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1 Introduction

While the functional architecture for low level vision in the primary visual cortex is

relatively well understood, very little is known about how higher level vision functions

in the ventral temporal cortex. For researchers, the ventral temporal (VT) cortex,

which is associated with visual object perception and recognition, is still essentially a

black box. The VT cortex performs several impressive computations related to object

recognition. Importantly, as Haxby et al. note, while the underlying machinery is still

a mystery, we do know that the ventral object vision pathway “has the capacity to

generate distinct representations for a virtually unlimited variety of individual faces

and objects” [2]. Even more, humans have the ability to recognize objects despite

drastic changes in lighting or viewpoint. Simultaneously, humans can make fine dis-

tinctions in order to differentiate between objects in the same category. Thus, our

visual system has the capacity to either “neglect or amplify input images” depend-

ing on the context [6]. Surprisingly though, almost nothing is known about how the

higher level human visual system accomplishes any of these feats. For these reasons

there is great interest in understanding the functional organization of this impressive

visual system.

There are effectively two approaches for studying the functional architecture for

object recognition in the ventral temporal cortex. The first, principally associated

with the field of neuroscience, is a single-cell approach, in which researchers record

impulses from individual neurons as they respond to a variety of stimuli. These

studies have shown that neurons are selectively tuned for specific image features, and

occasionally, appear to be tuned for entire objects. Single-cell research is particularly

effective because it provides low-level results about feature-coding across small regions

of the cortex. Crucially, these studies have produced evidence that specific “columns”
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of cells responding to similar features or objects tend to cluster together.

The other approach, used by cognitive scientists, focuses on brain activation at

a much larger scale. fMRI, or functional magnetic resonance imaging, measures the

localized hemodynamic response, or change in blood oxygenation, in the brain. Cru-

cially, this localized change in blood oxygenation is correlated to neural activity.

Thus, researchers can use fMRI to gain broader insight into how vast populations

of neurons respond in different areas of the brain in response to stimuli. Unlike the

single-cell approach, neuroimaging allows researchers to explore large scale patterns

of activation. When analyzing fMRI data, a three dimensional map of the brain is

reconstructed, and activation is measured across voxels (volumetric pixels). A one

to three mm voxel (typical for fMRI studies) in VT cortex contains on the order of

100,000 to 1,000,000 neurons. Thus, in brain imaging, there is significant averaging of

neural activity. So, while fMRI allows researchers to identify entire category-specific

brain activation, much of the fine-grained neural information is lost. Ultimately, since

each technique has its own advantages, they are both essential to the study of the

VT cortex.

Recent research applying both approaches for studying the ventral temporal cortex

have begun to reveal clues about the functional architecture of high-level visual cortex.

At the cellular level, Keiji Tanaka has investigated the role of neuronal “columns” in

higher level vision, specifically the inferotemporal cortex. Tanaka showed that within

a column, neighboring cells code for similar features, and that multiple columns rep-

resenting different but related features may overlap with one another creating larger-

scale units [6]. His research provides evidence for columns of cells in the visual object

pathway which can be understood as modules coding for specific object features.

These results are consistent with the architecture of early visual processing systems
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in V1, where edge orientation, color, and retinotopic location are all organized in

spatial maps or neuronal columns [2].

While the results of this single-cell study emphasize the spatial organization of

VT cortex , recent neuroimaging research has begun to suggest that representations

for objects in VT cortex are distributed and overlapping. These studies reveal a

unique pattern of activation across the brain for distinct object categories. Still,

O’toole et al. [5] note that these results are supportive of a “feature-based” model

of objects. In this model, objects in different categories could share neural codes if

they had some lower-level features in common. These shared feature codes would be

consistent with distributed and overlapping responses, because a region coding for a

specific feature would potentially activate in response to a variety of objects which

contain some variant of a distinct feature. In support of this theory, Grill-Spector

et al. [1] use high-resolution fMRI to show category-selective regions in finer detail,

and obtain results that are consistent with the distributed theory of representation.

In particular, they demonstrate that the fusiform face area of VT cortex (FFA),

is not solely selective for faces (Fig. 1). Rather, there are multiple subregions in

FFA selective to a variety of object categories, with the largest and most subregions

devoted to face selectivity.

Importantly, evidence for distributed object coding in VT cortex is not incon-

sistent with the localized spatial organization of features discovered by Tanaka [6].

