then computed. The S2 weights were developed by randomly cropping high motion
pixels from human chosen times of interest in the videos and then performing feature selection to
get approximately 300 features.

In addition to the temporal features generated by HMAX, the current system uses an SVMHMM
model that adds another time dependence between video frames. The position features and motion
maps from HMAX are then combined into feature vectors and used as input to the SVMHMM
classifier. The output of this classifier can then be analyzed to determine behavioral patterns and
compute ethograms of the mouse’s activities.

3



0 2 4 6 8

0

2

4

6

8
0 2 4 6 8

0

2

4

6

8
0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8
0 2 4 6 8

0

2

4

6

8
0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8
0 2 4 6 8

0

2

4

6

8
0 2 4 6 8

0

2

4

6

8

x 4 MongoDB

Video Input Background
Subtraction

Position Feature
Calculation

Cropping

HMAX

Spatial-temporal
gabor

convolutions
(S1)

max
pool

max
pool

Feature
dictionary

convolutions
(S2)

Feature
Selection

SVMHMM Storage

Figure 1: A visualization of the current classification pipeline.

4 Methods

4.1 Web Annotation Tool and Pipeline

Over the course of several years a web-based system has been developed for storing and querying
annotations on various video based projects. What started out as a simple HTML5 video player soon
grew into a large part of the lab’s infrastructure, and is now relied upon by several partner labs for
data collection as well. After several iterations in design the current version of the tool was settled
on, which has proved generic enough to work for multiple types of projects: ecologists annotate
interactions between birds in the wild, neuroscientists analyze eye-tracking data from epileptic pa-
tients, and biomedical researchers classify behaviors in mice using the web interface. The lab also
has several groups of students that work part time during the school year annotating mouse footage,
in addition to several expert annotators that used the tool to generate data such as that used to train
the models in this paper. The system consists of three main parts: a web-based user interface written
in JavaScript and jQuery, a server that handles API and static file requests running in Node.js, and a
central MongoDB database to store all of the data and analyzes.

Figure 2: An example of the tool being used to annotate faces in an episode of Friends.

4.2 Experimental Setup

Experiments were run on several desktop machines in the lab all running Ubuntu 14.04, using the
Caffe [17] deep learning framework to leverage the power of the NVIDIA Titan X GPUs in each
computer. For the neural network trials that did not have recurrent layers the master branch of Caffe
was used, and for the remaining trials the LSTM layer in the recurrent fork by Jeff Donahue was
included.

4



(a) drink (b) eathand (c) eat

(d) groom (e) hang (f) rear

(g) rest (h) sniff (i) walk

Figure 3: Representative frames of the mouse actions in the dataset

4.3 Data

All of the data used in this thesis was collected from rooms in the Brown Bio-Medical Center,
where the lab has an array of infrared cameras setup in controlled environments that continuously
record and save footage of mice. They are average lab mice that have not been subjected to any
experiments. The data is recorded using custom software and Point-Grey Firefly cameras, stored as
30 FPS, 640x480 resolution, grayscale MP4 videos which are broken into frames to be analyzed by
Caffe using FFMPEG.

The data is annotated with one of nine classes per frame: drink, eat, groom, hang, sniff, rear, rest,
walk, and eathand. These represent simple actions the mouse performs that are useful for behavioral
analysis, and representative frames of each class are shown in Fig. 4.3.

4.4 Defining Accuracy

The traditional definition of accuracy is the number of samples that were correctly labelled divided
by the total number of samples. While this is a valid measure, it is not as effective for datasets that
have very uneven distributions of classes. The classification systems developed in this paper are
better analyzed with balanced accuracy; this is defined as the average of the per-class accuracies,
which gives more weight to classes that are underrepresented in the data. For example, in the training
and validation dataset the rest and eathand classes each represent more than 25% of the data, while
drink and walk classes each occur less than 1% of the time.

5



Another metric considered in the assessment of model accuracies is the ability for humans to agree
on classifications. Several of the classes are defined by the type of small movements the mouse is
making, and many times humans have difficulty deciding exactly what kind of motion is occurring.
Additionally sometimes the mouse is performing many actions simultaneously which leads to fur-
ther discrepancies and has motivated an effort to redefine the classification framework. Labelling
disagreements between humans have shown there is only an approximately 80% human agreement
for the same videos in the datasets. This sets the target accuracy for the models, because even if
the model achieves a higher accuracy on one video in general this is the level at which humans can
consistently annotate.

4.5 Network Architectures

4.5.1 CNN

In order to see how effective recurrent architectures are a convolutional only model is trained without
a recurrent layer for comparison. Alexnet [18] is a CNN that is often times the basis for many
convolutional architectures. It was among the first papers to clearly demonstrate the power of deep
learning combined with GPU computing architectures. It uses a technique called dropout, a popular
method for preventing overfitting that works by randomly removing neurons from a network at any
given training iteration. It does this in an attempt to make a model that is more robust by forcing it to
learn weights and biases that are not as dependent on other activations. Using dropout and rectified
linear units (ReLU) amongst other techniques, AlexNet achieved winning top-1 and top-5 error rates
at the ILSVRC-2012 image classification competition [21].

