
Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

as an undergraduate thesis in Computational Biology

Page 1 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Outline
0. Abstract

1. Overview
1. Motivation
2. Main results
3. Organization of this thesis

2. Background
1. Alignment of two sequences
2. Progressive profile alignment of multiple sequences
3. Partial-order alignment of multiple sequences
4. Basics of RNA structure
5. Alignment of two RNA secondary structures

1. Pairwise alignment of arc-annotated strings
2. Pairwise alignment of forests

6. Alignment of multiple RNA secondary structures
1. Sequence-based methods
2. Structure-based methods
3. Room for improvement?

3. RNA partial-order alignments (RNAPOAs)
1. RNAPOAs
2. Optimal alignment of two RNAPOAs

1. string-RNAPOA alignment
2. forest-RNAPOA alignment

3. Approximate alignment of RNAPOAs with tertiary structure
4. Approaches to multiple alignment

4. Experimental Results

5. Discussion
1. Contributions
2. Future Work

6. References

Page 2 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

0. Abstract
Multiple alignment of DNA, RNA, and protein sequences is an invaluable tool for

comparative genetics. Some RNAs have functions that depend on structural features as
well as their sequences, so several methods have been proposed for aligning multiple
RNA secondary structures. One trait they share is that their alignment positions have a
total ordering. (Lee and Grasso, 2002) have shown that biological sequence alignments
are more naturally represented under a partial ordering. Partial-order graphs represent
insertions and deletions without the pitfalls of 'gapped' alignments. I argue that a partial-
order formulation has even greater benefits for RNAs; RNA structural alignment is
fundamentally partially ordered. Total-order representations are prone to misalignments
because they represent “sequence and structure”, not “sequence or structure”.

In this thesis, I introduce RNA partial-order alignments (RNAPOAs), a new type
of multiple structural alignment. I show how to construct and align RNAPOAs based on
two popular representations for RNA structures: arc-annotated strings and ordered forests.
RNAPOAs faithfully represent both shared similarities and individual variations of
aligned sequences and structures. This allows RNAPOAs to support and improve a
variety of advanced algorithms, including optimal alignment of base-pairing probability
matrices and approximate alignment of tertiary structures. Partial-order algorithms are as
efficient as their total-order counterparts, so these advantages do not come at a cost in
algorithmic complexity.

Page 3 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

1. Overview
1.1 Motivation

A multiple sequence alignment is a representation of the similar features of a set
of DNA, RNA, or protein sequences, and can be used to infer their shared functions and
evolutionary history. Sequence alignments are crucial tools for biological research, and so
there has been a great deal of effort devoted to making them faster and more accurate. Yet
the functions of RNAs and proteins depend on their 3-dimensional structures as well as
their sequences, so it is worthwhile to consider comparison methods that include both
sequence and structure information.

There are a wide variety of algorithms for comparing RNA structures, often
restricted to RNA secondary structure because higher-level structure tends to be
computationally intractable. A flurry of methods have recently been proposed for aligning
multiple RNA secondary structures (Wang and Zhang, 2004; Hochsmann et al., 2004;
Hofacker et al., 2004; Liu et al., 2005). One assumption they share with most sequence
alignment approaches is that the positions in an alignment should have a total ordering.
Specifically, each position in each aligned structure must be matched with some positon
in every other structure. If a particular feature only exists in some of the structures,
artificial 'gap' entities have to be inserted into every other structure to preserve the total
ordering. This introduces a degeneracy: we can choose many different ways to put gaps
into an alignment without changing which features are aligned with each other. However,
our choice of gaps will have a large effect on how we build the alignment, and hence on
the quality of the finished product.

As recent work by Lee and Grasso (Lee et al., 2002; Grasso and Lee, 2004)
demonstrates, alignments of sequences are more naturally represented by partial-order
multiple sequence alignments (PO-MSAs). A PO-MSA is a directed acyclic graph that
contains each aligned sequence as a subgraph. Rather than using 'gaps', mutated regions
are simply alternate paths through the graph. Hence a PO-MSA reflects the fact that these
mutated regions have no true ordering with respect to each other.1 This property gives rise
to several other advantages; PO-MSAs can be computed very quickly, and whenever a
new sequence is added to a PO-MSA, we can consider its optimal alignment with each
other sequence.

