
MusicHand: A Handwritten Music Recognition System

Gabriel Taubman∗

Brown University
Advisor: Odest Chadwicke Jenkins†

Brown University
Reader: John F. Hughes‡

Brown University

1 Introduction

Current methods of digitizing handwritten music for typesetting re-
main far from ideal despite many years for music typesetting pro-
grams to mature. There are essentially two categories of programs
in this area. The first of these categories contains programs such as
Sibelius [Sibelius 2005] which make no distinction between note
pitch and note duration, forcing the user to enter both pitch and du-
ration with the same mouse click. This method is time consuming
and frustrating, especially if notes of differing durations must be
entered often such as the rhythm in Figure 1.

Figure 1: A difficult rhythm to enter in standard programs.

The second category consists of gesture based interfaces such as
Music Notepad [Forsberg et al. 1998]. These programs require the
user to learn a set of simple gestures which correspond to different
musical symbols. After the user learns these gestures, the program
is usually able to achieve a high recognition percentage. However
such gestures are not ideal as they must be learned and practiced by
the user. Learning gestures is an unnecessary task for music input
because music notation is already itself a set of gestures.

MusicHand aims to achieve both the accuracy and ease of use of
the gesture based programs, while not forcing the user to learn any
new gestures. It does this by using an optical character recognition
based approach [Parker 1997]. The system is trained with strokes
of musical symbols and for each one a statistical moment is calcu-
lated. Upon entry of an unknown stroke, the database of moments
is queried to find a closest match. Depending on what this entry is
classified as, further processing may be done to find, for instance,
its pitch in the case it is recognized to be a note. This method leads
to a quick and easy method of inputting music in which users do
not have to learn a set of gestures given they already know how to
write music.

2 Musical Background

To properly discuss the choices made in the development of the
system and to avoid confusion, a proper nomenclature for musical
terms is first discussed in this section.

∗e-mail: gtaubman@cs.brown.edu
†e-mail: cjenkins@cs.brown.edu
‡e-mail: jfh@cs.brown.edu

2.1 Staff

The height of a note on the page determines its pitch. Because
people are unable to accurately judge relative heights over great
distances, lines are drawn on the page to show the distinctions be-
tween heights. It is standard to draw 5 lines and they are called the
staff or stave.

Figure 2: The musical staff.

2.2 Notes

Notes are a double encoding of pitch and the duration for which that
pitch should be played. Note duration is indicated by the number
of flags a note has. If a whole note is said to be played for one
beat, then each successive note is played for half the duration. The
english names of the notes are derived from this system.

Figure 3: Notes of decreasing duration (left to right): Whole note,
half note, quarter note, eighth note and sixteenth note.

Note pitch is heavily tied to the idea of clefs, as discussed in the
next section.

2.3 Clefs

The staff alone does not indicate which lines correspond to which
pitches. Aclef is used to indicate which lines correspond to which
pitches. Clefs are symbols placed at the beginning of the staff that
define a pitch on a line. There are three types of clefs: G, C, and
F, which show where G, C, and F lie on the staff respectively. The
clefs their pitch-defining areas are shown in Figure 4. The G-clef
defines a line to by G by circling it, the C-clef centers itself on the
line to be designated C, and the F-clef places two dots on either side
of the line to be considered F. Notes, much like G-clefs, distinguish
their pitch by placing their round part on the line or space to which
they are associated.



Figure 4: G, C and F clefs and the lines on which they define pitch.

2.4 Beams

The beaming of notes into groups is technically an unnecessary
practice, as all rhythms can be expressed without the need for
beams. An example of this is seen in Figure 5. However, beams
provide the composer with a method of describing groupings of
notes. These groupings are helpful during sight-reading1 and es-
pecially at quick tempos. Also, beams provide insight into where
stress should be placed in a group of notes.

Notes typically must be eighth notes or shorter to be beamed to-
gether. There are certain abbreviations for rhythms that involve the
beaming of half and whole notes but this are beyond the scope of the
program. The number of flags on a note denote how many beams it
will have when beamed. An example of this can be seen in Figure
5 as well. Notes of varying durations can also be beamed together
as can be seen in Figure 6.

