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Abstract

The following presents a gentle introduction to a
JavaScript library and language extension that support
more declarative descriptions of rich web applications
through the use of functional reactive[14] constructs.
We isolate common tasks performed by rich web ap-
plications, including web service manipulation, persis-
tent store access, and GUI interactions, and provide
a core library for simplifying their interfaces. Every
one of these items is traditionally achieved by the ex-
plicit specification of callbacks, inverting control flow.
We see that by providing a library for functional reac-
tivity, we can simplify interfaces used to achieve all of
these actions, demonstrated in our support for persis-
tent data binding, reflective discretionary access con-
trol, and functional specification of time varying vi-
sual interfaces, as well as our interface for treating web
services as stream operators. Finally, we discuss our
approaches to embedding reactivity into a typical lan-
guage, including two instances of providing interfaces
to persistent and externally controlled data structures
as well as optimizations useful in the browser environ-
ment.

1. Introduction

Web applications are replacing many desktop ap-
plications, providing increased portability by only re-
quiring users to have partially standards compliant
web browsers, but seemingly at an expressive cost.
While HTML and CSS support declarative definitions
of static layouts, most complex computations are typ-
ically handled on the server-side. Processing on the
client is generally imperatively handled with callbacks.
Such clientside code can quickly grow unnecessarily
complicated, so given the general desire to push in-
teractive computation on to the client, we view this as
a timely linguistic challenge. There are many attempts
to introduce constructs from general programming lan-
guages [7, 28, 24] into web languages, while we are
more interested in constructs aimed at particular diffi-
culties of web programming [30, 20, 4, 27, 9]. The use
of web programs to achieve many personal and profes-
sional computing tasks, such as processing emails, doc-
uments, and spreadsheets, and the wide penetration of
JavaScript-enabled web browsers makes the browser a
pragmatic target for linguistic improvement.

The basic technique we employ, functional reactive
programming, has a rich history from the past decade.
Originally introduced with Haskell implementations,
the technique has been demonstrated to simplify the

definition of simple games [13] and resource constrained
mobile robots [17]. FRP is a variant of data flow pro-
gramming typically supporting external data sources,
sinks, dynamic changes to the underlying graph struc-
ture, and our implementation assumes a topological
evaluation strategy so most cycles in the data flow
graph are outside of the system as suggested by recent
work for a transparent embedding in PLT Scheme [11].
While there are critical semantic and implementation
challenges encountered in Flapjax, we show that our
current form addresses many of the key challenges in
the domain of rich Internet applications. Additionally,
while some optimizations for FRP like parallelization
[25] do not apply well to current browser environments,
other recent work [6, 3] may, and we suggest some ad-
ditional avenues of approach beyond the ones we do
employ based on our experiences.

1.1 Document Approach

Inspired by reception of our work by the academic
community as well as questions asked by web devel-
opers on our mailing lists, we choose to describe the
basic intuitions behind various instantiations of FRP,
with an emphasis on our own, as opposed to present-
ing the current formal semantics of Flapjax. Given
recent work in formalizing JavaScript[16], a formal pre-
sentation may be more convenient to pursue soon. The
following sections first provide a basic background on
some challenges of web programming and then intro-
duce the two basic datatypes introduced in functional
reactive programming: discrete event streams and con-
tinuous behaviours. Those familiar with functional re-
active programming may want to skip both, but those
that are not may benefit from them. The next section
discusses the basic event oriented library implementa-
tion used in Flapjax as well as transparently computing
over time-varying values [11] instead of always explic-
itly using certain library methods. With an intuition
built, alternate approaches to designing FRP languages
are briefly discussed for the benefits of those interested
in the general field.

After discussing the basic background on the inspi-
ration for Flapjax as well as our basic implementation
of a FRP engine and our general purpose extensions,
we discuss aspects of JavaScript, the Document Ob-
ject Model, and the web programming model we also
address in our domain specific approach. First, we de-
scribe our interface to the client presentation layer and
optimizations important in dealing with subtleties of
using the Document Object Model (DOM) for manip-
ulating parts of the HTML tree representing a page.
Then, we describe our basic construct for sending and
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receiving information through web services in a way
that allows subsequent use of our core combinators.
Modern AJAX applications typically have privileged
web service to facilitate communication between clients
and provide access to a persistent store, so we create
one instance that exhibits several common, if not al-
ways cohabitant, features, and show how to use the
static interface to support reactive interaction. Several
interesting observations arise. First, this level of ab-
straction removes the distinction between polling and
pushing models from the library user. Second, persis-
tence can be handled transparently. Third, security
specification benefits from a reactive and transparent
presentation (assuming it is reflective). Finally, mov-
ing data binding into the language or a central library
allows controlled consistency handling between multi-
ple clients of persistent data, helping avoid problems
such as the Orbitz bug common to shopping carts. [21]

2. Background

2.1. Web Programming

Typically, web programs perform a minimal amount
of computation on the client, only employing small
scripts like form validators, with most computation oc-
curring on the server with an implicit or explicit use
of continuation passing style[20]. Better tool support,
standards compliance of browsers, resource availabil-
ity, and user experience requirements are changing this
trend, with more computation now occuring on the
client side of the client server model of web applica-
tions. In practice, it is unclear whether preprocessors
[1] that treat client code as syntactic objects, more inte-
grated language approaches [10, 26, 30], or those com-
pletely separated by explicitly utilizing web services are
preferable. For now, we sidestep the issue, pushing ev-
erything we can in to the client [4, 27, 7] for our proof of
concept, and thus relegating the server to the status of
a specialized web service, leaving room for latter inte-
gration. We consider this to be an important question,
with a suspicion that context-sensitive environments
influencing the evaluation of a single specification [15]
may better achieve progressive enhancement[8]. No
matter which model is chosen, if the intended appli-
cations are rich, many of the interactions we describe
will probably exist.

As a concrete example of managing small scale inter-
actions, consider the typical case of a form specified ini-
tially with a component layout using HTML and then
with callbacks to JavaScript methods in order to com-
pute validity to drive future layout changes. An event,
such as a form value change, will propagate to an event

handler, which may invoke another handler, such as the
aggregate form validity checker. If there are multiple
form fields, in one simple implementation, all of their
change events will eventually flow into the same valid-
ity checking function, and then a variety of events, like
visual indications to signify form validity such as alerts
or color changes, will flow out to respond to the single
value change. Consider the following realization:

Figure 1. HTML Form
<form id="myform">

<input type="text" id="name"
onchange="validateName()"/>

<input type="text" id="creditcard"
onchange="validateCC()"/>

</form>

with a validator (Figure 2, page 4).

1     <script type="javascript"> 

2     function gtz (s) { return s.length > 0; } 

3     function validateName () { validate(); }

4     function validateCC () { validate(); } 

5     function validate () {

6        var name = $('name').value; 

7        var cc = $('creditcard').value;

8        var valid_name =  gtz(name);

9        var valid_cc = gtz(cc);

10       var valid_form = valid_name && valid_cc;

11       $('myform').style.borderColor = 
             valid_form ? '#0F0' : '#F00';

12       $('name').style.borderColor = 
             valid_name ? '#0F0' : '#F00';

13       $('creditcard').style.borderColor = 
             valid_cc ? '#0F0' : '#F00';

14    }

15    </script>

Figure 2. Functional dependencies (read af-
ter write): incrementally compute to avoid
redundant computations between repeated
calls to validate

where the $ has function type String → DOMNode.
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This code has several undesirable properties, all of
which become exaggerated when code reaches a more
realistic size. An alternative formulation, with simpli-
fied common validation functions but expanded spe-
cific validation functions, will also be discussed. In the
above example, first, unnecessary computation occurs
between consecutive calls to validate: mutation of bor-
der colors only should occur if validity changes between
invocations. The code can be expanded to support
incremental computation, splitting apart assignment
statements and recording values from previous invoca-
tions and only continuing evaluation if newly computed
values differ from previous ones. Possible points are at
the data dependencies from lines 6 to 8, 7 to 9, 8 and 9
to 10, 10 to 11, 8 to 12, and 9 to 13, so if during subse-
quent invocations any values during the beginning of a
data dependency do not change, latter ones will not ei-
ther and can be skipped. These optimizations may be
significant in the presence of long dependency chains,
but manually inserting them would make the program
convoluted[3]. This insight is used subsequently, shift-
ing the optimization burden to the compiler: dynamiz-
ing static algorithms can be automated[2], ideally with-
out expressive loss. The essence of the above problem
is that, while the imperative specification may provide
the desired effects, there is a trade-off between the spec-
ification and the implementation. Consider converting
the 2D convex hull algorithm such that if any of the
points move, only the minimal recomputation for the
new surrounding surface will be used given the incre-
mental results from the previous computation. Now do
so again, except use the 3D convex hull algorithm, etc.
[2] The static algorithm is clearer than the dynamic
algorithm and thus may be better to use in produc-
tion environments due to readability, even though the
dynamic algorithm may have the desired specification
implementation. This decision is concisely made when
using callbacks.

Secondly, as callbacks are relied upon for interac-
tion, there may be multiple assignment positions for
the same variable, so a cursory analysis of code will
not give a concise specification of a border color, espe-
cially near where the border color is initially defined.
This is a problem inherent to callbacks and a core ar-
gument for the use of functional reactive abstractions.
As the type of a callback is α → V oid, the chief use of
one is mutation. If multiple callbacks are used to define
one particular value, such as overall form validity, ei-
ther there will be multiple functions mutating the same
value, making it difficult to discern the specification of
the mutated variable, or all of the involved callbacks
must invoke one large callback at some point to do the
mutation, causing the previous problem and hinting at

an abstraction barrier. Additionally, in the above ex-
ample, the specification seems clear, assuming no rel-
evant variables are mutated by other event handlers.
We can naturally describe the border color as a func-
tion of the validity of the form, and the validity of the
form as functions of the current values of form fields, so
the verbose use of mutation and callbacks seems dis-
tracting, especially for the more desirable memoized
version.

Finally, considering the first ’a’ in AJAX stands for
asynchronous, if there is a dependency on the result
of a webservice, an additional level of indirection will
always be necessary. For example, if the above validate
function must also execute a remote predicate on the
credit card number, the function would be split into
two parts between lines 10 and 11, with the second
part registered as a handler for the result of the web-
service invocation. If the code manually handled mem-
oization beforehand, the amount of effort required for
such a toy example seems excessive. The remembrance
of previous values, or treatment of arguments as causal
streams, seems almost intuitive at this point: the credit
card checking webservice shouldn’t be invoked repeat-
edly for the same number, and if the number is chang-
ing rapidly due to it being typed, the web service re-
quest should probably be delayed until the stream is
less active. These are natural abstractions for stream
based languages that are useful for web programming,
but do not explicitly exist in JavaScript. Concepts like
binding persistent values are too coarsely manipulated
in typical JavaScript without them.

JavaScript is a dynamically typed language and
fairly concise, yet manipulating GUI and webservice
events is still verbose. These two tasks are primary
uses of JavaScript and are our target for linguistic
and library support. We extend a functional core of
JavaScript to operate over time-varying values, includ-
ing both discrete event streams and continuous be-
haviours. For example, instead of specifying a call-
back on a form value change to compute validity, va-
lidity would be defined in terms of a form value, with
the callback change being set up implicitly. Instead
of explicitly mutating a variable repeatedly to achieve
an implicit time invariant definition, variables can be
implicitly mutated to achieve a clearer, explicit time
invariant definition.

2.2. Functional Reactive Programming

Functional reactive programming (FRP) [14] typi-
cally facilitates the description and manipulation of two
types of time-varying values: always valued behaviours
and occasionally valued event streams. Additionally, it
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often provides the ability to go back and forth between
the two as they are similar concepts.

A variety of approaches are possible, including those
with arrows[17] in a point-free style or comonadic[29]
styles, and more similarly, those with first class signals
and embedded in a call-by-value language [11]. All of
these systems have definitions of their semantics with
varying levels of rigor, so given the similarity between
Flapjax and FrTime and the more basic questions typ-
ically asked about Flapjax, this section will focus on a
more accessible description of the motivations for and
distinctions between events and behaviours.

2.2.1 Events

The core of Flapjax is in its handling of first class dis-
crete streams of values, referred to as event streams or
just events. For example, the mouse over events as-
sociated with a button form an event stream in which
every value in the stream has information about the
mouse position at the discrete moment that the mouse
moves over a given object.

<textarea id="myElt"/>
...
var over2E = $E($(’myElt’), "over");

or equivalently

var myDomElement = TEXTAREA();
var overE = $E(myDomElement, "over");

where $E has type DOMNode * String → Event α

Operations typical for lists and streams are avail-
able. For example, we can create a new stream based
on another, where every element in the new stream is
a function of the corresponding element in the original,
thus performing a simple mapping. The simplest such
function is constant valued, like the following which
creates a new stream with events at the same time as
the original stream except every event has the value 1:

function toOne (elt) { return 1; }
var onesOnOverE = overE.map_e(toOne);

The above usage is similar to stream manipulation
common in shell scripting. In the Bourne Again Shell,
we can use ls to get a stream of files in the current
working directory and sed to replace every individual
instance with the character ’1’:

ls -1 | sed s/.*/1/g

mouseover

time

onesOnOver 1 1 1

countOvers 1 2 3

evenOvers 2

Figure 3. Time graph: note temporal (causal)
dependencie going across x axis and func-
tional dependencies going down y axis

Thus, instead of using the ’|’ operator, Flapjax uses
map e. They are not exactly the same, but they are
similar enough so that the basic idea of data flow pro-
gramming should be accessible as many Linux users do
it. Instead of the ’|’ connecting a value stream from one
program into the input of another that in turn produces
an output stream, with no guarantee that the program
will output a value for every input, map will provide
such a guarantee.

Pipe notation is convenient syntax in shell script-
ing to chain sequences of transformations together, so
in the absence of the ability to create new syntax in
JavaScript, we add transformation functions to the pro-
totypes of time varying objects. This allows dot nota-
tion. Thus, the following are equivalent:

overE.map_e(toOne);
map_e(overE, toOne);

When functions take multiple time varying values,
we use our best judgement to specify the most intuitive
value, or provide multiple aliases with different signals
threaded in. Furthermore, this equivalences reinforces
the idea that time varying value transformations are
not destructive.

