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Abstract 

Complex disorders and diseases, such as cancer and heart disease, have 

multifactorial etiologies with genetic, physiological, and environmental 

factors. Understanding their interactions enables effective research, 

diagnosis, and treatment. Pathway analysis searches for sets of genes 

differentially expressed in certain phenotypes, and this genetic context 

provides a foothold for further work. This study extended the network-

based algorithm HotNet2 to find gene clusters involved in neuropsychiatric 

diseases. Autism gene expression data from the Morrow Lab at Brown 

University revealed pathways involved in neurotransmitter release by 

soluble N-ethylmaleimide sensitive factor attachment protein receptors 

(SNARE) and regulation of the inhibitory neurotransmitter γ-aminobutyic 

acid (GABA). Analysis of a bipolar disorder genome-wide association study 

from the Wellcome Trust Case Control Consortium verified association of 

cell adhesion genes involved in synaptic development. The extension of 

HotNet to gene expression and single-nucleotide polymorphism data 

opens the door to a wide range of future computational studies and meta-

analyses based on complementary biological experiments. This study’s 

approach offers mechanistic understanding and logical treatment targets 

for complex disorders. 



Introduction 

 

Over the past few decades, studies across diverse disciplines have revealed the 

multifactorial nature of complex disorders like cardiovascular disease, Alzheimer’s, and 

cancer [1,2]. At the genetic level, the complexity of biochemical interactions and the 

variability of driver abnormalities across patients make research, diagnosis, and 

treatment incredibly difficult [1,3]. Individual mutations in such diseases often have low 

penetrance and account for miniscule fractions of the observed phenotype. For example, 

model selection for diagnostic classification must account for the relative importance and 

interactions of various risk factors. Without knowing which of a host of potential causes 

is responsible for the disease of interest, targeted treatment remains elusive. In the worst 

case, only epiphenomena are treated. 

 

The polygenic nature of complex disorders naturally leads to modelling them as 

diseases of pathways. Moreover, both developmental effects of genetic mutations and 

disease-stage abnormalities in gene expression may play a role, as is found in 

neurological diseases including autism and schizophrenia [4,5]. Rather than targeting 

single genes for analysis, it is crucial to produce a more comprehensive model 

aggregating important genes into biochemical pathways. For example, malfunction in a 

cell cycle pathway may be universally critical for tumor progression while the exact genes 

mutated within that pathway may vary from patient to patient. Identifying the pathway 

thus allows a diagnosis accounting for relative interactions and relevance of different 

factors. 

 

Considerable effort in computational biology has been devoted to methods for 

extracting relevant pathways associated with a phenotype. Rather than identifying all 

genes associated with a disease (of which there may be many), these tools seek to identify 

clusters of genes which are related to each other and to the disease. This approach has 

several important advantages in the context of complex disorders. First, it reduces the 

number of genes that must be studied in subsequent in vivo and in vitro studies. Such 

methods may also account for the low penetrance and prevalence of mutations; while a 

single gene may not be mutated in all patients, a group of interacting genes may together 

be significantly associated with the phenotype of interest.  



Most importantly, even for monogenic disorders, identification of a causal 

mutation is insufficient to diagnose and treat patients. Knowledge of the function of that 

segment of DNA in the normal and diseased states is required. The effect of a gene 

mutation on its protein product and interactions with other genes/proteins provide 

logical targets for treatment. Variation in gene-protein interactions may underlie the 

prevalence of patients non-responsive to therapies to which others respond well. 

Pathway-level analysis offers new insights into these subtleties relevant to personalized 

medicine. 

 

Several algorithms already exist to identify clusters of relevant genes. For example, 

Dendrix [6] focuses on the observation that it is unlikely for two genes in the same 

pathway to be mutated in a tumor cell. This is potentially due to either a lack of selective 

advantage for the second mutation or synthetic lethality caused by severe dysfunction. 

