
Procedural Architectural Facade Modeling

Jonathan Zweig∗

Computer Science Department
Brown University

Figure 1: This sequence of images, from left to right, shows the creation of an architectural facade using the plugin
introduced by this paper.

Abstract

This project is an implementation of the CGA shape
grammar as a plugin for Autodesk Maya R© to create a
interactive environment for generating architectural fa-
cades. The CGA (Computer Generated Architecture)
shape grammar, is a context-sensitive grammar created
by Pascal Müller and Peter Wonka to procedurally gen-
erate buildings [Müller et al. 2006]. By implementing
a subset of the shape grammar directly into an industry
standard modeling program, this project demonstrates
a way to streamline the workflow pipeline for technical
artists at film and game studios when modeling multiple
buildings that adhere to the same style.

Keywords: modeling, architecture, shape grammars,
Autodesk Maya

Links: PDF

∗e-mail: jmzweig@cs.brown.edu

1 Introduction

In the film and game industries, modelers are under
tight deadlines to create detailed sets. Although these
sets often have detailed concept art that the modeler can
follow when creating them, if the set changes at all,
whole buildings must be remodeled to fit them in the
new dimensions.

Recently, Pixar encountered this problem when mak-
ing the city of London for Cars 2. Because they had
many buildings, and knew that the layout of the build-
ings could change dramatically depending on the needs
of the creative directors, Pixar built an in-house pro-
cedural solution, wrapped around the commercial pro-
gram Esri CityEngineTM[Frederickson and Northrup
2011][Wonka et al. 2011]. Although this solution al-
lowed Pixar to procedurally generate London, it was
tailored for their specific use case.

The primary obstacle to the procedural modeling of fa-
cades is that elements in the facade require spatial and
contextual awareness of the facade. The solution to this
problem is complex. It requires awareness of the re-
lationships between architectural elements and the di-
mensions of the building. For example, without aware-
ness of location, elements meant for the ground floor
could be incorrectly placed on upper floors. The solu-
tion must also maintain the relationship between mul-
tiple architectural elements. For example, a set of win-

http://cs.brown.edu/research/pubs/theses/ugrad/2013/jmzweig.pdf


dows should not necessarily be placed right next to an-
other set of windows. To solve these issues, we used
previous research in procedural architectural modeling
and shape grammars.

1.1 Background

1.1.1 Shape Grammars

A shape grammar is a natural way of representing an ar-
chitectural style so it may be reproduced on buildings of
different sizes. Shape grammars were first introduced
by George Stiny and James Gips in their paper “Shape
Grammars and the Generative Specification of Painting
and Sculpture” [Stiny and Gips 1971]. Shape gram-
mars are differentiated from string grammars in that the
a shape grammar is defined by an alphabet of shapes, a
starting shape, and a set of rules that describe spatial
relations between the shapes in the alphabet. For more
on grammars, see [Chomsky 1957] and [Sipser 1996].

The only existing commercial program implementing
shape grammars is Esri’s CityEngine. Esri CityEngine
has pioneered the use of shape grammars in the indus-
try. The main focus of the program, however, is on the
generation of entire 3D cities and not on the genera-
tion of detailed facades. Although there is support for
facade generation, CityEngine does not allow in-depth
modification of the facade, and thus it is not a replace-
ment for a modeling environment, such as Autodesk
Maya R© [Parish and Müller 2001].

1.1.2 Maya

Nodes User projects in Maya are saved in a scene
file. A scene file is organized as a node system, where
each node stores its own set of attribute data. A node
often depends on the attributes of other nodes to de-
termine its own attribute values. Connecting attributes
between nodes enables sharing and modification of the
initial attribute data. In this way, a project in maya is
a network of interconnecting nodes. Maya visualizes
this network in its node editor interface (See Figure 2).
Shape nodes hold geometry information, such as where
vertices in a mesh are located spatially, in local space.
By connecting a transform node to a shape node, a user
can modify all of the vertices’ location information in
world space.

Figure 2: A screenshot from Maya 2013’s node editor,
visualizing a project in maya as a network of intercon-
necting nodes.

Scene Graph In Maya, objects in a scene are or-
ganized in a hierarchy known as a scene graph, (See
Figure 3). A scene graph is a directed acyclic graph
(DAG), where each non-leaf node contains geometric
transformation information, such as translation, scale,
or rotation. Children of these nodes are placed in the
scene using their parent node’s transformations in addi-
tion to their own transformations. Geometric shapes in
Maya are implemented as leaf nodes in the scene graph,
just as they are terminal symbols in the shape grammar
[Autodesk 2013].

