
Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

as an undergraduate thesis in Computational Biology

Page 1 of 90



Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Outline
0. Abstract

1. Overview
1. Motivation
2. Main results
3. Organization of this thesis

2. Background
1. Alignment of two sequences
2. Progressive profile alignment of multiple sequences
3. Partial-order alignment of multiple sequences
4. Basics of RNA structure
5. Alignment of two RNA secondary structures

1. Pairwise alignment of arc-annotated strings
2. Pairwise alignment of forests

6. Alignment of multiple RNA secondary structures
1. Sequence-based methods
2. Structure-based methods
3. Room for improvement?

3. RNA partial-order alignments (RNAPOAs)
1. RNAPOAs
2. Optimal alignment of two RNAPOAs

1. string-RNAPOA alignment
2. forest-RNAPOA alignment

3. Approximate alignment of RNAPOAs with tertiary structure
4. Approaches to multiple alignment

4. Experimental Results

5. Discussion
1. Contributions
2. Future Work

6. References

Page 2 of 90



Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

0. Abstract
Multiple alignment of DNA, RNA, and protein sequences is an invaluable tool for 

comparative genetics. Some RNAs have functions that depend on structural features as 
well as their sequences, so several methods have been proposed for aligning multiple 
RNA secondary structures. One trait they share is that their alignment positions have a 
total ordering. (Lee and Grasso, 2002) have shown that biological sequence alignments 
are more naturally represented under a partial ordering. Partial-order graphs represent 
insertions and deletions without the pitfalls of 'gapped' alignments. I argue that a partial-
order formulation has even greater benefits for RNAs; RNA structural alignment is 
fundamentally partially ordered. Total-order representations are prone to misalignments 
because they represent “sequence and structure”, not “sequence or structure”.

In this thesis, I introduce RNA partial-order alignments (RNAPOAs), a new type 
of multiple structural alignment. I show how to construct and align RNAPOAs based on 
two popular representations for RNA structures: arc-annotated strings and ordered forests. 
RNAPOAs faithfully represent both shared similarities and individual variations of 
aligned sequences and structures. This allows RNAPOAs to support and improve a 
variety of advanced algorithms, including optimal alignment of base-pairing probability 
matrices and approximate alignment of tertiary structures. Partial-order algorithms are as 
efficient as their total-order counterparts, so these advantages do not come at a cost in 
algorithmic complexity.
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1. Overview
1.1 Motivation

A multiple sequence alignment is a representation of the similar features of a set 
of DNA, RNA, or protein sequences, and can be used to infer their shared functions and 
evolutionary history. Sequence alignments are crucial tools for biological research, and so 
there has been a great deal of effort devoted to making them faster and more accurate. Yet 
the functions of RNAs and proteins depend on their 3-dimensional structures as well as 
their sequences, so it is worthwhile to consider comparison methods that include both 
sequence and structure information.

There are a wide variety of algorithms for comparing RNA structures, often 
restricted to RNA secondary structure because higher-level structure tends to be 
computationally intractable. A flurry of methods have recently been proposed for aligning 
multiple RNA secondary structures (Wang and Zhang, 2004; Hochsmann et al., 2004; 
Hofacker et al., 2004; Liu et al., 2005). One assumption they share with most sequence 
alignment approaches is that the positions in an alignment should have a total ordering. 
Specifically, each position in each aligned structure must be matched with some positon 
in every other structure. If a particular feature only exists in some of the structures, 
artificial 'gap' entities have to be inserted into every other structure to preserve the total 
ordering. This introduces a degeneracy: we can choose many different ways to put gaps 
into an alignment without changing which features are aligned with each other. However, 
our choice of gaps will have a large effect on how we build the alignment, and hence on 
the quality of the finished product.

As recent work by Lee and Grasso (Lee et al., 2002; Grasso and Lee, 2004) 
demonstrates, alignments of sequences are more naturally represented by partial-order 
multiple sequence alignments (PO-MSAs). A PO-MSA is a directed acyclic graph that 
contains each aligned sequence as a subgraph. Rather than using 'gaps', mutated regions 
are simply alternate paths through the graph. Hence a PO-MSA reflects the fact that these 
mutated regions have no true ordering with respect to each other.1 This property gives rise 
to several other advantages; PO-MSAs can be computed very quickly, and whenever a 
new sequence is added to a PO-MSA, we can consider its optimal alignment with each 
other sequence.

Since an RNA structure alignment essentially includes a sequence alignment, it 
stands to reason that partial-order formulation should be at least as beneficial as it is for 
sequences. In addition, alignments of certain structural features make sense as partial 
orderings but not as total orderings. For example, a few mutated nucleotides can push a 
region of an RNA into a different structural state. Even if we do not know how both 
sequence and structure contribute to an RNA's functions, a total order alignment forces us 
to prioritize the two: if we match the structure then we will have a poor match for the 
sequence, and vice versa. What we really want our alignment to say in this case is “they 

1 Well, they may have an ordering, but not one that can be deduced from the sequences in the alignment.
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have this structural variant or that structural variant, but similar sequences”. This type of 
pattern-matching is captured by alternate paths through a partial-order graph.

1.2 Main Results
I introduce RNA partial-order alignments (RNAPOAs), a representation for 

multiple alignments of RNA structures based on partial-order graphs. RNAPOAs have 
the same advantages over current RNA alignments that partial-order sequence alignments 
have over traditional, totally-ordered representations. The partial-order formulation also 
has several additional benefits in the domain of RNA secondary structure: RNAPOAs can 
represent alignments of certain structural features that total-order representations cannot. 
In fact, I argue that RNA structure alignments are inherently partially ordered.

I then develop algorithms for optimal global and local alignment of two 
RNAPOAs. RNAPOAs come in two flavors. String-RNAPOAs are based on the arc-
annotated strings of (Bafna et al., 1996), and are aligned with algorithms in the vein of 
(Wang and Zhang, 2001; Hofacker et al., 2004). Forest-RNAPOAs are based on the 
ordered forests of (Hochsmann et al., 2003), and are aligned with algorithms like those of 
(Jiang et al., 1995; Jansson et al., 2004). If any of these partial-order algorithms is used 
for unstructured RNAs, it reduces to the partial-order sequence alignments of (Grasso and 
Lee, 2004). The time/space complexity of these algorithms is essentially the same as for 
total-order alignment. The complexity increases for RNAPOAs that contain dissimilar 
RNAs, for the same reason that total-order alignments become slower if they contain 
many 'gaps'. In most real-world cases this increase should be bounded by a small constant 
factor. In addition, I also describe algorithms for approximate alignment of RNAPOAs 
that have tertiary structure, based on a similar method of (Wang and Zhang, 2001). This 
method also allows us to align 'alternate paths' within RNAPOAs, addressing a subtle 
source of error in current methods for partial-order alignment. In addition, I discuss 
several strategies for constructing multiple alignments from a series of pairwise 
alignments.

Finally, I demonstrate RNAPOA by aligning a set of related RNA secondary 
structures. It is difficult to objectively evaluate the quality of partial-order alignments on 
'ground truth' data, since one partial-order alignment represents a very large number of 
different total-order alignments. This is especially true for RNA secondary structures, for 
which high-quality phylogenetic alignments are typically expressed with a single, total-
order consensus sequence. However, these preliminary results show how RNAPOAs can 
represent alignments with structural variations that cannot be captured by total order 
alignments.

In summary, partial-order graphs are natural representations for RNA secondary 
structure alignments which overcome the limitations of traditional methods. This 
improvement in representation yields an improvement in alignment accuracy, and in most 
cases does not require an increase in complexity.
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1.3 Organization of this thesis
The first section of this thesis is this introduction.
The second section presents background information about sequence and RNA 

structure alignment. I begin with a brief primer on sequence alignment and the traditional 
'row-column', progressive profile formulation of multiple alignment (Higgins and Sharp, 
1988). This leads into a dicussion of the advantages of the recent partial-order 
formulation of Lee and Grasso. I will then explain the basics of RNA structure and 
motivate the problem of RNA structure alignment. I will discuss the existing methods for 
pairwise and multiple alignment of RNA structures, with detailed attention to the 
algorithms of (Wang and Zhang, 2001; Jiang et al., 1995; Jansson et al., 2004) which I 
will build on in this paper. Finally, I will give some thoughts on current methods for RNA 
structural alignment, and how they can be improved with a partial-order formulation.

The third section introduces a graph representation of RNA partial-order 
alignments, or RNAPOAs for short. RNAPOAs are generalizations of partial order 
sequence alignments and RNA secondary structure alignments. Each path through an 
RNAPOA is a secondary structure, and each aligned RNA exists as a path in the 
RNAPOA. They come in two flavors: one based on arc-annotated strings, and one based 
on ordered forests. I will then develop algorithms for global and local pairwise alignment 
of RNAPOAs, including variants that handle different scoring schemes and advanced 
types of structural information. I will also present an approximation algorithm for 
aligning 'alternate paths' in RNAPOAs (e.g. tertiary structure). I will conclude with a brief 
discussion of various approaches for building multiple alignments by repeated application 
of the pairwise algorithms.

The fourth section presents the experimental results of the POSSA algorithm on 
sets of related RNA secondary structures.

The fifth section is a discussion of the merits and drawbacks of the RNAPOA 
representation and alignment algorithms. I will also talk about some interesting 
extensions to the RNAPOA algorithm that ought to be the subject of future research.

The sixth section has references for all of the scholarly work that I've cited.
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2. Background
This section presents background information about sequence and RNA structure 

alignment. I begin with a brief primer on sequence alignment and the traditional 'row-
column', progressive profile formulation of multiple alignment. This leads into a 
dicussion of the advantages of the recent partial-order formulation of Lee and Grasso. I 
will then explain the basics of RNA structure and motivate the problem of RNA structure 
comparison. Finally, I will discuss existing methods for aligning multiple RNA 
structures, and explain how these methods can be improved by using a partial ordering.

2.1 Alignment of two sequences

Alignment of DNA, RNA, and Protein sequences is a common operation in 
sequence analysis. An 'alignment' is just a correspondence between similar regions of a 
set of nucleotide sequences. If several sequences are globally similar, then they are likely 
to share a common ancestor and to have similar biological functions. Let us consider two 
two RNA sequences whose nucleotides are represented by letters in {a,u,g,c} :

S = augcgacagu
T = cagagag

We can see that a region of T (“gagag”) is very similar to a region of S (“gacag”). 
One way to associate these regions is to insert gap characters ('-') into the two sequences 
until they are matched with each other, like so:

S = augcgacagu
T = --cagagag-

Now we have a traditional row-column alignment. A row-column alignment is a 
matrix where each row represents a sequence and each column represents a set of 
matched nucleotides. Each row of the alignment has to have all of its sequence's 
nucleotides in the correct order, possibly with gaps mixed in. Each column that doesn't 
have a gap represents a mapping between a nucleotide in the top sequence and a 
nucleotide in the bottom sequence. I will typically refer to sequences and alignments in 
terms of 'positions'; the i-th base in a sequence is its i-th position and the j-th column of 
an alignment is its j-th position. 

The key to an RC alignment is its gaps, since gaps are what force similar regions 
into register. If the gaps are inserted properly then similar regions are matched with each 
other and the alignment is an informative mapping between the two sequences. If gaps are 
inserted poorly then the alignment tells us nothing. There are many ways of measuring the 
goodness of an alignment; here, I will explain the most well-known method.

Let us consider each pair of sequence positions (pS, pT), respectively from 
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sequences S and T, that are placed in the same column of the alignment. If pS = pT, then 
we say they match. If pS ≠ pT, then we say they mismatch. This is also called a substitution 
or replacement, since it corresponds to a sequence suffering a point mutation that replaces 
one nucleotide with another. If pS is a '-' gap character, then we say pT has been gapped. A 
stretch of several gaps in a row is an indel, short for insertion/deletion, which represents 
mutations that add or remove several nucleotides at once. Every column has to have at 
least one nucleotide from one of the sequences; we prohibit columns from having only 
gaps. The alignment above has 4 matches, 3 mismatches, and 2 indels with 3 total gaps.

Now we can define the problem of finding a good alignment of S and T as an 
optimization over all possible ways to insert gaps into them. We'll define a scoring 
function for an alignment that gives bonuses for matches and penalties for mismatches 
and indels. We then try to find the alignment which has the best score. The simplest 
scoring model of this type is as follows. We define a scoring function score(pS,pT) for 
matching position pS in sequence S with position pT in sequence T. The score of an 
alignment is just the sum of these scores over all positions in the alignment, i.e. 

∑
p S∈S , pT ∈T

score pS , pT  . To encourage good alignments, we must define score to 
reward matches (when p = p') and penalize mismatches and gaps.

Under this scoring model, it is well known that we can use dynamic programming 
to find the optimal alignment in quadratic time and space (Needleman and Wunsch, 
1970). Here I will present this algorithm in terms of aligning two graphs; this will allow 
us to easily generalize this algorithm for more complicated graph alignment problems 
later on in this thesis. We need some definitions:

S is a sequence of m nodes, (s1,s2,...,sm)
T is a sequence of n nodes, (t1,t1,...,tn)
next(si) = si+1, the next node in S after si. next(sm) = empty.
(si,sj) denotes a substring of S: a pair of nodes in S such that i < j.
(si,sm) is a suffix of S

We'll find the optimal alignment by considering optimal alignment of each suffix (
si,sm) S with each suffix (tk,tn) of T. We can treat the sequence S = “augcaugc” as a graph 
where each position si has an edge next(si ) to the next nucleotide:

Let us define ALIGN((si,sm),(tk,tn)) to be the optimal score for aligning the two 
suffixes (si,sm) in S and (tk,tn) in T. If we can compute ALIGN((s1,sm),(t1,tn)), then we'll 
have the optimal score for aligning the whole of S with the whole of T. In order to 
compute ALIGN((si,sm),(tk,tn)), we'll break it into three subalignment; three alignments of 
smaller pairs of suffixes. These correspond to three mutation operations that we could use 
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to transform S into T: replacement, insertion, and deletion.
For the first case, what if ALIGN((si,sm),(tk,tn)) puts si and tk in the same column? 

Then the bases are matched or mismatched with a score of score(si,tk). I will call this a 
replacement, since to transform S into T, we would have to replace si with tk.

2 What about 
the rest of the columns of the alignment? They must be the optimal alignment of the rest 
of (si,sm) with the rest of (tk,tn), i.e. ALIGN((next(si),sm),(next(tk),tn)). So the optimal score 
of an alignment for a replacement is score(si,tj) for matching or mismatching the bases 
plus ALIGN((next(si),sm),(next(tk),tn)) for the rest of the alignment.

For the second case, what if ALIGN((si,sm),(tk,tn)) doesn't put tk in the same column 
as any nucleotide in S? Then tk must be gapped at a cost of score(-,tk). We say that its 
position represents an insertion of tk, since to transform S into T, we would have to insert  
the nucleotide tk. What about the rest of the alignment? We have to align (si,sm) with the 
remainder of (tk,tn): ALIGN((si,sm),(next(tk),tn))

For the third case, what if ALIGN((si,sm),(tk,tn)) doesn't put si in the same column 
as any nucleotide in T? Then this is just like an insertion, but we put a gap opposite to si. 
We call this a deletion; to transform S into T we would have we to delete si from S.

Subalignment of two suffixes
ALIGN((si,sm),(tk,tn)) Case 1: replace 

score(si,tk)+ALIGN((next(si),sm),(next(tk),tn))

Case 2: insert:
score(-,tk)+ALIGN((si,sm),(next(tk),tn)) Case 3: delete:

score(si,-)+ALIGN((next(si),sm),(tk,tn))

Table 1: to find the optimal alignment of two suffixes, we need to choose the best of three optimal  
subalignments: one due to replacement, one due to insertion, and one due to deletion.

2 I am using replace is used a general term here. If Si ≠ Sj, then we replaced a base with a different base 
and score it as a mismatch; if Si = Sj, we replace the base with an identical copy and score it as a match.

Page 9 of 90



Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Putting the three cases together, we see that in ALIGN((si,sm),(tk,tn)) either si 

replaces tk, tk is inserted, or si is deleted. Therefore to find the optimal score for 
ALIGN((si,sm),(tk,tn)), we just have to choose the action from {replace, insert, delete} that 
has the best score. We then have the recurrrence:

ALIGN((si,sm),(tk,tn)) = best of
replace score(si,tk) + ALIGN((next(si),sm), (next(tk),tn))
insert score(-,tk) + ALIGN((si,sm), (next(tk),tn))
delete score(si,-) + ALIGN((next(si),sm), (tk,tn))

Since each alignment depends only on three smaller subalignments, we should be 
able to compute the full alignment ALIGN((s1,sm),(t1,tn)) by starting with the smallest 
subalignments and gradually building them up. What are the smallest subalignments? 
Well, they are alignments that include the empty sequence. ALIGN(Ø,Ø) is an empty 
alignment. An alignment of a suffix with Ø must put gaps against every nucleotide in the 
suffix, so it only contains insertions or deletions. Hence 

ALIGN(Ø,Ø) = 0

ALIGN((si,sm),Ø) = ∑
s j∈si , sm

scores j , - 

ALIGN(Ø,(tk,tn)) = ∑
t l∈ tk , tn 

score - , tl

Now we have our algorithm: we initialize it with the optimal scores for these 
small subalignments, then use the recurrence ALIGN to compute larger and larger 
alignments until we finally have ALIGN((s1,sm),(t1,tn)), the optimal alignment of S and T.

It is easy to see that the algorithm's space complexity is O(mn) - it needs to store 
the subalignments of each of the m suffixes of S with each of the n suffixes of T. To 
compute each subalignment, the algorithm just looks up the scores of three subalignments 
and does a little addition, so it does O(1) work for each subalignment. Hence the time 
complexity is also O(mn).

This algorithm computes the optimal alignment score, but how can we reconstruct 
the optimal alignment? Well, each alignment is built from an operation on single bases - 
replace, insert, or delete - and a smaller subalignment. For each subalignment 
ALIGN((si,sm),(tk,tn)), let us keep a record π((si,sm),(tk,tn)) of the operation we chose to 
build it. Then we can reconstruct the alignment by traceback through these records. The 
full alignment's record π((s1,sm),(t1,tn)) tells us which subalignment it was built from, 
which in turn tells us which subalignment it was built from, and so on. Each traceback 
step tells us one position in the alignment. We continue this traceback until we reach 
π(Ø,Ø), at which point we have the full alignment.
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Table 2.: alignment of two sequences. Top: the two sequences. Bottom: their alignment. Matched bases are 
circled, while mismatched bases are not. Note that gaps have been inserted into each ot the sequences.

The reason that I've spent so much time explaining a well-known algorithm is that 
all of the methods I discuss in this thesis are variations on this simple dynamic 
programming algorithm. We can describe them as follows:

 1. Compute the optimal scores for the smallest, trivial subalignments, 
 2. Use a recurrence to build optimal large alignments from optimal small ones, 

 a)  while keeping a record of how we built them.
 3. Trace back through our records to reconstruct the optimal alignment

In general, I will only explain step 2 in depth. Steps 1, 2a, and 3 are trivial for 
most of the algorithms,3 so I will only discuss them briefly.

Note that in the recurrence above, I used a 'best' operator rather than 'min' or 'max'. 
There are two main goals for aligning two sequences: to minimize the distance between 
them, or maximize the similarity between them. We calculate the distance between two 
aligned sequences by setting the match reward to 0 and mismatch and gap scores to be 
positive. Thus the alignment distance between two sequences is always positive, unless 
they are perfectly aligned and have zero distance. On the other hand, similarity scores can 
be either positive or negative; we calculate the similarity between two aligned sequences 
by setting match scores to be positive and mismatch and gap scores to be negative.

So far we have considered only global alignment - aligning the whole sequence S 
with the whole sequence T. Both distance and similarity scores are effective in this case. 
However, if we want to find a local alignment which aligns only part of S to only part of 
T, then we have to use similarity scores. Why is this? Let us say we are allowed to choose 
only a subsequence (si,sj) of S to align against a subsequence (tk,tl) of T. Then the optimal-
distance alignment will always be (si,sj) = (tk,tl) = Ø, since they have zero distance from 
each other and we can never do better than zero distance. On the other hand, an optimal-

3 Unless we want to improve the space complexity. With many DP algorithms we can find ways to store 
fewer records or delete unnecessary ones. This isn't my focus here, but the algorithms in this paper could be 
improved in this way.
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similarity alignment will find some tradeoff between bigger and smaller subsequences; 
bigger subsequences can have more matches, but also more gaps and mismatches. 
Depending on how we define the similarity score, we can bias it to small regions of very 
high homology or large regions of moderate homology. 