Imaging by Haxby has demonstrated that, despite a distributed brain response, at a

finer level there is still a spatially organized functional architecture within separable

subregions [2]. Within a larger brain region, each subregion still responds maximally

to a specific category (Fig. 1). Significantly, no studies to date have attempted to

thoroughly explore the neural codes for object features within subregions of category-
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Figure 1: In this figure, from Grill-Spector et al. high-resolution fMRI data reveals a variety of
category-specific subregions in FFA. In particular, there are subregions which activate in response
to faces, animals, cars and abstract sculptures. Importantly, no research has been done investigating
the underlying neural codes for these specific subregions. [1]

specific brain patterns. The aim of our research is to explore the “peak” subregions of

category-specific responses in an attempt to uncover intermediate-level feature codes

for objects. To this end, we plan to use fMRI to explore these peak responses for a

given object category. Our hope is that we will discover an underlying neural code

for a specific feature in that object.

One crucial question is how to go about discovering what object feature, if any,

the neurons in a specific subregion are responding to. As Tanaka notes, one problem

with single-celled studies is that “the variety of object features existing in the world

is too great to test its entire range for a single cell”. Various researchers have applied

different procedures to address this problem. For example, Tanaka’s approach [6] was

to use an empirical feature reduction method. He took the image of the most effective

stimulus and simplified it systematically to determine which feature in the image was
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necessary for maximal activation. Others [7] have used genetic algorithms to “evolve”

features which maximally stimulate a cell. Despite these approaches, single-celled

studies still require that the researchers must first present many arbitrarily chosen

objects to find an initial effective stimulus.

In this respect, by using fMRI to study object representation, we have a distinct

advantage. Rather than poking around in the dark for effective stimuli, we can choose

any object category, find the responsive brain regions for that category, and then use

an image search algorithm to determine which specific features maximally activate a

particular voxel. Because we know that some aspect of an object shown recruits a

distinct brain region, the problem for us is to determine whether or not neurons in the

subregion are activating in response to an individual feature or whether they respond

to the presence of the entire object. Based on the previous research demonstrating

evidence for feature-specific columns and spatially organized functional architecture,

we expect to find some intermediate-level object representation or feature coding

within active subregions.

Not surprisingly, there are several computational problems associated with using

neural imaging as a tool for understanding the functional architecture of the visual

cortex. Crucially, in order to discover feature-specific neural coding in the brain

we need more control over our experiments than fMRI researchers have typically

had. In general, fMRI studies require a fixed paradigm, in which the stimulus set is

determined before the experiment begins. Those stimuli are delivered to the subject

during the course of a scanner session and the subsequent data is analyzed offline.

This presents a major hurdle for our research, because there are countless features in

high dimensional image space to which a voxel could be responding. For our purposes,

there is no practical way to choose stimuli a priori and analyze data offline after the
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trial, and still efficiently identify brain response to specific image features.

Fortunately, LaConte et al. [3] have demonstrated the effectiveness of a new

paradigm which gives researchers more control over their imaging experiments. In

particular, they use a real-time fMRI system, in which the data is analyzed online.

Thus, “rather than using a fixed paradigm, experiments can adaptively evolve” de-

pending on the brain response to different stimuli. For example, recent studies have

demonstrated how real-time fMRI paradigm has opened the door for a variety new

work including biofeedback research and brain state classification experiments. Real-

time fMRI experiments are appropriate for our purposes because it will allow us to

adaptively control the stimulus in response to brain activation. Most importantly,

using this paradigm, we can efficiently search image space for maximally activating

features by adapting our “questions” in response to previous “answers”.

While real-time fMRI creates new freedom in experimental design, it also provides

several unique challenges. Specifically, real-time fMRI introduces several temporal

limitations. For one, since all analysis is done online during the course of the experi-

ment, computations must be especially fast. However, there are other more limiting

factors. As LaConte [3] and others have noted, the hemodynamic delay associated

with fMRI imposes problematic restrictions. As mentioned earlier, fMRI measures

the hemodynamic response of particular brain regions. Unfortunately, after stimulus

presentation, the hemodynamic response function (HRF) takes nearly six seconds to

reach its peak, and a full fifteen seconds to return to baseline levels. In other words,

measuring the voxel response for a given stimulus is very slow in a real-time system.

