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Abstract

Cancer is caused by somatic mutations, changes in an individual’s
genome that occur after conception and are not passed to one’s offspring.
Somatic mutations can accumulate over an individual’s lifetime. The
clonal theory of cancer states that each cell within a tumor descends from
the same cell. A clone is a group of cells that descended from a com-
mon ancestor. Certain, rare, advantageous mutations may give that cell
certain evolutionary advantages. These mutations may lead to a clonal
expansion, a group of cells that are descendants, thus would carry that
mutation. The occurrence of cells within the same tumor having different
genotypes is called intra-tumor heterogeneity. Recently, high throughput
sequencing has allowed one to analyze the intra-tumor heterogeneity of
tumor samples.

Similar to species evolution, clonal evolution can also be modeled us-
ing phylogenetic trees. This model can be most easily applied to data
obtained from single-cell sequencing samples, when all samples observed
contain only the types of mutations associated with one cell. However,
most cancer sequencing studies use bulk-sequencing, in which data from
multiple samples are observed as a mixture, thus inferring the evolution-
ary history is not trivial.

We formalize and implement an algorithm that infers the evolution-
ary history of tumors that had been measured using bulk-sequencing.
We then implement two approaches, Perfect Phylogeny Mixture Problem
(PPM) and Greedy Minimum Split Rows (GMSR) Algorithm to the same
problem. After running comparisons with pre-existing approaches, Phy-
loSub and CITUP, we found that PhyloSub and CITUP outperformed
both PPM and GMSR. This preliminary work on inferring clonal evo-
lution with discretized mutation matrices led to work on AncesTree, an
algorithm that uses a similar formulation but uses different input and
clusters mutations differently.
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1 Introduction

1.1 Biology Background

Deozyribonucleic Acid (DNA) are macro molecules that contain all genetic infor-
mation. DNA is composed of four bases: Adenine (A), Cytosine (C), Guanine
(G), and Thymine (T). In an individual, DNA is arranged in a double helix that
lie in structures, called chromosomes. An individual’s genome describes all of
that individual’s DNA. Certain parts of the genome contain genes, which are
heritable units of information that encode proteins. Proteins are responsible for
a wide variety of cell function, activity, and regulation.

Genes are converted to proteins first through transcription, then through
translation. During transcription, DNA is converted to ribonucleic Acid (RNA),
which is composed of Adenine (A), Cytosine (C), Guanine (G), and Urasil (U).
During translation, RNA is converted into proteins. Triplet codons, containing
three RNA nucleotides, code for a specific amino acid, which are the building
blocks of proteins. Because the amino acid sequence, thus protein function, is
dependent upon each nucleotide, changes to a nucleotide sequence will often
affect cell behavior. An allele is a variant a specific position, or locus, of one’s
genome [9].

During DNA sequencing, the order of nucleotides in DNA is determined. Be-
cause the genome contains a huge number of nucleotides, it is impossible to scan
the genome nucleotide by nucleotide. Instead, small fragments, or sequencing
reads, are aligned against reference genome. The sequencing coverage refers to
how many reads align at a certain position.

Throughout this work, we focus on single nucleotide variants (SNVs), which
are changes to an allele at a specific locus. The variant allele frequency (VAF)
is the fraction of nucleotides that contain a specific variant allele. If there is a
high VAF at a specific locus, a mutation likely occurred there. When we say
that a variant allele was discretized or that a matrix containing variant allele
frequencies was discretized, we mean that above a certain threshold, we replace
the frequency with a 1 and assume that a mutation occurred at that position.

1.2 Cancer Background

Cancer is caused by somatic mutations, changes in an individual’s genome that
occur after conception and are not passed to one’s offspring. Somatic mutations
can accumulate over an individual’s lifetime. There are both passenger muta-
tions, which have no effect on a clone’s survival, and driver mutations, which are
give that cell certain evolutionary advantages. The clonal theory of cancer states
that each cell within a tumor descends from the same cell. A clone is a group
of cells that descended from a common ancestor. These mutations may lead
to a clonal expansion, a group of cells that are descendants, thus would carry
that mutation [12]. The occurrence of cells within the same tumor having dif-
ferent genotypes is called intra-tumor heterogeneity. Recently, high throughput
sequencing has allowed one to analyze the intra-tumor heterogeneity of tumor
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samples [5].
Understanding which somatic mutations occurred early on can create more

effective treatment options. For instance, if oncologists target an early driver
mutation, they remove a large part of the tumor mass, and if they target founder
mutations, they remove the entire tumor mass. Oncologists may also choose to
target different clonal subpopulations, thus understanding clonal evolution may
help devise these more personalized treatments [1].

1.3 Modeling Clonal Evolution with Phylogenetic Trees

Similar to species evolution, tumor evolution can also be modeled using phylo-
genetic trees. In the case of species evolution, the root would be the common
ancestor, the leaves would be the taxa, and the characters can have two states,
either normal or mutated. In the case of tumor evolution, the tree leaves would
be tumor samples, the root would be the founder cell, and the characters would
be mutations, either normal or mutated. A single nucleotide mutation is rep-
resented by a 1, if that position is mutated, or a 0 otherwise. The root, the
entirely unmutated, founder cell would therefore contain a 0 at every position.

Gusfield introduces Perfect Phylogeny matrices as a way to model clonal
expansions. The clonal expansion can be modeled by Tree T defined by a
matrix M ∈ {0,1}m×n, where m is the number of samples and n is the number
of loci that have been mutated. If T exhibits a perfect phylogeny, then each
of the n mutations must label exactly one edge, each of the m samples must
correspond to exactly one leaf, and for any sample s, the path from the root to
s must contain each mutation that s contains [4].

