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Abstract

We consider the problem of scheduling tasks in a multiprocessor.

Tasks cannot always be scheduled independently – for example, only

one task associated with a particular object can be run at once. How

can a scheduler decide which tasks to run under this constraint? We

describe a novel OwnerQueue data structure, a single-dequeuer lock-

free queues which allow for the smooth handoff of dequeuing privilege

from processor to processor. One OwnerQueue is allocated per object,

and tasks on the object are enqueued to it. Only the owner of the

queue may run tasks. The OwnerQueue itself ensures two safety prop-

erties: no more than one thread considers itself the owner at any one

time, and at least one thread considers itself the owner if there are any

items on the queue. With these guarantees we construct a scheduler

satisfying the constraints.

1 Introduction

Most programming languages are based around the idea of a process, which
comes into existence, does some work, and exits. However, this model does
not work well for event-driven server systems: the process must instruct the
computer to listen and respond to events, and the code to do this tends to
be difficult to write and maintain if the programmer is using a process model.
Furthermore, processes have a lot of state, and so when multiple threads of
execution exist within a process (as is often created by asynchronous events
in event-driven systems), synchronization of this state between threads is
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also difficult to write and maintain. Lastly, requiring the programmer to
specify which processes run on which processors (or threads) requires the
programmer to predict beforehand how much work a particular process will
require.

A new programming paradigm can make steps towards solving these is-
sues. We have designed a programming language based not around processes
but around units, which are an aggregation of data (which must be consistent
with itself) and a set of operations (code which operates on the data). Units
communicate only by sending asynchronous messages to other units, telling
them to execute operations.

Since the messages are asynchronous between units, the system is free
to schedule non-conflicting operations in parallel. Due to this scheduling
freedom, the system exhibits natural parallelism at the granularity of units.
However, to preserve consistency within a unit, the system is constrained
never to schedule two operations on a particular unit at once.

2 Units and Operations

The programming language is designed around asynchronous message passing
between units. The runtime system must keep track of units and messages
as they flow through the system. A message is addressed to an operation on
a unit, may include arguments to control the behavior of the operation, and
results in the asynchronous execution of that operation.

Units are somewhat similar to objects in object-oriented programming.
Users define a set of shared state for each unit, and the system guarantees
to the user that all operations on a unit are linearizable[3], and to make it
easier to create programs using the system, the user need not think about
synchronization in the presence of concurrent requests at all. The user simply
defines an operation as a series of steps, possibly including sending other
messages, as well as reads and writes to memory local to the unit.

There are a few ways to linearize all unit operations. In future work,
we will examine automatic linearization of operations using software trans-
actional memory[4] or other similar ideas. For now, however, we will require
the scheduler to execute at most one operation on a particular unit at one
time. This property is called unit exclusion.

Not all operations need to be part of a unit: if the operation doesn’t read
or write any shared state, then it is known as a free operation and may be
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executed in parallel with any other operation.

3 Multithreaded computation model

To provide a formal framework in which to specify this system, consider the
model of multithreaded computations given by Blumofe and Leiserson [1]:
computations are split into a series of steps, some of which may be executed
in parallel. A task is a series of steps. Each step is equivalent to a machine
language instruction. After it is executed, it may either continue, going
to the next step in the sequence; spawn, starting a new asynchronous task;
or join, wait for a step in another task to be completed. A program is a
directed graph, where the steps are nodes, connected by continue, spawn, or
join edges.

Figure 1 shows a typical multithreaded computation. The first task
spawns at step v0 (using a dotted spawn edge) an asynchronous task, whose
value it accepts in step v3 using a join edge. Figure 2 shows a non-strict
computation for contrast.

This (Blumofe’s) framework requires that all multithreaded computations
are fully strict, meaning that all join edges from a task go to the task’s parent.

Here, the design of the programming language suggests a different, in-
compatible constraint on computations: all join edges to a task go to the
first step in the task. I call this property forwardesque, because with the
additional condition of acyclicity in the graph, it means that all edges are
forward – they go from an earlier step in the computation to a later one.
For the purposes of the programming language, this means that tasks do not
block once they have started execution.

This is desirable: if a task is a synchronized operation on a unit, because
of unit exclusion, it can be thought of as holding a monitor or lock on the
unit for its duration. In thread programming, it is discouraged to block
while holding a lock, because no other thread can take the lock even while
the thread holding it is waiting. In our system, since tasks have no way to
block midway through, this is not a problem.

