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Abstract

We have investigated a major challenge for the suc-
cess of robots in society: the difficulty end-users face
in creating viable robot control policies. We have
sought to address this challenge through interactive
robot learning. We have developed a robot control
interface using the Nintendo Wii remote that our
users have informally said is intuitive and easy to
learn. Users of this interface are able to control vari-
ous kinds of mobile robots remotely. In addition, we
built a networked game that lets users take part in
interactive robot training. We see this work as one
step towards facilitating the integration of robots into
our world.

1 Introduction

For most current robots, only the “technically elite”
(programmers and engineers) are currently able to
create the robot control policies they want, while the
rest of the population must make do using the built-
in policies (such as those on the iRobot Roomba, or
WowWee Robotics’ line of Robosapiens) included by
the robot’s creators. Through interactive robot
learning, we aim to provide users of consumer robot
technologies with a medium for transforming their de-
sired robot behavior into executable control policies.
Specifically, given the same situational awareness, a
robot should make a decision similar to the one the
creator of the policy would make.

While several paradigms exist for controlling

Figure 1: Users controlling Aibos with Wiimotes

robots (e.g. continuous teleoperation, speech and
gesture-based instruction[7], text-based and visual
computer programming, optimization/search), we re-
main confronted by a human-robot divide. This
divide refers to the disparity between the needs and
ideas of users in society, a population with a diverse
set of technical abilities and creative design sensibil-
ities, and their ability to instantiate robot control to
meet their desired ends. If a personal robotics rev-
olution is to come, there will need to exist applica-
tions that will make new forms of personal expression
tangible, enhance personal productivity, and put this
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new technology into the hands of users (analogous to
the spreadsheet, web authoring, 3D virtual worlds,
etc., on the PC).

In the future, we can envision off-the-shelf robots
that can be “taught” by humans to perform un-
known tasks, where no task-specific information
needs to be hardcoded into the robot’s decision mak-
ing procedures. For instance, a user should be able
to purchase a robot platform (let’s say a robot dog)
from their local electronics store and, without writing
a single line of code, teach it to play soccer at a level
competitive with hardcoded decision making. This
makes the reasonable assumption that non-technical
users are comparable or better creators of robot con-
trollers, once technical barriers are relaxed. As ex-
amples, consider animated filmmaking, web design,
and desktop publishing: while technical researchers
and systems architects enabled the development of
these media, it is often the design-oriented (artists,
film-makers, etc.) that can make the most of these
outlets for expression, in terms of aesthetics and ac-
cessibility. We conjecture that the personal robotics
industry will follow a similar route, in that once robot
learning has been fully enabled by researchers such
as ourselves, it will be the end users of robots who
will be creating the best robot controllers, not the
researchers.

Towards “human-guided” pathways into robotics,
our aim is to realize interactive robot learning
through developing an interface that can lever-
age scalable policy-learning algorithms suited
for long-term human-robot interaction (HRI).
While differing in methods, these objectives for in-
teractive robot learning fall under the broader scope
of “socially-guided robotics” proposed by Breazeal
and colleagues[9]. Assuming hardcoded routines for
perception and motion control, as readily available
in existing middleware packages1 and perception li-
braries2, we have focused on providing data to algo-
rithms that learn decision-making policies π : ŝ → a
that map perceived robot state (ŝ) to robot actions
(a).

We claim that facilitating long-term data collec-
1Such as Player/Stage and Microsoft Robotics Studio.
2Such as Lowe’s SIFT object recognition package and aug-

mented reality tag-tracking libraries, such as ARTag.

Figure 2: A boy controlling a SmURV with a Wiimote
at RoboBusiness ’07 in Boston

tion and human guidance is the primary challenge,
more so than algorithm development, for interactive
robot learning. Many approaches to robot policy
development have been pursued, ranging from pri-
marily hand-coded domain-specific algorithms[1] to
general non-deterministic adaptive methods, such as
learning with Partially Observable Markov Decision
Processes[6]. While this space of algorithms and
methods is being heavily explored, less attention has
been paid to human-robot interfaces that will facil-
itate the longitudinal human-robot interaction and
guidance to enable tractable interactive robot learn-
ing. Notable work in the latter area includes exper-
iments on managing robot teams [3] and interface
design[8].

Towards this end, we discuss our experiences work-
ing with the Nintendo Wii Remote (or Wiimote) as
one possible human-robot interface, followed by the
development of a larger system to facilitate the gener-
ation of data appropriate for the learning algorithms
in question. Through various public demonstrations
of the implemented system, we have informally ob-
served that people find Wiimote interfaces “fun” and
“engaging”, usable within the space of a few min-
utes, and applicable to various robot platforms (e.g.,
iRobot Create, Sony Aibo, DLR robot hand). Ad-
ditionally, we have been able to train simple robot
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Figure 3: Nintendo Wii Remote and Nunchuk con-
trolling a Sony Aibo playing robot soccer.

control policies using a Wiimote with our system.