Since an RNA structure alignment essentially includes a sequence alignment, it
stands to reason that partial-order formulation should be at least as beneficial as it is for
sequences. In addition, alignments of certain structural features make sense as partial
orderings but not as total orderings. For example, a few mutated nucleotides can push a
region of an RNA into a different structural state. Even if we do not know how both
sequence and structure contribute to an RNA's functions, a total order alignment forces us
to prioritize the two: if we match the structure then we will have a poor match for the
sequence, and vice versa. What we really want our alignment to say in this case is “they

1 Well, they may have an ordering, but not one that can be deduced from the sequences in the alignment.

Page 4 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

have this structural variant or that structural variant, but similar sequences”. This type of
pattern-matching is captured by alternate paths through a partial-order graph.

1.2 Main Results
I introduce RNA partial-order alignments (RNAPOAs), a representation for

multiple alignments of RNA structures based on partial-order graphs. RNAPOAs have
the same advantages over current RNA alignments that partial-order sequence alignments
have over traditional, totally-ordered representations. The partial-order formulation also
has several additional benefits in the domain of RNA secondary structure: RNAPOAs can
represent alignments of certain structural features that total-order representations cannot.
In fact, I argue that RNA structure alignments are inherently partially ordered.

I then develop algorithms for optimal global and local alignment of two
RNAPOAs. RNAPOAs come in two flavors. String-RNAPOAs are based on the arc-
annotated strings of (Bafna et al., 1996), and are aligned with algorithms in the vein of
(Wang and Zhang, 2001; Hofacker et al., 2004). Forest-RNAPOAs are based on the
ordered forests of (Hochsmann et al., 2003), and are aligned with algorithms like those of
(Jiang et al., 1995; Jansson et al., 2004). If any of these partial-order algorithms is used
for unstructured RNAs, it reduces to the partial-order sequence alignments of (Grasso and
Lee, 2004). The time/space complexity of these algorithms is essentially the same as for
total-order alignment. The complexity increases for RNAPOAs that contain dissimilar
RNAs, for the same reason that total-order alignments become slower if they contain
many 'gaps'. In most real-world cases this increase should be bounded by a small constant
factor. In addition, I also describe algorithms for approximate alignment of RNAPOAs
that have tertiary structure, based on a similar method of (Wang and Zhang, 2001). This
method also allows us to align 'alternate paths' within RNAPOAs, addressing a subtle
source of error in current methods for partial-order alignment. In addition, I discuss
several strategies for constructing multiple alignments from a series of pairwise
alignments.

Finally, I demonstrate RNAPOA by aligning a set of related RNA secondary
structures. It is difficult to objectively evaluate the quality of partial-order alignments on
'ground truth' data, since one partial-order alignment represents a very large number of
different total-order alignments. This is especially true for RNA secondary structures, for
which high-quality phylogenetic alignments are typically expressed with a single, total-
order consensus sequence. However, these preliminary results show how RNAPOAs can
represent alignments with structural variations that cannot be captured by total order
alignments.

In summary, partial-order graphs are natural representations for RNA secondary
structure alignments which overcome the limitations of traditional methods. This
improvement in representation yields an improvement in alignment accuracy, and in most
cases does not require an increase in complexity.

Page 5 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

1.3 Organization of this thesis
The first section of this thesis is this introduction.
The second section presents background information about sequence and RNA

structure alignment. I begin with a brief primer on sequence alignment and the traditional
'row-column', progressive profile formulation of multiple alignment (Higgins and Sharp,
1988). This leads into a dicussion of the advantages of the recent partial-order
formulation of Lee and Grasso. I will then explain the basics of RNA structure and
motivate the problem of RNA structure alignment. I will discuss the existing methods for
pairwise and multiple alignment of RNA structures, with detailed attention to the
algorithms of (Wang and Zhang, 2001; Jiang et al., 1995; Jansson et al., 2004) which I
will build on in this paper. Finally, I will give some thoughts on current methods for RNA
structural alignment, and how they can be improved with a partial-order formulation.