In traditional fMRI experiments, on the other hand, new stimuli can be presented

before the HRF from the previous stimulus returns to baseline. This is because when

analyzing the data offline, researchers can pull apart overlapping HRFs by deconvolv-
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ing the pooled data. Crucially, because we are using a real-time system and doing the

analysis online, we have limited ability to deconvolve overlapping HRFs. Accordingly,

we must wait a full fifteen seconds for the hemodynamic response to complete before

presenting the next stimulus.

This real-time limitation is one of the central challenges in our research. Since

we presume a subject can only remain in the scanner for one to two hours, we have

a hard limit on the number of stimuli that we can present in the course of one run.

For this reason, we frame our image search as a “20 questions” problem – we must

discover a voxel activating image feature in a high dimensional image space using a

relatively small number of stimuli. Here, we define a “question” to be a particular

stimulus, and consider voxel activation the “response”. After asking a “question”, we

do not get the complete response until the HRF function settles down around fifteen

seconds later.

The ultimate goal of our research is to find evidence of neural coding for interme-

diate level features in VT cortex. Based on previous research, we expect that there is

indeed a feature-based functional architecture in high level object recognition path-

ways of the brain. To facilitate this search for object feature codes, we plan to use

a real-time fMRI system to adaptively control our stimulus presentation. Using an

intelligent search algorithm, we hope to find and quickly identify the image features

that activate a particular voxel. However, since it is time consuming to analyze voxel

responses in real-time, we are limited in the number of stimuli we can present dur-

ing the course of one scanner session. This problem requires a particularly efficient

search algorithm. In this paper, I develop a novel algorithm for efficiently searching

through image space by asking the most informative “questions” possible. Before us-

ing this algorithm in a functioning real-time fMRI system, we demonstrate its utility
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in simulation.

2 Methods

We eventually hope to explore evidence for image features across a variety of object

categories. However, initially we plan to focus on faces. Accordingly, our stimuli are

derived from a set of nearly two hundred unique registered faces from the Tarrlab face

database. Here, each face is a black and white image, 250 pixels square. Using this

face data set, we generate new stimuli by applying a distortion algorithm developed

for this task. We use this distortion algorithm to selectively warp different regions

of the face, therefore effectively reducing the number of possible activating features

present in the image. Ultimately, we hope to discover maximally activating features

by showing that when a particular image feature is distorted, the voxel response

drops. By selectively warping different regions, we can look for the smallest image

region that maintains a high brain response.

In this research, we do not run our experiment using a true real-time fMRI

paradigm on human subjects. Rather, we create an “artificial voxel” which serves

as a placeholder for our real-time system. In a real-time fMRI study, there are many

complications and unknown factors. By testing our algorithms in simulation, we can

ensure their functionality in a controlled environment, before pressing on to more

challenging tasks. Thus, our aim is simply to demonstrate the utility of our image

search algorithm, which we will eventually employ for the actual experiment.

In our simulation, for a particular warped image, we can determine the “brain

response” using our artificial voxel. First, we develop a paradigm that warps the

image systematically, independent of voxel response to demonstrate the utility of our

warping algorithm. Later, we develop a more efficient well-defined algorithm. In
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(a) Original image (b) Warped imaged (c) Half warped

Figure 2: Illustration of the warping algorithm. This algorithm effectively distorts image features,
while preserving smoothness.

this paradigm, our image search algorithm generates new stimuli according to the

previous voxel response. Since we design our artificial voxel, we know which feature

our search algorithm should find. Thus, we can test the algorithm’s effectiveness by

studying whether or not we can consistently locate the correct feature region.

Warping Algorithm – For our warping function, we sought an algorithm that

would distort image regions enough that previously present image features were un-

recognizable. Additionally, we required an algorithm that could selectively distort

specific areas while maintaining smoothness between distorted and undistorted re-

gions. To meet these requirements, we distort the image mesh grid, and then use an

interpolation algorithm to fill in the missing pixels. More specifically, we randomly

add gaussian “bumps” to the mesh grid in the regions we seek to warp. This effec-

tively amounts to repeatedly choosing random groups of pixels and translating them

to a new location within a small neighborhood of their original location. Since we can

selectively choose where we add the distortions to the mesh grid, we can correspond-

ingly choose which image regions to warp. Moreover, as Figure 2 shows, since we are

using interpolation to generate the new image stimulus, smoothness is maintained at

the boundary between warped and unwarped regions.
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Image Search – For the purposes of this study, we propose a viable image search

algorithm, and test its effectiveness in simulation. To this end, we developed an

“artificial voxel” so that we could test whether our image search algorithm would

consistently discover the appropriate features. To accomplish this, we simply crop

out an image feature from the “average face”, and use that as our test feature. Now,

for a particular image stimulus, we correlate this test feature over all image regions,

and take the response to be the maximum correlation. This max correlation is our

“voxel response”.