Because the genome is large, mutations are rare, and mutations at the same
locus are event more rare, the infinite sites assumption, which states that an
individual mutation event can only occur once, can be used in the analysis
of clonal evolution. The 4-gametes condition follows from the infinite sites
assumption and explains that a perfect phylogeny exists iff no two columns
contain (0,0), (0,1), (1,0), and (1,1) [8]. Because a mutation can only occur
once, as we assume in the infinite sites assumption, the 4-gametes condition will
always be T in modeling clonal expansions. The Perfect Phylogeny Theorem
follows from the 4-gametes condition and states that a binary matrix M is a
perfect phylogeny matrix if and only if there is no pair of columns that contain
the pairs (0,1), (1,0), and (1,1). Because the root will always contain the pair
(0,0), having the other three pairs will always violate the 4-gametes condition.
Similarly, two columns are said to be in conflict if they contain the pairs (0,1),
(1,0), and (1,1). Figure 1(D) provides an example of two columns that are in
conflict.

The second part of the Perfect Phylogeny Problem constructs a Perfect Phy-
logeny Tree given the input matrix is conflict free. Gusfield provides an algo-
rithm to construct this tree. After sorting columns in the matrix based on the
number of 1s, i.e. the most common mutation would be moved to the left-most
position. The tree is then constructed by systematically adding each sample to
the tree by constructing an edge for each mutation. If a mutation is first seen
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in that sample, a new edge is constructed, otherwise that edge becomes part of
the path from the root to the sample placed in the tree [4].

1.4 Previous Work

Modeling clonal evolution with phylogenetic trees can be most easily applied
to data obtained from unmixed, single cells, when all samples observed contain
only the mutations associated with one cell. However, the data obtained in
most cancer sequencing studies is obtained from bulk sequencing, thus the data
observed from samples that contain a mixture of cells. Reconstructing the
history of somatic mutations is more difficult in this case because the data
obtained can be harder to deconstruct. For instance, the binary data associated
with the mutation matrix, whether a mutation exists in a particular sample
at a particular position, often contains conflicts because it is unclear in which
sample(s) the mutation exists. Figure 1 provides an example of when conflicts
are created through multi-sample sequencing.

There are many different approaches that infer clonal histories based on
multi-sample sequencing data. We compare to both PhyloSub and CITUP.
PhyloSub uses Bayesian inference to determine phylogenetic trees that are con-
sistent with variant allele frequency data [7] and CITUP enumerates all possible
trees, then picks the best tree using Bayesian information criterion (BIC). Mali-
kic et al. also introduce an iterative method in which they use a heuristic based
on the Expectation Maximization (EM) Algorithm to infer mutation assignment
[10].

Clomial determines tumor frequencies but does not infer the evolutionary
relationship. Therefore, in experimentation, the matrices obtained are rarely
perfect phylogeny matrices, thus comparing generated solutions to Clomial so-
lutions was usually not feasible [15]. LICHeE finds the set of lineage trees that
are consistent with its VAF data but only provides an interface with no access
to matrices actually obtained. We could not compare directly to LICHeE [14].

1.5 Contributions

This work began as a continuation of a project by Iman Hajirasouliha and
Ben Raphael, titled “Reconstructing mutational history in multiply sampled
tumors using perfect phylogeny mixtures,” in which they give an algorithm
using Split Row operations to infer clonal evolution [6]. We first formalize the
problem presented in this paper as the Perfect Phylogeny Mixture Problem
(PPM). Second, we give further detail in how to implement their algorithm
Minimum Split Rows Algorithm by introducing the Greedy Minimum Split Row
(GMSR) Algorithm and Exhaustive Minimum Split Row (EMSR) Algorithm.
After implementing these algorithms, we find a counter example in which both
the GMSR and EMSR algorithm fail. Third, we provide an ILP formulation to
solve the same problem for the Perfect Phylogeny Mixture Problem (PPM). In
the Results Section, we show comparisons between PhyloSub, CITUP, and these
two methods that use discretized input matrices. Finally, we show how both
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Figure 1: An Example of Clonal Evolution Modeled By Phylogenetic
Trees (A) An example of a Perfect Phylogeny Matrix with 3 samples and 4
mutations. This matrix is a perfect phylogeny matrix and thus is conflict-free.
(B) The Perfect Phylogeny Tree corresponding the Matrix in A. (C) When high
throughput sequencing is used, the data generally obtained is in the form of
samples that contain a mixture of populations. For example, the green sample
(s4) is a mixture of s1 and s2. The data that would be obtained from this sample
would be observed as the bitwise or of these two samples. (D) The corresponding
matrix containing the mixture of s1 and s2 in s4. The corresponding matrix is
not a Perfect Phylogeny Matrix because m3 and m4 contain a conflict because
they contain the pairs (1,0), (0,1), and (1,1). This is an example of a matrix that
could be obtained from multi-sample sequencing studies. It would be difficult
to reconstruct the clonal evolution as it would be hard to determine the actual
populations and thus the actual phylogenetic history.
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methods using discretized input matrices served as preliminary work and the
basis for AncesTree, an algorithm that discerns clonal evolution using a similar
equation but uses the original VAF data instead of discretizing variant allele
frequencies input.

2 Discretized Methods

2.1 Perfect Phylogeny Mixture Problem (PPM)

The Perfect Phylogeny Mixture Problem (PPM) provides a more formal def-
inition to infer a conflict-free matrix that describes the phylogeny of a tumor
sample given a discretized matrix containing samples that contain information
from multiple cross sections of a tumor. Work on PPM formalization was done
with Mohammed El Kebir and Layla Oesper.

2.1.1 Problem Definition

Given a matrix A ∈ {0, 1}m×n, the ith row of A will be denoted as ai. and the
jth column of A as a.j . Two columns a.j and a.k are disjoint if aij ∧ aik = 0
for all i ∈ {1, . . . , n} .