The third section introduces a graph representation of RNA partial-order
alignments, or RNAPOAs for short. RNAPOAs are generalizations of partial order
sequence alignments and RNA secondary structure alignments. Each path through an
RNAPOA is a secondary structure, and each aligned RNA exists as a path in the
RNAPOA. They come in two flavors: one based on arc-annotated strings, and one based
on ordered forests. I will then develop algorithms for global and local pairwise alignment
of RNAPOAs, including variants that handle different scoring schemes and advanced
types of structural information. I will also present an approximation algorithm for
aligning 'alternate paths' in RNAPOAs (e.g. tertiary structure). I will conclude with a brief
discussion of various approaches for building multiple alignments by repeated application
of the pairwise algorithms.

The fourth section presents the experimental results of the POSSA algorithm on
sets of related RNA secondary structures.

The fifth section is a discussion of the merits and drawbacks of the RNAPOA
representation and alignment algorithms. I will also talk about some interesting
extensions to the RNAPOA algorithm that ought to be the subject of future research.

The sixth section has references for all of the scholarly work that I've cited.

Page 6 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

2. Background
This section presents background information about sequence and RNA structure

alignment. I begin with a brief primer on sequence alignment and the traditional 'row-
column', progressive profile formulation of multiple alignment. This leads into a
dicussion of the advantages of the recent partial-order formulation of Lee and Grasso. I
will then explain the basics of RNA structure and motivate the problem of RNA structure
comparison. Finally, I will discuss existing methods for aligning multiple RNA
structures, and explain how these methods can be improved by using a partial ordering.

2.1 Alignment of two sequences

Alignment of DNA, RNA, and Protein sequences is a common operation in
sequence analysis. An 'alignment' is just a correspondence between similar regions of a
set of nucleotide sequences. If several sequences are globally similar, then they are likely
to share a common ancestor and to have similar biological functions. Let us consider two
two RNA sequences whose nucleotides are represented by letters in {a,u,g,c} :

S = augcgacagu
T = cagagag

We can see that a region of T (“gagag”) is very similar to a region of S (“gacag”).
One way to associate these regions is to insert gap characters ('-') into the two sequences
until they are matched with each other, like so:

S = augcgacagu
T = --cagagag-

Now we have a traditional row-column alignment. A row-column alignment is a
matrix where each row represents a sequence and each column represents a set of
matched nucleotides. Each row of the alignment has to have all of its sequence's
nucleotides in the correct order, possibly with gaps mixed in. Each column that doesn't
have a gap represents a mapping between a nucleotide in the top sequence and a
nucleotide in the bottom sequence. I will typically refer to sequences and alignments in
terms of 'positions'; the i-th base in a sequence is its i-th position and the j-th column of
an alignment is its j-th position.

The key to an RC alignment is its gaps, since gaps are what force similar regions
into register. If the gaps are inserted properly then similar regions are matched with each
other and the alignment is an informative mapping between the two sequences. If gaps are
inserted poorly then the alignment tells us nothing. There are many ways of measuring the
goodness of an alignment; here, I will explain the most well-known method.

Let us consider each pair of sequence positions (pS, pT), respectively from

Page 7 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

sequences S and T, that are placed in the same column of the alignment. If pS = pT, then
we say they match. If pS ≠ pT, then we say they mismatch. This is also called a substitution
or replacement, since it corresponds to a sequence suffering a point mutation that replaces
one nucleotide with another. If pS is a '-' gap character, then we say pT has been gapped. A
stretch of several gaps in a row is an indel, short for insertion/deletion, which represents
mutations that add or remove several nucleotides at once. Every column has to have at
least one nucleotide from one of the sequences; we prohibit columns from having only
gaps. The alignment above has 4 matches, 3 mismatches, and 2 indels with 3 total gaps.