Figure 5: Two eighth notes and two sixteenth shown separated and
beamed.

Figure 6: A set of notes with different durations all beamed to-
gether.

2.5 Barlines

Barlines provide separation of measures. These symbols are simply
vertical lines that stretch the height of the staff. Because of their
shape, they resemble the stems of notes. Special care must be taken
to ensure that when the user enters a vertical line, it is recognized
as the appropriate type.

3 Current Music Typesetting Programs

Sibelius and Finale [Finale 2005] are programs that enable the user
to select the note duration from a palette, and then click the staff,
inserting the selected note at the clicked pitch. These programs usu-
ally support input from a MIDI keyboard, but played rhythms must
be quantized, making it very difficult for the program to distinguish

1Sight-reading is a term given to the playing of music that has not been
practiced or rehearsed.

between a quarter note followed by an eighth note all bracketed into
a triplet, and a dotted quarter note followed by a sixteenth note.

Music Notepad [Forsberg et al. 1998] is a gestured based program
for the input of music. While it is the first of its kind, it requires
the user to learn a prescribed set of gestures that correspond to the
different musical symbols.

4 Recognition Techniques

Recognition of the user’s stroke input is achieved through the use
of statistical moments [Shutler 2002]. These shape descriptors pro-
vide varying levels of invariance. Unfortunately the presentation of
moments in existing literature tends to be variable so their imple-
mentation for this use will be discussed here.

4.1 Standard Moments

The standard equation for the moment of an image is:

Mpq =
X

∑
x

Y

∑
y

(xpyq)Pxy

where p,q ≥ 0, X andY are the width and height of the image
respectively, andPxy is 0 when pixelx,y is white, and 1 when it is
black. As can be seen from the binary requirement ofPxy, the image
must usually be inverted and thresholded before its moments can be
computed because the user is writing with black on white.

A fact often omitted from the moment literature is that these mo-
ments must be scaled back. If they are not, the higher order mo-
ments dwarf the lower order ones by many orders of magnitude. In
the MusicHand system, all moments are divided byXpYq resulting
in a roughly equal magnitude distribution of moments.

Since an infinite number of moments exist a subset must be chosen
for recognition purposes. All moments fromp = 0,q = 0 to p =
3,q = 3 inclusive were used. These standard moments change with
image position and image scale. Because both of these parameters
change often in handwritten music, moments that are position and
scale invariant are desired.

4.2 Centralized Moments

Typically characters are recognized by humans to be invariant under
translation. That is to say that the letter A is the letter A regardless
of where it occurs on a page. The same is true for musical notes.
Centralized moments provide such translation invariance and are
calculated as:

µpq =
X

∑
x

Y

∑
y

(x− x̄)p (y− ȳ)qPxy

where
x̄ = M10

M00
ȳ = M01

M00

These moments are also scaled back byXpYq to ensure order of
magnitude consistency. A fact about centralized moments used
quite often in the MusicHand system is that ¯x×X and ȳ×Y give
the centers of mass in the X and Y directions, relative to the(0,0)
point of the image. Using these provides a more accurate center for
a stroke than the center of the stroke’s bounding rectangle.



4.3 Normalized Moments

Normalized moments provide invariance under scaling. This scale
invariance enables both a large G clef and a small G clef to be rec-
ognized as a G clef. Normalized moments are calculated as follows:

ηpq =
µpq

µ
γ

00

with
γ =

p+q
2

wherep+q≥ 2

The normalized moments are what is used for recognition in the
MusicHand system. Hu moments as described in the next section
provide further invariance that unfortunately proves problematic for
musical symbol recognition.

