
Type-safe Stack Traversal for Garbage Collector
Implementation

Colin Stebbins Gordon
Brown University

colin@cs.brown.edu

ABSTRACT
Garbage collectors are an important part of many modern
language runtimes. Essentially all tools for developing and
debugging programs using garbage collection assume the
correctness of the collector, and therefore provide no means
for detecting garbage collector errors. As a result it is espe-
cially important that garbage collector implementations be
free of errors. This goal is even more challenging in the face
of the typical implementation strategy for collectors: imple-
mentation in C, making error-prone inferences from complex
bit patterns, where an error could result in dereferencing an
invalid pointer or corrupting program data.

One approach to reducing errors in collector implementa-
tion is to improve both the type-safety and memory-safety
of garbage collector implementations. Prior work [8, 17] in
this direction has focused on the use of modern type sys-
tems to statically detect errors in the collector code at com-
pile time, but has practical shortcomings. The prior work
replaces the standard machine stack with a heap allocated
data structure to avoid unsafe walks of the native stack.
Traversal of the runtime stack is normally not possible in
higher-level languages because they trade the flexibility of
arbitrary memory access — typically used to gather a root
set from a runtime stack — for the safety of being unable to
cause memory access errors.

We present a method for addressing the safe stack traver-
sal problem at the compiler level, by lifting actual machine
stack frames up to the level of explicit data structures in
Standard ML, such that complete stack traversal can be per-
formed with minimal unsafe code. We implement a garbage
collector in the ML Kit [14] using the techniques described
and provide details on key parts of the implementation.

General Terms
Garbage collection, Compilers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Undergraduate Honors Thesis ’08 Providence, RI USA
Copyright c© 2008 Colin Stebbins Gordon.

1. INTRODUCTION
Garbage collectors serve an important role in many pro-

gramming languages by abstracting away memory manage-
ment. For collectors to work effectively, they must manage
memory without the knowledge of the running program. To
do this safely, they must preserve and interpret unspoken
invariants of the user program. There are basic safety is-
sues such as not replacing pointers with null or prematurely
collecting memory still in use. Violations of some of these
invariants, such as preserving return addresses, are relatively
easy to detect. A more subtle safety property to guarantee
when writing a collector is that it must preserve the types
of the program it is collecting: it must not replace a pointer
to an instance of a T1 with a pointer to an instance of a T2.
This kind of bug in a collector would likely be very difficult
to track down; debugging tools make the assumption that
the runtime is correct, so a bug at this level would not be
visible through, for example, a Java debugger, because such
tools are designed to hide the internal representations used
by the garbage collector.

Most collector implementations primarily use C in order
to allow arbitrary memory access. This code is unsafe, and
a mistake there can easily remain unnoticed until a runtime
collection when a collector bug may crash the program or
corrupt data. Not only is the collector code itself usually
unsafe, but it can be one of the most significant sources of
unsafe code in a language runtime; the Singularity Project at
Microsoft [11] mentions that garbage collector code accounts
for roughly half of all unsafe code in the Singularity source
base.

High level languages, such as members of the ML family,
offer a great deal of support for reasoning about the correct-
ness, particularly the type safety, of user programs. It would
be useful to extend this reasoning capability to garbage col-
lectors by making them explicit ML functions, and allowing
greater reasoning power than we have for the typical C im-
plementation of a collector.

Previous work [8, 17] established basic type-safe approaches
to collecting the heap, but did so by side-stepping root set
collection through methods that turn the stack into a heap-
allocated data structure. This transforms the user program
into what is essentially a literal implementation of an ab-
stract machine, rendering many existing stack-based debug-
ging tools useless. Rather than removing the machine stack
from consideration, what we would really like is a type-safe
way to walk the native machine stack. We propose compiler
support for a type-safe stack traversal that allows traditional
debugging tools to continue working.

let gc[ρsrc] roots[ρsrc] =

letregion ρdest in

let newroots = copy[ρsrc, ρdest](roots) in

only ρdest in

continue_with newroots

Figure 1: Rough code for a basic collector in Wang

and Appel’s system

The paper proceeds as follows. Section 2 describes the
use of regions for safe memory management, as well as prior
work leveraging region-based memory management for safe
garbage collection and limitations to these approaches. Sec-
tion 3 describes an alternative way to safely walk the stack
by lifting the native machine stack to the level of an ex-
plicit structure in a safe language, and Section 4 describes
one implementation of this. Sections 5 and 6 discuss some
problem areas of the current design with possible solutions,
and some added benefits which fall out of the current imple-
mentation of lifted stack frames. Finally, Sections 7 and 8
discuss related work and future directions for this research.

2. SAFE GARBAGE COLLECTION WITH
REGIONS

Tofte and Talpin [15] describe a safe translation from the
call-by-value lambda calculus to a runtime system based on
a stack of regions (areas of machine memory from which
allocations are made). Tofte and Birkedal [13] propose an
inference algorithm that determines a safe and reasonably
efficient set of regions for a source program and prove it
sound with respect to inference rules in the earlier region
work.

Central to the region-based runtime’s intermediate lan-
guage is the notion that all pointers are typed with not only
the standard data type (e.g., int list) but also with the
region of memory in which they are allocated: their region
type. Regions are allocated using the letregion ρ in e
construct, which allocates a region ρ whose lifetime is lexi-
cally scoped as the execution of e. Allocations are annotated
with the region in which the new value should reside. Func-
tions may be parameterized over one or more regions into
which allocations for results should be made or where argu-
ments are allocated. The region identifiers are also lexically
scoped, so there is no way to refer to a value allocated in
region ρ outside the body of e (assuming that region aliasing
is disallowed). Wang and Appel [17] point towards several
specific region type systems.

Wang and Appel [17] build upon an extension of the region-
based lambda calculus to implement a simple copying garbage
collector in an extension of Standard ML. The idea is to ex-
tend the region calculus with an only ρ in e construct for
early deallocation (before the conclusion of a letregion’s
body). This not only deallocates regions other than ρ prior
to the execution of e, but also hides the region type for
any deallocated region when type-checking e. Mutator pro-
grams are implicitly parameterized over a single region, and
the garbage collector performs a pivot between semi-spaces
and resumes execution.

Figure 1 shows nearly-accurate code for a collector in their
system, written in their extension of Standard ML. The code
intentionally leaves the roots and continue_with vague,
but is otherwise correct. The function begins by receiving a

representation of a root set allocated in the current semis-
pace, ρsrc, then allocates a new region, ρdest, to act as the
the destination semi-space (this also creates a new region
type, of things allocated in ρdest). It then copies the root
set into a new root set representation, allocated in the des-
tination semispace, using the copy function, which works as
expected. Finally, it deallocates the source region (and the
corresponding region type) using the only construct, and
continues the program’s execution with the new roots.

This alone achieves data type safety for the collector be-
cause we have the root set available as a Standard ML data
structure, but the region type system also allows other errors
to be detected statically. For example if the new root set
contains a reference to anything still allocated in the source
region, a type error will appear during type checking. The
error would be detected because the new root set’s region
type would contain a reference to the region type of ρsrc,
which is undefined inside the body of the only construct in
this case.

It is also important to note that while ρdest is lexically
scoped to exist only in the body of the letregion construct,
the tail call out of the letregion skips the generated code
which would perform the deallocation. Therefore ρdest con-
tinues to exist after the execution of this call. Another im-
portant point is that the only construct is not merely a
deallocation, but also an assertion that no dangling pointers
exist. If this construct is omitted here, newroots may con-
tain references to values in ρsrc. This omission would also
permit ρsrc to continue existing, which means that no col-
lection actually occurs (though some amount of data would
be duplicated).

