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Chapter 1

Introduction

1.1 Background on chromatin structure

A single copy of the human genome contains over 3 billion nucleotide base pairs. Diploid

somatic cells, which make up most of the human body, each contain two copies of this

genetic information. Stretched end to end, the DNA in every diploid cell would reach

almost 2m in length. However, all the genetic information must fit inside the cell nucleus

with a diameter of 6µm - a difference of over 6 orders of magnitude. The packing and

organization of cellular DNA has interested scientists since the discovery of metaphase

chromosomes by Walther Flemming in 1882.

Genetic material is not packed into the nucleus in a random way. DNA packing is well

organized and tightly regulated. DNA packing is also not static; it changes depending

on the position in the cell cycle, with specific transcriptional paradigms and in response

to external factors. DNA packing and organization is also crucial in any cellular process

that involves transcription, underscoring it’s importance in the basic function of a cell.

1.1.1 How is cellular DNA organized and how do we study it?

Cellular DNA is organized in a hierarchical manner, with each level building on the

previous one. Additionally, each level of organization has a method specifically suited

to studying it.

At the most basic level, DNA is a string of nucleotide bases. Although not typically con-

sidered with 3D organization, the linear arrangement of nucleotides determines protein

sequences, transcription factor binding specificity and other processes. DNA sequenc-

ing is used to study this linear arrangement. The recent advances in high-throughput

1



Chapter 1. Introduction 2

sequencing technologies have lead to a decrease in cost an increase in amount of data

produced, increasing their use in all parts of biology. DNA sequencing is also essential

for the study of higher-order chromatin conformation.

In the next level of organization, linear DNA is wrapped around nucleosomes. Nu-

cleosomes are proteins made up of eight subunits, called histones. 147bp of DNA are

wrapped around each nucleosomes, and each nucleosome has an average of 50bp of linker

DNA before the next, leading to units occupying roughly 200bp of DNA (Luger et al.

1997). The tails of histone proteins can be chemically modified, with varying conse-

quences for transcription and chromatin conformation. Histone modifications and other

DNA-associated proteins can be studied with Chromatin ImunoPrecipitation followed

by sequencing (ChIP-seq). In ChIP-seq, proteins are cross-linked to DNA, the DNA

is fragmented, proteins are pulled down with antibodies and DNA fragments are se-

quenced. This allows the location of histone modification and protein associations to be

tracked across the genome (Johnson et al. 2007).

Nucleosomes are compacted into higher-order structures; although the exact organiza-

tion at this level remains under debate. Previous work in structural biology suggested

a 30nm fiber composed of a repeated structure of nucleosomes. Repeated experiments

with more modern imaging techniques have been unable to conclusively identify this

fiber, however. (Tremethick 2007)

Higher-order chromatin structure depends on several factors. Position in the cell cycle is

the major determinant. In interphase, chromatin is dispersed and occupies much of the

volume of the nucleus. Gene transcription and regulation is a hallmark of interphase,

and the dispersed yet regulated chromatin structure reflects this. When the cell enters

metaphase, chromatin becomes increasingly compact, eventually forming distinct the

mitotic chromosomes that are visible with a light microscope. The exact structure of

the metaphase chromosome is still unknown, despite extensive studies with microscopy

and sequencing-based approaches (Naumova et al. 2013).

Interphase chromatin serves as both a repository for genetic information and a regu-

latory system for transcription. A major feature of interphase chromatin organization

are chromosome territories (CTs). At a basic level, CTs can serve to segregate a par-

ticular chromosome or chromosome section to a specified part of the nucleus. Evidence

for CTs initially came from light microscopy studies of roundworm and hamster cells

(Cremer and Cremer 2010). With the development of more advanced imaging methods,

such as Florescence In-Situ Hybridization (FISH) and 3D-FISH, individual chromosome

territories could be visualized. This led to the conclusion that individual chromosomes

occupy distinct territories in the nucleus. Furthermore, specific sections of individual

chromosomes associate non-randomly within the nucleus (Cremer et al. 2008).
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1.2 Chromosome Conformation Capture techniques

Imaging-based approaches have provided much of the evidence for higher-level chromatin

organization. Newly developed methods based on anchoring cellular chromatin close in

3D nuclear space have greatly extended our knowledge of chromatin biology. Chromo-

some Conformation Capture, or 3C (Dekker et al. 2002), was the first method in this

category. In 3C, formaldehyde is used to cross-link DNA segments to associated pro-

teins and cross-link proteins with each other. This chemically links fragments of DNA

that are close in 3D space. A restriction enzyme is then used to cut the DNA. Pieces

that were cross-linked will remain in contact. DNA fragments are then ligated under

conditions that favor forming circles with linked fragments. The cross-links are reversed

by increasing the temperature, and the result is quantified with PCR or Quantitative

PCR. In 3C, the sequences of all loci need to be known so that PCR primers can be

developed. Because of the combinatorial nature of this, 3C is a “one-by-one” technology

and can only investigate small numbers of pairwise interactions.

Circularized Chromosome Conformation Capture (4C) was developed soon after and

only required a single site to be of a known sequence, increasing the resolution to “one-

by-many” (Zhao et al. 2006). Chromosome Conformation Capture Carbon Copy (5C)

(Dostie et al. 2006) further improved the method and used microarray sequencing to

create “many-by-many” resolution. 5C is still used for investigating high-resolution

chromatin folding in specified genomic regions.

The high-throughput approach, Hi-C, allows for genome wide investigation of chromo-

some conformation in cis and trans (i.e. within and between chromosomes). Hi-C is an

“all-by-all” method and the current state of the art for investigating genome-wide chro-

matin structure with a sequencing based method (Lieberman-Aiden et al. 2009). Hi-C

starts with a pool of cells in culture and typically ends with a 2D contact map represent-

ing pairwise interaction frequencies between genomic loci. The three major steps in the

protocol are experimental preparation, high-throughput sequencing and data processing.

The experimental steps in Hi-C are similar to the other ’C’ methods. Sequencing of the

library is next, and most approaches that allow for paired-end sequencing at reasonable

read lengths (50-100 bp typically) will be sufficient. Data processing follows. The out-

put of DNA sequencing is millions of paired-end sequencing reads. Ideally, each read

corresponds to a single Hi-C ligation event, and therefore a 3D chromatin interaction

within the nucleus. To understand which parts of the genome were interacting in the

nucleus, it is necessary to map each sequencing read to the genome of the organism being

studied. After mapping, reads are assigned to the restriction fragment they originated
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from, because restriction fragments are the finest resolution possible in a Hi-C experi-

ment. Interpreting Hi-C data at the restriction fragment level is currently not possible,

however, because of the immense amount of sequencing reads that would be necessary.

To decrease resolution to a level where interpretation is possible, the genome is divided

into fixed-length bins. Restriction fragments (which differ in length and frequency across

the genome) are assigned to bins based on their 5’ position.