4.4 Hu Moments

The seven Hu moments described as follows provide invariance un-
der rotation and with the addition ofI7, invariance to skew as well.
Rotational invariance, while providing users with the flexibility to
write their characters slightly rotated, would permit the recognition
of illegal strokes. For instance an eighth note drawn correctly with
the stem up looks like:

however, when rotated 180 degrees looks like:

which does not exist in musical notation. The correct drawing of an
eighth note with its stem going down is:

It is for reasons such as this that the Hu moments are not used for
recognition. The Hu moments can be calculated by:

I1 = η20+η02

I2 = (η20−η02)
2 +4η

2
11

I3 = (η30−3η12)
2 +(3η21−η03)

2

I4 = (η30+η12)
2 +(η21+η03)

2

I5 = (η30−3η12)(η30+η12)
[
(η30+η12)

2−3(η21+η03)
2
]
+

(3η21−η03)(η21+η03)
[
3(η30+η12)

2− (η21+η03)
2
]

I6 = (η20η02)×[
(η30+η12)

2− (η21+η03)
2 +4η11(η30+η12)(η21+η03)

]
I7 = (3η21−η03)(η30+η12)

[
(η30+η12)

2−3(η21+η03)
2
]
+

(η30−3η12)(η21+η03)
[
3(η30+η12)

2− (η21+η03)
2
]

4.5 Recognition from Moments

To determine which musical character most closely resembles the
user’s stroke, the system computes the moments of the unrecog-
nized stroke and queries them against the database of normalized

moments. The closest match is found using then-nearest neighbor
technique which involves computing the Euclidean distance from
the unknown moment to all others in the database. Then, then
nearest moments are examined and whichever musical stroke is as-
sociated with the majority of those moments is decided to be the
stroke entered by the user. An example of this situation can be seen
in Figure 7. For a further discussion of recognition from moments
see Section 9.3.

4

3
5

5

5

7
8

2

Figure 7: An illustration ofn-nearest neighbor techniques. The
unrecognized entry’s moment is represented by the red dot at the
center. Euclidean distances to all other moments are shown. The
3 nearest neighbors are circled. This situation would result in the
unknown entry being classified as a quarter note.

5 Program Use

5.1 Training

The training step of MusicHand is to provide the system with the
database of moments to be used for recognition. Training does not
necessarily have to be done by every user. Assuming that the cur-
rent user’s music handwriting resembles to some degree2 another
user’s who has trained the system, the other user’s database of mo-
ments can be loaded to be recognized from.

In the current implementation of the MusicHand system, training
is achieved by selecting the preferred symbol to train from a pull-
down menu. After the stroke is drawn, either a button marked “Add
Moment” or the return key are pressed to compute the moments of
the stroke and add them to the database. When the user is finished
training, the pull-down menu is set to “none” which signals to the
system that it should attempt to recognize any inputted strokes.

5.2 Input

Initially the user is presented with a set of empty staves on which
to write music. The number of parts can be changed and parts are
group into systems. Inter-staff and inter-system spacing is user con-
figurable. Input strokes are currently given to the system through
by drawing on a Wacom3 tablet.

2See Section 9.1.2 for more discussion of interoperability of moment
sets between users.

3http://www.wacom.com



At this point pen timing because an issue to contend with. Pen tim-
ing is the delay between when the user picks up the pen and when
the system begins to process their input. Ideally, the instant the user
picks up their pen the system would begin processing. However,
this is not realistic as many musical symbols require more than one
stroke to complete, such as a C-clef. If the user does not place the
pen down again after a set time has elapsed, the system recognizes
the stroke and places it on the staff in an appropriate location. For
more information on pen timing, see Section 7.

6 Recognition Process

The full recognition process is split over many sections through the
use of inheritance. This entire process is best viewed as a flowchart
seen in Figure 8. The following sections will document the recog-
nition processes on a smaller scale.

6.1 Note Recognition

The following is an example of the chain of events that occur when
the user draws a quarter note with a stem up.

1. The user draws a note.

2. The standard moments, centralized moments, and finally nor-
malized moments are computed for the user’s stroke.

3. The database of normalized moments is queried to find the
closest match usingn-nearest neighbor techniques as previ-
ously described in Section 4.5. Since the user drew a quarter
note the closest moment recognized should also be a quarter
note.

