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Introduction

The health of the human brain is dependent on cerebral blood flow, which is the

means of carrying oxygen and nutrients to the brain. These nutrients are brought

to the brain via a complex network of arteries which are tightly regulated by many

temporal and spatial constraints. The regulation is based on the viscosity of the

blood, the pressure of blood flow into the brain, the cross-sectional area of the

arteries, and other factors. The diameters of arteries are constantly changing via

the process or autoregualtion. The purpose of this specific form of homeostatis is

to keep blood flow constant when blood pressure varies which is done by expanding

or contracting the layers of elastic tissue that compose the arteries. For example,

when an increased amount of carbon dioxide is found in the blood, arteries will

dilate to provide organs more oxygen and nutrients.

Two internal carotid arteries (ICAs) and two vertebral arteries (VAs) deliver

oxygenated blood to the brain. See Figure 1.1 for a schematic. The blood then

flows into the Circle of Willis (CoW). This circle of arteries near the center of the

brain creates parallel paths of cerebral circulation. Thus if part of the CoW be-

comes occluded or is missing, other arteries can often preserve cerebral blood flow.

It turns out, according to Lippert and Pabst (1985), that anatomical variations

in the CoW are not uncommon; they affect up to 50% of humans (7). There is

great variability in the arterial networks of humans which leads us to believe that

a patient-specific approach must be used to study cerebral circulation. Thus, in

this paper, patient-specific simulations are used for all the studies examined.
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1. INTRODUCTION

Figure 1.1: Circle of Willis - This figure is from (1)

Abnormalities in this arterial network can be the result of conditions such as

stroke, vasospasm, vascular dementias, traumatic brain injury, and hydrocephalus.

Too little blood in the cerebral arteries, ischemia, can lead to the death of brain

tissue. Whereas too much blood, hyperemia, results in increased intercranial pres-

sure, leading to a compression of brain tissue. Since abnormalities in cerebral

circulation can lead to major complications or death, understanding the cerebral

arterial network is of utmost importance. At the moment, most medical decisions

concerning cerebral circulation do not account for the spatial and temporal scales

present but instead solely rely on steady state conditions (e.g. mean cerebral blood

flow).

Arterial blood flow in the human brain has been the subject of several math-

ematical studies. In one such study, Sherwin et. al (2003), a one-dimensional

model (1D) of cerebral circulation was developed based on a non-linear, 1D algo-

rithm which, using an elastic model of cerebral arteries, simulates blood flow wave

propagation (8). This is the 1D model that this paper will focus on. The equations

governing the 1D simulation are based on an impermeable and defomable tublar

control volume of incompressible and Newtonian fluid (1). The equations modeling
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flow in the 1D model come from the continuity and conservation of momentum

equations from the discipline of fluid mechanics, respectively,

∂A

∂t
+
∂(AU)

∂x
= 0

∂U

∂t
+ U

∂U

∂x
= −1

ρ

∂p

∂x
+

f

ρA

Here x is the axial position along a vessel, t represents time, ρ is the density of

the blood, A(x, t) is the cross-sectional area, U(x, t) is the axial velocity averaged

over the cross-section, and, similarly, p(x, t) is the axial pressure averaged over the

cross-section. The friction force per unit length, f , is equivalent to−2µπα/(α−1)U

where µ is the viscosity of the blood, taken as 4.5 mPa s, and α is a nondimensional

correction factor dependent on the velocity profile.

To complete this system of differential equations, we use the pressure-area

relationship, from (1),

p =
β

A0

(
√
A−

√
A0), β = βscal

√
πhE

(1− σ2)
,

where A0 is the reference cross-sectional area of the vessel, h is the reference arterial

wall thickness, E represents Young’s modulus, σ is Poisson’s ratio, taken to be 1
2
,

and βscal is a scaling parameter of β. Thus β is a measure of the elasticity of the

vessel. Descriptions of how bifurations and boundary conditions are handled can

be found in (1).
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2

Comparison of 1D and 3D

Cerebral Circulation Simulations

2.1 Overview

Several different methods have been developed to study cerebral arterial flow.

One method is the 1D simulation, mentioned above, which is described in (1; 8).

Another simulation modeling the cerebral arterial network is a three-dimensional

algorithm (3D). The 3D model is discussed in (3; 5).

Both methods, 1D and 3D, have benefits and limitations. The 1D simulation

can both predict pulse wave propagation and model situations where blood flow

does not exhibit strong 3D effects with reasonable accuracy. The model does

well with small (diameter < 2mm) arteries or, if applied to larger arteries, yields

reasonable predictions of the large-scale features of the flow. Another benefit of

the 1D simulation is that it is computationally inexpensive, taking less than an

half an hour to run simulations of the CoW on a single processor. Yet this one

dimensional model gives no data about local flow dynamics and can only model

one direction of flow propagation, whereas blood flow is really multi-directional.