1.2.1 Resolution of Hi-C contact maps

Resolution is a persistent issue when working with Hi-C data. Increasing resolution

(smaller bins) allows for greater analysis of local chromatin folding, but can produce

contact maps that are noisy and sparse. Decreasing resolution is necessary to interpret

interactions between genomic loci on different arms or chromosomes, as these interactions

are much less likely to occur in 3D in the nucleus. The maximum resolution at which a

Hi-C dataset can be analyzed typically depends on the quality of the library preparation

and the depth of sequencing. Additionally, choosing a restriction enzyme that cuts more

frequently along the genome allows for a higher resolution, provided it is coupled with

a proportional increase in sequencing depth.

Hi-C is an all-by-all method: n loci can form n2 possible interactions. Increasing resolu-

tion by a factor of 2 requires a 22 = 4-fold increase in sequencing depth. Initial studies

with Hi-C processed data with a binning resolution of 1 million bases, or 1Mb. Later

studies could interpret chromatin interactions at increasingly higher resolutions, form

200kb to 40kb (Dixon et al 2012) all the way to 5kb or 1kb with the latest combined

dataset (Rao et al 2014).

1.2.2 Biases of Hi-C contact maps

Although Chromosome Conformation Capture approaches hold promise, the results from

such investigations have to be interpreted carefully. Chromosome conformation capture

methods have inherent biases in the methodology. Biases associated with GC content,

mappability and chromatin accessibility have been examined and methods of correc-

tion have been proposed (Yaffe and Tanay 2011, Hu et al. 2012). Iterative correction

(Imakaev et al. 2012) tackles the problem by assuming each interval has equal “visibil-

ity” across the genome. The contact map is then corrected to meet this assumption as

best as possible.

A Hi-C experiment is also done on a large population of cells. Different cells may be in

different parts of the cell cycle or expressing different genes, leading to heterogeneous
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underlying chromatin conformations. A Hi-C contact map only captures the popula-

tion average conformation. Nagano et al (2013) recently attempted to tackle this issue

through single-cell Hi-C, although the resolution of the resulting experiment limited the

possible interpretation.

1.2.3 Characteristics of Hi-C contact maps

Hi-C contact maps from mammals all share characteristic features that are reflective of

the shared chromatin structure through evolutionary history. A key global feature of

Hi-C contact maps is a decrease in contact probability with increasing genomic distance

between two loci. This leads to a higher number of contacts along the diagonal in any Hi-

C map. A decrease in contact probability with increasing distance makes intuitive sense:

packing of any polymer in a confined 3D space leads to a decrease in contact frequency

with linear distance, on average. However, the rate of decrease with increasing genomic

distance can give us some clues about the 3D structure of the chromatin polymer.

Plotting the probability of contact between two loci as a function of the genomic distance

between them shows a negative linear relationship on a log-log plot. Although different

datasets have produced varying numbers, the slope of this line typically falls in the

range of -0.8 to -1.08. This finding has given evidence to the theory of a fractal globule

conformation of chromatin structure. In the fractal globule model, chromatin is packed

in a hierarchical manner - smaller crumples are consecutively packed into larger crumples

which in turn are packaged into the large domains that give the final structure. This

is in contrast to the much more mixed equilibrium globule model, where a subchain in

the globule behaves like a random walk until it hits a boundary and another random

walk is started. Further evidence for the fractal globule model is given by the fact that

a polymer in an equilibrium globule configuration often contains knots, which would be

detrimental to a cell because of the increased time and energy needed to un-knot the

polymer before DNA replication (Mirny 2011).

Hi-C contact maps show consistent structure beyond a global probability scaling. An

immediately apparent feature is the “checkerboard” structure of the map in sections

off the diagonal. This feature immediately suggests chromatin is partitioned into two

self-interacting classes that are isolated from each other. Early Hi-C studies confirmed

this (Lieberman-Aiden 2009) and designated the two classes as A and B compartments

based on the sign of the eigenvector after a spectral decomposition of the contact map.

A and B compartments correlate well with other features of genetic and chromatin

structure. A compartments contain euchromatin, early replicating, gene-rich and ac-

tively transcribed regions. B compartments contain heterochromatin, late replicating,
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gene-poor regions. A recent study suggested that the two-compartments could be further

divided into subcompartments based on other genomic features (Rao 2014).

Another consistent feature of Hi-C contact maps is smaller, self-associating regions near

the diagonal. These features show up as darkly colored squares near the diagonal and are

smaller than A and B compartments (average size of <2Mb). These regions are termed

Topologically Associating Domains (TADs) and can be thought of as the building blocks

of genome architecture. A TAD typically contains genes and nearby regulatory elements

necessary to maintain transcription.

A recent study found evidence for structure within TADs (Rao 2014). High contact

frequencies between TAD boundaries point to a folding structure with a defined anchor

point before local folding. These “loop domains” were found throughout high-resolution

Hi-C contact maps of human cells. Loop domains were found to be anchored by conver-

gent CTCF binding sites on either side of the domain, further supporting the role for

this protein as a master regulator of genome organization.

Chromatin structure is well conserved across evolutionary time, and this finding is sup-

ported by Hi-C experiments in different mammalian organisms. Global features, such

as probability scaling and the presence of compartments and TADs are found in both

human and mice Hi-C contact maps. The boundaries of TADs are consistent in genomic

blocks that are conserved between mice and human. These results show that genome

organization, at least at the scale of TADs, is an evolutionarily old feature that has been

persistent over time.

1.3 Reconstructing a 3D structure from a contact map

The features of chromatin structure described above were all interpreted from 2D contact

maps which describe the pairwise contact frequency between loci across the genome.

Although informative, a 2D contact map is inherently a poor representation of a polymer

that occurs in three dimensions. Inferring a 3D structure from a 2D contact map is not

an easy task, though. There are several issues that need to be considered with the

methods of data processing and reconstruction of the structure. Several groups have

proposed algorithms to accomplish this task. I will first review the challenges associated

with 3D reconstruction, then discuss different approaches found in the literature with

the advantages and shortcomings of each.

Before even thinking about 3D reconstruction, the Hi-C contact maps need to be pro-

cessed in a way that eliminates as much bias and noise as possible. The data correction

algorithms discussed above can be used for this. Data filtering, such as the removal of
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genomic intervals that have no reads covering them or intervals that are noisy and have

a majority of zero values is also an option and probably necessary for any reconstruction

algorithm to perform well.

Contact map resolution is also an important point to consider. A high resolution contact

map can allow for reconstruction of fine-level structure along the diagonal - the small,

local folds in a polymer. However, the contact data becomes increasingly sparse and

noisy farther away from the diagonal. A high-resolution yet sparse dataset cannot be

used to reconstruct the 3D organization of large-scale features, such as partitioning into

different genomic compartments. To reduce the resolution of a contact map, one can

increase the size of genomic intervals represented by a bin. It is also possible to coarse

grain a higher resolution dataset. This can be done with a naive approach, such as

combining adjacent bin, which is basically equivalent to increasing the bin size. Coarse

graining can also be done by combining adjacent bins with a high degree of correlation

in a clustering-based approach (Kalhor et al. 2012).