However, this method ignores known biological information that could improve both 

selectivity and sensitivity in pathway prediction. In contrast, other algorithms such as 

HotNet [1] and MEMo [7] find subsets of a protein interaction network that are frequently 

mutated, though this dependence on prior biological knowledge can reduce the power 

of both methods to make new discoveries. Specifically, HotNet identifies subnetworks 

within an existing gene interaction network (based on whole genome and biochemical 

studies) that are enriched with somatic mutations, originally targeted toward cancer 

research [1,8]. However, enrichment with other types of abnormalities, such as altered 

expression of genes or common variants, may also be used to target key subnetworks and 

pathways in various diseases. 

 

For diseases such as autism, gene expression studies can extract abnormal 

transcription and translation at the current disease stage, which may have effects beyond 

the genome itself. Genome-wide association studies (GWAS) have the advantage of wide, 

relatively unbiased coverage, but it can be difficult to interpret the mechanistic effect of 

a single-nucleotide polymorphism (SNP) in a gene without knowledge of the protein’s 

structure and function. Furthermore, special care must be taken when converting this 

SNP data to gene level data to avoid introducing too much bias from gene length or gene-

wise SNP counts. To this end, we seek not only to generalize HotNet for application to 

these data types but also to other disorders beyond cancer. Here, we focus on two 

neuropsychiatric disorders, autism and bipolar disorder. In autism, multiple mutations 



can affect neurodevelopment to converge upon similar phenotypes, while none of them 

account for a large fraction of total incidence [9,10]. On the other hand, bipolar disorder 

is well known as a highly multifactorial disease, dependent on environmental factors 

such as early life stress as well as molecular risk factors [11,12]. Subtle differences 

between individuals with similar phenotypes makes them difficult to treat and suitable 

for network-based analysis. 

 

 

Methods 

 

 HotNet2, the current version of HotNet, was used for all tests, and differs from the 

original algorithm in several ways [8,13]. It uses a random walk with restart to model 

diffusion of heat, or gene scores, through the network, and filters the graph by an 

automatic threshold selection. Rather than selecting connected components in an 

undirected influence graph, HotNet2 chooses identifies strongly connected components 

in a directed influence graph. The primary input to HotNet2 consists of a list of genes and 

gene scores, as well as a network, represented by an influence matrix describing 

interaction levels between genes. 

 

Input Data and Influence Matrix 

 

Two sets of input data were used for network-based analysis. For both sets, the 

used network was derived from iRefIndex, an index of protein interactions compiled 

from several primary interaction databases [14]. The resulting iRef influence matrix, 

represented as a sparse square matrix in MATLAB, represented a network of 12129 genes 

by defining an influence score for each gene pair based on iRefIndex’s gene interactions 

and a heat diffusion process. 

 

Autism gene expression data was provided by Dr. Eric Morrow, a collaborator at 

Brown University in the Department of Molecular Biology, Cell Biology, and 

Biochemistry. These data consisted of fold changes in expression from healthy control 

subjects to autism patients for 9935 genes. Corresponding p-values were based on the 

magnitude of these fold change and gene-specific variability of expression. Pre-

processing to remove duplicates and unmeasured genes produced 8718 genes that were 



assigned p-values for this study. Of these, 6605 genes were contained in the iRef network. 

For this data set, only the 1445 genes with p-values less than 0.05 were used for input. 

 

Bipolar disorder SNP data was taken from a GWAS from the Wellcome Trust Case 

Control Consortium (WTCCC), which analyzed a diverse array of disorders in the United 

Kingdom [15]. This data was transformed via PLINK from .map and .ped files to 

asymptotic p-values for each SNP using an allele-based chi-squared association test [16]. 

In total, 490032 SNP markers were measured, from which gene scores for 13098 genes 

were generated (see below for details). Of these, 8484 genes with scores were contained 

in the iRef network, all of which were input into HotNet2. 

 

Choice of Gene Scores 

 

 Since larger scores are assumed by HotNet2 to be more important, the p-values for 

both sets of data had to be inverted. Thus, the score used for analysis was − log10(𝑝), 

which produced an appropriate distribution of scores to differentiate genes without 

extreme variance. While the p-values from the autism gene expression data could be used 

without further processing, the SNP p-values had to be converted to gene-level p-values 

for further analysis. 