Figure 3: A screenshot from Maya 2013’s outliner, il-
lustrating Maya’s scene graph



1.2 Previous Research

Peter Wonka, in his paper “Instant Architecture,” pro-
poses an automated approach to shape grammars.
Wonka treats shapes as symbolic objects [Wonka et al.
2003]. He extends Stiny’s work by adding the con-
cept of attributes, such as the shape’s width or height,
to each shape in the alphabet. These attributes can
be passed as a context to rules during evaluation. A
rule’s context is propagated to its children, distributed
as evenly as possible to fit the constraints defined by the
children’s attributes. For non-terminal shapes (shapes
that must still be evaluated), attributes can either be
absolute, or relative to those in the evaluating rule’s
context. For terminal shapes, attributes must be ab-
solute, however a terminal shape’s size can be smaller
than the context it is given during evaluation. In this
way, Wonka’s grammar dictates the atomic, pre-made
piece that should be inserted at any given position on
the building. By encoding the spacial information of
the shapes into the grammar, Wonka generalizes Stiny’s
shape grammars, making it more suitable for a com-
puter implementation.

Pascal Müller and Peter Wonka describe an implemen-
tation of Wonka’s previous work in their “Procedural
Modeling of Buildings,” as the CGA (Computer Gener-
ated Architecture) shape grammar [Müller et al. 2006].
They introduce the concepts of split rules and repeat
rules. As defined by Müller and Wonka, split rules di-
vide the rule’s context up between the exact set of prod-
ucts of the rule. Repeat rules are an extension of split
rules, which allow a set of products to be repeated as
many times as fits in the context of the rule during eval-
uation. We use these concepts in the implementation of
a subset of the CGA shape grammar in Maya.

1.3 Overview

The rest of this paper is structured as follows: We start
by outlining the high level overview of the program’s
design and architecture in section 2. In section 3, we
explain our grammar implementation and how we in-
tegrate the shape grammar with Maya. In sections 4
and 5 we evaluate the workflow and functionality of
our program and discuss the features and limitations of
our implementation.

Load 
Grammar 

File

User Selects 
Facade 

Base Shape

Rule 
Evaluation 

Loop

Figure 4: Overview of the user flow. See section 2.2 for
a detailed description of each step.

2 Software Design and Architecture

When integrating shape grammars into Maya, we took
advantage of the parallel between the hierarchical man-
ner in which Maya organizes its scenes, and the parse
tree created when rules are evaluated.

2.1 Design Requirements

The main architecture of the program takes into consid-
eration the following. The program must:

• Have the ability to import pre-made shape gram-
mars, since there is currently no way to create
shape grammars inside Maya.

• Provide users with a controlled method for au-
tomating repetitive details. The implementation
should take a block model of the building as input,
and construct the facade on a specified portion of
the model.

• Take advantage of Maya’s interactive modeling
environment. Maya users are accustomed to inter-
activity. The program should allow the user to use
native Maya methods to modify the base shape.

2.2 Main User Flow

The main user flow (see Figure 4) of the plugin is as
follows:

1. The user imports a grammar into the plugin from
a text file. (Figure 5)

2. The user selects the base shape, start vertex, end
vertex, and a vertex to track the facade height. The
plugin uses this information to generate an initial
context for the shape grammar. The initial posi-
tion is set to that of the start vertex. The width is
calculated as difference between the start and end
vertices, and the height is calculated as the differ-
ence between the start and height vertices. (Figure
6)



3. When the user moves one of the vertices on the
base shape, Maya signals the plugin to evaluate
the grammar rules to check for any changes. The
plugin then generates the new geometry for Maya
to render. (Figure 7)

Grammer 
File Plugin

Figure 5: Step 1 of the user flow

Start Vertex

End Vertex

Height Vertex

User Base Mesh

Figure 6: Step 2 of the user flow

Figure 7: Step 3 of the user flow

3 Implementation

3.1 Grammar Implementation

This project’s grammar is a simplified version of the
CGA shape grammar. We keep the same principle of
using a parametric grammar for determining spatial lay-
out, but we simplified it for the scope of the project.
The project’s grammar is split into three parts: condi-
tions, products, and rules.

3.1.1 Conditions

The conditions of the grammar consist of three parts:
an attribute of the context, an equality or inequality op-
erator, and a constant value against which to compare
the attribute. (See Figure 8).