State can be maintained between steps in time by
inductively defining one timestep in terms of the pre-
vious ones by collecting over an event stream, which is
similar to folding over a list, just over a stream:

var countOversE =
onesOnOverE.collect_e(

0, //initial accumulator value
function (elt, accumulator) {

return accumulator + 1;
});
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The above, which will count the number of events
in a stream corresponds to a quick implementation of
wc -l, except instead of just one event of a final value,
the events will be 1, 2, 3, 4, ..., line count as if wc
-l kept reporting the results as they came instead of
just on termination. Using techniques presented later,
assuming an end of stream message, these initial values
can be removed so only one event occurs: the final line
count.

Just as a list can be filtered, so can a new event
stream be formed such that the only elements it has are
those from another that pass a predicate using filter e:

var evenOversE =
countOvers.filter_e(

function (elt) {
return elt % 2 == 0;

});

A combination of map e, collect e and filter e can be
quite powerful, such as in extracting every other other
mouse event:

function getEveryOther (eventStream) {
return eventStream.

collect_e(
{c:0}, //initial acc value
function(v,acc){

return {c: acc.c + 1, v: v};
}).

filter_e(function(o){
return o.c % 2 == 0;

}).
map_e(function (o) { return o.v; });

}

The above example wraps every value into a tuple,
labels the number of each event, ignores odd labeled
events, and then unwraps the value from every remain-
ing event. We see events are first class, can be named,
and can be sources for multiple new events. Events
can be combined to create new events based on tem-
poral properties. For example, we can specify an event
stream that has a new value when an object is either
clicked or moved over. We merge two different event
streams by defining a new event that occurs whenever
one occurs in either of the other streams:

var clickOrOverE =
merge_e(

overE,
$E(myDomElement, "click"));

More complicated combinators, like moderating how
events are filtered based on their occurance rate, which

over

time

click

merge
(over,click)

Figure 4. Merge: event values are preserved

is useful for animations, are possible without going be-
yond the provided combinators into the internals of the
library, though they often take advantage of the other
time-varying primitive, behaviours, that will be subse-
quently introduced. While combinators can be defined
in terms of a basic set of core combinators, in practice,
it is often simplest to just define a native JavaScript
function in the style that the original combinators are
defined, as presented in the implementation section.
This is close to the Scheme mindset in which mutation
is common locally, but not globally.

Event streams can be used in a message passing
style, which might be useful when defining combinators
to compose animations sequenced in a complex man-
ner. Demos for other common uses, such as limiting
the rate of elements by dropping some, which is useful
in cases such as skipping intraword keypresses when
piping a textfield through a spellchecker service, are
available online. Overall, the manipulation of events is
useful in moderating control and interfacing with the
outside world.

2.2.2 Behaviours

A behaviour is like an event stream, except instead of
having values at discrete moments in time, it always
has a value. A typical behaviour found in a webpage is
the current value of a form field, so Flapjax provides a
primitive, $B, that will extract the value, irrespective of
whether it is a dropdown menu, textfield, radio button,
or checkbox:

<p><input type=’checkbox’ id=’txtfld’/>
Checked: <span id="checked"/></p>
...
var checkedB = $B(’txtfld’);
insertDomB(’checked’, checkedB);

The above will display a checkbox. checkedB will
automatically change whenever the checkbox status
changes. insertDomB, which will be described in detail
later, will insert advice to automatically modify the
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DOM tree at the node ’checked’ whenever checkedB
changes. Because a behaviour always has a value,
checkedB always has a value, and the DOM tree will be
modified immediately to reflect the status of the check-
box, including its changes. We’ll focus on interfacing
with web specific notions like the DOM in subsequent
sections, now describing what we can do with values
like checkedB in typical FRP literature.

Just as event streams can be mapped, so can a be-
haviour. For example, we might want to determine
whether a form field is filled in using the previously
defined gtz function:

<p><input type=’text’ id=’txtfld’/>
Validity: <span id="status"/></p>
...
var validFieldB = $B(’txtfld’).map_b(gtz);
insertDomB(’status’, validFieldB);

This small example is more direct than the equiva-
lent using callbacks, but is still not as elegant as can
be using Flapjax. The function map b is very similar
to function application, and insertDomB has a heavy
syntax, which will be both addressed in detail subse-
quently. As form validity may be the function of the
current validity of the form components, behaviours
may be the function of several other behaviours. map b
is a function over only one behaviour, so we introduce
a multi-argument version, lift b:

var validField2B =
$B(INPUT({type:’text’}).map_b(isValid);

var formValidB =
lift_b(

function (valid1, valid2) {
return valid1 && valid2;

},
validField1B,
validField2B);

insertDomB(...

TODO INSERT DIAGRAM
The above call to lift b is the application of a time-

varying (or in this case, constant) function to time-
varying (or possibly constant) values, returning a time-
varying value (that might be constant valued if all of
the arguments are also constant valued). There are
subtleties to it that will be described in the next sec-
tion, but in simple cases like above, it can be used
to write many programs that constraint-based systems
excel in. Propagation is automatic; if any behaviour
changes, all dependent computations will recompute
and validity will reflect the current state. An interpre-
tation of lift b is that it takes a function defined on the

domain of values, lifts it to operate on the domain of
values over time, and applies it to values that change
over time, returning the time varying result.

As behaviours always have values, a behaviour such
that its current value is that of another from a fixed
amount of time beforehand is well-defined, assuming
there is an initial value specified. While primarily use-
ful in animations, it can be used to create combinators
for web services such as the event stream rate modifier
alluded to earlier. For a simple animation without call-
backs, the following will draw a box that follows and
circles the mouse, with a 100ms delay:

var xB = mouseLeft_b().delay_b(100);
var yB = mouseTop_b().delay_b(100);
var timeB = timer_b(100); //increment per .1s
insertDomB(’somewhere’,

DIVB({style: {
position: ’absolute’,
left: lift_b(function(mx,t) { return

mx + 10*Math.cos(t);},
xB
timeB),

top: lift_b(function(my, t) { return
my + 10*Math.sin(t);},
yB,
timeB}}));

In the above example, callbacks are not used so con-
trol is clear. This demonstrates the basic usage of
behaviours when using Flapjax as a library, except
it causes the code to be filled with anonymous func-
tions and invocations of lift that we will eliminate in
the compiled language mode. An equivalent script us-
ing callbacks and explicit mutation would still have the
extraneous functions in the sequence of callbacks, espe-
cially if incremental computation is used, so the library
mode has similar code length but a clearer control flow.

2.2.3 Automatic Lifting: Transparent Reac-
tivity

In the previous sections, calls to map e/b, or the multi-
ple argument version, lift e/b, are explicitly written in
order to take functions that are defined on values and
apply them to Events and Behaviours of those same
values, where a value can be any of the JavaScript types
(string, number, object) or those created by users.
However, as previously alluded to, there is an imbal-
ance in the code. Typically, function invocations are
of normal functions, not callbacks. Addition, subtrac-
tion, comparison, and general value manipulation are
much more common than specialized functions like de-
lay or collect that take advantage of the time varying
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traits of Events and Behaviours. Invocations of lift
accompany nearly every function application, assuming
no attention is paid towards performance. This trans-
formation is formulaic: every function application, un-
less the function is one of the special Flapjax ones,
like delay e, should be made using lift. We call this
lifting, and as the transformation is formulaic, we let
the compiler do it, leading to what we call transparent
functional reactive programming: reactive values can
be used like normal values, with lifting done automat-
ically by the compiler.

Our current automatically inserted lifting function
will actually discern whether lift e, lift b, or normal
function application is most appropriate. Given a call
to someFunction(myArg), the compiler will transform
it into the following:

someFunction(myArg)

=> liftDispatcher(someFunction, myArg);

with liftDispatcher defined, in the simplest manner,
as

1 function liftDispatcher (fun, arg1) {
2 if (fun.alreadyLifted) {
3 return fun(arg1);
4 } else (fun instanceof Behaviour ||
5 arg1 instanceof Behaviour) {
6 return lift_b(fun, arg1);
7 } else (fun instanceof Event ||
8 arg1 instanceof Event) {
9 return lift_e(fun, arg1);
10 } else {
11 return fun(arg1);
12 }
13 }

The first case, on line 2, takes advantage of functions
being objects in JavaScript. Whenever there is a func-
tion that already expects time varying arguments be-
cause it is meant to operate over temporal values, such
as delay or collect, we annotate it with an alreadyLifted
flag, and can directly apply the function instead of us-
ing the special capabilities of lift. As seen in the pre-
vious examples, we did not call lift b(delay b, someB,
100) but the more natural delay b(someB, 100).

The next two cases on lines 4 and 7 are similar. If
a function is invoked on a time varying value, or vice
versa, the result should also be time varying. In the
first, if either the function or argument is a Behaviour,
we delegate the call to lift b, while if either is an Event,
to lift e. These were the overbearing calls to lift in
the above examples that motivated the overall program
transformation.

The final case, on line 10, is a simple optimization.
We could call lift b, returning a time-varying value
that happens to have the same value at all times, but
that is not necessary. If the values are neither Events
nor Behaviours, we can directly apply the function
and return the non-timevarying value. Statically typed
or macro-based approaches can implement this at com-
pile time.

This simple transformation is at the core of the
transparent reactivity found in Flapjax. For FrTime
[11], a similar transformation is achieved through
Scheme macros. In both languages, functions are
generally first class, meaning they can be passed as
arguments to functions, which we take advantage of
with our calls to lift. This is not universally true
in JavaScript: the compiler must special case calls
like alert, +, etc. This is done by wrapping them in
functions with a simple eta-expansion:

var x = y + z;

⇒ var x = (function (a, b) { return a + b; })(y, z);

⇒ var x = lift( function(a, b) { return a + b;}, y, z);

We can now revisit an earlier example and treat
time-varying values as typical (’flat’) ones, trusting the
compiler to find any Flapjax scripts and convert them
into JavaScript programs:

<script type="text/flapjax">
var xB = mouseLeft.delay_b(100);
var yB = mouseTop.delay_b(100);
var timeB = timer_b(100);
insertDomB(’somewhere’,

DIVB({style: {
position: ’absolute’,
left: xB + 10*Math.cos(timeB),
top: yB + 10*Math.sin(timeB)}}));

...

Whenever the compiler sees a script specified as a
Flapjax script, it will convert it to the corresponding
JavaScript program. Currently, we provide a stan-
dalone compiler and a compiler web service, though
it is simple enough that several deployments are plau-
sible. First, compilation can be integrated with typical
page-serving preprocessing done by servers. Second,
the compilation can be done on the client, whether
through a webservice or a loaded library. This has the
benefit that viewing the source of a page will display
the original Flapjax source code instead of JavaScript,
which can now be viewed as bytecode. Finally, if a
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single language was used, such as one utilizing con-
tinuation based constructs, a more robust server side
compilation framework might be more practical.

Various optimizations may be implemented in the
compiler, inserting calls similar to liftDispatcher and
in more careful ways, and will be discussed once the ac-
tual implementation of lift and the other library com-
binators and primitives are clear.

2.2.4 Records and Transparent Reactivity

While a compiler will automate the insertion of calls to
lift, in practice, we have found it to be an undesirable
in the case of object creation, and thus depart from
some previous practices.

To be clear, consider

function pair (a, b) {
return {first: a, second: b};

};
var p1 = {first: 1, second: 2};
var p2 = pair(1, 2);
var p3 =

{ first: timer_e(1),
second: timer_e(1) };

var p4 = pair(timer_e(1), timer_e(1));

Traditionally, the right hand side of the assignment
to p1 and p3 would have effectively been first expanded
to an application of the pair function and then lifted.
Thus, the types of each of the variables would have
been:

p1 :: {first: Int, second: Int}
p2 :: {first: Int, second: Int}
p3 :: Event {first: Int, second: Int}
p4 :: Event {first: Int, second: Int}

However, we do not perform this conversion. The
above thus yields the following types:

p1 :: {first: Int, second: Int}
p2 :: {first: Int, second: Int}
p3 :: {first: Event Int, second: Event Int}
p4 :: Event {first: Int, second: Int}

In previous systems, these would be considered the
same as there would be a conversion rule akin to the
ones for arrays: x :: array event a = x :: event array a.
With our change, general usage would not be impacted
because function application, including indexing into
a record, would still be lifted. However, changes to
nested fields are masked, which can be observed. For
example, the program to count the number of changes
to p3,

p3.collect_e(0,function(_,cnt){return cnt++;})

Our decision is largely related to performance con-
cerns and easing the process of integrating Flapjax
code with other libraries. Time-varying values are more
explicit, so special cases for integration are clearer.
This is a drastic departure from previous work.

2.2.5 Behaviours and Events: Conversions and
Event-Based Derivation

Events and Behaviours are very similar, and due to
the implementation of transparency, can often be used
in the same syntactic positions, though with different
semantics. Either can be derived from the other, which
will be discussed further, so they are presented as com-
mon abstractions, not parts of some minimal set of
constructs.

Flapjax has an event oriented design, as opposed
to a behaviour oriented design, which is an arbi-
trary choice for our current purposes. Assuming an
Event datatype, we can create the essential Behaviour
datatype:

function Behaviour (evtStream, init) {
this.currentValue = init;
this.changes = evtStream;

}

The decision between having a currentValue that
will be mutated, as opposed to only storing the first
initial value is mostly a matter of convience: external
code can access this field, instead of only creating a
sequence of callbacks to capture it on change. We can
now introduce our first conversion operator that will
take an event stream and turn it into a behaviour with
some starting value. We call this function hold:

// hold :: Event a * a -> Behaviour a
function hold (evtStream, init) {

return new Behaviour(evtStream, init);
}

TODO: rephrase An implicit modeling assumption
was made in our notion of a Behaviour : it only changes
at discrete points in time because we define its changes
to be a discrete stream. This means that if we write
changes(sin(timer b(100))), we will not get a smooth
behaviour but a discrete event stream. Typically, when
we describe a time-varying value as being continuous,
we mean it is defined at all points in time, and given
the digital nature of our underlying system, sample this
value at discrete points in time. As such, a Behaviour
can be described in terms of its samples and starting
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value. Furthermore, in typical FRP systems, the sam-
ples may be filtered such that only changes in value
trigger dependent computation, but as we will see, this
may not always be desirable when we take advantage of
mutation. For our definition of Behaviour, a variation
of collect, filter, and map can be used to inefficiently
define a filterRepeats combinator that would take a
stream of possibly repeating samples and turn it into a
stream of unique changes, making the decision a minor
consideration.