For example, there is flow across the boundary of the vessel as plasma spreads into

the surrounding tissue and there are also secondary flow patterns that arise in a

curved vessel or at a bifurcation (2).

On the other hand, the 3D model allows us to more accuarately account for

5



2. COMPARISON OF 1D AND 3D CEREBRAL CIRCULATION
SIMULATIONS

the geometry of the blood vessels since it provides more information about flow

patterns and Wall Sheer Stress. The 3D algorithm can accurately model the

multiple directions of blood flow, such as the secondary flow that can occur by an

artery bifurcation (2). Also, this algorithm can more accurately represent arteries

since it accounts for the deformation of the arterial wall. Yet it takes significantly

more time and computing power to run a simulation with the 3D algorithm. So if

we are only interested in the mean flow, flow distribution, etc. the 1D simulation

is a fast and efficient alternative.

Previous research has shown that both algorithms fairly accurately model arte-

rial flow in the brain (1; 6). Therefore, we hope the results of the two methods will

be complementary when used on the same arterial network. If so, the 1D model

is a very powerful method since it is both fast and accurate.

Two different patients, both whom suffer from hydrocephalus and a CoW ab-

normality, were studied in this model comparison. The mission is not only to

discern the potential of both models but also to gain a better understanding of

cerebral flow. Perhaps the insights gained by studying brain abnormalities with

algorithms of varying degree will give physicians a better understanding of the

most effective treatments for such conditions.

The defining feature of hydrocephalus is an excessive accumulation of cere-

brospinal fluid in the brain, which fills and widens the ventricles. The result is

increased pressure in the brain since the brain cannot expand in response to the

extra fluid. Thus there is increased pressure on brain tissue and arteries. This

increased pressure leads to an extreme decrease in blood flow, which causes the

brain to be starved of the nutrients it needs (4). This follows from Poiseuille’s

law, F = ∆P/R where F is the flow, ∆P is the internal pressure gradient, and R

represents the resistance of the vessel. As intracranial pressure builds, it decreases

the internal pressure gradient, yielding a decrease in flow. The most common

treatment for hydrocephalus is to surgically insert a shunt which diverts the cere-

brospinal fluid to another part of the body, most frequently the abdomen, where

it can be absorbed. The flow of cerebrospinal fluid is then regulated by the shunt

so as to maintain a constant intracranial pressure.

Simulations for a patients with a healthy brain and a complete or incomplete

CoW are not discussed here but results for such simulations can be found in (1).

6



2.2 Methods

2.2 Methods

The 3D simulations were performed by Brown University PhD candidate, Leopold

Grinberg. His 3D model used “patient-specific geometrical models of arterial net-

works, measured in − vivo flowrates for the inlet boundary conditions, and the

RC-type outflow boundary condition as a closure problem” with a “two-level do-

main decomposition and multi-level communicating interface” (5).

Two patient-specific arterial networks were obtained using MRI images from

the Neurosurgery department of Children’s Hospital in Boston (see Figure 2.1). In

addition patient-specific flowrates, measured with PC-MRI at the ICAs and VAs,

were obtained.

The two patient geometries we examined in this study are

(a) The right part of the CoW of Patient #1 who has hydrocephalus and an

incomplete CoW

(b) An arterial network composed of the CoW and other arteries from Patient

#2 who has hydrocephalus and an incomplete CoW

Figure 2.1: Cranial Geometries - (a) Right half of the CoW of Patient #1 who
has hydrocephalus and an incomplete CoW; and (b) An arterial network composed
of the CoW and other arteries from Patient #2 who has hydrocephalus and an
incomplete CoW

7



2. COMPARISON OF 1D AND 3D CEREBRAL CIRCULATION
SIMULATIONS

Reconstruction of the arterial geometry was accomplished via gOREK soft-

ware, developed at Brown University. The two patient geometries can be found in

Figure 2.1. From the 3D reconstruction of the arteries, a 1D model of the arte-

rial network was constructed using Tecplot. The 3D model was skeletonized (an

example is shown in Figure 2.2) into a network composed solely of bifurcations.

One limitation of the 1D model is that it only works on a network of bifurcations.

The arterial network was broken into segments, called domains, and arterial

data was obtained for each domain. Using Tecplot, the length of each domain was

measured using linear interpolation. The radius of each domain was calculated by

taking slices of the artery, with Tecplot, and measuring the length from the arterial

wall to the center of the artery. The radius was calculated three times per slice

and slices were taken at three different points on each domain. The domain radius

measurement used in the 1D simulation was the average of all radial measurements

made on a domain.