4. The pitch of the note must be computed. This step is achieved
through by splitting the user’s stroke into all sub-strokes. Sub-
strokes are delineated by breaks in the user’s stroke path.
Moments are computed for each sub-stroke and each one is
queried against the moment database individually. The first
sub-stroke to be recognized as either a closed dot or a whole
note is considered to be the round part of the note by which
the note will be centered.

5. Now that the round part or “dot” of the note has been located,
its center of mass is computed. This center of mass is then
snapped to the nearest staff line or staff space.

6. Finally the stem direction of the note must be computed. First,
the center of mass of the entire user’s stroke is computed. This
position is then compared to the center of mass of the dot
alone. If the dot is concluded to be below the center of mass
of the rest of the stroke, the note is decided to have an up
stem. If the dot is above the center of the stroke, a down stem
is given to the note.

6.2 Multiple Dot Entry

One of the main advantages of the MusicHand system is that it al-
lows the user the ability to enter multiple dots (filled or open) and
add stems and flags at a later time. This freedom results in an in-
put method that is more akin to the natural way of writing music by
hand. It is easy to enter many sequential notes of different durations
like those seen in Figure 1 with this method.

The entry of a vertical line can be quite ambiguous as can be seen in
Figure 9. In this example the user may have intended a stem going

up on the left note, or a stem going down on the right note, or a bar
line in between.

Figure 9: An ambiguous entry

The following method is employed to determine the user’s inten-
tions:

1. The stroke is recognized to be a vertical line.

2. Compute the center of mass of the line.

3. Find the entries to the immediate left and to the right of the
x position of the center of mass of the line. If neither a left
hand nor right hand entry exist, the stroke is recognized as a
bar line.

4. First the left hand note is examined. The reason for this is that
in practice people tend to draw stems on notes from left to
right, therefore there exists a higher chance of their intention
being a stem on the left note rather than right note. First, the
horizontal distance between the line and the dot is computed.
If it is not less than a set threshold (set to 30 pixels in the
system) the system moves on to the next step. If however it
is less than the threshold, then the note itself is inspected. If
it is either a whole note, or a closed dot the system continues
analyzing. Finally, if the center of the vertical line in the y
direction minus the center of the dot in the y direction yields
a positive number, then the line is considered to be an up stem
on the left hand note and the recognition process is finished. If
any of these requirements are not fulfilled however, the system
moves to the next step.

5. The system examines the right hand note. The same recogni-
tion steps take place with slight changes. The system ensures
that the y center of the vertical line must bebelowthe note’s
center this time. This is because a stem going up can not exist
on the left side of a note. If any of the requirements are not
fulfilled, the user’s stroke assumed to be a bar line.

6.3 Beams

As previously mentioned beams technically provide no extra flexi-
bility in the ability to notate rhythms. However, they are a necessity
in the reading of music. Beam recognition begins at the beginning
of the recognition chain in Figure 8.

The user’s stroke is decided to be a beaming stroke without actu-
ally querying the moment database. This classification is achieved
by defining a beaming stroke to be any stroke that touches at least
two notes. Recognizing a beaming stroke through the use of sta-
tistical moments would be difficult because a moment for a line at
every possible rotation would need to be entered into the database.
This is an unrealistic need and the use of context-based recognition
performs much better.



User 
Stroke

Compute 
all entries 

hit by 
stroke

Stroke 
hit >= 2 
entries

Beam 
all 

notes 
hit by 
stroke

Stroke 
hit 1 

entry.

Add a 
flag to 

the 
entry,

That 
entry was 
a whole 

note.

Turn it 
into a 
closed 

dot.

YES

NO

YES YES

NO

Stroke 
was a 
vertical 

line.

Get 
entries on 
either side 
of the line.

NO

YES

There 
were no 

entries on 
either side.

The stroke 
is a 

barline.
YES

The left 
note is a 

whole note 
or closed 

dot.