Pool 2

480

640

11

11

1

3

3

96

Stride 4

Stride 2

Pool 1

118

158 256
79

59

96

5
5

79

59

3

3

Stride 2

256
39

29

Conv 1

Conv 2
Conv 3 Conv 4

384 384

Conv 5

256

Pool 5

fc6 fc7

fc8

fc9

3
3

3

3 3

3

3

3
Stride 2

4096 4096

1024

9

29 29

39 39 39

29

Figure 4: The CNN architecture used for time-independent classification, inspired by AlexNet.

As shown in Fig. 4, the model is similar to the original AlexNet; there are five convolutional layers
using the original filter and output sizes with pooling in between to learn spatial features, followed by
several fully connected layers. All neurons are rectified linear units (ReLU), but batch normalization
[15] was used instead of local response normalization after the pool1 and pool2 layers; this has
been shown to improve learning rates and removes the need of dropout neurons. There is also
an additional fully connected layer added before the final output layer, so that features could be
extracted at this layer to use in other classifiers. This is referred to this as the shape model.

Combining Features The current classification system saw a noticeable improvement when us-
ing position features of the mouse compared to its motion-only alone. In order to see how much
explicit position information affects the performance of the neural networks the pre-computed posi-
tion features from the current system are taken for use in the new models. Position and velocity are
diagnostics for many of the actions used, especially when the mouse is resting and eating. Eating is
always defined as when the mouse is touching the feeder spout, so a classifier will have a much eas-
ier time if given the explicit position information compared to having to extract and learn it. Position
features were inserted into the CNN by concatenating them to the fc8 layer in Fig. 4.

The other type of features used in the current classification system is a hierarchy of motion features
generated starting from spatial-temporal Gabors in several orientations. While these are hard-coded
into the HMAX system, in order to use these in the neural network models the architecture was
modified to that of in Fig. 5.

The motion stream uses four orientations of Gabor filters that convolve over nine frames at a time
to produce a single motion image, which is then used as input for a condensed version of the shape
stream from the CNN. In practice the motion images were precomputed due to the format that
the data is read in by the deep learning framework, so the network definition starts at the Motion
Conv1 layer. The two-dimensional outputs from the motion and shape streams are then flattened and

6



Pool 2

480

640

11

11

1

3

3

96

Stride 4

Stride 2

Pool 1

118

158 256
79

59

96

5
5

79

59

3

3

Stride 2

256
39

29

Conv 1

Conv 2
Conv 3 Conv 4

384 384

Conv 5

256

Pool 5

fc6 fc7

fc8

fc9

3
3

3

3 3

3

3

3
Stride 2

4096 4096

1024

9

29 29

39 39 39

29

Motion
Pool 258

78

7

7

4

3

3

96

Stride 2

Motion
Pool 1

52

72

Motion
Conv 1

Motion
Conv 2 Motion

Conv 3

96
36

26

96

96

5

5
Stride 2

3
3

26

36
18

13

3
3

Motion
Stream

Shape
Stream

Figure 5: The CNN architecture incorporating spatial-temporal filters using a motion stream. The
convolutional layers of the motion stream represent the motion based component of the current
system.

concatenated before being sent to fc6. Some actions that the CNN has difficulty classifying are very
dependent on motion, such as when the mouse is grooming or sniffing; the only difference is small
movements in particular parts of the mouse that shape alone has difficulty conveying.

Pretraining A common practice with neural networks is to load weight and bias values from net-
works that have already been trained on large sets of data relevant to the purpose of the model. The
intuition is that if they have been exposed to a large amount of data then they will already have
parameter values that are general enough to apply to the particular purpose of the model, and when
new training data is given to the network it will finetune the model for the given dataset.

A common set of weights and biases to use are from AlexNet trained to iteration 310,000 on the
ImageNet dataset [21]. The parameters for the convolutional layers from the pretrained model were
used as initializations for the equivalent layers in the new models, while the fully connected layers’
parameters were initialized from Gaussian distributions.

4.5.2 Long-Term Recurrent Convolutional Networks

The current classification system uses a temporal dependence between frames in its SVMHMM
component, so in order to better replicate its results a recurrent neural network on top of the convo-
lutional model was used to learn a relationship across time. Particularly, an LSTM layer was used
in order to avoid unstable gradient issues that often plague recurrent architectures. As seen in Fig.
6, it is very similar to the shape model except there is a recurrent layer between the second and third
fully connected layers.

Pool 2

480

640

11

11

1

3

3

96

Stride 4

Stride 2

Pool 1

118

158 256
79

59

96

5
5

79

59

3

3

Stride 2

256
39

29

Conv 1

Conv 2
Conv 3 Conv 4

384 384

Conv 5

256

Pool 5

fc6 fc7

LSTM

fc8

3
3

3

3 3

3

3

3
Stride 2

4096 4096

9

29 29

39 39 39

29

4096

ht

Figure 6: The recurrent convolutional (LSTM) architecture used to combine spatial and temporal
models.