<    (LT)
>    (GT)
=    (EQ)
<=  (LTE)
>=  (GTE)

Type
position.x    (PX)
position.y    (PY)
position.z    (PZ)
size.x          (SX)
size.y          (SY)
size.z          (SZ)

Attribute

SX
Attribute

GTE
Type

5
ValueCondition:

Figure 8: Conditions are limited to position and size
components.

3.1.2 Products

Products in the grammar are either standard products,
which represent non-terminal symbols in the grammar;
or geometry products, which represent terminal sym-
bols, and specific, renderable 3d model assets. (See
Figure 9).

Window Set

6 ft

Standard Product:

6 ft

Geometry Product:

Figure 9: Products are either non-terminal standard
products or terminal geometry products.

3.1.3 Rules

Rules consist of a list of conditions and a list of prod-
ucts. We implemented the two types of rules from the
CGA shape grammar described previously: split rules
and repeat rules. (See Figure 10).

In our implementation of split rules, we chose to fo-



Relative10 ft

Split Rule: Repeat Rule:

Figure 10: Repeat rules repeat products as many times
as can fit the context.

cus only on horizontal splits. Instead of defining the
size of the products of the splits in the rule, we let the
products determine their own size, given a context. Af-
ter absolutely-sized products are added, relatively-sized
products are given equal portions of the remaining con-
text.

The grammar is stored as a JSON string. JSON, which
stands for JavaScript Object Notation, is a human-
readable and writable text format that is efficient for
computers to parse and create [Crockford 2006]. By
storing our grammar as JSON, the grammar is inte-
grated directly into Maya’s node structure and is saved
together with the Maya scene file.

3.2 Maya Integration

3.2.1 Custom Nodes

Two custom nodes are created to integrate with Maya:
ArchManagerNode and ArchNode. The ArchMan-
agerNode is responsible for the persistent storage of the
grammar inside of Maya. When a user imports a gram-
mar, the JSON file is read into a string buffer and is
stored as an attribute in the Maya node. The ArchNode
is responsible for updating the scene graph in the rule
evaluation loop. This includes removing all nodes from
the previous rule evaluation and creating the nodes for
the new rule evaluation.

3.2.2 User Interface

The user interface uses a combination of MEL, (Maya’s
embedded scripting language), and Python calls into
Maya’s API. Bounding boxes (ghosts) show where ar-
chitectural pieces will be placed. This is a visualiza-
tion of the rule evaluation process for the user. When
the base shape is modified, these bounding boxes up-
date to reflect the changes in rule evaluation. The user

Figure 11: A screen shot of the GUI of our plugin.
Loaded conditions, products, and rules of the grammar
are displayed.

can request that detailed assets be imported and replace
the bounding boxes at any time; however, the bounding
boxes are used to ensure the interface stays responsive
during modification.

4 Results

4.1 Implementation

As the main contribution of this paper is the implemen-
tation of shape grammars in Maya, an example of the
use of our plugin is illustrated in Figure 12. (1) A
grammar representing a facade is created in JSON im-
ported using the plugin’s native Maya UI. (2) A shape is
selected and confirmed as the base shape to the plugin.
(3) The start vertex, followed by the end and height ver-
tices are specified. (4) The plugin evaluates the gram-
mar and displays bounding boxes of the resulting fa-
cade. (5) When the base shape is modified, the resulting
grammar evaluation is rendered. (6) The final detailed
assets are imported by clicking the “construct detail”
GUI button.

4.2 Performance

Response time is a crucial element of 3D modeling
programs. As an interactive implementation of shape
grammars, our solution is expected to perform with the
same level of responsiveness as native modeling tools
in Maya. For instance, when the user modifies the



Figure 12: Example workflow using our Maya plugin. A description of each screenshot is provided in section 4.
The order of the images is from top left to bottom right.

base shape in Maya, such as by dragging the vertices
associated with the facade, the implementation of the
shape grammar must be able to evaluate the rules with-
out causing the user to wait. The implementation must
delete and create new Maya nodes for each rule evalu-
ation. However, since Maya has its own deferred mem-
ory management, the plugin stays responsive, and only
starts to lag on a 2009 Macbook Pro equipped with a
2.8Ghz Intel Core 2 Duo processor when hundreds of
nodes must be handled.

5 Discussion

5.1 Functionality

Using this plugin a technical artist can construct com-
plex facades using a set of rules inside Maya. The user
can import these rules using a pre-made JSON gram-
mar. These grammars can be partially modified inside
Maya using the GUI to add conditions. The user can ex-
port the modified grammar and edit the grammar even
further outside of Maya. The plugin also handles real-
time, interactive modification of the base shape.