We define a Behaviour as an initial value and a
stream, so we may want to convert it back to an event
stream:

// changes :: Behaviour a -> Event a
function changes (behave) {

return behave.eventStream;
}

The distinction between representing a Behaviour as
containing a stream of samples or a stream of changes
becomes observable at this point. Given a stream of
ones, we may hold it to make it continuous, and then
call changes to discretize it again. If we then col-
lected over this stream, adding the values as they ar-
rived, depending on the choice between samples versus
changes for Behaviours, we may get different results.
With changes, we never increase the count, while with
samples, they would steadily increase. In Flapjax, we
take the samples approach which makes changes and
hold inverses, reasoning that we can always use the
filterRepeats function to achieve the alternative inter-
pretation. Unnecessary computation can be optimized
away later. Using seperate hold and Behaviour func-
tions provides a stylistic choice to show intent in case
the language is later extended.

Further manipulations of Behaviours follow a simi-
lar pattern as the above: define the current value using
typical logic based on the values of the arguments at
the time of invocation, and define the underlying sam-
ple stream using Event combinators. For example, we
can define map b in terms of map e:

function map_b (fun, arg) {
return new Behaviour(

map_e(fun, arg.changes),
fun(cur_a));

}

As more manipulations of Events and Behaviours are
introduced, the convenience of having both types will
become clearer.

For another example, we can define delay b in terms
of delay e:

function delay_b(behave) {
return new Behaviour(

delay_e(behave.changes),
behave.currentValue);

}

The conversion is rather formulaic, but occasionally
the handling of the initial value may be different from
subsequent changes, as seen with delay b. In it, instead
of starting out undefined, we decide to have the values
diverge only after a change. Alternatively, we could
have started the value as being undefined, and initial-
ized it after the delay time. Initialization is often a spe-
cial case in programs, which this view of Behaviours
makes explicit prior to the typically reactionary defini-
tion of event combinators.

3. Implementation

Flapjax maintains a directed acyclic data flow graph
where every node corresponds to an event stream. This
is what we mean by an event-oriented implementa-
tion. Thus, if an event occurs, it is represented by
a node firing, which will propagate the event value to
whatever nodes are directly dependent upon it for fur-
ther processing. Forward references are used to propa-
gate events through the system, calling a receiver func-
tion on a listening node to generate new events to
propagate further. Back references are maintained for
potential optimizations such as crawling a branch of
the graph and temporarily disconnecting the receiver
functions on its entire fringe nodes if none of its sink
nodes are externally accessible and no processing func-
tion associated with any of its node contain impurities
that may effect global state. As previously described,
Behaviours are represented as a current value and an
underlying event stream of changes, and thus can also
be represented by the same data flow graph. Calls to
Event and Behaviour combinators, such as lift, merge,
and delay, correspond to additions to the data flow
graph connected to existing nodes.

function Event (sources, updaterFn) {
this.sinks = []; //forward
this.souces = sources; //back
this.updaterFn = updaterFn;

}

Nodes, upon receiving a value, may process it to cre-
ate a new one, and then send that value to their depen-
dents. However, this is not always done. Furthermore,
as we will see later, there may be global properties
we choose to enforce in how values propagate between
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nodes, and these are most easily maintained by provid-
ing the same general propagate function to each node.
Thus, we define the updaterFn from the above Event
definition to follow a rather permissive signature. Ev-
ery event specifies a function that can be invoked by
any of its sources. This function will take a value to
process, and a callback it can call to give any even-
tual values that should be propagated. A little more
precisely:

updaterFn :: ( β → Void ) * α → Void
We define a simple function to propagate values be-

tween nodes, which are sent through updater functions
along with a way to continue propagation:

function propagate (val, node) {
for (var sink in node.sinks) {

sink.updaterFn(
function (sinkResult) {

propagate(
sinkResult,
sink);

},
val);

}
}

We can now define three useful functions: map e,
merge e, and delay e that take advantage of this struc-
ture.

//map_e :: Event a * (a -> b) -> Event b
function map_e (evtStream, fn) {

return new Event(
[evtStream],
function (prop, val){

prop(fn(val));
});

}

//merge_e :: Event a * Event b -> Event a u b
function merge_e (evtStreamA, evtStreamB) {

return new Event(
[evtStreamA, evtStreamB],
function (prop, val) {

prop(val);
});

}

//delay_e :: Event a * Integer -> Event a
function delay_e (evtStream, wait) {

return new Event(
[evtStream],
function (prop, val){

setTimeout(prop(val), wait);

});
}

//sample usage
var a = map_e(function(v){return v + 1;}, x);
var b = merge_e(a, x);
var c = delay_e(a, 300);

map:
a + 1

var x

mergedelay:
300

var avar c var b

a

Figure 5. Data flow graph

These three constructs have already been demon-
strated to be useful and were very simply imple-
mented. While, as mentioned above, a combinator like
filterRepeats that filters out any event value that is
the same as the one before can be implemented with
collect e, filter e, and map e, such an approach is not
necessary. The goal is better readability; just as mu-
tation is often used locally in Scheme and OCaml, it
is not necessary to write small combinators in terms of
other ones. However, doing so may aid program reason-
ing and the ability of a compiler or dynamic profiling
to optimize the dependency graph structure.
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3.1. Topological Evaluation and Glitches

The above definition of propagate will yield difficul-
ties with methods that are dependent upon multiple
time varying values. For example, consider a naive im-
plementation of lift b which will recompute a function
application whenever either of its arguments change.
We can implement a multiargument lift b using a sin-
gle argument lift (map e) and merge e:

//naiveLift_b ::
// (a * b -> c) * Behaviour a * Behaviour b
// -> Behaviour c
function naive2Lift_b (fn, a, b) {

return new Behaviour(
fn(a.currentValue, b.currentValue),
map_e(

merge_e(a.changes, b.changes),
function(_){

return fn(
a.currentValue,
b.currentValue);

}));
}

but an undesirable result arises on the following pro-
gram under the reactivity transformation. Consider
the following example, assuming y is some integer val-
ued Behaviour:

var a = y + 0;
var b = y + a;
var c = b + 1;
var d = c % 2;
var e = 5 / d;

Namely, if this block was always executed atomi-
cally, b would always be even, c, odd, d, 1, and e would
thus should always yield 5. However, consider the ex-
pansion using lift b and the evaluation order under
propagate as defined:

a = lift_b(function(l,r){return y+0;}, y, 1);
b = lift_b(function(l,r){return l+r;}, y, a);
c = lift_b(function(l,r){return l+r;}, b, 1);
d = lift_b(function(l,r){return l%r;}, c, 2);
e = lift_b(function(l,r){return l/r;}, 5, d);

Under the transformation, when y changes, an ex-
ception may be raised if we used the proposed imple-
mentation of propagate and a multiargument lift e/b.
This is illustrated in (Figure 6, page 13), showing how
the evaluation would yield a division by zero exception
by the top node if y changes from 3 to 2.

var y

lift:
a + b

a

lift:
a + 1

a

lift:
a % 2

a

lift:
5 / a

a

5 / 0

6 % 2

5 + 1

2 + 3

(queued, 
so still 3)

2

lift:
a + 0

b

a

Figure 6. Glitch: depth first evaluation or-
der incorrectly raises an exception when y
changes from 3 to 2. The solid line connec-
tions are executed first, reaching an excep-
tion before the dotted path is evaluated.
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Assuming no error was thrown, the change to the
right branch of a would then be propagated through
the system, and the originally intended result would
succeed. A trivial change to this example would be
to have a change of either argument sources of a lift
node cause the node to look at the current value fields
of both branches and recompute based on them. How-
ever, this would not work if we replaced one of the ys in
the assignment to a with (function(v)return v;)(y). In
this case, an additional node would be between a and y.
More generally, determining the next value of a source
before it has changed is undecidable, so to prevent this
consistency problem, a multiargument lift should wait
until both of its children have updated. However, as is,
this is also an undecidable property - one of the sources
may not even update, and probably, won’t. An option
is to optimistically evaluate and propagate on notifi-
cation of a change in one branch, ignore exceptional
values, and upon receiving an update from the other
branch in the same timestep, just rollback. However,
this may lead to excessive computation, and as Flap-
jax is embedded in an impure environment and should
support external interactions with legacy applications,
rolling back may not be an option.

Instead, we enforce a variant of a breadth-first evalu-
ation order. As we require that before a node evaluates
that any of its children needing evaluation have already
done so, we evaluate the children first. After a node
has evaluated, if it needs to propagate values further,
it will notify the propagation function as usual. We
modify the propagation function to, instead of directly
propagating the value to the nodes waiting for it, to
defer it. The lowest level node scheduled to receive a
value is processed instead, and the desired invariant is
thus established. To achieve this, we also modify node
creation such that a node is defined to have a rank that
is the maximal rank of its children plus one, and add
a priority queue to propagate:

function Event (sources, updaterFn) {
this.sinks = []; //forward
this.souces = sources; //back
this.updaterFn = updaterFn;
this.rank = 1 + Math.max.apply({}

sources.append[0]);
}

var pq = new PriorityQueue();
function propagate (val, node) {

for (var sink in node.sinks) {
pq.push(sink.rank, {s: sink, v: val});

}
while(!pq.isEmpty) {

var o = pq.pop();

o.s.updaterFn(
function (sinkResult){

propagate(
sinkResult,
o.s);

},
o.v);

}
}

An implicit assumption of such an ordering is that
the dependency is a directed acyclic graph. We some-
times break this rule, adding edges for propagation that
are not considered in rank calculation. This is because
we do allow callbacks in our system: it is sometimes
inconvenient to use our cyclic dependency constructs
(to be discussed subsequently), so we allow callbacks
to inject into event streams.

A slight problem still exists: while we guarantee or-
der, lift will still be called twice. However, this can be
easily fixed. We start with the more intuitive version
of lift:

function lift2_b (fn, a, b) {
var cur = fn(

a.currentValue,
b.currentValue);

var changes =
merge_e(a.changes, b.changes).
map_e(function(_){

return fn(
a.currentValue,
b.currentValue);

});
return new Behaviour(cur, changes);

}

We know both source behaviours, a and b, will have
already updated in this time step if they will at all.
Therefore, the first notification of a change will yield
the correct output. However, a second notification of
a change, from the other branch, will cause evaluation
again. For some nodes, such as a merge node, this may
be a good thing, while in this case, it should be filtered
out. To promote local reasoning about such multiple
invocations within the same timestep, we change the
signature of the node update function. Instead of rea-
soning about only a value, it is wrapped inside an ob-
ject that contains some information about the context
it arose in. In our implementation, we currently use
two annotations: when the event occurred, and which
nodes have strong causal links to it. Instead of receiv-
ing a value and a callback that expects a new value,
we define the updater function to receive a Pulse and
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a callback that expects the next Pulse, where one field
of the Pulse is the original value of interest.

snapshote :: Behaviour a * Event b → Event a,
which will take snapshot of a Behaviour during spe-
cific discrete points in time, provides a safe, glitch-
preventing approach to sampling a value, as a opposed
to using lift e and potentially prematurely sampling a
Behaviour.

3.1.1 Time Steps

We informally define a timestep to occur between when
an event begins to propagate through the dependency
graph to when the last event caused by it, under transi-
tive closure, has occurred, discounting delayed events.
When a new event occurs from within the system, such
as one caused by map b, it is considered to occur within
the same timestep. When an event occurs from outside
of the system with no known causal link, such as from
$E, or due to a known timestep, as with timer b, it
cannot be processed until all of the events associated
with the current time steps are handled, or we may
introduce glitches. An additional queue is therefore
used for these latter types of events. When the origi-
nally presented priority queue is empty, also known as
the dependency graph having stabilized, the external
event queue is checked for events needing processing
and the timestep increments.

When a node receives a change event, it also receives
the timestep the event occurred in as part of the pulse.
Thus, lift can filter out subsequent invocations on the
same timestep:

function lift2_b (fn, a, b) {
var res = {val: null};
var lastStep;
var cur = fn(

a.currentValue,
b.currentValue);

var changes = new Event(
[a.changes, b.changes],
function (prop, pulse) {

if (lastStep != pulse.timestep) {
lastStep = pulse.timestep;
prop(new Pulse(

lastStep,
link(

res.val,
pulse.path)));

}
});

res.val = new Behaviour(cur, changes);
return res.val;

}

We have now achieved our desired evaluation order
(Figure 7, page 16).

3.1.2 Paths

Every event has a causal path. Some of our earlier
implementations took advantage of this data, as did
some derivative work. Occasionally, we may create con-
structs that allow cycles in our dependency graph, and
instead of having an endless feedback loop, may use
path information to break them. An updater function
can store the time stamps of previously received pulses
for one to detect a repeated invocation in a time step,
which would be detected by the same stamp appearing
repeatedly, but path information may be useful for a
finer notion of causality.
For example, cyclic evaluation could be detected and
stopped given full path information.

In summary: to prevent inconsistencies, any change
propagation leading to the application of a multiargu-
ment function will delay evaluation by using a priority
queue indexed by topological level, which is the max-
imal rank of dependent nodes plus one. Nodes in the
queue only evaluate and propagate when popped off
the queue. During evaluation, events and value changes
may enter the system, indexed by time, so a queue of
external events is also kept. When the internal queue
has been exhausted and the data flow graph has stabi-
lized, an event from the external queue is popped off
and propagates through the data flow graph.

