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Abstract

The goal of this thesis is to design and implement an efficient facility to enforce the
nesting and the partial ordering requirements of transactions in S-Store [1], the
world’s first streaming OLTP engine for real-time applications. We first compare
and contrast different approaches to enforce these requirements, and conclude that
nested transaction stands out both in terms of data integrity guarantees and per-
formance. We then offer details regarding the design and implementation of nested
transactions in both single-partition scenarios and distributed scenarios. Finally,
we discuss several optimization techniques to further improve the performance of
nested transaction.

1 Introduction to S-Store

In today’s big data applications, there is a growing need for managing high-velocity
data streams, and answer real-time analytic queries promptly and accurately. Ex-
isting stream processing engine, such as Aurora [2] and Borealis [3], aimed to reduce
the latency of query results for executing SQL-like operators on an unbounded and
continuous stream of input data. However, since the developers did not consider
the effect of stored state, these systems did not support ACID transactions. The
lack of system-level support for transaction might put applications into inconsis-
tent states, and provide weak guarantees for isolation and recovery semantics.

In order to support both streaming and transaction processing, we have S-Store
[1]: a transactional streaming engine that can simultaneously accommodate OLTP
and streaming applications. It employs a transaction model for streams that can
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Figure 1: An Example Client Request

be integrated into traditional OLTP systems, and attempts to offer low-latency
query response, and at the same time provide consistency guarantees. S-Store is
built as an extension of H-Store [4], an in-memory distributed OLTP database
management system, and it supports all transaction processing facilities that H-
Store currently has.

A transaction template in S-Store is predefined as a stored procedure with cer-
tain input parameters. A stored procedure normally contains a mix of SQL and
Java code. A transaction is initialized by instantiating an instance of the stored
procedure object. There are two types of transaction in S-Store: Streaming trans-
actions which are responsible for processing incoming data streams, and OLTP
transactions which are used to support ad-hoc inquiries and display summaries
of the stored states. After one streaming transaction finishes, depending on the
result of this transaction, it may trigger other streaming transactions. When a
batch of input tuples arrives, it will get processed via a sequence of streaming
transactions, each of which is triggered by the previous transaction. The whole
sequence of streaming transactions forms a dataflow graph. When a user issues a
request to S-Store, the request typically contains the input data stream, a number
of dataflow graphs to process the input data, and some other OLTP transactions.

An example of client request is shown in Figure 1. In this request, SP8, SP9,
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and SP10 form a dataflow graph, and SP1 through SP7 represent OLTP trans-
actions. The nesting and user-defined ordering will be explained in detail in the
next section.

2 Additional Requirements

In S-Store, users are allowed to impose some additional requirements regarding
how transactions should be executed. First of all, If there is a dataflow graph
in the request, then all the transactions within the dataflow graph must be exe-
cuted in the order specified because one transaction has to wait to be triggered
by the previous transaction. Users can also specify groups of transactions that
must be executed in a given order, regardless of whether or not they are part of
the dataflow graph. H-Store currently enforces this constraint by serial scheduling
all the transactions that have the ordering requirement. As can be seen from our
example request, SP1 through SP5 have a user-defined ordering requirement.

Besides the partial ordering constraint, users can specify nestings of transactions
(the nesting can include both streaming and OLTP transactions) that accomplish
a single task. In this case, we should treat all transactions within the nesting as a
single transaction, which means all transactions should share the same fate (either
all of them commit or all of them abort), and any intermediate state should not be
visible to transactions outside of the nesting. H-Store currently does not enforce
this requirement, and the major focus of this thesis is to design and implement an
efficient facility that provides ACID guarantees for those nestings of transactions.
In Figure 1, user-defined nesting is shown by a dashed square.

3 A Simple Solution

One simple approach to solve this problem is that instead of defining transac-
tions within the nesting as seven separate transactions, the user can merge them
together and define a larger transaction that does the equivalent job as the com-
bined effect of these seven transactions. Since now they are all in one transaction,
the ACID properties are guaranteed.