  

 The naïve method of using the minimum p-value of all SNPs in a gene (minSNP) 

would be the simplest approach, but it has several issues. Most importantly, this score 

would not take into account various differences between genes that must be controlled; 

for instance, a gene with 100 SNPs would have a much larger chance of seeming related 

to the disease than a gene with only 1 SNP in its coding region. To address this issue, we 

use a permutation test to derive empirical gene-level p-values, denoted permSNP. The 

disease phenotypes were permuted among all subjects randomly for 10,000 repetitions, 

and the empirical p-value was calculated by the fraction of permutations in which the 

minSNP p-value for a gene was less than its true minSNP p-value [17]. Note that as with 

any such permutation procedure, the minimum possible empirical p-value is limited by 

the number of repetitions. Furthermore, while this method controls somewhat for 

linearly dependent gene structure, gene length, and the number of SNPs, it neither 

resolves these issues entirely nor accounts for other potential issues, such as ancestry-

dependent variation. 



 As shown in Figure 1, the distribution of minSNP p-values has an excessive 

concentration below 0.05, composing over 35% of the genes. However, this is somewhat 

fixed by the permSNP procedure, which reduces the number of p-values below 0.05 and 

flattens the curve, distributing more genes across higher p-values.  

 

Figure 1: Histograms of p-values for the 

minSNP and permSNP methods. For both 

methods, p-values of 8484 genes were 

counted. The red and blue bars represent 

the minSNP and permSNP p-values 

respectively. The permSNP procedure 

generated less than half as many genes 

with p-values below 0.05 as did the 

minSNP procedure. Furthermore, these 

were redistributed in a fairly uniform 

manner across the higher bins, leaving all 

20 bins with at least 2% of the total mass. 

 

Although some genes contained hundreds of SNPs, over 90% of genes contained 

at most 34 SNPs. As shown in Figure 2, the high concentration of p-values below 0.05 in 

the minSNP method is largely due to genes with high numbers of SNPs. In contrast, the 

permSNP procedure yields a much more even distribution of p-values, reducing the 

dependency of the p-value on the number of SNPs.  

 

Interestingly, there is a dramatic increase in variance in the p-values of genes with 

high SNP counts, which may be caused by a few different factors. Since many genes are 

largely unaffected by the change in procedure while others are greatly impacted, the 

variance may increase as a function of the greater variability in bias among genes with 

more SNPs. Alternatively, there may truly be more variation among genes with more 

SNPs, since each potential mutation may theoretically has a distinct structural or 

functional effect, even if many are silent with respect to phenotype. 

 



Figure 2: Dependence of p-values on the number of SNPs using the minSNP and permSNP 

procedures. (A) Red and blue points indicate the mean p-value for genes with a given number of 

SNPs using the minSNP and permSNP methods respectively. The tendency for high-SNP genes 

to have low p-values with the minSNP procedure is largely addressed by the permSNP method. 

(B) Points indicate the mean change in p-value from the minSNP to the permSNP method.  In 

both of the plots, the error bars are drawn to indicate standard error of the mean. 

 

Furthermore, as Figure 2B demonstrates, genes with more SNPs were adjusted 

more strongly, thus verifying that the permSNP procedure corrects the skewed genes 

preferentially. While genes containing a single SNP were barely adjusted, genes 

containing at least 10 SNPs showed an increase in p-value of approximately 0.25 on 

average. Thus, in the results below, the permSNP method was used to generate the gene-

level p-values which were converted to gene scores for the WTCCC data. 

  

Gene List Filtering 

 

A key decision for the network permutation test performed by HotNet2 is the 

choice of a null hypothesis. A common distribution of p-values may be assumed across 

all genes in the network, all genes measured, or genes that were both measured and in 

the network. The last is the most conservative option, but it would be the most correct if 

genes in the network are more likely to have p-values below 0.05 than genes not in the 

network, within a given study. This is likely to be the case due to ascertainment bias in 

genetic research; often, genes will be added to interaction networks due to published 

findings, and genes of interest are more likely to be researched. Therefore, it is possible 
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that genes in such compiled networks are more likely to have a high mutation rate or 

expression fluctuation. Low p-values below 0.05 indicate significant fold changes for the 

autism study; in the bipolar study, they represent association between the disease and 

SNPs in the gene. 