Before running the image search algorithm, we generate prior probability distri-

butions over “voxel responses” for warped and unwarped faces. To produce these two

distributions, we calculate the max correlation of our template with both completely

warped and unwarped versions of the two hundred faces in our database. We chose

to fit the data to gamma distributions because in both cases the data was unimodal,

but also skewed (see fig. 3). Since the gamma distribution is only defined for positive

values, and our “voxel response” takes on values between negative one and one, we

actually use “one minus correlation” as our statistic. Thus, our gamma distributions

are defined on the interval from zero to two.

Figure 3: Our prior distributions, for a particular test feature, after the data was fit to gamma
distributions. Because our test statistic was one minus the correlation, the domain is from zero to
two.
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Given these prior distributions, we selectively apply our warping algorithm to

generate stimuli. By presenting the stimulus, we are asking a “question” about where

the feature occurs. For example, if we warp half of the face and present that to our

artificial voxel, we can use our prior model to determine whether it is more likely that

the activating feature occurs in the warped part of the face or the unwarped part. By

systematically changing which regions are warped, we can calculate a likely bounding

box for the image feature.

To demonstrate the feasibility of an image search which employs our warping

algorithm for stimulus generation, we initially used a methodical, but inefficient,

paradigm. At multiple levels, we warp the image on one side of a horizontal or

vertical line. Again, for a particular stimulus, we want to determine whether or not

the activating feature occurs in the warped portion of the image, or the unwarped

portion. Importantly, we use the likelihood ratio test to decide where the feature

resides in the stimulus. According to the Neyman-Pearson Lemma, the likelihood

ratio, L( θu

θw
) < k, is the uniformly most powerful test for whether our data comes

from the distribution governed by the parameters θu or θw. Here we take θu to be

the parameters for the distribution of correlations on the unwarped images and θw

the distribution over warped images. In other words, we simply take the ratio of the

probability that the response came from the unwarped distribution to the probability

that the response came from the warped distribution, and study its behavior as we

warp different portions of the face. First we warp to the left of vertical lines, moving

the line from left to right. We follow the same process warping right to left, then top

to bottom, and finally bottom to top. When this ratio is large, we can say with high

confidence that the feature resides in the unwarped portion of the face. Conversely,

when the ratio is very small, we can presume that the feature resides in the warped
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part of the face. Under these deterministic conditions, the likelihood ratio maintains

the same maximum value until part of the feature region is warped. Thus, as soon

as the likelihood ratio drops, we can presume that our feature is partly warped. This

provides a simple and convenient way to choose our feature region. Thus, to identify

the feature, we crop the tightest bounding box where the likelihood ratio is still

maximized.

Not surprisingly this procedure works reasonably well (see results) and demon-

strates the effectiveness of our warping algorithm for stimulus generation. Neverthe-

less, under noisy conditions, we have no rigorous process by which to chose a bounding

box. This is because in the presence of noise, the likelihood ratio will fluctuate some,

and thus we cannot determine the precise boundaries of our feature region. Even

more, because we warp at all levels systematically, the process is relatively inefficient.

For these reasons, we develop a more well defined likelihood model, which builds up a

probability distribution over all possible rectangles containing the activating feature.

For simplicity, in this algorithm, we construct our probability distribution over

a discrete set of equivalent sized rectangles . Specifically, each candidate rectangle

is the same size as our artificial voxel test feature. At each step in this iterative

approach, we update our probability distribution based on our “voxel” response and

the probability distribution from the previous time step. After several iterations, the

distribution will become more peaked around certain rectangles. Ideally, these highly

probably rectangles will contain our test feature. Since the real-time experiment will

limit the number of stimuli we can present, for this study we initially only run the

algorithm for ten iterations. After we run it for a fixed number of iterations, we

can simply look at the maximum likelihood rectangle or study the distribution more

broadly, to gain a sense of where the feature might occur.
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In this model, we designed our algorithm to choose the most efficient “questions”

possible at each time step. In contrast to our previous model, where we warp at

multiple levels in each direction regardless of the “voxel response”, here we generate

a new stimulus which we expect to give us as much information as possible. This is

crucial for our research, because there is a strict time penalty for asking a “question”.