The description of the root set structure and the method
for continuing the program’s execution after collection were
left under-specified above for simplicity. This is because the
issue of collecting a root set and updating the root set in a
language runtime is generally a difficult portion of code to
write, implemented in (unsafe) C. To sidestep this issue and
gain type-safe access to the root set, Wang and Appel CPS
and closure-convert the mutator, turning the program into
a single, tail-recursive dispatch function on a heap-allocated
structure representing the current continuation at the time
collection began. The root set passed to the gc function is
this structure, and the continue_with newroots in Figure
1 is actually a tail-call to the dispatch function.

The stack is made explicit for the collector, so no unsafe
code is required to gather the root set. The result, however,
leaves existing debugging tools useless; there is no machine
stack for such tools to examine.

Wang and Fluet [8] build a similar system in Cyclone [12],
a safe dialect of C. Their collector works only for a Scheme
interpreter they write, which is a literal implementation of
an abstract machine for Scheme. Thus the stack they need
to traverse is already a Cyclone data structure, and their
system also avoids walking the machine stack.

3. ANOTHER APPROACH TO SAFE STACK
TRAVERSAL

Every garbage collector needs to begin collection by find-
ing the root set — the live pointers on the runtime stack —
in order to later find all reachable heap-allocated objects.
Typical collector implementations need to traverse the na-
tive machine stack one word at a time, and follow somewhat

Figure 2: The stack of a typical ML Kit program

where function A calls function B which calls func-

tion C. The stack grows downwards, as on the x86

architecture.

complicated reasoning schemes to determine whether a word
is a heap pointer, and if so to determine the type of the ref-
erenced object. Because the words on the stack are untyped,
the only practical way to work with them for finding the root
set in the past has been to use an unsafe language permit-
ting arbitrary memory access, usually C. These inferences
require a lot of very particular reasoning about very specific
invariants, and their implementation is error-prone.

The prior attempts at safe collectors just discussed brush
this issue aside with a somewhat undesirable solution in or-
der to focus on other important issues. The general solution
chosen by Wang and Appel [17] and by Fluet and Wang [8] is
to represent the program stack as an explicit heap-allocated
structure in the language used to write the collector. This
solution has the advantage of providing explicit structures
in a safe language, which gives the collector writer many
static guarantees that the C stack traversal lacks. However
because they no longer use the normal machine stack, ex-
tra overhead is incurred for function calls (heap allocation
is generally slower than stack allocation), and stack-based
tools such as standard debuggers cease to be of any use.

The core of the problem is that while traditional C-based
collector implementations tend to treat the stack as nothing
more than a series of unstructured, untyped machine words,
the stack actually has a structure — it just lacks an explicit
definition. The calling conventions used by the compiler
for a language define the structures that might arise on the
stack. To make them explicit, all that is needed is a set of
definitions for the structures — against which other code can
be written — and slight changes to the compiler to generate
these definitions and massage the stack frames to match the
normal representation for those data structure definitions.

Consider the stack shown in Figure 2, which is typical of
a program compiled by the ML Kit compiler1. Note that
it does not use the standard x86 frame layout supported by
the call-enter-leave-ret idiom on the x86. It has a rough
repeating structure, where each stack frame consists of the
address to which the call should return, the arguments for

1See the FUNCALL case of the GC_ls function in
src/Compiler/Backend/X86/CodeGenX86.sml of the ML Kit
source.

Figure 3: A generic tagged representation of a struc-

ture. The tag is at the lowest address in memory,

and is generally the word whose address is stored in

pointers to the structure.

Figure 4: A rough depiction of how lifted stack

frames are set up out on the stack.

that call, and some set of local variables, pushed onto the
stack in that order. The list pointer shown in the figure is
part of the local temporary storage, and will be discussed in
an example shortly.

Compare this rough frame structure to the generic de-
piction of a tagged data structure shown in Figure 3. The
words of memory for the return address, arguments, and lo-
cal storage are very similar to the members of a user-defined
structure. The only things missing are the tag, and a guar-
antee that the way data is stored on the stack otherwise
exactly matches the way some definable data structures are
laid out in memory.

Figure 4 shows the idea behind the layout of lifted stack
frames, where the frames themselves have had their struc-
ture slightly modified in a relatively unobtrusive way to
match the layout of user-definable data types. Each frame
has been augmented with a tag and a pointer to the next
stack frame. At the top of the stack (not shown) is a frame
tagged as a final frame. The placement of the next-pointer
at the “end” or top of the frame is largely because it is easy
to place there by simply pushing the stack pointer onto the
stack, though Section 4.2 gives an additional reason. When
some function A calls function B, it will push a tag for the
current state of its own frame onto the stack, tagging it-
self. Next it will push the stack pointer, which will serve

fun count 0 = 0

| count n = 1 + count (n - 1)

Figure 5: A simple function that has simple stack

frames for recursive calls

datatype stackframe =

. . .
| frame_count2count0 of int * word * stackframe

. . .
| lastframe

Figure 6: Example of a stack frame data type

as the next-pointer for B’s frame. Finally it will push the
return address and arguments for B, and actually call B.
B then manages its own local storage, and when it calls an-
other function, C, it will tag its own current frame state and
do the same basic setup as before for the tail of what will
become C’s stack frame.

We must add a way to acquire a pointer to the most recent
frame, generate an explicit type for each frame whose in-
memory layout would match the layout of that stack frame,
and make sure we tag each frame correctly. Traversal can
then occur safely by looking at pieces of each frame’s struc-
ture, and moving safely to the next frame by following a nor-
mal pointer stored there. The stack is now a chain of slightly
different, but related, structures, strongly resembling a re-
cursive ML variant data type in which each variant refers to
another instance of the same overall type. This is how we
will define the stack frame structures.

Generation of equivalent user types is straightforward,
though it requires carrying some explicit type information
down as far as the platform-specific code generator, while in
the past this information might have been removed from the
intermediate representation much earlier in compilation.

We will assume that the type being generated is called
stackframe, and it is being constructed as a normal ML al-
gebraic data type, of the form shown in Figure 6. Words that
represent integers, etc., will be shown as such in the types.
For opaque data, such as return addresses or unused local
storage, it should suffice to insert a word into the type. For
the pointer to the next frame, a member of type stackframe
in the data type is sufficient.

Consider the code for the function shown in Figure 5, a
simple function that recurs n times, eventually returning n.
Assuming that all arguments are passed on the stack, the
stack frames for calls to count should be fairly simple; they

fun B x =

let val lst = primes_up_to x

val len = List.length lst

in

(lst,len)

end

Figure 7: Code for B, which has local storage with-

out a valid value at one time, and with a valid value

later

will contain the argument, a return address, and a pointer
to the next stack frame. The type that might be generated
for frames of this function is shown in Figure 6 (the name is
explained in Section 5). This is for the simplest case, when
no local storage and no registers are saved across function
calls.

