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Abstract

Lossy compression in databases can yield better compression ratios
than lossless compression in general, yet is rarely used due to the concern
of losing data. However, with the rise of big data, lossy compression has
become acceptable for many uses, analytics databases being one of them.
Semantic compression, one form of lossy compression, uses associations
within the data to compress the data rather than blindly compressing the
database as if it was one large file. In column-wise semantic compression,
columns are compressed based on their associations with other columns
by using predictive models. These predictive models could be used for
more than just bulk decompression, if the query engine knows of the
models. The models have an idea of the distribution of the data, which
the query engine is free to use. Columns can be selectively decompressed,
and a graph between models can be created to model the depth of each
model, or how many other models it depends on. In this way, models can
be adjusted in a way such that the most commonly used columns can be
kept uncompressed, and the least used columns can be kept compressed
more deeply than the other columns. A proof-of-concept program was
used to test these notions, but future work involves implementing this in
a real database system to see how this works in practice.
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1 introduction

Compression yields the obvious improvement of reducing the amount of
storage space required. Compression can also improve performance by
reducing the amount of IO required to fetch data from storage, whether it be
disk IO or network IO. Today, network and disk IO tend to be bottlenecks
for most computer systems far more often than CPU limitations, given how
CPU performance has grown at a much faster rate than network or disk
transfer rates. Lossless compression is the more commonly chosen type of
compression, for the sake of not losing data. However, now that massive
amounts of data are being stored, regardless of their usefulness, using lossy
compression seems like a reasonable trade-off, to sacrifice some accuracy
in return for improved compression and performance. An example of a
particular scenario where this applies is a database used for analytics, where
only approximate values are required.

Semantic compression, a type of lossy compression, is a relatively newer
idea. Semantic compression uses relationships within the data to compress
it, rather than regarding the database as a file that needs to be compressed.
Semantic compression can be done in a row-based manner, which involves
clustering together rows with a bound amount of variation, or a column-
based manner, which involves removing columns that can be predicted using
other columns and storing any exceptions that exceed a certain error bound
separately. While row-wise semantic compression in general shows better
compression ratios, column-wise compression has its own advantages. Here
these advantages are covered, along with some experimental results using a
prototype compression/decompression program.

2 related work on database compression

Different lossless compression methods have been used for databases. The
use of gzip and other traditional lossless compression methods in databases
is fairly straightforward. More specialized lossless compression techniques
can be used, however. Abadi et al. [1] use different lossless compression
methods on a column-by-column basis, using methods such as dictionary en-
coding and run-length encoding. However, these methods were implemented
in C-Store, which is a column-oriented DBMS. While using a system such as
C-Store could certainly make column-wise semantic compression easier to
use, the methods described there do not adapt easily to row-oriented DBMS
as well (run-length encoding, for example).

Fascicles [5] is one of the earlier methods developed for semantic com-
pression. This method performs row-wise compression, finding groups of
rows that have a limited amount of variation. Spartan [3] combines both
of the standard semantic compression approaches, first classifying columns
using decision trees then clustering the resulting rows to achieve greater
compression. Spartan was shown to achieve better compression ratios than
gzip and fascicles on selected datasets. ItCompress [6] takes the approach of
Fascicles but improves the algorithm and method enough (applying the row-
wise compression algorithm iteratively) that it achieves better compression
ratios than even Spartan. While ItCompress achieves a better compression
ratio than Spartan, Spartan’s usage of compression in a more transparent
manner makes it a more attractive choice for integration into a widely used
DBMS. This transparency can be useful, as the query engine can take these
into account when running queries, and using these cleverly could yield
significant performance improvements.

The basic model for column-wise compression used by Spartan is the
same one used here. First, columns that can be compressed must be found
somehow; Spartan uses Bayesian networks to achieve this. Next, decision
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trees are built for every column that can be compressed. To improve perfor-
mance, these trees can be built using some representative sample of the data
rather than the entire dataset. Finally, the number of columns in the dataset is
compressed, keeping track of any exceptions that exceed the error threshold,
so that all that needs to be stored are the models, the uncompressed columns,
and the exceptions.