Consequently, we want our algorithm to learn as much as possible about the rectangle

probability distribution in as few questions as possible. Here, we return to our twenty

questions analogy. While we are already limiting the number of “questions” we are

allowed to ask, we have an additional complication because the responses we get

from fMRI data will be inherently noisy. Thus, we say that we are playing “twenty

questions with a liar”, since our information won’t always be accurate. Interestingly,

“twenty questions with a liar” is known to be an NP-hard problem. In other words,

there is no fast algorithm which will consistently tell us the best question to ask at

each time step. Accordingly, we developed an algorithm that uses a greedy heuristic,

where we choose the question that will yield the most expected information at a

specific time step.

In order to choose the most informative stimulus at each step in the algorithm,

we must consider the entropy of the probability distribution. Information entropy

measures the uncertainty associated with a random variable. The entropy of a uni-

form distribution is very high, since each outcome has equal likelihood. Conversely,

the entropy of a very peaked distribution is small, since we have a good guess as to

what the outcome might be. For a probability distribution P(x), its entropy is de-

fined as
∑
x P (x)log(P (x)). In our experiment, initially, we have no knowledge about

where a voxel activating feature might reside, so the entropy is high. Accordingly,

our algorithm chooses the question which will minimize the average entropy of the
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probability distribution at the next time step. Thus, in a well-defined sense, we can

present the stimulus which will yield the largest expected information gain.

Again, we use our prior probability distribution over warped and unwarped faces to

determine the conditional probability of the voxel response to a particular “question”.

Each question is a face which is warped on one side of a vertical or horizontal line and

unwarped on the other side. Unlike our previous attempt, in this model, we define

the conditional probability distribution to be a linear combination of our two prior

distributions. In particular, if a candidate rectangle intersects a warping line, then we

take the conditional probability for that rectangle to be αPu + (1− α)Pw, where Pu

and Pw are the unwarped and warped distributions respectively and α is the fraction

of the rectangle which is unwarped. Since α is between 0 and 1, αPu + (1 − α)Pw,

is still a probability distribution. This approach is more appropriate, because if that

rectangle contained our feature, only part of it would be visible, and thus we would

expect a diminished response. Thus, we expect that a response that lies somewhere

in between responses governed by the complete warped and unwarped distributions.

The Likelihood Model – We assume that for a given voxel response y, there is a

rectangle, x, to which that voxel is responding. Since presumably we start with no

information about possible activating features, we take the probability distribution

over all rectangles to be uniform. We start with the following definitions:

• P0(x) ∼ uniform

• Pt(x) : The probability, after t questions, of the activating feature residing in rectangle x

• Pq(y|x) : The conditional probability under question q, of y given x. Under our

model this is a mixture of our two initial distributions ( αPu+(1−α)Pw,). More

precisely, the stimulus, q, (a warping line), and rectangle, x, determine what
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fraction, α, of the rectangle is warped.

For a given a question, the joint distribution on x and y is simply:

Pq(y|x)Pt(x)

Thus, by Bayes’ theorem the posterior probability of rectangle, x, given the voxel

response to a question is:

Pq,t(x|y) =
Pq(y|x)Pt(x)∑
x Pq(y|x)Pt(x)

For a given voxel response and a rectangle the entropy of the posterior is defined as

H(Pq,t(x|y)) = −
∑
x

Pq,t(x|y)log(Pq,t(x|y))

Now, we want to compute the average or expected value under y of the entropy. Since

Pq,t(y) =
∑
x Pq(y|x)Pt(x), the formula reduces to

Ey[H(pq,t(x|y))] = −
∑
y

∑
x

Pq(y|x)Pt(x)log(Pq,t(x|y))

Using this formula, we choose a question q∗, which minimizes this expected en-

tropy. This “question” is the stimulus which will yield the highest expected infor-

mation gain. For the voxel response y∗ , we define the new rectangle probability

distribution at time t+1 to be

Pt+1(x) = Pq∗,t(x|y∗)

. In this way, we have a rigorous procedure for determining the likelihood that a

particular rectangular is our feature-containing region. In our simulation, we consider

only rectangles of equivalent size. Nevertheless, this model would still be appropriate

if we were considering a richer class of rectangle sizes.
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3 Results

Initially, to demonstrate the effectiveness of the warping algorithm, we systematically

warped different areas of the face, and used the likelihood ratio test to determine

whether it was more likely the feature occurred in the warped part or the unwarped

part. After asking twenty eight questions, (seven for each of the cardinal directions),

we used the likelihood ratios to crop out a candidate region for the feature location.