More complex stack frames may require multiple distinct
frame types at different times. When there is local stor-
age that must be preserved, a new frame variant must be
generated, and the compiler must generate code to tag it
appropriately at runtime. If portions of local storage be-
come live or dead between calls made from the same frame,
each different set of live variables on the stack requires a new
type. For example, function B’s frame in Figure 4 has a list
pointer in the set of local variables, as might occur if B made
one call to get this list, and then passed it into another call
later. Suppose B is the function shown in Figure 7. B first
makes one call to get the primes up to x, then another to
get the number of primes in that list, and finally returns the
pair. Upon initial entry to B, the space for storing the int

list returned from the first call is allocated on the stack,
but the value there is garbage — just whatever happened to
be in that word of memory. The stackframe variant that
will be used for this frame when making the first call must
not allow this garbage value to be used, and should use a
member of type word for that space on the stack. The vari-
ant for B’s frame after the first call, which will be used and
tagged accordingly when making the second call (to get the
list length), should then use the correct actual type, int

list, because the value at that stack location is now valid.
It is also important to note that for a garbage collector

to function properly, it must be able to determine the exact
types of all roots, as an int list is handled very differ-
ently by the collector than an int list list. This means
that the generated stackframe variants must be entirely
monomorphic. Support for typing and tagging frames of
polymorphic functions should be compatible with this ap-
proach to stack traversal, and is discussed extensively in
Section 4.3.

4. IMPLEMENTATION OF LIFTED STACK
FRAMES

This section describes one particular implementation of
lifted stack frames, done inside the ML Kit with Regions [14]
compiler, for a first-order subset of Standard ML. Implemen-
tation details would vary for other compilers, but most of the
details shown here should be generally applicable or should
at least provide insight applicable to other compilers.

4.1 Finding the First Frame Pointer
This approach to making stack frames explicit sounds

promising so far, but there is no existing way to get the stack
pointer in ML, nor is it necessarily the case that the current
stack pointer indicates the start of a valid stackframe. To
remedy this, we must provide a simple primitive to hand off
a valid stackframe to ML code. An implementation of this
is shown in Figures 8 and 9. Figure 8 shows a natural way
to write the C code to locate what should be the first valid
stackframe, and Figure 9 is the foreign function interface
declaration to call it from ML. This required small changes
to the ML Kit’s foreign function interface, to allow the re-
turn of stackframes. Previously only simple types and lists

extern int DLabGC54GC;
int getframe(int x) {

int *p = &x;
while((int*)(*p) != (p+1) | |

(int*)p[2] != (p+3) | |
p[1] != DLabGC54GC) {

p++;
}
p++;
assert(p[0] == DLabGC54GC); 10

return (int*)p;
}

Figure 8: C code to find first valid stackframe

fun getframe () : stackframe = prim ("getframe", ())

Figure 9: ML Kit foreign function declaration to get

stack frames

could be returned, largely because the ML Kit’s region infer-
ence system lacked support for reasoning about where other
structures might be allocated. This is discussed further in
Section 4.5.2.

The ML Kit represents boxed data types in two pieces [14].
The first is a two-word piece whose first word contains the
tag for the appropriate variant of the data type (used for
pattern-matching) while the second word is a pointer to the
second piece. The second piece is simply the fields of the
data type variant, in order, one word at a time. Members
that point to other boxed data structures are pointers to the
tag word of the first piece of that structure’s representation.

The C code in Figure 8 relies on this layout to find the
first valid stack frame. It walks up the stack one word at
a time until it finds a two pointers, one word apart, each
of which points to the next word on the stack, where the
word between them (the tag) has the same value as a global
variable DLabGC54GC. The current implementation places the
two pieces of the boxed structure adjacent in memory, as
shown in Figure 10, and as compared to the types the col-
lector will see in Figure 11. This results in the particular
pointer pattern for which the code searches. The compiler
inserts an extra instruction at any call to the garbage collec-
tor that places the tag for that calling frame into the global
variable, so we return the stack pointer for the first valid
frame above the collector’s frame; we do not want frames
inside the collector itself because any roots found there are
not necessarily roots for the mutator. If this approach to
stack traversal were used outside the realm of garbage col-
lectors, either this variable or an additional global variable
might need to refer to the most recent frame of any kind.

This is not safe code, and therefore not ideal, but is fairly
simple for a programmer to inspect for bugs assuming the
programmer understands the in-memory layout for frame
structures placed on the stack.

The C code presented for finding valid stackframes de-
tects one of the few remaining invariants the compiler must
enforce, which is the result of the specific representation of
boxed data types in the ML Kit and the way we arrange
them on the stack. Together these effectively provide a dis-

Figure 10: Stack frame layout in the ML Kit with

lifted stack frames implemented

Figure 11: Physical stack layout compared to in-

memory representation of algebraic data type

Figure 12: A stack frame with one local pointing to

another

extern int* DLabGC54GC;
int* getframe(int x) {

return DLabGC54GC;
}

Figure 13: Final version of the getframe primitive

tinctive three-word tag (the next-pointer, actual tag, and
second-part pointer). There are a couple weaknesses in look-
ing for this invariant. First, this invariant does not general-
ize: other compilers whose data type tagging does not result
in such a peculiar structure would not be able to use similar
code to find valid frames. The general tagged frame layout
in Figure 4 shows a representation that might be identical
to the literal layout of data structures in another compiler.
In this case, a stack frame such as that shown in Figure 12
would appear to be an extra frame. The second problem is
actually an extension of the first: a doubling of the first case
could still register incorrectly as a stack frame in the current
system. We have not placed any restrictions on the frame
yet that make this a safe invariant for which to search: a
pointer to a locally-allocated single-member record with the
same value as the collector-caller frame tag followed by a
similar structure would appear to the code in Figure 8 as
the desired frame. Thus it seems prudent to disallow allo-
cation of objects on the stack, in order to prevent pointers
on the stack into the stack from causing false positives when
searching for frames.

But we would like to avoid this restriction if possible;
even without needing to handle invariants which are dif-
ferent for various stackframes, searching for this layout in-
variant makes the code fragile and echoes the problematic
invariant-checking of old collectors. Figure 8 shows a nat-
ural approach to finding the first stack frame based on a
traditional stack traversal, but it is not robust. Is there a
better solution? Yes: remember that we already cache the
relevant frame tag in a global variable which only needs to
be updated when the collector is called, because we do not
need (or want) any frames inside the collector. Instead of
storing the relevant tag when the collector is invoked, we will

instead store a pointer to that frame. Because the getframe
primitive is only needed inside the collector, this pointer
will then be up to date whenever we look for the stack, and
never needs to be modified when we return from the collec-
tor. Figure 13 shows the final implementation for the stack
retrieval primitive, which no longer relies on the peculiar
tagging structure our tagging implementation produces.

As it turns out, for another reason explained in Section
4.2, we must still disallow pointers from the stack into the
stack (most easily done by allocating no actual structures
on the stack). But the code for retrieving stack frames is
now very short and extremely simple.

4.2 Updating the Stack
While safely traversing the stack and gathering informa-

tion about it is useful in its own right, this work is in the
context of a basic copying garbage collector, which requires
the ability to replace pointers on the stack when it moves
objects.

Figure 14 shows the code to update the stack from a fully-
constructed, heap-allocated copy of the stack. It first en-
sures that it has sane pointers for both stacks. Next, it
ensures that both pointers refer to the same type of stack
frame. The next check determines whether we have reached
the end of the real stack (a check explained momentarily).
In this case, we return the ML value for true to signal a com-
plete collection. Otherwise, we check that we indeed have
a valid “second-part” pointer on the machine stack, find the
next-structure pointer on the stack, and copy everything but
the next-pointer from the heap copy to the real stack. Then
we repeat the process.

To mark the end of the machine stack, it is set up so that
the tag for the lastframe variant appears twice in a row
at the absolute top of the stack. This check would have a
low chance of a false positive if the tag for lastframe could
possibly be the same as the pointer to the second part of a
structure. Because of the way the ML Kit generates tags,
this cannot occur. The tags generated for structures will
never have the two least significant bits both zeroed, whereas
the pointer to the second part of a structure will always
be word-aligned and therefore have zeros for the two least
significant bits2. Every variant for each type will therefore
have a different tag. If we detect that we are at the end of
the machine stack, we are also at the end of the copied stack
(remember, we already ensured we have the same variant for
each stack, and we now know this variant was lastframe).

