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Abstract

We examine two popular statistical models, the hidden Markov model and mixed
membership stochastic blockmodel. Using the hierarchical Dirichlet process, we
define nonparametric variants of these models. We develop a memoized online
variational inference algorithm that uses a new objective function to properly pe-
nalize the addition of unneeded states in either model. Finally, we demonstrate
that our models outperform competing methods in a wide array of tasks, including
speaker diarization, academic co-authorship network analysis, and motion capture
comprehension.

1 Introduction

Many real-world processes follow complex or ill-understood procedures and rules; networks of hu-
man relationships develop from a series of often byzantine social rules, and human exercise gener-
ates motion capture data that depends on the specifics of human physiology. We seek mathematical
models for such processes that are able to explain observed data well while remaining concise. Many
popular statistical models do so by assuming the existence of a number of unobserved, or hidden,
states. The diverse nature of data is then explained by the diversity among the hidden states. The
hidden state of human exercise might be the specific exercise being performed at any point in time;
an entire sequence of motion capture data can then be understood as a series of particular exercises
along with the specific dynamics of each exercise.

We focus on two particular models: the hidden Markov model (HMM) [16] and mixed membership
stochastic blockmodel (MMSB) [1] which model time series and relational data, respectively. Both
seek to understand the structure of data by defining some number of hidden states or communities.
Given these states, they specify a data generation process. For example, audio data of human con-
versation may be understood as a series of speakers along with their individual speech patterns; a
social network may be understood in terms of cliques of friends with high probability of intra-clique
interaction and low probability of inter-clique interactions.

Crucially, training either of these models requires us to specify the number of states or communities.
In many cases this number is difficult to estimate or explicitly unknown; for example, the speaker
diarization task [19] requires us to segment audio data of meetings with an unknown number of
speakers. To address this issue, we turn to nonparametric models, which assume an unbounded
number of states, some finite subset of which are represented in the data. Specifically, we use the
hierarchical Dirichlet process [18] to define the HDP-HMM [9] and HDP-MMSB [14].

Given a dataset and generic description of a model, we wish to infer the specific model parameters
that best match the data. To perform this inference, we use memoized variational inference [12]. We
derive a new variational objective function for HDP-based models and exploit the structure of the
HDP to show it generalizes to both our models. These choices follow the work of [11] on HDP topic
models and address issues with previous inference methods for the HDP-HMM and HDP-MMSB.
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Figure 1: Toy HMM dataset from [7] with K = 8 hidden states, 2-dimensional gaussian emissions,
and thirty-two sequences of length T = 1000. Left: Observed data {xt} with arrows indicating
transitions between states. Middle: Transition matrix π with white corresponding to probability
zero. The transition matrix is highly “sticky” in that it has a strong tendency to stay in the same
hidden state. Right: Example state sequences {zt} for four of the thirty-two sequences.

Prior inference for the HDP-HMM has used either Gibbs sampling [9], which is slow to converge
and limited in scalability, or stochastic variational inference with an objective function [13] that has
been shown to be problematic [11]. The only prior work for inference in the HDP-MMSB also faces
this latter issue [14].

2 Hidden Markov Models

A hidden Markov model (HMM) [16] models sequences of data {xt}. In the example of motion
capture, our observed {xt} is the position of a human’s joints at evenly spaced intervals in time.
The HMM assumes that each datapoint xt is assigned an unobserved hidden state zt that evolves
according to a Markov chain. That is, if we represent the hidden state as an indicator vector, where
ztk = 1 if the HMM is in state k at time t and 0 otherwise, we can write:

p(z1k) = π0k, p(ztm | zt−1,`) = π`m (1)

where π0 is the starting-state distribution and π is the transition distribution. A symmetric Dirichlet
prior is placed on each row of the transition matrix as well as the starting-state: πi ∼ Dirichlet(α).

Given the state zt, the HMM specifies the probability distribution of the observed datapoint xt. For-
mally, it assumes the existance of state specific emission distributions {Fk} parameterized by {φk}
such that if ztk = 1, xt ∼ Fk(φk). Figure 5 shows the generative model for a HMM with gaus-
sian emissions, and Figure 1 shows a synthetic dataset following this generative model. Although
we only use gaussian and autoregressive gaussian emissions here, we note that any member of the
exponential family can be used.

Extension to multiple sequences. In our experiments, we will consider modeling multiple se-
quences as being drawn from the same HMM. Although derivations are given only for single se-
quence datasets, the generalization to multiple sequences is extremely simple.

3 Mixed Membership Stochastic Blockmodels

Stochastic blockmodels seek to model graphs over N nodes where edges encode some sort of rela-
tionship between nodes. For example, nodes may represent people and directed edges answers to
questions such as “does person i like person j?” We also may seek to model relationships that are
inherently undirected, such as co-authorship of academic papers. Although one can consider undi-
rected variants of the blockmodels below, we will only consider directed versions and transform
undirected datasets by creating two directed edges for every undirected edge.
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Figure 2: Toy MMSB dataset with K = 6 communities and N = 100 nodes. Nodes are colored
by their individual distributions over communities πi. Left: Actual directed graph generated by the
MMSB. Center: First thirty community proportions π1:30 drawn using α = .05. Right: Graph with
an edge drawn between nodes i and j if the probability of an edge πTi φπj is above some threshold.
Usage of the model’s hidden variables unveils a more detailed structure than indicated by the graph
on the left.

Draw (µ`,Σ`) ∼ Norm-Wishart(·), for ` = 1, . . . ,K

Draw π` ∼ Dirichlet(α) for ` = 0, . . . ,K

Draw z1 ∼ Cat(π0)

Draw x1 ∼ Gauss(µz1 ,Σz1)

for t = 2 : T

Draw zt ∼ Cat(πzt−1
)

Draw xt ∼ Gauss(µzt ,Σzt)

Draw φ`m ∼ Beta(τ1, τ0), for `,m = 1, . . . ,K

for each node i :

Draw πi ∼ Dirichlet(α)

for each node i :

for each node j 6= i :

Draw sij ∼ Cat(πi)
Draw rij ∼ Cat(πj)
Draw xij ∼ Bernouli(φsijrij )

Figure 5: Top left: Generative model for a HMM with gaussian emissions. Here, Norm-Wishart(·)
is the normal-Wishart distribution over mean, covariance pairs parameterized by a mean vector m, a
scale matrix B, a degrees of freedom parameter ν, and scaling parameter κ′. Top right: Generative
model for the MMSB with hyperparameters α, τ1, and τ0. Bottom: Graphical models encoding the
above generative models.
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Similar to the HMM, stochastic blockmodels seek to understand the structure of data through a set of
hidden variables. Here, the hidden variables correspond to communities in the graph, given which,
the probability of an interaction between any two nodes is specified. For example, two authors
belonging to the “Physics” community are much more likely to co-author a paper together than a
Physics author and an English author.