Combining Features As with the shape model, different feature combinations with the LSTM mod-
els were also tested. However now there were two possibilities for concatenating position features,
to a fully connected layer before or after the LSTM layer. Motion features were incorporated into
the LSTM model the same way as with the shape model in Fig. 5 except with an LSTM layer instead
of fc8.

7



5 Results

5.1 Network Hyperparameter Tuning

Deep learning models often have many hyperparameters that require careful tuning, such as those
that control learning rate, parameter updates, and normalization. There has been a great deal of work
in developing improvements to these elements including batch normalization, gradient clipping, and
sophisticated learning rate policies; these were all tested and tuned to improve the learning efficiency
and validation accuracy of the models.

5.1.1 Data Normalization

Until recently many neural network models used local response normalization (LRN) [18] which
normalizes activation function outputs across different output maps; for example, in a convolutional
layer that produces many output maps the activations in each map at coordinates (i, j) would be
normalized across all maps. This was inspired by the lateral inhibition in neurons observed in the
brain, and prevents any one map from producing activations that overwhelm others so that their effect
on learning is not mitigated. However in 2015 a paper was published detailing batch normalization
[15]. Batch normalization works by normalizing all samples in a mini-batch so that inputs to neurons
from different mini-batches are from the same distribution; this makes it easier for them to learn
because they do not have to constantly adapt their parameters to different ranges of values during
training.

Using batch normalization and removing dropout neurons, a significant speedup in model learning
in observed as seen in Fig. 7.

0 5000 10000 15000 20000 25000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Shape Model Normalization Accuracies

Shape model with batch normalization training accuracy 100 moving average

Shape model with local response normalization training accuracy 100 moving average

Shape model with batch normalization balanced validation accuracy

Shape model with local response normalization balanced validation accuracy

Figure 7: A shape model trial with local response normalization and batch normalization.

5.1.2 Solver Types

When training neural networks, the model error is minimized using a numerical solver such as
stochastic gradient descent (SGD). SGD works by using the gradient of the model error with respect
to the parameters to adjust each parameter in a way that reduces the overall error. The basic equation
for the weights of layer L is

wL = wL −
η

N

∑
i

∂Ei
∂wL

where η is the learning rate hyperparameter, N is the batch size, and Ei is the error for training
example i. Note that it only calculates the change in parameters from the gradients with respect to

8



the current mini-batch, which significantly reduces computation time compared to calculating it on
the entire training population. However, often times SGD is prone to overshooting local minima in
the error surface of the model because the error gradients are too large. One solution to this is to use
momentum, which is a technique inspired by the physical concept that resists changes in the gradient
vector by keeping a running sum of the past gradient vectors. The original SGD equation can then
be modified to get

vL = ξvL −
η

N

∑
i

∂Ei
∂wL

wL = wL + vL

where ξ is the momentum hyperparameter that tunes how much the new gradient vector affects the
weight updates. ξ is typically between 0.9 and 0.99.

0 5000 10000 15000 20000 25000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Shape LSTM Solver Effectiveness

Shape LSTM SGD momentum 0.6 training accuracy 100 moving average

Shape LSTM SGD momentum 0.9 training accuracy 100 moving average

Shape LSTM RMSProp decay 0.8 training accuracy 100 moving average

Shape LSTM RMSProp decay 0.92 training accuracy 100 moving average

Figure 8: The shape LSTM model using the SGD solver with a typical momentum value of 0.9 and
a low momentum value of 0.6, and using the RMSProp solver with a typical decay rate of 0.92 and
a low decay rate of 0.8. Clearly RMSProp learns more efficiently than SGD does, especially when
comparing the solvers with lower hyperparameter values.

Another popular and effective solver that expands on the momentum concept is called RMSProp
[26]. The formula is similar to the momentum SGD,

c = µc+ (1− µ)

(
1

N

∑
i

∂Ei
∂wL

)2

wL = wL + η
1
N

∑
i
∂Ei

∂wL√
c

where c can be thought of as a running cache of the gradient vectors and µ is the cache decay rate
hyperparameter. Typical values of µ are between 0.9 and 0.999. For the new models RMSProp was
much more effective than SGD as seen in Fig. 8 and Fig. 9.

9



0 5000 10000 15000 20000 25000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Shape LSTM Solver Effectiveness

Shape LSTM SGD momentum 0.6 balanced validation accuracy

Shape LSTM SGD momentum 0.9 balanced validation accuracy

Shape LSTM RMSProp decay 0.8 balanced validation accuracy

Shape LSTM RMSProp decay 0.92 balanced validation accuracy

Figure 9: The shape LSTM model using the SGD solver with a typical momentum value of 0.9
and a low momentum value of 0.6, and using the RMSProp solver with a typical decay rate of 0.92
and a low decay rate of 0.8. Even the lower decay rate RMSProp solver reaches a higher validation
accuracy than SGD does.

5.1.3 Learning Rates

The learning rate hyperparameter η controls how much the new error gradients affect the model
parameters. While this could be a constant value, it is almost always a value that decreases with
training iterations. This is so because when the model is starting it should update the parameters
more to get away from the random initializations, but once it has gone through many iterations it
should have found a minimum in the error surface of the model and therefore only be finely tuning
the parameters.

