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Abstract

We begin by considering the general problem of optimizing a function of non-negative real variables
subject to a set of constant-sum constraints on a disjoint partitioning of the variable set. Such problems
are widely applicable, and in particular subsume global maximum likelihood estimation problems over one
or more sets of multinomial parameters. We will give an intuitive interpretation of how the Lagrangian
constrains the partial derivatives at stationary points, and derive a function we call the Ψ-mapping,
the fixed points of which are exactly the stationary points under a set of reasonable assumptions. Next
we will demonstrate a number of interesting properties of this mapping, including the fact that its
codomain composes convexly under addition and multiplication of two objective functions. Finally, we
will show how this mapping simplifies in common polynomial-like and homogeneous cases, and what
these simplified forms tell us about the space of candidate stationary points. Specific applications will
also be explored for the haplotype phasing problem, in which the resulting Ψ coincides will the known
iterative equation for the Expectation Maximization algorithm.
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1 Introduction

In order to effectively tackle a hard problem in mathematics or computer science, no matter what the
context or problem statement, we need to bring to bear both proven facts and creative intuition. The
more you can prove about a problem, the more of a glimpse you get at the loose trappings of its structure,
until with a great intuitional leap the observations crystallize into a deep and powerful insight. With
this insight might come more proofs, or simply more elegant ones, leading to improved insight, leading
to more proven facts, and so on. It is this ability to iterate between observations, formal proofs, and
fluid understanding that allows for true solutions to be obtained. Yet for a large, useful, and incredibly
common class of optimization problems, we seem to have largely thrown in the towel.

Maximum likelihood problems have been commonplace ever since their introduction by Fisher in the
early 20th century (a rigorous introduction to the general theory of likelihoods can be found in [1]). In
the most general case, maximum likelihood optimizations attempt to find whatever parameters give a
chosen model the highest probability of generating some observed data set. Examples are widespread
throughout the literature; we will focus in particular on the haplotype phasing problem later on in this
thesis. Yet despite their ubiquity, we know very little about truly solving these problems. There are
general frameworks for finding local optima of these functions, including the Expectation Maximization
framework as famously unified by Dempster, Laird, and Rubin in [2]. But even though EM and processes
like it can generally converge to a local solution, they give very little insight or intuition into how we
should be thinking about a particular problem and what sorts of solutions might be feasible. In short,
they are relatively nearsighted solvers; once formulated for a particular problem domain, EM simply
works as a black box, giving solutions but without revealing any deeper answers.

The goal of this work is to take a longer view of maximum likelihood in general. Even though we
can’t hope to fully solve the broadest possible case, we’re more interested in what headway we can
make and what details are most important to make progress. In short, we’re looking for some relatively
low-hanging fruit, which has been neglected due to the use of black-box solvers, in order to at the very
least get our theoretical foot in the door on these sorts of problems. If we can prove a few small lemmas
about the general problem, then perhaps we can gain some intuition that we can capitalize on to prove
more lemmas, and so on. Only having proven all we can in this generalized setting will we be properly
equipped to focus back in on a particular problem, probing its structure for features which our general
theory can exploit.

It is for this very reason that this thesis has two main components: first, a continuous treatment of
a general problem; then, a discrete treatment of a very specific problem. Performing our theoretical
inquiry in this fashion has led us to an avalanche of new results about our chosen haplotype phasing
problem, as well as some deep intuitional leaps regarding what EM is doing in a fairly general setting.
Our hope is to reveal both proven results and helpful intuition, in order to begin to catalyze future work
both on haplotype phasing and other maximum likelihood problems as well.
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2 Continuous Analysis

The first thing we wish to do in our analysis is solve the most general class of optimization problems we
can, to the greatest extent we can. We can always narrow our focus later on, in order to simplify unruly
formulas or exploit some particular fact about a class of optimizations. However, starting out with a
broad view of the possible problems will give us a better idea of where to go next. We can’t expect a
heavily generalize problem to be fully solveable, but we might be able to discover through enough creative
exploration what level of specificity is actually required to make which claims. Thus this section, which
focuses on the analysis of optimizations in the continuous setting, is about finding out what we need to
know in order to solve a problem, as opposed to figuring out any particular solution or algorithm.

2.1 General Problem

For some mapping Π : {1, . . . , V } → {1, . . . , C} and constants c1, . . . , cC > 0, we wish to maximize a
function f : RV

≥0 → R subject to the following set of disjoint and complete constant-sum constraints:

∀i ∈ {1, . . . , C} : ci =
∑

Π(u)=i

xu (1)

In other words, Π maps each variable to a single variable set, and each such set is constrained to have a
particular constant sum. We will quickly discover classes of f for which this problem is greatly simplified,
but we will first explore the most general case.

This class of problems was selected as a starting point because it is generalizes many common ap-
plications. The haplotype phasing problem, which we’ll see later on, falls into this category, but so does
the hidden markov model learning problem, and a great deal of other optimizations which in general
look somewhat like maximum likelihood problems. More specifically, any attempt to find a maximum
likelihood assignment for one or more multinomial distributions will fall into this category. Again, we’ll
narrow our analysis more and more as we proceed, but only as we discover which details of the problem
are actually helpful or necessary to simplify our task. Until we’ve found what looks like a good path to
take, we’re simply trying to keep our eyes open.

2.2 Stationary Points

We first wish to gain an intuitive understanding of what the critical points of this optimization look like.
Of course, any point where the objective function is not differentiable will be a critical point, but for
most practical applications we will be able to neglect this case. What we’re most interested in is what
the partial derivatives of f will look like at stationary points, where the gradient of the Lagrangian is
the zero vector.

For this particular optimization, the Lagrangian is quite simple, and so the desired result is simple
as well:

L(~x,~λ) = f(~x)−
∑
i

λi((
∑

Π(u)=i

xu)− ci) (2)

0 =
∂L
∂xu

=
∂f

∂xu
− λΠ(u)

λΠ(u) =
∂f

∂xu
(3)

So at the stationary points of our optimization the partial derivatives with respect to the variables in
any particular partition must be the same, but not necessarily equal to zero! However, our domain is
closed, so we must also check the boundaries for candidate optima. In order to apply the intuition we
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have just gained, we can separate the problem into interior and boundary cases.

In the interior of the domain, we wish to maximize f(x1, . . . , xV ) such that xu > 0 for all u, and
so the partial derivatives must be equal within each group as stated. But along the boundary where
xu = 0, we wish to maximize g(x1, . . . , xu−1, xu+1, xV ) = f(x1, . . . , xu−1, 0, xu+1, xV ) such that xv > 0
for all v 6= u. In this boundary case, the partial derivative with respect to xu is excluded from the equal-
ity condition, because it does not appear in the resulting modified Lagrangian. For further boundaries
and corners, this logic holds inductively. At the risk of slightly abusing notation, we will therefore use
the following definition of “stationary point” from now on:

Definition: Stationary point A stationary point of the optimization is any point where there exist
constants λ1, . . . , λC such that, for all u ∈ {1, . . . , V }, either xu = 0 or ∂f

∂xu
= λΠ(u).

In other words, within each variable group defined by Π, the partial derivatives of the non-zero variables
must all be equal.