Figure 3 shows a typical forwardesque computation. The main task
spawns two asynchronous tasks (v4-v7 and v8-v11). It then spawns a re-
ceiver task, which waits for the result of the values of the two asynchronous
tasks (indicated by the two join edges) before it executes.

The user in our system creates forwardesque computations using Futures.

3



asynchronous subcomputation

v0 v1 v2 v3

v4 v5 v6 v7

main computation

join edgespawn edge

Figure 1: Fully strict computation.

asynchronous subcomputation

v0 v1 v2 v3

v4 v5 v6 v7

main computation

spawn edges

join edge from sibling

Figure 2: A non-strict multithreaded computation. Note the join edge from
a sibling.
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v8 v9 v10 v11

v12 v13 v14 v15
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main computation

join edge
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Figure 3: Forwardesque computation.
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Our notion of Futures is similar to Halstead’s in Multilisp[2]: an operation is
started asynchronously, and returns a Future immediately, which is a promise
for a later value when that asynchronous task terminates.

The user starts an asynchronous task (sends a message) using the send

primitive. Send accepts a receiver operation and some number of arguments,
returns a Future, and causes the receiver to be invoked asynchronously with
the arguments. When the receiver returns a value, the Future is filled (re-
solved) with the value.

In Multilisp, the user may “force” a future during execution. In our
system, on the other hand, there is no way to force a Future – no capability
for blocking on Futures during execution of an operation. In order to get
the value from a Future, the user must perform send, passing the Future he
wishes to resolve to another asynchronous task as an argument. That task
will not begin until the Future that was sent as an argument is resolved. In
fact, all reachable Futures, e.g., embedded in data structures, returned from
operations, etc., must be resolved before the task can begin.

In this system, Futures are the only way to create join edges. The only
way to wait on a Future is to spawn a new task to receive its value. That
task will have some number of join edge to its first node, but there are no
other join edges, so the computation is forwardesque.

Theorem 1. Computations in the system are acyclic and therefore deadlock-
free, assuming that every task terminates and a task can never start with a
reference to an unresolved Future (a join edge).

Proof. If each task terminates, there are trivially no cycles among continue
or spawn edges alone. Thus any cycle must include a join edge.

Assume there is a path from task T to itself, including a join edge to T .
The source of the join edge cannot be T itself, because join edges to a task
must be created from previously spawned tasks. Similarly, the source of the
join edge cannot be a task spawned after T . So it must be a task spawned
before T . However, this logic applies to each task T in the cycle, and they
cannot all have been spawned before each other in time. Therefore, cycles
do not exist.

Note that this theorem stipulates that computations may not start with
a reference to an unresolved Future. Therefore, provisions must be made
against the possibility of a Future “escaping” a task unresolved. If this were
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possible, a task might obtain a reference to its own Future, attempt to return
it, and thereby deadlock.

In practice, this restriction (no escaping Futures) may be relaxed without
admitting deadlock in some situations. For instance, a Future FS for task
S could escape to task T if T is pure functional (no side effects, no shared
state) and therefore does not save FS anywhere that S could read it.

4 Scheduling specification

In order to execute a program in this system, we use a scheduler which
selects steps to run among all the steps that are ready. Running a step
means executing it on a processor. The machine architecture may include
any number of processors, and the scheduler is expected to efficiently utilize
all available processors in order to complete the computation as quickly as
possible. Each processor executes one step per unit of time.

It is possible that there are more runnable steps than processors and yet
not all processors can be busy, because some of those steps might be parts
of tasks on the same unit, and the unit exclusion requirement prevents the
scheduler from concurrently scheduling two tasks on the same unit.

Besides satisfying unit exclusion, the scheduler must also be efficient. It
should scale as well as possible to highly concurrent systems with many pro-
cessors. I believe that lock-free algorithms scale well because they minimize
critical sections, so I implemented a lock-free multithreaded scheduler for this
system. Other scheduler implementations are not considered here.