The stroke 
is within 

the 
threshold 

to the right 
of the note

The stroke's 
center is 

above the 
note's 
center.

NO

YES YES
The stroke 
is a stem 
on the left 

note.
YES

The right 
note is a 

whole note 
or closed 

dot.

NO NO NO

The stroke 
is within 

the 
threshold 
to the left 

of the note

The stroke's 
center is 
below the 

note's 
center.

The stroke 
is a stem 

on the 
right note.

The stroke 
is a 

barline.

NO NO
NO

YES YES YES

Query the 
stroke 
against 

the 
moment 

database.

NO

The stroke 
is 

recognized 
as a pitched 

entry.

Compute 
the 

stroke's 
pitch

The 
stroke 

is a 
note.

Compute 
the stem 
direction 

of the 
note.

Add the 
recognized 
entry to the 

staff.

YES

YES
NO

NO

Figure 8: A flowchart of the recognition process. Circles are if statements



6.3.1 Beam Method

Assuming that rhythms can be inputted with complete accuracy and
ease, the system still needs a method by which to draw them. As
said before these rhythms can be either flagged or beamed. To trans-
form from flag to beam representation, the following algorithm is
applied:

for (int d = 8; d <= MAX_D; d *= 2){
for (all notes i under the beam){

if (note[i].d >= d){
if (note[i].d == d && note[i].b){

if (i == 0){
halfbeam right

}
else{

halfbeam left
}
continue

}
if (note[i+1].d >= d){

fullbeam from note[i] to note[i+1]
continue

}
}

}
}

whered is the current duration and the member variabled is the
duration of that note. Note duration is represented as the reciprocal
of its beat length. For instance a quarter-note has duration 4 instead
of 1/4. b is a boolean specifying whether or not the note is a broken.
A note becomes broken in one of two situations. The first is a note
whose beam should connect to the next note, but due to rhythmic
considerations such as time signature or note stresses, the beam is
split. The second is a note of duration smaller than both of the
adjacent notes. An example of this can be seen in Figure 10, and
standard beams can be seen in Figure 11.

Figure 10: An example of beaming with broken beams.

Figure 11: An example of a complicated beam.

The above algorithm for drawing beams is not ideal. Broken note’s
beams are assumed to go left unless the note is the first one in which
case it goes right. This is an incorrect assumption because broken
beans can go in either direction. However, as a preliminary reverse
engineering of proper beaming rules it suffices.

6.4 Flags

Like beams, flags are also recognized through context based recog-
nition without a moment query. This classification is achieved by
examining the list of all notes hit by the user’s stroke. If this list

contains only one item, and it is a note, it is assumed that the user
intended to draw a flag onto a note. There are two exceptions to
this rule however which are when the note that the user drew over
is a whole note or a closed dot. Neither of these glyphs have stems
which leaves the user nothing to draw a flag onto thus it is assumed
that drawing a flag was not the user’s intent.

For a closed dot, it is assumed that the user was attempting to add
a stem to the note to turn it into a quarter note. This adds extra
strength to the programs ability to recognize stems.

For a whole note, it is assumed that the whole note was recognized
in error and that the user is attempting to fill it in. This assumption
provides the user with a quick method of turning whole notes into
closed dots. Since the moments for the two symbols are similar,
this extra ability to correct the system is a welcome addition.

If any other type of note is hit, it simply has its duration decreased to
the next type of note. For instance, a half note turns into a quarter
note, and a quarter into an eighth and so on. An example of the
addition of a flag to a note can be seen in Figure 12.

Figure 12: A quarter note during and after the addition of a flag.

7 Pen Timings

The subject of pen timing as previously mentioned is of great con-
sequence in the MusicHand system. The question to ask is, “How
long should the system wait after the user has picked up their pen
before attempting to recognize their stroke.” If musical symbols
were all one stroke, then the obvious answer would be to have the
system recognize the input as soon as the pen is lifted. However,
many symbols for instance notes, clefs, and accidentals are often
written in more than one stroke. It is for this reason that the user
must be given time to put the pen down and continue writing before
recognition takes place.