2.3 Radial Functions

We see that, so long as λΠ(u) 6= 0, the following holds true at a stationary point, by our new definition:

xu
cΠ(u)

=
xu∑

Π(v)=Π(u) xv

=
λΠ(u)xu∑

Π(v)=Π(u) λΠ(v)xv

=
λΠ(u)xu∑

Π(v)=Π(u) λΠ(v)xv

=
xu

∂f
∂xu∑

Π(v)=Π(u) xv
∂f
∂xv

(4)

Furthermore, if this condition holds for all u ∈ {1, . . . , V }, then we must be at a stationary point, because
we have that

∀u, v s.t.Π(u) = Π(v) ∧ xu > 0 ∧ xv > 0 :
xu
xv

=
xu

∂f
∂xu

xv

1 =

∂f
∂xu

∂f
∂xv

∂f

∂xv
=

∂f

∂xu

which is exactly our definition of a stationary point. However, this insight is really only useful if we can
guarantee that (4) gives reasonable outputs, meaning that it should be defined and non-negative. This
leads us to the following definition and lemma:

Definition: i-radial A function f with the constraint set Π, c1, . . . , cC is i-radial over some neighbor-

hood S if for all points ~x in S, the ratio
xu

∂f
∂xu∑

Π(u)=i xu
∂f
∂xu

is defined and non-negative throughout S, for all

u such that Π(u) = i.

The idea behind this definition is that in an i-radial optimization, the objective function f is never
stationary with respect to a radial change in the ith variable set. Such motion (increasing all variables
in the set in proportion to their values) would of course violate the constant-sum constraint, but the
point is that the gradient of f should not lie strictly in the constant-sum hyperplane. Additionally, this
motion should be consistent across different variables, meaning that if increasing one variable raises the
objective, increasing another should not lower it.
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Lemma 2.1. If a function f and constraint set Π, c1, . . . , cC are i-radial for all i ∈ 1, . . . , C (fully
radial) over some neighborhood S, then within S the set of points satisfying equation (4) for all u ∈
{1, . . . , V } are exactly the stationary points of the optimization.

Proof. So long as the denominator of equation (4) is non-zero for every variable group, we have already
proven both directions of the implication in the discussion above. But our requirement for an i-radial
optimization is exactly that this denominator will be non-zero for all u such that Π(u) = i.

This definition also leads to some intuitional insight about the meaning of equation (4): the ratio of
a variable to the sum of the variables in its group is the fraction of the radial change of f contributed
by changing that variable. This is most easily-seen when we make the observation that xu

∂f
∂xu

= ∂f
∂ ln xu

.

Of course, forcing our optimization to be radial in any of the variable groups is quite a strong statement.
In fact, it typically constrains us to the following two cases:

Definition: i-inward and i-outward A function f with the constraint set Π, c1, . . . , cC is i-inward
(resp. i-outward) over some neighborhood S if it is i-radial over S and ∂f

∂xu
≤ 0 (resp. ≥ 0) throughout

S, for all u such that Π(u) = i.

Lemma 2.2. If f is continuously-differentiable over some neighborhood S, then the optimization problem
(f,Π,~c) is i-radial over S if and only if it is i-inward or i-outward over S.

Proof. This follows simply from the intermediate value theorem. The variable values xu are clearly
continuous over any neighborhood, so

∑
Π(u)=i xu

∂f
∂xu

will be continuous over S. If this sum were positive
at one point in S and negative in another, then its value would have to be zero at some point along
any path connecting the two points, including paths exclusively traveling through S. So it must have
consistent sign throughout S in order for the optimization to be i-radial. But in addition, ∂f

∂xu
for

Π(u) = i must either be zero or have the same sign as
∑

Π(u)=i xu
∂f
∂xu

, at any given point in S. This
implies that if the optimization is i-radial, it must also be i-inward or i-outward. The reverse implication
is definitional, as i-inward and i-outward optimizations are explicitly i-radial.

Despite these restrictions, there are many interesting and useful cases in which f is fully-radial
throughout the entire constrained domain. From now on we will primarily be concerning ourselves on
with such cases, in order to explore and exploit the properties of equation (4). For convenience and
compactness, we will express this system of equations in terms of a set of vector-valued mappings:

Ψ̂i
f,Π,~c(~x) =

ci∑
Π(v)=i xv

∂f
∂xv

∑
Π(u)=i

xu
∂f

∂xu
~eu (5)

Ψi
f,Π,~c(~x) =

{
Ψ̂i

f,Π,~c(~x) :
∑

Π(u)=i xv
∂fp
∂xu
6= 0

~0 :
∑

Π(u)=i xv
∂fp
∂xu

= 0
(6)

Ψf,Π,~c(~x) =

C∑
i=1

Ψi
f,Π,~c(~x) (7)

Clearly, we have that ~x = Ψf,Π,~c(~x) = Ψ̂f,Π,~c(~x) at all stationary points of any fully-radial optimization
f , Π, ~c. So the stationary points are fixed points of this mapping. The reason for the piecewise convention
will become clear in the next section, in which we will be creating an i-radial objective by combining
multiple component functions, which may not themselves be i-radial.
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2.4 Additive Composition of Ψ

Let f(~x) =
∑

p fp(~x). Then we observe the following:

Ri(~x) = {p : 0 6=
∑

Π(u)=i

xu
∂fp
∂xu
}

[Ψ̂i
f,Π,~c]u = ci1(Π(u) = i)

xu
∂f
∂xu∑

Π(v)=Π(u) xv
∂f
∂xv

= ci1(Π(u) = i)

∑
p xu

∂fp
∂xu∑

Π(v)=Π(u)

∑
j xv

∂fj
∂xv

= ci1(Π(u) = i)
∑

p∈Ri(~x)

xu
∂fp
∂xu∑

Π(s)=Π(u) xs
∂fp
∂xs

∑
Π(t)=Π(u) xt

∂fp
∂xt∑

j

∑
Π(v)=Π(u) xv

∂fj
∂xv

=
∑
p

∑
Π(t)=Π(u) xt

∂fp
∂xt∑

j

∑
Π(v)=Π(u) xv

∂fj
∂xv

[Ψfp,Π,~c]u

This value is defined so long as the total function f is i-radial, and we see that it is a weighted sum
of the Ψ values for the component fp, with weights conveniently summing to one. We even have that

zero weights occur for precisely those Ψ̂ values which we have defined to be zero, meaning it gives a
reasonable potential value for ~x. However, it is possible for some of these weights to be negative, which
is potentially somewhat undesirable. Thus we make the following new definition:

Definition: i-consistent A function f =
∑

p fp with the constraint set Π, c1, . . . , cC is i-consistent
over some neighborhood S if it is i-radial over S, and in addition for all points ~x in S and for all p,∑

Π(u)=i xu
∂fp
∂xu∑

Π(u)=i xu
∂f
∂xu

is non-negative.

Lemma 2.3. If a function f =
∑

p fp with the constraint set Π, c1, . . . , cC is i-consistent over some

neighborhood S, then for every point ~x in S, Ψ̂i
f,Π,~c(~x) is a convex combination of the non-zero component

Ψi
fp,Π,~c(~x) values.

Proof. We make the following substitutions using the result from the discussion above:

ωi
f,Π,~c =

1∑
j

∑
Π(v)=i xv

∂fj
∂xv

∑
Π(u)=i

xu

[
∂f1

∂xu
,
∂f2

∂xu
, . . . ,

∂fp
∂xu

, . . .

]T
(8)

Ψi
f,Π,~c =

∑
p

[ωi
f,Π,~c]pΨi

fp,Π,~c (9)

By the definition of i-consistency, we know that
∑

Π(u)=i xu
∂fp
∂xu∑

Π(u)=i xu
∂f
∂xu

≥ 0 throughout S, for all p. But by

construction each such value is exactly the pth component of the weight vector ωi
f,Π,~c, so we know that

this vector has only non-negative components. Furthermore, we see that zero components occur exactly
when the corresponding fp is not i-radial and thus excluded from the combination, because the numerator
of this fraction is precisely what must be non-zero for an i-radial fp. Finally, the sum of these weights

is
∑

p

∑
Π(u)=i xu

∂fp
∂xu∑

Π(u)=i xu
∂f
∂xu

, which is one by inspection.