Of course, there are some measurements which cannot be calculated with Tec-

plot. For each artery in our hydrocephalus arterial geometry, h and E were given

the same values as a comparable artery in the Alastruey et al.’s patient geom-

etry. The length of the cardiac cycle in this case is 1.1 seconds and we take

ρ = 1000Kg*m−3.

2.3 Patient #1

For the first comparison of the 1D and 3D models, a geometry only composed of

the right half of the CoW for a patient with an incomplete CoW and hydrocephalus

was chosen. Figure 2.2 shows the arterial network used for these simulations.

2.3.1 Methods

For this network, the 1D and 3D simulations used a rigid arterial wall model and

the patient-specific flowrates at the two inlets were used as the input parameters.

To make sure the 1D model was comparable to the 3D, in the 1D simulations the

pressure at all terminal arteries was set to p = 0 and a sufficiently large βscal value

8



2.3 Patient #1

Figure 2.2: Simulation of Cerebral Circulation for Patient #1 Geome-
try - Blue represents 1D and magenta represents 3D. (Top left) Arterial geometry;
(Bottom left) Pressure drop at (1) ICA, and (2) Basilar artery; (Right) Flow rates;
3D results provided by L. Grinberg (Brown University)

was used to stiffen the arterial walls. These two conditions imposed on the 1D

model were meant to simplify the initial comparison of the 3D and 1D algorithms.

2.3.2 Results

Our model starts with all velocities at zero so each simulation was run for 8 cardiac

cycles to make sure that the variability due to starting up circulation from zero

velocity was eliminated. For our comparative analysis the last cardiac cycle is

examined. Running the 3D model on this geometry took about 24 hours/cycle

on 256 cores of CRAY XT4, whereas all 8 cycles in the 1D model took only 20

minutes on a single processor. Figure 2.2 shows the pressure drop between the

terminal branches and the two inlets. Also the flowrates at each outlet are shown.

9



2. COMPARISON OF 1D AND 3D CEREBRAL CIRCULATION
SIMULATIONS

2.3.3 Discussion

Overall, we see remarkably consistent results for the 1D and 3D models. The

disparities in the predicted flowrates are found in the vessels farthest from the inlet

arteries (outlets 1,2 11, and 12). There are several reasons for the discrepancies

in the predicted flowrates produced by the 1D and 3D models. One reason is that

the 1D simulation does not model the angle of bifurcation for the arteries in the

geometry. The 1D simulation models a bifurcation at a 90 degree angle and a

bifurcation at 10 degree angle identically. Another shortcoming of the 1D model is

that the velocity profile at all points in the arterial geometry is assumed to be the

same. Therefore the affects of wall friction in arteries where swirling or reversal

flow is found is not accurate. These are the primary reasons for the discrepancies.

Though we should note again that the overall the flowrate predictions are extremely

similar for the two models, even though the 1D model has limitations.

2.4 Patient #2

For this comparative analysis of the 1D and 3D models, a geometry composed of the

major cranial arteries from a patient with an incomplete CoW and hydrocephalus,

was used. Figure 2.3 shows the arterial network used for these simulations.

2.4.1 Methods

Instead of using a rigid arterial wall simulation for both the 1D and 3D models, as

we did with Patient #1, for Patient #2 we allow the 1D simulation to model the

elastic behavior of arterial walls. Two different values for βscal (βscal = 1, 8) were

used to produce various levels of arterial elasticity. With these simulations we hope

to uncover the difference in flowrate predictions and pressure drops among a rigid

3D model, a elastic 1D model (βscal = 1), and a more rigid 1D model (βscal = 8).

Using the method described in Section 2.2, the lengths and radii of the domains

were measured and then the other parameters were estimated using data from

Alastruey et. al. (2006). Table 2.1 summarizes this data for Patient #2.

There are four inlets in this patient geometry, the two internal carotid arteries

(ICAs) and the two vertebral arteries (VAs). The same inlet boundary conditions,

10



2.4 Patient #2

Figure 2.3: Arterial Network of Patient #2 - All outlets labeled with corre-
sponding domain number. Geometry is broken into three parts - P1, P2, P3

patient-specific flowrates provided by Children’s Hospital, were used for both the

1D and 3D models. These flowrates are shown in Figure 2.4. To convert this data

to an input parameter, a Fourier series was used.

Figure 2.4: Patient specific flowrates at inlets - The inlet arteries in our
geometry are the ICAs and the VAs. Flowrates at the four inlets were measured via
PC-MRI.

The 3D model is composed of non-dimensional parameters but the 1D model

11



2. COMPARISON OF 1D AND 3D CEREBRAL CIRCULATION
SIMULATIONS

relies on dimensional variables. Thus conversion must be done to transform the pa-

rameters used in the 3D model into variables that can be used in the 1D simulation.