 

To address the issue of ascertainment bias, we examined the p-values from the 

autism gene expression data and minSNP p-values computed from the bipolar GWAS 

data. First, we plotted cumulative distribution functions of the p-values for genes inside 

and outside the iRef network for a simple visual indication of such an effect (Figure 3).  

 

     
Figure 3: CDFs for p-values of genes inside and outside the iRef network. For the autism (A) and 

bipolar minSNP (B) p-values, genes inside the network seem to have lower p-values than those 

outside of them. 

 

Next, we performed a 2-proportion z-test for each data set to quantify whether the 

number of significant genes for which 𝑝(𝑔) ≤ 0.05 differs between measured genes in 

and not in the network. We define the following variables: 

 

Let 𝐻 be the set of genes whose p-values were measured. 

Let 𝑁 be the set of genes in the iRef network, and let 𝑂 = 𝐻 \ 𝑁 and 𝐼 = 𝐻 ∩ 𝑁 be the sets 

of measured genes outside and inside the network, respectively.  

For any of these sets of genes, define 𝑛𝐴 = |𝐴| as the size of the set 𝐴. 

Further define 𝑥𝐴 = |{𝑔 ∈  𝐴 | 𝑝(𝑔) ≤ 0.05}| as the size of the set of significant genes in 𝐴. 
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Table 1: Z-test statistics to quantify differences in genes inside and outside the iRef Network 

 𝑂 =  𝐻 \ 𝑁 𝐼 =  𝐻 ∩ 𝑁 2-proportion z-test 

Autism 𝑥𝑂

𝑛𝑂
=

360

2113
= 17.0% 

𝑥𝐼

𝑛𝐼
=

1445

6605
= 21.9% 

𝑝 = 8.79 ∗ 10−7 

Bipolar minSNP 𝑥𝑂

𝑛𝑂
=

1533

4614
= 33.2% 

𝑥𝐼

𝑛𝐼
=

3099

8484
= 36.5% 

𝑝 = 7.96 ∗ 10−5 

Bipolar permSNP 𝑥𝑂

𝑛𝑂
=

763

4614
= 16.8% 

𝑥𝐼

𝑛𝐼
=

1424

8484
= 16.5% 

𝑝 = 0.358 

 

For both the autism and bipolar minSNP p-values, genes in the network are 

statistically more likely to be significant, though the absolute difference in proportion is 

only about 4% (Table 1). Based on the above findings, we present results using the most 

conservative option, permuting within only genes that were both measured and inside 

the network. Interestingly, the permSNP procedure seems to correct this issue in addition 

to removing falsely significant p-values below 0.05. This correction may have been due 

to a higher proportion of scored genes with at least 10 SNPs in the iRef network (31.1) 

than outside it (26.5%); recall that genes with more SNPs were shown to have much lower 

p-values on average with the minSNP procedure compared to the permSNP procedure. 

Thus, for the autism data but not the bipolar data, a filter to genes with 𝑝(𝑔) ≤ 0.05 was 

used to both reduce noise and provide a further correcting step; since scores were then 

permuted among high scoring genes, high scores could not be spread farther throughout 

the network, which would have falsely increased the significance of results. 

 

 

Results and Discussion 

 

As discussed above, the following results were produced using HotNet2, using a 

gene score conversion of conversion of − log10(𝑝). Both the autism gene expression data 

set and the WTCCC bipolar data were analyzed with the iRef network. For both data sets, 

the resulting gene components output by HotNet2 were tested against the pathway 

database of the Kyoto Encyclopedia of Genes and Genomes (KEGG) [18,19]. Enrichment 

was calculated by modeling the presence of pathway genes in the components with a 

hypergeometric distribution. 