3 compression

Column-wise compression can be applied to database systems fairly simply.
A predictive model needs to be trained to classify the column to be com-
pressed. Once the model is trained, it then needs to be applied to the column
in question. If the model shows a high enough predictive accuracy, then that
column can be completely removed from the database, otherwise the column
can be kept entirely and the model can be discarded. Error bounds can
be placed to limit the loss from this lossy compression, on both numerical
values and nominal values. Error bounds on numerical values can be kept
by calculating how different the predicted value is from the original value.
Of course, there is no such metric for nominal values, so instead the error
bound can be used to not compress columns whose predictive accuracy has
an error greater than that error bound. So error bounds are applied on a
per-case basis for numerical values and on a per-column basis for nominal
values.

For both numeric and nominal columns, exception lists can be stored in
order to help achieve compression for attributes whose predictive models
do not have the accuracy required to compress a particular column. When a
column is being compressed, any values for whom the predictive model has
too high of an error can have their original values stored elsewhere, so that
the predictive model can use that value instead of the predicted value when
that particular row is decompressed. This way, the error bound is maintained
yet the column can still be compressed, while maintaining some bounds on
the total error that can be observed. Instead of classifying nominal values on
a per-column basis, they could be compressed by simply storing exceptions
for any invalid predictions, although this may increase the total storage cost
if there are many invalid predictions.

However, there is a potential problem here. The error bound is maintained
for each column, but if one predictive model depends on another predictive
model, it is possible for errors to propagate between models. Figure 1 shows
an example of this. This could cause inaccuracies greater than the guaranteed
error bound. This problem is not easily surmountable, although there are
various workarounds that could help alleviate the issue. One possible way
to work around this is to make sure to train the predictive models on what
was compressed of the dataset so far, forcing the new models to be built
and error-checked using the values of the predictive models it depends on,
if any. However, this would increase the performance cost of compression
significantly, either requiring the intermediate compressed values to be stored
or for the decompressed values to be rederived at every step of compression.
Another possible workaround may be to limit the depth of the models, so
that errors can only be propagated so far, although this can only have limited
impact.

The prototype shows that compression results are actually quite decent
for some datasets, given that only off-the-shelf classifiers were used, rather
than specialized models (as in Spartan [3]). One limitation of column-wise
semantic compression is that compression ratios may vary greatly from
dataset to dataset, with some datasets showing high levels of compression
and others showing none or nearly none. Another limitation is that, to
be integrated into a DBMS, a sample of the data must be available before
anything is compressed. Since the format of the table is not being changed,
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Row Visitors Clicks Subscribes
1 1000 500 51

2 1200 600 60

3 1400 700 65

4 2000 950 90

5 2400 1600 162

6 3300 2200 220

7 3500 2300 233

Subscribes

: Clicks ∗ 0.1

Clicks

Visitors ≤ 2400 : Visitors ∗ 0.5
Visitors > 2400 : Visitors ∗ 0.667

Applying these rules to row 3, where both Clicks and Subscribes are
compressed:

Visitors = 2000→ Clicks = 1000→ Subscribes = 100

The Subscribes column now exceeds the error bound of (90 ∗ .95, 90 ∗ 1.05),
although either model used on its own does not cause this issue.

Figure 1: Example of error propagation.

at least from the user’s point of view, the entire storage process could happen
offline, to improve performance, rather than happening synchronously.

It is interesting to note that the order that the columns are compressed
in shows remarkably little effect on the compression ratio achieved. It
could have been possible that in order to compress some columns certain
other columns would have to be uncompressed. However, the associations
between the columns tend to work out in a way such that the order in
which compression is done does not matter. Empirical evidence shows that
although there is some variation when the order of compression is varied,
the overall compression ratio does not change by much.

4 decompression

Column-wise compression differs from most other methods of compression
in the fact that the entire dataset, or an entire row, does not have to be decom-
pressed at once in order to use the dataset. If only uncompressed columns
need to be used, then no decompression is necessary. If compressed columns
do need to be used, only the columns that need to be used and any other
columns required by the predictive models for the desired columns need to
be decompressed. The speed gained from this would help performance, even
though decompression is relatively fast in the first place, as the prototype
was able to show. Decompression took a matter of seconds for most of the
datasets used, although a significant portion of that time is due to the latency
of reading from and writing to the file system one entry at a time, which is
simply a side-effect of how the program works. Decompression is far faster
than compression, which is an acceptable trade-off for most database uses,
especially if offline compression is done. If custom decision trees were built,
it would be possible to create a compiled version of them, so to speak, for
the sole purpose of decompression, especially since the decision trees are
equivalent to a series of if statements.
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5 query integration