5.2 Limitations

The plugin currently only handles rotations and not
shearing of imported architectural models. Therefore,
it will not detect if the resulting facade would continue
off the edge of a slanted building. However, the user
can still perform the shearing manually after the plugin
loads the models into maya.

Furthermore, the plugin only functions along flat sur-
faces. However, curved surfaces along the facade, such
as cylinders, can be accommodated by creating multi-
ple facades using each flat section of the curve. This
could be automated with a MEL script.

5.3 Challenges

Interactively evaluating rules in the grammar using
Maya’s API was difficult due to the way Maya han-
dles and updates data. The conventional method for
storing custom data in Maya is by creating a custom
attribute in a Maya node. All information that is not
stored as a Maya attribute is lost when the application
closes. These attributes are limited, however, to prim-
itive types, such as integers, floats, and strings. We
overcame this issue by storing the grammar as a JSON
string.



5.4 Future Work

Future work includes bringing grammar generation into
Maya. Now that a framework for using shape rules
in Maya has been implemented, it can be used to im-
plement grammar generation, as well. Research by
Markus Lipp, Peter Wonka, and Michael Wimmer out-
lines how to implement real-time interactive editing of
shape grammars [Lipp et al. 2008], which could be im-
plemented within Maya. Further research into Maya
UI paradigms would need to be done, but having the
grammar stored in Maya would make implementation
of a GUI for creating rules easier.

Furthermore, the plugin can still be optimized for
greater efficiency. Development on this project was
done primarily in Python using Maya’s Python wrap-
per on Maya’s C++ library. Hence, the code can be
easily converted into C++ for finer control of memory
management during rule evaluation by calling the same
functions in the API without the wrapper.

6 Conclusion

In this paper we have presented a plugin that combines
the generative power of shape grammars with the ro-
bust modeling environment of Autodesk Maya. We
have taken a complex, academic concept, and made it
so that it can be applied in the production environment
by technical artists. Writing rules for shape grammars
takes some time; however, it is still easier and less time
consuming than remodeling the entire facade. By im-
plementing shape grammars in Maya, we have made it
easier for modelers to make use of years of research on
shape grammars.

Acknowledgements

I would like to thank Barbara Meier and John Hughes,
my primary and secondary thesis advisors, respectively.
I would also like to thank Tom Doeppner, the Direc-
tor of Undergraduate Studies at the Brown University
Computer Science department, and Michael Frederick-
son, a Technical Director at Pixar Animation Studios.

References

AUTODESK, 2013. Querying the scene graph.
http://docs.autodesk.com/MAYAUL/2013/ENU/,

January.

CHOMSKY, N. 1957. Syntactic Structures. Mouton &
Co., The Hague. Reprinted 1985 by Springer, Berlin
and New York.

CROCKFORD, D. 2006. The application/json media
type for javascript object notation (json).

FREDERICKSON, M., AND NORTHRUP, J. 2011. Nu-
clear monkeys and talking cars. University talk,
Brown University, September.

LIPP, M., WONKA, P., AND WIMMER, M. 2008.
Interactive visual editing of grammars for procedu-
ral architecture. ACM Trans. Graph. 27, 3 (Aug.),
102:1–102:10.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER,
A., AND VAN GOOL, L. 2006. Procedural mod-
eling of buildings. ACM Trans. Graph. 25, 3 (July),
614–623.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedu-
ral modeling of cities. In Proceedings of the 28th
annual conference on Computer graphics and inter-
active techniques, ACM, New York, NY, USA, SIG-
GRAPH ’01, 301–308.

SIPSER, M. 1996. Introduction to the Theory of Com-
putation. PWS Pub Co, Boston, MA.

STINY, G., AND GIPS, J. 1971. Shape grammars and
the generative specification of painting and sculp-
ture. In IFIP Congress (2), 1460–1465.

WONKA, P., WIMMER, M., SILLION, F., AND RIB-
ARSKY, W. 2003. Instant architecture. ACM Trans.
Graph. 22, 3 (July), 669–677.

WONKA, P., ALIAGA, D., MÜLLER, P., AND VANE-
GAS, C. 2011. Modeling 3d urban spaces using pro-
cedural and simulation-based techniques. In ACM
SIGGRAPH 2011 Courses, ACM, New York, NY,
USA, SIGGRAPH ’11, 9:1–9:261.