An inverse learning rate policy was used as the function controlling this hyperparameter, given by
the formula

η =
b

(1 + γt)
ε

where b is the base learning rate, t is the training iteration, and γ, ε are hyperparameters that control
the rate and shape of learning rate decay. Adjusting these hyperparameters can have a significant
impact on learning performance, as evidenced by Fig. 10.

5.1.4 Gradient Clipping

One of the issues that many networks run into as they increase their depth is the unstable gradient
problem [12]. The basic intuition for why gradients can become unstable goes back to the derivation
of the backpropogation algorithm: using the chain rule the gradient of the error with respect to any
parameter in the network can be derived as a product of derivatives and parameter values. However,
as the number of layers in between the parameter and the output layer increases so do the number of
terms in the product. Considering the sigmoid activation function has derivatives in the range

(
0, 14
]

and tanh activation function has derivatives that are in the range (0, 1], many of these terms can be
below 1 and drive the gradient toward zero at an exponential rate. A similar argument can be made
with combinations of parameter values for the case where the gradient explodes.

In order to combat the exploding gradient problem, different clipping values for the gradient were
tested. If the network tries to change its parameters by a gradient with a norm larger than the
clipping value, the gradient is scaled to have a norm equal to the clipping value. By tuning this
hyperparameter appropriately the learning efficiency and accuracy of the models were increased, as
seen in Fig. 11 and Fig. 12 respectively.

10



0 5000 10000 15000 20000 25000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Shape Model Learning Rate Tuning Effectiveness

Shape LSTM with base LR 1e-3, gamma 1e-2, power 0.9 balanced validation accuracy

Shape LSTM with base LR 1e-2, gamma 1, power 0.3 balanced validation accuracy

Shape LSTM with base LR 1e-4, gamma 1e-3, power 0.7 balanced validation accuracy

Shape LSTM with base LR 1e-2, gamma 10, power 0.472 balanced validation accuracy

Figure 10: Several choices of hyperparameters for the inverse learning policy. The green line is for
a set of hyperparameters that made the learning rate too large, resulting in a model that could only
predict as well as chance. The others are the result of careful tuning in order to balance learning
magnitude and rate decay to achieve better performance.

0 5000 10000 15000 20000 25000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Shape LSTM Gradient Clipping Effectiveness

Shape LSTM model with clipping=100 training accuracy 100 moving average

Shape LSTM model with clipping=10 training accuracy 100 moving average

Shape LSTM model with no clipping training accuracy 100 moving average

Figure 11: Training accuracy on the shape LSTM model. By tuning the clipping value of the
gradients it was able to learn much faster compared to poorly tuned or no clipping values.

5.1.5 Random Initializations

Unless pretrained values are specified all of the model weight parameters are initialized to values
sampled from a Gaussian distribution with zero mean and standard deviation 0.01, while all the bias
parameters are initialized to zero or one. Because of the highly nonlinear nature of the error space

11



0 5000 10000 15000 20000 25000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Shape LSTM Gradient Clipping Effectiveness

Shape LSTM model with clipping=100 balanced validation accuracy

Shape LSTM model with clipping=10 balanced validation accuracy

Shape LSTM model with no clipping balanced validation accuracy

Figure 12: Balanced validation accuracy on the shape LSTM model. By tuning the clipping value of
the gradients it was able to achieve a higher balanced validation accuracy compared to poorly tuned
or no clipping values.

of these models, starting in a new random location can place the model near different local minima
and thus significantly impact learning performance. This is clearly the case as Fig. 13 shows.

0 5000 10000 15000 20000 25000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Shape LSTM Random Initializations

Shape LSTM with PRNG seed 32452843 balanced validation accuracy

Shape LSTM with PRNG seed 1701 balanced validation accuracy

Shape LSTM with PRNG seed 7430947 balanced validation accuracy

Shape LSTM with PRNG seed 15485863 balanced validation accuracy

Figure 13: The balanced validation accuracies for several trials of the shape LSTM model with
different random initializations. Depending on where the solver starts it can be confined to a lower
accuracy for a great length of time or quickly reach a higher one.

12



5.2 Architecture Effectiveness

In order to select the best hyperparameters cross validation on the eight expert-annotated videos
was used. For all of the results in this section the following hyperparameters were used: an inverse
learning policy with b = 0.01, γ = 0.01, ε = 0.472, a gradient clipping value of 10, a random
seed of 15485863, the RMSProp solver with µ = 0.92, and batch normalization. While several
models did not perform nearly as well as the current system, others were able to achieve a higher
balanced validation accuracy. The accuracies reported are taken at the training iteration with the
highest validation accuracy.