2 The Nintendo Wii Remote

Released in December 2006, the Nintendo Wii Re-
mote (or Wiimote, shown on the right in Fig. 3) is
an inertial control interface designed for video games
that is fundamentally different from traditional game
control devices. The primary innovation of the Wi-
imote is its ability to localize itself within 2 rota-
tional and 3 translational degrees of freedom. This
localization is performed with a reasonable degree
of accuracy, given that the wiimote uses 8 bits to
represent up to 4 G’s for each axis, which is well-
complemented by the Wiimote’s economical feasibil-
ity and compelling aesthetic. Rotational localization
occurs with the help of three inertial sensors (ac-
celerometers) that measure the direction of gravity
along roll, pitch, and yaw axes. Translational local-
ization is performed through triangulation against in-
frared light (IR) emitted by an external “sensor bar”.
The IR is sensed by the Wiimote through a built-in
IR-sensitive chip. In addition, a Wiimote can receive
input from 12 traditional gamepad buttons that can
be used in complement with its localization.

The Wiimote communicates with other devices us-
ing the Bluetooth wireless communication. There
are certain events, such as button presses and re-

leases, changes in the data from the accelerometers
or the IR sensor, and changes in Wiimote extension
devices, that cause the Wiimote to send a packet of
updated state information to its connected device.
The Nunchuk (shown on the left in Fig. 3) is one
such extension. It physically connects to the Wi-
imote and adds a second set of 3 accelerometers,
along with 2 trigger-style buttons and an analog joy-
stick. This combined Wiimote/Nunchuck interface
allows for two-handed user input. For more complex
robot control, this may make the parallel coordina-
tion of navigation and manipulation easier, as it has
been in my experience.

3 iRobot Create/Roomba control

Our initial work into Wiimote-based robot control
began using a single Wiimote to control Brown’s
Small Universal Robotic Vehicle (SmURV), pictured
in Fig. 2. The original SmURV platform used an
iRobot Create as a mobility base for a 1.2 GHz Mini-
ITX computer, but the platform has since been up-
dated to use an Asus eeePC as the computing core
while retaining the iRobot Create base. The total
cost of an original SmURV (including a Create, com-
puter parts, and a firewire camera) is $750 USD; an
eeePC-based SmURV lowers the cost to about $550.

In terms of software, the SmURV runs a stripped-
down Linux distribution from a flash memory card
and is controlled directly by the Player robot mid-
dleware [2] through a serial interface. The client we
built is a simple program that talks to the Wiimote
through a Bluetooth USB dongle and converts Wi-
imote events into Player commands for the robot.
The Wiimote control interface for the SmURV is
as follows: the robot is engaged by holding down
the trigger on the bottom of the Wiimote, and,
once engaged, the robots forward/backward and rota-
tional velocities are controlled by tilting the Wiimote
up/down along its pitch axis and twisting left/right
along its roll axis, respectively.

4 Sony Aibo Control

In addition to the SmURV, the other robot platform
that we initially worked with was the Sony Aibo. We
chose the Aibo for several reasons. First, although
there is no simple Player interface for the Aibo, the
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Figure 4: Young woman at AAAI ’07 in Vancouver
controlling an Aibo with the Wiimote and Nunchuck
control system

Brown Robocup team had done a significant amount
of Aibo development already, so there was a large
codebase that could be shared. Second, Aibos are al-
ready very popular among researchers, such as those
involved in Robocup, and are a common sight at
many conferences. Third, the Aibo offers a lot more
in terms of manipulation and maneuvers than the
SmURV, being able to move sideways and execute a
large variety of moves that are useful in soccer, in-
cluding kicks, blocks, and rolls.

The challenge in using the Wiimote to control a
soccer-playing Sony Aibo robot dog is how to map
a small amount of user input into the large range of
control parameters provided by the Aibo’s 18 degrees

of freedom (DOFs). Further, the Aibo must also be
coordinated to perform both navigation/locomotion
and manipulation functions in the course of playing
soccer. We chose to simplify the control problem by
utilizing a hand-coded motion controller, thus requir-
ing only three real-valued DOFs in the head (along
with a binary-valued jaw), three real-valued walking
gait DOFs (forward, sideways, rotation), and various
discrete-valued “soccer moves” (kicks, blocks, ball
trapping and control) that involve ball manipulation
of some form.

Previously, we had attempted using dual-analog
gamepads to control these degrees of freedom. These
gamepads consisted of two analog joysticks, a discrete
directional pad, and various buttons. Following the
model of standard first-person video games, robot lo-
comotion and head movements were controlled by the
analog joysticks. Each soccer move was associated
with an individual button to trigger their execution.