The dependence on finding a valid next-frame pointer in
order to determine how much memory to copy is a definite
weakness. Because of this, we still cannot allow stack alloca-
tions of the sort shown in Figure 12 (a local pointer referring
to the word immediately above it on the stack) to arise. The
simplest way to do this is to ban allocation of objects on the
stack, and force them to be placed on the heap.

Another limitation of the current code for updating the
stack is that it returns false if an error occurs during the
update. This is easy to ignore, and if our larger goal is
to make garbage collector bugs as easy to catch as possible
then a proper implementation should not allow these errors
to be discarded. The current implementation does not have
working exception support, but a complete implementation

2See the code for tag_con0 and tag_con1 in
src/Compiler/Backend/BackendInfo.sml in the ML
Kit source.

int installframe(int *newp) {
int words = 0;
int *sp, *np;
int *stackp = getframe(0);
while (1) {

/* Some sanity checking. . . */
if (stackp == NULL | |

newp == NULL | |
stackp == newp) {
goto error; 10

}
/* If these aren’t the same variants, that’s bad. */
if (*stackp != *newp)

goto error;
/* If we have the same variant, and the next stack
* word is the same as the tag, we’re at the end of
* the stack! */

if (stackp[0] == stackp[1])
return mlTRUE;

/* If the word after the tag doesn’t point to the 20

* following word for the stack pointer, that’s
* bad. */

if (stackp[1] != (int)(stackp+2))
goto error;

/* Follow to second part of structure, which will
* be replaced */

stackp = (int*)(stackp[1]);
newp = (int*)(newp[1]);
for (sp = stackp;

*sp!=(int)(sp+1); 30

sp++) {
words++;

}
memcpy(stackp, newp, 4*words);
stackp = sp+1;
newp = (int*)newp[words];
words = 0;

}

error: 40

return mlFALSE;
}

Figure 14: Code to update the stack from an up-

dated copy

should raise different exceptions for each of these error con-
ditions. This way if one of these problems does appear at
runtime, some useful information about the failure can be
conveyed, but not so easily ignored. Alternatively we could
simply print a message to the terminal and exit the program
directly from the C code, as these are likely not to be errors
from which we can recover.

Another criticism of this update solution is that it requires
a separate copy of the stack. In a language that supported
destructive updates to members of algebraic data types, this
update code could be done safely as well, in the actual collec-
tor language. One intuition for a solution to this might be to
make traced members of the variants references (SML refs)
to the appropriate type. Unfortunately references produce
a pointer to a mutable pointer (allowing shared references),
rather than a direct pointer. It is possible that some ad-
justment to the compilation of references or management of
local pointers to heap objects might make this possible in
the ML Kit. In any case, mutating the frame structure’s
members individually rather than replacing them entirely
would likely complicate the region type system if one were
used in conjunction with this approach. The members’ re-
gion types would change mid-function, and this would need
to be tracked. Some of the future work in Section 8 discusses
this.

Another subtlety of this code is that it makes certain as-
sumptions about the copy function. Specifically it assumes
that any opaque data (e.g., words) is copied simply from
place to place, so the copy-and-update is functionally equiv-
alent to not having modified those locations. This includes
unused temporary space that might not need to be changed,
which is a weakness of the current implementation.

This precise copying also includes — for region-polymorphic
functions in the current implementation — region pointers.
When we copy data to update the stack we rearrange data
underneath the region inference system present in the ML
Kit, without its explicit knowledge: specifically we change
the region in which a pointer’s target data is allocated with-
out updating the region pointers. This is a shortcut in the
current implementation, and Section 4.5.2 explains why this
is acceptable.

4.3 Handling Polymorphism
One issue left unaddressed thus far is that of tagging

polymorphic functions’ stack frames. There are no concrete
types for some of these functions’ arguments and intermedi-
ate values, but to be able to traverse the stack properly, the
garbage collector must know the exact types of everything
in the activation record for a polymorphic function, at every
invocation. Fortunately, the site of any call to a polymorphic
function determines the types for that invocation.

Because the tagging for frames (the actual placing of tags
into the stack) occurs at runtime, and we would like to only
have one instance of the code, we need a way to determine
the tag corresponding to the correct types of a polymorphic
frame at program run time. We know that the concrete
types of the calling function uniquely determine the concrete
types for the called polymorphic function, and that the call-
ing function’s frame is already tagged with a monomorphic
type. Therefore to tag frames for polymorphic functions,
we can use the calling function’s tag as a representation of
the types of arguments passed in, which allows us to deter-
mine the concrete types for this new polymorphic function’s

frame. We should note that this is not currently imple-
mented, but suggested as one compatible extension to the
frame type generation to support polymorphism.

Let us again consider Figure 4. If B is a polymorphic func-
tion that calls some other function C, it must tag its own
frame when this call is made. If its own calling function A
is tagged with a stackframe variant for a call site where A

calls B, passing only ints, then the exact types for all poly-
morphic variables in B become known, and B can tag itself
with the appropriate frame type, which was generated at
compile time. This means that frame type generation must
create monomorphic frame types for every call site of a poly-
morphic function for every way it is invoked in the source
program. This is similar to the implementation strategy of
flattening all polymorphic code and calls into monomorphic
code, but here it occurs only with generated types, and need
not occur with actual mutator code present after compila-
tion. The collector code size still increases because it must
handle all of the types, regardless of how much code is re-
sponsible for them.

Goldberg [10] suggests an entirely dynamic approach to
this type reconstruction, determining which functions are
further up the call chain, locating the frame of a monomor-
phic function, and reconstructing types in later calls from
that information. This has some disadvantages discussed in
Section 7. We prefer a static lookup table embedded in the
object file (or rather, a lookup table for each call site within a
polymorphic function) with a short, simple lookup whenever
a polymorphic function calls another function. This table
must map from parent-function tags and current-function
call sites to current-function tags. Each parent-function tag
determines the types for the current polymorphic function,
but the current call site within that function must still be
considered to handle such things as changing sets of live
variables in the frame between outgoing calls. In practice,
because we already generate a new stackframe variant for
every call site, the call site is not an extra concern, and the
table is simply a direct tag to tag mapping.

This approach imposes an additional restriction on the
generation of stackframe variants. Whereas previously if
two function call sites had identical stackframe variants
the two could be merged, with this approach to support-
ing polymorphism this tempting optimization is no longer
always possible.

The polymorphic tagging implementation now adds an ad-
ditional meaning to the variants, which was intuitive but not
strictly necessary before. These otherwise-identical variants
now identify two distinct call sites in the program, which
may pass different types to any polymorphic function(s)
called. The most recent stack frame may look the same and
have the same types at two different call points, but those
points may still pass arguments of different types to the same
polymorphic function. This unique identification of call sites
is not represented explicitly in the variant’s definition, only
in the fact that it is declared and defined separately from
other variants. Therefore an additional consideration this
implementation requires when generating stackframe vari-
ants is that the types of the arguments passed at a call site
must also be considered when generating the set of vari-
ants for calls to polymorphic functions, in order to properly
perform what is essentially a flattening of the polymorphic
types into sets of monomorphic types.

fun f args∗ = body

Figure 15: User code before GC safe-point added.

fun f args∗ = (maybegc (); body)

Figure 16: User code after GC safe-point added.