A Hi-C experiment is conducted on a population of cells in vitro. Although attempts

can be made to ensure the culture is pure and cells are synchronized, heterogeneity in

either the population or position in the cell cycle can lead to the experiment capturing

a population of different chromatin conformations. Even in a pure and synchronized

culture, differences in signaling environments or gene expression can lead to differences

in chromatin conformation. This means that Hi-C is not capturing a single “true” 3D

structure. The resulting contact map is the population average across all cells in the

culture.

Given that the contact map is an average of an experiment capturing different chromatin

conformations, it is an impossible task to reconstruct a single 3D structure that can

capture all the variability in the original dataset. Some approaches try to identify a single

3D structure by minimizing the distance between the structure and the experimental

contact map; these are called consensus approaches. On the other hand, ensemble

approaches attempt to build a population of 3D structures. In a good ensemble mode, the

properties of structures on average match the experimental data. Ensemble approaches

may be a better way to represent the heterogeneous cellular population that is used in

a Hi-C experiment.



Chapter 2

Literature Review

2.1 The current state of 3D reconstruction literature

Inferring a 3D structure that is representative of chromatin interaction data is not a

new concept – the first 3D reconstruction algorithm was published in 2009 (Fraser et

al. 2009) for use on 5C data. In this section, I will review the current state of the art

methods for reconstructing 3D structures from chromatin interaction data. This will

only be a subset of the different models that have been developed and applied – for a

more complete review, please see Segal et al. (2014) and Dekker et al. (2013). The

different types of methods can be classified hierarchically (Figure 2.1). Definitions of

the terms and evaluations of each method follow.

Figure 2.1: Methods to reconstruct 3D structures from Hi-C contact maps fall into a
number of different categories. See below for a list of definitions and citations.

8
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2.1.1 Definitions

Restraint-based models: Also known as optimization models, these algorithms at-

tempt to place loci in 3D space in a way that is consistent with experimentally observed

data. To do so, they typically represent genomic regions as particles with spatial re-

straints between them, optionally including restraints on things like interactions with

the nuclear lamina or spindle pole body. After the model is designed, a scoring func-

tion is used to reduce the violations of the imposed constraints, leading to the final

3D structure. Restraint-based approaches can produce both consensus and ensemble

solutions.

Probabilistic models: Also known as generative models, these algorithms use as-

sumptions about some probability distributions to specify the model for 3D structure.

They then use various sampling methods, such as MCMC, to obtain solutions which are

evaluated probabilistically. Probabilistic models can also produce both consensus and

ensemble solutions.

Consensus solutions: A consensus solution is a single solution from a restraint-based

or probabilistic model that can explain the experimental data. Although consensus

solutions are easier to interpret, they fall short because of the problems discussed above.

Ensemble solutions: An ensemble solution contains a large number of 3D structures

that, when taken together, can explain the experimental data. An ensemble solution is

often interpreted in terms of it’s statistical properties, for example,the average radius of

gyration across structures in the ensemble. Although an ensemble solution can be diffi-

cult to visualize and directly interpret, they better represent the heterogeneous nature

of chromatin conformation.

Molecular dynamics (MD) models: A MD approach models DNA conformation in

terms of the physical energy of the system. Restraints can be imposed on the spatial

distance between loci, the total volume of the structure and localization of centromeres

and telomeres, to name just a few. Optimizations like simulated annealing are then used

to minimize the restraints and optimize the structure. One advantage of MD models is

that they can readily generate an ensemble of solutions by conducting many independent

optimizations.

2.1.2 Models in the flowchart

Multi-dimensional scaling (MDS) is a general class of methods aimed at solving

the following problem: given a matrix of distances between points and a dimension
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n, place each point in n-dimensional space such that the distance matrix is optimally

preserved. This method is readily applied to chromatin 3D reconstruction as a distance

matrix can be calculated from the interaction frequencies. There have been several MDS

implementations in the literature. The most usable software is the Pastis package by

Varoquaux et al. (2014). The authors also included metric MDS and Poisson models as

alternative reconstruction options.

Shortest path reconstruction in 3D (ShRec3D) is an adaptation of a typical

MDS solution. Lesne et. al (2014) used the concept of shortest path in graph theory

to construct the distance matrix from chromosomal contact frequencies. This method

improved the distance values assigned to interactions with very low contact frequencies

in sparse sections of the contact map, which would approach infinite distance with

decreasing contact frequency. MDS is then used to construct a 3D structure from the

shortest path distance matrix. This method claimed to be more consistent than typical

MDS and less computationally intensive than methods like ChromSDE and BACH, but

it’s applicability to other datasets has proven to be problematic as the code is not easily

customizable.

ChromSDE (Zhang et al. 2013) reformulates the problem of converting a distance

matrix to a set of 3D points as a semi-definite programming technique. This guarantees

a correct 3D structure in a noise-free case and can be computed in polynomial time.

ChromSDE also attempts to optimize the contact frequency to distance function by

finding the best scaling parameter α for the distance-to-contact-frequency function. It

assumes the difference between the predicted contact frequencies and experimental con-

tact frequencies is unimodal and depends on α. A golden section search is then carried

out in the area of 0.1 ≤ α ≤ 3, 0 to find the best parameter. This step is a unique feature

of ChromSDE and is one of the biggest advantages of the algorithm.

ChromSDE also attempts to quantify if more than a single structure is necessary to

explain the experimental contact frequencies (basically, if the assumption of a single

consensus structure is violated). The authors propose a consensus index 0 < c < 1 that

quantifies how well a single 3D structure fits the input contact frequency matrix. Briefly,

the consensus index considers if the calculated distance matrix satisfies the triangle

inequality and how good a 3-dimensional representation is compared to a n-dimensional

representation.

Tethered Hi-C (Kalhor et al. 2012) used a molecular dynamics (MD) approach to

3D modeling of the human genome. This was not the first MD approach to 3D modeling

by far, although most other examples have been on simpler organisms like yeast (Tjong

et al. 2012 and others). In Kalhor et al. 2012, the authors define the genome by the

positions of spheres for each genomic loci. The scoring function is composed of nuclear
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volume restraints, excluded volume restraints and contact restraints. This function is

optimized using a simulated annealing with MD and conjugate gradient optimizations.

When all restraints are satisfied, the scoring function is equal to zero. Starting the

simulation from 10,000 random initial configurations and carrying out the optimization

on each independently leads to an optimized population of 10,000 genome structures,

which can then be analyzed for statistical properties.

Bayesian Inference of Spatial Organization of Chromosomes (BACH) is a

MCMC-based probabilistic model developed by Hu et al. (2013). The authors use

a more complex probabilistic interpretation of Hi-C data that is designed to remove

systematic biases included in Hi-C data. This is based on the previous work by the

authors (Hu et al. 2012). The details of this probabilistic model are defined in Chapter

4.

With this probabilistic interpretation, BACH uses a three-stage process to draw samples

from the posterior distribution of structures. First, a Poisson regression approach is used

to assign initial values for the β nuisance parameters in the probabilistic model. Then

an initial structure conformation is generated based on the initial nuisance parameters

with sequential importance sampling. Finally, the structure and nuisance parameters

are refined with a Gibbs sampling, hybrid Monte Carlo and adaptive rejection sampling

technique. Details of this model can be found in the supplementary text of Hu et al.