5.2.1 The Effectiveness of Pretraining

As seen in Table 5.2.1, pretraining has a significant boost in accuracy over randomly initializing the
model parameters. Additionally it outperforms the existing classification system when pretraining
with shape and motion features. Having already been trained on so many other images, the param-
eters should be at a local optima in the error surface of the model that can be used to boost the
accuracy of the shape component of the model.

random initialization pretraining
shape 62.9% 72.0%

shape & position 60.9% 68.6%
shape & motion 78.2% 83.6%

shape, motion & position 77.1% 76.8%

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

95% 0% 0% 0% 0% 1% 0% 0% 2%

0% 95% 0% 0% 0% 0% 0% 0% 1%

0% 0% 38% 0% 58% 0% 1% 0% 0%

0% 5% 0% 85% 0% 7% 0% 0% 0%

0% 0% 17% 0% 68% 1% 7% 4% 0%

4% 13% 10% 1% 13% 50% 0% 1% 4%

0% 0% 2% 0% 42% 0% 55% 0% 0%

0% 0% 7% 0% 51% 6% 0% 32% 0%

0% 15% 6% 0% 8% 1% 0% 0% 68%

Shape model

Figure 14: A confusion matrix for the shape
model. While eating and drinking are very accu-
rate it often confuses grooming and sniffing. This
is expected because these misclassified behaviors
are very dependent on the motion of the mouse,
which this model does not explicitly know. Addi-
tionally, the model struggles to classify more ba-
sic, shape based actions as accurately as it does
when using pretraining, which is again expected
because we are randomly initializing the weights
here instead of starting from known, useful val-
ues.

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

91% 0% 0% 0% 0% 6% 0% 0% 0%

0% 95% 0% 0% 1% 0% 0% 0% 1%

0% 0% 27% 0% 46% 4% 7% 12% 0%

0% 3% 0% 88% 0% 6% 0% 0% 0%

0% 0% 11% 0% 67% 3% 13% 4% 0%

1% 6% 3% 0% 10% 45% 0% 28% 2%

0% 0% 6% 0% 26% 0% 66% 0% 0%

0% 0% 0% 0% 2% 0% 0% 97% 0%

0% 11% 2% 0% 12% 3% 0% 0% 68%

Pretrained shape model

Figure 15: A confusion matrix for the shape
model initialized with convolution layer weights
from a pretrained AlexNet network. Clearly
this has a substantial improvement over the
randomly initialized shape model, yet it still fails
to properly classify many motion based actions
such as groom and sniff.

Even when pretraining, some actions are still commonly confused, such as sniffing versus walking
and grooming and sniffing. They pose a challenge for the dataset because the mice often perform
both at the same time or they look quite similar, so it can be difficult to distinguish when a human
would label the action as one versus the other.

13



5.2.2 Shape versus Motion

Given that several mouse actions differ only in the small movements it is performing, the overall
shape of the mouse will not give much useful information for these classes. Fig. 17 shows that
once the motion features are included the model can better differentiate sniffing and grooming,
significantly improving the accuracy of classification overall and outperforming the current system.

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

91% 0% 0% 0% 0% 6% 0% 0% 0%

0% 95% 0% 0% 1% 0% 0% 0% 1%

0% 0% 27% 0% 46% 4% 7% 12% 0%

0% 3% 0% 88% 0% 6% 0% 0% 0%

0% 0% 11% 0% 67% 3% 13% 4% 0%

1% 6% 3% 0% 10% 45% 0% 28% 2%

0% 0% 6% 0% 26% 0% 66% 0% 0%

0% 0% 0% 0% 2% 0% 0% 97% 0%

0% 11% 2% 0% 12% 3% 0% 0% 68%

Pretrained shape model

Figure 16: A confusion matrix for the shape
model initialized with convolution layer weights
from a pretrained AlexNet network. While
it achieves a balanced validation accuracy of
72.0%, most of its accuracy is concentrated in a
few classes that are easier to discern from shape
alone.

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

94% 0% 0% 0% 0% 3% 0% 0% 1%

0% 94% 0% 0% 0% 1% 0% 0% 1%

0% 0% 74% 0% 14% 7% 1% 2% 0%

0% 2% 0% 91% 0% 5% 0% 0% 0%

0% 0% 20% 0% 72% 0% 3% 1% 0%

1% 4% 15% 2% 6% 63% 0% 5% 1%

0% 0% 1% 0% 2% 0% 96% 0% 0%

0% 0% 0% 0% 2% 0% 0% 96% 0%

0% 9% 15% 0% 4% 1% 0% 0% 69%

Pretrained shape & motion model

Figure 17: A confusion matrix for the shape
model combined with motion features, initial-
ized with convolution layer weights from a pre-
trained AlexNet network. This model achieves
a balanced validation accuracy of 83.6%, scor-
ing better than the existing classification system
with high accuracies across all classes. While it
does still make some mistakes between sniffing
and grooming these are often also confused by
human annotators.

5.2.3 The Effectiveness of Position Features

While it was expected that as with the current system the model would see an increase in accuracy
when combining it with position features, there was actually some decrease in performance. Com-
pared to a balanced validation accuracy of 72.0% with shape alone as seen in Fig. 15, there is a dip
in performance to 68.8% when inserting position features as seen in Fig. 18. This is believed to
be because the model is overfitting to the position training data; it is becoming accustomed to the
mouse performing actions in certain positions in the cage, and when these position change in the
test data the system fails to classify properly. A similar scenario is seen when including both motion
and position, comparing the 83.6% accuracy seen in Fig. 17 with the 76.8% seen in Fig. 19.