4.4 Compilation Changes
The current implementation requires two rounds of com-

pilation to use the frame types. The first round compiles
the user program with dummy versions of the stackframe

type and any functions that use it. It generates all of the
stack frame types, and emits them in a form the collector’s
implementor can use. The second round uses the actual
stack frame types and related code, the latter of which must
currently be written by hand. It also places accurate tag-
ging information in call sites in the resulting object code,
as the types were not present in the normal sense during
the first compilation, and therefore proper tags could not be
generated. This design is not ideal, and improvements are
discussed in Section 5.

4.5 GC with Lifted Stack Frames
This section provides an example of how lifted stack frames

might be used when implementing a collector. We describe a
collector we have implemented using lifted stack frames and
careful manipulation of the region inference support present
in the ML Kit.

4.5.1 GC Safe Points
As with many collectors, the only safe time for the garbage

collector to run is at function entry, which ensures that no
new roots have been added other than the function argu-
ments (already on the stack) and that there are no roots
present only in registers (for example, the return value from
an allocation call).

We assume the source program has been transformed into
a form where each function of the form seen in Figure 15
has its body prefixed with a call that might garbage collect,
with the resulting form seen in Figure 16. This is actually
only necessary when entering calls that will allocate addi-
tional memory, but we will assume all mutator functions are
transformed like this for simplicity. This is similar to the
safe point approach taken by Wang and Appel [17].

4.5.2 Building a Collector Over Region Inference
The current system does not catch dangling pointers in

copied state as Wang and Appel do [17]. This would re-
quire implementing extensions to Standard ML as described
in that work, and time constraints prevented this for the
current publication.

A working collector is implemented without that static
check, but using the mostly-type-safe stack traversal and
update described here. Instead of the letregion and only

language extensions we rely on the ML Kit’s underlying re-
gion inference system, described by Tofte and Birkedal [13].
We have written a proof-of-concept collector function, which
copies the entire state of the system in such a way that the
region inference algorithm allocates this in a new region. We
then use a modified version of the ML Kit’s forceResetting

local
val prevframe = ref NONE

in
fun gc () = let val f = getframe ()

val f copy = copy f
in
(forceResetting f copy;

let val f new = copy f copy
in

prevframe := SOME f new; 10

if installframe f new
then print "Install success!\n"
else print "Install ERROR\n"

end)
end

end

Figure 17: Code for a collector relying implicitly on

region inference.

primitive to empty the original regions, and copy the result
back into a persistent global region. This approach is not
optimal, and done under time constraints to demonstrate
that lifted stack frames can be used as the root set in a
working collector.

Figure 17 shows the code for our collector. There is a
global pointer to the previous root set, prevframe, which is
visible only to the garbage collector. This exists to force the
region inference system to place new copies of the program
state in a global region that will not be deallocated when the
collector, or any function higher up the call chain, returns.
Any value stored here will be inferred to be in a persistent
global region by the region inference algorithm.

The collector itself begins by retrieving a pointer to the
current stack above the frame of the garbage collector using
the getframe primitive. Remember that because it returns
the value of a global location that is updated at every in-
vocation of the collector, we will have an accurate cached
pointer for the frame that called the collector.

Next we make a copy of the current state of the system
(including the stack), which will be inferred to be in a new
local region for two reasons. First, the copy function is writ-
ten such that it places the new copy in a different region
from its source. All that is necessary in order to have region
inference choose this allocation scheme is to write a copy
function that makes a complete and total copy. Leaving any
dangling pointers back to the original state will cause the
region inference algorithm to infer that the source and copy
should be in the same region. The ML Kit provides options
for printing region-annotated intermediate forms of the pro-
gram after region inference. The inferred region type for the
copy function shows whether it leaves a dangling pointer. If
the regions for the input argument and those for the result
are different, a complete copy has been made. If they are
the same, copy leaves a dangling reference into the source
state. This does not cause a static error, and does not give
any information as to where in the copy function this dan-
gling reference is left, but there is information available to
check. The second reason the copy is local will be explained
shortly.

At this point we make a call to a modified version of the
forceResetting primitive provided by the ML Kit. Nor-
mally this primitive resets (empties) all regions used by any-

thing accessible from the value provided as its argument (all
regions in its region type) regardless of safety. We have mod-
ified it to instead reset all regions not in its region type3, and
so it acts to preserve only its argument’s regions and clear
all others. In either case, all regions continue to exist, but
those emptied no longer contain data.

After deallocating the original state, we copy the local
version of the state back into the global region. None of the
region change is explicit. The only reason this new copy will
be allocated in the original global state region is because we
update the prevframe reference to point to this new copy.
If we had not updated this reference, region inference would
have allocated this second copy in a local region as well,
which would have been deallocated when the collector fin-
ished; the region inference algorithm has not been modified
to be aware of the special status of the stack. If we had
instead updated this pointer to refer to the first copy we
made, the first copy would have been allocated in the same
global region as the original. But we need them in separate
regions to preserve one and throw away the other (along
with any data in other regions). This is the second reason
the first copy is inferred to be in a local region: because the
first copy is created, but never escapes the scope of the col-
lector. Therefore, when the collector finishes executing, the
data from the second copy — now held in a global region
because of the prevframe pointer — will persist, but our
temporary copy will be deallocated. This double-copying is
unfortunate, and expensive. However it is necessary because
we are still relying on region inference to generate actual al-
location and deallocation points. It is important to keep in
mind that this collector is only a proof of concept, and using
lifted stack frames with region-based memory management
in a real system should include a more thorough integration
with the region system or whatever other memory manage-
ment primitives are exposed to the collector language.

After ensuring the final copy will not be deallocated at the
end of collection, we update the stack with the installframe
primitive described earlier. This replaces now-stale point-
ers into now-empty regions with valid pointers into what
is likely a different region. This means we are technically
invalidating the region type of these pointers. While this
seems dangerous, in practice it is actually safe because the
region types are used mainly to ensure that memory is not
deallocated too early, and we are actually keeping it around
longer than necessary by anchoring it in a global region.
New allocations from a certain scope that were destined for
a certain region will still be placed in local regions after col-
lection. These may end up pointing into the longer-lasting
global state from the most recent collection.

Eventually the global copy of state from collection time
may have a pointer into a new local region if it previously
contained a reference. When the region it points into is
deallocated, this will be a dead pointer, which must not be
dereferenced. Fortunately, this is not a danger as long as the
collector does not attempt to directly handle the previous
collection’s root set — remember, this previous root set is

3Actually, we reset all but the earliest couple regions. The
compiler’s startup code for executables allocates some data
in several global regions and then stores pointers to those
allocations in global variables that are inaccessible to ML
code. A complete implementation would require collecting
from these roots as well, but that is outside the focus of the
current work.

only clearly accessible to the collector because the prevframe
pointer makes region inference store it in a global region.
While it may appear to be a root, prevframe alone does not
mean the mutator can access that memory.

Consider the case where a reference exists in the root set
installed at the end of a collection, and the reference is later
updated to point into a region that will be deallocated upon
return from a certain call. The only way this pointer from
the global collection state into a local temporary region can
develop is if a reference is still reachable from the current
(post-collection) stack. If another collection occurs after all
frames from which that reference is reachable have returned,
then because it is no longer reachable from the current, ac-
tive stack, it will not be traversed by the copy function. If a
collection occurs while that reference is still reachable from
some live stack frames, then assuming region inference is
implemented correctly, the region the globally-located refer-
ence points into would be reachable in a system with region
inference alone. This means that the local region would not
have been deallocated yet. When the copy function copies
the active root set, it will follow a path from a live stack
frame to the still-accessible portion of the previous collec-
tion’s root set containing the reference. Then it will follow
the reference to the still-living local region, and copy data
out for the temporary version of the program state.