To convert the non-dimensional pressure (Pnon−dim), velocity (Unon−dim), flow rate

(Qnon−dim), or resistance (Rnon−dim) to dimensionalized pressure (Pdim), velocity

(Udim), flow rate (Qdim), or resistance (Rdim), we multiply by a scaling parameter,

P ?, U?, Q?, or R?, respectively. This scaling factor contains the appropriate units

so as to create a dimensionalized variable, for example, Qdim = Qnon−dim ∗Q?. To

calculate the scaling parameters, we have the following equations

P ? = ρ(U?)2

Q? = U? ∗ (L?)2

R? =
P ?

Q?
=

ρU?

(L?)2

U? and L? are obtained from the 3D model and ρ is taken as 1000Kg*m−3.

To be able to compare 1D and 3D, both models used comparable boundary

conditions for the terminal domains. The 3D algorithm uses a RC model for the

distal end of each terminal artery but the 1D algorithm uses an RCR model. As

found in Alastruey et al. (2006), the resistance parameter for the 1D model is

called RT and RT = R1 +R2 where R1 and R2 are the two resistances used in the

RCR boundary condition of the 3D model. R1 is calculated as
√

βρ
2

(
A
− 3

4
0

)
where

ρ = 1000Kg*m−3 and β is equivalent to the parameter β = βscal
√
πhE

(1−σ2)
divided

by A0. R2 is then calculated as RT − R1. When converting RC to RCR, we

minimize R1 and maximize R2. To do this we set RT = Rdim since this results in

R1 becoming a tiny percentage (around 5%) of R2. To calculate compliance C, we

simply take 0.18
Rdim

. Resistance and compliance measurements for the 1D model can

be found in Table 2.1.

2.4.2 Results

In Figures 2.5 and 2.6 you can see the results of the simulations. 3D data was

provided by Leopold Grinberg (Brown University). For both algorithms, 7 cardiac

cycles were run and data from the last cardiac cycle was analyzed.

12



2.4 Patient #2

2.4.3 Discussion

From Figure 2.5 it is easy to see that when βscal = 1 there are noticeable differences

in the amplitude for both flowrate and pressure drop along one cardiac cycle. But

the average flowrate and pressure drop for both the 1D and 3D models match

remarkably well. So when we run the 1D trial with βscal = 8 we expect, since this

causes a stiffening of arterial walls, that the amplitude of flowrate and pressure

drop will converge to the corresponding 3D values. From Figure 2.5 we see that this

is indeed the case; arrows on two of the graphs show that as βscal increases, the 1D

results converge to the 3D results. Therefore we must conclude that the difference

in results is due to different modeling approaches, specifically a difference in the

modeling of the elasticity of the arterial walls. While stiffening of the arteries

can occur in humans, such as when a person ages, arterial walls are not always

rigid. Thus it is of note that there is a discrepancy in the case of an elastic 1D

model. In Figure 2.6, we show the cross-sectional area fluctuations at all the

terminal arteries. For the case of βscal = 1 we see fluctuations of less than 2%,

which is physiologically acceptable. Typically an area fluctuation of such a small

percentage would be ignored and a rigid arterial wall model would be taken to be

accurate. But as we have seen from this simulation, small variations in area yield

a significant contribution to the capacitance of a fairly large arterial geometry and

have effects on all arteries in the system, even ones farthest from the inlets. Thus

models of cerebral circulation should take into account the elasticity of arterial

walls and more analysis of the affects of wall elasticity should be performed.