14



d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

95% 0% 0% 0% 0% 1% 0% 0% 2%

0% 90% 0% 0% 0% 4% 0% 0% 3%

0% 0% 62% 0% 32% 0% 5% 0% 0%

0% 3% 0% 63% 8% 21% 2% 0% 0%

0% 0% 27% 0% 70% 0% 1% 0% 0%

1% 5% 9% 0% 14% 67% 0% 0% 0%

0% 0% 0% 0% 2% 0% 97% 0% 0%

0% 0% 5% 0% 86% 1% 0% 4% 1%

1% 8% 21% 0% 1% 1% 0% 0% 65%

Pretrained position features

Figure 18: A confusion matrix for the shape
model combined with position features, initial-
ized with convolution layer weights from a pre-
trained AlexNet network. While this still is quite
accurate for several actions, it still fails to clas-
sify many motion based classes as accurately as
using motion features alone. It can still differ-
entiate actions such as resting from others when
the mouse has the same shape but different large
scale movements, yet cannot accurately clas-
sify actions with the same shape and large scale
movements but different smaller motions such as
sniffing versus walking.

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

94% 0% 0% 0% 0% 3% 0% 0% 0%

0% 96% 0% 0% 0% 0% 0% 0% 1%

0% 0% 69% 0% 27% 0% 2% 0% 0%

0% 4% 0% 88% 0% 6% 0% 0% 0%

0% 0% 18% 0% 75% 0% 3% 0% 0%

3% 11% 6% 0% 16% 57% 0% 1% 2%

0% 0% 2% 0% 2% 0% 94% 0% 0%

0% 0% 0% 0% 51% 5% 0% 42% 0%

0% 12% 10% 0% 3% 1% 0% 0% 71%

Pretrained shape, motion, & position model

Figure 19: A confusion matrix for the shape
model combined with motion and position fea-
tures, initialized with convolution layer weights
from a pretrained AlexNet network. It particu-
larly fails to discern sniffing from walking, which
the shape and motion model did very well. This
is clear evidence that the position features are
confusing the system, as the motion information
to indicate that sniffing is occurring is present
yet because the mouse is walking and sniffing
in many different locations and directions the
model fails to classify it well due to overfitting.

5.2.4 Non-recurrent versus Recurrent Architectures

In general the LSTM models did not perform as well as expected. In some trials that did not have
pretrained weights the recurrent models did outperform the non-recurrent ones, yet more often they
was surprisingly less effective. See Table 5.3 for a complete comparison of model types. This
is believed to again be because the models were overfitting to the training data; it takes massive
amounts of samples to properly train the many pieces inside LSTM units, and because they are
randomly initialized it is unlikely that there are many meaningful values to start with. More training
data is being collected to satisfy this requirement, at which point it is expected they will perform
much better. The LSTM confusion matrices seen below are using a sequence length of two, in order
to mimic the order two HMM used in the current system. Sequence depths of ten and thirty were
also used, but did not show any significant impacts on performance.

Additionally, in general it appears that inserting the position features before the LSTM layer has
a greater effect compared to inserting them after. This could be because the LSTM layer is actu-
ally learning the transitions between the larger scale motions of the mouse, which would improve
classification accuracy on several action classes.

15



d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

91% 0% 0% 0% 0% 6% 0% 0% 0%

0% 95% 0% 0% 1% 0% 0% 0% 1%

0% 0% 27% 0% 46% 4% 7% 12% 0%

0% 3% 0% 88% 0% 6% 0% 0% 0%

0% 0% 11% 0% 67% 3% 13% 4% 0%

1% 6% 3% 0% 10% 45% 0% 28% 2%

0% 0% 6% 0% 26% 0% 66% 0% 0%

0% 0% 0% 0% 2% 0% 0% 97% 0%

0% 11% 2% 0% 12% 3% 0% 0% 68%

Pretrained shape model

Figure 20: The shape model initialized with
convolution layer weights from a pretrained
AlexNet network, replotted for comparison with
the LSTM architecture.

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

93% 0% 0% 0% 0% 0% 0% 0% 5%

0% 91% 0% 0% 0% 0% 0% 0% 6%

0% 0% 44% 0% 50% 1% 2% 0% 0%

0% 0% 0% 96% 0% 1% 0% 0% 0%

0% 0% 20% 0% 60% 0% 16% 0% 0%

4% 20% 5% 0% 24% 34% 0% 0% 9%

0% 0% 0% 0% 14% 0% 84% 0% 0%

0% 0% 1% 0% 85% 3% 0% 8% 1%

1% 18% 1% 0% 35% 4% 0% 0% 38%

Pretrained LSTM shape model

Figure 21: The shape LSTM model initialized
with convolution layer weights from a pretrained
AlexNet network. With a balanced validation ac-
curacy of 61.5% it is significantly worse than the
72.0% achieved without the LSTM, which is be-
lieved to be from overfitting to the training data.