5. SHORTCOMINGS AND SUBTLETIES
The most obvious limitations of this work are that it re-

quires a hand-crafted collector for every program, and that
it requires two rounds of compiling to occur (once to gener-
ate the frame types, and once to include them). An alterna-
tive is to automate the two passes, automatically adding the
types, automatically generating the copy code (in the source
language, in this case ML), and re-checking and compiling
everything together. This automatic generation is similar to
what the ML Kit already does for eliminating polymorphic
equality tests (generating statically-typed equality checks for
every data type whose equality is tested) [7, 14] and some-
what similar to the automatic generation of specific GC code
as suggested by Goldberg [9]. Unlike the elimination of poly-
morphic equality in the ML Kit, this code would need to be
generated much later, after most of the compilation has al-
ready occurred, requiring a second type-checking phase.

Another obvious negative of this approach is the addi-
tional overhead on function calls. For the current imple-
mentation, three additional words must be pushed onto the
stack for calls, and returns require an operation on the stack
pointer to remove these three words. This could be reduced
by having each function pre-allocate its tags on the stack
just once at function entry, adjusting stack offsets appro-
priately, and overwriting the tag word when calls are made
instead of pushing. Either way, the overhead is likely to be
less expensive than the allocation of a continuation structure
on the heap as is done by Wang and Appel [17]. Of course,
a thorough performance evaluation would be necessary to
confirm this.

A related set of concerns stems from the mere presence of
these additional words on the stack. One minor concern is
the fact that these extra words increase the chances of over-
flowing the stack for a given stack size, so a larger stack size
may be necessary for some programs using this approach.
Because of the very fine-grained manipulation of these words
on the stack, this approach would also be extremely difficult

to apply to a compiler targeting a C backend, as opposed to
targeting assembly. While this is possible in C, this direct
manipulation would be much more difficult. The resulting
C would also no longer be portable, losing one of the main
advantages of compiler backends targeting C.

A less obvious, relatively minor, difficulty in implementa-
tion is that the way in which the names for the ML stackframe

variants are generated for the mutator code must not be
sensitive to changes in the garbage collector code. So for
example, simply naming the variants "frame1", "frame2",
etc., when the number depends on the order in which the
compiler encounters invocation points, may not work. If
the compiler generates code for the garbage collector be-
fore other functions, then adding code to the collector will
likely change the correct variant names for mutator frames.
This could necessitate tedious rounds of edits doing nothing
but correcting frame names. The solution is to make frame
names for the mutator stable across compiles.

For this work we name each frame using the name of
the calling function, the name of the function being called,
and a number indicating which call in the body of the call-
ing function the frame referred to. The frame type vari-
ant for the recursive call to count shown in Figure 5 is
frame_count2count0 because it is for a call inside the body
of the count function, it is a call to the count function, and
it is the first call (to any function) in the body of count. The
problem does not arise again for collector code itself because
there is no need to generate frame types for it; the execu-
tion of the collector should not trigger the collector again, so
those frame types need not even be present. Simply not gen-
erating the types for garbage collector calls would be enough
to avoid this problem, but this approach aids debugging as
well by giving the variants meaningful names.

This approach for garbage collection also requires rethink-
ing support for separate compilation. With standard ap-
proaches to garbage collection, it is only necessary to have
the type signatures of functions from other object files. Lifted
stack frames require knowing all function invocation points
in a program, as well as the types of any intermediate values
that might be stored on the stack at those points, and hav-
ing either the data type definitions or existing copy functions
for every data type used within pre-compiled code. This is
far more information than usual, and conflicts with some of
the goals of separate compilation, such as the distribution
of libraries without sharing source. Even with this call site
information, the binary file would need to already include
code for tagging stack frames; these tags and the names
for those frame variants must not overlap with those gen-
erated for the mutator code that calls the library. With
source available this can be handled by simply recompiling
all code together, but using binaries with unknown source
is another matter which requires further consideration. It is
possible that the linker could handle this, by placing external
references in the library object code, and having programs
compiled against such libraries emit static entries to satisfy
these references. The tags could then be resolved when the
executable is linked with the library. Polymorphism would
of course further complicate matters.

Another concern is limiting use of a stack frame pointer to
legitimate uses. For example, we do not want to permit the
mutator to have access to stack frames for reading or updat-
ing. Placing the GC code in another module where it could
be hidden by a module signature could solve this. However

that would still allow misuse within the collector code it-
self (for example, stashing a stack pointer in a module-local
variable and re-using the old pointer during subsequent col-
lection is highly unlikely, but not disallowed). Adding linear
types to the collector language and specifying that all stack
frames and frame elements are linear could detect many such
errors — more than one use of a stack frame by any single
function would cause a type error. This also helps with the
need to correctly copy opaque data for collection, as men-
tioned in Section 4.2, by requiring that each part of the
frame be either copied over into the new frame or deep-
copied (swapping of data of the same type would still be
allowed by this scheme). Of course, switching to automatic
generation of the actual collector code rather than having it
hand-written would also reduce the likelihood of such errors.
The two approaches together would be desirable.

The implementation described here does not address any
issues of pointer sharing between data structures; this in-
cludes cyclic data structures. It is our belief that the ap-
proach outlined here can be integrated with the “encoding”
forwarding pointer implementation described by Wang and
Appel [17]. This approach requires adding an explicit for-
warding pointer (a reference to an option containing a struc-
ture of the same type, located in another region) to each
data structure. The mutator only receives access to a ver-
sion of the structure where that member contains a reference
to NONE. The collector code has access to another version of
the structure where the reference may point to other values,
and during collection it may perform a safe upcast from the
user variant to the collector-only version. New values are
constructed using the proper mutator-visible versions.

One larger point which may be raised about this work is
that while it purports to reduce the complexity of the col-
lector, a number of extensions to support writing these safe
collectors have been proposed (letregion and linear types
to name a couple, in addition to the general compiler changes
proposed by this work). Each of these requires additional
code to implement. At a minimum we are trading unsafe
code for code that may be implemented in a safe language.
Additionally we are trading a great deal of complexity in
one area which benefits one subsystem (garbage collection)
for possibly simpler code that enriches the language sup-
ported by the compiler with additional useful features. Even
the unsafe portions of code for generating polymorphic tag
lookup tables and doing the lookup itself are fairly simple.
The only code which would be relatively complex is that
for generating monomorphic types for all calls to polymor-
phic functions, which is likely equivalent in implementation
complexity to alternatives [9, 10], and is safe code.

With polymorphic tagging support, it is possible that the
number of types generated for a program that uses many
instantiations of relatively few polymorphic functions and
structures may result in a larger garbage collector than mu-
tator. A relatively simple program that makes use of a poly-
morphic hash table implementation would demonstrate the
possible discrepancy between mutator size and collector size.
Each instantiation of such a hash table could generate a
large number of frame types after flattening the polymor-
phic instantiations. An analysis of how many variants are
generated for realistic programs, compared to the size of the
corresponding collector, should be considered future work.

There is also a possibility that our proposal for handling
polymorphism ends up being more costly than Goldberg’s.

While we would pay a small overhead at each polymorphic
function call, Goldberg’s solution is likely a larger cost each
time it runs, but that cost is paid only for each collection.

The update function’s design prohibits some allocation op-
timizations. Specifically, disallowing pointers on the stack
into the stack restricts allocations as mentioned earlier. Nor-
mally when the ML Kit can determine the maximum size of
an inferred region at compile time, it converts that region
into a stack allocation. With the current implementation,
such an optimization is unsafe, and disallowed.