  

 



Autism Gene Expression Network Analysis 

 

After analyzing the genes scores from the autism data in HotNet2, 2 clusters of at 

least 6 genes were found (Figure 4A,B). Based on HotNet2 tests permuting the gene scores 

across the tested genes, the probability of finding 2 clusters was 0.08 (Figure 4C). These 

two clusters were tested for enrichment in the KEGG pathway database [19]. Figure 4A 

contains genes involved in mediation of vesicle transport by soluble N-ethylmaleimide 

sensitive factor attachment protein receptors, or SNARE proteins (p = 1.26 * 10-6). Figure 

4B contains genes involved in taurine and hypotaurine metabolism (p = 2.18 * 10-3). 

Enrichment p-values are based on a null hypergeometric distribution over genes in the 

HotNet2 components and KEGG pathways, and Bonferroni-corrected for the number of 

pathways and components tested. Each of these pathways will be examined in turn, 

based on research of existing literature regarding the genes and disorders. For cited 

articles regarding autism spectrum disorder (ASD) in which genes were shown to be up-

regulated or down-regulated in disease states, fold changes (increase or decrease in 

expression) were in the same direction as found in this study. 

 

 

 

Figure 4: HotNet2 results for the autism gene 

expression data. (A) and (B) show clusters of 

genes in the SNARE and taurine pathways 

respectively. Color depicts gene scores. (C) 

shows p-values for the significance of clusters 

of a given size, based on expected numbers of 

clusters from permutation tests of gene scores. 

 

 

Size Expected Actual p-value 

2 65.51 69 0.16 

3 16.47 15 0.81 

4 2.87 4 0.30 

5 1.23 2 0.35 

6 0.49 2 0.08 

7 0.24 1 0.23 

8 0.07 0 1.00 

A 

B 

C 



SNARE Interactions in Vesicular Transport 

 

SNARE machinery is crucial for neurotransmitter release at the chemical synapses 

of the nervous system. Indeed, while axonopathy appears in various disorders, synaptic 

dysfunction is a quite common mechanism for neurological toxins and diseases. In figure 

4A, the syntaxin genes STX2, STX3, and STX6 are shown. The proteins coded by these 

genes are associated with Munc, varieties of which bind SNAP-23 and SNAP-25 [20,21]. 

Synaptobrevin, coded by VAMP8, also interacts with the SNAPs to catalyze membrane 

fusion [19,22]. These complexes are critical for synaptic function; cleavage of syntaxins 

by botulinum toxin can halt neurotransmitter release, and dysfunction of this pathway 

has been associated with hyperactivity in ASD [23,24]. Excessive vesicle release may have 

varied effects based on the specific synapse. Abnormal regulation of post-synaptic 

receptor density as well as vesicle depletion are both potential results of such 

dysfunction. 

 

Taurine and Metabolism and Ubiquitin-Mediated Proteolysis 

 

Evidence for involvement of these pathways in autism is less clear, but there is still 

reason to suggest that these may be worthwhile areas of inquiry. Limited evidence has 

been found for taurine deficiency in ASD; in Pangborn, 2002, 62% of autistic children 

were deficient in taurine by urine tests [25]. Furthermore, taurine has been shown to 

mediate activity of the most important inhibitory neurotransmitter, γ-aminobutyric acid 

(GABA) [26,27].  

 

With respect to this study’s results, GAD1, GAD2, and ARFGAP1 were all 

suppressed, with p-values within 0.01 ± 0.002. GAD1 and GAD2 are glutamate 

decarboxylases which produce GABA from glutamate; decreased levels of these enzymes 

could disturb GABAergic circuits, impact GABA immunoreactivity, and have been found 

in cerebellar dentate nuclei of autism patients [28,29]. Along with Sec24, ARFGAP1 may 

mediate placement of a GABA transporter, GAT1, on axon terminals, thus affecting axon-

dendrite connections [30]. In addition, ZDHH17 is a zinc finger palmitoyltransferases, 

which can mediate targeting of proteins like SNAP-25 and GAD2 [31,32,33]. Disruption 

in the expression of these genes could thus cause alter the quantity and duration of GABA 

release in synapses.   