We find this to be a critical property in practice.
As an experiment, we originally did not include it, and
our new users were confused about the cause of cer-
tain bugs, even when aware that this property was not
maintained. The problem applies to many multiargu-
ment function, not just lift. For example, this enforces
the intuitive observational behaviour of if b.

3.2 Dynamic Data Flow

Functional reactive programming, in addition to lift-
ing, supports dynamic data flow, or data flow graphs
whose structure changes over time. How the structure
can change is specified beforehand, but the actual con-
nections between nodes, and even existence of nodes,
changes over time. Web services may return data not
available during initialization, so this is a natural oc-
currence in our domain. The key operator to facilitate
removing and adding connections is switch.

Consider a webservice that returns a stream of links
and a program that visualize the links as they come in
and also shows the history of links that the mouse has
run over: s
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var y

lift:
a + b

a

lift:
a + 1

a

lift:
a % 2

a

lift:
5 / a

a

5 / 1

5 % 2

4 + 1

2 + 2

2 + 0

2

lift:
a + 0

b

a

Figure 7. Glitch: topological evaluation or-
der prevents the introduction of inconsistent
states

<script type="text/flapjax">
var result = // result :: Event DOMNode

service().map_e(
function(txt){

return A({href: txt}, txt); });
var overs = // overs :: Event Array Event

result.collect_e([ ],
function (link, arr) {

arr.push($E(link, ’over’));
return arr; });

var anyOver = //anyOver :: Event Event
overs.map_e(function(arr) {

return merge_e.apply({},arr);
});

The script takes a stream of strings and turns each
into a link. Then, it takes the stream of links and
collects their corresponding mouseover streams into an
array. Finally, it compacts each array of streams into
one merged stream, so on every addition, a new up-
dated stream is provided. If we wrote pulse, a stream
of true/false values, in the naive manner,

var badPulse = anyOver.collect_e(
false, function (_, v) { return !v})

we would create a stream of booleans that flip ev-
ery time the service returns a new link, not when the
mouse moves over a link. In the above usage of col-
lect e, the accumulation function is not impacted by
the value of the event passed in. However, we really
want to define pulsing in terms of this value, for it is
the merged stream of mouseover events from all cur-
rent link objects. We need a function that will take a
stream of event streams, and whenever a new stream
occurs, start returning events from that stream instead
of the previous stream. As an analogy, at a railroad
junction, we may switch which tracks will be used to
send trains further along, shutting off the other pair.
In other FRP systems that are concerned about pro-
viding space guarantees in terms of how many streams
are active, this is a close analogy: only two streams are
possible to choose from. In our case, we allow an infi-
nite set of streams that appear over time in a stream
and assume unused streams can be garbage collected,
which will be discussed later. Our stream of pulses can
now be written using switch e, which has type switch e
:: Event Event α → Event α:

var goodPulse = anyOver.switch_e().collect_e(
false, function (_, v) { return !v})

All that was required was a call to switch e to de-
crease the order of reactivity of events: segments of
data flow graph were traveling through the data flow
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graph, and at a switching point, we connected them
(and removed the previously connected node). We can
see the data flow graph corresponding to the above ex-
ample (Figure 8, page 17) and,

more generally, to the usage of switch e (Figure 9,
page 18).

Within Flapjax, the most common way to introduce
events is the $E function, and as it is already defined
to work over time varying nodes, switch e is often not
necessary as it is implicitly already used within $E.
However, when collections are also used, it becomes
useful.

3.3. Chain Compaction, Constant Indepen-
dence, and Lowering

Key static optimizations may be implemented by the
compiler [6]. Hinted by the presence of an underlying
data flow graph to guide computation, every node in
the graph incurs a cost during event propagation due
to the actual message passing as well as guaranteeing
a topological evaluation order.

A simple optimization is in the handling of chains of
unary functions. For example, consider the fragment:

var z = foo(bar(baz(x)));

A simple lifting compiler would produce the follow-
ing:

var z = lift(foo, lift(bar, lift(baz, x)));

However, we can condense the chains of lift:

var z = lift(
function (a) {

return foo(bar(baz(a)));
},
x);

The optimization will fail, however, if foo, bar, or
baz is already lifted to operate over time varying val-
ues, such as if it is the delay function already set for
a specific amount of time. However, in such places,
functions can be annotated for the compiler or in lan-
guages with finer type systems, typed. Alternatively,
we can use the original lifting transformation, but, dur-
ing graph construction, we can check for chains based
on dynamic function annotations and connect nodes in
a way that skips the priority queue. Instead of delaying
node processing by deferring to a priority queue, a mes-
sage in a chain can be instantly handled, circumventing
the performance costs related to using a priority queue.

In a typical program, there are many multi-
argument functions. In our original validate function,

 
txt      

s

map:
$E(A(txt), 'over')

collect: [],
acc.push(v)
return acc

stream 1

map:
merge

switch

stream 1
or

stream 2

array of events

stream 2

stream 1

Figure 8. Switch: data flow graph represent-
ing reactions to mouse clicks of objects that
are dynamically generated. Dashed circles
are individual events and solid circles are
data flow nodes through which events prop-
agate, so solid shapes within dashed circles
signify values of events.
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switch

time 1:
s1 or s2

map:
merge

time n:
s1 or s2

X

.  .  .

Figure 9. Switch: a switch node, on notifi-
cation, will connect a newly received event
stream and disconnect the previously con-
nected stream if any. Dashed circles are indi-
vidual events and solid circles are data flow
nodes through which events propagate, so
solid shapes within dashed circles signify
values of events.

var x

lift:
foo(a)

var n

lift:
bar(a)

lift:
baz(a)

var x

lift:
foo(bar(baz(a)))

var n

a

a

a

a

a

a

Figure 10. Chain transformation: original
(left), compacted (right)

there are two invocations of unary functions but four
invocations of binary ones (or(a,b) and ?(testcondi-
tion, truebranch, falsebranch). However, at least for
the shown invocations of the ternary conditional oper-
ator ’?’, we can actually describe its use with a unary
function. For example, consider

form_border = valid_form ? ’#0F0’ : ’#F00’;

with a naive translation to

var form_border = lift(
function(a,b,c){ return a ? b : c; },
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valid_form,
’#0F0’,
’#F00’);

Two of the parameters are constant over time and
thus are not variables that need to be propagated
through the dependency graph. Instead, they can be
placed within a node:

var form_border = lift(
function(a){return a? ’#0F0’ : ’#F00’},
valid_form);

Thus, by moving constants within lifted functions,
we can often take multi-argument functions and rep-
resent them as unary ones, and then can gain further
benefit from the chain compaction optimization pre-
viously mentioned. This step can be done statically
without relying on any annotations. Again, in more
finely typed languages, we may be able to do more.
For example, the optimization would be able to sup-
port named constants.

These optimizations avoid unnecessary use of the
priority queue. A generalization, with the same caveat
around already lifted functions (and thus implicitly
stateful nodes), is called lowering [6], that we do not
implement. A section of the dependency graph can be
condensed into as many nodes as there are outgoing
edges, assuming no temporal functions that cannot be
compacted. For example, we can convert the following,

var n = (a + b) + c * d;

to

var n = lift_b(
function (w,x,y,z) {

return (w + x) + y * z;
},
a, b, c, d);

but at the expense of not reusing previously com-
puted values through incremental computation. Chain
compaction, however, will incrementally compute. The
basic insight is that for small functions, the cost of mes-
sage passing may be higher than that of recomputing
the value. There may be a continuum between lower-
ing and the optimization we describe: we may be able
to take advantage of node cost and event rate profil-
ing or known complexity to dynamically or statically
structure the graph and paths through it. More lo-
cal optimizations, such as analyzing event rates when
deciding whether branches of conditionals should be
connected and filtered or disconnected based on the

lift:
a + b

lift:
a * b

lift:
a + b

var w var x var y var z

var n

Figure 11. Graph prior to lowering

var w var x var y var z

lift:
(a + b) + c * d

var n

a b c d

Figure 12. Lowering transformation
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test branch face similar issues. These sort of optimiza-
tions are difficult to do by hand, especially when pro-
grams are updated in the standard development pro-
cess where usage changes through iterations, because
incrementalized and memoized code is difficult to read,
so automation may be very beneficial.

3.4 Behaviours and Events: Distinctions,
Similarities, and Alternatives

3.4.1 Distinctions

Initialization of a program, in practice, is a significant
special case. If a program is written entirely as event
streams, upon initialization, there will be no values
flowing out of the system. To have any visible effect,
an external event must occur or an internal genera-
tor like timer e must be used. This creates an artificial
spatial gap in the syntactic specificaiton. Furthermore,
while describing programs as function of events rather
than callbacks reverts potentially inverted control flow
specifications, relying on descriptions of event streams
may make code hard to understand in practice. For
example, given the program

...
var a = x + y;
var r = a + z;

and assuming only events are used and the seman-
tic that lift e will only have an event when all of its
arguments have an event in the same time stamp, it is
unclear as to when r will occur: at the beginning of
the program, will an event occur that causes x and y
to occur, and thus also cause r to occur?

Conversely, consider the case that only behaviours
are used. If r is fed in to some logging function or
is bound to a value on the server, a write would be
triggered on initialization. In the former case of only
events, an event would have to be manually triggered
and thus initialization behaviour would be explicit,
while in the latter case of only behaviours, network
resources would be wasted during an undesirable ini-
tial write. If there are many webservices on a page,
there can be a significant delay. However, due to ini-
tialization costs, we are finding some users to take the
event based approach whenever values can be initial-
ized statically with HTML. This approach may work
for small applications, but suffers when application size
grows.

3.4.2 Similarities

Events and behaviours are similar: we have already
shown how to implement behaviours in terms of events.

Assuming an implementation of behaviours, we can
also easily implement events.

They just become behaviours of type Maybe. For
example, type Event Integer is equivalent to type Be-
haviour Maybe Integer. At any point in time, the be-
haviour has a value, or it does not. Again, our decision
of assuming behaviours are discretely changing or po-
tentially continuously with a sampling rate drives an
implementation of changes. We show how to define
one sample combinator, merge, assuming it is correctly
lifted with respect to the implementation of behaviours:

function merge_b(a, b) {
return a instanceof MaybeFull ? a

: b instanceof MaybeFull ? b
: new MaybeEmpty();

}

Note how such a decision implies one event stream
cannot have multiple events in the same time cycle.
Cycles in our implementation of the dependency graph
can lead to such an occurrence, which we call a tight-
cycle, as opposed to a cycle that occurrence between
causal dependencies between multiple time steps.

3.4.3 Alternatives

The basic notion of data flow is not new, and to a sig-
nificantly lesser extent, nor is functional reactive pro-
gramming. Conceived within the Haskell community
[14], it was also demonstrated to work over Java beans
[12]. Both of these realizations were different in im-
plementation, but similar in spirit. Flapjax is most
similar to FrTime in implementation.

3.4.4 FranTk, Arrows: Haskell

Seminal work in reactive programming can be traced
to FranTk [14]. Arrows, a generalization of arrows, are
used. These are more similar to forementioned Unix
pipes than our style of embedding. Events and Be-
haviours are both time varying, and thus are simply
described as Signals. Values are actually a function of
time, so a constant value, such as 1 (Signal Int) actu-
ally has type Time → Int. The add1 :: Int → Int
function can be lifted by arr to work on the Int do-
main extended over time, arr add1 :: Signal Int Int,
and then applied to the base signal to achieve the new
one. Such an approach is possible in JavaScript, but
the nature of the strict, stateful environment makes a
FrTime [11] style embedding more natural.
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3.4.5 Frappe: Java beans

In Java beans, object fields are accessed by get-
ter/setters. Thus, all communication between beans is
explicitly made through method calls instead of more
implicitly through mutation of public fields. Frappe
[12] takes advantage of this basic insight, allowing us
chain getters rather than setters, reversing the direc-
tion and ambiguities of control. Such an approach
would be possible in coming versions of JavaScript, but
is rather heavy handed.

3.4.6 Flex and Laszlo

Some commercial rich web application frameworks[4,
27] feature data binding. Typically, this means an ex-
plicit data model object is made, at which point it can
be inserted into a page in a manner that looks simi-
lar to our curly bang syntax. However, there is little
transparency, first class behaviour, etc. Thus, while
{!name+1}! may work, {!name+time}! will probably
not, and if it did, without our glitch handling seman-
tics. Additionally, we support transparency in scripts,
not just templated code, so functions can be written
that rely upon transparency. In these systems, to de-
clare a time varying value in code, a special data object
must be made that is explicitly set, typically with call-
backs. While templated code is simplified, the bulk of a
program still suffers from inverted, convoluted control
flow.

3.4.7 JavaFX (Previously F3)

A recent framework implements static data flow with
related transparency support. A variable can be bound
to be the result of a function of another, with an intu-
itive compiler transformation to insert advice into rele-
vant setter functions. However, such an approach loses
two important properties of our style of embedding:
time-varying variables are no longer first class and data
flow cannot be dynamic. The approach of requiring
the use of an explicit binding construct to indicate a
time-invariant relationship between variables provides
an interesting approach of mixing time-varying and flat
code, especially in the face of possible mutation. asdf

3.4.8 FrTime: Scheme

Our approach is in the style of FrTime, mostly differ-
ent in minutea and particular optimizations. Signals
are first-class values as in FrTime, with an underlying
data flow graph, and unlike FrTime, to support inte-
gration with other libraries and traditional code, we
do not maintain the isomorphism between Collection

Signal and Signal Collection types, as motivated else-
where in this document. Additionally, we find other
optimizations necessary, and find new guidelines for in-
tegrating with persistent data structures.

4. Functional Reactive Web Program-
ming

So far, the majority of topics discussed are either
reviews of existing work in the general field of func-
tional reactive programming or our basic adaptations
of general concepts, but not specific to the environment
provided by modern web browsers nor the broader do-
main of rich Internet applications. In the following sec-
tions, we focus on how Flapjax simplifies interfaces for
key components of rich web applications, particularly
those for GUI manipulation and web services.