13



2. COMPARISON OF 1D AND 3D CEREBRAL CIRCULATION
SIMULATIONS

Domain Length (m) r (m) h (m) E (106 Pa) R (109 Pa s m−3) C (10−12 m3Pa−1)
1 (R. VA) 0.1480 0.00136 0.00034 0.8 - -
2 (L. VA) 0.1480 0.00136 0.00034 0.8 - -
3 (Basilar) 0.0214 0.00104 0.00040 1.6 - -
4 0.0860 0.00105 0.00026 1.6 36.8 4.89
5 0.001 0.00104 0.0004 1.6 - -
6 0.086 0.00105 0.00026 1.6 36.8 4.89
7 0.0066 0.00104 0.0004 1.6 - -
8 0.0045 0.00104 0.00027 1.6 - -
9 0.0124 0.00052 0.00014 1.6 - -
10 0.086 0.00105 0.00026 1.6 36.8 4.89
11 0.086 0.00105 0.00026 1.6 36.8 4.89
12 0.0151 0.00073 0.00018 1.6 - -
13 0.0151 0.00073 0.00018 1.6 - -
14 (L. ICA) 0.1703 0.00208 0.0005 0.8 - -
15 (R. ICA) 0.1703 0.00223 0.0005 0.8 - -
16 0.0071 0.00076 0.00026 1.6 73.6 2.45
17 0.0055 0.00056 0.00026 1.6 73.6 2.45
18 0.0067 0.00208 0.0005 0.8 - -
19 0.0067 0.00223 0.0005 0.8 - -
20 0.005 0.002 0.0005 1.6 - -
21 0.005 0.002 0.0005 1.6 - -
22 0.0144 0.00143 0.00036 1.6 36.8 4.89
23 0.0131 0.00143 0.00036 1.6 36.8 4.89
24 0.0117 0.00117 0.00029 1.6 - -
25 0.0117 0.00117 0.00029 1.6 - -
26 0.0114 0.00129 0.00026 1.6 - -
27 0.0117 0.00142 0.00026 1.6 - -
28 0.0093 0.00074 0.00019 1.6 36.8 4.89
29 0.0059 0.00084 0.00019 1.6 36.8 4.89
30 0.0249 0.00104 0.00026 1.6 36.8 4.89
31 0.0161 0.001 0.00026 1.6 36.8 4.89
32 0.0032 0.00074 0.00019 1.6 - -
33 0.011 0.00074 0.00019 1.6 36.8 4.89
34 0.008 0.00137 0.00026 1.6 - -
35 0.018 0.00085 0.00019 1.6 - -
36 0.005 0.00072 0.00019 1.6 36.8 4.89
37 0.014 0.00088 0.00019 1.6 36.8 4.89
38 0.008 0.00137 0.00026 1.6 - -
39 0.019 0.00066 0.00019 1.6 36.8 4.89
40 0.008 0.00106 0.00026 1.6 - -
41 0.005 0.00073 0.00019 1.6 36.8 4.89
42 0.007 0.00103 0.00026 1.6 36.8 4.89
43 0.0022 0.0012 0.00026 1.6 - -
44 0.0221 0.0011 0.00026 1.6 36.8 4.89
45 0.0171 0.0009 0.00019 1.6 36.8 4.89
46 0.0154 0.0012 0.00026 1.6 - -
47 0.0092 0.0009 0.00019 1.6 - -
48 0.0123 0.0014 0.00026 1.6 36.8 4.89
49 0.0243 0.0008 0.00019 1.6 36.8 4.89
50 0.0329 0.0011 0.00026 1.6 36.8 4.89

Table 2.1: Measurements for Patient #2 Geometry
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2.4 Patient #2

Figure 2.5: Comparison of flowrates and pressure-drops at P1 outlets
- Simulation results for (bottom) pressure and (top) flowrate at outlets in P1 for
Patient #2. Solid line – 3D model; Dashed line – 1D with elastic walls (βscal = 1),
and Dot-dashed line – 1D with stiff walls (βscal = 8)
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2. COMPARISON OF 1D AND 3D CEREBRAL CIRCULATION
SIMULATIONS
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Figure 2.6: Comparison of cross-sectional area fluctuations at P1 outlets
- Simulation results for flowrate at outlets in P1 for Patient #2. Dashed line – 1D
with elastic walls (βscal = 1), and Dot-dashed line – 1D with stiff walls (βscal = 8);
Standard deviation as a percentage of the mean is shown. β0 is equivalent to the
βscal parameter
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3

Sensitivity Study

3.1 Overview

The 1D model of cerebral blood flow is a computationally inexpensive and rela-

tively accurate tool for understanding blood flow in the brain. But, as with any

model, it is important to evaluate the robustness of this algorithm. We will do this

through sensitivity analysis which is an approach to examining a model’s response

to changes in the input parameters. By understanding the relationship between

the inputs and outputs of our simulation, we can better understand the structural

formation of the model and better evaluate the validity of the model.

In this chapter, we will investigate the variation in pressure and flowrate when

the elasticity of the arteries in the geometry is varied. As seen in the previous chap-

ter, this is an important area of study. In our model, the parameter representing

an artery’s elasticity is β. Recall that

β = βscal

√
πhE

(1− σ2)

where h the reference arterial wall thickness, E represents Young’s modulus, and

βscal is a scaling parameter. The sensitivity study discussed here investigates the

consequences of varying β from -25% to +25%, which is done through the use of

βscal. No other input parameters were changed during this study.

The input parameters for the 1D model, such as β, are already subject to several

sources of error. As discussed in Chapter 2, lengths and radii of arteries for the 1D
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3. SENSITIVITY STUDY

model are measure in Tecplot which cannot yield completely accurate results. Also

parameters which cannot be measured, such as wall thickness, are estimated. As

a result, confidence in the output is already limited. But by studying the affects

of substantial variation in β, we should be able to understand the degree to which

inaccuracies in β influences the outputs of our model.