One advantage of using decision trees is that these models are transparent
and can be understood by the query engine. Figure 2 shows a few example
decision trees, which are easily understandable at first glance. The decision
trees below are the string representation of the decision tree objects. If a
query engine with knowledge of Soil Type 25’s decision tree was asked a
simple SELECT query with a WHERE clause like this (WHERE Soil Type
25 = 1), then it could instantly respond to that query with a blank response,
since it knows that there are no cases where Soil Type 25 is equal to 1, at
least within the error bound currently in use. Each decision tree also holds
distribution information about the column it is predicting. The numbers in
the brackets and parenthesis for each line show the number of correctly and
incorrectly classified instances for that leaf from the training set (parenthesis)
and the pruning set (brackets). The query engine could use this distribution
information when comparing different query execution plans. For example,
the query engine can know that Wilderness Area 1 has a value of 1 for the
majority of rows, which could help when planning a query with a join, for
example. The decision tree stores these values to calculate information gain,
which is what it is maximizing, but it turns out that it could also be helpful
for the query engine.

REPTree for Wilderness Area 1

Model training instances = 4,999

Wilderness Area 3 = 0

| Wilderness Area 4 = 0

| | Wilderness Area 2 = 0 : 1 (3548/0) [1775/0]
| | Wilderness Area 2 = 1 : 0 (21/0) [19/0]
| Wilderness Area 4 = 1 : 0 (181/0) [79/0]
Wilderness Area 3 = 1 : 0 (249/0) [127/0]

REPTree for Soil Type 25

Model training instances = 4,999

: 0 (3999/0) [2000/0]

Figure 2: Example of some decision trees from the Forest Cover dataset.
The numbers around the slashes denote the number of correctly/incorrectly
classified attributes for the training set (parenthesis) and the pruning set
(brackets)

The query engine can learn the associations between the models and
decide which models need to be decompressed for each particular query. An
easy way to represent this is in a graph, where nodes represent columns and
have directed edges to nodes that are required for their predictive models. In
such a graph, nodes with no outgoing edges have no dependencies, and are
either uncompressed or can be decompressed directly. All other nodes have
some number of other columns that they depend on, and accessing them
will have a higher performance cost. This graph can be used by the query
engine to represent costs for decompressing each attribute that it can take
into account when planning out query execution.

In addition to being used in query integration, the graph of dependencies
can also be changed depending on which columns are used most frequently.
The most accessed columns should be kept uncompressed, since that will
be faster. The least accessed columns can be left at the top of the model
dependency graph, where they will depend on many other columns and
models. The depth of predictive models can be controlled by limiting the
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columns that the predictive model can use. This way, the costs for each
column can be modified in a way that is proportional to the amount each
column is used. As stated earlier, the order of compression does not affect
the final compression ratio by much, so reordering the predictive models
should not reduce the amount of compression that can be achieved, unless
of course some columns are kept uncompressed for speed.

6 prototype and results

6.1 Datasets

forest-cover (kdd.ics.uci.edu/databases/covertype/) This dataset con-
tains forest cover data for 30 x 30 meter cells obtained from US Forest
Service (USFS) Region 2 Resource Information System (RIS) data. It
contains 10 numeric attributes, 44 binary attributes, and 1 nominal
attribute.

corel (kdd.ics.uci.edu/databases/CorelFeatures/) This dataset con-
tains color histograms for image features extracted from a Corel image
collection. It contains an ID attribute and 32 numeric attributes.

us census bureau (http://www.census.gov/cps/data/) This dataset, ob-
tained from the DataFerret tool, contains household, demographic, and
geographic data from March 2013. It contains 2 ID attributes and 49

numeric attributes. Some of the numeric attributes could be treated as
nominal attributes, as they have a finite range of values that correspond
to some predefined set of values. For example, a numeric attribute is
used to represent states, rather than strings. All attributes are treated
as numeric attributes here.

sdss (http://www.sdss.org/) This Sloan Digital Sky Survey dataset was
obtained from surveys of the sky using a dedicated 2.5-meter telescope
at Apache Point Observatory, New Mexico that collected a wide vari-
ety of measurements. It consists of an ID attribute and 508 numeric
attributes. Only a subset of the data was used here, rather than the
entire dataset, which is enormous.

tpc-h (http://www.tpc.org/tpch/) The traditional database benchmark,
the TPC-H dataset, was also used here, although only the parts table
was used. The parts table contains an ID attribute, a string attribute, 2

numeric attributes, and 5 nominal attributes.