A recognition delay of 0.6 seconds is set as default. However, as
the user begins to feel comfortable with the tablet they draw on, the
delay can be lowered to 0.3 seconds before the input of multiple
stroke symbols becomes infeasible.

Certain shortcuts can be taken however, for instance when the pen
begins its path within the bounding rectangle of a note. If this is
the case then the only possible user intentions are adding a flag to
the note or joining that note with other notes into a beam. Both of
these situations only require one stroke so the wait between lifting
the pen and performing the recognition operation can be set very
small.

However it was noticed that setting the delay to zero seconds re-
sulted in a surprisingly jarring behavior. It became difficult to dis-
tinguish what had just been written. For this reason, if the pen be-
gins within the bounding rectangle of a note, the recognition delay
is set to 0.2 seconds.



8 Results

8.1 Implementation

The current implementation of the MusicHand system is written in
Objective-C to run under OS X. The implementation of Objective-C
by Apple4 provides libraries which facilitate the import of musical
character fonts which are used to display a printed version of mu-
sical symbols after recognition has taken place. The font used in
this implementation is called “Fughetta” and was created by Blake
Hodgetts5. The Apple supplied libraries also greatly ease transition
from vector to raster image formats.

No extra peripherals are required for the system. However, the use
of a Wacom tablet greatly enhances and facilitates the experience
of using the system.

While the current system is functional, it is still a proof of concept
and thus has its shortcomings. Section 9 discusses further steps that
can be taken to create a more robust system.

Figure 13: The current implementation of the MusicHand system.

8.2 Examples

The following are a series of examples of handwritten input and the
system’s corresponding recognized and typeset output.

4http://www.apple.com
5http://www.efn.org/ bch/AboutFonts.html

9 Future Work

9.1 User Studies

The MusicHand system could benefit greatly from a series of user
studies. The following are areas in which studies are most needed.

9.1.1 System Effectiveness

Primarily, a study needs to be done to determine whether or not
the MusicHand system effectively accomplishes its goal as a com-
positional aid, and as an alternate method of inputting music to a
computer. A possible test is to ask users to copy an excerpt of
printed music with pencil and paper, and with the MusicHand sys-
tem. Timing both tasks will yield information as to whether or not
the system is robust enough to accommodate user error and writing
style as well as a pencil and eraser do.

Another possible test is to ask current composers to attempt to use
the MusicHand system instead of their traditional means of writing
music. The use of a Wacom Cintiq tablet would be more fitting for
this test because it provides the user with essentially an electronic
version of the pencil and paper input device they are already used
to. This is opposed to the standard Wacom tablets which require
time before their use feels natural.

9.1.2 Moment Compatibility

A study of how well one user’s library of moments can be used by
another would be of great importance. If the case is that twenty
people’s combined training data is sufficient for a high percentage
of user’s strokes to be recognized then individual training would
only be an improvement rather than a requirement. If this fact is
true it would present an ideal situation where the average user is
not required to provide the technical training steps.

9.1.3 N-Nearest Neighbor

The value ofn in then-nearest neighbor system changes recognition
results greatly. Finding an optimal value forn based on the number
of moments in the database would greatly improve the recognition
percentage.

9.2 Pen Timing

Currently pen timing is set to a default value. A more comprehen-
sive method of learning pen timing on a per-user basis would be
to compute initial pen timing for a user by example. The user can
be asked to perform a series of note entries, where between each
entry the user hits the space bar as soon as they’ve finished. This
gives the system an initial idea of how long to give the user to create
multi-stroke input.

9.3 Recognition

There exist many expansions to the current recognition scheme
for instance a probabilistic or Bayesian method. A natural exten-
sion however would be computing inverse-covariance matrices and
means for every type of symbol. This method allows each moment
to have its components scaled appropriately given the distribution



of all moments corresponding to the same musical symbol which
will provide a more accurate measure of distance between unknown
and known moments.