Two different arterial geometries are examined in this sensitivity studys

(a) Patient A: The arterial network of a healthy patient with a complete Circle of

Willis. The CoW geometry is from (1) and an additional network of arteries

was added to each middle cerebral artery (MCA). The geometry starts at

the heart with the same cardiac input as in (1).

(b) Patient B: The geometry of a patient with hydrocephalus and an incomplete

CoW. This is the geometry of Patient #1 from Chapter 2.

Pictures of these arterial networks can be found in Figure 3.1.

Figure 3.1: Cranial Geometries - (a) Geometry with full CoW and arterial
networks off of the MCAs from Patient A who is healthy and has a full CoW – here
all we show is the CoW and arteries off of the MCA even though simulation starts
at the heart; (b) An arterial network composed of the CoW and other arteries from
Patient B who has hydrocephalus and an incomplete CoW
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3.2 Methods

3.2 Methods

A sampling-based, probabilistic sensitivity study is the method used here to eval-

uate the influence of fluctuations in artery elasticity. To preform such a study,

simulations for varying, distinct values of βscal, ranging from 0.75 to 1.25, were

performed. Monte Carlo simulations, a process of using repeated random sam-

pling to simulate a system, were used.

With this Monte Carlo sampling, our goal is to approximate the integral of

f(t, x, βscal) as the average of the function evaluated for many different βscal values.

f(t, x, βscal) represents one of the outputs we are examining, flowrate or pressure,

at time t, position x in the geometry, and with value βscal used as the scaling

parameter. Since we expect our system to be “well behaved”, we can assume

convergence if we do enough trials by the law of large numbers.

As a method of analyzing our results, the mean and standard deviation of

f(t, x, βscal) were computed. A position in the arterial network, x, was fixed and

then the mean value of f for all time steps (tk) was calculated by the formula

f̄βscal(tk) =
N∑
i=1

f(tk, x, βscali) ∗ wi

where N is the number of Monte Carlo trials performed. Each trial i, 1 ≤ i ≤ N ,

is performed with a different value of βscal and wi is the weight corresponding to

the value of βscal for the trial. The standard deviation, σf , is calculated as

σfβscal (tk) =

√√√√ N∑
i=1

(
f̄βscal(tk)− f(tk, x, βscali)

)2

∗ wi

For the arterial geometry of Patient A we perform N = 1000 Monte Carlo

simulations which is a sufficiently large enough N to obtain convergence. Since

nothing is known about the probability distribution of βscal, the uniform distri-

bution is chosen as a valid guess. The βscal parameters chosen for each trial were

obtained by a random number generator drawing from the uniform distribution

in the range of 0.75 to 1.25. From the choice of βscal probability distribution it

follows that each wi = 1/N .
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3. SENSITIVITY STUDY

There is a cleverer way to perform the Monte Carlo simulations called Sparse

Monte Carlo. This method was used on the geometry of Patient B, the patient

with hydrocephalus. Sparse Monte Carlo is a more efficient method of numerical

integration because it only samples the most important points which means faster

convergence to the solution. These most important points, corresponding to the

values taken on by the scaling parameter, were taken as Gauss-Legendre nodes.

Legendre polynomials are used since this choice corresponds to drawing from the

uniform distribution.

To select the appropriate number of nodes (N), three different simulations were

performed (N = 7, 9, 11). Results did not reflect significant change from N = 9

to N = 11 so the results of the N = 11 trials will be analyzed in this chapter.

Table 3.1 lists the nodes, in the 0.75 to 1.25 range, and corresponding weights used

for the N = 11 simulation.

Trial 1 2 3 4 5 6 7 8 9 10 11
Nodes 1.2446 1.2218 1.1825 1.1298 1.0674 1.0 0.9326 0.8702 0.8175 0.7782 0.7554

Weights 0.0139 0.0314 0.0466 0.0583 0.0657 0.0682 0.0657 0.0583 0.0466 0.0314 0.0139

Table 3.1: Gauss-Legendre Nodes and Weights - Here N = 11 and nodes are
taken from the range 0.75 to 1.25.

As mentioned above, only the value of βscal changed in the various trials; all

other input parameters stayed constant. Thus we can be confident that the changes

in output values are due to the variations in artery elasticity.

To construct a 1D model of the Patient A geometry the arterial network, found

in Figure 3.2 (middle), and corresponding parameter values were taken from (1).

Then a patient’s arterial network off of the MCA was obtained from Children’s

Hospital in Boston. This geometry was reconstructed from DSCTA and MRI

images and then it was attached to both MCAs in the 1D geometry from (1).