While this cropped region was much larger than the original feature size, it often

contained the test feature. Empirically these results demonstrate the effective use

of the warping algorithm for stimulus generation. Figure 4 shows examples where

our algorithm correctly identified a region containing the test feature. Impressively,

in all trials, the cropped region contained the feature that our artificial voxel was

responding to.

However, for these trials, the bounding box that we identified tended to be very

large. Because of this, while the region contained our test feature, it also contained

other features. For example, for the “mouth voxel”, the candidate regions contained

mouths, but some also contained noses. Conversely, the identified regions for the

“nose voxel” all contained fragments of a nose, but some also contained mouths. In-

terestingly, perhaps because of the symmetry of the face, in one of our “eye” runs, our

algorithm identified a region containing both eyes, rather than just one. Importantly,

if we hope to find evidence for intermediate level features in VT cortex, the candidate

regions must tightly bound a particular feature so that we can say with confidence

what that region is coding for. This data suggested that we needed a more rigorous

procedure for identifying a candidate region. Additionally, this algorithm is quite

inefficient because it systematically warps across multiple levels, rather than intelli-

gently warping to generate a stimulus that will yield more information. As noted,
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(a) Test feature (b) (c) (d)

(e) Test feature (f) (g) (h)

(i) Test feature (j) (k) (l)

Figure 4: Features discovered using the likelihood ratio test over warped images. The first column
contains the test features (the “artificial voxel”). Each row contains three candidate regions for that
test feature. While the region generally contains the test feature, the region does not always tightly
bound the right feature.

inefficiency is a major drawback because our real-time system imposes several time

constraints. Lastly, under noisy conditions, our procedure for choosing the candidate

region would fail. Our algorithm must be robust to noise, since we expect a very

noisy signal from the MRI images. Thus, while the initial results seemed promising,

they also demonstrated the need for a more rigorous model.

The entropy model we derived was an attempt to address some of the problems

from our first approach. In this well-defined model, we continuously update the

probability distribution over all feature-bounding rectangles. Each rectangle is defined

to be the same size as the test feature, which is the strictest requirement possible.
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(a) T=1 (b) T=3

(c) T=6 (d) T=10

Figure 5: Rectangle Probability Distributions After T Time Steps For an Eye Feature. The first
“question” determines which half of the face the feature is in. For this particular face, after ten time
steps, our algorithm determines that the rectangle containing the right eye to be the most probable
one. Additionally, the vast majority of rectangles have nearly zero probability.

Figure 5 shows how these probability distributions are becoming more peaked around

a particular feature region as more “questions” are asked. These distributions provide

empirical evidence for the success of this algorithm, but do not rigorously define their

performance. Thus, as a metric for the performance of this algorithm, we computed

the expected value of the visible feature fraction at each iteration. To do this, at

each time step, for each rectangle, we determine the fraction of the test feature that

is visible in that rectangle. To compute the average score, we take the probability of

a rectangle times the fraction of feature in that rectangle, and sum this quantity over

all rectangles. Since all of the faces were registered, we simply used the test feature

coordinates to find the fraction of overlap between a candidate rectangle and the test

feature.

Our results show, that for some test features, our entropy model does a great
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(a) Eye Feature (b) Nose Feature

(c) Ear Feature (d) Mouth Feature

Figure 6: Expected Visible Feature Fraction vs. Time. This figure demonstrates the capacity of
our image search algorithm to find the test feature in random faces. The black line is the average
over all five trials whereas the dotted colored lines represent the expected feature fraction for an
individual face over time. Under noiseless conditions, the algorithm generally succeeds in finding
the feature region for three of the four features tested. On the mouth feature, however, in four of
the five sample faces, our algorithm failed to pinpoint the correct region. These failures are most
likely due to false assumptions in our model, stemming from the weakness of our “artificial voxel”.

job at identifying likely feature containing rectangles. In particular, fig. 6(b) shows

that the expected visible feature fraction, for a nose feature, was over fifty percent

in some trials. For rectangles which are exactly the same size as the feature, this is

fairly impressive. Even more, in all of these trials, we are only asking ten questions,

whereas in our initial algorithm we were asking over twenty-five. If we continued to

generate more stimuli, presumably the probability distribution, in this case, would
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become more peaked around the correct feature. Conversely, fig. 6(d), illustrates

that for the mouth feature, our algorithm failed to find the correct feature in any of

the five random sample faces we tested it on. There were other isolated failures on

sample faces for other features as well. For some test features, on certain faces, the

probability model failed to locate the correct region.