This control interface, however, caused users to
complain that it had a steep learning curve. We
attribute this to several factors which we have ad-
dressed. First, we noticed that the analog sticks were
often used in a “full-throttle” manner, effectively hav-
ing little more benefit than a discrete directional pad.
The real-world nature of the robotics domain appears
to amplify this phenomenon, most likely the result of
users’ impatience to observe the effect of their ac-
tions. Second, users of the system found it difficult
to navigate when both walking and moving the head
are each controlled only by the thumbs.

The Wiimote/Nunchuck combination is able to
provide an interface that, in our informal observa-
tions, is more usable for Aibo soccer. We decided to
separate locomotion and manipulation-related func-
tions by splitting their controls between the user’s
hands. Because the head is the Aibo’s primary ma-
nipulator, the Wiimote is used exclusively to control
the head and soccer moves of the robot. The orien-
tation and directional pad of the Wiimote controlled
the robot’s head and soccer moves, respectively. On
the directional pad, up was mapped to “kicking”
with the chest, left/right mapped to left/right lunge
blocks, and down executed a block with both forward
limbs. Additionally, the Wiimote’s “A” button was
used to execute a trapping motion for acquiring the
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ball between the robot’s chin and chest and the floor.
See Fig. 5.

Locomotion by forward, backward, and turning
motions was controlled by the Nunchuck in a sim-
ilar manner to that of our SmURV Wiimote con-
troller. In addition, the analog stick is used for side-
ways strafing. This interface not only separates lo-
comotion onto the Nunchuck and manipulation onto
the Wiimote, but also separates head control (per-
formed mostly by the wrist) and instantiation of soc-
cer moves (performed mostly by the thumb). Fur-
ther, Wiimote control relies only on a user’s natural
proprioception about the two wrists and one finger.

5 The Creation of a Robot Video
Game

Although the Wiimote/Nunchuk control provides a
novel and useful interface, by itself it is not very in-
teresting. However, we are not interested in having
only humans control robots; we want our learned AIs
to control robots as well. More importantly, given
some data about how a human controls a robot in
a variety of situations, the robot should attempt to
do what the human would do. A lot of research has
been done in the area of algorithms that can do this
[4] [5], but there is still not a lot of data for these

Figure 5: Wiimote control interface for the Aibo

Figure 6: Visualization for the perception from a
Sony Aibo.

algorithms to run on. It is towards this end that we
set out to build a robot video game to harness the
human computation at work while playing our game.

5.1 Rplay

The first iteration of the game was very simple, es-
sentially a prototype. The front-end presented to
the user was what has now become our iconic GUI
(Fig. 6), designed by Daniel Byers. From there, the
user could choose to control an Aibo using their pre-
ferred control method: mouse and keyboard, Wi-
imote, or game pad. The server was naively designed,
running a total of five threads, one for each of the fol-
lowing: the GUI; receiving all robot outputs; sending
all robot commands; receiving all user commands;
and sending all users the appropriate robot’s output.
Although this functioned well with one or two robots,
the lag with any more than that made effective con-
trol very difficult. Additionally, there was no way to
run real-time learning on the server; all data had to
be written to files and parsed later.

Despite its setbacks, this initial version was infor-
mally considered a success. After observing people
using the system, it became clear that our system
was engaging them. They adapted to the Wiimote
control quite quickly and gave good feedback on the
robot perception information being displayed in the
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GUI. With this prototype behind us, it was time to
move forward with the project by introducing both
learning and multiple robot control.

6 RGame Architecture

The main downfall of the first iteration of this
project, and what primarily drove us to the design
and development of the current system, was its sin-
gular focus on the Aibo. Although at the beginning
of the project the Aibo was our platform of choice,
we realized that we would want to add in other robot
platforms over time, starting with the SmURV. So
when it came time to re-design the system, the pri-
mary goal was to make sure that not only would mul-
tiple robots be supported, but that their inclusion
would be facilitated by our design decisions. Addi-
tionally, the growing scope of the project meant that
the decisions we made would affect the potential us-
ability of the project in the future. In the end, here
is the list of desired features that led to our current
design:

• support for multiple robotic platforms, with the
support of future platforms to be easy to incor-
porate

• keep the same general client-server structure
that we had already established

• new controllers and visualizations should be
quickly integratable

• robot control and robot visualizations should be
as independent as possible

• interactive learning should be incorporated

• it should be a compelling game

To accomplish the first goal, we decided to en-
capsulate all necessary information about a given
robotic platform into a single idea, called (appro-
priately enough) the Platform. The Platform would
present a uniform interface for robot communication
and visualization to other parts of the program using
polymorphism, while hiding the robot-specific imple-
mentation details in subclasses. In code, each Plat-
form consists of a C++ header file defining the given

robot’s constants, like the robot’s state and actuation
space. To actually perform the communication and
presentation, we created the RobotIO and UserIO su-
perclasses.