5 Scheduler implementation

My scheduler is non-preempting; tasks are executed to completion by follow-
ing continue edges. A spawn edge leaving a node is considered a message and
is placed in a queue. Messages are addressed to a particular operation, which
is either a free operation or a unit operation. Messages are enqueued to be
executed asynchronously. Join edges are handled by scanning the message
arguments for Futures, including deeply traversing data structures. If the
message contains unresolved Futures, the system saves the message for when
the Futures are resolved rather than enqueuing it right away. (This data
structure traversal is fairly expensive for large data structures, and the next
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system will probably have a slightly different mechanism.)
One approach to lock-free scheduling is to use a global runqueue from

which each processor dequeues. This is subject to high contention due to
cache misses and interconnect bandwidth on the runqueue, however, so Blu-
mofe describes a model where each processor has its own private runqueue.
When there are only free operations ready to run, the scheduler in this pa-
per is very similar to a wait-free implementation of the work-stealing deques
scheduler in Blumofe.

Unlike that of Blumofe, our scheduler must be careful to only run one op-
eration per unit. To guarantee unit exclusion, we place unit-specific messages
on a unit runqueue, and then place the unit on a processor’s runqueue.

Here it is important to consider the scheduler in the presence of work-
stealing. When a processor is not busy and other processors are, it is usually
beneficial for that processor to try to find some work to do. This is accom-
plished through workstealing. When it would otherwise be idle, the processor
scans other processor runqueues and attempts to steal a unit by dequeuing
from the first runqueue it comes across with some units on it.

But in the presence of workstealing, a unit that appeared twice on a
processor’s runqueue might have one of its units stolen. Then it appears
twice on two processors’ runqueues, and unit exclusion could be broken. Thus
any unit must appear at most once on a processor’s runqueue. This is done
with an abstract data structure called an OwnerQueue, which has a similar
interface to a standard queue.

6 OwnerQueue specification

The OwnerQueue structure is an modification of a simple lock-free queue.
The idea is that it can notify the user when the queue is empty, but this
capability, along with a contract for how the OwnerQueue is used, allows
the scheduler to safely transfer ownership of the queue from thread to thread
during scheduling.

The OwnerQueue data structure defines two methods: enq and was empty

and deq and is empty. While it approximates the behavior of a queue, the
system does not guarantee that items are extracted in exactly the same order
they appear to have been inserted.

The sequential specification for enq and was empty is the following: En-
ter the given item into the set of items in the structure, and if the set was
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empty, return true. Otherwise, return false.
The sequential specification for deq and is empty is the following: Non-

deterministically remove an item i from the set of items in the structure. If
the set is now empty, return (i, true). Otherwise, return (i, false).

The OwnerQueue provides the user with certain guarantees, provided its
contract is met. Critical to the contract is the notion of ownership of an Own-
erQueue. When a thread receives true from enq and was empty, that thread
becomes the owner of the OwnerQueue. That thread now has exclusive priv-
ilege to call deq and is empty on the OwnerQueue, until deq and is empty

returns true, at which time the thread’s privilege is revoked and it is no
longer the owner.

The OwnerQueue guarantees that if the threads obey the OwnerQueue
contract, then no two threads own the queue at the same time (Theorem 2).

7 OwnerQueue implementation

The OwnerQueue is implemented as a composition of two atomic objects: a
lock-free queue and a shared counter.

The OwnerQueue’s enqueue and dequeue methods are implemented as a
simple non-synchronized two-step operation: perform the operation on the
underlying queue, then atomically fetch and increment or decrement and fetch

the counter, assigning the return value to c, then return whether c == 0.
For example, consider an empty queue with two threads t1 and t2 concur-

rently attempting to enqueue. Each performs the enqueue operation on the
underlying queue, then attempts to increment the counter. Both increments
will succeed, but only one gets the value 0 and thus returns true.

This implementation does not quite have the semantics of a proper queue,
which is why the specification simply requires the implementation to keep
track of a set of items in the structure. t1’s underlying-enq operation might
succeed before that of t2, but the subsequent fetch and increment opera-
tions were executed in the reverse order. t2 would be somewhat surprised to
find that although the queue appeared “empty” according to the return value
of enq and was empty, the first element subsequently dequeued was not the
item that t2 enqueued (it was instead that of t1).

Thus, the contract’s mention of “exclusive privilege to call deq and is empty”
also comes with a responsibility: the requirement that each thread that be-
comes the owner eventually exhausts the queue by dequeuing from it until
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deq and is empty returns false. A thread must be prepared to deal with any
number of other threads’ items on the queue, in arbitrary order, if it becomes
the owner.