However, there are two major disadvantages to this approach. First of all, when-
ever the users want to define new nestings using the existing stored procedures,
they need to first extract the SQL and Java code from each of the stored procedures
within the nesting, and merge them together to build a new stored procedure. This
is fairly inefficient from the software engineering perspective, and can cause unnec-

3



SP1$

SP2$ SP3$ SP4$

SP5$
SP6$ SP7$

SP8$ SP9$ SP10$

Parent$

Figure 2: An Example Nested Transaction

essary code repetition. This approach also imposes a burden on the users’ side as
it requires them to figure out how to extract and merge stored procedures correctly.

The other disadvantage is that this approach will bring down the performance
of transactions within the nesting. The reason is that there might be a partial
ordering constraint for some transactions in the nesting, and other transactions
can be executed in any order. Since the partial ordering is imposed by the users,
a lot of distributed database management systems including H-Store are currently
unable to figure out which pieces of code fragment are required to be executed in
order and which pieces do not. Therefore, they employ a conservative approach
that executes the code serially without any concurrency. But for those transactions
that are independent of each other, they should have been executed in parallel.
Hence, this approach is not ideal in terms of performance.

4 A Better Solution: Nested Transaction

Another way to address this issue is to introduce nested transaction. An example
of nested transaction is shown in Figure 2. Each transaction within the nesting
becomes a child transaction, and we construct a parent transaction to initiate and
monitor all the child transactions. To the transactions outside of the nesting, the
entire nested transaction is viewed as a single transaction. When each child finishes
execution, instead of committing or aborting directly, it notifies the parent of its
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commit status. After the parent receives all the responses from its children, it then
commits all the child transactions if and only if all of them reported to have fin-
ished execution successfully. Otherwise the parent will abort all child transactions.

In this design, all child transactions share the same fate because the centralized
commit all and abort all are done by the parent transaction. Also, the intermedi-
ate changes made by the child are not visible to other transactions until the parent
commits. Therefore, this approach provides the same level of ACID guarantees as
the previous approach.

However, this approach has two major advantages over the previous one. When
the users define new nestings of transactions, they can simply declare a new parent
transaction and pass in the name, parameter, and the partial ordering requirement
of each child transaction. This makes the code less repetitive and releases the bur-
den of mixing code fragment for different transactions from the users’ side.

Additionally, since the parent is aware of the ordering requirement, it is able
to execute those who have the ordering requirement (SP2, SP3, and SP4) serially
and who do not (SP6 and SP7) concurrently. Compared to the previous approach
where the code fragments are executed serially, this approach offers a more effi-
cient way to process transactions that are independent of each other. Therefore,
it provides better performance.

5 Implementation

5.1 Basic Settings

The transaction model of S-Store is built on top of H-Store. In a distributed
setting, there are several H-Store sites. Each site consists of several partitions.
When the user issues a transaction request, the request is received by the H-Store
site and queued into a transaction queue at a certain partition. Since H-Store
does not have a fine-grained locking mechanism, at each partition, transactions are
executed serially by a single threaded partition executor based on their timestamp.

5.2 Defining Parent Stored Procedure

To create a normal stored procedure, the users define a sequence of operations to
be executed in the VoltProcedure’ s main function. To create a parent stored pro-
cedure, the users instead create a VoltTable in the VoltProcedure’ s main function,
and insert the name of each child stored procedure, its input parameter, and a flag
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Figure 3: Single-Partition Implementation

indicating whether or not it has a partial ordering constraint as one tuple into the
VoltTable.

5.3 Nested Single-Partition Transactions

A parent transaction is considered a single-partition transaction if all the child
transactions only need to access one common partition. The implementation of
nested single-partition transaction is shown in Figure 3. When a parent transac-
tion is being executed, it first reads the VoltTable created by the user to extract
information of the children. Then, it writes the information of each child into a
bytebuffer, puts the buffer into a transaction invocation request, and sends the re-
quest to the proper H-Store site for queuing. After that, it creates another thread
that keeps pulling the children for execution, and goes to sleep.

When a child finishes execution, instead of committing or aborting by itself, it
first writes its transaction status into a hashmap that the partition executor has
access to, and then continues to pull another child for execution.