Local alignment is very useful for analysis of biological sequences. After all, we 
are using alignment to find regions of homology between S and T, and we may not know 
where those regions of homology begin. Also, if we want to search a large sequence S  for 
a small pattern T, then global alignment is likely to give poor results. Therefore I've 
chosen to develop methods that can be used for both global and local alignment. For 
sequences, we can do local alignment with just a small modification to the global 
algorithm (Smith and Waterman, 1981). Since the more complex algorithms I discuss in 
this thesis can be modified in an exactly analogous way, I will explain it here for this 
simple case.

We will make two modifications to the global alignment algorithm. First, we 
initialize the algorithm with ALIGN((si,sm),Ø)  = ALIGN(Ø,(tk,tn)) = 0. This means that 
all all gaps at the end of the alignment are free of cost. Second, we no longer assume that 
the optimal alignment includes the full sequences of both S and T. That is, we don't 
necessarily start our traceback at π((s1,sm),(t1,tn)). Instead, we start at the best alignment 
with at least one full sequence, so that all gaps at the start of an alignment are free of cost. 
That is, we choose to start our traceback at
 argmax {∪t k∈T

{ALIGN s1, sm ,t k , tn }∪∪
si∈S

{ALIGN si , sm , t 1, t n }}
This is a very most commonly used method for local alignment. However, note 

that it doesn't find the highest-similarity alignment over all substrings of S and substrings 
of T. For example, if we align “aaauuuu” with “ggguuuu”, we still have to add three gaps 
inside the alignment no matter where we place our cost-free start gaps. However, the 
Smith-Waterman method is generally the right thing to do for phylogenetically related 
sequences, in which case we assume that S and T are descendants of a common ancestral 
sequence A. If S and T are descended from non-overlapping subsequences of A, they 
shouldn't align at all. On the other hand, if S and T are descended from overlapping 
subsequences of A, then they should only need gaps at the ends for their homologous 
regions to match.

That said, we can find the optimal alignment of any two substrings in S and T if 
we wish. First, we change our recurrence to always maximize over an extra term, 
ALIGN(Ø,Ø) = 0. This lets us replace any score-worsening suffix of the alignment with 
an empty alignment. Second, we simply start our traceback at the highest scoring 
subalignment. This lets us ignore any score-worsening prefix of the alignment. Hence our 
traceback will give us the pair of subsequences in S and T that have the highest alignment 
similarity.

Page 12 of 90



Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 3.: local sequence alignment. Top: Smith-Waterman local alignment. Because start and end gaps 
are free of cost, its alignment score doesn't include any gaps. Bottom: alignment of the most-similar pair of  
subsequences from two sequences. Here the right and left sides the the alignmetn are 'empty', without any 
gaps at all.

As I said earlier, the major alignment algorithms that I discuss in this thesis are 
generalizations of this simple dynamic programming method. It is important to note that 
there are many methods to solve pairwise sequence alignment with lower complexity 
bounds, or under more biologically correct scoring schemes for indels, or as fast 
approximations, and so on. Certainly, the algorithms in this thesis can also make use of 
some of these augmentations, and I will consider a few interesting ones in the 'Discussion' 
section. For example, all of the algorithms in this paper can be modified to use the 
popular 'affine' gap costs, in which the cost of an indel is (ax + b), where x is the number 
of gaps, a is the penalty for each additional gap, and b is a penalty for 'opening' the gap in 
the first place. This is a better approximation of natural evolutionary processes in which 
insertion and deletion mutations are rare but have variable sizes. There are many other 
models for scoring indels that are more biologically motivated (e.g. logarithmic gap 
penalties suggested by (Gu and Li, 1995)) which might also be applicable to the 
algorithms developed in this thesis. However, my main focus in this thesis is partial 
ordering, not scoring schemes. I will mostly consider alignment under a simple scoring 
model with unit-cost gaps.
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2.2 Progressive profile alignment of multiple sequences
So far we have considered alignments of two sequences, commonly known as 

pairwise alignments. Now, let us consider the problem of aligning multiple sequences. A 
row-column multiple sequence alignment is just like a pairwise alignment, but with many 
sequences in a stack:

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc

Qualitatively, we can see that this alignment does a good job of matching similar 
regions of S1, S2, and S3. We need to quantify this goodness with a scoring function before 
we can write an algorithm for multiple alignment. Although there is no general agreement 
on a 'best' type of multiple alignment score [cite], the most popular one is sum-of-pairs 
[cite]. The sum of pairs score is just the sum of the scores of all pairwise alignments that 
are contained in the multiple alignment. For example, the alignment above would have a 
score equal to the sum of the scores for these pairs:

S1 = aug---gacugug-----
S2 = agg---gacaaugcauuc

S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc

S1 = aug---gacugug-----
S3 = ---cccgacaau--acuc

In order to make these into valid pairwise alignments, we ignore all of the 
columns that only have gaps. Although it is simple to calculate the sum-of-pairs score of 
an alignment, it is NP-Complete to find an alignment with the optimal sum-of-pairs score 
under the scoring model we've considered (Wang and Jiang, 1994). This is unfortunate, 
because multiple alignments are bread and butter for studies of molecular evolution. 
Multiple alignments allows us to find evolutionary relationships between DNA, RNA, 
and protein sequences, to build models for recognizing and analyzing families of genes, 
and to gain insight into their biological roles. For example, positions of a multiple 
alignment that are the same for many related sequences are probably crucial for that 
molecule to function properly. Therefore multiple alignment has been the subject of 
unrelenting, intense study; there are many, many approximation algorithms for this 
problem. 

The algorithms I will discuss in this paper are based on variations of progressive 
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alignment.4 Progressive alignment algorithms build a multiple alignment from a series of 
pairwise alignments. Of course, this means that our previous ALIGN(sequence,sequence) 
algorithm isn't enough; it outputs pairwise alignments but only takes sequences as input, 
so we can never produce an alignment with more than two sequences. Therefore we have 
to define an ALIGN(alignment,alignment) algorithm which takes two alignments as 
inputs and merges them together into a single, larger alignment.

The earliest method of this type is due to (Feng and Doolittle, 1987). Rather than 
trying to align two entire alignments, they compressed alignments into alignment profiles. 
An alignment profile just keeps track of the number of nucleotides at each position. For 
example, the alignment written above would be squished into a profile as follows:

Alignment:
          aug---gacugug-----
          agg---gacaaugcaugc
          ---cccgacaau--acuc
Profile:
a count = 2      3 22   2   
u count =  1       1 3   11 
g count =  12   3   1 2   1 
c count =    111  3    1 1 2
- count = 111222      121111

This is lossy compression, since the profile doesn't have any information about 
which bases follow which. For example, this profile would be consistent with an 
alignment that has a sequence starting in “augccc”. However, this profile representation 
allows us to use our ALIGN(sequence,sequence) algorithm to align profiles with only a 
slight modification. All we need to do is define a scoring function score(p,p') for aligning 
two profile positions p and p', where p and p' are in {a,u,g,c,-} x ℜ .5 For example, we 
might use a sum-of-pairs style score by setting score(p,p') as follows:

 score p , p ' =∑
b ∈p
b '∈ p '

scoreb , b'  fraction of b  in p fraction of b '  in p ' 

An important note is that since sum-of-pairs multiple alignment is NP-complete, 
ALIGN(alignment,alignment) can only approximate an optimal alignment, even if it is 
based on a more faithful representation than profiles. These approximations are generally 
much better if the alignments they merge are relatively similar to each other. Intuitively, 
we don't have to insert many gaps if the alignments are similar, so there are fewer ways to 

4 'Progressive alignment' is sometimes used to refer only to methods guided by phylogenetic trees. Here, I 
will use the term to refer to any algorithm for building multiple alignments from a series of pairwise 
'alignments of alignments'.

5 That is, a profile position is a set of pairs of (character, character count).
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insert them poorly. Therefore the the order we choose for merging the multiple 
alignments is very important. If we simply merge each sequence into a multiple alignment 
one by one, we will get very bad results. 

(Feng and Doolittle, 1987) and many others since then have used phylogenetic 
trees to guide the multiple alignment. A phylogenetic tree represents the evolutionary 
relationships of a set of species. Each leaf on the tree is a sequence, and each internal 
node represents the most recent common ancestor of all the sequences in its subtree. 
Therefore, the more closely related the sequences, the closer to each other they are on the 
tree. This is why phylogenetic guide trees are so popular for this purpose; a good 
phylogenetic guide tree greatly improves the quality of an alignment. There are many 
methods for computing a phylogenetic tree for n sequences from an n by n matrix of the 
distance between each pair (e.g. Fitch and Margoliash, 1967; Saitou and Nei, 1987), 
which we can compute using pairwise alignments. With the tree in hand, we now build a 
multiple alignment by successively merging the two children of each internal node.

Table 4.: progressive profile alignment guided by a phylogenetic tree. Alignment profiles are drawn on the 
nodes of the tree. Alignments are drawn above the profiles. Ideally, each successive alignment merges the 
two most similar sequences.

If we have k sequences to align of length at most n, this method calls 
ALIGN(sequence,sequence) k(k - 1)/2 times to compute the matrix of pairwise distances, 
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then calls some combination of ALIGN(sequence,sequence) and 
ALIGN(alignment,alignment) to compute alignments for the (k - 1) internal nodes of the 
tree. Hence the algorithm runs in O(n2k2) time and O(n2) space.6 This is not actually true; 
each alignment will insert some gaps into the sequences, and once inserted, gaps can 
never be removed. Hence each merged alignment will be longer than the alignments from 
which it was generated. We can imagine a nightmare scenario in which each alignment 
contains as many gaps as possible, so each profile for k sequences has O(kn) positions, 
greatly increasing the method's running time. However, we are using this method to align 
sequences with some significant evolutionary relationships to each other, so they are not 
too dissimilar. Typically sequences with very low similarity are simply not aligned or are 
processed separately from the rest (e.g. Thompson et al., 1994). This sort of issue is not 
my main concern in this thesis, although I will touch on it briefly.

2.3 Partial-order alignment of sequences
As I alluded to in the previous section, there are several troubling aspects of the 

traditional row-column and row-column profile representations for multiple alignments. 
Each sequence is filled with 'gap' characters that don't represent any of its actual features, 
but rather its relationships to other sequences. Shouldn't we represent these relationships 
with some kind of direct mapping, rather than manipulating the sequences themselves? 
However, a row-column profile doesn't have any information about a mapping between 
sequences. For example, let us consider two different sequences we might to the 
alignment that we examined in the previous section. In the first case, we'll just add 
another copy of S2; in the second case, we'll add a new sequence S4.

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc
S2 = agg---gacugugcaugc

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc
S4 = agg---gacugugcacgc

Even though S2 is already in the alignment and S4 has a subsequence (“cacgc”) that 
never appeared in any of the original sequences, they both receive an equal alignment 
score. We could avoid this problem by guiding the alignment with a phylogenetic tree so 
that the identical sequences are aligned together before any gaps or mismatches can 
pollute the profile. But it still seems like a strange order dependence when an alignment 
can't recognize when it has a perfect template for matching a new sequence unless the 
alignment was built in a correct order. 

In addition, gaps are a highly degenerate representation for indels. We only insert 
gaps in order to maximize the match/mismatch scores, but there are combinatorically 
many ways to insert gap characters and still have exactly the same matches and 

6 Plus O(n|S|) space to store the alignment, but typically |S| << n, so the O(n2) factor is the bottleneck.
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mismatches. Yet the choice of gap insertions has a large effect on alignment. We can 
generate two equally scoring alignments which represent the same sequence of insertions 
and deletions:

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc

S1 = ---auggacugug-----
S2 = ---agggacaaugcaugc
S3 = ccc---gacaau--acuc

But if we align a sequence “ggcgacaaugc” with these, we get very different results:

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc
S4 = --gcc-gacaaugc----

S1 = ----auggacugug-----
S2 = ----agggacaaugcaugc
S3 = -ccc---gacaau--acuc
S4 = gcc----gacaaugc----

(Lee et al., 2002) argue that the root of these problems is that a row-column 
alignment forces a total ordering on its positions. That is, each position in the alignment 
has one predecessor and one successor.7 However, even with an optimal pairwise 
alignment, we can only deduce a partial ordering. Based on the information in S1, S2, and 
S3, we simply can't know whether “agg” comes 'before' or 'after' “ccc” in some ancestral 
sequence, or if they even ever coexisted in a sequence. Yet row-column alignments 
assume that “agg” and “ccc” do have some ordering.

To avoid the difficulties of gapped, total-order methods, (Lee et al., 2002) 
introduced partial-order multiple sequence alignments (PO-MSA). A partial order 
alignment is a directed acyclic graph. Each node in the PO-MSA is a position in the 
alignment. If the graph were constrained to have a total ordering, each node would have 
at most one incoming edge (predecessor) and one outgoing edge (successor). However, in 
a PO-MSA, each node can have multiple predecessors and multiple successors. This 
allows the PO-MSA to preserve all of the information about each of its sequences; each 
sequence that has been merged into a PO-MSA still exists as a subgraph of that PO-MSA. 
Therefore when we align a sequence S with a PO-MSA T, we implicitly consider the 
optimal alignment of S with every sequence in T. See the following figure for an 
illustration of PO-MSA in action.

The idea behind the PO-MSA algorithm is simple. In total-order sequence 
alignment, each subsequence (si,sm) that we consider has exactly one 'next' suffix, but in a 
PO-MSA, each node si has one suffix for each outgoing edge. So to find an optimal 
alignment, instead of maximizing over a single 'next' suffix, we maximize over several 
different 'next' suffixes. That's all there is to it; we can use exactly the same algorithms as 
we do in ordinary sequence alignment. The key step is how we merge together two 

7 To be technically correct, the first position has no predecessor and the last position has no successor.
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aligned sequences into a partial order graph.

a)

b)

c)

d)

e)

f)

Table 5: partial order alignment of sequences. a) two sequences represented as graphs. b) Ordinary 
sequence alignment with gaps. c) node fusion. Note that each sequence is a subgraph of the PO-MSA. d) a 
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third sequence. e) alignment of the sequence with the PO-MSA. The alignment considers all paths through 
the PO-MSA and aligns the sequence with the optimal one. f) node fusion into a new PO-MSA .

I will now give a more formal presentation of the algorithm ALIGN(PO-MSA,PO-
MSA) (as in Grasso and Lee, 2004). Recall that for two suffixes (si,sm) and (tk,tn) of 
sequences S and T,  the standard algorithm's recurrence was:

ALIGN((si,sm),(tk,tn)) = best of
replace= score(si,tk) + ALIGN((next(si),sm), (next(tk),tn))
insert = score(-,tk) + ALIGN((si,sm), (next(tk),tn))
delete = score(si,-) + ALIGN((next(si),sm), (tk,tn))

For two PO-MSAs, however, each node can have more than one next suffix. That 
is, next(n) is not a single successor node, but rather a set of successor nodes. To find the 
optimal alignment, we simply maximize over all possible pairs of next suffixes:8

ALIGN s i , sm, t k , tn=

max{
replace = score  s i , t k + max

snext∈nextsi
tnext∈nexttk

ALIGN ( s next, sm ,t next , t n )

insert = score - , tk  + max
tnext∈next tk

ALIGN ( si , sm ,t next , t n )

delete = score  s i , -  + max
snext∈nextsi

ALIGN ( s next, sm ,t k , t n )

Note that the notation score(-,tj) just means the score for an insertion of tj; we 
don't actually introduce gaps into the alignment. 

This recurrence make sense on the face of it, but what is a 'suffix' of a partial order 
alignment? A row-column profile has a clear 'start' and 'end' because the positions have a 
total ordering. But a PO-MSA represents many different sequences, each of which could 
have different starting and ending nodes. Therefore a PO-MSA S has to keep lists of the 
start nodes Sstart and end nodes Send  for each sequence in the alignment. To do global 
alignment, we'll find the optimal alignment between any one sequence in S and any one 
sequence in T. We'll do this by maximizing over all pairs of starting and ending nodes:

ALIGN S ,T =
max
si∈S start

sm∈S end

t k∈T start

t n∈Tend

{ALIGN si , sm , t k , t n

However, we don't actually have to compute O(|Sstart||Send||Tstart||Tend|) alignments! 
We can see this by representing Sstart and Send with nodes in the PO-MSA. Sstart is a 
8 (Lee et al., 2002) and (Grasso and Lee, 2004) describe POA in terms of prefixes rather than suffixes.
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predecessor of each start node, and Send is a successor of every end node. Then a global 
alignment is just ALIGN((Sstart,Send),(Tstart,Tend)).

Table 6: Alignment of PO-MSAs with 'start' and 'end' nodes. Top: sequence S. Middle: sequence T. 
Bottom: their alignment A. A global alignment with A would be an alignment with (Astart,Aend).

To compute an optimal local alignment, we use the same approach we used for 
total order sequence alignment. We initialize the alignment so that ALIGN((si,Send),Ø) = 
ALIGN(Ø,(tk,Tend)) = 0 for all si and tk., which makes 'end gaps' cost nothing. We then 
start the traceback at the subalignment with the highest similarity score, which makes 
'start gaps' cost nothing.

Note that this algorithm does not find an optimal alignment of each path in S with 
each path in T. Rather, it finds the optimal alignment of any one path in S with any one 
path in T. This is a somewhat different notion than row-column profile alignments, which 
try to match the entirety of each profile. We can think of the PO-MSA algorithm as a 
pattern matching procedure something like “is any path is S like any path in T”, whereas 
row-column profile alignment is more like “are all the paths combined in S like all the 
paths combined in T”.

Once we've found the optimal alignment of S and T, we merge them together into 
a new alignment A. We do this by processing each aligned pair of nodes (si,tk) as follows:

1. If si and tk are matched, merge them into a new node aik. The new node has all of 
the incoming and outgoing edges from both si and tk. Remove any redundant 
edges.

2. If si and tk are mismatched:
1. If neither si nor tk have been mismatched before, put them into a set of nodes 

alignedik that are aligned at the same 'position' in A (drawn as dotted circles in 
the diagrams above).

2. If either si or tk has been mismatched before, then combine their sets alignedi 

and alignedk into a single set of aligned nodes alignedik. Then merge any nodes 
in the set that have the same nucleotide.

3. If si or tk is a gap, do nothing.

The first step joins the two PO-MSAs at every one of their matched positions. 
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This corresponds to an assumption that matched bases are homologous, so paths through 
one of the bases are equivalent to paths through the other matched base. The second step 
doesn't merge mismatched nodes; it preserves them as alternate paths through the PO-
MSA. However, we do remember which nodes were aligned together using aligned sets 
(indicated by dashed circles in the illustration). We treat node alignment according to a 
transitive property: if node1 is aligned with node2 and node2 is aligned with node3, then 
node1 is aligned with node3. Thus, if we align a 'U' with a 'G' and the 'G' had been aligned 
with another 'U' node in the past, then we merge the two 'U' nodes.9 In addition, the 
aligned node sets allow us to translate the PO-MSA into a row-column alignment. 
Otherwise, we wouldn't know which alternate paths are indels and which are due to 
mismatches. Finally, the third merging step leaves gapped nodes alone - they will end up 
as alternate paths through the graph. 

At the end of this merging, each of the old PO-MSAs is a subgraph of the new 
PO-MSA. Note that this merging avoids the degeneracies of 'gapped' representations. A 
PO-MSA can be translated into a large number of equivalent row-column alignments. 
This property makes partial-order alignment resistant to order-of-alignment dependencies. 
Indeed, the first version of PO-MSA simply merged sequences into the alignment one by 
one without calculating a guide tree. There is still some order dependence,10 and a tree-
guided method improves the results (Grasso and Lee, 2004).

What is the complexity of PO-MSA? If we just do a pairwise alignment of two 
sequences, its complexity is the same as ordinary sequence alignment. However, if the 
number of branches is high, we have to do more operations. The most costly step is 
computing replace, becaue we have to optimize over all snext in next(si) and all tnext in 
next(tk). Let |S| be the number of nodes in S and Edges(S) be the number of edges in S. 
We have to store alignment scores for each pair of suffixes, so we need O(|S||T|) space. 
Note that for each pair of nodes (si,tk), we look up an ALIGN score exactly once for each 
pair of next nodes (snext , tnext). That is, over the course of the whole alignment, we test 
each edge in S once against each edge in T. The number of insert and delete lookups at 
each step are fewer than the number of replace lookups, so they don't increase the 
complexity. Hence the pairwise alignment time is O(Edges(S)Edges(T)).