8 Correctness

The correctness condition of linearizability[3] says that to be linearizable,
any concurrent history of the object must be equivalent to a legal sequential
history.

The correctness and linearizability of the underlying lock-free queue is as-
sumed (e.g., as in [5]). Linearizability of shared counters using fetch and add

and similar operations is also assumed. The OwnerQueue described here is
probably linearizable, but not proved here.

A history is a sequence of events observed by clients of an object, as
described by Herlihy et al. In these histories, the OwnerQueue is the object
in question. A method call is indicated by the syntax oq Method Thread and
a method return is indicated by the syntax oq MethodOk Thread. The first
field (“oq”) is the object, the second is the name of the method, and the
third is the thread ID (“A” or “B”) performing the invocation. Any text
later on the line is a comment on the particular line.

OwnerQueue contract. For all histories, for any thread A and Own-
erQueue oq, while A is the owner (as in the following pattern in the history),
no thread B calls Deq on oq.

oq Enq( ) A
oq EnqOk(true) A A becomes the owner.
... other entries, not including Deq() B
oq Deq() A
oq DeqOk( , false) A A is no longer the owner.

In the above example, A became the owner when enq and was empty

returned true. During the period of time when A was the owner, no other
thread called deq and is empty.

Theorem 2. If the OwnerQueue contract is satisfied, there are no overlap-
ping calls to deq and is empty.
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Proof. First I prove that no two threads consider themselves the owner at
once.

Ownership transfer is associated with counter movement (from zero to
one and one to zero). Proof by induction on steps – in the initial state, the
queue is empty and quiescent, and no thread is the owner.

On each subsequent step, a thread may either increment the counter,
decrement the counter, or take some unrelated action. If it increments the
counter from zero, that one thread considers itself the owner and the counter
is now greater than or equal to one. Other threads who increment the counter
will not observe the value zero pre-increment. By the OwnerQueue contract,
only the owner may dequeue and thereby decrement the counter. If the
counter is decremented from one, that thread is no longer the owner, and
any other thread would observe the base case.

Note that a thread which starts but doesn’t finish an enq operation could
result in an OQ with one more item than is represented by the state of the
counter. If this is the case, then when other threads perform enqueues and
dequeues, they will handoff ownership with respect to the counter – i.e., the
queue will always have one more item in it than the other threads realize.

It is also worthwhile to consider the property of totality. An operation is
total if it is defined for every object value, otherwise it is partial.

Here I discuss totality of the OwnerQueue with respect to its contract.
Normally in queues, enqueue operations are total because you can always add
an element to the queue. Dequeue operations, however, are partial, because
the queue might be empty when you tried to dequeue, and in this case the
behavior is not defined. In the OwnerQueue contract, however, we prove
that the dequeue operation is always defined as long as the caller respects
the contract.

Theorem 3. If the OwnerQueue contract is satisfied, both enq and was empty

and deq and is empty are total.

Proof. The underlying queue is unbounded, and the shared counter is effec-
tively infinite1, so enq and was empty is total.

A thread can only become the owner after enqueuing. If the OwnerQueue
contract holds, no thread will ever dequeue unless it is the owner.

1We are considering unbounded queues only. In practice, there exist both a memory

limit for items on the queue and a limit on the size of integers for the counter.
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A thread which starts but doesn’t finish a deq operation could result in
an OQ with one fewer item than is represented by the counter. But since
only one thread can be calling dequeue at once, this disagreement can never
result in a failure to dequeue. Therefore, deq and is empty is total.

The OwnerQueue is used in a fairly simple manner: a unit’s runqueue is
an OwnerQueue. If there are no items on the runqueue, there may or may
not be an owner. But as soon as a thread enqueues onto an empty runqueue,
that thread becomes the owner. That thread is constrained to ensure that
messages on that queue will be executed as long as there are messages ready.
In order for another thread to execute ready messages on that queue, it must
obtain the first thread’s consent to receive ownership of the queue (which, in
our system, is obtained by taking it off the victim’s runqueue atomically).

9 Efficiency

The system was tested on two benchmark programs, called fib and ddb.
fib is an implementation of tree-recursive Fibonacci: calculation of a par-

ticular value k in the Fibonacci sequence by creating two recursive free fib

operations to calculate k − 1 and k − 2, and another free operation (plus)
that waits until the futures from the previous operations are filled with val-
ues, then sums the values. This is inefficient for calculating the Fibonacci
sequence (a dynamic programming algorithm reduces the exponential com-
plexity of this algorithm to a linear one). However, the experiment is a good
test that messages and futures are handled properly.