6.2 Compression Prototype

The program created to test these hypotheses and run experiments uses
classification algorithms from Weka and MOA, which are described further
below and have their source code freely available online. As depicted in
Figure 3, it takes as input either a dataset to compress in ARFF format, or
a compressed dataset to be decompressed. The ARFF file format, used for
input, is simply a CSV with a header that details the type of each attribute and
also details for nominal attributes all the possible values. The classification
packages will continue to work even as new values to nominal attributes are
added, although old values may not be removed, so this is not a problem
for attributes that may have new categories added. The output format for
compression, which may be input to the program to be decompressed, is a
folder containing a CSV file with empty values for compressed attributes,
two header files, and the serialized decision tree models for all compressed
columns. The program’s output format can be input back into the program
and vice versa.

Compression is achieved one column at a time. Models are trained on
samples of the data and the error for every column is approximated on a
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Figure 3: Diagram of basic flow of prototype program.

larger sample of the data. The columns are then compressed individually in
order from the column with the least error to the column with the most error.
First, a model is trained on a sample of the data, then applied to the column.
If the error is low enough, then the column is compressed and all values of
the column that fit within the requested error bound are removed. Every
time a column is compressed, its values are no longer available for later
models to use when being trained. The models are serialized and output
along with the final data file.

Decompression is done in the opposite manner. The models, which are
not very large, are read into memory, then they are applied to each row in
the dataset in the opposite order they were applied in, to ensure that all the
columns the model depends on have been decompressed if necessary.

6.3 Predictive Models

Classifier models from the Weka package (http://www.cs.waikato.ac.nz/
ml/weka/) and from the MOA package (http://moa.cms.waikato.ac.nz/
details/) were used. The MOA package, an extension to Weka adapted for
on-line data, was used to make the program handle streaming data. Not
only is required to handle larger data sets, it also presents a more realistic
usage. Weka classifiers require the whole dataset to be given to the classifier
before it is constructed and are clearly impractical for any real usage in a
database system without the MOA extension.

The specific classifier models used from these packages were decision
trees, in specific the M5P, REPTree, and Hoeffding Tree classifiers. These
are all decision trees designed to be built quickly, at the cost of having
a decision tree that is not minimal. The Hoeffding Tree classifier (from
MOA) is a decision tree model that can be built incrementally. The REPTree
classifier (from Weka) is a decision tree classifier designed for speed, using
reduced error pruning. The M5P classifier (from Weka) builds a model
tree for numeric attributes that can outperform REPTree in some cases in
terms of accuracy. MOA provides a wrapper class that trains WEKA models
incrementally, which was used for all of the Weka models used. All three
implementations can be converted into a direct representation of the tree
easily. That is, the internals of the decision tree models can be viewed to see
how the tree was built.

Decision tree models were chosen over other types of classifiers, such
as neural networks and regression models, for their speed, transparency,
and ability to find complex relationships in data with multiple columns.
Neural networks are much slower than either of the decision tree models
presented above. They also function as black boxes, not allowing any insight
into the associations derived by the networks. Regression models are easier
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to interpret, but are not as good at finding complex associations in data
with multiple columns where there may be associations between multiple
attributes.

6.4 Compression Ratios

Figure 4 shows the compression ratios achieved across the five datasets
used as the error bound was varied from 0 to 10%. Compression ratio is
defined as the size of the compressed dataset divided by the size of the
uncompressed dataset, so lower compression ratios are better. The Census
dataset only showed notable compression ratios upon relaxation of the error
bound beyond zero, as did the Corel and SDSS datasets, and these three
datasets show improved compression ratios as the error bound is relaxed
further. The Forest Cover dataset shows good compression ratios from the
beginning, and those improve as the error bound is relaxed, although by
less with each step. Increasing the error bound from 5% to 10% shows
little increase in compression ratio. Finally, the parts table from the TPC-H
dataset shows constant compression, because only one column was able to
be compressed, and that was compressed with 0% error. These different
datasets are quite diverse, and it is easily seen that semantic compression
can perform better on some datasets than others.