Flapjx supports GUI specification, including prop-
erties relevant to interactions. We discuss the impact
of our constructs in terms of program presentation
through compiler support and current best practices
such as progressive enhancement. The discussion of
GUI data structures motivates an brief examination
of cyclic dependencies and recursive constructs to sup-
port their expression. A subtlety of the implementa-
tion browser renderers, as well as renderers in other
domains, is discussed, and we discuss how modifica-
tions of our evaluation model or frame-rate sensitive
(reactive) constructs can overcome it.

After the client environment is discussed, we focus
on the client interacting with services, including those
of the web host. General constructs for interacting web
services with web services are discussed. Services of the
host are of particular interest, especially those provid-
ing persistence and security. We show how a typical
set/get webservice for persistence can be turned into
a binding construct that abstracts away the difference
between pushing and pulling. These binding points
become convenient locations to place consistency han-
dling constructs. Furthermore, our use of propagation
provides an explicit manner of tracking security depen-
dencies, and thus transparently propagating security
information and providing a way to react to potentially
changing client capabilities.

Finally, we overview some simple demos written to
examine our constructs and basic user feedback in re-
sponse to some of our design decisions. From there, we
briefly mention some of the related work again, where
we can go next, and review what we have shown.
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4.1. Document Object Model

Currently, the most polished portion of Flapjax is in
its interactions with the user interface, which is surpris-
ingly difficult given the notoriously inconsistent imple-
mentations of standardized interfaces for GUI manip-
ulations. We discuss three categories of constructs rel-
evant to cleanly describing rich interactions in a style
closer to HTML than traditional JavaScript. These
are GUI data extraction, GUI object construction, and
GUI object insertion.

A web page layout is initially described in HTML
by a static tree where every child node is nested inside
of its parent container. For example, a link may be put
inside a paragraph:

<p>
this is my paragraph with
<a href="http://www.flapjax-lang.org">

a link
</a>
and
<span id="mytext">

some more
</span>
text.

</p>

Text fields, such as ’this is my paragraph with’, ’a
link ’, ’and ’, ’some more’ and ’text.’ are also implicitly
nodes in this tree. We refer to this as the Document
Object Model tree, or just DOM tree. However, prop-
erties of this tree may change over time, especially in
response to user interactions. No matter how a com-
ponent is created, in traditional javascript, its changes
over time will have to be externally specified through
mutation. Thus, we will see how to extract time vary-
ing values, define new ones in terms of them, and define
these new values to be actual GUI objects. The realiza-
tion is that the DOM tree is an external time-varying
structure and the challenge is in how to interface with
it.

4.1.1 Extraction

The first constructs we introduce are to extract event
streams and behaviours from the DOM.

In traditional JavaScript programs, we specify a call-
back to be invoked when an event of interest occurs:

<input id="myfield" onclick="validate()"/>

In Flapjax we expose the stream of clicks produce
by any DOM object:

var clicksE =
extractEvent_e($("myfield"), "click");

or, as it is so common, more simply:

var clicksE = $E($("myfield"), "click");

All extractEvent e must do is create a new source
node, and register a callback that will insert an event
into that node:

function extractEvent_e(domObj, evt) {
var node = new Event(

[],
function (send, p) { send(p);});

domObj.addListener(
evt,
function (e) {

propagate(new Pulse(e), node);
});

return node;
}

The actual implementation is a little more advanced.
If there are multiple invocations of extractEvent e on
the same DOM object for the same event, all of the
events must propagate with the same timestamp so we
actually hash extracted event streams. Additionally,
there are browser compatibility bugs with the simple
code above which we handle, such as not all browsers
actually providing the event of interest as a part of the
callback, and we are interested in providing a consistent
interface. Finally, instead of manually initiating the
propagation of a pulse through the graph, we should
enqueue the event in the store of external events for
subsequent time steps. A more subtle issue regarding
reactive objects will be discussed later.

Significantly more prone to compatibility issues is
the extraction of values from the DOM and registering
callbacks in response to their updates - to the extent
that we still have a couple of known issues with envi-
ronments that are difficult to duplicate. Which field
is selected in a drop down menu, the status of a check
box, and the contents of a text field or text area are
all similar concepts with very inconsistent interfaces,
so we provide a simple one: extractValue b :: DOM
→ α, also know as $B. It is implemented similarly to
extractEvent e except with merging of relevant events
and specialized field access depending on the type of
the DOM object. We can now easily create a variable
that reflects that validity of a form at all times with
the following:

<form>
Exactly 3 characters:
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<input type="text" id="txtField1">
Exactly 4 characters:
<input type="text" id="txtField2">
<input type="submit" id="submitter"/>

</form>
<script type="text/flapjax">

var valid1 = $B("txtField1").length == 3;
var valid2 = $B("txtField2").length == 4;
var formValid = valid1 && valid2;

</script>

where we expect the ”dot” operation to access a
field value, in this case the length, to be lifted. We will
discuss optimizations and semantics related to objects
and collections later.

4.1.2 Tag Creation

Once we have time varying values, we want to create
time varying DOM objects in terms of them, as op-
posed to encoding such a definition explicitly with call-
backs. For example, let us make the form submitable
only if it is valid. If we replace the angle braces in
the above example with parentheses, we can include
validity as part of the definition of the submit button:

var fld1 = INPUT({type: ’text’});
var fld2 = INPUT({type: ’text’});
var frm =

FORM(
’Exactly 3 characters: ’, fld1,
’Exactly 4 characters: ’, fld2,
INPUT({

type: ’submit’,
disabled: $B(fld1).length == 3

&& $B(fld2).length == 4}));

There are still some undesirable properties of this
code. First, instead of writing $B(fld1).length, it
should be possible to write fld1.value.length. However,
this is more of an interface issue: we wanted to pro-
vide a lightweight wrapper around the traditional, and
more verbose, DOM creation methods. Instead of spe-
cial casing every single field that may be updated due
to interactions external to our library (such as by user
interaction), we picked a popular subset and guaran-
tee that changes that come from within the system
will be detected. Alternatively, we could have isolated
all possible events that may cause a member field to
change, and then on any such event, check if any field
changed. However, DOM fields are different enough
between browsers that this might lead to different be-
haviours between browsers. Additionally, instead of
having to name the two text fields through an external

variable so that we can both insert and extract them, it
would more convenient to just use IDs, especially when
there are no cyclic dependencies as in this case.

Using JavaScript to create and modify DOM objects
can be slow, so we focus on optimizing our DOM meth-
ods. The browser provided DOM library assumes that
any given object can exist in only one location on the
DOM tree, which we were able to leverage in optimizing
lifted DOM creation methods. Consider the following:

var oneChild = A({href: ’http://’}, nameB);
var res =

FORM( styleProperties,
oneChild,
arrayOfChildren);

With typically lifted code, upon a change in nameB,
the link anchor constructor A will be invoked again to
create a new link object, also triggering a recomputa-
tion of FORM creating another object there as well. If
we consider the entire HTML tree and a change at a
leaf node, we see that the entire path from the leaf to
the root will be recomputed. Given the above property
that a DOM object can only be inserted into a tree in
one location, we see that if a change occurs, it is safe
to mutate the current node and potentially the parent
node without recomputing all the way up the path to
the root. Currently, we have four special cases:

1. Value change If a value (leaf on the DOM tree),
such as a time varying string for a DOM text node
or attribute value, changes, the parent DOM node
will be mutated and the corresponding data flow
node notified of a change.

DIVB(’the time is: ’, timer_b(100));

2. DOM node change When the data flow node
corresponding to a DOM node signifies a change,
the reference to the DOM node is either the same
as in the previous step or is different. If the change
was due to a mutation, the reference would be the
same, and the current node will not have to change
in any way. The corresponding data flow node will
be notified of a change. If the reference changed,
the current (parent) DOM node will be mutated
to point to the new reference instead of the old.
The corresponding data flow node parent will be
notified of a change - in both cases, of the same
object reference as the originally created parent
DOM object.

DIVB( testb ?
DIV(’branch1’)
: DIV(’branch2’))
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3. Dynamic array change Instead of making a
DOM node a function of a fixed number of other
DOM nodes, Flapjax supports the definition of
one DOM nodes in terms of a potentially time
varying array of other DOM nodes. Upon an up-
date, the minimal splice to convert the previous
array to the changed array is computed. If there
is no change, that means an identity transforma-
tion was performed, or an element mutated, with
either case requiring no mutations on the parent
node but still an upward notification in the data
dependency graph. If a change did occur, the ex-
act nodes that changed will be mutated and the
notification propagates.

var elts = collect_e([],
function (v, acc) {

return acc.concat[LIB(v)]; })
.startsWith([]);

ULB(elts);

4. Object change When an object changes, it is ei-
ther because a nested value changed or a nested
object change, with the latter including the possi-
bility that a field was added or removed. Discuss
problem of default / lingering values - FX recon-
structs, library mode will take an object whose
fields may be behaviours, and if those fields refer
to values, a change does not cause reconstruction,
but if they refer to objects, DOM node will be
reconstructed for same stated reason. This case
is similar to the DOM node one, except def val
issues, so more complicated.

DIVB({style: {left: timer_b(100)}});
DIVB({style: testb?

{left: 100 }
: {right: 100 }});

For example, in the best case, we could just modify
the DOM node represented by the return from A. This
is not always the case and we may choose to reconstruct
the DOM node, so the reference contained within the
parent node must be updated to point to the new DOM
node. In both cases, we should still propagate the no-
tification of a change and to what value, to data flow
nodes corresponding to the parent DOM nodes and ul-
timately to any nodes dependent upon these, except
we can cut back on computation. Specifically, if a time
varying array of child DOM nodes changes, the oper-
ation can typically be represented as a splice and the
corresponding mutation can be carried out. Addition-
ally, if a single DOM node changes its reference (be-
cause it was reconstructed), the parent data flow node

will be alerted and it will only have to change one the
child reference in the corresponding DOM node. As
long as no major array manipulation occurs, propaga-
tion should be lightweight.

4.1.3 Tag Insertion

Just as we created a construct, $B, to extract a time
varying value from a fixed position in a data struc-
ture, we introduce two constructs to insert time vary-
ing values in to a static data structure. Given the stat-
ically defined HTML tree that is exposed through the
JavaScript DOM interface, we can advise certain nodes
in it as being time varying.

Given a static tree structure, there are several points
of insertion we can choose around a node. Thus, as
shown (Figure 13, page 24), for some fixed target DOM
hook node position, we may either want to replace it
with a time-varying node or one of its neighbors with
one:

parent

target

left 
sib

right 
sib

over
default

.  .  . .  .  ..  .  .

right-
most

begin-
ning end

left-
most

afterbefore

Figure 13. DOM node insertion positions

We provide a function,

insertDomB :: DOMNode U String id
* Behaviour DOMNode [* String position] -> Void

that will modify an existing DOM tree relative to
the first argument to use a time varying node specified
by the second argument, with the actual insertion po-
sition being specified by the last argument. The most
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usual case is to directly replace a statically defined
node, so we make the last parameter a default of the
’over’ position. The implementation is fairly straight-
forward given the rules outlined in the tagCreation sec-
tion with some subtleties mentioned in the time varying
data structures sections and below. A similar function,
insertValue b, is also provided to make an attribute of
a DOM node time varying.

One subtlety arises. Consider the following:

<input id="myfld" type="text"
value="{! timer_e(10000).startsWith(0) !}"/>

{! (extractValue_e(’myfld’) + ’’).
reverse().
startsWith(’’) !}

Several interpretations are possible:

1. Behaviour: Only the reversed, and updating,
time will be printed, ignoring user input This is
because the form value was defined as a Behaviour,
which is defined for all times. Additionally, to
be consistent, this would suggest any user change
should be instantly overwritten for the view. Such
an approach is not as convenient for typical usage
as the ones below.

2. User: Only values entered by a user will be en-
tered. Programmatic changes can be merged by
the programmer, so extractValue e is only a conve-
nience method to capture strictly user input. This
approach is tempting because it simplifies the im-
plementation of extractValue e and corresponds to
our original approach: only DOM events such as
clicks and keypresses must be checked. However,
the values do not correspond to what the user sees
and is thus counterintuitive.

3. Unified: Exact user input can be discerned by fil-
tering out programmatic input, and would suggest
a different method name. This could be useful, but
in practice, what is desired is exactly whatever is
the current value of the form field. Thus, when-
ever a portion of the DOM is made reactive, any
value extraction should respond to such changes.

Essentially, when dealing with shared or persistent
data structures, there should be an interface for inject-
ing update events such that changes can be reacted to,
and when Flapjax code inserts changes, it should react
to its own changes as needed. This can be complicated
when an object with several levels is switched in and
there is a dependency on some lower level, but, judging
by unanimous responses on our newsgroup, the unified
approach is expected by the programmer.

4.2. Advice, Progressive Enhancement,
Templating

While the majority of users have JavaScript enabled,
typically cited as between 90% and 98%, it is still com-
mon practice to not assume that JavaScript is acces-
sible: pages are enhanced with JavaScript, not depen-
dent upon it. This technique is referred to as progres-
sive enhancement, [8] as opposed to graceful degrada-
tion. Describing a page using HTML and then inserting
advice using insertDomB supports this style.

If we assume the presence of JavaScript, for small
applications, having to separately define the basic page
structure with HTML and then elsewhere injecting the
advice makes it tedious to correlate interactions with
the page structure. Thus, we introduce a syntax to
ease this burden. It is similar to data binding sup-
port found in other systems [4, 27] except we allow,
and promote, time varying objects like DOM nodes,
instead of just time varying values like strings. The
following two programs are equivalent, with the first
being externally advised and the other utilizing a tem-
plating syntax that expands to a form similar to the
first.

//advised
<script type="text/flapjax">
insertDomB(’replaceme’,

$B(’mybox’) ?
P(
H1(’checked’),
INPUT({type:’submit’}))

: H1(’not checked’));
</script>
<form>

<input type="checkbox" id="mybox"/>
<p>The box is <span id="replaceme"/></p>

</form>

//templated
<form>

<input type="checkbox" id="mybox"/>
<p>{! $B(’mybox’) ?