Definition 1 Given matrices A ∈ {0, 1}m×n and B ∈ {0, 1}n×p, A ⊗B = C,
where C ∈ {0, 1}m×p such that cij = ∨nk=1(aik ∧ bkj).

Intuitively, A⊗B yields a C whose rows are the “bitwise or” of a subset of
rows in B. The entries in A determine which rows to use in the “bitwise or”
operation. For instance aik = 1 would mean that the ith row of C is a bitwise
or of a set of rows in B, including the kth row of B.

Definition 2 Given Usage Matrix A ∈ {0, 1}m×n, Basis Matrix B ∈ {0, 1}n×p
and Input Matrix C ∈ {0, 1}m×p we say that (A,B) generates C if and only if
A⊗B = C.

Definition 3 The Mixing Graph GA is a bipartite graph that maps every row
ci. with a row bj.. We label vertices as vci. and vbj. . There is an edge between
vci. and vbj. if and only if Ai,j=1.

Definition 4 Given a binary matrix B ∈ {0, 1}n×p, two columns b.i and b.j

in B are in conflict if and only if there exists three rows br.,bs.,bt. in B such
that their (i, j) positions are (1, 1), (0, 1), (1, 0) respectively.

Definition 5 A binary matrix B ∈ {0, 1}n×p is conflict-free if and only if it
has no pairs of columns in conflict.
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m1	   m2	   m3	   m4	  

r1	   1	   0	   1	   0	  

r2	   1	   0	   0	   1	  

r3	   0	   1	   0	   0	  

m1	   m2	   m3	   m4	  

s1	   1	   0	   1	   0	  

s2	   1	   0	   0	   1	  

s3	   0	   1	   0	   0	  

s4	   1	   0	   1	   1	  

r1	   r2	   r3	  

s1	   1	   0	   0	  

s2	   0	   1	   0	  

s3	   0	   0	   1	  

s4	   1	   1	   0	  

=	  

⊗!

⊗	  
A! B! C!=	  

(A)	  

(C)	   vb1	  

(B)	  

C	  
A	  B	  

vb2	  

vb3	  

vc1	  

vc2	  

vc3	  

vc4	  

Figure 2: PPM Problem Definition (A) Usage matrix A, basis matrix B,
and input matrix C. C has two conflicts which are resolved when mixing rows in
B. The usage matrix A describes which rows in B to mix for each row in C. (B)
The equation that relates A, B, and C. (C) The mixing graph GA that relates
rows in C to the mixture of rows in B that combine to form each row in C. In
the ILP Formulation (Section 2.3) we minimize the number of mixings, or the
number of edges in the mixing graph.

Minimum Usage Problem Given a binary matrix C ∈ {0, 1}m×p find a
pair A ∈ {0, 1}m×n and conflict-free B ∈ {0, 1}n×p such that (A,B) generates
C and

∑m
i=1

∑n
j=1 aij is minimal.

In both implementations described below, we assume that every sample in
C will contain at least one mutation, or that

∑
j Cij ≥ 1 ∀i. This is because

the root node will be unmutated and is implicitly in each clonal history. If two
columns in C are identical, we also cluster mutations together by using only one
instance of this column.

2.2 Minimum Split Row Algorithm

Hajirasouliha and Raphael formulate the Minimum Split Row Problem as a way
to solve the Perfect Phylogeny Mixture problem. They give a graph theoretic
algorithm for deconvoluting a discretized input mutation matrix M . Note that
M is the same matrix as C as described above, but we will use the same notation

8



as Hajirasouliha and Raphael did for the remainder of the section. The premise
of this Minimum Split Row Algorithm relies on Split-Row Operations, which
they define as follows [6].

Definition 6 Split Row Operation Given a row r of a mutation matrix M , a
split-row operation Sr on M is the following transformation: replace r with
k new rows r̂1, ..., r̂k such that if ri=1, then there will be a 1 in at least one of
the new, split rows r̂1, ..., r̂k at position i. In other words, r is the bitwise OR
of r̂1, ..., r̂k.

Their graph theoretic algorithm for deconvoluting Mutation Matrix M is
based upon splitting rows to resolve conflicts in the graph. They define a conflict
graph as follows.

Definition 7 In Conflict Graph GM,r, a node is added for every entry of r
that is a 1, and an edge is added between vi and vj iff ci is in conflict with cj,
where ci and cj are columns in M . Similarly, GM is the conflict graph for all
rows in M and an edge is added between vi and vj iff ci is in conflict with cj.

A graph coloring is a label given to each vertex such that no two adjacent
vertices have the same label or “color.” Likewise, the chromatic number (χ(G))
lowest possible number of colors needed to color a graph. Figure 3(C-D) provide
examples of graph coloring.

In the description of their algorithm, each row is split into each row into k
new rows, where k=χ(GM,r). In their approach, they assume that any minimum
vertex coloring, a coloring that uses k colors, can be used in their algorithm.
However, graph coloring is not a trivial problem, and they do not provide infor-
mation on how to color their graphs. Therefore, we introduced two forms of the
Minimum Split Row Algorithm, both of which use different methods to color
each GM,r.

Greedy Minimum Split Row Algorithm
The Greedy Minimum Split Row Algorithm (GMSR) colors GM,r using a
greedy algorithm. To color this graph, assign the lowest available coloring
to each column in the graph. Though the GMSR is efficient, oftentimes
the GMSR will not find a minimal coloring.

Exhaustive Minimum Split Row Algorithm
The Exhaustive Minimum Split Row Algorithm (EMSR) colors GM,r ex-
haustively by obtaining all possible graph colorings for each Gm,r. This
approach is guaranteed to find a minimum vertex coloring. However, this
method does not scale well and for large n.