(2013).

MCMC5C is one of the first ensemble MCMC-based probabilistic models developed

in Rousseau et al. (2011). MCMC5C was designed to model the 3D conformation of

specific genomic regions assayed with 5C (hence the name), but it is also generalizable

to Hi-C data. MCMC5C represents each genomic loci by a point in 3D space with

a random initial conformation. At each step in the Markov Chain, a single point is

perturbed by moving it within a sphere of a certain radius. The probability of the

structure is evaluated and the move is accepted according to the Metropolis-Hastings

algorithm. After assessing mixing of the Markov Chain, the independent samples after

a certain number of iterations form the members of the structure ensemble. Although

this model is simple, it has several good ideas that I will draw from in developing my

own model, namely the definition of the probability of a given structure.

2.2 The MonteGrappa algorithm

MonteGrappa is a MCMC-based ensemble model detailed in Giorgetti et al. (2014).

Although designed for 5C, it is also applicable to Hi-C data at high resolution for small



Chapter 2. Lit Review 12

genomic regions. Both the probabilistic model of chromatin contacts and the represen-

tation of genomic regions in space is different from the other models discussed so far. As

this algorithm is a key step in my multi-scale 3D reconstruction process, I will discuss

it in detail here.

To represent genomic loci in 3D space, MonteGrappa uses a “beads attached by a fixed

linker” model. A certain genomic region is mapped on to each bead. Beads are connected

by a linker of fixed length that sets the scale of the simulation. In the Giorgetti et al.

(2014), each bead represents consecutive 5C restriction fragments summing to 3kb in

total sequence length. The authors propose that the algorithm can be applied to high-

resolution Hi-C data by mapping each bin in the contact map to a bead. However,

MonteGrappa has not yet been applied to Hi-C data. Extending the algorithm to work

on the new high-resolution Hi-C dataset is one of the contributions of this work.

In contrast to other models that attempt to convert euclidean distance between points

to a measure of contact probability, MonteGrappa takes the view that two loci are “in

contact” for a given conformation if the euclidean distance between two points, dij , is

less than R. This definition of “contact” works well for this model because an ensemble

of structures are generated. The contact probability for a pair of loci is defined as the

proportion of structures in the ensemble where the loci are closer than R. The ensemble

of structures functions much like a population of chromatin structures in a cell culture.

If two loci are close enough in 3D space to facilitate protein-protein interactions, they

are close enough to cross-linked by paraformaldehyde and contribute to the Hi-C contact

map.

A spherical-well potential (Figure 2.2) is used to represent the interactions between beads

in the model. If two beads are farther than the interaction distance R (dij > R), they do

not interact. If the beads are closer than the hard-core repulsion radius rHC (dij < rHC),

they interact with infinite energy, effectively disallowing interactions less than rHC and

ensuring beads do not overlap. If rHC < dij < R, the beads interact with energy βij ,

which can be negative or positive depending if attraction or repulsion is modeled. The

initial choice for the β values is determined by equation 2.1, but they are updated to be

more accurate with each iteration of the algorithm.

2.2.1 Algorithmic steps

The MonteGrappa algorithm follows several iterative steps to generate an accurate en-

semble of 3D chain conformations.
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Figure 2.2: The interaction energy of two beads i and j is calculated according to a
spherical-well potential. The energy can take on values of infinity, βij , or 0 depending
on the distance dij between the beads. Figure reproduced from Giorgetti et al. (2014).

1. Initial choice of β

The initial interaction energies for beads in the model are defined according to:

βnm =
β0
L

ln(λ−3/2(pHi−C(nm))−1)− 1) (2.1)

where L is the number of possible interactions between the two segments, λ is the length

of the chain that separates the two segments and β0 is the initial energy scale in kBT

units, where kB is Boltzmann’s constant (Giorgetti et al. 2014). Although the β values

are updated in each iteration of the algorithm, good initial choices speed convergence.

2. Monte Caro sampling

A Markov Chain Monte Carlo sampling of the conformation space is used to generate

an ensemble of structures. Initially, the beads are placed in a linear order. Each Monte

Carlo move changes the organization of the beads. Several types of moves are allowed

(Figure 2.3). The probability of each move type can be defined.

• A flip is the rotation of a backbone atom chosen at random around the axis defined

from the preceding and the following one. It is efficient because it is local (i.e., it

changes only the positions of few atoms of the chain).

• A pivot move changes a bond angle at random. This is not effective when sampling

among compact conformations because it is a non-local move which is likely to

produce clashes between atoms.

• A multiple pivot move is an extension of pivot moves, which changes at random a

set of consecutive backbone bonds.
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Figure 2.3: Moves (changes to the polymer chain) allowed in the MonteGrappa algo-
rithm. These are described in detail below. Figure reproduced from the MonteGrappa

software manual.

• A multiple flip consists in choosing two non-consecutive atoms of the backbone

and moving the backbone atoms in between around the axis defined by the two.

Each potential move is applied to a random set of beads in the conformation. The

energy of the polymer is calculated according to the spherical-well potential described

above. A move is accepted according to the Metropolis criteria (Metropolis et al. 1953).

The Metropolis algorithm dictates a potential move should always be accepted if the

energy of the system decreases (the polymer better matches the experimental contact

map). To prevent the sampling from getting stuck in local maxima, potential moves

that increase the energy of the system (and therefore move the polymer further from

the experimental contact map) are accepted with probability equal to the ratio of the

energy before and after the potential move. Moves that make the system slightly higher

in energy will usually be accepted, while moves drastically increasing the energy will

only rarely be accepted. In each iteration of the sampling step, 5,000 conformations are

generated by conducting 5 × 108 steps and recording the conformation of the polymer

every 1× 105 steps.

3) Minimization of the χ2 function

After an ensemble of 5,000 conformations is generated, the algorithm measures how close

the ensemble represents the experimental contact map driving the simulation. This is

done with a χ2 function to test how the simulated distribution of contact probabilities

differs from the experimental data:



Chapter 2. Lit Review 15

χ2 =
1

n

∑ (pHi−C(i, j)− pmodel(i, j))2

σ(i, j)

Where pHi−C(i, j) is obtained from the experimental Hi-C counts and pmodel(i, j) is

obtained from the generated ensemble of conformations. σ(i, j) can be obtained from

the variance in contact maps from duplicate Hi-C experiments.

The ensemble of conformations is also used to record how the B matrix could be im-

proved to decrease the χ2 function. A random update scheme is carried out where values

of B randomly changed and the χ2 function is recalculated. If χ2 decreases, the change

is kept and rejected otherwise. 1,000 updates are attempted on the current ensemble

of conformations, after which the ensemble cannot be thought of as an accurate repre-

sentation of the system and a new set of structures are necessary. This step makes the

algorithm converge faster than having to re-sample the conformation space after every

update to the β matrix (Norgaard et al. 2008).