P(H1(’checked’),
INPUT({type:’submit’}))

: H1(’not checked’) !}
</p>

</form>

The {!, !} tags, pronounced curly bang, should sur-
round a string, boolean, integer, DOM object, or a be-
haviour of one of the same. The latter example expands
in to the former, inserting a <script> tag wherever the
templating syntax is used. For instances in which we
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want to use the statically defined HTML structure as
a default, we allow events instead of behaviours.

The choice in syntax is largely arbitrary. We could
have chosen an xml route:

<form>
<input type="checkbox" id="mybox"/>
<p>The box is

<if test="$B(’mybox’)">
<true>

<p>
<h1>checked</h1>
<input type="submit"/>

</p>
</true>
<false>

<h1>not checked</h1>
</false>

</if>
</p>

</form>

except we would have to also include namespace in-
formation in addition to the above, which we find coun-
terproductive, syntactically.

We also provide a way to define both static and dy-
namic structure using templating syntax. If JavaScript
is enabled, the dynamic structure will be enabled, and
if not, it will be ignored and the static structure will
be followed. The following two programs take advan-
tage of ||| within our templating syntax, pronounced
triple-stick:

<form>
<input type="text" id="myfield"/>
{!

$B(’myfield’).length > 0 ?
INPUT({type: ’submit’})
: ’Invalid: type something’

|||
Enable JavaScript for hints.
<input type=submit/>

!}
</submit>

One additional argument for curly bang, as opposed
to xml syntax, is that it is easier to discern dynamic
elements with triple sticks, easing towards progressive
enhancement. Ultimately, a more context sensitive ap-
proach may be more appropriate that responds to more
than just the presence of JavaScript. For example,
handicap related accessibility constraints may be rel-
evant [15] - triple stick syntax requires a separate spec-
ification of static behaviour in a manner that is not
modular. However, it is lightweight and a start.

4.2.1 Cycles: tagRec

Often, we have cyclic data dependencies, so we provide
an abstraction for a common pattern. One example
of its occurrence is with a box that highlights during a
mouse interaction with it. Consider a box whose border
color is defined in terms of the position of the mouse
relative to it: when the mouse moves over the box,
the border should be green, out, blue, and to initialize,
black. The border is a function of the events from the
box and an initial value, the events are a function of
the box, and the box is a function of its initial border
style and subsequent changes. We have two challenges
in this case: how can we declaratively describe the ac-
tual relationship, and how do we translate this descrip-
tion into valid, representative HTML and JavaScript?
The distinction between behaviours and events is useful
at this point: one has an initial value, and the other
doesn’t. As long as we properly initialize our struc-
ture, we can describe any behaviours in terms of held
events rather than functions of behaviours and thus not
worry about cyclic dependencies with no basis. Ideally,
we would be using a program representation that could
visually show cyclic dependencies without resorting to
naming as visually done in MaxMSP, which is difficult
with textual representations. However, we can still use
absolute IDs corresponding to nodes in the DOM tree
($E, $B), or named variables:

<div id="bx" style="{! {borderColor:
merge_e(
$E(’bx’, ’mouseover’).snapshot_e(’#0F0’),
$E(’bx’’, ’mouseout’).snapshot_e(’#00F’)).

.startsWith(’#000’))} !}">
A fabulous box

</div>

or alternatively, manually closing the cycle with re-
ceiver e and sendEvent at a particular node without
resorting to global naming to achieve it:

var overE = receiver_e();
var outE = receiver_e();
var mydiv = DIV({style: {borderColor:

merge_e(
overE.snapshot_e(’#0F0’),
outE.snapshot_e(’#00F’)).

startsWith(’#000’) }});
$E(mydiv, ’over’).map_e(

function(v){overE.sendEvent(v);});
$E(mydiv, ’out’).map_e(

function(v){outE.sendEvent(v);});

This latter manual tying of the loop amounts to a
callback in message passing style, though the commu-
nication channel is explicit through a local proxy node
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(receiver e()) instead of a global name ($E(’foo’,..)).
However, we can create a function that does the tying
for the programmer, providing the proxy streams for
the definition of an object and properly extracting the
actual changes once they occur, which should not occur
until after initialization:

var mydiv = tagRec([’over’, ’out’],
function (overE, outE) {

return DIV({style: {borderColor:
merge_e(

overE.snapshot_e(’#0F0’),
outE.snapshot_e(’#00F’)).

startsWith(’#000’)}}); });

We create a function that will take the names of
streams to extract and a function that defines a po-
tentially time varying DOM object in terms of them.
The function creates proxy event streams, invokes the
passed in function with them to construct a DOM node,
and then extracts the actual streams from the node and
connects them to the original proxies. Additionally, as
the DOM node may be reconstructed, we take advan-
tage of the switch combinators to swap out the old
DOM node event streams to be replaced by the new
ones whenever the DOM node is reconstructed.

Our provided function is specific to the DOM; if the
DOM node changes, we know to call $E to extract the
new event streams. We can simply generalize it by al-
lowing the programmer to specify their own extraction
functions that can be called and manipulated using a
switch e whenever the base object changes. Addition-
ally, we could provide compiler support for a cleaner
syntax, but do not at this point either.

4.3. Time Sensitive Evaluation Techniques

Web browsers typically interpret scripts in individu-
als pages using one thread, alternating between script
invocations and screen rendering updates. Often, if
many updates, especially to the DOM, occur in one
time-step, browsers will visibly freeze between updates.
Simple examples like the ones we have described above
and even complex animations can be made more re-
sponsive using the general concept of reactivity, and
especially with our particular implementation that con-
tains a data flow graph through which messages are
passed.

4.3.1 Scheduling

The problem with a browser stalling due to many up-
dates is common when large array operations occur

on DOM objects. By modifying the propagate func-
tion, we can transparently control when nodes evaluate
over time while still maintaining topological evaluation
ordering invariants. Specifically, the propagate func-
tion can record the time when a pulse starts percolat-
ing through the dependency graph, and, if at moment
when a node finishes evaluating and returns control
to the propagation function, the time stamp is taking
a long time to evaluate, can be paused. The prop-
agate function will prematurely exit, implicitly run-
ning the renderer, but not before setting a timer to
resume propagation at the next activated time slice.
If browsers ever support threading, programs will al-
ready be written in a way such that exploiting inher-
ent parallelism, namely, simultaneous message propa-
gation through time-invariangly disjoint sections of the
data flow graph, could be done by patching the library,
not the program. Determining whether sections of the
graph are disjoint before propagating a message may
be complicated by functions like switch e because they
facilitate the restructuring of a graph mid-message, but
if the semantics are changed such that the restructuring
is not active until the next time step, the process would
be fairly easy. Furthermore, additional optimizations
like choosing when to discern graph disjointness or dy-
namically profiling to determine which paths should be
followed are simple, classic problems.

4.3.2 Framerate

Modifying the scheduler for single threaded applica-
tions may distribute the computation load over time,
but in some cases, responsiveness is more important
than propagating all of the messages in the graph. Par-
ticularly, if we create a stream of pulses that occur
steadily through time, and computations like anima-
tions that are triggered by these pulses take longer
than the interval between time, some of these pulses
should be ignored. Just as a back-off algorithm may
help in the case of congestion in TCP/IP, individual
animations may learn to filter out requests. This can
be simply done in two ways:

Figure 14. Framerate sensitive animations

1. Generic Filtering Instead of modifying the
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propagate function to split evaluation over multi-
ple timesteps based on how long the general com-
putation is occurring, we can modify the connec-
tion point between the timer guiding the anima-
tion and the animation itself to filter out excess
pulses. Consider a rudimentary implementation:

var now = (new Date()).getTime();
var t = timer_e(40); //40ms pulses
var h = t.collect_e(

{next: now},
function (time, acc) {

acc.old = acc. next;
acc. next = time;
return acc;

});
var f = h.filter_e(function(o){

return o.next - o.old < 60; });
var time = hold(f.next, now);

A more complicated scheme can be built like ex-
ponential back-off, as mentioned, but the basic po-
tential is clear.

2. Specialized Filtering While the above scheme
was useful in one simple demo involving a large ar-
ray of glowing boxes responding to mouse events,
it has the drawback that there may be contention
between animations adding noise to their individ-
ual optimizing filters and perhaps different ani-
mations should be running with a different pri-
ority. Currently, no distinction is made between
separate disjoint segments of data flow graph im-
plicitly corresponding to separate animations in
terms of propagation beyond topological evalua-
tion. However, we can follow the connections from
the source or sink nodes of an animation and label
the intermediate nodes as belonging to an anima-
tion and then start to compute run time for indi-
vidual paths, and as part of the pulse or less in-
vasively, separate path re-traversals, calculate the
cumulative run time and optimize based on that.

The use of functional reactive programming to de-
scribe animations is rather convenient as we can use
time itself as a behaviour. Additionally, to sequence
different stages of animations, we can use either condi-
tionals or more traditional message passing techniques
with event streams. This overall usage was one of the
original leading motivations for the general technique
[14]. It may be possible to find mappings between an
executable temporal logic and functional reactive lan-
guages that would foster further useful constructs.

4.4. Client Server Relationships

Up to this point, we have focused on peculiari-
ties of specifying clientside computation in a browser,
but have not described interactions with non-local sys-
tems. Internet Explorer introduced the asynchronous
request function that facilitates communication with
web services without requiring a page reload, but it
is rather simple and does not provide support for the
protocols typical of modern web applications. Further-
more, just as shell scripting facilitates composing pro-
grams by communication through input, output, and
error streams, functional reactive programming sim-
plifies the use of web services within a client program.
We currently explore the client server relationship with
general services in terms of support for transparency
and event manipulation, and a specific but representa-
tive service supporting data binding with a persistent
store as well as the related discretionary access control
policy.

                 Server 2
                or

                 Client 2

                  Client
obj a out

obj bin

Hostservice 
a proxy   

service 
b

Figure 15. Service Model: Lightweight, cor-
responding to current practices. Transpar-
ent proxy as needed, specialized services for
cooperative servers like the host, and basic
wrappers for traditional services.
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Our current approach is lightweight (Figure 15, page
28) and corresponds to current practices. In the case
of a malleable host, we can specialize web services such
as those for persistence. When manipulating data from
other servers, we provide convenient methods for ma-
nipulating them noninvasively, transparently, and with
minimal assumptions. Additionally, current browser
security models often require significant effort to com-
municate with services on different domains, so we first
try to use specialized client scripting techniques such
as using a backdoor in Flash before (transparently) re-
sorting to using a proxy server to make requests. Tra-
ditional, fixed services and more malleable ones that
can be instrumented are both described.

4.4.1 Transparent Web Services

Our first goal is to simplify the invocation of existing
web services and manipulation of their results. First,
there is little reason to manually serialize JavaScript
objects into JSON, XML, etc. objects for transmission,
and de-serialize them on the return. These actions are
common enough that we include their support in our
library, also supporting various return protocols such
as the JSON callback style. Thus, all a user should do
is specify the service url, input type to convert to, and
output type to convert from. Nominally, assuming a
WSDL style web service to specify types, we can make
even these latter two steps optional.

Next, we then see that services can be dealt with
naturally, described as an input request stream and be-
ing transformed into an output response stream. Once
services are treated as stream functions, we can use
functional reactive combinators. For example, consider
a web service that performs spellchecking, or as follows,
queries the social bookmarking site Del.icio.us for a
user’s links as the user types into a text field. Instead
of forcing the user to use a submit button, as the web-
service is computationally inexpensive and has no per-
sistent side effects, repeatedly calling it and displaying
the results as they come in while the user types is ac-
ceptable. However, if we synchronize service requests
to generate with every character addition, there will
be gratuitous results. Instead, we may want to only
make the request when the stream of character addi-
tions has momentarily paused. We call such a function
that holds on to an event for a fixed amount of time
and only releases it if no other event occurs before that
time calm e, taking the window size as a parameter.

<input type="text" id="name"/>
<script type="text/flapjax">
var names = $B(’name’).changes().calm_e(300);
var requests =

names.map_e(function(n) { return
{url: ’http://del.icio.us/rss/’ + n,
serviceType: ’xml’ }; });

var news = getWebServiceObjects(requests);
</script>
Current title: {! news.title ||| ’loading’ !}

The above script is simple yet powerful, just like
a shell script. Recently, Yahoo released a service [31]
that allows the composition of services through a GUI,
but, unlike Yahoo Pipes, we support viewing services
as functions over streams and provide programmatic
control, temporal operators, and transparent depen-
dency support. IDE support can be built upon such
a foundation and will be discussed in the future work
section. Finally, while not explored in the current sys-
tem, message passing can be viewed as a generalization
of reactive programming, so nominally, message pass-
ing constructs can also be used for services following
complicated communication protocols.

4.4.2 Transparent Persistent Store

One of the most common types of web services used in
web applications is one that provides access to a per-
sistent store. Often, this is simply a wrapper around
a stored procedure to update or extract information in
a data base, but the server side implementation can
be abstracted away through the web service interface.
Whether the interface is manually created or automat-
ically generated, it must exist as the client somehow
communicates with the server. Currently, we assume
a web service and focus on the question of how to in-
terface with it. Future work may benefit from consid-
ering the service layer, such as in automatically infer-
ring desirable web service schema statically based on
object-relational mapping or dynamically through an
analysis of usage. An examination may be useful as,
once a service is exposed publicly, backwards compati-
bility becomes relevant, and the common expectations
of data available through services are becoming more
clear. For example, Google web applications never ac-
tually delete any data, and given the ad driven infras-
tructure of websites, per user navigation and data cen-
tric trends form context for content selection.

We created a simple web service, providing an in-
terface to a persistent store through which JavaScript
values can be manipulated. We support an extension
of JSON, including nested and potentially cyclic nested
objects but still excluding closures as the semantics are
ambiguous and the necessity seems minimal. Our web
service permits reading and writing values, specifying
access control policies, and simple reflection upon in-
formation relating to past manipulations and policies.
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With such a simple but rather typical conglomeration
of web service features, we can take advantage of re-
activity in several ways. We will discuss the benefits
related to security in a following section and currently
focus on basic data binding.