A modification of the experiment applies some arbitrary amount of extra
work (for example, counting to ten thousand) at each fib and plus operation,
in order to have a better idea of synchronization overhead (the extra work
requires no synchronization).

ddb is a simple distributed database. Four database servers are imple-
mented as units, and there are twenty-eight clients. The database servers
map integer keys to values, and each server holds a unique set of keys; the
server on which a key resides is determined by the hash of the key. The clients
put heavy load on the servers, requesting and updating keys, and taking ac-
tion based on the value of particular keys. Each server unit exposes three
operations: put, get, and increment. This experiment is designed to test the
unit-related aspects of the system: performance of units, unit exclusion, and
workstealing.
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Figure 4: Speedup for the fib experiment: real time for the experiment
divided by by the real time for the one-processor case.

The load on the database is unbalanced; in particular, one key is designed
to have heavy load. Because of the characteristics of the database, this key
is always assigned to one server, and because of unit exclusion, that server
will be executed by at most one processor. In fact, if that server has enough
requests to keep it constantly busy, then that server will only execute requests
on that one unit. Therefore, units which process many messages should tend
to have affinity to whatever processor they end up on. Since there are 32
units and 32 processors, the system should “settle” in the 32-processor case
after a small amount of workstealing on having one unit per processor.

9.1 Results

The Fibonacci experiment demonstrated that the system scales fairly well to
multiprocessor machines. The experiment is almost embarrassingly parallel,
so it should exhibit linear speedup as processors are added, except for syn-
chronization overhead. This appears to be the case, as Fig. 4 demonstrates;
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Figure 7: Number of messages processed in ddb by each processor.

when the amount of work to be done at each node is large, the system uti-
lizes all the processors fairly effectively. Some synchronization overhead is
observed, as the graph tails off at higher concurrencies. Another measure-
ment of synchronization overhead is the idea of waste: the amount of extra
CPU time that adding a processor costs. Figs. 5 and 6 demonstrate the
amount of waste exhibited by the system. (I don’t yet know what to make
of these results, as it seems waste is a function of work, yet I don’t believe it
should be.)

The distributed database experiment demonstrated that the system is
able to distribute work to processors, and that the workstealing algorithm
we chose has the effect of placing each unit onto separate processors. Fig. 7
demonstrates that the workstealing was able to do this, since the distribution
of work assigned to processors matches up very closely with the amount of
work assigned to units by the experiment. Fig. 8 shows how much work-
stealing was taking place across the experiment; Fig. 9 shows which units
were stolen during the 32-processor experiment. The results are as expected:
the units with higher load were stolen less often, because the processors they
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Figure 8: Number of units stolen during ddb experiment.
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were assigned to were busy working on them, and workstealing never steals
a unit that another processor already owns.

CPU utilization in ddb was lower because of unit exclusion (see Fig. 10).
Since most of the messages were concentrated onto a few units, it was often
the case that some processors ran out of work.

10 Conclusions

A lock-free multithreaded scheduler that implements unit exclusion is feasi-
ble to implement. Performance in my implementation is not great, but is
acceptable, and there are some notable ways to improve it (for example, us-
ing thread runqueues for free ops rather than scheduling them all off a main
runqueue).

The OwnerQueue data structure seems very useful and more generally ap-
plicable as a design pattern for lock-free implementations. The OwnerQueue
was found useful for another part of the scheduling system, not just unit
exclusion: When a future is filled, it is important to wake up a list of mes-
sages that depend on that future. However, messages must not be woken
up before the future is filled, and “lost wakeups” are not permissible, but
messages could be added to the list asynchronously, even while the future is
being filled.

Therefore, the list was implemented using an OwnerQueue. A thread
which fills the future also takes ownership of the queue and wakes up all
dependent messages. A thread which adds a message to the queue takes
ownership only if it adds a message to an empty queue. Otherwise, it is
notified by the real owner of the queue.

Thus, when it is desirable for a particular task to be handled by exactly
one thread at a time, but you don’t want to designate a separate thread to
handle it, an “ownership” model is a useful abstraction. An OwnerQueue is
a simple implementation of an ownership-based queue of tasks.
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