This is a fascinating property, but we have introduced yet another even more complicated prerequisite
for its use! In order for this compositional rule to be of any practical value we’ll need to find an interesting
class of problems which are i-consistent. Fortunately, there is a loose sufficient condition we can place
on the components fp in order to guarantee that their sum will be i-consistent:
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Definition: Strongly i-consistent A function f =
∑

p fp with the constraint set Π, c1, . . . , cC is
strongly i-consistent over some neighborhood S if it is both i-consistent and either i-outward or i-inward
over S.

Lemma 2.4. A function f =
∑

p fp with the constraint set Π, c1, . . . , cC which is continuously-differentiable
over some neighborhood S is i-consistent over S if and only if it is strongly i-consistent over S.

Proof. The proof follows directly from Lemmas 2.2. If f is i-consistent over S, then it must be i-radial
over S, and for a continuously-differentiable f to be i-radial over S it must be either i-inward or i-
outward over S. Either case, combined with the i-consistency of f , yields strong i-consistency. The
opposite direction is definitional, as strong i-consistency explicitly requires i-consistency.

2.5 Multiplicative Composition of Ψ

For neighborhoods in which our objective function is strictly positive and therefore has a well-defined
real logarithm, we observe the following interesting invariance:

[Ψ̂i
ln f,Π,~c]u = ci1(Π(u) = i)

xu
∂ ln f
∂xu∑

Π(v)=Π(u) xv
∂ ln f
∂xv

= ci1(Π(u) = i)
xu

∂f
∂xu

f(~x)

1
f(~x)

∑
Π(v)=Π(u) xv

∂f
∂xv

= ci1(Π(u) = i)
xu

∂f
∂xu∑

Π(v)=Π(u) xv
∂f
∂xv

= [Ψ̂i
f,Π,~c]u (10)

Combining this result with the results of the previous section gives us the following, for f =
∏

p fp:

LRi(~x) = {p : 0 6=
∑

Π(u)=i

xu
∂ ln fp
∂xu

}

[Ψ̂i
f,Π,~c]u = [Ψ̂i

ln f,Π,~c]u

= ci1(Π(u) = i)
xu

∂ ln f
∂xu∑

Π(v)=Π(u) xv
∂ ln f
∂xv

= ci1(Π(u) = i)

∑
p xu

∂ ln fp
∂xu∑

Π(v)=Π(u)

∑
j xv

∂ ln fj
∂xv

= ci1(Π(u) = i)
∑

p∈LRi(~x)

xu
∂ ln fp
∂xu∑

Π(s)=Π(u) xs
∂ ln fp
∂xs

∑
Π(t)=Π(u) xt

∂ ln fp
∂xt∑

j

∑
Π(v)=Π(u) xv

∂ ln fj
∂xv

=
∑
p

∑
Π(t)=Π(u) xt

∂ ln fp
∂xt∑

j

∑
Π(v)=Π(u) xv

∂ ln fj
∂xv

[Ψln fp,Π,~c]u

=
∑
p

∑
Π(t)=Π(u) xt

∂fp
∂xt

fp(~x)
∑

j
1

fj(~x)

∑
Π(v)=Π(u) xv

∂fj
∂xv

[Ψfp,Π,~c]u

Lemma 2.5. If a function f =
∏

p fp is non-zero over some neighborhood S and the optimization of

ln f =
∑

p ln fp with the constraint set Π, c1, . . . , cC is i-consistent over S, then Ψ̂i
f,Π,~c(~x) is a convex

combination of the non-zero component Ψi
fp,Π,~c(~x) values.
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Proof. This follows directly from Equation (10) and Lemma 2.3.

The equations defining this convex combination are similar, but not identical, to those from the
previous section. Following from the discussion above, we have the following new weight vector:

ωi
f,Π,~c =

1∑
j

1
fj(~x)

∑
Π(v)=i xv

∂fj
∂xv

∑
Π(u)=i

xu

[
∂f1

∂xu

f1(~x)
,

∂f2

∂xu

f2(~x)
, . . . ,

∂fp
∂xu

fp(~x)
, . . .

]T
(11)

2.6 Positive Homogeneous Functions and Elasticity

Given that the Ψ-mapping is somewhat complex in its full generality, we’d like to find a useful class of
problems for which it simplifies into a more tractable form. As it happens, one simplification is possible for
a very broad class of problems, including the polynomials and many polynomial-like objective functions:

Definition: Positive Homogeneous Over some neighborhood S, we say that a function f is positive
(k,H)-homogeneous with respect to some real number k and some set of variable indices H if the following
holds for all ~x ∈ S and for all α > 0:

f(α1(1∈H)x1, α
1(2∈H)x2, . . . , α

1(V ∈H)xV ) = αkf(x1, x2, . . . , xV ) (12)

In other words, multiplying every variable in the set H by some positive factor α multiplies f by αk.

In a neighborhood S where our objective f satisfies this definition, we can exploit Euler’s homogeneous
function theorem, which states that the positive (k,H)-homogeneous functions over S are equivalently
those functions for which the following equality holds throughout S:∑

u∈H
xu

∂f

∂xu
= kf(~x) (13)

This equality yields the following important fact about what is required for a positive homogeneous
function to also be partially or fully radial:

Lemma 2.6. If f is positive (ki, {xu : Π(u) = i})-homogeneous and the optimization of f , Π, ~c is i-
radial, both over some neighborhood S, then ki 6= 0 and f(~x) is either everywhere positive or everywhere
negative throughout S.

Proof. The proof is similar to that of Lemma 2.2. By definition, the optimization will be i-radial over
S if and only if

∑
Π(u)=i xu

∂f
∂xu

= kif(~x) is non-zero throughout S. We note that in order to satisfy the
definition of positive homogeneity, f must be continuous over this neighborhood, and so the intermediate
value theorem tells us that if f changes sign in this neighborhood then f(~x) and therefore kif(~x) will be
zero somewhere in S.

For variable groups and neighborhoods where these conditions hold, we can greatly simplify equa-
tions (4) and (5). In particular, for any neighborhood over which f is positive (ki, {xu : Π(u) = i})-
homogeneous for ki 6= 0, we have the following, for all u such that Π(u) = i:

xu
ci

=
xu

∂f
∂xu

kif(~x)
(14)

Ψ̂i
f,Π,~x(~x) =

ci
kif(~x)

∑
Π(u)=i

xu
∂f

∂xu
~eu (15)

We can also introduce a yet more intuitive notion of what these simplified equations mean by noting that
xu

∂f
∂xu

f = ∂ ln f
∂ ln xu

. This value, which is seen far more commonly in economics than in pure mathematical
contexts, is known as the elasticity of f with respect to xu. The astute reader will note that if f is a
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monomial function, this value coincides with the multiplicity of xu in f . Indeed, elasticity is constant
if and only if f = xmu g(~x), for some constant m and some function g which is constant with respect to xu.

In more complex contexts, however, we can note that elasticity is in some sense still an approxima-
tion to multiplicity. So long as the elasticity in every variable is defined at a point, we can always
form a monomial function with the same elasticity in each variable as our original function. For each
homogeneous variable group, the corresponding components of Ψ are in proportion to the elasticities
of their respective variables. Thus Ψ maps each homogeneous variable group to the exact point which
maximizes this locally co-elastic monomial, since as a monomial function its elasticities are constant
throughout the domain. For ~x to be a stationary point, then, means that it is a point which maximizes
its associated locally co-elastic monomial.