Another possible addition is the ability for the program to search
for patterns in music already entered on a per-piece basis. These
patterns can then be used to provide a form of auto-completion of
commonly entered rhythms and motives. The usefulness of this
feature may vary however, depending on the style of music being
entered.

9.4 Semantics

The current incarnation of the MusicHand system attempts to allow
the user to enter any symbol at any place on the score. However,
incorporating a semantic checking system beyond what is used to
recognize the addition of stems onto note heads may provide further
benefits to recognition abilities. For example if the user draws a flat,
an entry entered directly to the right and centered on the same line
or space will most likely be a note of some kind. This form of
semantic information could greatly expand the system’s ability to
recognize accurately. However, it would add the sense of rigidity
present in programs such as Sibelius that make them potentially
undesirable for composition.

9.5 Beams

The current rules for creating beams are simple and somewhat
crude. Investigation into how beams are typically handled by hu-
man typesetters could provide the system with greater ability to pro-
duce pleasing looking beams.

Also, the current system is unable to conjoin sets of already beamed
notes. Small functionalities like this, while not necessary, would
provide the user with a more pleasant experience.

9.6 User Interface

9.6.1 User Mistake Correction

Currently if the user wants to remove a recognized symbol, the “E”
key is pressed which switches the system to erase mode. While in
erase mode the drawing color is set to red as opposed to black. Any
typeset symbol can be drawn over with red to be erased. However,
the use of the Wacom pen’s built in eraser would be more desirable
because it would alleviate the need for the keyboard entirely.

9.6.2 Recognition Mistake Correction

The n-nearest neighbor recognition technique provides feedback
about all symbols that resemble an unknown one, and the percent-
age the system is confident in its classification choice. If a user’s
stroke is recognized incorrectly, the ability to have the user then tap
on that symbol to bring up a menu of other symbols to change it to,
ordered by recognition confidence percentage, would be a highly
intuitive and quick method of telling the system that a misclassifi-
cation took place. Also, the system currently does not add recog-
nized input to the database of moments. However, if the user tells
the system through the use of this menu that the input was recog-
nized incorrectly, then that stroke could be added to the database to
lessen the chance of future misclassifications.

9.6.3 Note Layout

Currently the system enforces no semantic rules of music such as
the number of beats per measure. A possible extension would be
once a measure has been completed to have the system then run a
relaxation to space the notes in that measure appropriately regard-
less of their original locations as entered by the user.

9.6.4 User Trainable Macros

Because arbitrary strokes can be recognized using statistical mo-
ments, the option exists for the user to train the system to recognize
any unused stroke to be any set of symbols. For instance the sys-
tem could be trained to recognize a wavy horizontal line to mean
four eighth notes of the pitch the line is centered on, all beamed to-
gether. These sorts of user definable macros could greatly increase
input speed.

10 Conclusion

The goal of the curent MusicHand system is to prove that handwrit-
ten music recognition is a viable method for music input to comput-
ers. In this regard it is a success. The examples shown in Section
8.2 were written without hesitation or coaxing of the system. How-
ever, the current system is not robust enough for general use. With
the further enhancements documented in Section 9 it may provide
an intuitive and possibly more enjoyable music input interface than
any system currently available.

References

FINALE . 2005. Finale 2005. MakeMusic! Incorporated.
http://www.finalemusic.com.

FORSBERG, A., HOLDEN, L., M ILLER , T., AND ZELEZNIK , R.
1998. Music notepad. InProceedings of the 11th annual ACM
symposium on User interface software and technology., ACM,
203–210. http://graphics.cs.brown.edu/research/music/tpc.html.

PARKER, J. R. 1997.Algorithms for Image Processing and Com-
puter Vision. John Wiley and Sons.

SHUTLER, J., 2002. Statistical moments.
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCALCOPIES/
SHUTLER3/.

SIBELIUS. 2005. Sibelius version 3.0. Sibelius Inc.
http://www.sibelius.com/.