The mixed membership stochastic blockmodel (MMSB) allows nodes to participate in multiple
communities. This comes from the intuition that actors are often multi-faceted; academics may
write about more than one subject and people often participate in more than one circle of friends.
To account for this, the MMSB stipulates that a node is allocated a different community for each of
its possible interactions. In each directed relationship (i, j), node i is allocated a source variable sij
and node j a receiver variable rij . We then draw xij ∼ Bernouli(φsijrij ). For the full generative
model, see Figure 5; Figure 2 shows a toy dataset drawn from this model.

Assortativity We primarily consider the assortative MMSB (aMMSB) [10], which changes the
generative process of each xij :

xij ∼
{

Bernouli(φk) sij = rij = k

Bernouli(ε) sij 6= rij
(2)

where ε is a given – typically small – constant, encoding the idea that the main source of interactions
is intra-community. Although the full MMSB can represent more complicated relationships than the
aMMSB, previous work has shown the difference to be minimal [10]. For this small cost in modeling
ability, we get a large benefit in efficiency: as discussed in Appendix C, the computational cost of
inference drops from quadratic to linear in the number of hidden communities, K.

4 Nonparametric Models

As described above, the HMM and MMSB are finite, or parametric, models in the sense that the
number of hidden states or communities is some finite K. A nonparametric version of these models
assumes the existence of an infinite number of hidden states. These models are extremely useful in
situations when the dimension of the hidden structure is ambiguous or unknown. To create these
nonparametric variants, we will require a collection of infinite, discrete distributions to serve as the
distributions over the hidden states. To this end, we will use the hierarchical Dirichlet process,
which generates collections of the more fundamental Dirichlet process.

4.1 Dirichlet Processes

A Dirichlet process [6] DP (γ,H) with base distribution H and concentration parameter γ > 0, is
a distribution over probability distributions. Formally, let Ω be the probability space underlying the
distribution H . Then, we say that G ∼ DP (γ,H) if, for any finite partition A1, . . . , AN of Ω, the
distribution of G’s probability mass on this partition is given by:

(G(A1), . . . , G(AN )) ∼ Dirichlet(γH(A1), . . . , γH(AN )) (3)

Here, we can see the role of the concentration parameter γ: larger values of γ encourage G to more
closely follow the base distribution H , whereas smaller values allow for more deviation.

A more informative – and computationally useful – definition of the Dirichlet process is the stick-
breaking construction [17], which defines G ∼ DP (γ,H) in terms of stick-breaking weights
{uk}∞k=1 and stick-breaking pieces {βk}∞k=1. Specifically, drawsG ∼ DP (γ,H) can be constructed
by:

uk ∼ Beta(1, γ), φk ∼ H, βk , uk

k−1∏
`=1

(1− u`) (4)
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G(x) =

∞∑
k=1

βkδφk
(x) (5)

where δφk
(x) is the Dirac delta function centered at point φk. Eq. 5 shows the very important fact

that draws from Dirichlet processes are discrete. This makes the Dirichlet process a natural choice
for the distribution over hidden communities or states in many popular models, such as mixture
models or simplifications of the MMSB from Section 3.

4.2 Hierarchical Dirichlet Processes

In models that require multiple distributions over hidden communities, such as the HMM or MMSB,
simply using independent draws from DP (γ,H) will create distributions with little to no similarity
between them. To induce a level of similarity between these distributions, we turn to the hierarchical
Dirichlet process [18], which defines a top-level distribution G0 ∼ DP (γ,H) and any number of
lower-level distributions Gi ∼ DP (α,G0), where α > 0 is a second concentration parameter.

With G0 defined as in Eq. 4-5, [18] shows that we can also write a stick-breaking representation for
Gi ∼ DP (α,G0) with stick-breaking pieces πi and stick-breaking weights vi:

vik ∼ Beta
(
αuk

∏k−1
`=1 (1− u`), α

∏k−1
`=1 (1− u`)

)
, πik , vik

∏k−1
`=1 (1− vi`) (6)

Gi(x) =

∞∑
k=1

πikδφk
(x) (7)

Eq. 6 gives us an explicit representation for each of the infinitely many entries of every πi. However,
it is more convenient to consider a finite partition of the entries of πi: [πi1, . . . , πiK , πi>K ], where
πi>K ,

∑∞
`=K+1 πi`. Using the definition of Dirichlet processes from Eq. 3, the distribution over

this partition is:

[πi1, . . . , πiK , πi>K ] ∼ Dirichlet(αβ1, . . . , αβK , αβ>K) (8)

where β>K ,
∑∞
`=K+1 β`.

4.3 The HDP-HMM

We can now define the hierarchical Dirichlet process hidden Markov model (HDP-HMM) [2, 9],
which allows for an infinite number of hidden states. The generative model is very similar to the
parametric version described in Section 2; the hidden state z advances according to a Markov chain
with (now infinite) transition matrix π, and observation xt is sampled according to emission denstiy
F (φzt). However, while the finite HMM places a Dirichlet(α) prior on each row of π, the HDP-
HMM considers each of the infinitely many rows of π to be the stick-breaking pieces of some
Gi ∼ DP (α,G0).

Sticky Hyperparameter As noted in [9], the HDP-HMM can prefer to explain data by rapidly
switching between many hidden states. In some cases, this may lead to unrealistic segmentations of
the data; for example, in a recording of a conversation between multiple people, we expect the same
speaker to persist for at least a second. To this end, we use the sticky hyperparameter κ ≥ 0 of [9],
which alters the distribution over each π` given in Eq. 8:

[π`1, . . . , π`>K ] ∼ Dirichlet(αβ1, . . . , αβ` + κ, . . . , αβ>K) (9)

For large values of κ, π is encouraged to have significant mass on its diagonal entries. That is, the
hidden state Markov chain is strongly biased towards self-transition.
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4.4 The HDP-aMMSB

The HDP-aMMSB is also very similar its parametric counterpart; community memberships π now
use the HDP as a prior, and φ is now infinitely large with φkk ∼ Beta(τ1, τ0).