2.7 Ψ Composition for Positive Homogeneous f

As with the equations for Ψ itself, positive homogeneity greatly simplifies the rules for composing multiple
Ψ mappings.

For f =
∑

p fp, over neighborhoods where every fp is positive (ki, {xu : Π(u) = i})-homogeneous, we
can substitute into Equation (8) to get the following, where applicable:

ωi
f,Π,~c =

1∑
j

∑
Π(v)=i xv

∂fj
∂xv

∑
Π(u)=i

xu

[
∂f1

∂xu
,
∂f2

∂xu
, . . . ,

∂fp
∂xu

, . . .

]T
=

1∑
j kifj(~x)

[kif1(~x), kif2(~x), . . . , kifp(~x), . . . ]
T

=
1

kif(~x)
[kif1(~x), kif2(~x), . . . , kifp(~x), . . . ]

T

=
1

f(~x)
[f1(~x), f2(~x), . . . , fp(~x), . . . ]

T
(16)

Clearly these weights are defined over any neighborhood where f is non-zero, so long as ki is also non-
zero. However, while the weights will sum to one, some of them may be negative. We therefore give a
simple equivalent condition for this to define a convex combination, as opposed to just a linear one:

Lemma 2.7. If f =
∑

p fp and every fp is (ki, {xu : Π(u) = i})-homogeneous over some neighborhood
S, then the optimization f , Π, ~c will be (strongly) i-consistent if and only if ki 6= 0, f is non-zero over
S, and either every fp is everywhere non-negative, or every fp is everywhere non-positive, throughout S.

Proof. Recall the definition of i-consistency, which requires that the ratio
∑

Π(u)=i xu
∂fp
∂xu∑

Π(u)=i xu
∂f
∂xu

=
kifp(~x)
kif(~x) must be

defined and non-negative throughout S. This clearly requires that ki and f be non-zero, and additionally
requires that any component values fp(~x) which are non-zero must have the same sign as f(~x), for any
given point ~x in S. Since f is positive homogeneous (as the sum of homogeneous functions), it must by
definition be continuous, and so it cannot change sign within S, or else the intermediate value theorem
gives us that it would be zero at some point within S. So i-consistency implies that ki 6= 0 and that f
and therefore all fp have the same sign as each other at all points in S, and that they never change sign
within S. In other words, the optimization will be strongly i-consistent. The converse follows because if
the given conditions hold, f will clearly take on the same unchanging sign as its components fp, at all
points within S, and will be non-zero by assumption, satisfying the definitions of both i-consistency and
strong i-consistency.

For f =
∏

p fp, over neighborhoods where the fp are positive (ki,p, {xu : Π(u) = i})-homogeneous,
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we can substitute into Equation (11) to get the following, where applicable:

ωi
f,Π,~c =

1∑
j

1
fj(~x)

∑
Π(v)=i xv

∂fj
∂xv

∑
Π(u)=i

xu

[
∂f1

∂xu

f1(~x)
,

∂f2

∂xu

f2(~x)
, . . . ,

∂fp
∂xu

fp(~x)
, . . .

]T

=
1∑

j
1

fj(~x)ki,jfj(~x)

[
ki,1f1(~x)

f1(~x)
,
ki,2f2(~x)

f2(~x)
, . . . ,

ki,pfp(~x)

fp(~x)
, . . .

]T
=

1∑
j ki,j

[ki,1, ki,2, . . . , ki,p, . . . ]
T

(17)

Clearly, this derivation is only valid for neighborhoods over which f and therefore all the components fp
are non-zero. In addition,

∑
p ki,p must be non-zero. However, once again it is possible to have a valid

negative or zero weight. So again we give a simple equivalent condition for this to be a truly convex
combination:

Lemma 2.8. If f =
∏

p fp and the fp are (ki,p, {xu : Π(u) = i})-homogeneous over some neighborhood
S, then the optimization ln f , Π, ~c will be (strongly) i-consistent if and only if every fp is non-zero
throughout S, 0 6=

∑
p ki,p, and either every ki,p is non-negative or every ki,p is non-positive.

Proof. We can see in the derivation above that the radial derivatives in question,
∑

Π(u)=i xu
∂ ln fp
∂xu

=
ki,pfp(~x)
fp(~x) are defined if and only if the fp are non-zero, and take on the same sign as their respective

homogeneous orders, ki,p. Their sum, meanwhile, is
∑

p
ki,pfp(~x)
fp(~x) =

∑
p ki,p wherever they are defined.

The definition of i-consistency requires that these values all be either zero or of the same sign as their
non-zero sum, which is in this case a fixed constant. Thus these conditions imply not just i-consistency,
but strong i-consistency, because this sign never changes. The converse is clearly true as well, because
strong i-consistency guarantees that these values are defined, not of mixed sign, and that their sum is
non-zero.

It is clear that the positive homogeneous functions will have extremely interesting properties in
constant-sum optimizations, as they greatly simplify both Ψ and its compositional rules. These simpli-
fications let us build up manner of interesting objective functions, while maintaining relatively simple
equations for their stationary points. For example, we can give an alternative derivation of the constant-
sum maximum for a monomial function:

Example: Monomial Maximization Suppose we wish to maximize a monomial f = z
∏

u x
yu
u , for

z > 0 and yu > 0, subject to constraints given by Π,~c. We can of course neglect the constant coefficient
z when looking for the maximizing arguments ~x. Now consider the component optimizations fu = xyu

u ,
and note that each is positive (yu, {xv : Π(v) = Π(u)})-homogeneous. We can also neglect points where
it is zero, because the maximum of f is necessarily positive and therefore cannot occur at such points.
Finally, we note that Ψ̂i

fu,Π,~c = ci1(Π(u) = i)~eu, or in other words that fu is maximized by setting xu
to its maximum allowed value, cΠ(u). Applying the multiplicative composition rule from Equation (17)
above, we end up with

Ψ̂i
f,Π,~c =

1∑
Π(u)=i yu

∑
Π(u)=i

yuΨi
fu,Π,~c

=
1∑

Π(u)=i yu

∑
Π(u)=i

yuci1(Π(u) = i)~eu

=
ci∑

Π(u)=i yu

∑
Π(u)=i

yu~eu (18)

In other words, within each variable group, the variables chosen to be in proportion to their exponents.
We note that wherever it is defined, Ψ̂ is always this same constant vector, and wherever it isn’t defined
f is zero and therefore of no interest.
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Of course, we have neglected the valid case under Lemma 2.8 in which, rather than being all posi-
tive, the exponents are all negative. However, this being the inverse of a monomial of the positive
variety, its single Ψ-point will be a global minimum rather than a maximum, and its value will approach
infinity towards the boundaries. Thus it will be of no interest in the case of global maximization.

2.8 Increasing Posynomial Functions

Having built up Ψ for monomials (and by closure, products of monomials) in Equation (18) above, a
natural next step is to try adding them together with positive coefficients (to satisfy i-consistency),
forming a so-called “posynomial” function:

Definition: Posynomial A posynomial function is defined as any f of the form f(~x) =
∑

i zi
∏

j x
yi,j

j ,
for positive real zi and real yi,j .

Of course, Lemma 2.8 precludes us from using monomials with mixed-sign exponents if we want Ψ
to give us valid positive values for the variables, and we’ve already discussed in the previous section
why monomials with negative exponents are of little interest. Thus we constrain ourselves to the case
of all positive exponents, and henceforth when we use the term posynomial we will actually mean the
following:

Definition: Increasing posynomial We define an increasing posynomial to be a posynomial such
that each of its component monomials has only positive exponents.