Despite these mixed results, for all features tested, the average score still increases,

if only slightly. Only in a handful of individual trials did the score drop to zero. This

suggests that the algorithm is at the very least, consistently identifying the general

region where the feature occurs. Since the probability distribution is necessarily

becoming more peaked (the entropy is decreasing), it is significant that the score is

greater than zero at all. For the vast majority of rectangles, after ten iterations, the

probability assigned to the the vast majority of rectangles is zero. In other words, for

non-zero scores, the probability distribution must be peaked in a region very close to

the actual feature-containing rectangle. While it doesn’t always pinpoint the precise

region, it seems to always get close.

Furthermore, there are compelling reasons for why our algorithm fails when it

does. Significantly, in this simulation, the assumptions in our model often seems to

be invalid. Principally, we assume that the “voxel response”, comes from one of the

two prior probability distributions (either warped or unwarped). However, since we

are taking the maximum correlation to be our “voxel response”, sometimes this is

not the case. While the maximum correlation between the test feature and the image

usually occurs in the feature region, there are other regions of the face that have high

correlations. In other words our artificial voxel is not finely tuned.

Ideally, we want to build an artificial voxel that has a fairly peaked response

around the feature region, and little to no response elsewhere. Since we are simply
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(a) No noise (b) Noise ∼ N(0, 0.15)

Figure 7: Warped and unwarped prior distributions under noisy conditions.

using normalized image correlation, this is not the case. Even more, since the image

statistics of a natural, unwarped image are quite different from those of an image

warped under our algorithm, our model often produces false positives. Specifically,

when the feature is warped, the “artificial voxel” occasionally still returns a high

response because it is responding to some other feature in an unwarped part of the

face. In this case, our model determines that the feature resided in the unwarped part

of the face, when it was in fact in the warped part of the face. Thus, a more selective

“artificial voxel” would more effectively demonstrate the utility of this algorithm.

However, because the computational problem of feature identification is not a trivial

task, and also not the focus of this research, we chose to stick with something simple.

Crucially, these failures speak more to the weakness of our “artificial voxel”, rather

than to the weakness of our image search algorithm. In reality, neurons tend to be

finely tuned, so we expect our true voxel responses to be to be more selectively tuned

as well, and thus to be less likely to get false positives. Thus, these results seem to

suggest that this algorithm will succeed in a real-time system.

Despite the relatively auspicious results, this data still comes under fairly fixed
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(a) Eye Feature (b) Nose Feature

(c) Ear Feature (d) Mouth Feature

Figure 8: Expected Visible Feature Fraction vs. Time Under Noisy Conditions. This figure
demonstrates the utility of our image search algorithm under noisy conditions. For this experiment,
gaussian noise, η ∼ N(0, 0.15), was added to the voxel response. The black line is the average over all
five trials whereas the dotted colored lines represent the expected feature fraction for an individual
face over time.

conditions. In our real-time experiment, however, we expect the true fMRI data to

be much noisier. A voxel may respond principally to a specific feature, but also be

responding less significantly to a variety of other features. Because a voxel may cover

up to one million neurons, there is significant averaging across activity. Thus, we

needed to test our paradigm under less ideal conditions. To this end, we ran our

algorithm again in the presence of noise. At each step, we simply added random

noise to our “voxel response”. For each correlation, we add a variable drawn from a

gaussian distribution with mean zero and standard deviation 0.15 (∼ N(0, 0.15)). As

figure 7 shows, this creates more overlap between the two probability distributions,
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and thus less certainty as to which distribution a response belongs to.

Impressively, the results under noisy conditions are nearly as good, as the results

from the noiseless data. In some cases, the search algorithm under noisy conditions

even seems to outperform the algorithm under less noisy conditions. Still, we must run

the algorithm for longer (twenty iterations in this case), thus asking more “questions”.