The last few shortcomings of this work are mostly inci-
dental to the current implementation. One limitation of the
current collector is that we are limited to a simple copy-
ing collector because of the dependence on regions for mem-
ory allocation and deallocation. Other memory management
primitives would allow lifted stack frames to be used with
other kinds of collectors. We also do not currently handle
(off-the-stack) global variables. These are outside the focus
of this work (safe stack traversal), but should certainly be
handled by any robust implementation.

6. OTHER IMPLEMENTATION BENEFITS
OF LIFTED STACK FRAMES

Once using lifted stack frames, many of the complex or
subtle invariants that the compiler previously had to main-
tain for the garbage collector are no longer necessary. In
particular, we now assign precise types to every word on the
stack that must be traversed by defining and tagging struc-
tures that represent the stack. The tagging for this occurs
at the frame or structure level, and every important word on
the stack is contained within a structure. Therefore tagging
individual words on the stack is no longer necessary. This
includes pointer tagging, and other tags such as tagged in-
tegers. This allows for such things as increasing the range
of integers without increasing their size. Some code can
also execute slightly faster because there are no longer data
types that require additional bit manipulation to work with.
Goldberg describes other advantages to removing (or in this
case, reducing) the number of tags in memory [9].

7. RELATED WORK
The most directly related work is clearly that of Wang and

Appel [17]. As was described earlier, this work inspired the
current line of research, as it performed undesirable trans-
formations on the source program to make the root set ex-
plicit. Later work by Fluet and Wang [8], also mentioned
earlier, takes a similar approach in another system, but does
not encounter the same stack issue because the collector is
written for a Scheme interpreter whose stack is already an
explicit heap-allocated data structure. Both of these also im-
plement forwarding pointers for handling structures pointed
to from multiple locations. As mentioned in Section 5, the
forwarding-pointer approaches used in these systems should
be perfectly compatible with the work done here, and in a
complete system the two should be combined. Ideally this
integration would also include use of other aspects of these
systems, namely the use of region types to disallow dan-
gling pointers. This would require the explicit letregion

and only constructs as well.
Some other directly related work is that of Vanderwaart

and Crary [16], which presents a typed assembly language for
use as an intermediate representation during compilation.

The typed assembly language makes stack frame types and
stack manipulation explicit. Also described are a frame de-
scriptor that gives information about traceability of entries
in an activation record, and the construction of a GC ta-
ble mapping function return addresses to information about
active parts of a frame. Their goal was to define an in-
terface against which a garbage collector could be verified,
rather than to reduce collector bugs by making garbage col-
lection explicit in a source language. Their frame descriptor
format relies on lists indexed by integers, whose interpreta-
tion and generation are error-prone. Their system also re-
quires closure-converting source programs in order to trans-
late them to the typed assembly language, which is undesir-
able for reasons similar to those which make performing CPS
conversion on source programs undesirable. The approach
described here, while currently only implemented for a first-
order subset of ML, should be straightforward to extend
to higher-order languages by tagging and emitting explicit
types for closure representations as well.

Conservative garbage collectors [2, 3, 4, 5] are designed
to maintain safety by interpreting every word of memory as
a potential pointer to an allocated portion of memory. By
also explicitly tracking the allocated pointers and sizes of
allocations, conservative collectors can determine whether
any word, if interpreted as a pointer, might point into an
allocated portion of memory. They avoid the need to know
about internal structure of user data types by treating the
appropriate number of words referenced by a valid alloca-
tion pointer as potential pointers to traverse. Because the
collector cannot actually distinguish between an integer and
a pointer without some form of tagging, conservative col-
lectors are restricted to mark and sweep algorithms, and
cannot move heap objects. This is in effect the reverse
limitation of the work presented here and by Wang, Ap-
pel, and Fluet [8, 17], which rely on the copying to change
the region-types from what are effectively “pre-collection” to
“post-collection” types. Because of this and the lack of any
form of explicit type information, the notion of safety for a
conservative collector is very different than in a traditional
collector. Conservative collectors also take the opposite ap-
proach to safety from this work; they attempt to preserve
safety through extremely conservative action while remain-
ing invisible to higher levels, while this work attempts to lift
the primitives for garbage collection to explicit representa-
tion at higher levels in order to statically detect errors.

Much of this current line of work is focused on tagging
stack frames when function calls are made. An alternative
approach might be suggested by the work of Appel [1] and
of Goldberg and Gloger [9, 10] on how to garbage collect
without explicitly tagging structures. The general approach
is to generate program-specific collection code, embed code
pointers for specific GC routines into carefully-chosen places
in the generated object code, such that when the collector is
invoked from within an allocation function, the code pointer
for the appropriate GC routine is located and invoked. Poly-
morphic functions are handled by traversing the stack to
find an earlier frame where all types are known statically,
and the types for later frames are then reconstructed from
that at runtime. This is then used to call a frame-specific
GC routine, which was generated at compiled time. There
are a couple significant disadvantages to such an approach:
the type reconstruction is potentially expensive and occurs
at runtime, but more importantly it still relies on the ability

to carefully use unsafe code to traverse the stack. Removing
the unsafe code would make this tag-free approach roughly
equivalent to this work — a safe stack traversal used to in-
voke frame-specific collector code.

Goldberg’s runtime type inference has the potential for
introducing significant overhead inconsistently for programs
that make extensive use of polymorphism. The overhead for
the approach described in Section 4.3 is near-constant-time
per function call while Goldberg’s is a variable-cost opera-
tion performed only during collection. Ours is likely better-
suited for situations when unpredictable collection pauses
are unacceptable, but as mentioned in Section 5, there is
not a clear winner in the general case. Future work should
include a thorough investigation of this tradeoff.

Goldberg’s reconstruction algorithm is also complex to
implement, which conflicts with the goals of this work: to
reduce the overall amount of unsafe code in the compiler
and runtime, to make the remaining unsafe code as sim-
ple as possible, and to make any new and possibly complex
safe code as generally useful as possible. The implementa-
tion of lifted stack frames described here relies heavily on
re-using existing pattern-matching code from the compiler,
which must already be correct for Standard ML, in handling
stack frames. The new code introduced is all either relatively
simple (getframe’s C backing in Figure 13), totally safe, or
of potentially broader use than just for the garbage collec-
tor (letregion, only, and if chosen for controlling access to
stack frames, linear types).

8. FUTURE WORK
This line of work is far from complete. The most im-

mediate next steps would be to implement the polymor-
phic tagging support described in Section 4.3 along with
proper region inference integration, and perform some anal-
yses on the resulting system. Specifically, the complete sys-
tem should be compared to others, including that of Wang
and Appel [17], a standard collector, and a version with a
Goldberg-style polymorphic type reconstruction algorithm,
to see what the overhead is in terms of executable perfor-
mance, executable size, and memory consumption. Another
useful analysis would be to look at the number of frame vari-
ants generated by the polymorphic support, and see what
effect this has on the garbage collection code required. For
these measurements to be worthwhile, lifted stack frames
would also need to be integrated with the forwarding pointer
approach described by Wang and Appel [17] to preserve
pointer sharing (and avoid looping forever on cyclic struc-
tures). Eventually this work could also be extended to in-
clude support for closures. Working from an earlier start-
ing point, extension of the memory management approach
in Wang and Appel’s collector to other sorts of collectors
(mark and sweep, generational) should be investigated.