After optimizing the β matrix, a new Monte Carlo sampling of the conformation space is

conducted. This iterative algorithm is repeated until χ2 converges to a minimum and the

algorithm terminates. The ensemble of structures can then be analyzed for statistical

properties of the conformations.

2.2.2 Comments on the MonteGrappa algorithm

I think the MonteGrappa algorithm is well-designed and suited for generating ensembles

of 3D structures for Hi-C data. The algorithm is only applicable to very high-resolution

Hi-C and 5C datasets because of the fixed-linker polymer model it uses. This model

assumes adjacent loci are constrained to a fixed distance. This assumption is invalid for

lower resolution Hi-C datasets - it’s impossible to constrain the distance between loci

that are tens or hundreds of kilobases apart. For the high-resolution data that I have

been analyzing for this manuscript, the MonteGrappa algorithm performs extremely

well (see 3). It can generate a ensemble of structures that accurately reconstruct the

experimental contact map given.
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Applying MonteGrappa to a

single loop domain

3.1 An ensemble analysis of chromatin conformation from

a single loop domain

As a first step in the data analysis process of my thesis research, I chose to examine

the performance of the MonteGrappa algorithm in generating an ensemble of structures

from high-resolution Hi-C data. This is a novel analysis because the MonteGrappa

algorithm was proposed for 5C data and has not yet been used to analyze Hi-C contact

maps. Additionally, no group has published on 3D reconstruction using the latest data

presented in Rao et al. (2014).

Through analyzing this data, I hoped to investigate a few questions. First, how does the

MonteGrappa algorithm perform on Hi-C data? The authors provide an implementation

of the algorithm tailored to 5C, but I needed to make some changes to get it to work

on the data I was using. I was also interested in investigating how large of a structure

the implementation could handle in a reasonable amount of time and how the results

would differ when using the Hi-C data at different resolutions. Second, Giorgetti et al.

(2014) present results that 3D structures from an ensemble calculated from 5C data

show clustering with biologically relevant results. I was interested to test if clustering

was also visible from Hi-C data, and whether clustering might differ in different parts of

the chromosome or regions with different epigenetic marks. Finally, I am interested in

methods to compare an ensemble of 3D structures and wanted to expand on the results

presented in Giorgetti et al. (2014). The authors only use a simple clustering method

(pairwise RMSD calculation followed by hierarchical clustering) and do not provide any

16
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ways to visualize an ensemble of structures or compare regions of the conformations that

are locally similar to each other. Although I have not yet accomplished all of these goals,

they are still interesting topics for future research projects and should prove worthwhile

for other members of our lab to investigate.

3.1.1 Description of the data

Rao et al. (2014) published the highest resolution Hi-C dataset to date. The authors

combined experimental data from hundreds of individual Hi-C experiments in human

GM12878 B-lymphoblastoid cells to produce a dataset with 4.9 billion pairwise contacts

and a binning resolution up to 1kb. Previously published Hi-C datasets had a maximum

binning resolution of around 20kb (Dixon et al. 2012), so this was a large improvement.

The authors investigated a number of interesting features of the contact maps, including

the presence of 10,000 chromatin loops – pairs of regions that are closer in 3D space with

each other than the loci between them.

Chromatin loops are identified by “peaks” in the Hi-C contact maps, or small regions

off the diagonal that have a significantly enriched contact frequency when compared

to the surrounding background (Figure 3.1). The presence of some chromatin loops

was confirmed through 3D-FISH, indicating that contact map peaks predict biologically

relevant features. Although the resolution of the contact maps can be pushed as high

at 1kb, I have been evaluating it in my analysis from 5-25kb. Reducing the resolution

decreases the noise in the data and allows 3D reconstruction programs to run faster with

less points to update.

3.1.2 Applying MonteGrappa to Hi-C data

To test the performance of the MonteGrappa algorithm and implementation, I first

looked at a single chromatin loop domain on human chromosome 4 using the GM12878

combined dataset. This domain was chosen for its clear loop definition and proximity to

loci our lab has previously investigated on chromosome 4. The region chr4:12,820,000-

13,580,000 was chosen because of a peak identified in the upper corner of this region

(Figure 3.2). I examined the data at 5, 10, 25 and 50kb resolution, with 152, 77, 31

and 15 bins for the domain, respectively. The number of bins was equal to the number

of beads in 3D space optimized in the model. This domain will be referred to as the

“single” domain because it has a single contact peak.

To extend MonteGrappa to work on Hi-C data, some adjustments had to be made. First,

I normalized the Hi-C data by the method suggested in Giorgetti et al. (2014): contact
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A

B

Figure 3.1: A) Loop domains are defined by a “peak” with contact frequency sig-
nificantly enriched above the surrounding background. An automated algorithm was
used to call peaks in this dataset. B) Schematic of higher-order DNA folding that con-
tributes to the contact maps observed for normal domains and loop domains. Figure

reproduced from Rao et al. (2014).

values were divided by the mean contact frequency between two adjacent loci. Adja-

cent loci are assumed to be “in contact” in all cells, and the mean value of this contact

frequency can provide an estimate of the relative contact frequency of off-diagonal in-

teractions. It is also necessary to consider some parameters in the simulation. Giorgetti

et al. (2014) optimize the values for bin contact and hard-core repulsion, R and rHC

respectively and find values that minimize the χ2 value between replicate simulations. I

found the default values to work reasonably well on Hi-C data, so they were not mod-

ified. It would be interesting to see how changing the R and rHC parameters changes

the results of the simulation, especially when using Hi-C data at different resolutions.

However, the χ2 values in my simulations converged to a value very close to 0, indicating

that optimization of these parameters might not be necessary.

I ran the MonteGrappa algorithm on the single domain at multiple resolutions. Only

the 25kb and 50kb trials had an χ2 value converge within a reasonable amount of time
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Figure 3.2: The “single” domain analyzed in this study. The genomic region of
chr4:12,820,000-13,580,000 is highlighted in white. Notice the peak with increased

contact frequency relative to the background in the upper corner.

(two days runtime on a personal computer, using a single core on a 4.5 GHz processor).

The 5kb and 10kb resolution contained too many data points to produce reasonable

structures within the time allowed. I investigated the heatmaps recomputed from the

ensemble of structures, they did not represent the experimental input remotely. Hence,

I will limit my analyses of the single domain to 25kb resolution data for the following

points.

3.2 Performance of the MonteGrappa algorithm

I generated an ensemble of 500 3D structures representing the single domain using the

MonteGrappa algorithm. To compare the ensemble of structures to the original Hi-C

data, I calculated an average contact map from the ensemble. Each point cij in the

average contact map is the proportion of the structures where the distance between

points dij is less than R. Visually, the two contact maps are very similar (Figure 3.3).

I also ran a MDS 3D reconstruction algorithm (Varoquaux et al. 2014) for comparison.