Bipolar Disorder GWAS Network Analysis 

 

P-values were generated via permSNP from the bipolar WTCCC GWAS data, and 

gene scores (− log10(𝑝)) were used to run HotNet2 with the iRef network. One gene 

component of size 9 was found, and the probability of finding a cluster of at least that 

size was 0.07 based on permutation tests (Figure 5). This component was tested against 

the KEGG pathway database and was found to contain genes involved with cell adhesion 

(p = 7.49 * 10-3) [19]. As before, the enrichment p-value is Bonferroni-corrected for the 

number of pathways and components tested. 

 

 

Figure 5: HotNet2 results for the bipolar GWAS data. 

(A) shows a gene cluster containing cell adhesion 

molecules. (B) shows p-values for the significance of 

clusters of a given size, based on expected numbers of clusters from gene score permutation tests. 

 

Cell Adhesion Molecules 

 

 Cell adhesion molecules are important in the nervous system for development and 

structural stabilization of synapses. In particular, the associated genes NRXN1 and 

NRXN3, as well as NLGN1, have been associated with bipolar disorder as well as a 

number of other mental disorders, such as schizophrenia and autism [34,35]. Disruptions 

of these pathways can cause deleterious disassociation of synapses and abnormal neural 

communication. Another cell adhesion molecule that was associated in this data, MAGI2, 

is particularly involved in synaptic development along with MAGI1 and has been 

implicated in schizophrenia and bipolar disorder [36]. 

 

Size Expected Actual p-value 

2 119.03 128 0.16 

3 25.56 29 0.30 

4 7.59 10 0.24 

5 2.55 2 0.77 

6 0.96 1 0.57 

7 0.48 1 0.37 

8 0.18 1 0.16 

9 0.07 1 0.07 

10 0.05 0 1.00 
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 Myosin motor genes such as MYO16 are critical for neuronal growth, their 

depletion or dysfunction can result in neurite collapse. These motors help to drive neural 

dynamics and are essential for transportation along the actin cytoskeleton in the large 

cells [37]. Thus, SNPs in cell adhesion pathways are important targets for not only bipolar 

disorder but also related illnesses such as schizophrenia. These pathways demonstrate 

the need to jointly analyze disorders with common phenotypes, for disruption of the 

mechanisms in subtly different ways may result related diseases that we classify 

distinctly. 

 

 

Conclusion 

 

 Many of the illnesses which the medical and scientific communities are struggling 

to combat in this decade are complex disorders, influenced by a multitude of genetic, 

physiological, and environmental factors. This class of diseases includes various types of 

cancer and cardiovascular disease as well as mental illnesses such as Alzheimer’s, 

schizophrenia, and depression. Single-gene analysis or isolated experimentation are 

typically insufficient to resolve the mechanisms of these diseases, and therefore pathway-

level network-based analysis is crucial for effective research, diagnosis, and treatment [1]. 

Focusing on two neuropsychiatric disorders, autism and bipolar disorder, this study 

sought to extend the network-based algorithm HotNet2 to novel diseases and data types.  

  

 Analysis of autism gene expression data from the Morrow Lab at Brown 

University revealed association of autism with pathways involved in SNARE-mediated 

vesicle release and GABAergic regulation [24,28]. These results suggest that the cellular 

mechanisms underlying the autism phenotype are fundamentally synaptic in nature, and 

the regulation of neurotransmitter exocytosis and uptake may be disrupted in several 

ways across different patients. Furthermore, autism is well-known to be comorbid to 

several other neurological disorders, including fragile X, epilepsy. Therefore, analysis of 

relevant pathways may produce insights into the common mechanisms of other disorders 

in a synergistic manner. 

 

 



 One example of such shared mechanisms is the common cell adhesion molecules 

involved in bipolar disorder and schizophrenia, two other diseases comorbid to autism 

[34,36]. This paper’s results verified involvement of SNPs in cell adhesion genes with 

bipolar disorder, such as mutations in NRXN1 and NLGN1. In sum, we have 

demonstrated the utility of pathway-level analysis based on gene interaction networks 

for neuropsychiatric diseases and complex disorders in general and extended HotNet to 

analyze broader sets of diseases and genetic data. 
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