We then have the following lemmas, which will allow us to argue that we can neglect most cases
where such a function is not i-consistent:

Lemma 2.9. An increasing posynomial function f , with constraint set given by Π, ~c, is (strongly) i-
consistent over exactly the union of the neighborhoods over which at least one component optimization
mp, Π, ~c is i-radial.

Proof. Since all coefficients, exponents, and variables are non-negative, we know that
∂mp

∂xu
≥ 0 and

mp(~x) ≥ 0, for all non-negative ~x and for all p. Within this region specifically, there is at least one

component mp where
∑

Π(u)=i xu
∂mp

∂xu
is strictly positive, and since this value too can never be negative,

the overall radial motion
∑

Π(u)=i xu
∂f
∂xu

of f must also be strictly positive. This is sufficient not only
for i-consistency but strong i-consistency, since the radial motion for the component monomials is either
zero or of the same sign as that of the overall function. Outside of this region,

∑
Π(u)=i xu

∂mp

∂xu
is zero

for all mp, meaning that f is radially stationary and therefore not i-consistent.

Lemma 2.10. An increasing posynomial function f is non-zero over exactly the union of neighborhoods
over which at least one component optimization mp, with constraint set given by Π, ~c, is i-radial for
some i.

Proof. This follows from the fact that the ith radial derivative
∑

Π(u)=i xu
∂mp

∂xu
= mp(~x)

∑
Π(u)=i yp,u

is zero if and only if mp(~x) is zero or mp contains no variables from the ith variable group, and it is

strictly positive otherwise. So as long as some mp and some i have 0 <
∑

Π(u)=i xu
∂mp

∂xu
, there is at least

one non-zero mp, and since the monomials are non-negative, f is also non-zero. In the converse case, if∑
Π(u)=i xu

∂mp

∂xu
is zero for all i and p, then every mp is either zero or doesn’t contain variables from any

of the variable groups. But this latter case is nonsensical, so all mp must be zero and therefore f must
be as well.

So if an increasing posynomial is not i-consistent in any of its variable groups, then it is not i-radial
either, and therefore f is zero. Since zero is a lower bound on f , and a strict one for all non-trivial
functions, such cases do not interest us for the purposes of maximization.

However, it may be the case that f is sometimes i-radial for some i, but not others. In this case,
as mentioned in the proof of Lemma 2.10 above, it must be the case that every monomial mp which
contains a variable from a non-radial i is zero. Such a situation turns out not to be an issue in the
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practical applications we explore later. But even if it were, we note that in such cases any properly-
constrained values of variables from the non-radial groups will produce the same value for f , and so we
can treat those groups as if they don’t exist at all. This is a similar claim to the one we made while
discussing stationary points: we just treat this as a boundary problem in which some of the variables
can be neglected.

Having covered all cases of interest, we can then substitute the definition of a monomial into Equa-
tion (8) to get:

ωf =
1∑

j mj(~x)
∑

v yj,v

[
m1(~x)

∑
t

y1,t,m2(~x)
∑
t

y2,t, . . . ,m`(~x)
∑
t

y`,t, . . .

]T
(19)

We note here the astonishing intuition that, since the Ψ-value for each monomial is fixed at the point
which maximizes it, stationary points of increasing posynomials must fall within the convex hull of these
monomial max points!

Furthermore, if f is also positive (ki, {u : Π(u) = i})-homogeneous, then this simplifies further, back
down to Equation (16):

ωi
f,Π,~c =

1

f(~x)
[m1(~x),m2(~x), . . . ,m`(~x), . . . ]T (20)

In addition, such homogeneity allows us to simplify Equation (18) for mp to:

Ψ̂i
mp,Π,~c =

ci
ki

∑
Π(u)=i

yp,u~eu (21)

Combining these two equations together, we observe the stunningly simple formula for Ψ̂ of a homoge-
neous increasing posynomial:

Ψ̂i
f,Π,~c =

ci
kif(~x)

∑
p

mp(~x)
∑

Π(u)=i

yp,u~eu (22)

2.9 Variable Bounds at Stationary Points

Recall the amazing fact that, so long as we satisfy i-consistency for all our variable groups, we can compose
Ψ convexly under addition and multiplication of objective functions. What this means, specifically, is
that the codomain of Ψ, in which all stationary points of the optimization must fall, will be some subset
of the convex hull of the Ψ-codomains for the component functions. This in turn means that we can
perform a weak composition on bounds applying on or between variables in the component functions:

Lemma 2.11. Let ~A and ~B be vectors of coefficients and let a and b be constants, such that the bound∑
Π(u)=iAu[Ψi

fp,Π,~c(~x)]u + a ≤
∑

Π(u)=iBu[Ψi
fp,Π,~c(~x)]u + b holds over a neighborhood S for some set of

component functions fp, so long as Ψi
fp,Π,~c(~x) 6= ~0. If throughout S Ψ̂i

f,Π,~c(~x) is a convex combination of

the non-zero Ψi
fp,Π,~c(~x) values, then the bound

∑
Π(u)=iAu[Ψi

f,Π,~c(~x)]u +a ≤
∑

Π(u)=iBu[Ψi
f,Π,~c(~x)]u + b

holds for the overall function f as well.

Proof. This is clear from the definition of a convex combination. A linear bound which holds over some
set of points will hold for any convex combination of them, and we have explicitly stated that Ψ values
of ~0, where the bound may not hold, are excluded from the combination.

Depending on the structure of our objective function f , this lemma can be incredibly powerful or
completely useless. Its utility depends entirely on what we can know about the Ψ-values of the com-
ponent functions. Here we will consider the case of extreme usefulness, in which our f is an increasing
posynomial. We know from Equation (18) that Ψ̂ of each component monomial mp is a fixed point,
making the codomain of Ψi

f,Π,~c some subset of a higher-dimensional simplex between these points!
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As a result of this insight, we can place bounds between linear combinations of variables from the
same variable group simply by looking at their “multiplicity fractions” in the component monomials.
More formally, we have the following lemma:

Lemma 2.12. Let ~A and ~B be vectors of coefficients and let a and b be constants, such that the bound∑
Π(u)=iAu

ciyp,u∑
Π(v)=i yp,v

+a ≤
∑

Π(u)=iBu
ciyp,u∑

Π(v)=i yp,v
+b holds over some neighborhood S, for component

monomials mp of an increasing monomial function f =
∑

pmp. If the optimization of f with constraint
set given by Π, ~c is i-consistent over S, then the bound

∑
Π(u)=iAuxu + a ≤

∑
Π(u)=iBuxu + b holds for

any stationary point ~x in S.

Proof. This is a simple application of Lemmas 2.3 and 2.11 and Equation (18). Since f is i-consistent, it
satisfies the convex combination property, and since its components are monomials their Ψ̂ values yield
the substitution above. Therefore, by Lemma 2.11, the image of S under Ψi

f,Π,~c obeys the bound given,
and any stationary point within S must be a fixed point within this image.

These bounds are already quite useful, but so far we’ve only been putting constraints on the stationary
points of our optimization. We may be able to gain more analytical power by considering not just the
first derivatives of f , but also the second, in order to place constraints on the actual maxima of f . Of
course these second derivatives will be quite complex for arbitrary f , and will tend not to give much
useful information. However, if we place one more modest restriction on an increasing posynomial f , a
very powerful constraint suddenly emerges:

Lemma 2.13. Let xu and xv be two variables such that Π(u) = Π(v) = i, for the constraint partition Π
and let f be an increasing posynomial. If for all p, yp,u, yp,v 6∈ (0, 1) and one or both of yp,u, yp,v is zero,
then there exists a global maximum for the optimization f ,Π,~c such that at least one of the variables xu
or xv is zero.