A contact map was calculated from the MDS solution according to equation 4.2. The

MDS solution does not match the experimental data well, either by visual inspection or

mathematical comparison.
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Figure 3.3: Contact maps from the experimental Hi-C data, an ensemble of 5000
structures generated with MonteGrappa and a single MDS structure are shown. Each
is normalized so that the rows in the contact matrix sum to 1. The contact map from the
ensemble of structures matches the experimental data very closely. Even small details,
like increased contact frequency in the lower left corner of the “peak” are captured.
The MDS reconstruction captures the overall structure of the domain and has a “peak”
region, but the finer details are missed. To quantify the difference between the methods,
I calculated the sum of the absolute difference between the normalized contact maps.

The ensemble of structures performs much better under this measure.

The result in Figure 3.3 shows that an ensemble 3D reconstruction algorithm is necessary

to capture all the variation in a high-resolution Hi-C dataset. A single 3D structure

cannot reconstruct the fine details that are present in the experimental data, likely

arising from several clusters of chromatin conformations present in the cell culture used

in the experiment. This result prompts several interesting areas for future research:

• Clustering (Section 3.3) of 3D structures identifies several “classes” of structures

with similar properties. A cluster of structures might define a particular feature

of the contact map, such as a square of increased contact along the diagonal or

off-diagonal looping interactions. I would generate a contact map only from the

structures in a given cluster and compare it to the experimental contact map to

investigate this point further.

• Recent research (Williamson et al. 2014) has identified discrepancies between data

generated with chromosome conformation capture technologies and FISH imaging.

An ensemble of 3D structures could be used to resolve these discrepancies. Some

of the clusters of structures might be consistent with the FISH data presented,

but other clusters might show structural properties that were not captured with
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imaging. The contact map from Hi-C or 5C is an average across all chromatin

conformations present in the cell culture, and an ensemble of 3D structures could

help tease out the heterogeneity in the population.

3.3 Clustering and investigation of structure ensembles

The MonteGrappa algorithm produces a large ensemble of 3D structures, each of which

are independent draws from the Markov Chain. The obvious next step is to compare

the structures to each other and analyze properties of the ensemble. To compare 3D

structures, a measure of distance is necessary. A proper distance function for 3D struc-

tures should satisfy the properties of distance functions: non-negativity, identity of

indiscernibles, symmetry and the triangle inequality.

A commonly used method of comparing 3D structures is the Root Mean Squared Devi-

ation, or RMSD. RMSD is a pairwise measure of distance. Theoretically, the algorithm

attempts to find the optimal translation, rotation, and scaling of two structures such that

the root mean squared pairwise distance between points in the structures is minimized:

RMSD =

√√√√ 1

N

N∑
i=1

δ2i (3.1)

Where δ is the pairwise distance between points after the structures have been su-

perimposed and N is the number of pairwise comparisons considered. RMSD is used

extensively in protein structure analysis and has been applied to comparing Hi-C 3D

reconstruction methods.

Other measures of distance between 3D structures operate on contact maps calculated

from the structures. One possibility is the Contact Map Distance. With this method,

a binary contact map is calculated from the structure information. Points closer than a

threshold distance are assigned as in contact and points further are defined not to be in

contact (Vendruscolo et al. 1997). Two contact maps can then be compared by taking

the sum of entries where they are different. Another possibility is Maximum Contact

Map Overlap (CMO) which attempts to find the maximum number of shared edges

between contact maps (Andonov et al. 2011, Caprara et al. 2004). However, CMO is

designed for situations when the structures also need to be locally aligned. Each member

of the ensemble has the same number of points, so local alignment is not necessary.

After defining a measure of distance, the next step is to calculate a matrix of pairwise

distances between structures. Hierarchical clustering with complete linkage is a logical
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solution to this problem, as I am trying to find . The resulting dendrogram shows clear

clusters, but it is difficult to define what the clustering cutoff or the members for each

cluster should be.

One solution is to define a height in the dendrogram to cut clusters at. Another option

is to chose a value k for the desired number of clusters and set the cutoff height to a

value that results in k clusters. Both of these methods are relatively brute and require

manual input, however. There have been ideas for clustering different protein structures

presented in the literature, including an algorithm to minimize the number of clusters

and the spread across each cluster presented in Kelley et al. (1996). In this first exam-

ple, I set k to 6 and analyzed the resulting clusters (Figure 3.4). After examining the

structures in each cluster, clear physical properties were apparent. Each cluster theo-

retically defines a “class” of structures that are necessary to capture the true nature of

a chromatin loop domain.

Cluster Characteristic %
elongated center, folded left end
elongated structure
folded at both ends
folded in center and at right end
very folded, typical loop domain
ends always close

0.03% 
0.01%
13%
17% 
50%
16%

Figure 3.4: An ensemble of 500 structures was generated with the MonteGrappa
algorithm to reconstruct the single domain. Clustering was done with agglomerative
complete linkage on RMSD, k = 6 clusters were split and analyzed for structural prop-
erties. Structures in each cluster displayed distinct properties that were well conserved
across the cluster. Properties in the small clusters (gray and brown) were the best

defined.

After defining clusters of structures, it is desirable to visualize them in an informative

way. Once again, ideas from protein structure investigation are useful here. Several

methods have been developed to visualize ensemble NMR protein structures, including

simple superposition and visualization of structures that vary in width according to the
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variability of the structure at a given point (Kelly et al. 1996, Sutcliffe 1993). A naive

approach is to simply superposition the structures such that the distance between them

is minimized and visualize the ensemble (Figure 3.5). Another goal of ensemble analysis

would be to determine which parts of the structure are most conserved and which parts

are most variable. This question could be answered by computing RMSD in a sliding

window across a number of structures. Windows with the lowest RMSD values would

be the most conserved across the ensemble, and windows with the highest RMSD values

would be the most variable.

Figure 3.5: 5 structures that cluster close to each other are superpositioned and
visualized. Each structure is colored from blue to red along the length of the polymer.
The structures all have similar shapes overall and appear to be tightly folded in the

center.

I have demonstrated that the MonteGrappa algorithm can be applied to high-resolution

Hi-C data. The ensemble of structures generated shows interesting properties and

clustering.Further investigation is necessary to extract true biological insight beyond

this first pass analysis. Tests like the proportion of ensemble members where two en-

hancer/promoter loci are in contact could to be related to the percentage of cells in the

Hi-C experiment experiencing that looping interaction.
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A Multi-Scale Ensemble Model of

Chromatin Conformation

4.1 A high-level overview of the MonteMonster algorithm

In the previous section, I extended the MonteGrappa ensemble 3D reconstruction method

to work with Hi-C data in local genomic regions. Ideally, a 3D reconstruction method

would be applicable to entire chromosomes or the entire genome, generate an ensem-

ble of structures that explain the experimental data and take advantage of the fact

that Hi-C data is very high-resolution near the diagonal, but degrades in quality with

longer-range interactions. In this section, I present a theoretical framework to perform

an ensemble-based 3D reconstruction which includes multiple scales, from local high-

resolution regions to long-range low-resolution interactions.

The 3D reconstruction method I have developed uses Markov Chain Monte Carlo sam-

pling, and tackles a number of monster problems. I have therefore decided to name the

algorithm MonteMonster.