5 Variational Inference

For nonparametric models, exact inference of the model parameters is intractable. That is, for a
model with parameters Θ = {Θ1, . . . ,ΘM} (e.g. the hidden states, transition matrix, and emission
densities of a HMM) and dataset x, there is no closed form for the parameters Θ that maximize the
log-posterior log p(Θ | x). To resolve this issue, we turn to variational inference [4], which defines
a variational distribution, q(Θ), that is a simplification of the true posterior p(Θ | x). We then seek
to find the element of this family that minimizes the relative entropy to the true posterior:

q∗(Θ) = argmin
q

D(q||p) (10)

Standard variational methods give a coordinate ascent algorithm in which factor q(Θi) is updated
by holding all q(Θj) for i 6= j fixed. The update for each factor is given by

q∗(Θi) ∝ exp
[
Ej 6=i[log p(x,Θ)]

]
(11)

where Ej 6=i indicates an expectation taken over all q(Θj) for j 6= i. To determine convergence of
a variational algorithm, we examine convergence of a lower bound, L, on the marginal evidence:
L ≤ log p(x). Variational methods give a standard computation for L:

L = Eq[log p(x,Θ)− log q(Θ)] (12)

where the expectation is taken over all q(Θi). It is possible to show that the q corresponding to the
global maximum of L is the exact solution to Eq. 10. Unfortunately, the coordinate ascent algorithm
given by Eq. 11 is only guaranteed to give a local optimum of L, and we are forced to use multiple
random initializations in an attempt to find the optimal q.

5.1 Variational Inference for the HDP

We now present details for variational inference of the HDP-HMM and HDP-aMMSB. Although
each contains some model-specific details, there is also a great deal of overlap due to their similar use
of the HDP. In both cases, we approximate the posterior p(u, π, φ,Z | x) by a factorized distribution
q(·) = q(u)q(π)q(φ)q(Z), where Z denotes the model’s hidden variables: Z = {z} for the HDP-
HMM andZ = {s, r} for the HDP-aMMSB. We first give the overlapping treatment of these factors,
followed by the model-specific details.

Factor q(Z). Although the exact structure of q(Z) is model-specific, both models similarly trun-
cate the distribution. We define a pre-specified truncation-level,K, and constrain q(Z) to place zero
probability on hidden states or communities taking on values greater than K. We do not similarly
restrict q(u), q(π), and q(φ); however our truncation of q(Z) implies that they are optimally set
to their prior under p(·) beyond the truncation level K. While this technically leaves these factors
as infinite distributions, we can represent them implicitly, rather than actually allocating infinite
memory.

Factor q(π). In both cases, we set q(π) to be a product of Dirichlet distributions q(πi) =

Dirichlet(θ̂i1, . . . , θ̂i>K), with θ̂i` > 0. Although πi is still an infinitely large vector, we moti-
vate this finite parameterization by considering Eq. 8. We will later find it useful to define two
summaries of this distribution:
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Figure 6: Figure showing plots of bounds in Eq. 20 and Eq. 26 for α = 1.5, κ = 0.5, and a truncation
level of K = 1. Note that the bound in Eq. 26 is very tight even for such an impractically small
value of κ; the gap in the bound is visually unnoticable for more realistic values of κ.

π̃`m , expEq[log π`m] = exp
[
ψ(θ̂`m)− ψ(

∑K+1
m=1 θ̂`m)

]
, π̃` ,

K+1∑
m=1

π̃`m (13)

where ψ is the digamma function ψ(x) , d
dx log Γ(x). A direct application of Eq. 11 gives that θ̂

can be updated as:

θ̂`m = αβm + U`m (14)

WhereU`m is a model-specific usage sufficient statistic of q(Z) interpretable as the expected number
of times that π`m was “used” in generating the data. In the case of the HDP-HMM, it is the expected
number of times the hidden state transitioned from ` to m; for the HDP-aMMSB, it is the expected
number of times node ` was allocated to community m.

Factor q(φ). This factor is dependent on the emission density, F , and its prior, rather than choice
of model or structure of the HDP. When F is a member of the exponential family, these updates
have a standard form. As all of our emission densities F are standard members of the exponential
family, we do not give further details here.

Factor q(u). Much previous work on variational inference for HDP-based models used a point-
mass for the distribution of the top-level stick, q(u) = δu∗(u) [5, 13, 15]. While computationally
simple, this approach suffers from issues noted in [11], so we follow their approach of using a full
distribution q(u`) = Beta(ρ̂`ω̂`, (1− ρ̂`)ω̂`), where ρ̂` ∈ (0, 1) and ω̂` > 0.

This choice of distribution, however, forces us to numerically optimize L to recover the optimal
parameters ρ̂, ω̂. For both the HDP-aMMSB and basic HDP-HMM, details of this optimization
are nearly identical to those presented in [11]. The addition of the sticky hyperparameter to the
HDP-HMM introduces some changes, which are covered in Appendix B.

Objective Function. Variational methods seek to maximize a lower bound L on the marginalized
log-likelihood, L ≤ log p(x). The objective function for both our models can be written as:

L =Eq[log p(x, u, π, φ,Z)− log q(u, π, φ,Z)] (15)
=Ldata + LHDP + Lalloc + H[q(Z)]

where we define:
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Ldata , Eq
[
log p(x | Z, φ) + log

p(φ | τ1, τ0)

q(φ)

]
(16)

LHDP , Eq
[
log

p(u | γ)

q(u)
+ log

p(π | u, α)

q(π)

]
(17)

Lalloc , Eq[log p(Z | π)] (18)

and H[q(Z)] as the entropy of q(Z). Here, we discuss the non-model-specific term LHDP . While
most of its evaluation requires standard expectations of beta and Dirichlet distributions, difficulty
arises in the term Eq[log p(π)]. The issue comes from the log-normalization constant, cD(αβ), of
the log-Dirichlet distribution log p(π), where:

cD(αβ) , log Γ

(
K+1∑
m=1

αβm

)
−
K+1∑
m=1

log Γ(αβm) (19)

In particular, Eq[cD(αβ)], has no closed form due to our choice of q(u). We place a lower bound on
this term:

cD(αβ) ≥ K logα+

K+1∑
m=1

log βm, (20)

a proof of which is given in Appendix A. The expectation of Eq. 20 has a closed form, giving us a
tractable lower bound on L.