Hajirasouliha and Raphael note that after splitting rows based on the graph
coloring, it may be necessary to fix additional conflicts that were created. In
order to fix conflicts, they use the containment graph, defined below.
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Definition 8 The Containment Graph HM is a directed acyclic graph (DAG),
where there is an edge i → j if and only if column i contains column j. Note
that a column i contains column j if for every row k, Mk,i ≥Mk,j.

To remove conflicts, after rows are split, traverse every node in HM to find
any pair of vertices, where there is an edge vi → vj and there is a 0 at position
i but a 1 at position j. If this occurs, replace the 0 with a 1. In Figure 3 (E), I
note this shift as 0¿1.

2.2.1 Efficiency

For GMSR, the conflict graphs can be colored in O(kn), where k is the largest
of each χ(GM,r), thus the overall algorithm can still run in polynomial time.
For EMSR, the conflict graph can be colored in O(kn), where k is the largest of
each of the χ(GM,r), thus the overall algorithm will be O(mkn), thus the overall
algorithm will run in exponential time. On many instances, the size of n often
makes this method infeasible even though a minimal coloring is guaranteed.

2.2.2 Algorithm Failure

After implementation, we realized that there are when both the GMSR and
the EMSR algorithm fail to find a conflict-free solution. In the method that
Hajirasouliha and Raphael give to fix conflicts, new conflicts are created that
cannot be fixed with the method provided. For instance, a new conflict between
m4 and m5 exists in the final matrix. On simulated data, the GMSR and EMSR
failed on 18 instances, and the EMSR failed on 18 (Table 1). On real data, the
GMSR failed on real data, the GMSR failed 7 times and the EMSR failed 8
times (Table 2). Note that when I say the EMSR failed, I mean that either no
feasible solution was found or that no feasible coloring was found within a given
time because n was too large.

Though splitting rows to avoid conflicts provides a neat formulation, ulti-
mately splitting rows independently is not the best approach to this problem
because new conflicts can be created elsewhere. In Section 2.3 we formulate an
ILP to solve the PPM Problem instead of split-row operations. In doing so, we
can ensure that our solutions will be conflict free, which was proved to not be
possible in GMSR and EMSR.

2.3 PPM ILP Formulation

Below we introduce an Integer Linear Programming to solve the PPM Problem.
Given K, the number of mixes, we have that j ∈ {1, . . . ,K}, i ∈ {1, . . . ,m} and
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m1	   m2	   m3	   m4	   m5	  

s1	   1	   0	   0	   1	   0	  

s2	   1	   1	   0	   1	   1	  

s3	   0	   1	   1	   1	   1	  

s4	   0	   0	   1	   0	   1	  

m1	   m2	   m3	   m4	   m5	  

s1	   1	   0	   0	   1	   0	  

s2	   0	   1	   0	   0>1	   1	  

s2	   1	   0	   0	   1	   0	  

s3	   0	   0	   1	   0	   1	  

s3	   0	   1	   0	   1	   0>1	  

s4	   0	   0	   1	   0	   1	  

m1	   m2	   m3	   m4	   m5	  

s1	   1	   0	   0	   1	   0	  

s2	   0	   1	   0	   0>1	   1	  

s2	   1	   0	   0	   1	   0	  

s3	   0	   1	   0	   1	   0>1	  

s3	   0	   0	   1	   0	   1	  

s4	   0	   0	   1	   0	   1	  

m1	   m2	   m3	   m4	   m5	  

s1	   1	   0	   0	   1	   0	  

s2	   1	   0	   0	   1	   0	  

s2	   0	   1	   0	   0>1	   1	  

s3	   0	   1	   0	   1	   0>1	  

s3	   0	   0	   1	   0	   1	  

s4	   0	   0	   1	   0	   1	  

(B)	  Containment	  Graph	  

m1	   m2	   m3	   m4	   m5	  

(D)	  GM,r	  and	  Colorings	  
m1	  s1:	   m2	   m3	   m4	   m5	  

m1	   m2	   m3	   m4	   m5	  

m1	   m2	   m3	   m4	   m5	  

s2:	  

m1	   m2	   m3	   m4	   m5	  

m1	   m2	   m3	   m4	   m5	  

m1	   m2	   m3	   m4	   m5	  

s3:	  

s4:	  

A	  

B	  

B	  

A	  

s2:A,	  s3:	  A	  

s2:A,	  s3:	  B	   s2:	  B,	  s3:	  B	  

s2:	  B,	  s3:	  A	  

m1	   m2	   m3	   m4	   m5	  

s1	   1	   0	   0	   1	   0	  

s2	   1	   0	   0	   1	   0	  

s2	   0	   1	   0	   0>1	   1	  

s3	   0	   0	   1	   0	   1	  

s3	   0	   1	   0	   1	   0>1	  

s4	   0	   0	   1	   0	   1	  

=	  column	  contributes	  
to	  a	  conflict	  

0>1	  =	  becomes	  a	  1	  a<er	  fixing	  
conflicts	  a<er	  containment	  graph	  

(A)	   (E-‐i)	   (E-‐ii)	  

(E-‐iii)	   (E-‐iv)	  

m1	   m2	   m3	   m4	   m5	  
(C)	  Conflict	  Graph	  (GM)	  	  

Figure 3: Counter Example to both the GMSR and EMSR Algorithm
(A) Input mutation matrix M . There are conflicts with column pairs m1-m2,
m1-m5, m2-m3, m3-m4, m4-m5. (B) The Containment Graph HM . (C) The
conflict graph GM that shows all 5 conflicts in M . (D) The Conflict Graphs
and colorings for GM,s1, GM,s2, GM,s3, and GM,s4. For s2 and s3 there are
two appropriately colored graphs. (E) The split matrix M ′ that is supposed to
be conflict free. E-i to E-iv show the four possible combinations of the EMSR
algorithm. E-iv is the example that the GMSR Algorithm would produce. Using
the containment graph, two positions are changed from a 0 to 1 at which point
they generate new conflicts in m4 and m5.
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k, l ∈ {1, . . . , n}.