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

94% 0% 0% 0% 0% 3% 0% 0% 0%

0% 96% 0% 0% 0% 0% 0% 0% 1%

0% 0% 69% 0% 27% 0% 2% 0% 0%

0% 4% 0% 88% 0% 6% 0% 0% 0%

0% 0% 18% 0% 75% 0% 3% 0% 0%

3% 11% 6% 0% 16% 57% 0% 1% 2%

0% 0% 2% 0% 2% 0% 94% 0% 0%

0% 0% 0% 0% 51% 5% 0% 42% 0%

0% 12% 10% 0% 3% 1% 0% 0% 71%

Pretrained shape, motion, & position model

Figure 22: A confusion matrix for the shape
model combined with motion and position
features as well as initialized with convolution
layer weights from a pretrained AlexNet net-
work, replotted for comparison with the LSTM
architecture.

d
ri

n
k

e
a
t

g
ro

o
m

h
a
n
g

sn
if
f

re
a
r

re
st

w
a
lk

e
a
th

a
n
d

Predicted labels

drink

eat

groom

hang

sniff

rear

rest

walk

eathand

T
ru

e
 l
a
b
e
ls

96% 3% 0% 0% 0% 0% 0% 0% 0%

0% 90% 0% 2% 0% 2% 0% 0% 4%

0% 0% 79% 0% 11% 0% 6% 0% 2%

0% 1% 0% 93% 0% 4% 0% 0% 0%

0% 0% 23% 0% 66% 4% 1% 3% 0%

1% 7% 2% 12% 4% 68% 0% 2% 0%

0% 0% 0% 0% 0% 0% 99% 0% 0%

0% 1% 0% 0% 39% 6% 0% 53% 0%

6% 4% 2% 0% 1% 1% 0% 0% 83%

Pretrained LSTM shape, motion, & position model

Figure 23: A confusion matrix for the LSTM
model with shape, motion and position features
initialized with convolution layer weights from a
pretrained AlexNet network. The position fea-
tures here were inserted after the LSTM layer.
While this model is still accurate across most
classes and even outperforms the same model
without the recurrent layer, it has an overall lower
balanced validation accuracy of 81.4% compared
to the 83.6% achieved by the non-recurrent shape
and motion model.

16



5.3 Summary

Table 5.3 summarizes the balanced validation accuracies of the model trials. The LSTM models
were run with a sequence length of two, and the LSTM(before) and LSTM(after) columns
specify if the position features were included before or after the LSTM layer of the model.

CNN LSTM (before) LSTM (after)
shape 65.5% – 69.2%

motion 79.8% – 79.3%
motion & position 77.8% – 75.6%
shape & motion 78.2% – 72.3%
shape & position 60.9% 70.9% 70.4%
shape & pretrain 72.0% – 61.5%

shape, motion & position 77.1% 78.9% 74.0%
shape, motion & pretrain 83.6% – 79.4%
shape, position & pretrain 68.6% 75.4% 70.4%

shape, motion, position & pretrain 76.8% 71.3% 81.4%

6 Discussion

This paper demonstrates how new developments in deep learning and neural networks are both pow-
erful and difficult to optimize. As the results show, given enough data the new models outperform
the current system used for behavioral classification, and it appears that there is still more room to
improve. In addition to accuracy, the neural networks developed in this paper are able to analyze
the same minute of mouse footage eight times faster than the current classification system; this will
have a huge impact on research productivity. Even though the presence of position features could
improve accuracies given more training data, moving forward they will not be included; this is be-
cause while sometimes effective, the position features rely upon a fragile background subtraction
preprocessing step that often required human tuning. Thus the shape and motion model discussed
in this paper which had the highest validation accuracy can be run without any human intervention,
enabling a much more scalable and parallelizable pipeline. This model also accomplished the goal
of creating a system that outperforms the current models and learns a single, end-to-end processing
stage without the need for fragile preprocessing steps.

It is suspected that the LSTM models did not perform as well as the non-recurrent architectures
because there was not enough training data to properly learn the parameters for their many gates.
This resulted in the recurrent layers learning the intricacies of the training data in order to increase
accuracy, instead of general patterns that could also perform well on the validation dataset. This
could be resolved by switching to either a layer of Gated Recurrent Units (GRU, [3]) or traditional
RNN neurons that require less data to train. Their lacking performance is most likely not from
using a sequence length of only two with the LSTM models, as longer sequences were also tested
and did not noticeably improve the validation accuracy. In order to more rigorously determine the
performance of the LSTM layer, the feature vectors produced by the current system were used to
train an LSTM model. This model was simply two fully connected layers, an LSTM layer, and
a final fully connected layer as seen in Fig. 6 after pool5. Unfortunately as seen in the appendix
section the model was not able to learn much from these vectors, indicating that it was truly an issue
with the LSTM layer in general rather than an error in the convolutional-recurrent models.

Future work will be focused on techniques such as boosting, object location, and image segmenta-
tion which are believed to have great promise for improving results. Boosting techniques such as
Adaboost that work well with improving results on unbalanced datasets are particularly promising,
because as mentioned previously these videos have a very uneven distribution of actions. Addi-
tionally an automated hyperparameter optimization routine such as a Tree of Parzen Estimators
implementation could be very helpful with optimizing models. From the experiments in this paper
the lab also gained numerous new performance metrics on how neural networks can be applied to
its work, which will prove valuable in the coming semesters as more data is generated and in need
of analysis.