As we can see in the illustration, this merging step compresses a PO-MSA down 
to a small number of nodes. The more closely related the sequences are, the more 
compact the graph. We can contrast this to row-column profile alignments, in which 
every sequence that is aligned adds another row to the multiple alignment and in which 
every profile position has five separate counts that factor into its scoring function. The 
compact nature of PO-MSAs results in impressive alignment speeds. (Grasso and Lee, 
2004) note that for sequences with high similarity, the program POA2 comes close to the 
speed of the MAFFT alignment program (Katoh et al., 2002), even though POA2 
computes optimal alignments in quadratic time and MAFFT uses fast fourier transforms to 
do approximate sequence alignments in log-linear time.
9 In POA2 (Grasso and Lee, 2004), this behavior is optional; it is activated with a “-fuse_all” switch.
10 See section 3.3 for a more detailed discussion.
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2.4 Basics of RNA structure
DNA and RNA molecules are very similar to each other. Both are sequences (aka 

strands) composed of nucleotides (aka bases) with adenine, cytosine, and guanine 
residues ('a', 'c', and 'g'); DNA also has thymine ('t'), whereas RNA has the similar 
nucleotide uracil ('u'). In both DNA and RNA, some bases pair to each other using 
hydrogen bonds: G to C and A to U. Less stable G-T and G-U 'wobble' pairs are also 
common. Most other combinations are possible but they are very unstable and hence rare.

However, while DNA molecules are generally locked into long, double-stranded 
helices, single-stranded RNAs can take on a rich set of structural features that have a 
great influence on their roles in the cell. The schematic below illustrates some common 
terms for RNA structural features.

...(((....)))..((..((.((..((....))..))))..((....))..))
GCCAGUGGAGGCUACGGAUCACAUGGUGUAACCAAGGUUGAAUUGAGAAACGCC

Table 7: a hypothetical RNA secondary structure. Top: structure drawn as a typical schematic. Solid lines 
are bonds between bases. Arrowed lines are the molecule's phosphate backbone, starting at the 5' side and 
ending at the 3'  side. Structures are often described in terms of stems - series of paired bases that form a 
double helix - and loops - sequences of unpaired bases. The 'zero' loop is formed by the start and end of  
the sequence. A hairpin loop touches only one stem. An internal loop has two sides, each touching two 
different stems. A bulge loop has one side with zero bases. A multibranch loop touches more than two 
stems; a series of connected multibranch loops give rise to complex shapes with many branches. Bottom: 
the structure in 'bracket' notation. '.' is an unpaired base, '(' is a bases paired toward downstream, toward 
the 3' end of the structure, and ')'  is a base paired upstream, toward the 5' start of the structure.
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This thesis is about algorithms for comparing RNA structures. In order to compare 
them, we'll first have to choose data structures to represent them. As a first step, I will 
consider some theoretical and practical restrictions we can impose on RNA structures.

There are a few theoretical constraints on the number of nucleotides in RNA 
loops. The phosphate backbone of an RNA strand has a physical limit on its bond angles, 
so the molecule cannot make sharp twists. Therefore RNAs cannot form hairpin loops of 
fewer than three bases. Also, although there is no hard upper limit on loop sizes, their 
sizes are not completely arbitrary. This is due to combinatorics and thermodynamics: a 
long enough stretch of a nucleotides is bound to have some potential pairings, and base 
pairs are thermodynamically favorable. For this reason, many algorithms on RNA 
structures limit their consideration to loops of size less than 30 bases or so (e.g., see 
Lyngsø et al., 1999), which is still rather large, since loops are typically 10 or fewer 
bases.  Although the algorithms that I build on and develop in this thesis do not require 
limits on the size of loops, some of them will run more efficiently for structures with 
small loops.

In computational studies, it is also common to consider only RNA secondary 
structures, rather than their full tertiary structures. A secondary structure is one in which 
all base pairs are nested; no base pairs are crossing. To be formal: let us denote a pair 
from the i-th base to the j-th base as (i,j), for i < j. An RNA's secondary structure consists 
of all base pairs such that for any (i,j) and (u,v), if i < u, then v < j. The RNA's tertiary 
structure consists of all other base-pairing interactions, as well as a some exotic 
interactions such as base triplets. 

...(((........[[.)))..]]
Table 8: a simple tertiary structure. Top: a H-type pseudoknot (so-called because it is formed on a hairpin 
loop). Bottom: bracket notation for tertiary structure. Ordinary bracket notation can only represent nested 
base pairs. Here, square brackets denote non-nested base pairs that 'cross' the secondary structure.

Tertiary structure is sometimes left out of consideration because it is 
computationally hard to work with. For example, it is NP-hard to compute the 
energetically optimal tertiary structure of an RNA (Akutsu 2000; Deogun et al. 2004) or 
to compute the optimal edit distance between two tertiary structures under certain editing 
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models (Wang and Zhang, 2001), whereas both of these problems can be solved in 
polynomial time for secondary structures (Zuker et al., 1999; Bafna et al., 1996). Most of 
this thesis is devoted to optimal comparisons between of secondary structures. However, 
following (Wang and Zhang, 2001), I will develop an algorithm that builds approximate 
tertiary comparisons from a series of secondary structure comparisons.

There are quite a few classes of algorithms for the study of RNAs. There are many 
methods for predicting the structure of RNA sequences based on thermodynamics or 
evolutionary information, for scanning genomes for RNAs that can fold into a particular 
structure, and even for simply drawing RNA structures without overlapping lines. Even 
within the class of RNA structure comparison algorithms, there are a large number of 
methods and representations for RNA structures. In this thesis I will only address the 
problem of aligning multiple RNA structures: establishing a correspondence between 
structural features so that we can overlay a set of structures upon each other.

2.5 Alignment of two RNA secondary structures

2.5.1 Pairwise alignment of arc-annotated str  ings  
(Bafna et al., 1996) represented and aligned RNA structures as arc-annotated 

strings. An arc-annotated string S is a sequence of m nucleotides Ss = (s1,s2,...,sm) and a set 
of mp base-pairs Sp = {(si,sj),(sk,sl),...}. The main idea is to constrain a sequence alignment 
to take into account base pairing interactions. 

The algorithm of (Bafna et al., 1996) for aligning two arc-annotated strings S and 
T has to align each substring of Ss with each substring of Ts, so it has time and space 
complexity O(m2n2). (Wang and Zhang, 2001) showed that certain substring-substring 
alignments can be omitted, which reduces the time and space complexity to O(mmpnnp). 
In general O(mp) = O(m), but this is still an improvement because there are always fewer 
pairs than bases, and typically mp < (m / 3). Here I will present the method of (Wang and 
Zhang, 2001).11

11 For simplicity, I will present  the algorithm using unit-cost gap penalties. (Wang and Zhang, 2001) show 
how to extend the algorithm to use affine gap penalties, which is relatively straightforward.
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Table 9: arc-annotated strings. Top: arc-annotated strings S (left) and T (right). Bottom: alignment of the 
two. Note that to satisfy the arc-constraint, a base pair must be aligned as a whole unit: either it is aligned 
with another base pair, or it is aligned with a 'gap' base pair. The alignment has only a single set of arcs 
that is imposed on both structures.

The algorithm basically forces a sequence alignment to satisfy an arc-matching 
constraint: if (si,sj) is in Sp, then we can only align si with tk if (tk,tl) is in Tp and we align sj 

with sl. That is, (si,sj) is treated as a whole unit rather than as two individual bases. This 
means that the resulting arc-annotated alignment has only a single set of arcs, and hence 
represents only a single consensus structure. See the table above for an example of an arc-
annotated alignment.

First, we'll need some notation. For an arc-annotated string S with sequence Ss and 
pairs Sp:

(si,sj) is a subsequence containing all of the nucleotides from si to sj.
next(si) = si+1, or Ø if i = m.
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prev(si) = si-1, or Ø if i = 1.
pair(si) = (si,sj) or (sj,si) if either base pair is in Sp, or Ø if si is unpaired.
base_score(si,tk) is the score for aligning si with tk.
pair_score((si,sj),(tk,tl)) is the score for aligning the pair (si,sj) with the pair (tk,tl).
(si,sj) is a suffix if next(sj) = Ø
(si,sj) is a pair-suffix of base pair p = (sa,sb) if a < i and next(sj) = sb. 

For example, consider the the arc-annotated string S in the table above. 
“auaccuaugg” and “augg” are suffixes of Ss. “cc” and “c” are pair-suffixes of the 
innermost base pair. “uaccua” and “cua” are pair-suffixes of the outermost base pair.

As in sequence alignment, the optimal score for a global alignment will the the 
score computed for ALIGN((s1,sm),(t1,tn)). Let us now consider how we can break each 
ALIGN((si,sj),(tk,tl)) into subalignments. If si is not paired and tk is not paired, then we 
proceed as we would in sequence alignment:

if pair(si) = pair(tk) = Ø:
ALIGN((si,sj),(tk,tl)) = max of
replace base_score(si,tk) + ALIGN((next(si),sj), (next(tk),tl))
insert base_score(-,tk) + ALIGN((si,sj), (next(tk),tl))
delete base_score(si,-) +  ALIGN((next(si),sj),(tk,tl))

If si is paired but tk is not paired (i.e. (si,sm) or (sm,si) is in Sp), we must place a gap 
against either si or tk. Otherwise, we would break the arc-constraint. If we place a gap 
opposite si, we'll charge it half of the cost for gapping (si,sm). Why only half the cost? 
Since we gapped si, the arc-matching constraint will force the remaining subalignment, 
ALIGN((next(si),sj), (tk,tl)), to gap sm (as we'll see later on). When it does, we'll charge it 
the other half of the cost. Thus the whole alignment includes the total cost for gapping the 
base pair (si,sm).

if pair(si) = (si,sm) and pair(tk) = Ø:
ALIGN((si,sj),(tk,tl)) = max of
insert base_score(-,tk) +  ALIGN((si,sj), (next(tk),tl))
delete (1/2)*pair_score((si,sm),(-,-)) + ALIGN((next(si),sj), (tk,tl))

If si is unpaired but tk is paired, it is a mirror case of the above. 
What if both si and tk are paired, i.e. (si,sm) is in Sp and (tk,tn) is in Tp? There are two 

cases. First, if sm is not in the subsequence (si,sj) or tn is not in the subsequence (tk,tl), then 
we can't align those base pairs; they are incompatible with the substrings (si,sj) and (tk,tl). 
This can happen if si is the second base in its pair, so sm occurs before (si,sj) - that is, if the 
current alignment is part of a large alignment that will gap sm. This can also happen if the 
arc-annotated string has tertiary structure (explained in more detail below). In either case, 
we must again gap si or tk.
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if pair(si) = (si,sm) or pair(tk) = (tk,tn) is incompatible with (si,sj) or (tk,tl):
ALIGN((si,sj),(tk,tl)) = max of
insert (1/2)*pair_score((-,-),(tk,tn)) + ALIGN((si,sj), (next(tk),tl))
delete (1/2)*pair_score((si,sm),(-,-)) + ALIGN((next(si),sj), (tk,tl))

In the second case, (si,sm) is inside (si,sj) and (tk,tn) is inside (tk,tl), so we can align 
the two base-pairs. Then the optimal alignment constrained by that base pair will include 
two subalignments. The first is an alignment of the 'loops' defined by the base pairs - the 
nucleotides between the paired bases (si,sm) and between (tk,tn). Hence we must align 
(next(si),prev(sm)) with (next(tk),prev(tn)). The second is an alignment of the rest of the 
bases that are left over - we must align (next(sm),sj) with (next(tn),tl).

if pair(si) = (si,sm) and pair(tk) = (tk,tn), and they are compatible with (si,sj) and (tk,tl):
ALIGN((si,sj),(tk,tl)) = max of
replace pair_score((si,sm),(tk,tn)) 

+ ALIGN((next(si),prev(sm)),(next(tk),prev(tn)))
+ ALIGN((next(sm),sj),(next(tn),tl))

insert (1/2)*pair_score((-,-),(tk,tn)) + ALIGN((si,sj), (next(tk),tl))
delete (1/2)*pair_score((si,sm),(-,-)) + ALIGN((next(si),sj), (tk,tl))

To complete these recurrences, we have to define what happens when we have an 
empty subsequence, i.e. (si,sj) where sj comes before si in Ss. We do this in the same way 
that we did for sequence alignment: ALIGN(Ø,Ø) = 0, ALIGN((si,sj),Ø) is the sum of the 
scores for gapping each base or base-pair in (si,sj), and likewise for ALIGN(Ø,(tk,tl)).

To compute an optimal global alignment, we find ALIGN((s1,sm),(t1,tn)) using these 
recurrences. We can compute a local alignment in exactly the same way as we do for a 
local sequence alignment; we prevent any suffix-suffix alignment from having a score 
below zero, and we start our traceback at the highest-scoring suffix-suffix alignment. We 
don't have to modify the pair-suffix alignments because pair-suffixes are bookended by 
aligned base pairs and hence don't have 'start gaps' or 'end gaps'.
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Table 10: arc-annotated string editing operations during alignment. All images depict alignments of (si,sj)  
with (tk,tl), but some have different structures. Aligned bases are enclosed in dashes. Subalignments are 
colored pink or blue. Top left: base replacement. Top right: base insertion. Bottom left: pair replacement.  
Note that pair replacement splits into two subalignments - pink pair-suffixes 'inside' the paired bases and 
blue suffixes 'outside'. Since tn = tl, (next(tn),tl) is empty, so the second subalignment will have to insert 
(next(sm),sj). Bottom right: pair insertion. We only actually insert tk, paying half of the total cost for 
inserting the pair (tk,tn). All subalignments of (next(tk),tn) will have to insert tn, paying the other half of  
the cost. We guarantee that we'll insert tn in those subalignments; tn's pair, tk, is incompatible with them.
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Table 11: two ways to have incompatible base pairs during alignment. Left: si's partner appears before the 
substring si,sj. This occurs after pair indels, as in the previous table. Right: si's partner appears after si,sj.  
This can only occur if there are crossing base pairs, i.e. tertiary structure.

Note that (next(si),prev(sm)) and (next(tk),prev(tn)) are both pair-suffixes. All of the 
other suffixes considered by ALIGN are always of the same type as (si,sj) and (tk,tl). Since 
we start with an alignment of two suffixes (s1,sm) and (t1,tn), ALIGN only has to compute 
alignments of suffixes to suffixes and pair-suffixes to pair-suffixes. Each pair in Sp has 
O(m) pair-suffixes, so there are O(mmp) pair-suffixes in S. Hence the alignment space 
complexity is O(mmpnnp). To compute each subalignment, we do only a few constant-
time lookups, so the time complexity is also O(mmpnnp).

Earlier, I noted that incompatible base pairs could arise from tertiary structure. If S 
and/or T have tertiary structure, the algorithm will find the optimal alignment of S and T 
whose arcs form a valid secondary structure. For example, consider the crossing base 
pairs (si,sj) and (sk,sl) such that i < k < j < l. If the algorithm chooses to replace either pair, 
then it splits the alignment into two parts that are incompatible with the other pair. 
Therefore the aligned base pairs in the optimal arc-annotated alignment are all non-
crossing; the algorithm chooses the set of non-crossing base pairs that give the highest 
alignment score.

(Wang and Zhang, 2001) outline a two-pass method for aligning tertiary structures 
that takes advantage of this property. In the first pass, they run the algorithm as usual to 
find the optimal alignment of a secondary structure of S with a secondary structure of T. 
In the second pass they run the algorithm again, but with two modifications. First, they 
remove all base pairs (si,sm) and (tk,tn) that were aligned in the first pass. This way, the 
second pass can include base pairs that cross them. The second modification is to 
constrain the alignment so that si must be aligned with tk and sm must be aligned with tn. 
Thus the second pass aligns tertiary structure, but is constrained to respect the base pair 
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matchings made by the first pass.12 This procedure might not produce an optimal 
alignment of tertiary structure; the constraints from the optimal first pass might prohibit a 
good second pass alignment. However, this method appears to produce good alignments 
in practice. Most RNA structures have only a few tertiary interactions, so the optimal first 
pass does most of the work.

A final note: arc-annotated alignments can be thought of as matching “sequence 
and structure”, not “sequence or structure”. For example, if we align a structured RNA 
with its unstructured sequence, the arc-constraint would force us to gap every paired base. 
This is partially a theoretical point, because in practice we want structure-to-sequence 
alignments to do things that a structure-to-structure alignment might not, e.g. favor the 
alignment of paired bases in the structure with complementary bases in the sequence. 
However, it shows the restrictiveness of the arc-annotated representation - because the 
alignment imposes a consensus structure on all aligned RNAs, the alignment don't 
distinguish between structural and non-structural differences. This is an issue that I will 
address in this thesis.

12 (Wang and Zhang, 2001) do not explain their method in detail, but it appears to work in this fashion.
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arc-annotated strings S (top) and T (bottom)

pass 1 result

pass 2 result

final result

Table 12: arc-annotated alignment of tertiary structures. Top: structures S (top) and T (bottom). Middle 
left: the first pass computes the optimal alignment of secondary structures of S and T. Constrained bases 
are highlighted in gray. Middle right: the second pass computes optimal alignment of remaining structure,  
ignoring the base-pairs for constrained bases. Bottom: the resulting arc-annotated alignment.
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2.5.2 Pairwise alignment of for  ests  
RNA secondary structures can be compared and aligned as ordered trees or 

ordered forests. An early example is due to (Shapiro and Zhang, 1990), who used trees to 
represent RNA structure topology. Each node in a tree represents a type of loop. The root 
of a tree is the zero loop, and each internal node is an internal, bulge, or multibranch loop. 
All leaf nodes are hairpin loops. This is a very compact but coarse-grained representation; 
it tells us about an RNA's overall shape, but not about its individual base pairs.

Table 13: Schematics of several tree and forest representations. Top: coarse tree representation (left) of an 
RNA secondary structure (right). Bottom left: tree representation of (Hofacker et al., 1994). Pair nodes 
(ellipses) represent two nodes and the pair between them. Bottom right: forest representation of  
(Hochsmann, 2003). Pair nodes (diamonds) represent a pair between their leftmost and rightmost children.
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There are several more fine-grained tree representations for RNA structures. 
(Hofacker et al., 1994), among others, places unpaired bases on tree leaves and base pairs 
on internal nodes. Hence each internal node represents two bases and the pair between 
them.13 This is analogous to an arc-annotated string, in that each base pair (si,sj) must be 
aligned as a whole unit; si and sj cannot be aligned individually. (Hochsmann et al., 
2003), represents a base pair with a special 'pair' node and its paired bases as its leftmost 
and rightmost children. Unlike the other types of trees, this allows us to generalize 
sequence alignment. If a 'G' and a 'U' are paired in one structure and unpaired in the other, 
the nucleotides will still be matched; only the pair node will be gapped. This is the 
representation I will use in this thesis.

We'll define an alignment A of labeled, ordered forests F and G as follows. A is a 
forest in which each node has a pair of labels: one from a node in F and one from a node 
in G, or else one from either F or G opposite a gap. A must be a “componentwise 
projection” of both F and G (Hochsmann et al., 2003). That is, we can recover F from A 
by erasing the the part of each node label in A that comes from G, deleting each base 
nodes that has a 'gap' label, and merging each pair node that has a 'gap' label with its 
parent node. It is useful to think about forest alignments as generalizations of sequence 
alignments. A sequence alignment is a componentwise projection of each of its 
sequences. Each node in A is like a column in a sequence alignment; the only difference 
is that each column of A is placed on a graph node rather than in a sequence. We score 
forest alignments in the same way as sequence alignments: summing the match, 
mismatch, and gap scores from each column. Hence sequence alignments are just forest 
alignments that have no pair nodes. 

13 (Hofacker et al., 1994) also use 'homeomorphically irreducible trees'  which collapse consecutive 
internal nodes into single nodes representing stems, and consecutive leaf nodes into single nodes 
representing loops.

Page 34 of 90



Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Forest F Forest G

Alignment A of F and G

Table 14: alignment of two RNA forests. Nodes in the forests are labeled with their nucleotide, and a pair  
of indexes (structure, sequence position). For example, g0 is the first nucleotide in structure G. All pair 
nodes have 'sequence position' off the end of the sequence, e.g. f9 when F only has sequence positions 1 
through 8. Each node in the alignment represents a gap or the alignment of a node in F with a node in G.