It is not surprising that more “questions” need to be asked under noisy conditions

because there is more uncertainty associated with each response. For example, when

playing “20 questions with a liar”, you may have to ask the same question multiple

times before you become confident about the correct response. Most importantly,

these results suggest that our image search algorithm is fairly robust to noise.

4 Discussion

Our results demonstrate that our image search algorithm can, with relative consis-

tency, identify regions containing a voxel activating feature. Moreover, our image

search appears to be robust to noise. When our algorithm does fail to identify the

correct feature, this seems to be due more to a poor design of our simulated “voxel’,

rather than to a weakness in the image search algorithm itself. Thus, we believe

this paradigm would be effective in a true real-time fMRI system. However, some

improvements need to be made before it is implemented in real-time. Importantly,

the algorithm needs to be optimized for speed. We are summing over many variables

when calculating the minimum expected entropy of a probability distribution, so the

algorithm has the potential to become a bottleneck. Since one of the major moti-

vations for this algorithm was to improve efficiency, it would be self-defeating if the

stimulus generator itself became a bottleneck.

Importantly, our real-time analysis procedure is just one of several possible ap-
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proaches for studying the role of image features in the VT cortex. For example Nestor

et al. [4] used an approach to pre-identify candidate image fragments in the face. In

particular, they determined a method for computing fragment diagnosticity. This

diagnosticity was a measure of how unique a particular fragment was to faces vs.

images of other natural objects. To accomplish this, they calculated the mutual in-

formation between fragment presence and image category across images with faces

and other natural images. Other approaches include studying the underlying dimen-

sional components of the images using principle components, or examining the role

of edge hierarchies in object recognition [4]. Researchers could also consider using

a generative approach, where images of faces are parameterized and unique features

from this parameter space are artificially produced. For example, Yamane et al. [7]

apply a generative approach using a genetic algorithm over a parameter space to

produce highly-activating three dimensional surface features.

These techniques all successfully address the problem of identifying good candidate

features. However, they do not suggest how to search through these candidate features

to identify which ones recruit a particular brain region. Significantly, our algorithm

not only identifies candidate features, but also tells us which ones are most likely

to be activating a particular voxel. Our probability distribution over the space of

image fragments tells us precisely which fragments are most likely to contain a voxel

activating feature. Fragments with high probability are more likely to the voxel

activating feature. In this respect, our algorithm simultaneously addresses the issue

of identifying candidate features, and searching through the candidate features for

the most highly activating feature.

Even more, in contrast to several of these approaches, we make very few underly-

ing assumptions about the nature of object recognition in VT cortex. In particular,
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we assume that a voxel is only responding to one image fragment contained within a

single rectangle. However, it is quite possible that a voxel is responding to a small

set of features in disjoint parts of the face. Thus, we would have to adjust our model

to account for the fact that the voxel my be responding to multiple fragments. Addi-

tionally, we could adjust our algorithm to search over more complex non-rectangular

image fragments. This could also include warping across non-linear boundaries.

Despite these assumptions, previous researchers typically make more assumptions

about the nature of VT cortex than we do. Unlike their approaches, we do no pre-

computation to identify candidate features, and also avoid the assumptions inherent

in a generative approach. Rather, we let the image search itself discover key image

fragments using only our prior distributions built from pre-collected fMRI data. Still,

despite the relative strength of our approach, it is quite possible that our results

will not definitively answer many of our questions. The success of some of these

other methods suggest that using multiple approaches to study the same problem

may strengthen evidence of specific featural codes in VT cortex. If we do identify

subregions that respond to specific facial features, it would be beneficial to corroborate

our results with other techniques.

Most importantly, while we only tested this algorithm in simulation, it is easily

adaptable to the real system for use with human subjects. For example, we expect to

build our prior distributions by showing subjects a large set of warped and unwarped

faces, most likely during a separate scanner session. Using these prior distributions,

we can run the algorithm as presented in this paper, almost without modification.

However, first, we will need to create a mapping from the hemodynamic response

function to a real-valued voxel response. This is nontrivial, in particular because this

function can be noisy and hard to approximate parametrically. Additionally, because

26



Alexander Franks

of a phenomenon known as “scanner drift”, the magnitude of the HRF decreases

throughout the course of the experiment. While these challenges can be overcome,

our solutions must be fast because the analysis occurs in real-time. Nevertheless, the

image search algorithm presented in this paper represents the first major step toward

the successful implementation of a real-time fMRI system for the study of VT cortex.
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