5.2 Variational Inference for the HDP-HMM

Factor q(z). We assume a form of q(z) that retains the Markov dependencies from p(z | π):

q(z) = q(z1)

T∏
t=2

q(zt | zt−1) =

[
K∏
`=1

r̂z1`1`

][
T∏
t=2

K∏
`=1

K∏
m=1

(
ŝt`m
r̂t−1,`

)zt−1,`ztm
]
, (21)

where variational parameters ŝ, r̂ parameterize the discrete distribution q(z) by ŝt`m ,
q(zt−1,`, ztm) and r̂t` , q(zt`). Note that, due to our truncation assumption, products run up to
K rather than ∞. Following previous work on variational methods for HMMs [3], our update to
q(z) finds the joint configuration of all parameters ŝ, r̂ that maximize our objective L. To do so, we
apply Eq. 11 to find that the optimal q(z) satisfies:

q(z) ∝

[
K∏
`=1

π̃z1`0`

][
T∏
t=2

K∏
`=1

K∏
m=1

π̃
zt−1,`ztm
`m

][
T∏
t=1

K∏
`=1

exp (Eq[log p(xt | φ`)])zt`
]

(22)

where π̃`m is as defined in Eq. 13. We can now use belief propagation – or more specifically, the
forward-backward algorithm – to find the marginals ŝt`m = q(zt−t,`, ztm) and r̂t` = q(zt`) of the
distribution q(z) satisfying this proportionality.

Factor q(π). In the case of the HDP-HMM, q(π) is a factor over an infinite number of distribu-
tions: q(π) =

∏∞
`=0 Dirichlet(θ̂`); however, as noted in Section 5.1, our chosen truncation of q(z)

implies we need only update up to ` = K, as terms with index ` > K will be set to their prior.

Following the generic update to θ̂ given in Eq. 14, we find that the usage sufficient statistics are
given by:

U`m =

{
r̂1m ` = 0∑T
t=2 ŝt`m ` 6= 0

(23)
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where the case ` = 0 corresponds to θ̂0 parameterizing the factor over the starting-state distribution,
q(π0). U0m has the natural interpretation as the expected number of times the hidden state began in
state m and U`m as the expected number of times the hidden state transitioned from state ` to m.

The sticky HDP-HMM requires only a slight modification to q(π):

θ̂`m = αβm + κ1{`=m} + U`m (24)

where 1{`=m} = 1 if ` = m and 0 otherwise. Thus κ only has the effect of adding pseudocounts to
the self-transition parameters θ̂``.

Objective Function. The addition of the sticky hyperparameter κ to the HDP-HMM requires some
modifications to our lower bound on the term LHDP . With κ included, Eq. 20 becomes:

cD(αβ + κ1{`}) ≥ K logα− log(α+ κ) + log(αβ` + κ) +

K+1∑
m=1
m6=`

log βm (25)

We are again left with an intractable expectation, as Eq[log(αβ`+κ)] has no closed form in terms of
elementary functions1. To resolve this, we apply yet another lower bound that relies on the concavity
of logarithms:

log(αβ` + κ) ≥ β` log(α+ κ) + (1− β`) log κ (26)

In practice, we either have κ = 0, in which case we do not apply the bound, or we have κ > 100, in
which case the gap in the bound is completely negligible for reasonable values of α; a plot showing
this is given in Figure 6.

5.3 Variational Inference for the HDP-aMMSB

Factor q(s, r). The first variational algorithm proposed for the MMSB [1] factorized its hidden
communities: q(s, r) = q(s)q(r); however, due to issues with local optima that this factorization
creates, we follow [14] and define a single factor q(s, r). We parameterize this distribution by η̂
such that η̂ij`m , q(sij`, rijm).

In opposition to the HDP-HMM, the latent factor for the HDP-aMMSB has a closed form update:

η̂ij`m ∝

{
1
Zij

π̃ikπ̃jkf(wk, xij) ` = m = k
1
Zij

π̃i`π̃jmf(ε, xij) ` 6= m
(27)

where π̃i` is defined in Eq. 13, f(y, xij) , exp[xijEq[log(y)] + (1 − xij)Eq[log(1 − y)]], and
Zij is the normalization constant required to make η̂ij a proper probability distribution. Here, our
truncation implies that q(sij`) = q(rijm) = 0 for ` or m > K, giving η̂ij`m = 0 for `,m > 0.

Factor q(π). For the HDP-aMMSB, q(π) is a distribution overN infinitely large community mem-
bership vectors πi. Again, by our truncation of q(s, r), we need only update the first K components
of each distribution.

A derivation of the usage statistics Ui` gives:

1This expectation does have a closed form in terms of 3F2(·), the regularized generalized hypergeometric
function; however, our lower bound is computationally easier to work with and very tight in practice.
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Ui` =

N∑
j=1

Eq[sij`] +

N∑
j=1

Eq[rji`]

=

N∑
j=1

K∑
m=1

(η̂ij`m + η̂jim`) (28)

Again, the usage statistic Ui` has a natural interpretation as the expected number of times πi` was
“used”: it is the expected sum over how often node i was in community ` as either a source or a
receiver.

Computational Efficiency Although the assortative MMSB is a slightly less expressive model
than the full MMSB, it is significantly more computationally efficient. In both the assortative and
full MMSB, the matrix η̂ is of size O(N2K2), which can be prohibitively expensive to compute
and store. However, due to the fact that the aMMSB only has K “real” community interactions (i.e.
those for which ` = m), we can achieve linear complexity in K by only computing terms η̂ij`m for
which ` = m. The details of how this changes the above computations are given in Appendix C.

6 Variational Inference Algorithms

Section 5 outlines the basic variational updates and objective function calculations for our chosen
variational approximations. We now introduce specific algorithms that contain various interleavings
and variations of these updates.

6.1 Single Batch Variational Inference

Single batch variational inference is the most immediate application of the results from Section 5.
We consider the entire dataset at once, and iterate between updating “local” parameters q(Z) and
“global” parameters q(π), q(φ), and q(u). We see that the local step updates those factors which
scale with the amount of observed data, while the global step scales with the number of hidden states
K (albeit q(π) scales with the number of nodes in the graph for the HDP-aMMSB). Intuitively,
information only “flows” between local variables through the global parameters. This can make
batch algorithms require many local steps to converge, which can be prohibitively expensive for a
large dataset.

6.2 Memoized Online Variational Inference

To address this issue, we use memoized online variational inference [12], which divides the dataset
into many smaller batches. After performing a local step on a single batch, we update the global
parameters of the entire model and move on to the next batch. Although this does not change the
runtime of a single pass through the dataset, it decreases the overall number of passes required by
promoting more rapid exchange of information between batches.