We'll need some definitions for describing these forests. For a forest F with |F| 
nodes {f1,f2,...,fm}:

Bases(F) is the number of base nodes in F (i.e. number of nodes with no children)
Pairs(F) is the number of pair nodes in F.
MaxLoop(F) is the maximum number of children of any node of F.14

14 For these forests, MaxLoop(F) is just the degree of F. I use this notation because the degree of partial-
order graphs has a different meaning than MaxLoop, so it is useful to keep them distinct.
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next(fi) is the right brother of fi. If fi has no right brother, next(fi) =  Ø
pair(fi) = (fk,fl), where (fk) is the leftmost child of fi and fl is the rightmost child of 

fi. If fi is not a pair node, pair(fi) = Ø.

(fi,fj), where fj is a brother of fi that can be reached by repeatedly applying next, is a 
closed subforest. A closed subforest is to a forest as a subsequence is to a sequence.

(fi,fj) is a suffix if next(fi) = Ø.
(fi,fj) is a nonsuffix if next(fi) is not Ø.
I will typically use (fi,fj) to refer only to the sequence of brother nodes from fi to fj; 

to indicate all of the nodes in that subforest, I will say subforest(fi,fj).

score(fi,tk) is the score for putting fi and tk at the same position in an alignment.

For example, in F in the table above, Bases(F) = 8, Pairs(F) = 1, and MaxLoop(F) 
= 6. next(f2) = f3, and pair(f9) = (f2,f7). (f1,f9) is a nonsuffix, while (f9,f8) and (f2,f6) are 
suffixes. (f3,f8) is an invalid closed subforest because f7 isn't a brother of f3. (f5,f2) is an 
invalid closed subforest because f2 can't be reached from f5 by using next. Note that (f1,f8) 
has only three nodes in it - {f1,f9,f8} - while subforest(f1,f8) contains all of the nodes in F.

Here I will present the alignment algorithm of (Jiang et al., 1995). The original 
algorithm aligns trees and requires distance scores; I will describe a straightforward 
extension that aligns forests and uses similarity scores.15 

I will explain the algorithm in terms of closed subforests, a term introduced by 
(Hochsmann et al., 2003). Just as we can solve alignment of sequences by aligning their 
subsequences, we will solve alignment of forests by aligning their closed subforests. A 
global alignment of  F and G is an alignment of the closed subforests (f1,f8) and (g1,g10) - 
that is, an alignment of all of F with all of G (as shown in the figure above). A local 
alignment of F and G is an alignment of the the closed subforests (fi,fj) and (gk,gl) that 
have the highest similarity.

As in sequence alignment, ALIGN((fi,fj),(gk,gl)) maximizes over subalignments 
produced by replacement, insertion and deletion. 

ALIGN((fi,fj),(gk,gl)) = max of 
ALIGN((fi,fj),(gk,gl)) , replacement 
ALIGN((fi,fj),(gk,gl)) , insertion
ALIGN((fi,fj),(gk,gl)) , deletion

This is a bit trickier than sequence or arc-annotated string alignment. The first 
tricky bit is that we have to consider aligning both next(fi) and pair(fi); in arc-annotated 

15 see e.g. (Bille, 2003) for a variant that aligns forests, and see (Wang and Zhao, 2003), who base their 
parametric, affine-gapped, space-saving algorithm on a variant that uses similarity scores.
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string alignment, we only needed to consider one or the other. In addition, we will have to 
consider both suffixes and nonsuffixes. First, let us consider a replacement operation:

ALIGN((fi,fj),(gk,gl)), replacement = 
score(fi,gk)
+ ALIGN(pair(fi),pair(gk))
+ ALIGN((next(fi),fj), (next(gk),gl))

For replacement, we first align fi and gk at the same position. This splits (fi,fj) into 
two closed subforests. One of them is a loop defined by the paired bases pair(fi). If fi is a 
base node, then it doesn't have any paired bases and pair(fi) = Ø. The second is 
(next(fi),fj); this is the remainder of (fi,fj) after fi and fi's children have been aligned. 
Likewise, we split (gk,gl) into two closed subforests. The optimal alignment of (fi,fj) is 
built from an optimal alignment of the first subforest of (fi,fj) with the first of (gk,gl) and 
an optimal alignment of the second subforest of (fi,fj) with the second of (gk,gl). This is 
just like the 'compatible pair' step of an arc-annotated alignment, in which we split an 
alignment into two subalignments. However, these forests represents base pairs with 
special 'pair nodes'. Note that it would be meaningless to align a nucleotide to a molecular 
bond, so we prohibit alignments between pair nodes and base nodes (e.g. we set 
(score(pairnode,basenode) = -∞).

What happens for insertion or deletion? If we place a gap opposite gk, then we'll 
again split (gk, gl) into two separate subforests: pair(gk) and (next(gk),gl). Clearly, we will 
have to split (fi,fj) into two subforests as well. We don't know which split of (fi,fj) is best, 
so we'll have to try all possible splits. Each node fsplit in (fi,fj) splits it into two subforests: 
one starting at fi and ending at fsplit, and another starting after fsplit and ending at fj. Also, 
although the notation below doesn't show it, we must try splits in which we align the 
entire (fi,fj) with either pair(gk) or (next(gk),gl) and align Ø with the remaining subforest of 
G. For example, if gk is a base node then pair(gk) = Ø, so we don't want to align any 
subforest of F with pair(gk). 

Note that even if (fi,fj) is a suffix, (fi,fsplit) will be a nonsuffix (unless fj = fsplit). 
Therefore, unlike arc-annotated string alignment, we have to consider nonsuffixes. 

ALIGN((fi,fj),(gk,gl)), insertion = 
score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGN((fi,fsplit),pair(gk))
+ ALIGN((next(fsplit),fj), (next(gk),gl))

}

Deletion is just a mirror image of insertion - we place a gap opposite fi, then 
maximize over all splits gsplit in (gk,gl). Finally, we have to initialize this algorithm just as 
we did for the others:
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ALIGN(Ø,Ø) = 0
ALIGN((fi,fj),Ø) = sum {fa in subforest(fi,fj) } score(fa,-)
ALIGN(Ø,(gk,gl)) = sum {gb in subforest(gk,gl) } score(-,gb)

What is the complexity of a dynamic programming algorithm based on these 
recurrences? Since each pair defines a loop, Pairs(F)MaxLoop(F) = O(|F|), and there are 
O(MaxLoop(F)2) closed subforests defined on each loop.16 So there are 
O(Pairs(F)MaxLoop(F)2) = O(|F|MaxLoop(F)) closed subforests in F. To store 
alignments of each subforest of F with each subforest of G, we would need O(|F||G|
MaxLoop(F)MaxLoop(G)) space. For each subforest-subforest alignment we have to 
check O(MaxLoop(F)) split points for insertions and O(MaxLoop(G)) split points for 
deletions. Hence O(|F||G|MaxLoop(F)MaxLoop(G)(MaxLoop(F) + MaxLoop(G)) is an 
obvious time complexity bound.

However, if we look at the algorithm more carefully, we can see that its 
complexity is a bit better. Do we really have to align all closed subforests? After all, to 
align two sequences, we only align suffixes, not all subsequences. Let us try a similar 
approach here.

When will we need to consider nonsuffixes? When we indel a pair node, we have 
to divide our alignment into two subalignments. If (fi,fj) was a nonsuffix and (gk,gl) was 
also a nonsuffix, then we would have to consider nonsuffix-nonsuffix subalignments - the 
subalignment ALIGN((next(fi),fj), (gsplit,gl)) would be between two nonsuffixes. However, 
as long as either (fi,fj) or (gk,gl) is a suffix, this division won't require us to consider a 
nonsuffix-nonsuffix subalignment (as shown in the next figure). So we only need 
nonsuffix-nonsuffix subalignments to compute the values of other nonsuffix-nonsuffix 
subalignments. Since we start with an alignment of two suffixes - the alignment of the 
whole of F with the whole of G - we never have to compute any nonsuffix-nonsuffix 
subalignments.

16 Just as there are O(n2) substrings of a string of length n
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A gap in a suffix-suffix alignment produces suffix-nonsuffix, suffix-suffix

A gap in a nonsuffix-suffix alignment produces suffix-nonsuffix, nonsuffix-suffix

A gap in a suffix-nonsuffix alignment produces suffix-nonsuffix, suffix-nonsuffix

Table 15: So long as we don't start with a nonsuffix-nonsuffix alignment, we will never have to consider 
one. This is because the all other types of alignment (Suffix-suffix, nonsuffix-suffix, and suffix-nonsuffix) 
can be computed without considering nonsuffix-nonsuffix subalignments. 'Split' points are depicted as 
black slashes that divide the subforest of G into two adjacent subforests.
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How much time and space does this save? Well, there are O(|F|) suffixes in F, 
since there is one suffix for each node. If we subtract the suffixes from the total number 
of closed subforests, we see that there are O(|F|MaxLoop(F) - |F|) = O(|F|MaxLoop(F)) 
nonsuffixes in F. Hence there are:

1. O(|F||G|) suffix-suffix subalignments
2. O(|F||G|MaxLoop(G)) suffix-nonsuffix subalignments
3. O(|F|MaxLoop(F)|G|) nonsuffix-suffix subalignments
4. O(|F|MaxLoop(F)|G|MaxLoop(G)) nonsuffix-nonsuffix subalignments

Since we only have to consider 1, 2, and 3, the space complexity is better than the 
naive approach: we only need to compute and store O(|F||G|
(MaxLoop(F)+MaxLoop(G))) subalignments. The time complexity is also improved: we 
check O(MaxLoop(F)+MaxLoop(G)) split nodes for each subalignment, so the total time 
is O(|F||G|(MaxLoop(F)+MaxLoop(G))2).

Incidentally, note that we only have to consider splits and nonsuffixes of F when 
we gap pair nodes in G. If G has no base pairs, then we don't have to compute any 
nonsuffix-suffix alignments, and we don't have to do O(MaxLoop(F)) split node tests per 
step. Then the algorithm requires only O(|F||G|MaxLoop(F)) space and O(|F||G|
MaxLoop(F)2) time. If neither F nor G has base pairs, then the algorithm only needs O(|
F||G|) space and time - it reduces to Needleman-Wunsch sequence alignment. So with 
these modifications, forest alignment is a generalization of classic sequence alignment.17

Can we modify this algorithm for local alignment, in which we want to find the 
closed subforests (fi,fj) and (gk,gl) with the highest similarity? Both (fi,fj) and (gk,gl) could 
be nonsuffixes. A simple method used by (Hochsmann et al., 2003) is to simply bite the 
bullet and compute all nonsuffix-nonsuffix alignments. This is the naive algorithm that 
runs in O(|F||G|MaxLoop(F)MaxLoop(G)(MaxLoop(F)+MaxLoop(G))) time and O(|F||
G|MaxLoop(F)MaxLoop(G)) space. It would be surprising if this was the best we could 
do. After all, we don't have to compute all subsequence-subsequence alignments for local 
sequence alignment, so why should we have to compute all subforest-subforest 
alignments for local forest alignment?

(Jansson et al., 2004) give a two-pass method to locally align two forests without 
increasing the time and space complexity. In the first pass we compute a global alignment 
as usual, storing its results in a matrix Mglobal. In the second pass we recompute the suffix-
suffix alignments and store them in a matrix Mlocal. However, the second pass computes 
its alignments with a few modifications reminiscent of the 'most similar subsequence' 
alignment algorithm (discussed in section 2.2). The first modification is to set the 
maximum cost of a suffix-suffix alignment to 0. The second modification is that we start 
our alignment traceback at the highest-scoring subalignment in Mlocal, rather than only 
starting the traceback at the 'entire forest' suffixes like we did in the global case. These 

17 We could also get the algorithm to do O(|F||G|) sequence alignment by transforming each sequence S so 
that next(sn) = Ø and pair(sn) = (sn+1,sn+1).
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two modifications are just like the ones for 'most similar subsequence' alignment - they let 
us put any number of 'cost-free' indels at the start or end of a suffix.

The crucial third modification is as follows. Whenever we look up the value of a 
subalignment with pair(fi) or pair(gk), we look up that subalignment's score in Mglobal 

instead of Mlocal. That is, we don't allow any 'free' gaps in subforests within our alignment. 
We modify the recurrences in this manner:

ALIGNlocal((fi,fj),(gk,gl)), replacement = 
score(fi,gk)
+ ALIGNglobal(pair(fi),pair(gk))
+ ALIGNlocal((next(fi),fj), (next(gk),gl))

ALIGNlocal((fi,fj),(gk,gl)), insertion = 
score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGNglobal((fi,fsplit),pair(gk))
+ ALIGNlocal((next(fsplit),fj), (next(gk),gl))

}

Now the highest scoring alignment can be between any two subforests (fi,fj) and 
(gk,gl). The alignment score will include gap costs for all nodes in subforest(fi,fj) and 
subforest(gk,gl), but we get free 'start gaps' and 'end gaps' for all other nodes.

As I implied earlier in this section, there are several interesting modifications to 
this algorithm which could also be used for other algorithms that I develop in this paper. 
In particular, (Wang and Zhao, 2003) modify forest alignment to use affine gap penalties 
and to reduce its space complexity. They implement affine gap penalties in a way 
analogous to traditional affine-gapped sequence alignment (Gotoh, 1982). Reducing the 
space complexity is a little trickier. The idea is as follows. For each subalignment A, 
there is a set of other subalignments A1...n that maximize over A. What if all A1...n have 
been computed and none of them chose A as an optimal subalignment? Then we know 
that the optimal alignment doesn't include A, so we don't have to store its score anymore. 
(Wang and Zhao, 2003) show that if we delete these unused subalignments, the space 
complexity for global alignment is only O(MaxLoop(F)log(|F|)|G|
(MaxLoop(F)+MaxLoop(G))).
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2.6 Alignment of multiple RNA secondary structures
Despite the large number of algorithms for pairwise comparison of RNA 

secondary structures, only a few methods have been proposed for multiply aligning them. 
All of them are progressive alignment approaches. We can divide them into two 
categories: sequence based methods and structure-based methods.

Sequence-based methods represent RNA structures as text strings and align them 
with sequence alignment algorithms. The challenge is to use a clever scoring scheme to 
get sequence alignment algorithms to implicitly take structure into account. However, 
although the structural information encoded in a text string can guide a sequence 
alignment, it cannot constrain the alignment to be structurally valid. For example, even if 
the 5' sides of two stems are aligned with each other, the 3' sides may not be.

Structure-based methods represent RNAs using data structures that explicitly 
represent base pairing interactions. Some of them represent base pairs as constraints on an 
alignment of sequences, whereas others represent base pairs as entities which can be 
deleted and inserted individually. In either case, these methods can enforce structural 
constraints explicitly and thus guarantee valid alignments.

2.6.1 Sequence-based methods

The first approach to multiple alignment of RNA structures is due to (Shaprio, 
1988), who represented RNA structures as text strings and aligned them with a standard 
progressive multiple sequence alignment algorithm. These text strings only had characters 
to represent topological features (e.g. “B” for a bulge loop, “M” for a multibranch loop, 
etc.), but strings can be enriched with individual base-pairs (Hofacker et al., 1994) and 
sequence information using variations on 'bracket' notation.18 The advantage of this 
approach is that it is as fast as multiple sequence alignment - e.g. about O(n2k2) time for 
tree-guided progressive alignment of k structures of at most n bases each. However, 
alignments often include structurally invalid regions. In (Bromberg-Martin et al., 
unpublished), I use an alignment method of this type as part of a system for exploring 
large datasets of secondary structures. The alignments can be used to quickly cluster and 
visualize many structures at once, but they are not suitable for rigorous genetic analysis.

18 'bracket' notation is explained in section 2.4
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Table 16: portion of a multiple string alignment using secondary structure and topology information 
(Bromberg-Martin et al., unpublished). "H" and "h" indicate the start and end of hairpin loops, and 
"M"/"m" are for multibranch loops. All of the structures have a multibranch loop in this region, but only 
one of its hairpin loops is conserved (green box). Note that structurally dissimilar regions can match each 
other, and 'topology' characters can even align with nucleotides (e.g. to the right of the box).

The MARNA program of (Siebert and Backofen, 2003) multiply aligns RNA 
structures by making clever use of the T-COFFEE sequence alignment algorithm 
(Notredame et al., 2000). T-COFFEE uses a library of pairwise sequence alignments to 
constrain a progressive multiple sequence alignment. The main idea is that bases matched 
in pairwise alignments should still be matched in a multiple alignment. The resulting 
constraints greatly improve multiple alignment accuracy. MARNA feeds T-COFFEE a 
library of RNA alignments made using the pairwise RNA tree editing method of (Jiang et 
al., 2002). Thus the resulting mulitple alignment is constrained to take structural 
similarities into account. The drawbacks of MARNA are that it is relatively slow (T-
COFFEE runs in O(n2k3) time) and that, despite its alignment constraints, it still does not 
guarantee that the multiple alignment is structurally valid.

The StructMiner program of (Yang and Blanchette, 2004) guides RNA 
multiple sequence alignment using base-pairing probability matrices, a method first 
introduced for pairwise alignments by (Bonhoeffer et al., 1993). A base-pairing 
probability matrix P is defined for a sequence S such that Pij = Pr{ base si is paired to base 
sj }. If P represents a known RNA secondary structure, then all of its entries are 0 or 1. 
However, the great advantage of this approach is that we are rarely certain of an RNA's 
true structure, but we can estimate an RNA's base-pairing probabilities using 
thermodynamic and/or phylogenetic methods (e.g. the popular program mfold (Zuker, 
1999)). Thus this alignment method can be used in cases when purely structural 
approaches cannot.

To compute pairwise alignments, StructMiner uses a method very much like 
that of (Bonhoeffer et al., 1993). The method involves standard pairwise alignment of 
structures represented in a manner very similar to 'bracket' notation, but instead of bases 
being categorized as one of {paired upstream, paired downstream, unpaired}, a base's 
match and mismatch scores depend on the probability that it is in each of those 
categories. For example, a base with a 50% probability of being unpaired will not match 
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perfectly to a base with a 100% probability of being unpaired. To compute multiple 
alignments, StructMiner uses a progressive profile approach. It is somewhat 
unconventional in that it simply merges structures into the multiple alignment one by one 
without use of a guide tree. Once this is done, it scans through the alignment to find and 
fix structurally inconsistent regions which are within a small distance of their correct 
location. Finally, StructMiner  rejects any remaining base-pairings which are 
structurally invalid (e.g. tertiary structure and bases paired to multiple partners). 

Because StructMiner uses a simple progressive alignment without computing 
a guide tree, it is very fast - O(kn2) time and O(n2) space (although the base-pairing 
matrices must be computed by an O(n3) prediction algorithm (Hofacker et al., 1994)). In 
addition, it appears to give quite good results for aligning small numbers of structurally 
related RNAs, even when they have low sequence similarity. I should note that (Hofacker 
et al., 2004) (discussed below) give a more rigorous, structure-based method for multiple 
alignment of base-pairing probability matrices. (Yang and Blanchette, 2004) reference 
Hofacker et al., but do not mention their work or compare the results of the two 
algorithms. It would be interesting to compare their results, especially since Hofacker et 
al. found that using the string alignment method, even if only to produce a guide tree for 
their more rigorous structural method, significantly reduced the quality of alignments.

2.6.2 Structure-based methods

(Wang and Zhang, 2004) represent structures as arc-annotated strings and their 
alignments as arc-annotated alignments of strings. They extend the algorithm of (Wang 
and Zhang, 2001) to approximate the optimal alignment of two arc-annotated alignments. 
Arc-annotations strongly constrain the alignment to be structurally valid, since all 
nucleotides aligned in a column have exactly the same structure. ALIGN(structure 
alignment, structure alignment) takes O(n1n2p1p2) time and O(n1n2 + n1k2 + n2k1) space, 
where n is the number of columns (i.e. nucleotides), k is the number of rows (i.e. 
structures), and p is the number of pairs in each alignment. To the best of my knowledge, 
there is no publicly available implementation of this method, and (Wang and Zhang, 
2004) do not show the results of any multiple alignments. Therefore it is difficult to 
evaluate the effectiveness of this method. However, some authors have argued that the 
structural constraints of this type of RNA comparison model are too strong, since two 
unpaired bases can never align to two paired bases. To edit a "U-G" pair into "G G", we 
must treat it as two insertions of single bases followed by two deletions of paired bases, 
but it seems more natural to treat it as a "U to G" substitution and a deletion of a base-pair 
(Jiang et al. 2002). In essence, arc-annotated alignments represent only a single consensus 
structure. 