In addition to mouse footage the lab also works with several other types of animal videos including
zebrafish, crickets, and wild birds. Given the flexibility of the new models discussed in this paper
they will also be applied to each of these datasets, something that the current annotation system
would not be able to accomplish as easily.

17



7 Acknowledgements

I would like to specially thank Ali Arslan, Sven Eberhardt, and Youssef Barhomi for their advising
and mentorship throughout my thesis. Additionally I would like to thank Professors Sudderth and
Serre for their guidance on my thesis, and the Brown Computer Science and CLPS departments for
their excellent facilities and resources.

References

[1] Zillah Boraston and Sarah-Jayne Blakemore. The application of eye-tracking technology in
the study of autism. The Journal of physiology, 581(3):893–898, 2007.

[2] Jerry J Buccafusco. Methods of behavior analysis in neuroscience. CRC Press, 2000.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[4] Heiko Dankert, Liming Wang, Eric D Hoopfer, David J Anderson, and Pietro Perona. Auto-
mated monitoring and analysis of social behavior in drosophila. Nature methods, 6(4):297–
303, 2009.

[5] Tristan Darland and John E Dowling. Behavioral screening for cocaine sensitivity in muta-
genized zebrafish. Proceedings of the National Academy of Sciences, 98(20):11691–11696,
2001.

[6] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks
for visual recognition and description. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2625–2634, 2015.

[7] Kimberley S Gannon, James C Smith, Ross Henderson, and Paul Hendrick. A system for
studying the microstructure of ingestive behavior in mice. Physiology & behavior, 51(3):515–
521, 1992.

[8] Evan H Goulding, A Katrin Schenk, Punita Juneja, Adrienne W MacKay, Jennifer M Wade,
and Laurence H Tecott. A robust automated system elucidates mouse home cage behavioral
structure. Proceedings of the National Academy of Sciences, 105(52):20575–20582, 2008.

[9] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[10] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A recurrent neural
network for image generation. arXiv preprint arXiv:1502.04623, 2015.

[11] Nathaniel Heintz. Bac to the future: the use of bac transgenic mice for neuroscience research.
Nature Reviews Neuroscience, 2(12):861–870, 2001.

[12] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[14] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4(2):251–257, 1991.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[16] Hueihan Jhuang, Estibaliz Garrote, Xinlin Yu, Vinita Khilnani, Tomaso Poggio, Andrew D
Steele, and Thomas Serre. Automated home-cage behavioural phenotyping of mice. Nature
communications, 1:68, 2010.

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

18



[19] Sean D Pelkowski, Mrinal Kapoor, Holly A Richendrfer, Xingyue Wang, Ruth M Colwill, and
Robbert Creton. A novel high-throughput imaging system for automated analyses of avoidance
behavior in zebrafish larvae. Behavioural brain research, 223(1):135–144, 2011.

[20] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mecha-
nisms. Technical report, DTIC Document, 1961.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[22] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman. Labelme: a
database and web-based tool for image annotation. International journal of computer vision,
77(1-3):157–173, 2008.

[23] Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with features inspired by
visual cortex. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 2, pages 994–1000. IEEE, 2005.

[24] Edward Shortliffe. Computer-based medical consultations: MYCIN, volume 2. Elsevier, 2012.
[25] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural

networks. In Proceedings of the 28th International Conference on Machine Learning (ICML-
11), pages 1017–1024, 2011.

[26] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4:2,
2012.

8 Appendix

8.1 Current System Features

Unfortunately even after testing a large number of different learning rates and other hyperparameters,
little was able to be learned using this model. In Fig. 25 the learning rate was drastically lowered,
and while there was some initial learning that occurred it was very soon forgotten. Most often the
model simply did not learn anything, as seen in the almost horizontal lines in Fig. 24 where the
validation accuracy is always at the same level as chance.

0 2000 4000 6000 8000 10000
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy

HMAX features & LSTM

HMAX features & LSTM training accuracy 100 moving average

HMAX features & LSTM balanced validation accuracy

Figure 24: An example of no learning taking
place in the model.

0 1000 2000 3000 4000 5000 6000
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

HMAX features & LSTM

HMAX features & LSTM training accuracy 100 moving average

HMAX features & LSTM balanced validation accuracy

Figure 25: An example of unlearning, pos-
sibly due to overshooting and exiting a local
minimum of the error surface.

19


	Introduction
	Related Work
	Background
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Current Behavior Classification System

	Methods
	Web Annotation Tool and Pipeline
	Experimental Setup
	Data
	Defining Accuracy
	Network Architectures
	CNN
	Long-Term Recurrent Convolutional Networks


	Results
	Network Hyperparameter Tuning
	Data Normalization
	Solver Types
	Learning Rates
	Gradient Clipping
	Random Initializations

	Architecture Effectiveness
	The Effectiveness of Pretraining
	Shape versus Motion
	The Effectiveness of Position Features
	Non-recurrent versus Recurrent Architectures

	Summary

	Discussion
	Acknowledgements
	Appendix
	Current System Features