The parent has a special data structure that keeps track of how many children
has been queued, and which child has finished execution and written its informa-
tion to the hashmap. After all children finish execution, the parent loops through
the hashmap to see if any of its children has aborted. If there exists a child that
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Figure 4: Multi-Partition Implementation

has aborted, the parent aborts all of its children. If not, the parent commits all of
its children.

5.4 Nested Multi-Partition Transactions

A parent transaction is considered a multi-partition transaction if its child trans-
actions need to access different partitions. For simplicity, we assume that the data
is well-partitioned such that each child is going to be a single-partition transac-
tion. The implementation of nested multi-partition transaction is shown in Figure
4. The multi-partition case is more complicated than the single-partition case for
two reasons. First of all, since a child may access different partitions, we need
a protocol that allows communication between the parent and the child across
partitions. Additionally, since a transaction can only be committed or aborted by
the local partition executor, when the parent and the child are executing at dif-
ferent partitions, the centralized commit/abort mechanism in the single-partition
scenarios no longer applies.

In order to resolve the above challenges, we give the following implementation:
Whenever a child arrives at the remote partition, it will first gets pulled and exe-
cuted by the remote partition executor, and then writes its transaction status into
a hashmap that the remote partition executor has access to. Then, it queues a
special transaction, NotifyParent, to the parent partition informing of its execu-
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tion status. Since this child transaction is the first child that arrives at the remote
partition, it will now act as a pseudo-parent transaction. It then creates another
thread that keeps pulling other children that get queued at the remote partition
for execution, and then goes to sleep.

When the subsequent child at the remote partition finishes execution, it first writes
its transaction status into a hashmap that the remote partition executor has access
to, and then queues NotifyParent to the parent partition informing of its execution
status. After that, it continues to pull another child for execution.

When the parent transaction receives notifications from all of its children, it checks
if any of them has aborted. Based on the result, the parent sends special transac-
tions, NotifyPseudoParent, to all remote partitions that are involved to let them
commit/abort all of its children that get executed on the remote partitions. At
each remote partition, after the pseudo-parent receives the special transaction sent
by the parent, it loops through the hashmap to commit/abort transactions as in-
structed.

By doing so, the child executing at a remote partition can notify the parent by
sending NotifyParent, and the parent can notify a pseudo-parent at the remote par-
tition to commit/abort its child by sending NotifyPseudoParent. For each group of
children that get executed at a remote partition, they will get committed/aborted
by the pseudo-parent (the first child that arrived at the remote partition) instead
of the parent.

5.5 Triggered Child Transactions

In a traditional nested transaction facility, the parent transaction knows the total
number of child transactions before the execution. In S-Store, triggers are used to
enable push-based, data-driven processing needed by the streaming transactions.
After a streaming transaction finishes, it may or may not trigger other streaming
transactions depending on the output stream. Therefore, in S-Store the parent
is unable to know the number of children beforehand because of the triggering
mechanism. This makes it difficult to track the execution status of the triggered
transactions.

To resolve this issue, we made the following changes: When a child finishes exe-
cution, before sending NotifyParent, it checks to see if it has triggered any trans-
actions and record the number of transactions triggered. It then includes this
information in the NotifyParent and sends it to the parent. When a triggered
transaction finishes execution, it includes the information that it is a triggered
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transaction in the NotifyParent and sends it to the parent.

For the parent, we add a counter for it to keep track of the total number of
transactions triggered. When the parent receives the message from the trigger-
ing child, it increments the counter as instructed. When the parent receives the
message from the triggered child, it decrements the counter as instructed. The
parent starts commit/abort all of its children if and only if it has received Noti-
fyParent from all the children that are queued by itself as well as all the children
that are triggered by other child transactions. Note that the latter can be checked
using the counter. When the counter becomes zero, it means that all the triggered
transactions have gotten back to the parent.

5.6 Multi-User Environment

The above model works when we have a single user who queues transaction re-
quests in a serial order. However, in reality there will be multiple users queuing
several transaction requests concurrently. In this scenario, when the parent trans-
action pulls the next transaction from the queue, it has to make sure that the
transaction that gets pulled is its own child. Also, we need an appropriate dead-
lock prevention mechanism in the presence of nested transactions.