The pmmulti program of (Hofacker et al., 2004) aligns RNA sequences whose 
structures are described by base-pairing probability matrices. As discussed above, this 
approach can be used for aligning RNAs with known structure, but is also useful when 
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we can only predict an RNA's structure probabilistically. pmmulti's pairwise algorithm 
is a variant of Sankoff's maximum circular matching algorithm for simultaneously 
aligning and folding two RNA sequences (Sankoff, 1985). Their multiple alignments use 
a standard progressive profile approach.

pmmulti appears to be considerably more accurate for predicting and aligning 
secondary structures than sequence-based methods such as MARNA. However, it has two 
major drawbacks. First, the Sankoff algorithm is very slow. Enforcing several restrictions 
on the size of indels reduces the time complexity from O(n6) to O(n4) and the space 
complexity from O(n4) to O(n3), but it is still only practical for rather small sequence 
lengths. This is an especially limiting factor when doing n(n-1)/2 pairwise alignments to 
create a guide tree for the final (n-1) sequence alignments. The authors mitigate this to 
some extent by including an option to use the fast but less accurate pairwise algorithm of 
(Bonhoeffer et al., 1993) for constructing the guide tree, but this reduces the quality of 
alignments. Second, in a manner analogous to arc-annotated alignments, each of 
pmmulti's alignments cannot represent fine structural variation; they represent only a 
single consensus probability matrix.

The RNAForester program of (Höchsmann et al. 2004) represents RNA 
structures as forests and their alignments as 'RNA profile' forests. RNA profiles are 
exactly analogous to row-column sequence alignment profiles. Each node of an RNA 
profile represents a 'column' of an alignment, and its label counts the number of nodes of 
each type in that column. The cost of matching two nodes depends on all of bases, pairs, 
and gaps they contain. See the following figure for an example of an alignment between 
two RNA structures and the resulting RNA profile.

 RNAForester implements ALIGN(structure, structure) and ALIGN(RNA 
profile, RNA profile) with the pairwise alignment algorithm of (Jiang et al. 1995). Hence 
each alignment takes O(|F||G |(MaxLoop(F) + MaxLoop(G))2) time and O(|F ||G |
(MaxLoop(F) + MaxLoop(G))) space. For most real RNA molecules, for which the 
maximum loop size is practically constant, RNAForester should be the fastest 
structure-based multiple alignment algorithm. Another advantage of this approach is that 
the forest representation doesn't impose the same set of arcs or base-pairing probabilities 
on each structure. Since base-pairs are just like any other node in a RNA profile, they can 
be matched, deleted, and inserted. Thus "U-G" can now align with "G G" with the 
intuitive editing cost of a base substitution and a base-pair deletion.
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Table 17: Alignment between two RNA structures of (Höchsmann et al., 2004). Top left: structure X. Top 
right: structure Y. Bottom left: Alignment between X and Y. Bottom right: RNA profile created from the 
alignment. Each node holds the fraction of aligned nodes that are in {a,u,g,c,pair,-}, respectively.

RSMatch (Liu et al., 2005) represents structures as trees and aligns them with a 
very fast algorithm - O(mn), the same complexity as sequence alignment. Their method is 
meant for aligning very large numbers of structures, e.g. for database searches. The 
method appears to be effective at detecting conserved motifs in sequences based on folds 
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computed by structure prediction programs. However, it has a more restrictive editing 
model than any other structural alignment method mentioned in this paper. First, like 
(Hofacker et al., 1994), RSMatch represents base pairs as whole, unbreakable entities. In 
addition, it represents sequences of unpaired bases as unbreakable 'circles' as well. We 
can achieve a similar effect with the forest alignment algorithm of (Jiang et al., 1995) by 
ignoring all 'splits'; when gk is gapped, we gap its entire subforest as well. Then we never 
need to compute alignments with nonsuffixes and never need to consider split nodes, so 
the time and space complexity becomes O(|F||G|), i.e. quadratic like RSMatch. With this 
sort of editing model, RNAs that have similar sequences but regions of dissimilar 
structure cannot be aligned. (Liu et al., 2005) cast this editing model in a positive light, 
arguing that it produces structurally consistent alignments by preserving the integrity of 
paired and unpaired regions of aligned RNAs. As I will discuss in the next section, this 
approach is best suited to tasks such as pattern-matching and database search, but its 
multiple alignments do not capture the full range of structural variation between RNAs.

2.6.3 Room for improvement?
How can we improve multiple alignments of RNA secondary structures? This is a 

special case of the general question: what do we want out of any 'alignment'? The goal of 
any alignment is to 'line up' or overlay many individual data structures to show their 
similarities and variations. Within that framework, there are as many objectives for 
alignment as there are scoring functions, but there are some general principles we can 
apply. Here I will focus on two criteria for RNA structure alignments which I believe are 
reasonable and intuitive, but which existing methods do not fully address. 

The first criterion is the naturalness of an alignment. An alignment should be able 
to handle arbitrary sets of RNAs, and should include a faithful representation of each 
individual RNA sequence and structure. A natural representation makes it possible to see 
the variations within a set of RNAs, not just a certain type of similarity. The second 
criterion is that the alignment should generalize both sequence and structure alignments. 
Structural features should be able to inform the alignment of nucleotides and vice versa. 
Our scoring function alone should determine whether we give first priority to sequence 
similarities or structural similarities; our alignments shouldn't have a built-in bias either 
way.

If we desire a natural representation for RNA structure alignments, we cannot rely 
on sequence-based methods. Despite various clever ways of embedding structural 
information in text strings, they use an inherently unnatural representation for RNA 
structure and hence are prone to structurally invalid alignments. It is possible to 
postprocess string alignments to enforce structural validity, but this adds structural 
considerations 'after the fact' rather than taking them into account directly during the 
alignment. MARNA and StructMiner take steps in the right direction. I am particularly 
intrigued by StructMiner because its reported performance seems to be much better 
than we would expect based on the results of (Hofacker et al., 2004). Nevertheless, I will 
concentrate on structure-based methods in this thesis.
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Structure-based methods are an improvement because they can stay faithful to the 
structures of individual RNAs. However, representing an alignment of RNA sequences 
and structures is still problematic.

Consider sequence alignments. Sequence alignments find the commonalities 
between sequences, but that is only one reason they are useful. They also tell us a great 
deal about the variation within a set of aligned sequences. Even a row-column profile 
tells us a great deal about each position's sequence variation. We can use this data to look 
for evolutionary or functional relationships, whether by quantitative analysis or by 
visualization. For example, sequence logos (Scheneider and Stephens, 1990) display 
subtle sequence variations in information-theoretic terms that can reveal functionally 
important nucleotides. Partial-order graphs contain each aligned sequence as a subgraph, 
and hence they preserve even more sequence variation than row-column profiles. 
Programs like POAVIZ (Grasso et al., 2003) that visualize PO-MSAs can illustrate the 
complex evolutionary histories of large multi-domain proteins.

On the other hand, existing RNA structure alignment methods impose strong 
restrictions on structural variation. The arc-annotated alignments of (Wang and Zhang, 
2004) represent only a single consensus secondary structure. Furthermore, they do not 
make a strong distinction between alterations in structure and alterations in sequence. The 
alignments are constrained to put structural similarity 'first', and make up for the 
difference with nucleotide indels. For example, if two RNAs have identical sequences but 
different structural features, then an arc-annotated alignment will always have to insert 
gaps in the sequences. In this sense, these alignments do not align sequence features or 
structure features, but rather “sequence and structure” features. RSmatch alignments 
also have this property due to their restrictive editing model.

pmmulti's probabilistic alignments represent an ensemble of possible RNA 
structures. These alignments are also relatively flexible: they can match an unpaired 'A' 
with a paired 'A', depending on the scoring function. Unfortunately, its base pairing 
probability matrices represent consensus variations rather than variations between 
individual structures. In general, if Pij = 0.3, it could be because all structures have Pij = 
0.3; alternately, one structure is certain to pair i with j but other structures are unlikely to 
do so. We can see this effect in a 'toy example' alignment of RNAs with known structure 
in (Hofacker et al., 2004). A “G-U” base pair known to exist for an RNA with probability 
1.0 actually gets deleted from the structure during the course of alignment. This happens 
because the other RNAs didn't have complementary nucleotides at those positions, and 
therefore had zero pairing probability at that position. In this sense, pmmulti boils down 
structural variations into a consensus probability matrix.

The RNA profiles of RNAForester are an improvement because they represent 
variations in both sequence and structure. For example, a profile pair node that has many 
gaps is an infrequent but possible base pair. However, RNA profiles can only represent a 
small subset of mappings between secondary structures. Each RNA is a componentwise 
projection of its RNA profile, and the profile itself is a secondary structure. Hence all 
RNAs must be 'nested' within a single secondary structure scaffold, and each RNA added 
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to the profile further constrains the scaffold. A few mutations may make a small alteration 
to an RNA's structure that prevents it from being nested within the same scaffold. In that 
case, forest alignments will create artifactual indels to force the two molecules into a 
single secondary structure. For example, if any structure contains '(...)', then the 
central nucleotide in the loop can never be paired outside of that loop.

A ((...))((...))
B ..(((....)))..
A aaggguuaacccuu
B aaggguuaacccuu

A ((...))((..---.))--
B ..-----(((....)))..
A aaggguuaacc---cuu--
B aa-----ggguuaacccuu

(([[[))((]]]))
aaggguuaacccuu

Table 18: a toy example showing a limitation of forest alignment. Left: two hypothetical RNA secondary 
structures, A and B. Middle: RNAForester alignment. Although the two structures have identical  
sequences, the alignment creates artifactual indels in order to force the two structures into a single 
ordered forest, no matter the scoring function. Right: in theory, A and B could be represented as a tertiary 
structure.

In summary, current RNA structure alignments are not natural representations for 
the similarities and variations of arbitrary RNAs, and have strong structural constraints 
that give structural similarity precedence over sequence similarity regardless of the 
scoring function. From the last example, we might expect that our limitation is that our 
alignments are themselves secondary structures. Perhaps a secondary structure alignment 
should be represented by some kind of tertiary structure profile. I will make a stronger 
claim: the problem is that RNA structure alignments are inherently partially ordered, and 
they cannot be represented faithfully under a total ordering. There are three main 
arguments in support of this claim.

First, (Lee et al., 2002) make a compelling argument that sequence alignments are 
better represented with a partial ordering. Since a RNA secondary structure alignment 
essentially contains an alignment of sequences, we should expect a partial-order 
representation to be just as beneficial for structures. Therefore we expect it to provide a 
non-degenerate representation for insertions and deletions, multiple alignments that 
consider the optimal alignment of each structure against each other structure, and a 
compressed representation that results in faster alignments. 

In addition, an RNA structure alignment should ideally tell us something like “the 
sequences are similar here, the structures are similar there, and this is how variations in 
sequence produce variations in structure”. This is a second sense in which we expect a 
partial ordering to improve RNA alignment. The structural constraints inherent in 
existing alignment methods make them give structural features first priority; later, they 
make up for any discrepancies by creating sequence indels. This makes it hard to analyze 
the alignments in an evolutionary context, since there is no clean separation between 
sequence and structure variation. Partial order alignments can represent 'one path or the 
other', so perhaps they can represent 'sequence or structure' similarity.

There is a third, stronger sense in which a partial-order representation is natural 
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for RNA structure alignments. Let us consider base pair shifts, a relatively common 
structural variation. Base pair shifts happen when a base switches to a different pairing 
partner, often because its original pairing partner was substituted or deleted.

The table below shows a segment of an arc-annotated string alignment of RNAse 
P RNAs, as seen in (Wang and Zhang, 2001). RNAse P, in concert with a protein 
cofactor, has a vital role in the processing of transfer RNAs in bacteria, archaea, and 
eukaryotes. To carry out its function, RNAse P relies on several conserved structural 
features. The center region of this alignment, for example, has a long stem common to 
both RNAs despite sequence variations. For example, two C-G base pairs in A. eutrophus 
become G-U and G-C base pairs in S. bikiniensis. These compensatory base mutations are 
an indication that the structure has been conserved by evolution; if the structure was not 
conserved, we would see random mutations that could change its structure.

arc-annotated alignment (interpretation A)
..-((((.((((((((....)))))))).))--)).
...(((--((((((((....))))))))--)..)).
AG-UCUUGCCGCCGGGUUCGCCCGGCGGGAA--GGG
AGACCG--CCGGGGACCUCGGUCCUCGG--UAAGGG

manual alignment (interpretation B)
..((((.((((((((....)))))))).)))).
...((-(((((((((....)))))))))..)).
AGUCUUGCCGCCGGGUUCGCCCGGCGGGAAGGG
AGACC-GCCGGGGACCUCGGUCCUCGGUAAGGG

Table 19: segment of pairwise alignments of A. eutrophus (top rows) and S. bikinensis (bottom rows) 
RNAsePs. Left: arc-annotated alignment from (Wang and Zhang, 2001). Right: an alternate interpretation 
of the evolutionary relationship between the two RNAs.

The sides of the alignment are more difficult to interpret. The arc-annotated 
alignment inserts/deletes seven bases in order to map both structures onto the same 
consensus set of arcs. In this view, despite the many indels and base substitutions, only 
one base pair has changed; this part of the structure must have several conserved base 
pairs that are very resistant to mutations. I will call this interpretation A. 

Note that interpretation A leaves two adjacent 'AA' regions mismatched or 
gapped. If we give enough weight to sequence information, we might allow such similar 
regions to influence our structural alignment. In the lower table, I have constructed an 
alignment of this type which I will call interpretation B. In this view there has only been a 
single base indel, but it has combined with a few substitution mutations to remove two 
base pairs and to shift several others. The 'U' of an 'A'-'U' pair has mutated to a 'C'; as a 
consequence, the new 'C' pairs with a 'G' instead, and the 'G's old partner has shifted its 
bonds to a different 'G'.

Interpretations A and B are both informative; they represent two plausible 
functional/evolutionary relationships between the RNAs. Ideally, our scoring function 
will determine which interpretation we choose. However, arc-annotated alignments 
impose a single consensus structure on their RNAs, so they cannot generate interpretation 
B. Forest alignments allow a wider variety of interpretations. For example, they can 
partially align the two 'AA' regions; a forest allows an 'A' to be unpaired in one structure 
but paired in another. RNAForester can actually generate interpretation B during its 
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alignment phase, but fails to reconstruct it during its trace back. Each base node in an 
RNA forest must have only a single partner, so base pair shifts are verboten.

In fact, base pair shifts can only be represented under a partial ordering. During 
alignment, we need to say “match with this pairing partner or that pairing partner”, 
whereas a total order alignment only has a notion of the 'next' base or pair. As a preview 
of things to come, the table below shows how RNA partial-order alignments (RNAPOAs) 
represent interpretations A and B. The sequence data in a RNAPOA is just like a normal 
PO-MSA. Structural data is held in 'pair' nodes that connect pairs of nucleotides. One pair 
node can connect to more than one pair of bases; for example, it might represent a “G-U” 
pair or a “C-G” pair. Base pair shifts result in some bases that are connected to more than 
one pair node; in future alignments, those bases can choose either pairing partner.
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arc-annotated alignment

 (interpretation A)

RNAPOA 

(interpretation A)

RNAPOA 

(interpretation B)

Table 20: comparison of partial-order and total-order alignments. Indels are drawn in pink. Matched 
positions are drawn in gray. Mismatched bases are drawn in light blue and circled in gray. Interpretation 
A adds indels to maximize the number of base pairs in common; in this view, a spate of insertion and 
deletion mutations left the secondary structure largely intact. Interpretation B breaks base pairs to match 
similar nucleotides; in this view, a small number of mutations created new base pairs and shifted existing 
ones. Both interpretations are informative, but total-order alignments cannot represent base pair shifts and 
hence can only generate interpretation A. Partial order alignments can produce either interpretation given 
the appropriate scoring function.
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Before I go any further, I should mention two important caveats. First, in this 
thesis I consider RNAs with known structure. One might argue that RNA structure 
alignment per se is not the right problem to consider. A major use for structure 
alignments is to predict the structures of phylogenetically and/or functionally related 
RNAs. However, it is difficult to determine RNA structures experimentally, so most large 
datasets of RNA structures are generated by structure prediction programs. In that case, it 
would be best to explicitly combine structure prediction and alignment, (e.g. Sankoff, 
1985; Hofacker et al., 2004), rather than treating them as separate steps. In the Discussion 
section, I will give some thoughts on integrating partial order RNA alignments with 
structure prediction methods. In particular, RNAPOAs turn out to be a generalization of 
the method of (Hofacker et al., 2004) but have better efficiency in some cases.

Second, partial ordering is best used in situations in which we need a detailed 
representation of the variation within a set of RNAs. The main applications that I 
envision are: 1) evolutionary analysis of structural RNAs, and 2) exploring the variation 
within alternate folds generated by structure prediction algorithms. There are other 
contexts in which a partial-order formulation isn't as useful. For example, if we are 
searching a large database with a structured RNA as a query, we are not searching for 
sequence or structure similarity, but rather sequence and structure similarity. Partial-order 
queries would be a bit more flexible for pattern-matching than total-order queries. 
However, if we use alignment scores to testing the statistical significance of our search 
results, the permissive nature of partial-order alignment might actually be an impediment.
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3. RNA partial-order alignments (RNAPOAs)
3.1 RNAPOAs

An RNAPOA is a directed acyclic graph. For RNAs with no base pairs, an 
RNAPOA is the same as a partial-order sequence alignment. Each node si represents a 
nucleotide. si has has a list of predecessors prev(si) and a list of successors next(si).

Table 1: an RNAPOA without any base pairs is the same as a partial order sequence alignment.

Previously, we were able to discuss PO-MSAs in terms of suffixes only, but now 
we'll have to talk about 'subsequences' as well. Subsequences are defined in terms of a 
total ordering, so we'll have to use a new definition. For an RNAPOA S, I will assign 
each pair of nodes (si, sj) one of four possible partial orderings:

1. si ≤ sj, if we can reach sj from si using next, 
2. sj ≤ si, if we can reach si from sj using next, 
3. si ≤ sj  and sj ≤ si, if si and sj are the same.
4. si and sj are incomparable, if neither can be reached from the other via next.

Given those definitions, let (si, sj) define a span - a set of all sk such that si ≤ sk ≤ sj. 
A span of a partial-order alignment is analogous to a subsequence in a sequence 
alignment. For example, in the above sequence-only RNAPOA, a span from the first “C” 
to the last “C” includes every node except for the first “G”. A span from the last “A” to 
the last “C” only includes those two bases.

For RNAs with base pairs, I will define two separate types of RNAPOAs: string-
RNAPOAs, based on arc-annotated strings, and forest-RNAPOAs, based on ordered 
forests. The two types are quite similar, but there are subtle differences in their editing 
operations and alignment complexity which make one or the other preferable for specific 
purposes.

A string-RNAPOA is analogous to an arc-annotated string, only it allows each 
base to be involved in more than one base pair. Each base node si is has a set of pairs 
pair(si). We can draw the RNAPOA with 'pair' nodes that have bidirectional edges to 
their 5'-most and 3'-most bases.
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Table 2: merging individual RNA structures (left) one-by-one into a string-RNAPOA (right). Note: in this 
image, aligned bases are represented by dashed lines instead of dashed circles. After the first merging, we 
see that the RNAPOA can represent base pair shifts; “G” can be bound to either “C”. The second merging 
shows how string-RNAPOAs represent crossing bases. The third merging shows the representation for 
alternate base pairs - the structures can have either a “U-A” bond or a “C-G” bond. After the final  
merging, the RNAPOA also allows a “U-G” bond.
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What would happen if we placed a pair node between every pair of positions in 
the RNAPOA? Then, for a suitably defined scoring function, it would be analogous to the 
pairing probability matrices of (Hofacker et al., 2004). However, RNAPOAs can 
represent individual structural variation, not just a consensus. For example, we could say 
“the probability is 1.0 if (si, sj) = (C, G), but but the probability is 0.6 if (si, sj) = (U, G)”.

Table 3: string-RNAPOA representing base pairing probabilities. RNAPOAs can represent the changes in  
base pairing probability due to point mutations; if there is a G-to-A mutation, it changes the probability of  
pairing with U.