min
∑
j

hj (1)

∑
i

∑
j

aij = K (2)

dkl ≤ bjl − bjk + 1 ∀j, k 6= l (3)

fkl ≤ 1− bjkbjl ∀j, k < l (4)

dkl + dlk + fkl ≥ 1 ∀k < l (5)

hj ≥ aij ∀i, j (6)
n∑

k=1

2kbjk ≥
n∑

k=1

2kb(jF )k + hj ∀j > 1 (7)

cil ≤
K∑
l=1

aijbjl ∀i, j (8)

cij ≥ ailblj ∀i, j, l (9)

aij ∈ {0, 1} ∀i, j (10)

bjk ∈ {0, 1} ∀j, k (11)

cil ∈ {0, 1} ∀i, l (12)

dkl ∈ {0, 1} ∀k 6= l (13)

fkl ∈ {0, 1} ∀k < l (14)

hj ∈ {0, 1} ∀j (15)

(16)

(1) The objective function is minimizing the number of ‘mixes’ or the total
number of times rows in B are used to generate C. (2-4) These constraints
constrain solutions to only show conflict free matrices. dkl=1 if column k is
contained in column l and flk=1 if column l is contained in column k. (5) h
represents rows in B that are used to generate C. Constraint 5 ensures that
hj=1 if the jth row in B is used to generate C. (6) This constraint orders rows in
B from largest to smallest based on their binary values. (7-8) These constraints
ensure that rows in C are the “bitwise or” of rows in B. See Definition 4.
Mohammed El Kebir and I implemented the PPM ILP in C++ using CPLEX
v12.6.

2.3.1 Enumeration Mode

To run the ILP, we run in enumeration mode, where we begin with setting K
as m, the number of samples. We then run the ILP, incrementing K each time,
until we find a feasible solution. This ensures that we find the fewest number
of mixings. We are guaranteed that the number of mixings can never be less
than m, so setting K to m gives us a lower bound on the number of mixes. The
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upper bound on the number of mixings will be ||C||1. We prove both the lower
and upper bounds below.

Lower Bound

Lemma 1 The minimum number of mixings is at least m.

Proof. In Section 2.1.1, we assumed that there will be no row that contains
all zeros. Therefore, each

∑
l Cil ≥ 1∀i. Because C = A⊗B, each row in

A must contain at least one 1, or
∑

j Aij ≥ 1,∀i. Likewise, the number of
mixings, or

∑
i

∑
j Aij ≥ m.

Upper Bound

Lemma 2 The maximum number of mixings is at most ||C||1.

Proof. There is always a solution when B=In. If this is the case, every
row Ci. will be a mixture of

∑
l Cil rows of B. Therefore, the total mixings

K will be
∑

i

∑
l Cil = ||C||1.

3 Results

3.1 Simulated Data

Layla Oesper generated simulated instances using varying values for read cov-
erage, #mutations, #samples, and #clones. These were generated by first
partitioning m mutations into n clones. She then built the tree by randomly
selecting a root node, then selecting a parent node for each following clone. In
finding a usage matrix, she used rejection sampling to ensure that mutations
were included in at least two samples. The values for read counts at each sam-
ple were distributed with a Poisson distribution, where λ=the read coverage.
A Binomial distribution was used to find the number of variant alleles at each
position. Variant Allele frequencies are the fraction of read counts that are
mutated. Once the variant counts and reference counts were determined, I dis-
cretized these frequency matrices by using a threshold of .01. Popic et al. use
a the same threshold in LICHeE [14].

3.1.1 Comparisons

I ran both the GMSR and PPM on 90 instances. Table 1 provides a summary of
the results of both GMSR and PPM. For each simulated instance, I compared
the T solution with the reference solution using the following metrics: (1) The
average error between the inferred (Ã) and T (A) usage matrices ( 1

mrefmsol
||Ã−

A||1), where mref is the number of samples in C and msol is the number of
rows in B. (2) The accuracy (fraction) of the clustered pairs that were correctly
determined. (3) The accuracy (fraction) of ancestral relationships that were
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correctly determined. (4) The accuracy (fraction) of incomparable relationships
that were correctly determined. Two clones are incomparable if they are on
separate branches in they phylogenetic tree T [10]. Figure 4 provides an example
of calculating error in usage and the accuracy in ancestral relationships.

Figure 5 shows violin plots of CITUP, PhyloSub, PPM, and GMSR. To
generate these plots, I took the best solution for each instance. To find the best
solution for a given instance, I first sorted all solutions in a solution set based on
each metric separately. I then took the sum of all 4 ranks and took the solution
that had the lowest rank. These 90 solutions are those included in the violin
plot distributions in Figure 5.

In each metric, PhyloSub and CITUP outperform better than PPM and
GMSR, both of which use discretized. Though PhyloSub and CITUP use very
different approaches, they both do not use discretized input matrices. In order
to better gauge why PPM and GSRM, both of which use discretized input
matrices, perform worse, we observe the actual tree topology in the section
below.

3.1.2 Visualizing Trees

For each simulation, there is only one solution for GMSR. However, for PPM
there are multiple solutions for each tumor. Let Kmethod be the #mixings
a particular method took. In order to pick an tumor of the tree to analyze
further, we selected an tumor such that the Kref was greater than the KPPM

and such that the KPPM was greater than KGMSR. There were three patients
when this was the case. For the majority of tumors, Kref was greater than
KPPM but KPPM was the same as KGMSR (Table 1).