To do so, we assign globally unique timestamps to each non-nested transaction
that gets queued by the users (This is already supported by H-Store). For each
nested transaction, instead of assigning one timestamp, we assign a unique range
of timestamps to the parent. When the parent queues its children, it will distribute
the timestamp within the unique range to its children. As described in section 5.5,
since some children can trigger other streaming transactions, the parent is unable
to know the exact number of children beforehand. However, since the length of
the predefined dataflow graph is fixed, the parent knows the upper bound of how
many children can be triggered, and can therefore requests the range based on the
bound. An example of timestamp allocation is shown in Figure 5.

For each partition, we also changed the implementation of the transaction queue
from a FIFO queue to a priority queue with the priority being the transaction
timestamp. By doing so, when the parent pulls the next transaction from the
queue, it first checks if the timestamp of the transaction is within the range that it
is responsible for. If it is, then it means that the transaction is one of its children,
and it will get pulled and executed. If the timestamp is bigger than the range,
then it means that this transaction is not one of its children, and should get ex-
ecuted after the current nested transaction finishes. In this case, the parent will
keep pulling the queue until it gets one of its children. This is possible because
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Figure 5: Multi-User Timestamp Allocation

all children will have a smaller timestamp, and will eventually get queued at the
front of the priority queue. However, if the timestamp of a transaction pulled by
the parent is smaller than the range, it means that this transaction is not one of
its children, and should have been executed earlier. To avoid deadlock, the parent
aborts the transaction, assigns a new (bigger) timestamp, and restarts it. This is
a modified version of the Wound-Wait deadlock prevention algorithm.

5.7 Recovery

Since S-Store is an in-memory streaming engine, in the face of failure, all the data
in the main-memory is lost and S-Store must rely on checkpoint and command-
logging in order to recover to a legal state. With nested transactions, S-Store
must recover to a state such that either all child transactions within a parent
take effect or none take effect. To achieve this, only the parent is included in the
command-log, and any child that has to be initiated by the parent is not included.
In this way, while recovering from failure, either the whole nested transaction gets
replayed, or the system pretends as if it never happened. Therefore, it guarantees
to bring the system back to a legal state where no intermediate state of the nested
transaction is revealed.

5.8 Optimization

In S-Store, we can do some optimization to improve the performance of nested
transactions. First of all, within the parent, some children have a partial ordering
requirement and some do not. For those who do not have a ordering requirement,
instead of queuing one and waiting for the response, we can queue them altogether.
If some of them can be executed in different partitions, we can then execute them
in parallel to improve the performance.

Also, for those children who have a partial ordering requirement, instead of check-
ing their transaction status after all of them finish execution, we can check the sta-
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Figure 6: A Suboptimal Parent Scheduling

tus every time after the parent get a response from the previously queued child. If
the previous child aborts, then the parent can abort immediately without queuing
subsequent transactions. By short circuiting these transactions, we can improve
the performance of nested transactions.

If we have some additional knowledge about the child transactions, such as which
partition it is going to access, then we can schedule the parent transaction wisely to
minimize the inter-partition communication overhead and to release the resources
for certain partitions. The example in Figure 6 shows a suboptimal scheduling of
parent. If we have no information about which partition the children are going
to access, the S-Store scheduler will schedule the parent onto a random partition.
In the example, the parent is scheduled onto partition 1. However, there might
be cases that none of its children is going to access this partition. Therefore, the
parent not only has to do unnecessary communication across partitions, but also
blocks partition 1 so that other transactions that need to access the partition have
to wait until the entire nested transaction finishes, which is extremely inefficient.
On the other hand, if we know which partition its children are going to access, we
can schedule the parent onto partition 2 or 3 to minimize inter-partition commu-
nication overhead and at the same time release the resource for partition 1.
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6 Experiment

The goal of the experiment is to compare the performance between the simple
approach and the nested transaction approach.

6.1 Setup

In our experiment, S-Store is set up on a machine with a 2.8GHz dual-core Intel
i7 CPU and 6GB of RAM running Linux Mint 17. The client request used for
the experiment is shown in Figure 7. The functionality of each stored procedure
is to insert a certain number of tuples at a partition. Note that SP1, SP2, and
SP3 have a user-defined ordering requirement, and other stored procedures can
be executed in any order. In our experiment, we fix the number of partitions in
S-Store to be five, and vary the latency per each stored procedure by varying the
number of tuples inserted by each stored procedure.