A forest-RNAPOA is analogous to an ordered forest, only it allows each pair node 
to have multiple pair 'subforests'. Because of the partial ordering of next and pair edges, a 
forest-RNAPOA need not look like a forest per se. For example, an alignment of ordered 
forests can't generate tertiary structure, but a forest-RNAPOA can represent crossing base 
pairs:
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Table 4: forest-RNAPOAs. Left: just like a forest, but with variable structure. Note that each base pair can 
represent more than one base pair; here, the top pair represents either a “G-C” or “G-U” pair. Right:  
forest-RNAPOAs can represent sequence indels, pair indels, and crossing base pairs.

If we aligned a plain sequence to a forest-RNAPOA, we get something that looks 
very much like a string-RNAPOA. In fact, I will call this sort representation 'stringlike'. 
An ordinary forest forces us to visit each pair node during a traversal of the graph. In 
contrast, all base pairs are optional in a 'stringlike' RNAPOA. This makes MaxLoop(F) = 
|F|, removing the main efficiency advantage of forest alignment. However, stringlike 
RNAPOAs are sometimes useful. As we'll see later, they will allow us to compute 
alignments that include crossing base pairs with reasonable efficiency.

Table 5: 'stringlike' forest-RNAPOAs. We can create them by aligning a forest-RNAPOA (top) with each 
sequence that it contains (middle), producing an RNAPOA in which all base pairs are optional paths.
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If we go further and add more pair nodes, and we'll again get something like an 
RNA base pairing probability matrix. However, this greatly increases the number of 
nodes in F. Since forest alignments have to consider suffixes and non-suffixes starting at 
each node in F, they have very high time and space complexity for this case. As we'll see, 
forest-RNAPOAs are not suitable for probabilistic alignments.
 

3.2 Optimal alignment of two RNAPOAs
Here I will develop algorithms for optimal alignment of string-RNAPOAs and 

forest-RNAPOAs. I base the string-RNAPOA alignment algorithm on the arc-annotated 
alignments of (Wang and Zhang, 2001). The algorithm takes essentially 
O(Bases(S)Pairs(S)Bases(T)Pairs(T) + Bases(S)2 + Bases(T)2) time and space, plus a few 
extra factors that grow slowly when the structures contained in the RNAPOAs are 
dissimilar. I will show that when the number of pairs is large, string-RNAPOA alignment 
becomes analogous to the base-pairing probability alignment algorithm of (Hofacker et 
al., 2004).

In the second subsection, I will discuss forest-RNAPOA alignment. forest-
RNAPOAs can be aligned more efficiently than string-RNAPOAs in certain cases, but 
have some of the same limitations as ordered forests. That is, they do not generate 
alignments that have crossing base pairs. However, we can work around this problem. I 
show that if one of the forest-RNAPOAs being aligned has a certain 'string-like' form, we 
can still account for crossing base pairs.

3.2.1 string-RNAPOA alignment
Recall the approach of (Wang and Zhang, 2001) for arc-annotated alignment. In 

that scheme, we used four separate recurrences - ALIGN(base,base), ALIGN(pair,base), 
ALIGN(incompatible pair, incompatible pair), and ALIGN(compatible pair, compatible 
pair). If we want to handle RNAPOAs, we can't special-case these situations; each node 
can have several different pairs, or may be paired in some aligned structures and unpaired 
in others. We will have to consider all of these cases in the same recurrence relation. 

Let us consider an alignment of two spans, (si,sj) and (tk,tl). The base replacement, 
base insertion, and base deletion operations are the same as in partial-order alignment of 
sequences - we maximize over all next spans. The pair replacement operation is more 
complicated; I explain it in detail below.

ALIGN((si,sj),(tk,tl)) = max of
base replace base_score(si,tk) + max over snext in next(si), tnext in next(tk) {

ALIGN((next(si),sj), (next(tk),tl))
}

base insert base_score(-,tk) + max over tnext in next(tk) {
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ALIGN((si,sj), (tnext,tl))
}

base delete base_score(si,-) + max over snext in next(si) {
ALIGN((snext,sj), (tk,tl))
}

pair replace max over (si,sm) in pair(si), (tk,tn) in pair(tk) {
pair_score((si,sm),(tk,tn))
+ max over snext in next(si), tnext  in next(tk) {

ALIGNignore_end((snext,sm), (tnext,tn))
}
+ max over snext in next(sm), tnext in next(tn) {

ALIGN((snext,sj),(tnext,tl)) 
}

}

where ALIGNignore_end((si, sj), (tk, tl)) is just like ALIGN, except it ignores the last 
base in each span. In other words, if si = sj, then it sets (si,sj) = Ø, and if tk = tl, then it sets 
(tk,tl) = Ø. 

What happens during the pair replace edit operation? Unlike arc-annotated 
alignments, a base may have many alternate pairs. So pair(si) isn't just a single base pair 
(si,sm) or (sm,si), but rather a set of such base pairs. We have to maximize over many pair 
replacements - all replacements of base pairs that start with si and tk. Furthermore, for 
each set of pairs (si,sm) and (tk,tn), we have to consider many different subalignments. In 
arc-annotated alignment, a pair replacement divides the spans into exactly two 
subalignments: an alignment of the bases 'inside' the pair - (next(si), prev(sm)) with 
(next(tk), prev(tn)) - and an alignment of the bases 'outside' the pair - (next(sm), sj) with 
(next(tn), tl). In string-RNAPOAs, pair replacement is not so simple. Each node can have 
many nexts and prevs, so we have to maximize over many possible 'inside' and 'outside' 
spans.

This introduces two dangers. First, not all of those potential inside and outside 
spans are valid subalignments of (si,sj) and (tk,tl). For example, we shouldn't consider (snext, 
sj) if there isn't any path from snext to sj. We also have to make the same validity checks on 
base pairs that we did for arc-annotated alignment; we shouldn't consider a base pair 
(si,sm) if sm isn't between si and sj.  Second, for the 'inside' subalignment, we have to 
optimize over many different prev(sm) and prev(tn) nodes. So for each base pair (si,sm) 
such that prev(sm) = {s1, s2, ...}, a naive approach would compute and store many separate 
sets of subalignments - subalignments ending at s1, subalignments ending at s2, etc.
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Table 6: string-RNAPOA alignment edit operations. For simplicity, each RNAPOA represents only a single 
structure; in general, there can be more than one next, prev, and pair node for each base. The spans to be 
aligned are gray. Aligned nodes are enclosed by dashed circles. Subalignments are pink or blue. Top left:  
alignment of the spans (si,sj) and (tk,tl). Top right: base replacement. Bottom right: base insertion. Bottom 
left: pair replacement, which depends on two subalignments: one with spans 'between' the paired bases,  
and another with spans 'outside' the paired bases. Note that since tn = tl, the blue span (next(tn),tl) is  
empty, so the 'outside' subalignment will have to be a deletion of the other blue span (next(sm),sj).
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To solve the first problem, we want to be able to quickly test a span or pair's 
validity.One way to do this is to simply precompute the partial-ordering '≤' between each 
pair of nodes in S and store the results in a matrix S≤. For example, in my implementation, 

S≤[i][j] = 1, if there is a path from si to sj using only next edges
0, otherwise.

We can then compute the validity of a span or base pair with a few constant-time 
lookups. For example, (snext, sj) is invalid if S≤[next][j] = 0. We can ignore any base pair 
(si,sm) if S≤[i][m] = 0 (i.e. when sm comes before si) or if S≤[m][j] = 0 (when sm comes after 
sj, or when sm and sj are on alternate paths).

To solve the second problem, we want to avoid computing separate subalignments 
for each predecessor node in prev(sm). That's why we use ALIGNignore_end.  It pretends that 
(sj,sj) = (tl,tl) =  Ø, so it implicitly maximizes over all prev nodes of sj and tl :

ALIGNignore_end((snext), sm), (tnext, tn)) = 
max over sprev in prev(sm), tprev in prev(tn) {

ALIGN((snext, sprev), (tnext, tprev))
}

Table 7: Left: base replacement of (si,sm) with (tk,tn). We have to optimize over all (2x4)x(2x3) 
combinations of next and prev nodes (bright colored) in S and T. Hence we compute and store many 
different subalignments. Right: ALIGNignore_end does this implicitly, but optimizes over fewer combinations  
and only computes subalignments of spans ending in an ignored sm and an ignored tn (dark colored). 
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We compute local/global alignments and merge S and T together in the same way 
that we did for PO-MSAs. The only difference is that we also have to decide how to 
merge pair nodes: we merge all pair nodes which were aligned by pair replacement 
operations. The resulting RNAPOA combines the properties of PO-MSA and arc-
annotated alignments: it is the optimal 'threading' of any one secondary structure and 
sequence of S with any one secondary structure and sequence of T.

What is the algorithm's complexity? We'll need some definitions.

Bases(S), the number of base nodes in S.
Pairs(S), the number of pair nodes in S.
BaseDeg(S), the max number of next nodes from any base in S.
PairDeg(S), the max number of pairs starting at any base in S.

Trivially, Pairs(S) < Bases(S)2 and PairDeg(S) < Bases(S). Also, we can generally 
consider BaseDeg(S) to be constant. Intuitively, si shouldn't have more than one successor 
with the same nucleotide. If it did, then an optimal alignment would have matched those 
identical successors and merged them together into a single node. So we expect 
BaseDeg(S) to be at most |{a,u,g,c}| = 4. This should be true for most real-world 
alignments of homologous RNAs. It is analogous to the common assumption that the 
number of gaps in a total-order alignment won't grow very quickly. Unfortunately, as I 
will discuss in section 3.3, the partial order formulation of (Grasso and Lee, 2004) that I 
build on in this thesis doesn't actually guarantee this property. I will have to keep track of 
BaseDeg during these derivations, which will produce slightly ugly expressions; I will 
also give simplified expressions to show the algorithm's likely real-world behavior.

As in arc-annotated alignments, we start by considering all O(Bases(S)Bases(T)) 
alignments of suffixes. Also, pair replacement operations create 'pair suffixes' - spans (si, 
sm) that we align using the ALIGNignore_end function. For each pair (sk,sl) in S, there are at 
most O(Bases(S)) pair suffixes. Therefore we need to store 
O(Bases(S)Pairs(S)Bases(T)Pairs(T)) subalignments. In addition, we spend O(Bases(S)2 

+ Bases(T)2) time and space to compute and store the partial-ordering matrices S≤ and T≤. 
Hence the space complexity is O(Bases(S)Pairs(S)Bases(T)Pairs(T) +Bases(S)2 

+Bases(T)2).
Actually, we can give a better bound. The worst case is when the RNAPOA 

contains all possible base pairs. In that case Pairs(S) = O(Bases(S)2), but there are still 
only O(Bases(S)2) spans in S, so there are only O(Bases(S)2Bases(T)2) subalignments. 
Thus the space complexity is really:

O(Bases(S)2 + Bases(T)2 + 
Bases(S)Bases(T)
* min(Pairs(S), Bases(S))min(Pairs(T), Bases(T))).
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For each subalignment we have to consider four edit operations. It is easy to see 
their time complexity:

Edit Op. Edit Operation Time Complexity
base replace O(BaseDeg(S)BaseDeg(T))

base insert O(BaseDeg(T))

base delete O(BaseDeg(S))

pair replace O(PairDeg(S)PairDeg(T)BaseDeg(S)BaseDeg(T))

Which gives the algorithm the following time complexity:

O(Bases(S)2 + Bases(T)2 + 
Bases(S)min(Pairs(S), Bases(S)) 
* Bases(T)min(Pairs(T), Bases(T))
* PairDeg(S)PairDeg(T)BaseDeg(S)BaseDeg(T))

For individual RNAs, O(BaseDeg(S)) = O(PairDeg(S)) = O(1), so the algorithm 
requires O(Bases(S)Bases(T)Pairs(S)Pairs(T) + Bases(S)2 + Bases(T)2) time and space. 
This is essentially the same as an arc-annotated string alignment. When we add many 
structures to a RNAPOA, BaseDeg, and PairDeg will increase. As I argued earlier, for 
most practical purposes we are interested in RNAs that are at least somewhat similar to 
each other, so these factors will not grow too quickly.

What if we want to consider all possible base pairs? Then this algorithm becomes 
a partial-order version of the method of (Hofacker et al., 2004). The complexity is 
equivalent: O(Bases(S)2Bases(T)2) space and O(Bases(S)3Bases(T)3) time. In practice, 
most base pairing probabilities are very low, so we can do better. First of all, there are 
sixteen possible base pairs in {a,u,g,c} x {a,u,g,c}, but only six of them are common.19 
Most RNAs have relatively equal proportions of each of nucleotide, so this greatly 
reduces the number of probable pairs. Second, bases that are too near to each other cannot 
be paired due to bond angle constraints. Third, each base's total pairing probability cannot 
be above 1.0, so bases with a few highly favored folds will be unlikely to pair elsewhere. 
For example, bases in the middle of a conserved hairpin stem-loop are very unlikely to 
pair anywhere else. If we only add pair nodes for probable base-pairs (defining 'probable' 
with some reasonable threshold), we should reduce the algorithm's time and space 
requirements by a large factor.

It is important to note that string-RNAPOAs only allow three types of editing 
operations: base replacement, base indels, and pair replacement. If we want to delete two 
paired bases, we have to delete them individually; this is less flexible than arc-annotated 

19 (a,u), (u,a), (g,c), (c,g), (g,u), and (u,g)
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alignment, in which we can define a separate score for simultaneous insertion/deletion of 
two paired bases. Unfortunately, we can only do that efficiently if each base has only a 
single associated structure. In that case, if we insert/delete a base pair, we only need to 
gap its first base; any valid subalignment is forced to gap the second base as well. This is 
why (Wang and Zhang, 2001) get away with the trick of allocating 
(1/2)*pair_score((si,sj),(-,-)) to each base. In our case, each base has several alternate base 
pairs. If we choose a subalignment that gaps si, we cannot assure that it also gaps sj. 

Typical scoring models for sequence alignment assume that indels occur when 
several consecutive bases are inserted or deleted. In this view, there is no reason why two 
separate indels should co-occur. However, the prevalence of compensatory base 
substitutions tells a different story: evolution culls RNA mutations that disrupt important 
structural features. Indeed, structural RNAs often have simultaneous pair indels inside 
conserved stems (e.g. see (Holmes, 2004)), although linear indels are also possible, as in 
'interpretation B' of the alignment I discussed in section 2.6.3.

If we want to allow both base indels and base pair indels, it comes at a cost.20 
Recall that pair indels in forest alignment divide a structure into two parts. We then have 
to optimize over all ways to split the other structure into two parts. The same is true here. 
Say we are aligning the spans (si,sj) and (tk,tl), and we want to delete the base pair (si,sm). 
To guarantee that both si and sm are deleted simultaneously, we have to divide (si,sj) into 
sub-spans that don't contain either si or sm. - the spans 'inside' and 'outside' the base pair. 
Which parts of (tk,tl) should we align with the 'inside' and 'outside'? We don't know! As in 
forest alignment, we have to optimize over all possible 'split nodes' to divide (tk,tl) into 
two parts.21

pair delete max over (si,sm) in pair(si) { 
pair_score((si,sm),(-,-))
+ max over tsplit in (tk,tl) {

max over snext in next(si) {
ALIGNignore_end((snext,sm), (tk,tsplit))

}
+ max over snext in next(sm) { 

ALIGN((snext,sj),(tsplit,tl)) 
}

}
}

Combining all of these maximization steps, finding the pair deletion with the 

20 By the way, we could modify arc-annotated alignment to use single base insertions/deletions against 
paired bases. Unfortunately, then it couldn't efficiently handle pair indels; if it allows single base indels, 
it can't guarantee that simultaneous indels of paired bases will gap both bases of the pair.

21 Again, the notation here doesn't show it, but we also have to try splits where one side of the split is an 
empty span and the other side is just the full (tk,tl).
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highest score takes O(PairDeg(S)Bases(T)(BaseDeg(S) + BaseDeg(T))) time. Pair 
insertion is just a mirror of pair deletion, with all the S and T terms switched. Note that 
since we have to try all arbitrary splits of S and T, we will have to align all spans of S and 
T. Hence our space complexity will increase to O(Bases(S)2Bases(T)2), and the total 
alignment time will increase to:

O(Bases(S)2Bases(T)2

(PairDeg(S)PairDeg(T)BaseDeg(S)BaseDeg(T)
 + PairDeg(T)Bases(S)(BaseDeg(T) +  BaseDeg(S))
 + PairDeg(S)Bases(T)(BaseDeg(S) +  BaseDeg(T)))

The last three terms in this expression are for pair replacement, pair insertion, and 
pair deletion operations, respectively. For most real-world cases, the complexity should 
be:

space: O(Bases(S)2Bases(T)2)

time: O(Bases(S)2Bases(T)2

 * (PairDeg(S)PairDeg(T) + Bases(S)PairDeg(T) + PairDeg(S)Bases(T))

If S and T are individual RNA structures or RNAPOAs with few alternate paths, 
the running time is quintic: O(Bases(S)2Bases(T)2(Bases(S)+Bases(T))). For RNAPOAs 
with all possible base pairs, the running time is again O(Bases(S)3Bases(T)3).

3.2.2 forest-RNAPOA alignment
Next I will consider forest-RNAPOAs. I will base my alignment algorithms on 

those of (Jiang et al., 1995; Jansson et al., 2004). First, however, I will soup them up to 
handle the edit operations base pair replacement and base pair indels for the forest 
representations of (Hochsmann et al., 2003). Hochsmann et al. define operations on pair 
bonds, not on base pairs. To straighten out my terminology: editing operations on pair 
bonds only replace/indel an individual pair node. Operations on base pairs replace/indel 
the pair node and its paired bases at the same time. See the table below for a comparison.
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Table 8: Comparison between 'pair bond' and 'base pair' edit operations. Replacements are blue circles,  
indels are red circles, and the 'next subforests to be aligned' are in gray boxes. For simplicity, I have not  
drawn the 'splits' for indel operations. Top left: pair bond replacement doesn't guarantee that the paired 
bases will actually be aligned. It is likely that the “UAAAG”s will align and the paired “G” will be 
gapped. Bottom left: base pair replacement solves the problem. Top right: pair bond deletion allows the 
removal of bonds. Bottom right: base pair indels allow the simultaneous removal of two paired bases.

Clearly, a base pair replacement can be build from a pair bond replacement and 
two base replacements, and similarly for indels. However, there are three reasons why we 
should use 'base pair' operations. First, both pair bond and base pair indels correspond to 
biologically common mutations,22 so allowing both operations improves the quality of 
alignments. Second, base pair replacements allow us to use biologically motivated 
scoring functions such as the RIBOSUM matrices of (Klein and Eddy, 2003). Third, we 
should prefer base pair replacement because pair bond replacement leads to structurally 
invalid alignments. When we replace an individual pair node, we ought to guarantee that 
its paired bases will also be aligned. Otherwise, we might actually alter one of the aligned 
structures, shifting a bond so that it lies between a real nucleotide and an artificial 'gap' 
entity (as in the table above). In this thesis, I won't use pair bond replacement.

Hochsmann et al. appear to have forsworn pair bond replacement as well; the 
RNAForester webserver seems to use base pair replacement rather than pair bond 
replacement (data not shown). Since the algorithm of (Hochsmann et al., 2003) aligns 
each pair of closed subforests, base pair replacement is easy to implement. Consider a 
replacement of the pair node fi such that pair(fi) = (f5',f3').23 Recall that in pair bond 
replacement, we applied a scoring function defined over individual nodes, score(fi,gk). We 
then had to optimize over alignments of the subforest (f5',f3'). For base pair replacement, 
we instead use a scoring function defined over base pairs, pairscore((fi,f5',f3'),(gk,g5',g3')). 
Since the scoring function takes the paired bases into account, we have optimize over 
subalignments 'inside' them, i.e. alignments of (next(f5'),prev(f3')). We could implement 
base pair indels in a similar manner - charge a penalty pairscore((fi,f5',f3'),(-,-,-)), then 
optimize over alignments of (next(f5'),prev(f3')).

22 As discussed in section 3.2.1.
23 I use (f5',f3') to indicate that these are the 5'-most and 3'-most bases of the pair.
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We can also implement base pair replacement/indels for the more efficient 
algorithms of (Jiang et al., 1995; Jansson et al., 2004). In those algorithms we don't 
consider nonsuffix-nonsuffix alignments; we can get away with it because the loop 
defined by a base pair, (f5',f3'), is always a suffix. However, the loop resulting from a base 
pair replacement or indel, (next(f5'),prev(f3')), is not a suffix: prev(f3') has f3' as a next node. 
To solve this problem, we just treat all subforests (fi,prev(f3')) as if they were suffixes. 
This essentially doubles the number of suffixes in the alignment, but the big-O 
complexity remains the same.