Proof. First, note that since all variables and coefficients are non-negative and no exponents for xu or

xv are in the open interval (0, 1), both ∂2f
∂x2

u
and ∂2f

∂x2
v

are non-negative. Additionally, since no single

monomial contains both xu and xv, ∂2f
∂xu∂xv

is exactly zero. We see then that the value ( ∂
∂xu
− ∂

∂xv
)2f =

( ∂
∂xv
− ∂

∂xu
)2f = ∂2f

∂x2
u
− 2 ∂2f

∂xu∂xv
+ ∂2f

∂x2
v

is non-negative. For any stationary point ~x where both xu and xv

are non-zero, we claim that at one or both of the points ~x+ = ~x+ xv(~eu − ~ev) or ~x− = ~x+ xu(~ev − ~eu),
f takes on a value greater than or equal to its value f(~x) at ~x. If this claim holds, then we can “drop a
variable” from any global maximum with non-zero xu and xv simply by moving to one of these points
as appropriate, noting that ~x+

v = ~x−u = 0. But we have already proven above that f is either linear or
concave up along the ~eu − ~ev direction, so the claim will certainly hold.

We note that a polynomial f with positive coefficients satisfies the requirements of the above lemma,
meaning that for a broad class of practical optimization problems we can determine variable combinations
which we simply need not consider.
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3 Discrete Analysis

Our work so far has focused entirely on the continuous setting, building up a framework for analyzing
the most general classes of objective functions that we can wrangle into a useful theory. However, the
bounds we’ve derived in the general case require our optimization to be highly structured in order to
best apply them. When considering the case of an arbitrary function, it is highly unlikely that such
helpful structure exists, and we can always come up with a degenerate case where the lemmas we’ve
proven above simply aren’t helpful at all. But this is really something to be expected; the more general
the problem, the harder it is to completely solve it. In order to make use of what we’ve proven so far, we
need discrete, problem-specific knowledge. The more we can constrain what a problem instance might
look like, the more constraints we can place on the solutions to that problem. Thus having spent the
previous section doing a continuous analysis of a general problem, we will now refocus our attention on
performing a discrete analysis of a specific problem. It is in this duality that real solutions can be found.
The continuous world can teach us how to exploit structure, but applying this knowledge requires us to
explore that structure using the power of discrete math.

3.1 Haplotype Phasing Problem

The main problem we have chosen to analyze is a biological problem called haplotype phasing, both for
its importance in practical applications and its role in inspiring much of the work we’ve already done.
The continuous theory we’ve already built up began as a series of gradually loosening generalizations
around this problem, in an attempt to see which structural properties might prove most fruitful. Most
of the remainder of this work will be dedicated to a concrete analysis of the haplotype phasing problem
and its properties.

The motivation for the phasing problem requires a brief primer on a few biological concepts. Humans
are diploid organisms, meaning that in every cell we have two copies of each strand of DNA, one from
each parent. Typically we make the infinite sites assumption, which states that there is probability zero
of more than one point mutation ever affecting a particular DNA position. In other words, although
every strand of DNA is made up of four possible bases, we assume that only two, the so-called major
and minor alleles, are ever present at a particular location. These alleles are thus representable by zeros
and ones, respectively, making each DNA strand a bit string in our representation.

In order to do many important statistical analyses, we require knowledge of the individual bit strings
for both copies of a DNA strand, which are called the haplotypes. But in practice, it is very difficult to
sequence these strands separately, and so instead DNA sequencing typically outputs a genotype, which
we can represent as the position-wise sum of the two component haplotypes (zero for two copies of the
major allele, two for two copies of the minor allele, and one for one of each). Given a multiset of n
genotypes of length m, we then wish to output frequencies for each of the 2m correctly-sized haplotypes
such that the likelihood of observing the given genotypes is maximized. This particular formulation of
the problem is called maximum likelihood haplotype phasing [3]. There are many other formulations of
the problem ([3] gives a survey), including the so-called parsimony phasing problem studied in [4] where
the goal is to explain the genotype sample using as few distinct haplotypes as possible. However, we will
constrain ourselves to the maximum likelihood setting in this work.

Unfortunately, an unpublished manuscript by Hubbel gave a proof that efficiently solving this prob-
lem, or more specifically solving for the actual likelihood which the best set of frequencies yields, would
allow to efficiently solve the NP-Complete Max-Clique problem. Thus it is considered unlikely that this
problem can be efficiently solved in the worst case, which is to be expected since we are trying to solve
for a maximizing assignment of exponentially many variables. However, biology is inherently messy
and stochastic, and it is unlikely that the worst possible case will need to be solved in practice. In
particular, Hubbel’s proof involved representing a general graph as a phasing problem, which introduces
many structural properties that a random problem instance is unlikely to have. It is our hope that, in
the average case, it becomes possible to limit both the size of the good solutions and the complexity of
finding them.

To show that our continuous results apply, we must first define the phasing problem as the maxi-
mization of an objective function subject to some fixed-sum constraints on a partition of its variables:

Definition: Maximum Likelihood Haplotype Phasing Let G be an n-by−m matrix representing
our unique input genotypes, such that Gij is the jth position from the ith unique genotype. Let ~p be a
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vector of n positive integers such that pi is the number of times the ith unique genotype appear in our
genotype sample. Let xu be the frequency of the haplotype represented by the length-m binary string
u. Then our problem is defined as follows:

c1 = c = 1

Π(u) = 1

gi(~x) =

1m∑
u=0m

1m∑
v=0m

xuxv

m∏
j=1

1(uj + vj = Gij) (23)

f(~x) =

n∏
i=1

gi(~x)pi (24)

where 0m is the length-m string of all zeros, and analogously for 1m. Here gi gives the likelihood of a
particular genotype, and our overall objective is to maximize their product.

Note that if a pair xuxv appears in gi, then xuxs will not be in gi for any other s 6= v, and xuxv will
not be in gj for any other j 6= i. In other words, a particular haplotype only “mates” at most once in a
genotype, and a particular pair of haplotypes only “mate” in up to one unique genotype. We call each
such pair an “explanation,” as it is a pair of haplotypes which potentially explains the given genotype.

3.2 Ψ is EM for Phasing

Since there is only one variable partition for the phasing problem, we will drop the leading index for
definitions such as i-radial and i-consistent, saying “radial” instead of “1-radial’,’ etc. We can then start
building the Ψ-mapping for f , in order to see what structure we may be able to exploit.

We first note that each genotype likelihood gi is a positive 2-homogeneous increasing posynomial, making
it consistent wherever it (and therefore f) is non-zero. Thus we can apply Equation (22) to get:

Ψ̂gi =
1

2gi(~x)

1m∑
u=0m

1m∑
v=0m

xuxv(~eu + ~ev)

m∏
j=1

1(uj + vj = Gij) (25)

We also see that f itself is a positive 2n-homogeneous product of these 2-homogeneous functions, and
therefore that it satisfies the conditions of Lemma 2.8. This means that f is also consistent whenever it
is non-zero, and so we can apply Equation (17) to get:

Ψ̂f =
1

2n

n∑
i=1

2piΨgi

=
1

2n

n∑
i=1

pi
gi(~x)

1m∑
u=0m

1m∑
v=0m

xuxv(~eu + ~ev)

m∏
j=1

1(uj + vj = Gij) (26)

This is exactly the iterative update formula used by the Expectation Maximization algorithm for phas-
ing! This may not seem particularly exciting at first, as we’ve rederived an algorithm which is already
extremely well-known. But the reader should consider the fact that, unlike the classical derivation of
EM, this one was done completely agnostic to the language of probability. All we used to reach this point
was some simple calculus and a few clever substitutions. This suggests that we may be able to gain some
new insight into exactly how, why, and how well EM performs on the phasing problem. Such intuition
often paves the way for new methods and algorithms which would not otherwise have been considered.