Batch Definitions. To use memoized inference, we need a way of segmenting data into batches.
For the HDP-HMM, we set each batch to be a collection of sequences, where a local step corresponds
to running the forward-backward algorithm on each sequence in the batch. Although we do not do
so here, it is possible to define batches as small subsets of larger sequences [7].

For the HDP-aMMSB, we consider a batch to be some subset of nodes and all their out-
going relationships. That is, for a set of indicies I ⊆ {1, . . . , N}, a batch is all pairs
{(i, j) : i ∈ I, j ∈ {1, . . . , N}, j 6= i}. This definition is primarily for convenience of implemen-
tation; more sophisticated strategies that define batches as arbitrary subsets of edges have previously
found success [10, 14].

Merge and Delete Moves. Although not discussed here, a major benefit of memoized algorithms
is their ability to vary the truncation level K as the algorithm progresses [12, 11]. This often allows
them to find higher quality and more compact models than competing methods.
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7 Experiments

We test both of our models on a variety of datasets. Our experiments can be re-created using our
open source code2 and the hyperparameter settings given in Appendix D

7.1 HDP-HMM

Methods. We assess the quality of our learned model by how accurately it predicts hidden state se-
quences. To do so, we compute the Hamming distance between the model’s estimated state sequence
and the ground-truth labels. The Viterbi algorithm is used to find the most likely state sequence z
under q(·), and we then use the Munkres algorithm to permute the estimated labels to those of the
ground-truth.

We compare our memoized online algorithm (memo) against the blocked Gibbs sampler (sampler)
of [9], as well as the batch version of our algorithm (batch). For each of these methods, we
use a k-means initialization to find hard assignments for each of the zt. We then construct local
parameters r̂, ŝ consistent with these assignments and initialize the global parameters for q(π) and
q(φ) accordingly.

Toy Data. We test our algorithm on the toy dataset of Figure 1 containing K = 8 states with
2-dimensional gaussian emissions. The dataset consists of thirty-two sequences, each of length
T = 1000. Exact parameters for generating the dataset are taken from [7].

Our results are shown in Figure 7. Given the simplicity of this dataset, it is not surprising that the
best runs of all three methods eventually reach a nearly perfect hamming distance of 0. However,
we see that our variational algorithms accomplish this task significantly faster than the sampler,
particularly when using the sticky hyperparameter. Although we set a relatively small batch size of
four for our memoized algorithm, we still find that, on average, it converges faster than single batch
inference.

Speaker Diarization. We next examine twenty-one unrelated audio recordings with an unknown
number of speakers from the NIST 2007 speaker diarization challenge3. The audio recordings are
unrelated in the sense that they do not necessarily contain the same speakers. We thus train and
measure performance on each meeting separately. Our main point of comparison is the HDP-HMM
blocked Gibbs sampler of [9], which previously obtained state-of-the-art results on this dataset.

We run our algorithm with a gaussian likelihood starting from ten random k-means initializations and
use the same initialization for the sampler. In this case, we do not compare to single batch inference,
as each meeting consists of only one sequence. Our results are shown in Figure 8; we find that our
algorithm delivers similar performance to the sampler with nearly two orders of magnitude fewer
passes through the dataset. Interestingly, although [9] first introduced the sticky hyperparameter κ
for this task, our algorithm performs best with κ = 0.

Human Motion Capture. Finally, we test our HDP-HMM on six sequences of motion cap-
ture data of humans exercising4, manually segmented into twelve different activities (“knee-raise,”
“squats,” etc.) [8]. Each datapoint xt corresponds to measurements of twelve joint positions taken
over a .1 second window. We use an autoregressive gaussian likelihood, κ = 0, 300, and initialize
using the k-means algorithm with K = 20 states. Results are shown in Figure 9.

Although the use of the sticky hyperparameter removes some rapid state swtiching, our results still
seem poor when immediately compared to the ground-truth segmentations: we recover a hamming
distance of .46 when κ = 0 and .43 when κ = 300. However, we find that this is due to our
algorithm recovering finer-grained states than those given by the ground-truth labels. For example,
within the label “knee-raise,” our algorithm discovers three states corresponding to left knee-raises,
right knee-raises and a somewhat noisy transition / rest state. We see this pattern repeated in other
exercises; the HDP-HMM segments the “twist” exercise into arm twirling and back-bending states.

2 https://bitbucket.org/michaelchughes/bnpy-dev/
3http://www.nist.gov/speech/tests/rt/
4Data can be found at https://github.com/michaelchughes/mocap6dataset

https://bitbucket.org/michaelchughes/bnpy-dev/
http://www.nist.gov/speech/tests/rt/
https://github.com/michaelchughes/mocap6dataset
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Figure 7: HMM toy dataset results. Top: Plot of hamming distance versus pass through data for
the sampler and our single batch and memoized algorithms with κ = 0 (left) and κ = 100 (right).
Bottom: Comparison of estimated state sequence labels (bottom half of each image) with true labels
(top half of each image). Shown are four of the thirty-two estimated sequences from the best run of
our memoized algorithm.
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Figure 8: Speaker Diarization results. Top: Plots of hamming distance vs. pass through data for
meetings 16, 7, and 21, representing best, intermediate and worst performance, respectively. Bottom:
Comparison of estimated state sequence labels (bottom half of each image) with true labels (top half
of each image).
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Figure 9: HDP-HMM results on the motion capture dataset. Top Row: Learned states of the runs
with highest L for κ = 0 (left) and κ = 300 (right). True state sequence labels are shown at the top
of each row and estimated on the bottom. Middle Row: Wire skeletons of the actual motion capture
data showing our learned segmentation of the fourth activity (“knee-raises”) in sequence five. We
find that our forest-green state corresponds to right knee-raises (left), the brief yellow state to resting
(center), and the pink state to right knee-raises (right). Bottom Row: Wire skeletons for the final
activity in sequence five (“twist”). The HDP-HMM breaks this exercise into two distinct states:
our gray state corresponds to horizontal arm-twirling (left), while our brown state is a back-bending
motion (right).
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7.2 HDP-aMMSB

Methods. Unlike the time-series datasets above, very few relational datasets are accompanied by
ground-truth community assignments. To assess the quality of our learned models, we turn to held-
out data prediction. Specifically, we hold out 10% of edges and a similar number of non-edges at
training time. At various points during inference, we compute the probability of each held-out edge
under our approximate posterior q(·):

Eq[xij ] = Eq[πi]TEq[φ]Eq[πj ] (29)

By thresholding this probability, we can compute the precision and recall of our model as:

recall =
Num. correct xij = 1

True num. xij = 1
, precision =

Num. correct xij = 1

Total predicted xij = 1
(30)

We compute this curve every twenty iterations and show its progression over the course of inference.