To be more formal, we have divided the the recurrences for replacements and 
indels into separate versions for each edit operation:

ALIGN((fi,fj),(gk,gl)), base replacement = 
score(fi,gk)
+ ALIGN((next(fi),fj), (next(gk),gl))

ALIGN((fi,fj),(gk,gl)), base insertion = 
score(-,gk)
+ ALIGN((fi,fj), (next(gk),gl))

ALIGN((fi,fj),(gk,gl)), base pair replacement where pair(fi) is (f5',f3') and pair(gk) is (g5',g3') = 
pairscore((fi,f5',f3'),(gk,g5',g3'))
+ ALIGN((next(f5'),prev(f3')),(next(g5'),prev(g3')))
+ ALIGN((next(fi),fj), (next(gk),gl))

ALIGN((fi,fj),(gk,gl)), base pair insertion where pair(gk) is (g5',g3') = 
pairscore((-,-,-),(gk,g5',g3'))
+ max over fsplit in (fi,fj) {

ALIGN((fi,fsplit), (next(g5'),prev(g3')))
+ ALIGN((next(fsplit),fj), (next(gk),gl))

}

ALIGN((fi,fj),(gk,gl)), pair bond insertion where pair(gk) is (g5',g3') = 
score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGN((fi,fsplit), (g5',g3'))
+ ALIGN((next(fsplit),fj), (next(gk),gl))

}

As before, deletions are just mirrors of insertions and when we maximize over 
splits, we also maximize over the empty splits Ø / (fi,fj) and (fi,fj) / Ø.

Now I will modify these recurrence relations to handle forest-RNAPOAs. The 
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modification is mostly straightforward. The only difference between ordered forests and 
forest-RNAPOAs is that each node can have multiple next, prev, and pair edges. 
Therefore, wherever a forest alignment computes a value using next or prev, a forest-
RNAPOA alignment optimizes over all possible combinations of nexts and prevs. This 
creates the same two dangers - invalid spans and wasteful subalignments - that we faced 
during string-RNAPOA alignment. We'll use the same tricks to solve them: we'll use a 
partial-ordering matrix F≤ to check span validity, and we'll use a function ALIGNignore_end 

to store certain subalignments efficiently.
To put it explicitly, the recurrences for forest-RNAPOA alignment are:

ALIGN((fi,fj),(gk,gl)), base replacement = 
score(fi,gk)
+ max over fnext in next(fi), gnext in next(gk) {

ALIGN((fnext,fj), (gnext,gl))
}

ALIGN((fi,fj),(gk,gl)), base insertion = 
score(-,gk)
+ max over gnext in next(gk) {

ALIGN((fi,fj), (gnext,gl))
}

ALIGN((fi,fj),(gk,gl)), base pair replacement =
max over (f5',f3') in pair(fi), (g5',g3') in pair(gk) {

pairscore((fi,f5',f3'),(gk,g5',g3'))
+ max over fnext in next(f5'), gnext in next(g5') {

ALIGNignore_end((fnext, f3'), (gnext, g3'))
}

}
+ max over fnext in next(fi), gnext in next(gk) {

ALIGN((fnext,fj), (gnext,gl))
}

ALIGN((fi, fj),(gk, gl)), base pair insertion = 
max over (g5', g3') in pair(gk) {

pairscore((-,-,-),(gk, g5', g3'))
+ max over fsplit in (fi, fj) {

max over gnext in next(g5') {
ALIGNignore_end((fi, fsplit), (gnext, g3'))

}
+ max over gnext in next(gk) {

ALIGN((fsplit, fj), (gnext, gl))
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}
}

}

ALIGN((fi,fj),(gk,gl)), pair bond insertion if pair(gk) is (g5',g3') = 
max over (g5', g3') in pair(gk) {

score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGN((fi, fsplit), (g5', g3'))
+ max over fnext in next(fsplit), gnext in next(gk) {

ALIGN((fnext, fj), (gnext, gl))
}

}
}

Here we use the same three 'tricks' as before. First, ALIGNignore_end((fi, fj), (gk, gl)) is 
just like ALIGN, except it ignores the last base in each span. Second, we store and 
compute a partial-ordering matrix F≤. This allows us to efficiently find all valid split 
nodes fsplit and next nodes fnext within the span (fi,fj). We simply do a depth-first traversal of 
F starting at fi, only following an edge next(fm) if F≤[m][j] = 1. Third, as in forest 
alignment, we have to make sure we consider 'splits' which leave the entire span intact, 
e.g. (fi,fj) / Ø and Ø / (fi,fj).

To analyze the complexity of this approach, I will use the following notation:

|F| = the number of nodes in F
Bases(F) = the number of base nodes in F
Pairs(F) = the number of pair nodes in F
Deg(F) = the max number of next edges from any node in F
PairDeg(F) = the max number of base pairs represented by any pair node in F
MaxLoop(F) = the max number of nodes fk in any span (fi,fj) in F, such that

 F≤[i][k] = 1 and  F≤[k][j] = 1.

What is the space complexity of this algorithm? As in (Jiang et al., 1995), we 
have to compute suffix-suffix, nonsuffix-suffix, and suffix-nonsuffix alignments. For 
each end node, we can start a suffix at any of the O(MaxLoop(F)) other nodes in the same 
loop. Hence there are O(Pairs(F)MaxLoop(F)) 'suffixes' of F. On the other hand, any 
node can end a nonsuffix, so there are O(|F|MaxLoop(F)) nonsuffixes in F. Our 
modification to use ALIGNignore_end essentially forces us to compute each of these 
alignments twice - once including the end nodes, and once ignoring them24 - but it doesn't 

24 Since some 'ignore end' alignments are very similar to some nonsuffix-suffix alignments, it may be 
possible to compute their scores without storing them. It wouldn't reduce the big-O complexity, though.
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change the big-O complexity. So the number of alignments of each type that we have to 
compute is as follows:

suffix-suffix: O(Pairs(F)MaxLoop(F)Pairs(G)MaxLoop(G))
suffix-nonsuffix: O(Pairs(F)MaxLoop(F)|G|MaxLoop(G)) 
nonsuffix-suffix: O(Pairs(G)MaxLoop(G)|F|MaxLoop(F))

Also, we have to compute and store the partial-ordering matrices F≤ and G≤, which 
add time and space complexity O(|F|2) and O(|G|2), respectively. The total space 
complexity is then:

space: O(|F|2 + |G|2 +
   MaxLoop(F)MaxLoop(G)(|F|Pairs(G) + |G|Pairs(F)))

What about the time complexity? For each subalignment, we have to consider 
eight editing operations: base replace, base insert, base delete, base pair replace, base pair 
insert, base pair delete, pair bond insert, and pair bond delete. If we inspect the 
recurrences, we see that they have time complexities as follows:

Edit Op. Edit Operation Time Complexity
base replace O(Deg(F)Deg(G))

base insert O(Deg(G))

base delete O(Deg(F))

base pair replace O(PairDeg(F)PairDeg(G)Deg(F)Deg(G))

base pair insert O(MaxLoop(F)PairDeg(G)Deg(G))

base pair delete O(MaxLoop(G)PairDeg(F)Deg(F))

pair bond insert O(MaxLoop(F)PairDeg(G)Deg(F)Deg(G))

pair bond delete O(MaxLoop(G)PairDeg(F)Deg(G)Deg(F))

Base pair operations dominate the running time, so the total time complexity is:

time: O(|F|2 + |G|2 +
   MaxLoop(F)MaxLoop(G)(|F|Pairs(G) + |G|Pairs(F))
   *  Deg(F)Deg(G) * (PairDeg(F)PairDeg(G) 

+ MaxLoop(F)PairDeg(G) 
+ MaxLoop(G)PairDeg(F)))

Most 'real world' situations are much simpler to analyze. For individual RNA 
structures, PairDeg(F) = Deg(F) = 1 and MaxLoop(F)Pairs(F) = O(|F|). If we do a little 
algebra, the complexities reduce to O(|F|2 + |G|2 + |F||G|(MaxLoop(F) + MaxLoop(G))) 
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space and O(|F|2 + |G|2 + |F||G|(MaxLoop(F) + MaxLoop(G))2) time. This is essentially 
the same as the algorithms of (Jiang et al. 1995; Jansson et al., 2004). For multiple RNA 
structures, we can make the same argument that we did for string-RNAPOAs. So long as 
they are reasonably similar, Deg(F) and PairDeg(F) will be small constants, so alignment 
time shouldn't increase very quickly with the number of aligned structures.

A major drawback of this type of forest-RNAPOA alignment is that it enforces the 
same nesting constraint as ordinary forest alignments. To visit each base node of an 
ordered forest, we have to pass through each pair node. Hence an alignment's 'threading' 
of F has to visit every pair fp in F (even if the pair is indel'd anyway). However, if we look 
at the recurrence relations for forest alignment, any alignment visitng fp gets divided into 
two subalignments - one starting at next(fp) and another enclosed by pair(fp). Likewise, 
any alignment visitng gp is divided in the same way. But since all alignments have to visit 
both fp and gp, our choice of alignments is limited. If we align any base in pair(fp) with 
any base in pair(gp), then no base in pair(fp) can be aligned with next(gp) and no base in 
pair(gp) can be aligned with next(fp). In other words, the alignment can't make fp and gp 

cross.

Table 9: Forest-RNAPOAs F (top) and G (bottom) and their adventures with crossing base pairs. Left:  
with ordinary forests, an alignment's threading must visit these spans (gray boxes). If we delete the pair 
node (red circle), we divide F into two parts (blue boxes). None of the split points in G (blue triangles) will  
let  us match all of the identical nucleotides. Right: if F is a 'stringlike' RNAPOA, we can choose an 
alternate path from the leftmost “G” base that doesn't visit the pair node. The alignment is no longer 
constrained to 'nest'.

We can get around this problem by using 'stringlike' RNAPOAs. A stringlike 
forest-RNAPOA, just like an string-RNAPOA, treats each base pair as an optional, 
alternate path. Consider an optimal alignment A of a stringlike RNAPOA F and any 
arbitrary forest-RNAPOA G. What if the A makes a pair node fp cross a pair node gp? 
That is, what if pair(fp) = (f5',f3') and pair(gp) = (g5',g3'), but A aligns some base nodes in 
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(f5',f3') with base nodes that aren't in (g5',g3')? The worst case is that G is an ordinary forest, 
so the alignment's threading of G has to visit gp (if only to indel it). However, the 
threading of F doesn't have to visit fp , since fp is on an optional, alternate path. Hence we 
can still generate A as the optimal alignment.

This freedom comes at the cost of efficiency. If F is stringlike, then MaxLoop(F) = 
|F|, so a pairwise alignment requires O(|G|2 + |F||G|(|F| + MaxLoop(G))) space and O(|G|2 

+ |F||G|(|F| + MaxLoop(G))2) time. It is straightforward to interconvert ordinary and 
stringlike RNAPOAs, so we can always choose the smaller structure to be stringlike.

A final note: it is very inefficient to align base pairing probability matrices using 
forest-RNAPOAs. For a base-pairing probability matrix, |F|, Pairs(F), MaxLoop(F) = 
O(Bases(F)2), and PairDeg(F) = Bases(F). e.g. when F and G have comparable sizes, the 
algorithm would require O(Bases(F)8) space and O(Bases(F)11) time.

3.3 Approximate alignment of RNAPOAs with tertiary structure
The alignment algorithms that I developed in the previous section do not align two 

entire RNAPOAs to each other. They align a single 'threading' of S onto T. When I say 
'threading', I simply mean the nodes of S and T that are aligned with each other. 
RNAPOAs, like partial-order sequence alignments, only generate an optimal threading of 
any one sequence of S with any one sequence of T. Also, like arc-annotated structure 
alignments, they only generate an optimal threading of any one secondary structure of S 
with any one secondary structure of T - no 'alternate' or crossing base pairs are allowed.

In general, we'd like to do more - we want to align tertiary structure as well as 
secondary structure. In addition, the nature of partial-order alignments gives us another 
reason to go beyond a single threading. To see why, let us first consider the simpler case 
of PO-MSAs. 

Imagine two identical PO-MSAs S and T. Since they are identical, S and T have 
the same alternate paths. When we align S and T, we find the best threading of a path in S 
to a path in T. Then we merge the aligned nodes to form a new PO-MSA A. What 
happens to the alternate paths that weren't threaded? We don't merge them, so they 
remain in A as duplicate paths. In theory, this duplication increases the time and space 
requirements of future alignments and decreases their quality. Future alignments could 
add different replacements/indels to each duplicate path, but the two ought to be identical. 
Of course, these statements about 'duplicates' also apply to any alternate paths, not just 
duplicates; even if they aren't on the optimal threading, we still ought to align them.
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Table 10: A hypothetical peril of alternate paths in PO-MSAs. Left: two identical PO-MSAs and their 
alignment. Aligned nodes are colored gray. The alignment is a 'threading' of a single path in S onto a 
single path in T. If S and T have alternate paths, those paths aren't merged. Right: in practice, indel costs 
are much higher than mismatch costs, so 'alternate paths' are merely mismatched (dashed circles).  
Aggressive merging of aligned, mismatched nodes solves the problem.

We would expect this to be a big problem for PO-MSAs - unless the guide tree is 
very good, alignments should accumulate duplicate paths. In practice, these effects are 
small. It is difficult to generate this kind of alternate path, since scoring functions 
typically give higher penalties to sequence indels than to subsitution mutations.

RNAPOAs can't escape the problem so easily. After all, a major purpose of RNA 
structure alignment is to take structural information into account when deciding where to 
place indels. If we only consider one 'threaded' structure of many, we are throwing away a 
lot of information. In the most extreme case - RNAPOAs that represent full base pairing 
probability matrices - we only use a small fraction of the total structural information.25 
This is an especially dangerous issue for forest-RNAPOAs. Since they represent base 
pairs explicitly, any base pairs that cross the 'threaded' structure will not be aligned and 
could easily become duplicated. For example, if a moderate-sized substructure of an RNA 
has two common variations, and the variations appear in several different phylogenetic 

25 The same criticism applies to the total order approach of (Hofacker et al., 2004).
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groups, a forest-RNAPOA would quickly accumulate duplicate paths containing many 
extra pair nodes.

The main challenge here is to take crossing base pairs into account during 
alignment; if we can do that, we can handle tertiary structure and avoid duplicate paths. 
For string-RNAPOAs, we can solve this problem with a variation of the 'constrained 
alignments' outlined by (Wang and Zhang, 2001).26 The basic idea is as follows. In the 
first pass, we align S and T to produce the alignment A1. Then we generate constraints to 
force future passes to respect the aligned base pairs in A1. Finally, we remove those base 
pairs from S and T (so that we can cross them), and re-align S and T according to the 
constraints. We keep repeating this process, adding more constraints and producing more 
refined alignments A2, A3, A4, etc. We stop when Ap = Ap-1, i.e. when the next alignment 
doesn't include any new base pairs.

Now for a more detailed explanation. Let aligned_base(si) = tk if si is constrained 
to align with tk, and aligned_base(si) = empty otherwise. Let ignored_pairs be a set of 
base pairs that have already been aligned in some previous alignment pass Ap. After we 
generate an alignment, for each pair of aligned base pairs (si,sm) and (tk,tn), we set:

aligned_base(si) = tk

aligned_base(sm) = tn

aligned_base(tk) =  si

aligned_base(tn) = sm

ignored_pairs = ignored_pairs U {(si,sm), (tk,tn)}

Now that we have our constraints, we apply them to ALIGN((si,sj), (tk,tn)) as 
follows. First, we force the alignment to respect previously-aligned paired bases. If 
aligned_base(si) = tk and aligned_base(tk) = si, then we don't allow indels. If we are forced 
to accept an indel - e.g. if aligned_base(si) is not empty but aligned_base(tk) = empty - 
then we give it a score of (- ∞). If aligned_base(si) ≠ tk and is not empty, or 
aligned_base(tk) ≠ si and is not empty, then we don't allow base replacements. Second, we 
don't consider base pairs that were in previous alignments. When we optimize over all 
base pairs in pair(si), we ignore any pairs (si,sm) that are in ignored_pairs. We also ignore 
any pairs (tk,tn) that are in ignored_pairs. That's all!

The constraints are easy to implement without changing the time or space 
complexity of alignment. Actually, the constraints make alignments considerably more 
efficient. We don't need to compute as many subalignments, since we don't have to align 
pair-suffix spans if we are ignoring all of the pairs that depend on that span. Nevertheless, 
the worst-case complexity is the pairwise complexity times the number of passes: about 
O(Bases(S)Bases(T)min(Bases(S),Pairs(S))min(Bases(T),Pairs(T))(#passes)). If we are 
dealing with tertiary structures or string-RNAPOAs with alternate paths, this procedure 
should stop aligning new base pairs after a small number of passes. Alignments with 
many more pair nodes than bases could potentially take much longer, since each pass 

26 As discussed near the end of section 2.5.1.
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adds at most O(Bases(S)) base pairs to ignored_pairs. In such cases we might impose an 
upper limit to the number of passes.

The method of (Wang and Zhang, 2001) preserved a total ordering, so each base 
in the alignment had only one structural feature. In contrast, this partial-order method can 
actually align multiple base pairs for the same base. For example, it can align (si,sm) and 
(tk,tn) in the first pass, and then (si,sa) and (tk,tb) in the second pass. Thus the resulting 
RNAPOA is not merely an alignment of two consensus structures or structural 
threadings; it is an alignment of the entire set of alternate structures shared between two 
ensembles of RNAs. The alignment is built greedily from a series of threadings of 
secondary structure, so it may not be globally optimal. However, much of the similarity 
between homologous structure ensembles can be captured by a single secondary structure 
threading (e.g. see the results of (Hofacker et al., 2004)), so for most practical cases this 
greedy method should give good results.

We can use the same basic strategy for forest-RNAPOAs. The aligned_base 
constraint can be implemented just as for string-RNAPOAs. The ignored_pairs constraint 
is a bit trickier; we can't just ignore pair nodes, since we have to visit them when we 
traverse the graph. Instead, whenever we compute ALIGN((fi,fj), (gk, gl)), we force a pair 
bond insertion if gk is in ignored_pairs and force a pair bond deletion if fi is in 
ignored_pairs. This way we basically skip over all pair nodes that have already been 
aligned. Again, the algorithm's complexity is the same; the total cost is just the pairwise 
cost times the number of passes. Note that this method is mostly useful for alignments 
that include a stringlike forest-RNAPOA; otherwise, the forest representation stops us 
from considering crossing base pairs.

3.4 Approaches to multiple alignment
The main focus of this thesis is the RNAPOA representation of multiple 

alignments and algorithms for aligning two RNAPOAs. With these in hand, there are 
many methods we could use to build multiple alignments. Here I will review three such 
methods and briefly discuss the advantages and disadvantages of each. Current RNA 
multiple structural alignment programs use techniques originally developed for sequence 
alignment. It may be that RNAs have certain properties that would benefit from 
specialized alignment-building schemes. However, the methods that I will discuss here 
are relatively straightforward and can be used with any type of 'alignment of alignments'.

The simplest way to build a multiple alignment is to merge single structures into 
an alignment one-by-one in an arbitrary order. I will call this the linear scheme, because it 
requires O(k) total alignments for k structures. With traditional, total-order sequence 
alignments, this approach tends to produce bad alignments. On the other hand, (Lee et al., 
2002) used this simple scheme with partial order sequence alignments and got fairly good 
results.

A more traditional way to build a multiple alignment is to construct a 'guide tree' 
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that determines the order in which we merge a series of intermediate alignments. I will 
call this the tree-guided scheme. We can choose a guide tree by applying a phylogenetic 
tree reconstruction algorithm (e.g. (Saitou and Nei, 1987)) to a matrix of pairwise 
distances between the input structures. To generate the distance matrix, we need to 
perform O(k2) pairwise structure alignments. The guide tree will include O(k) internal 
nodes, and we have to perform one pairwise alignment for each one. 

Two of the programs that I've mentioned in this thesis - pmmulti (Hofacker et 
al., 2004) and POA2 (Grasso and Lee, 2004) - use this approach. Because it takes so 
many pairwise alignments to generate the distance matrix, both of these programs provide 
a way to avoid using the full, optimal alignment algorithm during this step. pmmulti has 
an option to use 'string-like' alignments of base pairing probabilities, and POA2 uses 
BLAST (Altschul et al., 1997), a fast, approximate sequence comparison algorithm. Even 
these rough guide trees significantly improved the quality of PO-MSAs.