MonteMonster is a two-step algorithm to solve the 3D reconstruction problem for a

single chromosome. Step 1 involves breaking the chromosome into domains, which can

be defined with a number of external algorithms, running the MonteGrappa algorithm on

each domain and generating an ensemble of solutions. Step 2 involves using the ensemble

of structures generated from each domain to capture the 3D structure of the entire

chromosome. A member from the ensemble from each domain is placed in 3D space.

The structures are then perturbed through translation, rotation, scaling and swapping

members of the domain ensemble in a MCMC sampling scheme. The probability of the

experimental data given the conformation of structures is tested after each proposed

24
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move, and the move is accepted according to the Metropolis criterion (Metropolis et al.

1953).

4.2 Definitions of elements and parameters

A Hi-C experiment produces an experimental contact matrix for a given chromosome

Ĉ. Ĉ is a n × n square and symmetric matrix with entries of 0 along the diagonal. n

is determined by the length of the chromosome in basepairs divided by the resolution

(or bin size) of the contact matrix, r. Each element in Ĉ , ĉij represents the pairwise

interaction frequency of locus i and j.

If Ĉ is an unnormalized contact matrix, ĉij is the number of reads from a Hi-C sequencing

experiment that mapped to the interaction between i and j. If Ĉ is an normalized contact

matrix, ĉij is the interaction probability between i and j.

I define an in-silico or “true” contact matrix, C, from the simulated 3D structures. C

has the same properties of Ĉ (square, symmetric, diagonal 0).

A structure s is defined by a set of points in three-dimensional space. To convert a

structure s to an in-silico contact matrix C, the function:

cij = f(Ds(i, j)) (4.1)

is used, where Ds(i, j) is the euclidean distance between points i and j in the structure

s and f(·) is a function of the form:

f(Ds(i, j)) ∝
1

Ds(i, j)α
(4.2)

With α defining the inverse relationship between euclidean distance and contact proba-

bility. 0.1 ≤ α ≤ 3.0, but most commonly α = 1.0.

An experimental contact matrix is divided into a set of domains, D = {d1, d2, ..., dm}.
A set of domains must cover the entire chromosome and not overlap with each other.

This means that domain d1 must begin at locus 0, and domain dm must end at locus n.

If d1 ends at locus i, domain d2 must begin at locus i+ 1.

In step 2 of the MonteMonster algorithm, I define a chromosome structure S as a set

of structures S = {s1, s2, ..., sm} that represent the m domains in the chromosome.

Associated with these structures are a set of:

Translations: T = {t1, t2, ..., tm}
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Rotations: ρ = {(ρx, ρy, ρz)1, (ρx, ρy, ρz)2, ..., (ρx, ρy, ρz)m}

and scales Θ = {Θ1,Θ2, ...,Θm}

That modify the underlying coordinates in S to produce the final chromosome structure.

These are all of the elements in the multi-scale model.

4.3 Probabilistic interpretation of Hi-C data

Hi-C is not a perfect experimental protocol. The observed experimental contact map Ĉ

is distributed according to some probability function function. Several examples are in

the literature, I will cover the normal distribution function discussed in Rousseau et al.

(2011) and the Poisson function proposed in Hu et al. (2013).

In Rousseau et al. (2011), the authors propose Ĉ is distributed according to the “true”

chromatin contact matrix C:

Pr(ĉij |cij) = N(ĉij ; cij , cij + k) (4.3)

where N is the normal distribution N(x;µ, σ2) and k is a small constant, 10 in their

algorithm, that prevents entries in C with low read numbers being assigned too low of

a variance.

In Hu et al. (2013), the authors propose that Hi-C reads follow a Poisson distribution

according to the distance between points and other parameters designed to correct sys-

tematic biases present in Hi-C data. This assumes cij follows a Poisson distribution with

rate θij where:

log(θij) = β0 + β1 log(dij) + βenz log(eiej) + βgcc log(gigj) + βmap log(mimj) (4.4)

β0 is a constant, β1 measures the negative association between contact frequency and dis-

tance (equivalent, but not equal to, the α parameter discussed above) and βenz, βgccβmap

are the coefficients to correct for the enzyme effect, GC content effect and mappability

effect biases discussed in the manuscript. Once θij is defined:

Pr(ĉij |θij) =
e−θijθ

ĉij
ij

cij !
(4.5)

Other sources (Segal et al. 2014) note that the correction of biases from enzymes, GC

content and mappability should be treated as pre-processing steps of the experimental
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heatmap and need not be incorporated into the probabilistic model. In my implementa-

tion of the Poisson model, I will only use the β1 term in the definition of θij . I will test

both of these probabilistic interpretations of Hi-C data in the MonteMonster algorithm.

4.4 A Bayesian approach to sampling 3D structures

The MonteMonster algorithm samples 3D structures from the sample space of all pos-

sible structures. I am interested in the posterior distribution of structures, given the

experimental contact map data. We cannot compute this distribution exactly, however,

and a MCMC sampling algorithm is used instead. Using Bayes rule, we can transform

the posterior distribution:

Pr(S|Ĉ) =
Pr(Ĉ|S)Pr(S)

Pr(Ĉ)
(4.6)

Applying an uninformative prior (we have no knowledge about the distribution of struc-

tures, therefore we assume they are all equally likely) and assuming that the probability

of the experimental data is constant, we obtain:

Pr(S|Ĉ) = Pr(Ĉ|S) (4.7)

This probability can be calculated exactly under one of the probabilistic interpretations

of Hi-C data described above. For the Normal distribution:

Pr(S|Ĉ) =
∏

1≤i≤j≤n
Pr(ĉij |cij , σij) =

∏
1≤i≤j≤n

N(ĉij ; cij , cij + k) (4.8)

And for the Poisson distribution:

Pr(S|Ĉ) =
∏

1≤i≤j≤n
Pr(ĉij |cij , σij) =

∏
1≤i≤j≤n

e−θijθ
ĉij
ij (4.9)

4.5 A two-step model

To generate an ensemble of chromatin conformations for an entire chromosome, I will

use a two-step process.



Chapter 4. The Model 28

4.5.1 Step 1

Step 1 is used to generate an ensemble of structures for individual domains - small

sections of the chromosome. I apply the MonteGrappa algorithm as described above

to the data from each domain individually. This results in a number of structures (the

number is up to the user, I typically sample either 500 or 5,000) for each domain. The

structures are all relatively the same scale because they are constrained by the fixed

distance between beads in the model. The relative positioning of the structures can be

quite variable.

4.5.2 Step 2

Step 2 is the novel part of this work. I leverage the information generated in the previous

step to create a 3D structure representing several domains. I begin by initializing a

Markov Chain. For each domain di, an initial structure from the ensemble, si, is chosen.

These structures are translated so that the first point in the structure lies on the x axis,

spaced uniformly apart. This is done by updating the translation parameter ti

Proposed MCMC moves

A proposed move in the Markov Chain is defined as one of four options. Each move is

applied to the structure from a single domain.

• Translate: Move the structure si linearly by a given amount. If v is a translation

vector, s′i = si + v. This updates the translation parameter ti.