3.3 Absolute Frequency Bounds

Recall from Lemma 2.12 that we can translate linear bounds on the ”multiplicity fractions“ of variables
into linear bounds on the variables themselves. One consequence of this is that we can place loose absolute
bounds on each haplotype frequency according to its minimum and maximum possible multiplicity:
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Definition: Haplotype Degree For a haplotype represented by u ∈ {0, 1}m, its ”degree“ du is given
as

du =
∑
i

pi

1m∑
v=0m

(1 + 1(u = v))

In other words, the degree of a haplotype is the number of (not-necessarily unique) genotypes it has a
mate in, where self-mating is counted twice.

Definition: Haplotype Necessity Let A be the set of all 1 ≤ i ≤ n such that there do not exist
distinct 1 ≤ j1 6= j2 ≤ m with Gij1 = Gij2 = 1. In other words, A is the set of indices for genotypes
which have at most one heterozygous position. Then the the ”necessity“ tu of haplotype u is given as

du =
∑
i∈A

pi

1m∑
v=0m

(1 + 1(u = v))

In other words, the necessity of a haplotype is its degree if we ignore genotypes with multiple heterozygous
positions.

Lemma 3.1. If ~x is a stationary point of the phasing optimization such that f(~x) 6= 0, then tu
2n ≤ xu ≤

du

2n , for all u ∈ {0, 1}m.

Proof. Consider the value [Ψ̂gi ]u as given by Equation (25):

• If u does not have a mate in the ith genotype, meaning that xu does not appear in gi at all, then
[Ψ̂gi ]u is exactly zero.

• If u has a mate v 6= u in the ith genotype, meaning that xu appears in the pair xuxv in gi, then
0 ≤ [Ψ̂gi ]u ≤ 1

2 . These bounds follow by applying the argument from Lemma 2.12 and noting that
the multiplicity fraction of xu in gi is between 0 and 1

2 , inclusive. In addition, if this genotype has
only one heterozygous position, meaning that gi(~x) = 2xuxv, then this lower bound is raised to 1

2 .

• If u mates with itself in the ith genotype, meaning that gi(~x) = x2
u, then [Ψ̂gi ]u is exactly 1, the

fixed multiplicity fraction of xu.

But Equation (26) gives us that [Ψ̂f ]u, and therefore xu at a non-zero stationary point, is simply the

average of these [Ψ̂gi ]u values, weighted by the genotype multiplicities pi. This then gives us exactly the
bounds described.

Of course, most phasing problems will have all the haplotype necessity values tu as zeros, and the
upper bound based on degree is typically quite loose as well. Nevertheless, the behavior of these bounds
is quite intuitive, so it is satisfying to see a rigorous proof that they hold.

3.4 Mating Graph Analysis

In order to obtain better insights into the phasing problem, we’ll have to delve deeper into its structure
than simple absolute variable counts. We need to start taking into account which haplotypes mates with
each other and where, and what if any general structure lies beneath these connections. To that end, we
define and analyze the mating graph in order to better understand and exploit these more fundamental
structural constraints.

Definition: Mating Graph The mating graph MG for genotype matrix G has a vertex for each hap-
lotype (V = {0, 1}m) and a labeled edge between two haplotypes for the genotype in which they “mate,”
if any. In other words, an edge (u, v) with label i is in the edge set E if and only if uj + vj = Gij , for all
1 ≤ j ≤ m. Note that since the rows of G are unique, there can be at most one such i for any u and v.

Having defined this graph, we’d like to get an intuitive sense of what it looks like. Two important
properties, which will become especially crucial in a later lemma, are what the cycles and connected
components of this graph look like. As it turns out, these properties are often constrained in very
interesting ways. In order to explore them, however, it will be helpful to define a more succinct way of
determining which edges might be in the mating graph:
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Definition: Transition Matrix Let G′ be a matrix such that G′ij = gij mod 2. We define the transi-
tion matrix T to be the matrix containing the unique non-zero rows of G′.

Lemma 3.2. If the haplotype u mates with a distinct haplotype v 6= u in the ith genotype, then the form
of u⊕ v form a row of the transition matrix T , where ⊕ is the XOR operator.

Proof. If u mates with v in the ith haplotype, then it must be by definition that Gij = uj + vj , for
all 1 ≤ j ≤ m, and since u 6= v we know that Gij′ = 1 for at least one 1 ≤ j′ ≤ m. As a result,
Gij′ mod 2 6= 0, and so one of the rows of T must be the ith row of G, elementwise modulo 2. So we
have for some ` that Ti` = uj + vj mod 2 for all j, or in other words that Ti` = uj ⊕ vj for all j.

From here, we can prove two very interesting facts about the mating graph:

Lemma 3.3. Let r be the rank of the transition matrix T over Z2, the integers modulo two. In other
words, r is the number of linearly independent rows of T . Then the number of connected components in
the mating graph is at least 2m−r.

Proof. From Lemma 3.2 we know that haplotypes u and v can only be neighbors in the mating graph
if the bits of u ⊕ v form a row of the transition matrix T . This is not a sufficient condition, but it is a
necessary one. We then see that haplotypes s and t can only be connected if there exists some linear
combination of rows of T which together combine to s ⊕ t. Since we’re working modulo 2, the only
effective coefficients are zero or one, and so the set of unique linear combinations is exactly the power
set of the independent rows. Thus the size of this set, 2r, is an upper bound on the size of any connected
component of MG. Since every one of the 2m haplotypes is a vertex in this graph, we therefore have at
least 2m−r connected components.

Lemma 3.4. If the transition matrix T has linearly independent rows, then the mating graph has no
odd cycles.

Proof. By an application of the argument from Lemma 3.3, we see that there can be a path from a
haplotype u back to itself only if there is some linear combination of rows of T which sum to the zero
vector. Of course, we can trivially do this by using non-zero even coefficients for some subset of the
rows, but such a cycle would by necessity be even in length. The only way to have an odd cycle would
be to have some odd-sized subset of the rows of T sum to the zero vector, which would imply linear
dependence.

Although we did not have time to explore further, these structural regularities within the mating
graph are entirely new insights, and look like very promising topics for future work. The latter proof
in particular may allow for the derivation of an average-case sparsity condition on the mating graph,
showing in general that it has this regular structure except in very rare cases. We note in particular that
if the condition for Lemma 3.4 holds, then every connected component of the graph is bipartite. This
will become a very useful fact by the end of this section.

In the mean time, of course, we’d also like to develop some bounds not just on the abstract structure
of the graph but on the frequencies themselves. Before doing so, however, we’d like to eliminate self-
loops from our analysis. By the logic of Lemma 3.1 they give a constant rather than variable frequency
contribution, and they tend to complicate graph properties unnecessarily. We’d also like to imbue the
graph with information about the current haplotype frequencies, in order to better unify some of the
upcoming analyses. Thus we make the following definitions:

Definition: Mated Frequency We define the mated frequency x̄u of a haplotype u to be xu −∑
i pi
∑1m

v=0m
1(u=v)

n . In other words, the mated frequency is just the regular frequency if we neglect
the contributions of self-mating.