6.2 Results and Analysis

The result of our experiment is shown in Figure 8. As a baseline comparison, we
also include the case where all the transactions are initiated separately by the user.
The experiment shows that when the latency per each stored procedure is low, the
simple approach performs slightly better than the nested transaction approach.
As the latency increases, the nested transaction approach starts to outperform the
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Figure 8: Performance Comparison Result

simple approach. When the number of tuples inserted by each stored procedure
grows to 2000, the nested transaction approach can achieve up to 4x lower average
latency over the simple approach. The reason is that in the low-latency case, the
bottleneck for nested transaction lies in the additional communication overhead
between parent and its children. However, as the latency per stored procedure
increases, the additional communication overhead becomes negligible. Since the
parent transaction is able to execute stored procedures without the ordering re-
quirement (SP4 through SP8) in parallel, it manages to outperform the simple
approach. In general, the baseline approach performs the best because transac-
tions are scheduled optimally by the user. We also notice that the performance of
the nested transaction approach is similar to the baseline approach, which again
shows that our parent can schedule its children in an efficient way.

7 Future Direction

7.1 Distributed Child Transactions

In this thesis, we assume that the data is well-partitioned such that each child
transaction is a single-partition transaction. While this is a valid assumption, it
would be interesting if we could extend the nested transaction facility to the most
general case, where each child can also be a distributed transaction. An example
of this scenario is shown in Figure 9. As can be seen from the figure, in this
scenario we have two layers: one layer between the parent and its children, and
the other layer between the child and its sub-transactions. It would be interesting
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to investigate under the existence of nested transactions, what additional work
should be done to facilitate the distributed transaction for each child transaction.

7.2 A More Powerful Parent

The current nested transaction facility in S-Store wraps its children and treat them
as an atomic unit. In general, however, nested transaction can be more powerful.
The parent might be able to do some computation on its own, and depending on
the computation result and the responses from its children, decide to abort some
of its children while committing the others. Although the current S-Store does not
require such functionality, it might be useful in the future.

8 Related Work

Nested transaction has been studied in the past. In [5], a nested transaction mech-
anism is implemented in LOCUS, an integrated distributed operating system. In
their implementation, the users are able to write transactions as modules that
can be composed freely. This allows the users to construct new transactions by
composing existing transactions. However, instead of letting the children share the
same fate, they allow each child to fail independently of others. In case that a child
fails, a new back-up child will be invoked by the parent in order to accomplish a
similar task.
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In [6], the authors argue that although lower level processes should be executed in
strict isolation, they do not have to be strictly atomic. This is because within a
process, there are some subprocesses that are critical, and others that are not. To
achieve weak atomicity for these processes, the authors build a nested transaction
facility where the parent can commit part of its children while aborting others
based on the importance of each child.

Our version of nested transaction is implemented in a transactional streaming
engine, where certain groups of transactions have a predefined ordering require-
ment. Our implementation enables the parent to figure out which children have
to be executed serially and which can be executed concurrently.

In the original H-Store, the users are allowed to add the nesting functionality
at the application’s level. However, compared to our approach, it not only puts
the burden on the users’ side, but also requires more round-trips between the client
and the partition engine, thereby bringing down the performance. Therefore, it is
more efficient to build the nested transaction facility inside the system’s layer.

9 Conclusion

The goal of this thesis is to design and implement an efficient facility that enforces
the nesting and the partial ordering requirements in S-Store. After comparing a
simple approach which combines all transactions into a single larger transaction
against the nested transaction approach, we conclude that both approaches offer
ACID guarantees among the nesting of transactions, but the nested transaction
approach is more performant, user-friendly, and offers better code quality. We
then provide detail about the implementation of nested single-partition transaction
and nested multi-partition transaction, as well as how to deal with multiple users,
triggered transactions, and system failures. Finally, we discuss several optimization
strategies that would increase the performance of nested transaction, and suggest
some possible future directions to explore.
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