We initialize our model’s global parameters by a random initialization for q(π): θ̂i` ∼ Gamma(5, 2)
and set q(φ) equal to its prior under p(·). Finally, both of our experiments use the hyperparameter
settings described in Appendix D.

Toy Data. We next test our model on the toy dataset from Figure 2 containingK = 6 communities
with fairly sparse community memberships πi sampled from Dirichlet(.05). We divide the data into
B = 20 batches, each containing 10 nodes, and hold out 10% of edges along with a similar number
of non-edges. As shown in Figure 10, our algorithm recovers the structure of the graph with few
errors.

Co-authorship Network. Finally, we train our model on a co-authorship network of physicists
working in quantum cosmology and general relativity5. This network contains many disconnected
subnetworks; we train on the largest, which contains N = 4, 158 nodes and 26,850 edges. We run
using K = 20 and B = 300 batches.

Our results shown in Figure 11 demonstrate that our model learns substantial communities within the
graph; however, although we obtain high precision, our model fails to reach even 30% recall on the
held-out interactions. This is due to the model’s high edge probability within the “main” community
(middle row of Figure 11) and low probability elsewhere. The main community contains just under
a third of the observed edges, accounting for nearly all of our correctly recalled edges.

5https://snap.stanford.edu/data/ca-GrQc.html

https://snap.stanford.edu/data/ca-GrQc.html


7 EXPERIMENTS 15

0

1

2

3

4

5

6
7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

7374

75

76
77

78

79

80

81

82

83

84

8586

87

88

89

90

91

92

93

94
95

96
97

98

99100
101

102

103

104

105
106

107

108

109
110

111

112

113

114

115

116

117

118

119

120

121

122
123

124

125

126

127

128

129

130

131132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150
151

152

153

154

155

156

157

158

159

160

161

162

163164

165

166

167

168

169

170

171

172173

174

175

176

177

178

179

180

181

182

183

184185

186

187

188
189

190

191

192

193
194 195

196

197

198

199 0

1

2

3

4

5
67

8

910

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4950

51

52

53

54

555657

58

59

60

6162

63

64

6566

67

68

69

70

7172

73
74

75

76

77

78

79

80 81
82

83

84

85
86

87

88

89

90

91

92

93

94

95

96 97

98

99
100

101

102

103

104

105

106

107

108

109

110

111

112
113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128
129

130131132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150
151

152

153
154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170
171

172
173

174

175

176

177

178

179
180

181

182

183

184185

186

187

188

189

190

191

192

193

194

195

196

197
198

199

0 50 100 150

0

50

100

150

0 50 100 150

0

50

100

150

0 50 100 150

0

50

100

150

0.0 0.5 1.0

Recall
0.0

0.5

1.0

P
re
ci
si
o
n

Figure 10: Results from the toy MMSB dataset of Figure 2. Top Row: Graph with edges drawn
between nodes i and j if the probability of an edge πTi φπj is above a threshold using the true pa-
rameters π, φ (left) and the estimated parameters from our model with the best objective function
L (right). Middle Row: Unthresholded adjacency matrix of the above graphs with node indices
permuted by their most likely community. The main source of interaction is intra-community, rep-
resented by the strong block diagonal. Nodes with significant membership in more than one com-
munity give rise to the off-diagonal streaks. Bottom Left: Difference between the two adjacency
matrices shown above. Red corresponds to too high an estimated probability and blue too low an
estimate; the predominantly gray color indicates very little difference between the two. Bottom
Right: Curves of precision vs. recall on held-out interactions evaluated every twenty iterations.
Early iterations are colored red, while later iterations are shown in blue.
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Figure 11: HDP-aMMSB results from the physics co-authorship network. Top Left: Matrix show-
ing estimated edge probability between each pair of nodes, permuted by each node’s most likely
community. Five communities are faintly visible along the diagonal. Top Right: Precision vs. recall
curves computed on held-out interactions. Red curves show earlier iterations, while blue curves
show later iterations. Middle Row: Subgraphs of the most prominent community in the above edge
probability matrix. Shown is the graph corresponding to the thresholded edge probability matrix
(left) and actual observed adjacencies (right). Nodes belonging more strongly to this community
are colored darker red. Bottom Row: Subgraphs of the second most prominent community (near
center of the edge probability matrix). In both cases, we see a core of main community members is
surrounded by less dedicated members.
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8 Conclusions

We have developed memoized online variational inference algorithms for two nonparametric mod-
els: the HDP-HMM and HDP-aMMSB. We have shown their ability to recover structure in a wide
variety of applications, even when the dimension of this structure is vague or unknown prior to in-
ference. In the future, we hope to further improve our variational algorithms by adapting the work
of [11], which varies the truncation level as inference progresses.
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A Derivation of LHDP lower bound

A.1 Bound on cumulant function of Dirichlet

As in the main paper, we define the cumulant function cD of the Dirichlet distribution as

cD(αβ) = cD(αβ1, αβ2, . . . αβK , αβK+1) , log Γ(α)−
K+1∑
k=1

log Γ(αβk) (31)

where α > 0 is a positive scalar, and β = {βk}K+1
k=1 is a vector of positive numbers that sum-to-one.

The log-Gamma function log Γ(·) has the following series representation6 for scalar input x > 0:

− log Γ(x) = log x+ γx+

∞∑
n=1

(
log
(

1 +
x

n

)
− x

n

)
(32)

where γ ≈ .57721 is the Euler-Mascheroni constant. Substituting this expansion into the definition
of cD, we find

cD(αβ) = − logα− γα−
∞∑
n=1

(
log
(

1 +
α

n

)
− α

n

)
(33)

+

K+1∑
k=1

[
logαβk + γαβk +

∞∑
n=1

(
log

(
1 +

αβk
n

)
− αβk

n

)]
Here, all the infinite sums are convergent. This allows some regrouping and cancellation to get:

cD(αβ) = − logα+

K+1∑
k=1

logαβk (34)

+

∞∑
n=1

(
log

(
K+1∏
k=1

(
1 +

αβk
n

))
− log

(
1 +

α

n

))

Finally, via the binomial product expansion below, we see that the infinite sum is strictly positive.