Figure 4: Compression ratios across the five datasets used for different error
bounds.
• Compression ratio = (size of compressed database) / (size of uncom-
pressed database)

6.5 Compression Order

Figure 5 plots histograms of the number of columns compressed to certain
extents. This way, different orders of compression can be compared easily
to see how well each of them compresses the dataset. In all cases, there are
no significant effects on compression from the order chosen. Three different
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strategies were used to order columns for compression: compressing the
columns whose model showed the least error first, compressing columns
randomly, and compressing columns in increasing/decreasing order of model
complexity, where complexity is defined as the number of other columns a
model depends on. None of these three strategies seemed to significantly
improve the compression ratios achieved.

Figure 5: Histogram of per-column compression for trials compressing in
different orders, plotted as lines for easy comparison of different trials. Defi-
nition of trial types:
• Original (highlighted): columns compressed in order of decreasing pre-
dictive accuracy
• Trial #: columns compressed in random order
• Inc./Dec. Comp.: columns compressed in order of increasing/decreasing
complexity (where complexity is defined as the number of models the pre-
dictive model is dependent on)

7 conclusion

Column-wise semantic compression can be achieved in a straightforward
manner, and shows decent results even using off-the-shelf predictive models.
This method shows more promise in its ability to use these predictive models
to help the query engine make more educated decisions when planning
execution and calculating execution costs. If statistics are collected about how
often columns are used, the models can be tweaked to match the workload as
well. Since the models themselves contain information about the distribution
of the data, this could also be used when designing query execution plans.
Despite only requiring a light level of integration, this method can adapt
remarkably well and achieve notable performance improvements. However,
semantic compression is limited by the dataset being compressed, as some
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datasets may not show relationships between columns, although this tends
to be the exception rather than the common case.

8 future work

8.1 Topics to Investigate

The effect of compression order on the final compression ratios appeared
minimal, but the experiments run here could be supplemented. A trial using
a subset of data that is known to be strongly associated may help solidify
this claim. If the order of compression within this subset has no effect on the
final compression ratios, then it is safer to conclude that the order of com-
pression really does have no effect on compression ratios. Further modeling
and investigation into how to control the effects of error propagation may
also prove to be helpful, as well as other possible ways to integrate query
workload data into this scheme.

8.2 Possible Improvements

The prototype used here reflects the straightforward implementation of
column-wise semantic compression, but there are a number of places where
improvements could be used. These improvements could boost the advantage
of this form of compression relative to traditional compression methods or
row-wise compression methods, although of course there is nothing stopping
using these forms of compression together. Using specialized models would
serve to improve compression ratios and could decrease decompression
speeds. If models were able to predict the values of multiple columns at
once, then that could improve both accuracy and speed. Since many columns
could be related with one another, having models that could predict the
values of multiple attributes could predict multiple columns at a time, where
before only one could be predicted at a time.

Methods described from previous papers on database compression could
also be applied here. BlinkDB [2], a system that creates multiple samples to
allow users to specify accuracy or time constraints on queries, uses stratified
sampling to build its samples. Stratified sampling is used in place of uniform
sampling to ensure that a sample of the database contains values even from
the tails of the distribution. This could be used to train predictive models
here. This especially applies to numerical attributes, given that a model has
no way to predict a nominal value unless it has been trained on at least
one row with that value. Another method that could be used during query
execution was developed by Chen et al., called transient decompression. The
standard methods of decompression are eager decompression, where the
data is decompressed as soon as it is brought into memory, or lazy decom-
pression, where data is decompressed as required. Transient decompression
decompresses the data as it is being operated on, but keeps the compressed
version of the data and passes that along to the next operator instead of the
decompressed version. This was shown to improve performance for hashing
and sorting operations, and could also be useful here.

8.3 Database Implementation

The next step for future work is to implement simple column-wise semantic
compression in a database. It is possible to envision a naive user-level
implementation of this, which would involve simply by creating a function
that uses a predictive model to generate values for a column that has been
removed from a table. In Hive, this would correspond to a map task fairly
simply. Of course, this would require work on the user’s part to create
and use these models, but part of the attraction of column-wise semantic
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compression is how easy it seems to integrate it into a database system, even
one that is not column-oriented, so implementing this by integrating it into a
database system is the more helpful task, which should also give an idea of
how well this idea works in practice.

When implementing semantic compression in a database system, things
to keep note of would include: the amount of work required to transparently
integrate this into the query engine, the ability to adapt compression to
changing workloads, and the performance improvements achieved from
making these changes. These changes could be implemented in a standard
database system, such as Postgres, or a distributed database system, such as
Hive. Implementing these in a column-based database system, such as C-
Store, could also prove interesting, but since column-based database systems
are not widely used, this may be less useful.
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