Each Platform has its own RobotIO subclass that
defines how to communicate with the robot in ques-
tion. The RobotIO class is in charge of accepting a
vector of desired actuation data for the robot, trans-
forming it into a form the robot can understand, and
then sending that data to the robot. Additionally,
the RobotIO class is in charge of receiving the robot’s
raw sensor data, such as from the camera, and turn-
ing it into a vector of perception data. This poly-
morphism allows the server on the backend to be
robot-agnostic during its communications: it makes
the same method calls regardless of the specific kind
of RobotIO object lying underneath.

The UserIO class works in the inverse fashion: it
accepts a perception vector, presents it to the user in
one of a variety of ways, receives the user’s control
input, and turns that into an actuation vector to be
passed back to the robot. In this way, the two classes
act like inverse functions, transforming the output
from one class into the input for the other.

This made creation of both the user front-end client
and the server back-end relatively simple, as they
both use this polymorphism to make their tasks eas-
ier. The client uses the UserIO class to both read in-
put from the user and generate actuation vectors to
send back to the server, and display to the user the
perception vectors that it receives from the server.
The server uses the RobotIO class to send the user’s
actuation data to the robot and to receive the robot’s
perception data.

7 Interactive Robot Learning

One of our goals for our new design was to enable
online robot learning, where the learning algorithm
is able to process the user’s control data as it comes
in. This would enable training “on the fly”, a very
useful feature in any robot platform. We built this
functionality into the server, with the option of using
different kinds of algorithms or none at all. As long
as the user decides to remain in control of the robot,
they are putting more data into the algorithms bank.
However, they can cede control at any time and let
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Figure 7: The RGame architecture.

the algorithm take over, at which point the algorithm
will control the robot as best it can with the data it
has incorporated. One advantage to this is it allows
the user to teach the robot, observe any change (or
lack there of) in its behavior, and then teach again,
creating a teaching loop. This iterative process will
hopefully lead to better control policies than would
be produced otherwise.

8 Demos and Results

Having demoed the system at a large variety of
venues, we have gotten a chance to observe many
different people interacting with it. In the prelimi-
nary stages of the Wiimote control, prior to the ex-
istence of the GUI, we presented the system to other
members of the Aibo community at the international
Robocup competition3 in Atlanta, GA in July 2007.
During a break between matches, we ran a soccer
game between our Wiimote-controlled Aibos and one
of the other teams, encouraging members from all the
teams to try out the system and give us feedback.
Despite the pressure they were under to perform in
the rest of the competition, we were able to convince
quite a few Robocuppers to try our system. These
new users were able to effectively control the Aibos
after using the Wiimote for only a minute or two, and

3http://robocup.org/

they seemed to be enjoying themselves. Although our
team did not win the match, it was a very good demo
for us.

We ran a similar demo at AAAI in Vancouver,
Canada in August 2007. This time, instead of pre-
senting to members of the Aibo community, we were
showing to the artificial intelligence community at
large. Again, many of those who tried the system
had little difficulty in directing the robot in the de-
sired fashion, and there were certainly smiles on their
faces during that time. However, we would argue that
the system passed perhaps a more important test in
being a compelling interface: two children, ages eight
to ten, were entertained enough to play with the two
Aibos for a full thirty minutes until the batteries fi-
nally ran out.

Since the inclusion of the learning algorithms, we
have run a few teaching tests using the system. Fol-
lowing what we expect our users to do, we controlled
an Aibo using a Wiimote and nunchuk, only looking
at the GUI. We were able to successfully train the
robot to follow and approach either the orange ball
or the yellow goal in separate trials, as well as being
able to score a goal. Although these preliminary re-
sults are informal, it shows that this is a step in the
right direction. As algorithm development continues,
we can plug in the new algorithms and compare their
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results.
In addition to these demos, we have tested our ar-

chitecture’s goal of being able to integrate new robots
easily. A fellow robotics researcher from Harvard,
Mark Woodward, brought his robot Harvey to try in
our system. In a total of five hours with four peo-
ple working on it, we were able to get Harvey fully
working with RGame: we could control him with a
wiimote; we could visualize his perception data; and
we could learn. We consider this to be a good show-
ing of how modular this system is and how quickly
new platforms can be added.

9 Conclusion

The architecture we have proposed for a robot-
learning-based video game has allowed us to support
all the robot platforms we currently use, as well as
quickly incorporate other platforms. It lets users re-
motely control any of these robotic platforms, seeing
the world the way the robot sees it, all while playing
soccer. It is able to utilize the work that others have
done in robot learning to let users train a robot while
they play and then let the trained AI take over imme-
diately. It is designed to and capable of incorporating
new platforms quickly, as well as new control types
and visualizations. RGame was meant to be a grow-
ing platform, and we hope that it will be adopted and
supported by other researchers in the future.
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