K+1∏
k=1

(
1 +

αβk
n

)
= 1 +

K+1∑
k=1

αβk
n

+ pos. const. →
K+1∏
k=1

(
1 +

αβk
n

)
≥
(

1 +
α

n

)
(35)

Thus, by simply leaving off the infinite sum from Eq. (35) we have a valid lower bound on cD(·):

cD(αβ) ≥ − logα+

K+1∑
k=1

logαβk (36)

Expanding logαβk = logα+ log βk, we can further simplify to

cD(αβ) ≥ csur(α, β) , K logα+

K+1∑
k=1

log βk (37)

6http://mathworld.wolfram.com/LogGammaFunction.html

http://mathworld.wolfram.com/LogGammaFunction.html
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A.2 Bound on cumulant function with sticky hyperparameter.

Applying this bound to the case of the sticky HDP-HMM requires some further effort. Applying the
above to this case gives an equation analogous to Eq. 37.

cD(αβk + δkκ) ≥ K logα− log(α+ κ) + log(αβk + κ) +

K+1∑
m=1
m 6=k

log(βm) (38)

Evaluating this term requires computing Eq[log(αβk + κ)], which has no closed form in terms of
elementary functions. Instead of calculating this directly, we use the concavity of logarithms to
lower bound this term:

log(αβk + κ) ≥ βk log(α+ κ) + (1− βk) log(κ) (39)

= βk
(

log(α+ κ)− log(κ)
)

+ log κ

We justify this bound by noting that for even moderate κ (say, κ > 10), this inequality is very tight,
as shown in Figure 6 in the main body of this thesis. Empirically, we find that κ almost always needs
to be either zero, in which case we do not apply the bound, or in the low hundreds, in which case
the gap in the bound is completely negligible.

Plugging this bound in Eq. 38, we find

cD(αβk + δkκ) ≥ csur−κ(α, κ, β, k) , K logα+ log(κ)− log(α+ κ) +

K+1∑
m=1
m 6=k

log(βm) (40)

+ βk
(

log(α+ κ)− log(κ)
)

This equation gives us a surrogate bound on the cumulant function for a single sticky transition
vector. We next need to compute the sum of K sticky cumulant functions, plus one non-sticky
cumulant function for the starting state.

Using our surrogate functions, we have

csur(α, β) +
∑K
k=1 csur−κ(α, κ, β, k) = (K2 +K) logα (41)

+K( log(κ)− log(α+ κ))

+
(

log(α+ κ)− log(κ)
)∑K

k=1 βk

+
∑K+1
k=1 log βk +

∑K
k=1

∑K+1
m=1
m6=k

log(βm)

In the last line, the first sum comes from the stating state’s cumulant function, the second nested sum
comes from the others. We can combine these two terms to find that

csur(α, β) +
∑K
k=1 csur−κ(α, κ, β, k) = (K2 +K) logα+K( log(κ)− log(α+ κ)) (42)

+
(

log(α+ κ)− log(κ)
)∑K

k=1 βk

+ log βK+1 +K
∑K+1
k=1 log(βk)

Finally, we can rewrite these sums of surrogate cumulants in terms of u instead of β, since the
transformation between them is deterministic. We find

csur(α, β(u)) +
∑K
k=1 csur−κ(α, κ, β(u), k) = (K2 +K) logα+K( log(κ)− log(α+ κ))

+
(

log(α+ κ)− log(κ)
)∑K

k=1 βk(u) (43)

+
∑K
k=1

(
K log uk + [K(K + 1− k) + 1] log(1−uk)

)
We can now easily compute expectations of Eq. 43, since Eq[βk] and Eq[log uk] have known closed
forms for q(uk) = Beta(ρ̂kω̂k, (1− ρ̂k)ω̂k).
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B Global update for q(u)

Here, we derive the results needed to perform numerical optimization of ρ̂ and ω̂, the variational
beta parameters of the top-level stick-breaking weights q(uk) = Beta(ρ̂kω̂k, (1− ρ̂k)ω̂k). We only
show the results with the sticky hyperparameter; optimization for the case of κ = 0 and for the
HDP-aMMSB is identical to the case for the HDP topic model presented in [11]. For all equations
from that paper, you need only substitute in K + 1 or N , respectively, for the number of documents
D.

To begin our derivation, we collect terms in LHDP that depend on ρ̂ and ω̂. Note that we have
dropped any additive terms constant with respect to ρ̂, ω̂ in this expression, since they have no
bearing on our numerical optimization problem.

Lobj(ρ̂, ω̂) =

K∑
k=1

(
− cB(ρ̂kω̂k, (1− ρ̂k)ω̂k) (44)

+
(
K + 1− ρ̂kω̂k

)(
ψ(ρ̂kω̂k)− ψ(ω̂k)

)
+
(
K(K + 1− k) + 1 + γ − (1− ρ̂k)ω̂k

)(
ψ((1− ρ̂k)ω̂k)− ψ(ω̂k)

))
+

K∑
`=1

Eq[β`]
(

log(α+ κ)− log κ+

K∑
k=0

αkPk`(θ̂)

)

+ Eq[βK+1]

( K∑
k=0

αkPk,K+1(θ̂)

)

B.1 Constrained Optimization Problem

Our goal is to find the ρ̂, ω̂ that maximize Lobj . Remember that ρ̂, ω̂ parameterize K Beta distribu-
tions, and so have certain positivity constraints. Thus, we need to solve a constrained optimization
problem:

argmaxρ̂,ω̂ Lobj(ρ̂, ω̂) (45)

subject to 0 < ρ̂k < 1 ω̂k > 0, k = 1, . . . ,K

We now give the expressions for the gradient of the objective ∇Lobj , with respect to each entry of
ω̂ and ρ̂.

Gradient for ω̂ Taking the derivative of Eq. 44 with respect to each entry ω̂m of ω̂, for m ∈
1, 2, . . .K, is:

∂Lobj
∂ω̂m

=
(
K + 1− ρ̂mω̂m

)(
ρ̂mψ1(ρ̂mω̂m)− ψ1(ω̂m)

)
(46)

+
(
K(K + 1−m) + 1 + γ − (1− ρ̂m)ω̂m

)(
(1− ρ̂m)ψ1((1− ρ̂m)ω̂m)− ψ1(ω̂m)

)
where ψ1 , d2

dx2 log Γ(x) is the trigamma function.