RNAForester uses a third approach. One use of multiple alignments is as input 
to programs for inferring phylogenetic trees. However, (Hochsmann et al., 2004) note that 
inferred trees are strongly influenced by the alignment's choice of guide tree. In that case, 
the multiple alignment isn't telling us anything about sequence phylogeny that we didn't 
already know from the individual pairwise alignments. To avoid this dilemma, 
RNAForester iteratively constructs a 'guide tree' during the course of alignment. I will 
call this the tree-building scheme. The idea is as follows:

1. Compute all O(k2) pairwise distances between the k single-structure RNA profiles.
2. Align the two most similar RNA profiles. Merge them into new profile A. 
3. Compute all O(k) pairwise distances between A and the other profiles.
4. If more than one profile remains, go to step 2.

So, rather than trusting a guide tree to figure out ahead of time which intermediate 
profiles will have the smallest distances to each other, RNAForester recomputes 
pairwise distances as it goes. For k structures we need only (k-1) pairwise alignments to 
merge them all. If we compute O(k) distances after each step, we only do O(k2) 
recomputations in all. Thus all of the additional pairwise alignments double the running 
time but don't increase the alignment complexity.

Which of these approaches is best for RNAPOAs? It depends on the purpose of 
the alignment. If speed is an issue, or if there are a large number of structures, the linear 
method is the only one that will be efficient. The advantages of the partial order 
formulation should let RNAPOAs give fairly accurate alignments even when the input 
structures are merged one by one. If we are doing a phylogenetic comparison in which 
accuracy is paramount, the more rigorous methods are the way to go. Following 
(Hofacker et al., 2004), we might build a guide tree based on 'string-like' alignments to 
keep the running time manageable for large sequence lengths.

Unfortunately, although I have implemented the linear method, I have yet to 
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evaluate the other two. Given the improvement that even a rather rough guide tree makes 
to PO-MSAs, it is likely that RNAPOAs will benefit from the tree-guided and tree-
building methods as well.
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4. Experimental Results
In this section I will present a few preliminary results. Before I begin, I should 

mention an important caveat. In the realm of sequence alignments, standardized 
alignment databases such as BaliBase (Bahr et al., 2001) make it easy for researchers to 
to objectively compare sequence alignment algorithms. However, RNAPOAs are partial-
order alignments and are RNA structural alignments. Both of these properties make 
RNAPOAs difficult to compare with existing methods. First, as (Lee et al., 2002) noted, a 
PO-MSA represents a very large number of equivalent (but differently scored) total order 
alignments. Therefore it is something of an apples-to-orangles comparison to evaluate 
PO-MSAs accoring to row-column criteria. A measure like 'percent conserved residues 
correctly aligned' essentially compares an alignment to a profile, even if the alignment is 
better represented by a partial ordering with alternate paths.

Secondly, RNA structure alignments are even more difficult to objectively 
compare. We might use RNA structural alignments for several tasks - to find similar 
structures from a database, determine a consensus structure for a phylogenetic group, 
infer phylogenetic relationships from aligned RNAs, or explore the variation within an 
ensemble of computationally predicted structures. In each case, we have different criteria 
for what makes an alignment 'good'. For example, repositories like the RNAse P Database 
(Brown, 1999) and BRAliBase (Gardner and Giegerich, 2004) have structures for RNAs 
from many different phylogenetic groups. The base pairs of each structure are generally 
determined by aligning many sequences at once to consensus structures that have been 
determined by experimental studies and phylogenetic analysis. In one sense this is the 
'gold standard' for alignment programs, since the consensus is our best estimate of the 
actual structure of the RNAs. However, if most of the RNAs can be fitted to the same 
consensus structure, then it nullifies the advantages of RNAPOAs in capturing variations 
as well as commonalities.

In any case, the above points are academic for now. I have implemented string-
RNAPOA and forest-RNAPOA alignment, but the algorithms are still in an experimental 
state and aren't yet ready for a thorough evaluation. The code is written in python, using 
the Numeric module for multidimensional arrays and the Psyco module for code 
optimization. For reference, I can give some wall clock times for string-RNAPOA 
alignment: it takes 90 seconds to align two 5S RNA structures with about 120 bases each, 
5 minutes to align two RNAse Ps with about 270 bases each and a small number of base 
pairs, and 30 minutes to align two RNAse Ps with about 350 nucleotides each and a 
larger number of base pairs. I expect that a C++ implementation would be several times 
faster.

Now I can show some results. The following images are from a multiple 
alignment of nine bacterial 5S RNA structures obtained from the Comparative RNA Web 
Site (Cannone et al., 2002). Each sequence is about 120 nucleotides long, and the RNAs 
have a well-conserved structure. I used the graph editing program yEd to render and 
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arrange the resulting RNAPOAs. In each image, circular nodes represent bases and 
diamond nodes represent base pairs. Bases are colored light blue if they occur in only one 
structure, but become red in proportion to the number of structures in which they appear. 
All of the bases at a single position in the alignment - i.e. matched and mismatched bases 
- are connected by by red dashed lines. These are not always visible. To remedy this, I 
have moved all aligned base nodes so that they partially overlap, which seems to be a 
better visual cue.

The left image in the table above shows a region with conserved sequence and 
structure. There are several nodes which have exactly the same nucleotide and base pair 
in all nine structures. There are a few alignment positions which have alternate base pairs; 
for example, the position in the middle of the image has two aligned base pairs, one of 
which is very common (bright red) and the other of which only occurs in a few structures 
(light pink). One of the base pairs near the bottom of the image is extremely variable - 
one of its bases has two variants and the other base has all four possible nucleotides. 

The right image shows a region that is less well conserved; there are several 
alternate paths through this part of the RNAPOA. In the center of the image, there are a 
few adjacent positions whose nucleotides and pairing partners vary. Several of the base 
pairs cross, representing base pair shifts. In addition, some of the base nodes have next 
edges to several different positions. For example, the fully conserved base node (bright 
red) in the top left has next edges to two different positions. One next is a variable 
position, with two rare bases (light blue) and one common base (red). The other next 
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(purple) is an insertion in front of the variable position. Furthermore, these two next 
positions have highly variable structure; each alternate nucleotide can form several 
different base pairs. In the bottom right of the image, we can see a high-level variation: 
three consecutive base pairs (purple) which are present in some, but not all, of the RNAs.

I should note that the alignment quality is rather poor. In particular, the scoring 
function I'm using is very simple and it better suited to testing toy examples than to 
alignment of phylogenetically related RNAs. An accurate multiple alignment of these 
structures would show very little variation. Nevertheless, these RNAPOAs show how 
partial order alignments can represent complex indels, base pair shifts, and subtle 
interactions between sequence and structure variations.

These two images show two different views of a stem and a four-base hairpin 
loop. The hairpin's structure is fairly well conserved, but the nucleotide content is 
extremely variable. In particular, consider the paired bases at the upper left corner of the 
left image. Each of those paired positions has many different nucleotides, and some 
nucleotides even have more than one pairing partner.27 The other positions are only 
slightly less variable in nucleotide content. In contrast, the structure is mostly conserved, 
but we can still see a few variations. Some positions have mutations that prevent them 
from forming base pairs. For example, the bottom-most nodes in the image (light blue) 
don't participate in base pairs, although they are aligned with other base nodes that do 

27 In fact, there are more than four base nodes aligned at that position, due to a bug in my code for merging 
aligned nodes. 
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form pairs. Also, a small number of structures have base indels near the end of the hairpin 
- note the crossing next edges and the wayward (light blue) base node on the right.

The right image shows a view of the region from farther back. Although the full 
substructure is present in most of the RNAs, two of them have an alternate, truncated 
form (highlighted in yellow). One of the RNAs has a base pair and a four-base hairpin 
loop, while the other has only three unpaired bases and an indel against the rest. 
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The image above shows an accurate alignment of four of the 5S RNAs. Base pairs 
present in all structures are colored bright blue, and variable base pairs are colored green. 
Their strongly conserved structure makes it a rather boring case, but we can see a few 
places where the partial ordering formulation is useful. The RNAPOA represents mutated 
regions as alternate paths rather than as a profile, and shows how sequence mutations 
present in one RNA create a new base pair at the 3' end of the structure and induce a base 
pair shift near a hairpin loop. One RNA has many substitution mutations, forming an 
alternate path through the graph that induces only a small change in the structure (see 
inset).

The timing statistics of this alignment show some of the algorithmic properties of 
RNAPOAs. In a messy graph structure like the one depicted above, we would expect 
BaseDeg and PairDeg to increase significantly, and hence force us to maximize over 
many more possibilities at each step. Even so, the initial pairwise alignment processed 
about 50,000 subalignments per second, and the final alignment of the RNAPOA to its 
last structure processed about 45,000 per second. At least for the linear alignment 
scheme, those pesky degree terms appear to be small in magnitude and slow in growth, as 
expected.

However, the total alignment time was not as stable. For the initial pairwise 
alignment, the first structure had 1968 suffixes/pair-suffixes and the second had 1881, so 
the algorithm had to compute a total of 3.7 million subalignments - about 70 seconds. 
However, the RNAPOA accumulated many additional nodes during the course of 
alignment. By the last step, it had 11231 suffixes/pair-suffixes, whereas the last 
individual structure had only 1758. Hence the final merging required 20 million 
subalignments - about 8 minutes.

I should caution that this is an isolated data point measured for an algorithm in 
development. These results may be artifacts of the simple scoring function I used, or even 
bugs in my implementation. In addition, I haven't yet implemented the ALIGNignore_end 

trick, which should greatly reduce the effect of node accumulation on the number of 
subalignments that have to be computed. I will have to test the algorithm more 
extensively to give a full evaluation of its properties 'in practice'.
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5. Discussion
5.1 Contributions

Individual RNAs must obey many structural constraints: each position can have 
only one nucleotide; each nucleotide can have at most one predecessor, one successor, 
and one pairing partner; if the RNA has only secondary structure, its base pairs do not 
cross. However, an alignment of RNA structures should not obey the same constraints. 

Early approaches to sequence analysis made no distinction between a sequence 
and an alignment of sequences. An alignment was simply a single sequence with a 
consensus nucleotide at each position. Profile-based approaches relax the 'one nucleotide 
per position' constraint, which greatly improves alignment quality. However, this requires 
the use of artificial 'gap' entities. Partial-order alignments relax the 'one predecessor, one 
successor' constraint and achieve an even more natural representation.28

In the same vein, current RNA structure comparison methods do not make a clean 
separation between individual sequences, individual structures, and alignments. In this 
thesis, I have addressed this problem with a partial order formulation of RNA structure 
alignment. An RNAPOA faithfully represents an set of individual structures without 
splicing in 'gaps' or enforcing consensus features. In particular, RNAPOAs can handle 
base pair shifting, a common structural mutation that cannot be represented under a total 
ordering. This natural representation has the potential to considerably improve the quality 
of alignments. Each aligned secondary structure is a path through an RNAPOA, and when 
we find an optimal threading of two RNAPOAs, we find an optimal threading between 
any two of their paths. In addition, RNAPOAs support an iterative method for 
approximate alignment of 'alternate paths'. Not only does this allow for alignments of 
tertiary structure, but it also minimizes a subtle source of error in current partial-order 
alignment methods.

The table below summarizes the algorithms presented in this thesis. They are 
based on existing structure alignment algorithms, so they generally have similar 
complexity. In some cases they require additional time/space to relax the structural 
constraints of a total ordering. I present algorithms for two types of alignments: string-
RNAPOAs and forest-RNAPOA. Forest-RNAPOAs are good when the structures are 
generally described by a common nesting, since MaxLoop(F) is much smaller than 
Pairs(F). On the other hand, string-RNAPOAs are best when the alignment contains 
many crossing or alternate base pairs, since we don't have to visit pair nodes during 
alignment. Both string-RNAPOAs and forest-RNAPOAs contain essentially the same 
information, so it is straightforward to interconvert them when one or the other 
representation is advantageous. Indeed, although I have chosen to treat them as separate 
types of graph, we could likely unify them into a single type of graph structure which 
supports both string-like and forest-like algorithms.

28 The method of (Raphael et al., 2004), further relaxes these constraints to allow cyclic graphs, which 
represent shuffled/repeated sequence elements.
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Representation and 
algorithm

Edit Operations Space Complexity Time Complexity Notes

RSMatch tree
(Liu et al., 2005)

unpaired base {replace, indel}
base pair replace
base-pair-and-substructure indel

O(Bases(S)2) O(Bases(S)2) Very strict matching. Deletes 
entire substructures rather 
than aligning unpaired and 
paired bases.

RNA profile (forest)
(Hochsmann et al., 2004)

base {replace, indel}
base pair replace
pair bond indel

O(|F|2MaxLoop(F) ) O(|F|2MaxLoop(F)2 ) Enforces a consensus 
nesting; i.e. cannot represent 
crossing pairs.

arc-annotated alignment
(Wang and Zhang, 2004)

unpaired base {replace, indel}
base pair {replace, indel}

O(Bases(S)2Pairs(S)2 ) O(Bases(S)2Pairs(S)2 ) Enforces a consensus 
structure; cannot align 
unpaired and paired bases. 
Approx. tertiary structure 
alignment.

base-pairing probability 
matrix
(Hofacker et al., 2004)

base {replace, indel}
base pair replace

O(Bases(S)4)
constrained: O(Bases(S)3)

O(Bases(S)6)
constrained: O(Bases(S)4)

Enforces consensus pairing 
probabilities.

Introduced in this thesis:
string-RNAPOA (1) base {replace, indel}

base pair replace
O(Bases(S)2Pairs(S)2) O(Bases(S)2Pairs(S)2) Partial-order. Approx. 

tertiary structure alignment.
string-RNAPOA (2)
(allows base pair indel)

base {replace, indel}
base pair {replace, indel}

O(Bases(S)4) O(Bases(S)5) Partial-order. Approx. 
tertiary structure alignment.

string-RNAPOA (3)
(for pairing prob. matrix)

base {replace, indel}
base pair {replace, indel}

O(Bases(S)4) O(Bases(S)6) Same as (1); Even when 
Pairs(S) = O(Bases(S)2),  the 
complexity doesn't grow 
beyond this.

forest-RNAPOA (1) base {replace, indel}
base pair {replace, indel}
pair bond indel

O(|F|2MaxLoop(F)) O(|F|2MaxLoop(F)2) Partial-order, but enforces a 
consensus nesting.

forest-RNAPOA (2)
(for crossing base pairs)

base {replace, indel}
base pair {replace, indel}
pair bond indel

O(|F|3) O(|F|4) Partial-order. Approx. 
tertiary structure alignment.

Table 1: Summary of the algorithms in this thesis, in comparison to other multiple alignment methods. Edit operations include edits restricted to certain classes of nucleotides  
(e.g. unpaired base replacement), to paired bases (e.g. base pair indel), or just to the bond between two bases (e.g. pair bond indel). Algorithm space/time requirements are given 
in terms of pairwise alignments between two structures with similar sizes. When we consider multiple alignments, complexity grows in a small but complicated way related to the 
number of gaps or alternate paths in an alignment. Complexity notation: Bases(S) = number of nucleotides in S, Pairs(S) = number of base pairs in S, |F| = number of nodes in a 
graph = (Bases(F) + Pairs(F)), MaxLoop(F) = number of bases in the largest loop in F.
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5.2 Future Work
RNAPOAs are rather slow to compute, for two main reasons. First, RNAPOAs 

respect sequence and structure information, but they don't use them as hard constraints. If 
we permit structurally invalid alignments, we can just use a sequence-based algorithm 
with quadratic complexity. If we force all aligned RNAs to have similar types of 
structures, we can again achieve quadratic or near-quadratic complexity (Hochsmann et 
al., 2004; Liu et al., 2005). On the other hand, RNAPOAs allow “sequence or structure” 
alignments, so they have to optimize over a much larger search space. For example, a 
pairwise sequence alignment of 120 nt 5S RNAs considers about 15,000 subalignments, 
but a string-RNAPOA alignment considers nearly 4 million.

We could remedy this problem by imposing some reasonable restriction on the 
search space. For example, the algorithm of (Hofacker et al., 2004)  uses an 
approximation parameter Δ to reduce alignment time compleixty from sextic to quartic. 
The idea is to ignore subalignments in which one span has Δ more nucleotides than the 
other; instead of aligning each span in S with each all |T|2 spans in T, we only try Δ2 spans 
in T. In other words, S and T can only be 'out of register' by Δ positions. (Bafna and 
Zhang, 2004) and (Yang and Blanchette, 2004) use a somewhat similar approach, in 
which they only search for alignments that are within Δ of an approximate, sequence-
based alignment. In general, most approximation methods for total-order alignments 
should also work for partial-order alignments.

A second reason why RNAPOAs are slow is that RNAs with conserved structure 
may have highly variable sequences. In that case, a partial order alignment pays a high 
cost for preserving every sequence/structure variation. Progressive alignment is an 
approximation heuristic anyway, so it may not be worth it to pay this cost if it gives only 
a marginal improvement in alignment accuracy. (Grasso and Lee, 2004) suggest that a 
reasonable tradeoff is to merge mismatched bases into profile nodes. This reduces the 
number of nodes while still preserving the main advantages of the partial order 
formulation. A similar approach would produce even greater speedups for RNAPOAs, 
since each extra node/edge forces us to consider O(Bases(S)) additional subalignments.

Table 2: Profile nodes for RNAPOAs. Left: a segment of a string-RNAPOA. Right: a profile string-
RNAPOA still contains alternate paths for indels and base pair shifts, but merges mismatched bases.
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The algorithms presented in this thesis charge the same cost for each indel'd base, 
but this is not biologically accurate. It should be straightforward to use affine indel costs 
for the RNAPOA algorithms, since they are based on total order alignment algorithms 
that have affine gap variants.29 It is also straightforward to modify RNAPOAs to use 
position-specific substitution and indel costs, which can greatly improve alignment 
accuracy for sequences with low similarity (Thompson et al., 1994). It remains to be seen 
whether partial order alignments can support more advanced editing models such as 
logarithmic gap penalties (Gu and Li, 1995) or different gap penalties within regions of 
paired bases (Klein and Eddy, 2003). In addition, to rigorously align phylogenetically 
related RNAs using base pairing probabilities, we need a model of how to combine 
probabilities based on thermodynamic predictions (as used by e.g. (Hofacker et al, 2004)) 
with log-odds scoring rules based on phylogenetic comparisons (as used by e.g. (Klein 
and Eddy, 2003)). Another concern is that scoring models developed for total order 
alignments have different statistical properties for partial order alignments. As (Lee et al., 
2002) note, adding a random sequence to a partial order alignment can only increase the 
number of alternate paths, and hence can only improve the scores of future alignments. If 
we want to test the statistical significance of an alignment, e.g. whether a query sequence 
is better than a random sequence at matching a family of aligned RNAs, we need to 
develop a different type of scoring function.

However, before attempting to improve the speed or scoring functions of 
RNAPOAs, they should be fully implemented and tested on more interesting datasets. 
Not only will this establish give the properties of the RNAPOA algorithms an empirical 
grounding, but it will help determine which avenues for improvement are most 
promising. This will also allow an investigation into how different schemes for 
constructing multiple alignments interact with the properties of RNA structures and 
partial-order alignments built from various types of datasets (phylogenetically determined 
structures, thermodynamic predictions, base pairing probabilities, etc.).

RNAPOAs are rather complex graphs, so it is important to display them in a way 
that makes their information accessible. I used the generic graph editor yEd to draw the 
images in this thesis, but RNAPOAs required considerable manual tweaking to make 
them presentable. This would quickly become tedious in a research environment, 
especially for large alignments. There are quite a few programs specialized for drawing 
RNA structures, but they typically draw only one structure at a time and don't allow 
tertiary structure. In contrast, RNAPOAs may represent a large ensemble of tertiary 
structures with many alternate pairs and alternate successors for each base! Of course, we 
could always translate RNAPOAs into total-order, row-column alignments, but graph 
drawings are a more intuitive representation for RNA structure. In short, it may actually 
be more challenging to design interfaces for drawing and editing RNAPOAs than it was 
to design algorithms to align them.

29 (Wang and Zhang, 2001) for arc-annotated strings, (Wang and Zhao, 2003) for ordered trees.
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