We structure the store like a file system. Every user
has a root object to which programs can add data. Col-
lections, in the forms of arrays and objects, are possi-
ble, allowing nesting. While we do not currently pro-
vide root objects for individual applications, that can
be encoded by the application owner using his or her
own root object with that application. For an applica-
tion to read an object called ’mike’ in the array called
’directory’, and then locally access the phone field, we
write:

mike’s phone #: {!
readPersistentObject(

{path: ’directory/mike’}).phone
!}

The lack of a leading ’/’ in the above path signifies
it is relative. Every user has an ’applications’ array
in their home object, with an entry corresponding to
every application used - by default, paths are relative
to the entry in the current user’s applications array
corresponding to the current program. As JavaScript
arrays are autoassociative, only applications that have
been used will have an entry. Every object, including
home objects of users, have a unique id, so by speci-
fying an additional field, relative paths can be rooted
by these unique IDs. For convenience, if an optional
name field is specified, a path will be relative to the
home object of the user with the corresponding name.

Consider the following program to write to a persis-
tent object:

<input type="text" id="phone"/>
...
writePersistentObject(

$B(’phone’).changes().map_e(function(p) {
return {phone: p}; }),

{ path: ’directory/mike’ });

While it is possible to use the unique object IDs,
it is generally better to use relative, named paths. If
the phone number in the above example changes, a
new container object will be created corresponding to
’mike’, so any absolute references to the old ’mike’ ob-
ject would become outdated. Allowing the access of
object IDs is similar to exposing inode information in
a filesystem and can be viewed as being beyond the
abstraction barrier. However, if object IDs are en-
tirely abstracted over, changing or obscuring ownership
should still be supported in some other way.

As repeatedly changing the phone number in the
above example will correspond to creating old, garbage
phone numbers with respect to the notion of the cur-
rent phone number, we have a method to archive old
objects that have been recreated. There is merit to
storing this data history, even if we do not yet take
advantage of it: persistent data in a web application
is often subject to changes over time and by multiple
users, so basic version control primitives are often de-
sired. As mentioned earlier, Google applications may
remove references to data, but the data itself is typ-
ically not removed. For example, Blogger blogs are
often inadvertently deleted by their owners and thus
must be restorable without rolling back other blogs.
Our decision to archive but not expose removed objects
leaves room for future work. Applications will have dif-
ferent persistence needs, even for different data within
the same application, so generalizing these needs to a
transparent framework level will probably not involve
a one-size-fits-all solution.

Our general insight into supporting binding to per-
sistent stores is that there are two components: the
desired programmer interface, and short and long term
requirements for stored objects.

1. Programmer Interface: First, programmer in-
terfaces to bound data are generally very simi-
lar between different services. Additionally, sim-
ilar manipulations are often made to receive and
handle subsequent updates of results to the same
query. These motivate creating an interface for
reactive values, simplifying the initial manipula-
tion of data as well as simplifying subsequent ones
in terms of both service requests and using data
elsewhere in the program. First, serialization is
simplified, with the programmer only specifying
desired input and output types. Next, connections
to services are be improved, with our current ap-
proach being to prioritize direct connections from
the client to a server when the client has the Flash
plugin, and otherwise resorting to a proxy. An-
other strong inspiration to be discussed in the next
section is cleanly reflecting upon security capabil-
ities. While developing the library, we also found
that the decision between pushing and polling can
be just a parameter for binding, assuming the un-
derlying services support the choice. Additionally,
data sent to and from the server can be manipu-
lated using stream combinators, eliminating the
need for explicit callbacks as noted before and
allowing the use of temporal constructs such as
our stream limiter calm e. Many of these insights
have been previously made as data binding exists
in several new interactive web application frame-
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works [4, 27], except they do not support first class
signals and thus the ability to bind any value in
a program, manipulation through temporal con-
structs, nor other abstractions we build upon our
time varying values such as consistency handling.

2. Services: Second, interactive and page-based ap-
plications can be abstracted to use similar back-
ends through web services. Legacy services from a
page-based application can be used in an interac-
tive application, and, conversely, data generated
through a web service that an interactive applica-
tion would rely upon should be accessible to page-
based applications. Currently, we constructively
show a service may be used through our binding
interface by doing so, and we believe object re-
lation mapping techniques can be used to auto-
mate this step for more finely structured services
that already exist. As a minimum, our general
web service interface should be sufficient for using
typical services in Flapjax applications, demon-
strated by several demos interacting with popu-
lar services, even though this alternative does not
provide infrastructure for consistency guarantees.
In the converse, by using a persistent store ser-
vice with Flapjax, page-based applications can au-
tomatically also access the persistent data. The
logical next step would be to create finer object-
relation mappings for such services rather than
directly exposing our store which coarsely repre-
sents data in our extended variant of JSON. Ex-
plicit schema specification, or even dynamic infer-
ence, are plausible future directions to generate
finer web services. Additionally, as many existing
persistent stores do not expose information neces-
sary for consistent binding constructs, an interest-
ing problem is how to non-invasively extend these
services to provide consistency information.

4.4.3 Consistency

Flapjax facilitates the simple enforcement of consis-
tency constraints on bound persistent data. Just as
it may be useful to specify whether a bound datum
should be pushed or polled, the data binding point is
a good place to specify what consistency constraints
should govern persistent data readers and writers on a
page in case there are races with users on other pages
modifying the data.

We currently provide one simple default race han-
dling mode for a client that both reads and writes to
the persistent store. In all cases, messages with old lo-
cal (client) time stamps or global (server) time stamps
are ignored. Our protocol is as follows:

1. Write: A write to the server is accepted.

2. Read of write from same client on same
page session: Ignored. To receive these writes,
a client can use merge e to incorporate the stream
of successful writes as the stream is returned by
the change stream binding function.

3. Read, otherwise: Accepted.

Consider a textfield bound to a persistent datum.
The above default protocol supports binding the write
stream emanating from the field and merging in the
read stream from the server with the intuitive results.
We slightly extended this to optionally group change
streams into sets that are not necessarily disjoint. Per-
sistent data readers may specify which change streams
to potentially filter out, and if none are specified, all
persistent data write streams are considered, giving the
expected default behaviour.

Note that the second rule prevents the cloning, or
Orbitz, bug [21] if directly recreated: if a bound item
is viewed in one window, and then modified in an-
other, the view of the first will also be modified. Fur-
thermore, the use of interactive applications with local
state would further decrease the likelihood of this style
of bug. These rules also prevent tight cycles in bound
form fields in which a write by the client would trig-
ger a later read from the server, which would output
to the form field and cause another write, perpetuat-
ing the cycle. While it is conceivable to apply such an
approach to similar cycles that occur entirely within
the client, lenses used on top of Flapjax may be more
appropriate [5] as races are not possible.

Other consistency handlers may be useful, especially
if integrated with GUI widgets. For example, when
multiple users are editing a datum, displaying their
names may help, as would explicit options for merging
in conflicts between users. This latter case may occur
if one user edits data, then the second user does as
well but based off of the original version. Additionally,
if the data is large as in a text document, the changes
may not necessarily conflict in this situation. Our main
point is the data binding points for input and output
are useful locations for specifying how to handle these
constraints, with reactivity being the natural way to
propagate changes.

4.5. Security

A common trait of web applications is the ability of
users to share data, so in our persistence web service,
we provide minimal support for discretionary access
control. Our approach has two key features: it is built
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in transparently, and reflective. As always, reactivity
simplifies these interfaces.

4.5.1 Transparent Security

Just as in h our storage of data, security is user ori-
ented, as opposed to application or code oriented. Re-
quests by users to perform actions on persistent re-
sources are monitored. Currently, we do not guarantee
end-to-end security by securing the client but assume
whatever program uses the web service and our cor-
responding client-side library is secure for some vague
notion of the term. Instead of focusing on providing
security guarantees, we begin to question how a web
application writer would like to integrate security con-
cerns with an application. Thus, every persistent ob-
ject has an associated access control list stating what
user can perform what action on an object. Currently,
users can create new objects, and read and write values
and references within objects. The existence of a tu-
ple (usera, actiona) in the access control list associated
with objb signifies that user usera can perform actiona

on object objb. Unless otherwise specified, a new object
will inherit the access control list of its initial parent
object, with users secured against each other by default
by only have themselves listed in their home objects.
While we do not support role based access control, we
do support two groups: all users, and logged in users.
If a mandatory access control policy was also used to
add global constraints, requiring a user to be logged in
may help with quality of service concerns in terms of
resource abuse and tracking.

The current server providing our persistence web
service offers free hosting of Flapjax using applications.
Multiple applications owned by different users may be
present, so we currently require changes to access con-
trol policies to be done through a miniature application
we host as a means to guarantee requests to share ob-
jects were intentional. This constraint can be relaxed
in more typical hosting environments, in which case
the methods our miniature application uses could be
exposed as web services. Currently, a web developer
may create a form in which the user enters the email
address of a friend they would like to share an object for
reading with, which would generate a link to a prefilled
page in our sharing console for confirmation. As part
of our intent to work with existing services, supporting
OpenID may be a good choice. Compared with the
rest of Flapjax, this portion of our system is in early
development.

The essential result is that an application writer can
write a basic application for one user, and when done,
support sharing by simply adding links to share infor-

mation based off of an identifier such as a user name
or email address.

4.5.2 Reflective Access Control Policies

If capabilities defined within access control policies can
change over time, an application designer should indi-
cate what a user can and cannot do to some extent
[19]. For example, if whether a field is read-only can-
not be determined when at development time, such as
when the object is sharable, the field should be ren-
dered as plain text or as text input field depending
on the current capabilities of the viewer. Thus, the
program should be able to reflect upon the current se-
curity policy. Data binding the access control list of a
persistent object to a clientside behaviour is a natural
approach with Flapjax. There may be an inadvertent
information leak if a user may learn about the entire
access control leak, so we currently only allow a user
to reflect upon actions he or she may take, and view
this as a challenge to web programming and security
policy communities orthogonal to the use of reactivity.
We may introduce more fine-grained concepts such as
metapolicies, but currently have little motivation to do
so.

4.6. Objects and Collections

One of the general difficulties with functional reac-
tive programming is to efficiently propagate changes of
collections and other data structures. For example, if
an array is defined to be the same value as another
array except every element is incremented, and only
one entry in the dependent array changes, only one en-
try in the generated needs to be changed. Binding to
nested collections on a server further complicates the
implementation.

4.6.1 Delta Propagation

As mentioned earlier, when a change notification from
an array of children reaches a DOM node, the min-
imal splice is computed to represent the change, af-
ter which only the calculated elements must be recom-
puted. However, consider the following example:

var x = map(
function(v){return v + 1; },
arr);

var y = map(
function(v){return v + 1; },
x);

We take an array, add one to every element to cre-
ate an intermediate array, and then create a final array

32



that adds one to every element again. In this case, if
no computation is dependent upon x, the entire code
segment should be compacted to adding 2 to every el-
ement of arr. Otherwise, in a recomputation, if the
elements of arr that changed are known, we can prop-
agate that labeling to the dependent recomputations,
eliminating the need to calculate the minimal splice we
found in the case of DOM node changes. We have not
yet implemented this optimization in the library, but
believe it to be beneficial.

4.6.2 Shallow vs Deep Binding

It is not even always desired that the check for a change
to occur. Consider the case of an object located on a
server containing a photo gallery. It can be bound to
in order to extract the name of the gallery, but if this is
the extent of the information used, no knowledge of the
actual photos is necessary. Binding to the object would
transfer it, and its children, to the client. If another
user changes a photo, represented as a child object of
the gallery, the client would be able to discern that
the change does not impact the gallery name. This is
unnecessary, wasting processing time on the client and
server as well as bandwidth. If we represent objects as
edge labeled graphs where each node correponds to an
object, edge label to a field, and fringe nodes as values,
we see that in this scenario, the binding is only needed
from the gallery object to whatever node contains the
name. Ideally, this would be done automatically by
the library, but for now, we allow the user to perform a
shallow binding, as opposed to the default of deep bind-
ing, to only receive the desired layer of an object. If we
monitored field access to bound objects, we could per-
form this optimization transparently, extracting only
necessary fields from the server and binding shallowly
to them. Further optimizations typical of pre-fetching
would be natural.

4.6.3 DOM Binding

The DOM tree is an interesting data structure because,
as it changes, it also performs computations. For ex-
ample, we have been assuming throughout this paper
that, if a field of the DOM changes, the change propa-
gates to the display. Additionally, changes may occur
that do not originate from the Flapjax framework, per-
formed instead by some user library. Finally, as we al-
low changes to the DOM to occur as advice to specific
locations in the DOM tree, instead of forcing the de-
veloper to define the entire page dynamically, changes
may be injected into both a parent and a grand child
node. All of these scenarios imply that there may be
dependencies in the data structure not modeled by our

dependency graph as presented. This is true of exter-
nally maintained data structures in general and is thus
an important consideration for any functional reactive
system that is meant to integrate with other systems.

Our approach to this issue is simple: at an insertion
point, made by an invocation to insertDomB, if there
is a change, we also propagate the change to the event
stream topE. Thus, when extract values, we may also
check topE on top of the other events that may signify
a change. For a library to insert its own changes, it
must either insert notifications into dependent reactive
values, or more simply and generally but at the cost of
efficiency, into topE. This is distinct from the previous
section on $B which implicitly merges in changes from
insertValue as the relationships would be known.