Gradient for ρ̂ We first define ∆ as a K × K + 1 matrix of partial derivatives of Eq[βk] with
respect to ρ̂:

∆mk ,
∂

∂ρ̂m
Eq[βk] =


− 1

1−ρ̂mEq[βk] m < k
1
ρ̂m

Eq[βk] m = k

0 m > k

(47)
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Now, the derivative of Lobj with respect to each entry ρ̂m of the vector ρ̂, for m ∈ 1, 2, . . .K, is:

∂Lobj
∂ρ̂m

= ω̂m
(
K + 1− ρ̂mω̂m

)
ψ1(ρ̂mω̂m) (48)

− ω̂m
(
K(K + 1−m) + 1 + γ − (1− ρ̂m)ω̂m

)
ψ1((1− ρ̂m)ω̂m)

+
∑K
`=1 ∆m`

(
log(α+ κ)− log κ+

∑K
k=0 αkPk`(θ̂)

)
+ ∆m,K+1

( K∑
k=0

αkPk,K+1(θ̂)
)

B.2 Unconstrained Optimization Problem

In practice, we find that it is more numerically stable to first transform our constrained optimiza-
tion problem above into an unconstrained problem, and then solve the unconstrained problem via a
modern gradient descent algorithm (L-BFGS).

Our transformation follows exactly the steps outlined in the Supplement of [11], where the cos-
ntrained objective for the HDP topic model was transformed into unconstrained variables. See that
Supplement document for mathematical details, or our public source code7 for practical details.

C Efficient updates for the HDP-aMMSB

This section provides details of how to compute updates for the HDP-aMMSB in O(N2K) time,
as opposed to the naive O(N2K2) time. This method was first noted in [14]; we provide a single,
cohesive explanation here. The key observation is that we only need to compute the N2K diagonal
entries of η̂ using Eq. 27; that is, we only compute and store η̂ij`m for ` = m. We also need to
compute and store Zij , the normalization constant that makes η̂ij sum to 1. We can do so in O(K)
time by noting:

Zij ,
K∑
`,m

η̂ij`m =

K∑
k

π̃ij π̃jkf(φk, xij) +

K∑
` 6=m

π̃i`π̃jmf(ε, xij)

=

K∑
k

π̃ikπ̃jk

(
f(φk, xij)− f(ε, xij)

)
+ π̃iπ̃jf(ε, xij) (49)

where we have substituted in Eq. 27 in for η̂ij`m. This restricted computation of η̂ makes updates
to q(π) and computation of L slightly more complicated. We outline the relevant terms below. A
helpful identity that follows from the definition of η̂ and π̃ is:

K∑
m
m6=`

η̂ij`m =
1

Zij
f(ε, xij)π̃i`(π̃j − π̃j`) (50)

Updates to q(π). From Eq. 28, we have that the usage sufficient statistic for the HDP-aMMSB
is Ui` =

∑N
j=1

∑K
m=1(η̂ij`m + η̂jim`) We can compute Ui` given only the diagonal η̂ij`` and

normalization constants by:

Ui` =

N∑
j

(
η̂ij`` +

1

Zij
π̃i`(π̃j − π̃j`)

)
+

N∑
j

(
η̂ji`` +

1

Zji
π̃i`(π̃j − π̃j`)

)
(51)

7https://bitbucket.org/michaelchughes/bnpy



D HYPERPARAMETER SETTINGS FOR EXPERIMENTS 22

Term H[q(s, r)]. The entropy H[q(s, r)] corresponds to the term Eq[log q(s, r)] in L. We calculate
it by:

H[q(s, r)] ,
N∑
i,j

K∑
`,m

η̂ij`m log η̂ij`m

=

N∑
i,j

K∑
`,m

η̂ij`m

(
Eq[log πi`] + Eq[log πjm] + log f(·, xij)− logZij

)

=
∑
i,j

[
K∑
`

Eq[log πi`]

K∑
m

η̂ij`m +

K∑
m

Eq[log πjm]

K∑
`

η̂ij`m

+ log f(ε, xij) +

K∑
k

η̂ijkk

(
log f(φk, xij)− log f(ε, xij)

)
− logZij

]

=

N∑
i,j

[
log f(ε, xij) +

K∑
k

η̂ijkk

(
log f(φk, xij)− log f(ε, xij)

)
− logZij (52)

+

K∑
`

log π̃i`

(
η̂ij`` +

1

Zij
π̃i`f(ε, xij)(π̃j − π̃j`)

)
(53)

+

K∑
m

log π̃jm

(
η̂ijmm +

1

Zij
π̃jmf(ε, xij)(π̃i − π̃im)

)]
(54)

We can use the previously cached statistic Ui` by noting the similarity between Eq. 53 -54 and
Eq. 51:

H[q(s, r)] =

N∑
i,j

[
log f(ε, xij) +

K∑
k

η̂ijkk

(
log f(φk, xij)− log f(ε, xij)

)
− logZij

]
(55)

+

K∑
`

log π̃i`Ui` (56)

D Hyperparameter Settings for Experiments

The hyperparameter settings given here can be used with our source code8 to reproduce the experi-
ments in Section 7 of the main document.

D.1 HDP-HMM: Toy Dataset

We use a full-covariance Gaussian likelihood.

--gamma 10
–alpha 0.5
–startAlpha 5
–stickyKappa 0 or 100
–nu D+2
–ECovMat eye
–sF 1.0
–kappa 1e-5

8https://bitbucket.org/michaelchughes/bnpy-dev/

https://bitbucket.org/michaelchughes/bnpy-dev/
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D.2 HDP-HMM: Speaker Diarization

We use a full covariance Gaussian likelihood.

--gamma 10
–alpha 1.0
–startAlpha 1.0
–stickyKappa 0
–nu 1000
–ECovMat covdata
–sF 0.75
–kappa 0.0001

D.3 HDP-HMM: Motion Capture

We use a first order AR Gaussian likelihood.

--gamma 10
–alpha 0.5
–startAlpha 5
–stickyKappa 300
–nu D+2
–ECovMat diagcovfirstdiff
–sF 0.5
–VMat same
–sV 0.5
–MMat eye

D.4 HDP-aMMSB Experiments

Both of our HDP-aMMSB experiments use a 1-D bernouli likelihood with a beta prior Beta(λ1, λ0)
and identical hyperparameter settings:

--gamma 10
–alpha 1.0
–epsilon 1e-5
–lam1 10.0
–lam0 0.0