Figure 3.2 shows a schematic of how Patient A’s geometry was constructed. The

parameter values for the network which starts at the MCA were computed using

the methods described in Section 2.2. Also found in Section 2.2 is a description of

how the Patient B geometry was converted into a 1D network.
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3.3 Results

Figure 3.2: Construction of Patient A Geometry - In the middle is the 1D
network used in (1). A network of arteries (left and right) were then added to the
MCAs. This is depicted by the purple arrows. The network starting at the MCA
is the same for the left and right side; the network off of the L. MCA is the mirror
image of the network off of the R. MCA.

3.3 Results

3.3.1 Patient A

In this geometry, data was collected at 8 different locations in the arterial network.

These locations are pictured in Figure 3.3. For domains 14, 23, 26, and 58 the

data is taken at the midpoint of the artery whereas for domains 21, 33, 38, and 51

the data is taken as the terminal end of the artery.

At these 8 different locations, the mean pressure and flowrate are plotted over

one cardiac cycle in Figures 3.7 and 3.8. In these figures, the shaded area represents

the variation in pressure and flowrate, respectively, through the 1000 Monte Carlo

trials. Tables 3.2 and 3.3 shows the minimum and maximum standard deviation

in pressure and flowrate, respectively as a percentage of the mean.
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3. SENSITIVITY STUDY

Figure 3.3: Locations where Output was Measured for Patient A - This is
the arterial network for Patient A. The red arrows point to the 8 places where output
was measured. The arrows are labeled with the corresponding domain numbers.

Domain Min std Max std

14 0.03072% 3.0729%
26 0.048103% 3.183%
23 0.22513% 3.7311%
21 0.081142% 3.6746%
33 0.16521% 3.2673%
56 0.12157% 3.4179%
58 0.1172% 3.6787%
51 0.15288% 4.0919%

Table 3.2: Minimum and Maximum Standard Deviation in Flowrate for
Patient A - The minimum and maximum standard deviation in flowrate as a per-
centage of the mean for each point chosen in the geometry.
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3.3 Results

Domain Min std Max std

14 0.08088% 2.7389%
26 0.066094% 2.795%
23 0.045415% 2.8271%
21 0.029655% 2.2922%
33 0.10181% 2.8865%
56 0.029145% 2.3419%
58 0.038635% 2.3993%
51 0.034655% 2.3439%

Table 3.3: Minimum and Maximum Standard Deviation in Pressure for
Patient A - The minimum and maximum standard deviation in pressure as a
percentage of the mean for each point chosen in the geometry.

Figure 3.4: Locations where Output was Measured for Patient B - This
is the arterial network for Patient B. The black arrows point to the 8 places where
output was measured. The arrows are labeled with the corresponding domain num-
bers.

3.3.2 Patient B

In this geometry, data was collected at 8 different locations in the arterial network.

These locations are pictured in Figure 3.4. For domains 9, 12, 22, 25, and 40 the
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data is taken at the midpoint of the artery whereas for domains 1, 31, and 50 the

data is taken as the terminal end of the artery.

At these 8 different locations, the mean pressure and flowrate are plotted over

one cardiac cycle in Figures 3.9 and 3.10. In these figures, the shaded area rep-

resents the variation in pressure and flowrate, respectively, through the 11 Sparse

Monte Carlo trials. Tables 3.4 and 3.5 shows the minimum and maximum standard

deviation in pressure and flowrate, respectively as a percentage of the mean.

Domain Min std Max std

1 0.036823% 2.0623%
9 0.046142% 3.041%
12 0.18797% 3.0623%
22 0.034231% 1.6775%
25 0.046414% 2.9077%
31 0.031142% 1.9178%
40 0.046447% 1.5875%
50 0.020377% 2.0308%

Table 3.4: Standard Deviation in Flowrate for Patient B - The minimum
and maximum standard deviation in flowrate as a percentage of the mean for each
point chosen in the geometry.

Domain Min std Max std

1 0.060002% 1.6899%
9 0.055539% 1.5396%
12 0.053833% 1.5511%
22 0.052175% 1.4847%
25 0.051295% 1.5002%
31 0.049813% 1.4573%
40 0.047925% 1.4406%
50 0.051545% 1.4175%

Table 3.5: Standard Deviation in Pressure for Patient B - The minimum
and maximum standard deviation in pressure as a percentage of the mean for each
point chosen in the geometry.

24



3.4 Discussion

3.4 Discussion

When looking at Figures 3.7, 3.8, 3.9, and 3.10 we see very similar results. For

one, we see the most deviation in pressure when ∂P
∂t

is small. We see the same

behavior in flowrate. When there is a rapid acceleration in flowrate or pressure,

there is hardly any deviation even multiple values of βscal are being examined.