Definition: Mate Frequency Graph We define the mate frequency graph M ′G(~x) to be the original
mating graph MG with self-loops removed and each vertex u augmented by assigning it a value equal to
the mated frequency x̄u at ~x.

Lemma 3.5. If ~x is a stationary point of the phasing optimization such that f(~x) 6= 0, then each vertex in
the mate frequency graph M ′G(~x) has a value less than or equal to the total value of its non-self neighbors.
In other words, a haplotype’s mated frequency is upper bounded by the sum of its distinct mates’ mated
frequencies.
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Proof. Rather than consider f in its factored form as we have so far, we instead think of it as a single
sum of monomials of degree 2n. We see that each such monomial is a product of variable pairs from
the gi functions, and since there is only one such pair for any self-mating genotypes, each such pair will
be in every monomial. Among the other pairs, each instance of xu must by definition be accompanied
by an instance of one of its potential mates xv, which in turn must not come from a self-mating. If
we let st be the number of self-matings for haplotype t, then we have that in jth monomial, yj,u −
2su ≤

∑
v∈mates(u)(yj,v − 2sv), for all j. Diving through by 2n and applying Lemma 2.12, we see that

xu − su
n ≤

∑
v∈mates(u)(xv − 2sv), and therefore that x̄u ≤

∑
v∈mates(u) x̄v.

Lemma 3.6. If ~x is a stationary point of the phasing optimization such that f(~x) 6= 0 and a connected
component C of the mate frequency graph M ′G(~x) can be bipartitioned into two vertex sets B1 and B2

(neglecting self-loops), then the sum of the vertex values over B1 is exactly equal to the sum of the vertex
values over B2. In other words, the total mated frequency of haplotypes on one side of the bipartition is
exactly the same as the total for the other side.

Proof. The argument is similar to that of Lemma 3.5. Again we think of f in its fully-multiplied form.
But this time we note that, neglecting the self-mating pairs, each instance of an xu for some u ∈ B1 is
accompanied by an instance of some xv for v ∈ B2, and the converse also holds! So we have both that∑

u∈B1
(yj,u − 2su) ≤

∑
v∈B2

(yj,v − 2sv), and vice versa, for all j. Together with Lemma 2.12, this gives
us that

∑
u∈B1

x̄u =
∑

v∈B2
x̄v.

Combining this lemma with Lemmas 3.3 and 3.4, we see that if the transition matrix is indeed linearly
independent we have at least 2m−n bipartite connected components, all of which with equal halves. These
constraints could prove very helpful in the formulation of an approximate or exact algorithm for phasing,
and are certainly a topic we are interested in pursuing. For the time being, though, they’re just incredibly
interesting!

3.5 Singleton Exclusion

So far we’ve derived a lot of bounds on frequencies, but we have yet to consider the question of which
haplotypes we can simply leave out. This is perhaps the most important question of all, because there are
exponentially many variables and we’d like to eliminate as many of them as we can before performing any
computation on them. In the phasing problem the most likely candidates for exclusion are the so-called
”singletons,“ i.e. haplotypes which appear in only a single genotype. Previous lemmas tell us that such
haplotypes have low upper bounds on their frequencies, and that they must have frequency no greater
than that of their single mate, and so they seem like relatively safe candidates for exclusion.

Definition: Singleton Haplotype A haplotype u is a singleton if it has only one neighbor in the
mating graph, and it is not a self-loop.

Lemma 3.7. Let u and v be two singleton haplotypes which are mated together in the ith genotype. In
other words, the edge (u, v) is in the mating graph with label i, and neither u nor v has any other incident
edges that aren’t self-loops. If any other pair of haplotypes s and t also mate in the ith haplotype, meaning
that (s, t) is in the mating graph with label i, then there exists a global maximum for this phasing problem
such that xu = xv = 0.

Proof. Given any point ~x where xu or xv is non-zero, we will construct a point ~x∗ such that f( ~x∗) ≥ f(~x),
but x∗u = x∗v = 0. To do this, we simply set x∗s = xs + xu, x∗t = xt + xv, and x∗u = x∗v = 0. We then note
that

2x∗sx
∗
t + 2x∗ux

∗
v = 2(xs + xu)(xt + xv)

= 2xsxt + 2xsxu + 2xtxv + 2xuxv

≥ 2xsxt + 2xuxv

and so our new ~x∗ yields an equal or improved value for gi. Since u and v are singletons, reducing them
does not reduce any other gj , while increasing xs and xt might. So dropping this singleton pair can only
improve the overall likelihood.
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This lemma in particular is quite powerful, as it allows us to proactively drop all singleton-singleton
pairings from consideration, no questions asked. While this thesis is intended to be a purely theoretical
treatment of phasing and optimization, this is one of the results which shows the most potential for
future practical work on the haplotype phasing problem.

We can do even better than just dropping singleton-singleton pairs, though. In fact, we can get rid
of most if not all of the singleton haplotypes:

Lemma 3.8. Let u and v be two singleton haplotypes which mate with s and t, respectively, in the ith
genotype. In other words, the edges (u, s) and (v, t) are in the mating graph with label i, and there are
no other edges incident on u or v. Then there exists a global maximum for this phasing problem where
one or both of xu or xv are zero.

Proof. The proof is similar to the one for Lemma 3.7. Given any point ~x where neither xu nor xv are
zero, we will construct a point ~x∗ such that f( ~x∗) ≥ f(~x), but xu or xv is zero. To do this, we simply
set x∗u = xu + xv and x∗v = 0 if xs ≥ xt, or x∗v = xu + xv and x∗u = 0 otherwise. We then see that
2x∗ux

∗
s +2x∗vx

∗
t = 2(xu +xv) max(xs, xt) ≥ 2xuxs +2xvxt, and so our new ~x∗ yields an equal or improved

value for gi. Since u and v are singletons, reducing them does not reduce any other gj , and no other
variables are changed by this transformation. So dropping one of the singletons can only improve the
overall likelihood.

This lemma has the potential to greatly reduce the number of haplotypes we must consider, but there
is an important caveat that we have to keep in mind. Specifically, although this lemma tells us that we
need not use more than one singleton-based explanation per genotype, we don’t know which, if any, of
those explanations we might have to preserve. So we need not consider using arbitrary subsets of such
explanations anymore, but we still must consider the possibility that any single one of them might be
non-zero. It is only those explanations which are made up of two singletons that we can safely remove
with impunity.

19



4 Conclusion

By first generalizing and then slowly re-narrowing our problem domain, we have managed to discover a
set of properties and a corresponding theoretical framework which has yielded new insights into a large
class of continuous optimizations. Rather than focusing on finding a solution, we first took a step back
and explored which problem details actually mattered, and which we could leave to vary freely. In this
way, we managed to preserve maximum generality from the start, learning a great deal about which
types of specificity we can exploit and how to do so.

We then turned our attention from this continuous analysis to an in-depth discrete analysis of the
haplotype phasing problem, and found that it fit our model so well that we actually re-derived the EM
algorithm! This derivation, however, was built from first principles, and so we were able to gain deep
insights into the phasing problem which are not apparent at face value from the EM formula. We discov-
ered surprisingly regular and disconnected structure in the haplotype mating graph, opening the door
to future work on average-case sparsity conditions for the phasing problem. Finally, we derived a pair
of rules which have the potential to eliminate the vast majority of variables from an average phasing
problem. How best to exploit these rules in a practical setting is again a target for future work.

Overall, we were able to derive an impressive array of new results in both the continuous and dis-
crete settings, with the potential to go even broader with our continuous results and deeper with our
discrete ones in upcoming research.
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