Another desirable next step would be to implement auto-
matic generation of the copy functions and other GC code,
such that they are then type-checked with the rest of the
program again. This shifts the collector-writer’s task from
writing the collector to writing the collector-generator. This
may seem like we have moved to another unverified batch
of code, but because the generated GC code would be type-
checked with any mutator program, many errors would be
caught statically when one compiled a program aggravating
the GC-generator bug, just as if the collector were hand writ-
ten. In addition to this, most of the code that would need to

be generated would be basic structure-copying code, making
this shift a reasonable one.

There are also a few more advanced directions to explore.
Parallel collectors such as that described by Boehm [2] create
GC safe points similar to those used in this work, and with
forwarding pointers implemented, this could potentially be
fairly straightforward. Real time applications of this may be
much harder, but would likely fare better than Goldberg’s
work [9, 10], whose run time type reconstruction may yield
unpredictable and potentially large delays. Finally, while
one of the main arguments for this line of work versus that
of Wang and Appel was to avoid rendering existing debug-
gers useless, this work might also be leveraged to enhance
debugger functionality; the stackframe variants provide a
great deal of useful information for debuggers, tagging the
exact call site and types for any function invocation.

Lastly, much of this work has been intimately tied to the
particular compiler in which we implement our system. In
particular, stack frame layout has been particular to the ML
Kit’s use of the stack on the x86 architecture. As alluded
to in Section 3, the ML Kit does not use the architecture-
provided instructions for implementing functions. The x86
architecture manual recommends that compiler implemen-
tors use instructions that treat the ebp register as a “back-
pointer” to the previous stack frame, pushing its value and
copying the stack pointer into the register at each function
call [6]. These recommended calling conventions manage
what is essentially a chain of frames, but they ensure that
the chain is always a simple series of ebp values with implicit
locations relative to the rest of the frame. It would be pos-
sible to näıvely implement the tagging approach described
in this work alongside this functionality (resulting in effec-
tively two independent lists), but it would be desirable to
reuse this hardware functionality if possible. Whether this
can be done is not immediately obvious.

One last peculiarity of this work, which might be exam-
ined, is the stack traversal’s dependency on algebraic data
types and pattern matching. This is crucial for accessing
various parts of the stack safely, as we then reuse the exist-
ing structure traversal code already present in the compiler.
Translating this idea to an object oriented language such as
Java seems promising, as objects have a header that is es-
sentially a tag. Instead of variants of one algebraic data
type, each frame could be an object implementing some
Stackframe interface containing a collect() method. Each
object’s collect method would perform the appropriate copy-
ing on each of its fields, and then call the collect() method
of the next frame through dynamic dispatch. Basically, col-
lection would be performed using a visitor pattern initiated
by a call on the most recent stack frame. Of course to under-
stand any limitations with that approach, it must be tried.

An added benefit of doing this is that most object-oriented
languages support destructive updates to member fields, which
removes the need for unsafe update code like that from Sec-
tion 4.2. As mentioned there, this would also complicate the
region type system if this work were to be integrated with
that approach to safe memory management in collectors.
Still, investigating this and other ways to reduce or elimi-
nate the unsafe code involved in the stack update would be
an important next step.

9. ACKNOWLEDGEMENTS
Many many thanks go to, above all, my advisor Shriram

Krishnamurthi, who first lured me in the direction of re-
search with tantalizing promises of verifying correct func-
tionality for traffic lights. I am exceptionally grateful for
this (not to mention his guidance of my technical writing
and presentation skills, and with this particular project).
Thanks also to Aleks Bromfield and Andrew Oates, who em-
barked with me on the three-month literature-survey“odyssey”
that eventually pointed towards this project. I should also
thank Martin Elsman, ML Kit maintainer, for giving me a
kick start on understanding memory layout of ML Kit data
types. Thanks also to Nong Li, Aurojit Panda, and the
countless visitors and faculty candidates who sat through my
“brief” spiels earlier in the semester, and whose comments
and questions during those presentations helped me learn
how to get a point across more efficiently and effectively.
Further thanks go of course to my reader (and advisor on
another project), Maurice Herlihy, and also to the rest of
Brown Computer Science’s faculty and students for helping
me get to this point. This work was supported in large part
by a grant from my parents.

10. REFERENCES
[1] Andrew W. Appel. Runtime Tags Aren’t Necessary. In

Lisp and Symbolic Computation, volume 2, pages
153–162, 1989.

[2] Hans-Juergen Boehm. Mostly Parallel Garbage
Collection. In Proceedings of the ACM SIGPLAN 1991
Conference on Programming Language Design and
Implementation, pages 157–164, 1991.

[3] Hans-Juergen Boehm. Space Efficient Conservative
Garbage Collection. In Proceedings of ACM SIGPLAN
1993 Conference on Programming Language Design
and Implementation, pages 197–206, June 1993.

[4] Hans-Juergen Boehm. Simple Garbage-Collector
Safety. In Proceedings of the ACM SIGPLAN 1996
Conference on Programming Language Design and
Implementation, pages 89–98, 1996.

[5] Hans-Juergen Boehm and Mark Weiser. Garbage
Collection in an Uncooperative Environment. 1988.

[6] Intel Corporation. IA-32 Intel Architecture Software
Developer’s Manual, volume 1. Intel Corporation,
June 2005.

[7] Martin Elsman. Polymorphic Equality — No Tags
Required. In Second International Workshop on Types
in Compilation, Kyoto, Japan, March 1998.

[8] Matthew Fluet and Daniel Wang. Implementation and
Performance Evaluation of a Safe Runtime System in
Cyclone. In SPACE Workshop, 2004.

[9] Benjamin Goldberg. Tag-Free Garbage Collection for
Strongly Typed Programming Languages. In
Proceedings of the ACM SIGPLAN 1991 Conference
on Programming Language Design and
Implementation, pages 165–176, 1991.

[10] Benjamin Goldberg. Polymorphic Type
Reconstruction for Garbage Collection without Tags.
In Proceedings of the 1992 ACM Conference on LISP
and Functional Programming, pages 53–65, 1992.

[11] Galen C. Hunt and James R. Larus. Singularity:
Rethinking the Software Stack. In ACM SIGOPS
Operating Systems Review, volume 41, pages 37–49,
2007.

[12] Trevor Jim, Greg Morrisett, Dan Grossman, Michael

Hicks, James Cheney, and Yanling Wang. Cyclone: A
Safe Dialect of C. In USENIX Annual Technical
Conference, pages 275–288, June 2002.

[13] Mads Tofte and Lars Birkedal. A Region Inference
Algorithm. In ACM Transactions on Programming
Languages and Systems, volume 20,5, pages 724–767,
July 1998.

[14] Mads Tofte, Lars Birkedal, Martin Elsman, Niels
Hallenberg, Tommy Højfeld Olesen, and Peter Sestoft.
Programming with Regions in the MLKit (Revised for
Version 4.3.0). Technical report, IT University of
Copenhagen, Denmark, January 2006.

[15] Mads Tofte and Jean-Pierre Talpin. Implementation of
the Typed Call-by-Value λ–calculus using a Stack of
Regions. In Conference Record of the Twenty-first
Annual ACM Symposium on Principles of
Programming Languages, pages 188–201. ACM Press,
January 1994.

[16] Joseph C. Vanderwaart and Karl Crary. A Typed
Interface for Garbage Collection. In Workshop on
Types in Language Design and Implementation, pages
109–122, 2003.

[17] Daniel C. Wang and Andrew W. Appel.
Type-Preserving Garbage Collectors. In 28th Annual
ACM SIGPLAN – SIGACT Symposium on Principals
of Programming Languages, pages 166–178, 2001.