Another commonality is that at these times of little standard deviation (∂P
∂t

is

large), the pressure curve for a given value of βscal switches which side of the

mean it is on. The same behavior is seen with flowrate. Figures 3.5 and 3.6 show

this occurrence in both flowrate and pressure for one specific value of βscal. This

flipping behavior is due to the fact that we are modeling a nonlinear system with

a complex interconnected network of arteries.

Figure 3.5: Alternating Behavior of Output with Regards to the Mean
for Patient A - For βscal = 1.2446, the output is shown in blue. Flowrate graph
on top and pressure graph on bottom. Mean shown in red for both graphs.
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Figure 3.6: Alternating Behavior of Output with Regards to the Mean
for Patient B - For βscal = 1.2446, the output is shown in blue. Flowrate graph
on top and pressure graph on bottom. Mean shown in red for both graphs.

Typically, in the Patient A geometry we see flowrate variations of less than or

equal to 4% and pressure variations less than 3%. In Patient B we see the same

behavior, except that the maximum variations are about one percentage less than

in Patient A.

All variations are less than or equal to 4%. Variations of this order are so

slight compared to the +/- 25% variation that the arteries of this network are

undergoing. Therefore we conclude that the 1D model is robust to large variations

in β. This result also tells us that our model will not be strongly affected by errors

when calculating input β parameters. Having a robust model is key to aiding in

the development of a 1D simulation that doctors can utilize to aid in diagnosis

and treatment.

3.5 Graphs for Patient A and B

The order of the four figures in this section is as follows:
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3.5 Graphs for Patient A and B

• Figure 3.7 - depicts the sensitivity of flowrate to changes in artery elasticity

in the Patient A geometry

• Figure 3.8 - depicts the sensitivity of pressure to changes in artery elasticity

in the Patient A geometry

• Figure 3.9 - depicts the sensitivity of flowrate to changes in artery elasticity

in the Patient B geometry

• Figure 3.10 - depicts the sensitivity of pressure to changes in artery elasticity

in the Patient B geometry
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Figure 3.7: Sensitivity of Flowrate to Changes in Elasticity for Patient
A - Shaded area represents the variations of flowrate. The red line shows the mean
of the variations.
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3.5 Graphs for Patient A and B

Figure 3.8: Sensitivity of Pressure to Changes in Elasticity for Patient A
- Shaded area represents the variations of pressure. The red line shows the mean of
the variations.
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Figure 3.9: Sensitivity of Flowrate to Changes in Elasticity for Patient B
- Shaded area represents the variations of flowrate. The red line shows the mean of
the variations.
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3.5 Graphs for Patient A and B

Figure 3.10: Sensitivity of Pressure to Changes in Elasticity for Patient
B - Shaded area represents the variations of pressure. The red line shows the mean
of the variations.
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4

Conclusion

The human brain is a compelling area of study since this organ makes up 2%

of body weight, receives 15% of the heart’s output, and receives 20% of total

body oxygen. Thus the brain is charged with the task of distributing a great

percentage of cardiac output to surrounding tissue while staying bounded by the

skull. The network of arteries that compose the blood flow pathways of the brain

are extremely complex and also vary among all humans. Therefore a patient-

specific approach of modeling cerebral blood flow must be taken.

A 1D and a 3D model of cerebral circulation have been developed and both

simulate blood flow very accurately. While the 3D model can take into account

more of the physiological parameters present in the arterial geometries, our studies

show that the 1D model results match the 3D results well. Thus the 1D model is

an accurate and fast alternative to the 3D algorithm.

In Chapter 2 we saw that it is important to take into account artery elasticity

when modeling the cerebral arterial network. The importance of arterial elasticity

on blood flow led us to examine the sensitivity of the 1D model to such variations.

We see that even variations in elasticity by +/- 25% do not yield large variations

in pressure or flowrate in the system. These results leave us confident that the

model is robust when it comes to elasticity variations.

One hope of future work is to develop an arterial simulation that doctors can

use in their offices. While the 3D model is an option for such a tool, its compu-

tational time makes it a poor choice for medical professionals who need results

quickly in order to make diagnoses. Thus the 1D simulation is a better candidate
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4. CONCLUSION

for doctors since it runs quite quickly and provides results comparable to the 3D

model. Being able to use the 1D model in a doctor’s office will require the devel-

opment of a method to scan a patient’s arterial tree, skeletonize it, and compute

all needed input parameters for the 1D model. But, hopefully, one day such a tool

will be available to medical professionals so that they can quickly find stenoses,

aneurysms, and other arterial problems without an invasive procedure. Then they

can understand the detrimental affects of these conditions on the patient’s blood

flow and determine the best course of treatment.
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