We select by finding the best solution. To do this, we rank each solution
based on each of the four metrics. We then use the solution that had the lowest
sum of the four ranks. In this tumor, there were six solutions. The median
number of solutions for each instance is 4 and generally there are a small number
of solutions (Figure 6). For each solution set, there is little variation between
solution values (Figure 7). To obtain Figure 7, we took the difference between
the largest and smallest values for each of the 90 tumors. We then made the
violin plot using to look at the distribution of these 90 values. Because there
is little variation, each inferred tree solutions for a given instance would likely
present a similar outcome, thus it is likely that each of the solutions for a given
tumor will yield a similar tree.

In each instance of the tree, samples from C are connected with dotted lines
to leaves of the tree. These leaf nodes are the leaves in B. These doted lines
represent mixings. If an internal node is also a row in in B, it is brought down
with a second dotted line to be placed in-line with leaf nodes. For example,
in Figure 9, there is one parent node, ‘01001001’ that is brought down in-line
with the leaves. In this patient (Figures 8, 9, and 10), just by observation, the
GMSR and the PPM solution are far more similar to each other than they are
to the reference solution. Kref is also much larger than KPPM and KGMSR.
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Figure 4: Comparisons Between Reference and Inferred Solution (a) (1)
The original clonal evolution. The colored boxes show how samples are mixed.
(2) The clonal evolution in our inferred solution. This is the same as the true
solution, except C is mutated earlier. (3) The reference usage and basis matrices.
(4) The inferred usage and basis matrices. (b) (5) An example describing how
to calculate the error in usage. First, we must find find the difference in all
clustered mutations sets. This is simple in this case because the clusters are all
the same though when n is larger this is less trivial. Then we must find the
minimal one-to-one correspondence and group equate these pairs of mutation
clusters together. We then find the error by calculating 1

mrefmsol
||Ã − A||1.

(6) To find the accuracy in the ancestral relationships, we find the # correct
relationships then divide by the total number of pairs. Note: We leave out an
example of calculating accuracy in clustering and incomparable relationships
because the process is similar to finding the accuracy in ancestral relationships.
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Figure 5: Comparison Between PhyloSub, CITUP, PPM, and GMSR
For each metric, both PhyloSub and CITUP outperform both PPM and GMSR.
Though CITUP and PhyloSub use different approaches, they do not use dis-
cretized input matrices. PPM and GMSR discretize the input matrices initially,
thus information is lost initially.
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Figure 6: Distribution of the Number of Solutions for Simulated Data
The median is 4, and the vast majority of simulated instances generate a small
number of solutions. Note: There are additional instances at 144, 198, 594 that
are not shown.

3.2 Real Data

I also ran GMSR and PPM on three other data sets: chronic lymphcytic
leukemia (CLL) [13], lung adenocarcinoma [16], and a renal cell carcinoma [3]
tumors. While CLL uses data sampled from multiple time points, the other two
sets use data in which tumors were sampled from multiple sections. For 14 of
the 22 patients, there was both whole-genome or whole-exome sequencing data
as well as targeted deep sequencing data available.

Note: PPM did not finish running for patient 4990 because both the deep
sequencing and whole-exome sequencing data both took over our time limit,1
day, to run. The number of clones after mutations were clustered, n′, was 19
(deep) and 24 (whole), both of which are larger than any other n′ of other
patients (Table 2).

4 Discussion

In the generated trees, the tree obtained by both ppm and GMSR look signifi-
cantly different (Figure 8, 9, 10). One reason there is such a striking distinction
between the reference and other two solutions is that the number of mixes in the
reference is nearly double that of the other two solutions. Perhaps, minimizing
the usage or obtaining a basis matrix with few rows is not the right approach as
the reference solution contains samples that contain more portions of the tumor.

When using discretized matrices, there is certain information that cannot be
uncovered. For instance, in Figure 12 (C), columns C and D are identical even
though they contain different mutations sets. In both methods using discretized
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Figure 7: The Difference Between the Maximum and Minimum Values
For Each Set of Solutions. For each metric, there is relatively little variation
between each solution set, especially in b-d, where there is almost no variation.
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Figure 8: Reference Solution The Reference Solution with Coverage=100,
Samples=5, Mutations=100, Clones=10, Patient=7. There are 16 mixes.
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Figure 9: PPM Solution The Reference Solution with Coverage=100, Sam-
ples=5, Mutations=100, Clones=10, Patient=7. There are 10 mixes.
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Figure 10: Split Rows Solution The Reference Solution with Coverage=100,
Samples=5, Mutations=100, Clones=10, Patient=7. There are 11 mixes.
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Figure 11: Clonal Trees Inferred for Patient CLL077 There were 16 initial
mutations but when clustered there remained 2 clones.
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Figure 12: Information in Discretized Matrices Cannot Always Be Un-
covered. (A) An Example of a Tumor Evolution. (B) The original variant allele
frequency data. (C)Though (A,C) and (A,C,D) are on separate branches be-
cause the matrix is discretized, columns C and D are identical thus are collapsed
onto a single column or mutation cluster. (D) The actual perfect phylogeny ma-
trix representing T. Using PPM, GMSR, or EMSR, the actual representation
could never be obtained. However, in looking at the recency data, because
mutation C has a higher frequency than D, it would have occurred first.

input matrices, mutations C and D would be clustered into the same mutation
set. This occurs when a clone is carried into the next generation as is the case
with clone {A,C}. However, in this case, if we use the original frequency data,
mutations C and D occur in sample 1 in different frequencies. Because there is
a larger frequency of mutation C occurring, it is present in more cells, and thus
occurred before mutation D.