• Rotate: Rotate the structure si by a value around the x, y and z axis. If R is a

rotation matrix, s′i = Rsi. This updates the rotation parameters (ρx, ρy, ρz)i.

• Scale: Scale the structure si. If A is a scaling matrix, s′i = Asi This updates the

scaling parameter Θi.

• Swap: There are a large number of potential structures in the ensemble for a

domain. Each individual conformation (ensemble member) could be part of the

greater solution. At a given point in the Markov Chain, only a single conformation

is used. Therefore, there needs to be a way to change the structure of a domain for

another member of the ensemble. Implementation of this move has some problems,

see the section below.
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A proposed move updates the values of the parameters for a structure. A matrix of

distance values is calculated from the updated structure, which is then converted into

the in-silico contact map Ct+1 via equation 4.2. The probability of the structure given

the experimental data, Pr(St+1|Ĉ) is then calculated, and the move is accepted if it

meets the criteria. The t+ 1 index indicates the progression of the Markov Chain.

Acceptance criteria

A proposed move is accepted according to the Metropolis algorithm (Metropolis et

al. 1953). If the probability of the new structure at time t + 1 is greater than the

probability of the old structure at time t, the move is automatically accepted. However,

if the probability of the new structure is less than the old, the move is accepted with

probability a equal to the ratio of the two choices:

a =
Pr(St+1|Ĉ)

Pr(St|Ĉ)

Otherwise, the proposed move is rejected and the structure returns to the previous state.

The probabilistic acceptance of “bad” moves is the key to the Metropolis algorithm. If

only moves that increased the probability were accepted, the algorithm would get stuck

in local maxima and never explore the whole probability space. Occasionally accepting

moves that make the probability lower allows the algorithm to escape local maxima.

Range of MCMC moves

It is desirable to tune the acceptance rate of the Metropolis algorithm to be in a certain

range. Suggestions in the literature are varied, one possibility is a 23% acceptance rate

for an N -dimensional distribution (Roberts et al. 1997). Acceptance rate is important

for the convergence of the Markov Chain to the stationary distribution. If the moves

made result in small changes, they are likely to be accepted very frequently. If the moves

result in large changes, they will be accepted rarely. A acceptance rate that is too high

will slow convergence because the moves are too small, while an acceptance rate that is

too low will slow convergence because the structure rarely changes. The acceptance rate

in this model can be tuned by varying the amount the structure is changed with each

move. The parameters to translate, rotate or scale by should be limited to a certain

range; this range can be determined experimentally by monitoring the acceptance rate.

There also needs to be a parameter that defines the probability of making a given move

which could also play a role in the acceptance rate.
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Assessing convergence and drawing from the Markov Chain

To generate an ensemble of structures MonteMonster needs to make independent draws

from the Markov Chain after it has converged to the stationary distribution. The first

step is to assess when the Markov Chain has converged. There are statistics designed

for this purpose I have found. A more intuitive approach is to start many Markov

Chains from the same initial point and decide when they become indistinguishable from

each other. Say this takes k moves. Starting a single Markov Chain will then take k

moves to converge to the stationary distribution; these initial moves can be discarded as

burn-in moves. After convergence, independent samples can be drawn from the Markov

chain by recording the structure at k, 2k, 3k, etc number of moves. These structures will

theoretically be independent draws from the Markov chain and will become the ensemble

of structures. A more rigorous assessment of convergence of my model will be necessary

in the future.

Implementation of the swap move

I have had difficulty coming up with a reasonable implementation for the swap move,

although something that changes the members of the ensemble for a domain will be

necessary in the model. There are two options I have been considering for swap:

• Implement swap as a regular move in the Markov Chain. If this move were selected

for a domain, the current conformation would be swapped out for a different mem-

ber of the ensemble. Some modification would be necessary, the 3D coordinates for

one conformation could not be simply exchanged for another conformation. At the

very least, I would translate the first point in the new conformation to match the

first point in the old conformation. It could also be desirable to rotate and scale

the new conformation to better match the old. These modifications could keep the

global arrangement of structures similar while changing more local interactions

through swapping the conformation.

It would be best to keep the probability of choosing this move low to limit the

extreme perturbations to the structure. However, swapping a conformation for an

entirely different member of the ensemble could drastically change the structure

that had been optimized for the last several moves. This could result in a very

low probability of swap moves being accepted or a very chaotic structure resulting

every time a swap move is performed.

• Change conformations when independent recordings from the Markov Chain are

made. With this option, the conformations of every domain would be changed after



Chapter 4. The Model 31

a structure is recorded. The structure could then be optimized through translation,

rotation and scaling without swapping conformations until a structure is recorded.

Afterwards, new conformations would be randomly selected for each domain and

the optimization would be run again.

Swap is an important concept to keep in the model because it leverages the information

from the previous step. Properties of conformations that appear more frequently in the

ensemble for a single domain should appear more frequently in the whole structure.

4.6 Comments on the MonteMonster algorithm

The MonteMonster algorithm as described above tackles some of the problems I have

identified with 3D reconstruction algorithms. First, it generates an ensemble of chro-

matin structures that, together, can represent the experimental Hi-C contact map. Sec-

ond, it treats the data as two-scaled and uses a different step to tackle reconstruction at

each scale. Constructing a structure for an individual domain is done with the polymer

model of MonteGrappa - beads on a string attached by a fixed linker. The assumptions

in this model (constraints on maximum polymer size, binary contact possibilities, for

example) are only valid at these short-range, fine-scale interactions within a domain.

Step 2 is better suited to interactions beyond individual domains. It does not assume

anything about maximum structure size and uses a more general definition of contact

probability (equation 4.1 and 4.2)

I am currently working on implementing and testing the MonteMonster algorithm as

described. Of the issues I have discussed, implementation of the swap concept and

the runtime of the algorithm have been the most problematic. The framework for the

algorithm has been laid, though, and implementing and testing the ideas presented

should make an interesting longer-term research project.

4.6.1 Issues that require further consideration

There area number of topics that I need to explore further in the development of this

model. As I finish the implementation and testing of MonteMonster, the answers to

some of these will become clear.

• The probabilistic interpretation of Hi-C data to use. I am curious how changing

from the normal distribution to the Poisson would affect results of the algorithm.

• The best choice to use for the swap concept, clarified above.
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• To be a true multi-scale algorithm, MonteMonster would ideally leverage the Hi-C

data at more than one resolution. This is desirable because the quality of the

signal in the data decreased with genomic distance between interacting loci. For

calculations far from the diagonal I would like to use lower resolution data to avoid

noise and decrease the computational load. However, I would need to work this

idea into the mathematical formulation of the model.

• Runtime. MonteMonster is currently implemented in Python. The program runs

too slow to be applied to many domains and once. The slowest part is the cal-

culation of the pairwise distances between points and calculating the probability

of the new structure after each move. Although I have identified several ways to

increase the performance, I will still be limited by the python implementation.

• Single-cell HiC. The data presented in Nagano et al.(2013) is very valuable because

it comes from singular chromatin conformations. I would like to validate the results

of my ensemble model with this data.
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