4.6.4 Server Binding

In the case of the server, we propagate changes based
on labels showing which user last modified a value and
when. Currently, we achieve this by the client polling
the server for bound values. Our current reasoning is
that, first, this is a simple interface, and second, the
server does not have to use resources to use resources
to track what users are bound to what data in case
a change occur. Our decision is sufficient for scenar-
ios with very little users on a single server or many
users on many servers, but a different approach may
be desirable for scenarios that are mix of these two.
Dependency tracking may move to the server, in which
case the server would push changes to the client, as op-
posed to clients repeatedly polling the server in case a
change occurred since the last data request. This is an
implementation concern separate from the use of the
bound data; with a data binding abstraction, the pro-
gram developer potentially would only need to specify
which choice to make:

readPersistentObject({mode: ’push’, ...});

Thus, we see that there are subtleties and perfor-
mance issues surrounding collections, and exasperated
by web programming, but it should be possible to auto-
mate optimizations we would normally make by hand.

4.6.5 Disconnected Nodes and Garbage Col-
lection

Our current implementation has avoidable space and
time leaks. Some are related to bugs with garbage col-
lectors of popular browser implementations, which we
will not discuss. The other is due to unused data flow
nodes. If the value of a node does not eventually flow
into a persistent data binding nor is inserted into the
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page, it has no observable effect beyond wasting com-
putation time. The one exception is if the user adds
imperative code into a node, which we will consider to
be the same as inserting the value into the page. Thus,
if a node is not used in such a manner, it can be dis-
connected from the data flow graph, as can anything
dependent upon it. A subtlety is that, even if the node
is not directly connected to an output node at a given
instant, it may eventually be due to dynamic data flow
constructs such as switch e. It is possible to temporar-
ily disconnect these nodes and reconnect them later,
but this would impact intermediate nodes such as col-
lect e that can be used to gather state over time. We do
not perform such an optimization at this time but may
in the future after more work on the desired semantics
of Flapjax.

4.7. Evaluations

While we have not run explicit user studies, Flapjax
has been used by our group as well as other parties.

4.7.1 Demos

Throughout the course of the project, we have writ-
ten demonstrations of how particular features of our
system work. These include a sharable tasklist appli-
cation as well as using a slider widget provided by the
Scriptaculous and both controlling and extracting its
values. These uses show Flapjax can be used to cre-
ate new components and interface with existing ones.
More generally, they demonstrate Flapjax is useful for
rich computations and web computations.

4.7.2 Applications

We have received short evaluations from two groups on
their use of Flapjax. The first, a London-based com-
mercial web design firm, is using the client side capa-
bilities of Flapjax to create a data grid widget and also
taking advantage of reactivity to create a simplified in-
terface to their own web service. The second evaluation
is from a group developing an interactive Wiki.

1. Data Grid The commercial design firm found
room for improvement in terms of speed, but
the summary is that ”Flapjax performed well” in
terms of ”shorter code and a faster development
cycle”, also with the fringe benefit of insulating
the developers ”from most of the cross-browser is-
sues.”

2. Wiki The evaluation of the use of Flapjax in the
development of a Wiki said much of the same as

the above. In addition, the developers found that
Behaviours, while a convenient and intuitive ab-
straction, could cause a performance hit while ini-
tializing an application: the initial values are bet-
ter defined statically with HTML when possible.
Thus, much computation in the Wiki system is
done in terms of events, with the cost of initial-
izing the graph, but not creating initial output.
Thus, the developers found they preferred to use
Flapjax as a library, coding in a style known as un-
obtrusive javascript, advising changes to the page.

4.8 Errors

A common question is how to handle errors in Flap-
jax, in terms of actual application code as well as the
debugging process. We do not have an explicit method
for the other as we are still developing best practices.
For example, we separate the return of a web service
into a failure stream and a result stream. Additionally,
we have a global error stream that can be tracked.

Debugging JavaScript is a problem for rich web ap-
plication developers, with no system that matches the
tools available for most other languages with even re-
motely similar use. However, just as our system sim-
plifies the specification of systems with convoluted con-
trol flows due to the use of callbacks, we believe it also
simplifies debugging them. Individual time varying val-
ues may be monitored and dynamically checked against
time-invariant assertions. Furthermore, as we simplify
interactive code by making it composable, isolating an
error simply requires isolating which variable is defined
incorrectly. Finally, previous work has shown how re-
active concepts can be used to simplify the debugging
process when a program is treated as a generator of
time varying values[22], which is true of Flapjax pro-
grams.

4.9 Library vs Language

As found within the user evaluations, the library
and language modes have varying receptions. We have
found these to be due to different reasons, often de-
pending on the scale of application being developed.

4.9.1 Dynamic Typing

The lifting transformation automates lifting functions
to operate upon time-varying values. However, the
choice of which lift function to apply, lift e or lift b,
for events or behaviours, respectively, is one way to
document the types of the arguments within the code.
JavaScript is a dynamically typed language and in com-
mon usage types of data are not specified, so while it
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is clear from context that a value may be, for example,
a time-varying integer, it may not be as clear if the
value is a Behaviour or an Event. This is an impor-
tant distinction, as suggested by the existence of the
change and hold operators and also discussed earlier,
so even something as simple as optional type annota-
tions may greatly improve usability. One recent ap-
proach has been the development of a contract system.
Additionally, as users become more comfortable with
the library, it appears the developing small portions of
code may be done in Flapjax. The decision to develop
larger portions of code in the library will be discussed
in subsequent items. Additionally, the order of reac-
tivity of an object may be unclear, especially as we
remove the idempotency rule Behavior Behaviour a =
Behaviour a. Recent discussions have arisen on spec-
ifying function argument reactivity order and lifting
based on it.

4.9.2 Optimization

Flapjax is new, with much of the development focus
currently on designing appropriate interfaces and re-
alizing them with various systems. Thus, while there
is work on optimization as noted in previous sections,
there is a long list of other known techniques that
can and should be implemented. Thus, system users
may find they want to make particular optimizations
in some of their more rich and interactive code and
thus want to use the library mode in which the data
flow graph is exposed in terms of Event and Behaviour
nodes.

4.9.3 Components

While not directly a reason to choose one approach
over another, a clear missing feature from the current
system is the inability to define new components. For
example, there is a popular proposal to extend HTML
to include a calendar component, yet such a compo-
nent can be generated from existing HTML elements:
instead, it should be possible for developers to define
their own components. Similar new markup languages
allow the specification of new components [4, 27, 9] and
it would be an obvious choice for Flapjax as well. Addi-
tionally, given the functional style of Flapjax programs,
parens can be replaced by angle braces and thus allow
users to never leave the component language. This lat-
ter approach would not work in the other systems as
there is no way to declaratively, or at least function-
ally, describe interactions and animations. Finally, we
do not have a module or unit system, so abstractions
relevant to larger applications are not in place, just
as they are not in current specifications of JavaScript.

The lack of components and modules makes the lan-
guage mode less effective for large applications.

4.9.4 Compilation

We provide an open source compiler that users may
install on their system, as well as a web service and
an online interface to always be up to do and facilitate
simple test scripts, respectively. However, we see merit
for adding two extensions: first, incorporating Flapjax
into the publishing phase of a server, and second, in-
cluding source code in a compiled page. The former is
mostly about convenience and optimization, while the
latter has pedagogic and adaptation value: being able
to view the source of an active website and understand-
ing it will aid those newer to the system. The latter can
trivially be achieved by just outputting source in com-
ments, but compilation on page load would be cleaner
and better facilitate robustness as the compiler evolves.

5 Related Work

Flapjax extends existing work with functional reac-
tive and data flow programming [14, 29] in an adap-
tation of an existing embedding style [11] for dynamic
data flow, focusing on the browser environment and
interoperability with other libraries. This includes in-
tegration with object oriented code bases [18, 23, 12],
but with more of an orientation towards persistent data
structures with shared control. Additionally, on top of
distilling what it means to be a rich web application, we
further discern what exactly is meant as a GUI value by
using reactivity [14] and focus on allowing traditional
coding practices such as mutation when transparently
incrementalizing code [2].

6 Future Work

There are many directions we would like to take
Flapjax, with the main constraint being time. These
largely fall into four categories: functional reactive pro-
gramming expressiveness improvement, compiler opti-
mization, web programming support, and general lan-
guage additions.

1. FRP Expressiveness

While there have been previous attempts in in-
terfacing functional reactive programs with more
traditional languages such as object oriented ones
[18, 23], our experiences with reactivity constructs
allowing the simplification of interfaces suggests
this is a useful area for further examination. Fur-
thermore, (external) persistent data structures are
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used twice with Flapjax: the DOM tree and the
persistent data store. Arguably, we did not run
into the object oriented code interfacing issue be-
cause there is currently no dominant object ori-
ented system in JavaScript beyond the simple pro-
totype support, but this related problem is still
relevant and possibly more general.

Additionally, we find users want to mix imperative
code with reactive code. Largely, this is to write
traditional iterators or intermediate named values
for a long computation, which can be supported.
Effectively, users often want to write small func-
tion bodies with impure JavaScript, so an option is
to only have reactivity extend to the function bor-
der. Current work in the vein of [2] suggests ways
to support mutation when dynamizing a static al-
gorithm, which might provide some insight into a
possible semantic for mutation.

While functional reactive programming was origi-
nally introduced to simplify animation, it has re-
ceived little attention from the intended audiences,
probably due to the choice of embedding lan-
guages. Our current embedding has fared slightly
better, and given the recent efforts by the an-
imation community with Processing to modern-
ize animation specification techniques and make
them more accessible to artists, we are interested
in investigating better animation support. For ex-
ample, object oriented models and temporal op-
erators might be explored in how to achieve ac-
tions like sequencing, or even rewinding, anima-
tions with nonlinear timelines and complex inter-
actions. This seems like a very rich area, and
given Flash, a popular animation environment, re-
lies upon a language similar to JavaScript, we are
in a good position to leverage our existing system.

Furthermore, it is currently difficult to write pro-
grams with cyclic dependencies. We provide
tagRec, and the more general genRec, but believe
this is not entirely sufficient. One approach that
we are investigating is the use of bidirectional pro-
gramming but have several other ideas as well. For
example, if a cycle is tied by using a callback (in-
stead of requiring the knot to be explicitly defined
as in a letrec), the decision of which edge to make
a callback is arbitrary, and it might be possible
to automatically restructure code at will to switch
which dependency is the callback.

2. Compiler Optimization Many useful compiler
optimizations were mentioned earlier. The ques-
tion of finding the appropriate in between point
between lifting and just chain compaction is

largely unexplored, as is efficient manipulation of
change propagation relating to collections. Much
existing work is oriented towards finding appropri-
ate semantics, with less of an emphasis on perfor-
mance.

3. Web Programming We have discussed Flapjax
as an extension of the style of embedding of reac-
tivity demonstrated with FrTime [11], and how it
can be used to simplify rich web application pro-
grams. However, Flapjax is intended to be a useful
system beyond this initial insight: there are future
directions we should take to simplify web program-
ming, with or without reactivity. For example,
we are interested in the seeming duality between
page-based applications in which computation oc-
curs on the server and rich web applications. One
goal is to integrate Flapjax with one such system
to simplify porting of legacy code, or even code
reuse in the case of concurrent development. Pro-
gram evolution is important in the life cycle of a
web program, especially given the low entry bar-
rier for small sites, and the unpredictable power
law activity and usage patterns: first to market
and scalability are desirable features, with script-
able systems like Flapjax aiding the former, but,
counter-intuivitively, page-based versions for the
latter.

A difficulty we’ve found was with consistently in-
serting and extracting values from the DOM, and
potentially, the server, so a separate, nascent bidi-
rectional programming library has been built that
can interface with Flapjax. While this is a more
general solution, it may be unnecessary in the do-
main of web applications. Bidirectional program
is useful in building these initial widgets, but the
developer’s role of connecting them together may
be more conveniently done reactively. A widget
library, and common consistent binding mecha-
nisms integrated with them, would greatly aid the
usability of Flapjax.

Finally, we should focus on an approach to provid-
ing strong security guarantees. Popular browsers
provide a simple, ineffective, and even occasionally
counterproductive security model. Messages can
be passed between the client and the host server,
but to receive data from a foreign server, foreign
code must be evaluated. Even if we address this
issue, as hinted by our support of access control
list manipulation in conjunction with our persis-
tent data web service, we our interested in secur-
ing particular data, and thus may want to enforce
information flow guarantees like noninterference.
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Applications may be hosted together, or can oth-
erwise be mutually verified or trusted, so the more
abstract security model appropriate from rich web
applications should be discerned.

4. General Purpose Language Our target em-
bedding language, JavaScript, was chosen due to
unparalleled (and possibly, unparalellable) pene-
tration, developer familiarity, and more techni-
cally, because of the support for first class func-
tions. Otherwise, popular JavaScript implementa-
tions are rather sparse in features. For example,
developers have often found its prototype based
object system to be insufficient for direct use and
create their own object systems. While, as men-
tioned earlier, we are interested in how to extend
an object system to take advantage of reactiv-
ity, developers using our system are still left with
the question as to how to modularize their code.
Reactivity allows one to compose programs that
traditionally could not because they were repre-
sented by callbacks, but beyond function compo-
sition, further support of composition is lacklus-
ter. Additionally, tool support would be useful
for Flapjax (and JavaScript). Debugging is sim-
plified with reactive programming as control flow
is simplified and reactive scripts can be written
to monitor applications traces [22] as previously
mentioned, but testing harness and IDE support
does not currently exist for Flapjax. Data flow
programming can be usefully visualized, as pre-
viously mentioned in conjunction with MaxMSP,
so richer models than abstract syntax trees may
lead to useful tool support (hinted by the previ-
ous point on cycles).

7 Conclusion

We have introduced a new web programming lan-
guage that can also be used as a library for the dom-
inant rich web application language. We see rich in-
teractions, web services, persistence data, and discre-
tionary access control as being common capabilities
of rich web applications and build support for all of
them into our libraries. Importantly, we see including
functional reactivity as part of language simplifies in-
terfaces to all of these capabilities. Finally, we have
further developed techniques for library and compiler
assisted embedding of functional reactivity into tradi-
tional programming languages. While still at an ex-
ploratory stage, the current implementation and feed-
back from real-world deployments are promising.

8 Appendix

See http://www.flapjax-lang.org for demonstra-
tions, documentation, client-side libraries, the com-
piler, and server functionality.
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