4.1 AncesTree

The early work on Perfect Phylogeny Mixtures, the poor performance and coun-
terexamples of GMSR and EMRS, and the loss of information in discretized in
put matrices led to the formulation and implementation of of AncesTree. In
AncesTree, instead of using a discretized mutation matrix M , we use F , m× n
frequency matrix, where F = [fpi] and fpi is the observed variant allele fre-
quency. We provide a definition for the Variant Allele Frequency Factorization
Problem (VAFFP) in which given an observed Variant Allele Frequency (VAF)
matrix F, they use a combinatorial approach and an Integer Linear Program to
determine a usage matrix U and an n-clonal matrix B that represents a tree T ,
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where each edge is labeled with exactly one mutation from [n] and no mutation
appears more than once.

The crux of the VAFFP is similar to the PPM problem definition (Section
2.1) in that in VAFFP because each sample is a mixture of clones in T with
proportions defined in U , the observed frequency matrix can be obtained as:
F= 1

2UB. The coefficient of 1
2 follows from all mutations being heterozygous

because of the infinite sites assumption. This equation is essentially the PPM
equation of A⊗B = C, which was a similar factorization problem.

In addition to using a frequency matrix and not a mutation matrix, El Kebir
et al. also account for errors that are common in real sequencing data. First,
they cluster mutations that likely occurred together. Second, they restrict the
ancestry graph, which is a directed acyclic graph (DAG) in which all ancestral
relationships between clusters are noted, to contain ancestry edges with high
confidence. The VAFFP is unique in that clustering is based on uncertainty in
ancestry relationships, not only on similar variant allele frequencies or collapsing
identical columns in M . This approach can therefore distinguish variant allele
frequencies that may be similar but are actually in different clones. [2]

Figure 13 shows violin plots of comparisons between the inferred and ref-
erence solutions of PhyloSub, CITUP, and AncesTree the same simulated in-
stances as described in Section 3.1. AncesTree outperforms CITUP and Phylo-
Sub on all 4 metrics. Though not compared directly with AncesTree because An-
cesTree only uses data with mutations that occurred with high confidence, An-
cesTree outperformed both CITUP and PhyloSub, so would outperform GMSR
and PPM as well.

In this work, we first formulate the Perfect Phylogeny Mixture Problem
(PPM). We then provide implementation details for the GMSR, EMSR, and
PPM ILP formulation. After implementing both, we realized that the GMSR
and EMSR fail on certain patients and that the GMSR and PPM perform worse
that PhyloSub and CITUP. This early work and the formulation of PPM and
GMSR as a facotorization problem served as the basis for AncesTree, which
uses a similar factorization approach though does not discretize input matrices.
AncesTree also accounts for sequencing errors and clusters mutations based on
ancestral relationships and can therefore account for mutations that may be in
different clones but have similar variant allele frequencies.
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Figure 13: Comparison of AncesTree, PhyloSub, and CITUP (A-B,D)
The Ancestral, Clustered, and U metrics are described in Section 3.1.1. (C)
The Error in the inferred and reference frequency matrix. [2] This is the same
violin plot in the published version of AncesTree.

5 Appendix

instance patient # m n n′ Kref KPPM KGMSR EMSR
Cov 1000 Samples 4 0 4 100 7 13 7 F R
Cov 1000 Samples 4 1 4 100 8 13 8 8 R
Cov 1000 Samples 4 2 4 100 7 13 10 10 R
Cov 1000 Samples 4 3 4 100 5 12 6 6 R
Cov 1000 Samples 4 4 4 100 7 13 8 8 R
Cov 1000 Samples 4 5 4 100 7 14 6 6 R
Cov 1000 Samples 4 6 4 100 8 13 10 10 R
Cov 1000 Samples 4 7 4 100 7 14 7 7 R
Cov 1000 Samples 4 8 4 100 7 15 8 8 R
Cov 1000 Samples 4 9 4 100 4 13 6 6 R

Cov 1000 Samples 5 0 5 100 8 18 10 10 R
Cov 1000 Samples 5 1 5 100 7 17 12 12 R
Cov 1000 Samples 5 2 5 100 8 13 10 10 R
Cov 1000 Samples 5 3 5 100 8 19 11 11 R
Cov 1000 Samples 5 4 5 100 8 15 9 9 R
Cov 1000 Samples 5 5 5 100 8 17 8 F R
Cov 1000 Samples 5 6 5 100 10 18 12 12 R
Cov 1000 Samples 5 7 5 100 6 16 7 7 R
Cov 1000 Samples 5 8 5 100 5 15 6 6 R
Cov 1000 Samples 5 9 5 100 8 17 9 9 R

Cov 1000 Samples 6 0 6 100 9 19 14 14 R
Cov 1000 Samples 6 1 6 100 8 18 9 9 R
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Cov 1000 Samples 6 2 6 100 8 15 7 7 R
Cov 1000 Samples 6 3 6 100 7 21 13 15 R
Cov 1000 Samples 6 4 6 100 8 19 12 12 R
Cov 1000 Samples 6 5 6 100 7 19 10 10 R
Cov 1000 Samples 6 6 6 100 9 19 14 F R
Cov 1000 Samples 6 7 6 100 11 19 17 17 F
Cov 1000 Samples 6 8 6 100 8 18 10 10 R
Cov 1000 Samples 6 9 6 100 6 14 9 9 R

Cov 100 Samples 4 0 4 100 7 13 7 7 R
Cov 100 Samples 4 1 4 100 8 13 8 8 R
Cov 100 Samples 4 2 4 100 8 13 8 8 R
Cov 100 Samples 4 3 4 100 9 12 9 F R
Cov 100 Samples 4 4 4 100 8 13 9 F R
Cov 100 Samples 4 5 4 100 8 14 8 8 R
Cov 100 Samples 4 6 4 100 10 13 10 10 R
Cov 100 Samples 4 7 4 100 8 14 7 7 R
Cov 100 Samples 4 8 4 100 9 15 10 10 R
Cov 100 Samples 4 9 4 100 4 13 5 5 R

Cov 100 Samples 5 0 5 100 10 18 14 14 F
Cov 100 Samples 5 1 5 100 8 17 12 F R
Cov 100 Samples 5 2 5 100 10 13 10 10 R
Cov 100 Samples 5 3 5 100 9 19 11 11 R
Cov 100 Samples 5 4 5 100 10 15 11 11 R
Cov 100 Samples 5 5 5 100 11 17 11 11 R
Cov 100 Samples 5 6 5 100 17 18 14 F F
Cov 100 Samples 5 7 5 100 8 16 10 11 R
Cov 100 Samples 5 8 5 100 8 15 7 7 R
Cov 100 Samples 5 9 5 100 10 17 9 9 R

Cov 100 Samples 6 0 6 100 12 19 14 14 R
Cov 100 Samples 6 1 6 100 8 18 9 9 R
Cov 100 Samples 6 2 6 100 11 15 11 11 R
Cov 100 Samples 6 3 6 100 11 21 17 F F
Cov 100 Samples 6 4 6 100 8 19 12 12 R
Cov 100 Samples 6 5 6 100 9 19 10 10 R
Cov 100 Samples 6 6 6 100 12 19 16 F F
Cov 100 Samples 6 7 6 100 14 19 17 17 F
Cov 100 Samples 6 8 6 100 10 18 12 12 F
Cov 100 Samples 6 9 6 100 7 14 9 9 R

Cov 50 Samples 4 0 4 100 8 13 7 7 R
Cov 50 Samples 4 1 4 100 9 13 9 9 R
Cov 50 Samples 4 2 4 100 8 13 8 8 R
Cov 50 Samples 4 3 4 100 11 12 10 F F
Cov 50 Samples 4 4 4 100 11 13 11 F F
Cov 50 Samples 4 5 4 100 9 14 8 8 R
Cov 50 Samples 4 6 4 100 11 13 10 10 R
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Cov 50 Samples 4 7 4 100 9 14 8 F R
Cov 50 Samples 4 8 4 100 8 15 8 8 R
Cov 50 Samples 4 9 4 100 6 13 6 6 R

Cov 50 Samples 5 0 5 100 12 18 14 14 F
Cov 50 Samples 5 1 5 100 11 17 13 13 F
Cov 50 Samples 5 2 5 100 10 13 9 9 R
Cov 50 Samples 5 3 5 100 14 19 14 15 F
Cov 50 Samples 5 4 5 100 12 15 14 F F
Cov 50 Samples 5 5 5 100 12 17 11 F R
Cov 50 Samples 5 6 5 100 18 18 14 F F
Cov 50 Samples 5 7 5 100 12 16 13 13 F
Cov 50 Samples 5 8 5 100 7 15 7 7 R
Cov 50 Samples 5 9 5 100 10 17 9 9 R

Cov 50 Samples 6 0 6 100 11 19 14 14 R
Cov 50 Samples 6 1 6 100 10 18 11 12 R
Cov 50 Samples 6 2 6 100 10 15 10 10 R
Cov 50 Samples 6 3 6 100 12 21 20 F F
Cov 50 Samples 6 4 6 100 11 19 12 12 R
Cov 50 Samples 6 5 6 100 10 19 10 10 R
Cov 50 Samples 6 6 6 100 12 19 16 F R
Cov 50 Samples 6 7 6 100 14 19 16 F F
Cov 50 Samples 6 8 6 100 10 18 10 12 R
Cov 50 Samples 6 9 6 100 9 14 9 9 F

Table 1: Simulated Data Results This table describes the number of samples,
mutations, clustered mutations, and mixes for the reference, PPM, and GMSR
solutions. If a solution was not found by GMSR, an F is listed. The EMSR
section has two categories, either an R (“runs”) if a minimal coloring was found
and the algorithm does not fail. If not, an F (“fails”) is listed.

patient # m n n′ KPPM KGMSR EMSR
EV003 8 40 10 9 9 R
EV005 7 64 9 7 7 R
EV006 9 57 9 9 9 R
EV007 8 56 14 17 17 F
RMH002 5 48 11 9 9 R
RMH004 6 126 15 14 14 F
RMH008 8 71 12 12 12 R
RK26 11 62 15 13 13 R

CLL003 deep 5 20 3 6 6 R
CLL003 whole 5 30 5 8 8 R
CLL006 deep 5 10 1 5 5 R
CLL006 whole 5 16 2 5 5 R
CLL077 deep 5 16 2 5 5 R
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CLL077 whole 5 20 6 8 8 R

270 deep 5 396 16 14 F F
270 whole 5 396 16 13 13 F
283 deep 5 29 5 8 8 R
283 whole 5 29 5 5 5 R
292 deep 3 61 5 4 4 R
292 whole 3 61 5 4 4 R
317 deep 4 3890 10 7 7 R
317 whole 4 3890 12 12 12 F
324 deep 5 438 15 14 15 F
324 whole 5 438 14 13 15 F
330 deep 4 853 12 10 F R
330 whole 4 853 15 13 F F
339 deep 4 124 10 8 8 R
339 whole 4 124 10 8 8 R
356 deep 4 112 10 9 9 R
356 whole 4 112 10 9 9 R
472 deep 5 135 14 14 F F
472 whole 5 135 16 13 F F
499 deep 4 243 7 5 5 R
499 whole 4 243 9 9 10 R
4990 deep 5 702 19 X F F
4990 whole 5 702 24 X F F

Table 2: Real Data Results The sections first describe the renal cell carci-
noma Data, then the chronic lymphcytic leukemia (CLL) data, then the lung
adenocarcinoma data. This table describes the number of samples, mutations,
clustered mutations, and mixes for the reference, PPM, and GMSR solutions.
If a solution was not found by GMSR, an F is listed. The EMSR section has
two categories, either an R (“runs”) if a minimal coloring was found and the
algorithm does not fail. If not, an F (“fails”) is listed.
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