Now we can define the problem of finding a good alignment of S and T as an
optimization over all possible ways to insert gaps into them. We'll define a scoring
function for an alignment that gives bonuses for matches and penalties for mismatches
and indels. We then try to find the alignment which has the best score. The simplest
scoring model of this type is as follows. We define a scoring function score(pS,pT) for
matching position pS in sequence S with position pT in sequence T. The score of an
alignment is just the sum of these scores over all positions in the alignment, i.e.

∑
p S∈S , pT ∈T

score pS , pT  . To encourage good alignments, we must define score to
reward matches (when p = p') and penalize mismatches and gaps.

Under this scoring model, it is well known that we can use dynamic programming
to find the optimal alignment in quadratic time and space (Needleman and Wunsch,
1970). Here I will present this algorithm in terms of aligning two graphs; this will allow
us to easily generalize this algorithm for more complicated graph alignment problems
later on in this thesis. We need some definitions:

S is a sequence of m nodes, (s1,s2,...,sm)
T is a sequence of n nodes, (t1,t1,...,tn)
next(si) = si+1, the next node in S after si. next(sm) = empty.
(si,sj) denotes a substring of S: a pair of nodes in S such that i < j.
(si,sm) is a suffix of S

We'll find the optimal alignment by considering optimal alignment of each suffix (
si,sm) S with each suffix (tk,tn) of T. We can treat the sequence S = “augcaugc” as a graph
where each position si has an edge next(si) to the next nucleotide:

Let us define ALIGN((si,sm),(tk,tn)) to be the optimal score for aligning the two
suffixes (si,sm) in S and (tk,tn) in T. If we can compute ALIGN((s1,sm),(t1,tn)), then we'll
have the optimal score for aligning the whole of S with the whole of T. In order to
compute ALIGN((si,sm),(tk,tn)), we'll break it into three subalignment; three alignments of
smaller pairs of suffixes. These correspond to three mutation operations that we could use

Page 8 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

to transform S into T: replacement, insertion, and deletion.
For the first case, what if ALIGN((si,sm),(tk,tn)) puts si and tk in the same column?

Then the bases are matched or mismatched with a score of score(si,tk). I will call this a
replacement, since to transform S into T, we would have to replace si with tk.

2 What about
the rest of the columns of the alignment? They must be the optimal alignment of the rest
of (si,sm) with the rest of (tk,tn), i.e. ALIGN((next(si),sm),(next(tk),tn)). So the optimal score
of an alignment for a replacement is score(si,tj) for matching or mismatching the bases
plus ALIGN((next(si),sm),(next(tk),tn)) for the rest of the alignment.

For the second case, what if ALIGN((si,sm),(tk,tn)) doesn't put tk in the same column
as any nucleotide in S? Then tk must be gapped at a cost of score(-,tk). We say that its
position represents an insertion of tk, since to transform S into T, we would have to insert
the nucleotide tk. What about the rest of the alignment? We have to align (si,sm) with the
remainder of (tk,tn): ALIGN((si,sm),(next(tk),tn))

For the third case, what if ALIGN((si,sm),(tk,tn)) doesn't put si in the same column
as any nucleotide in T? Then this is just like an insertion, but we put a gap opposite to si.
We call this a deletion; to transform S into T we would have we to delete si from S.

Subalignment of two suffixes
ALIGN((si,sm),(tk,tn)) Case 1: replace

score(si,tk)+ALIGN((next(si),sm),(next(tk),tn))

Case 2: insert:
score(-,tk)+ALIGN((si,sm),(next(tk),tn)) Case 3: delete:

score(si,-)+ALIGN((next(si),sm),(tk,tn))

Table 1: to find the optimal alignment of two suffixes, we need to choose the best of three optimal
subalignments: one due to replacement, one due to insertion, and one due to deletion.

2 I am using replace is used a general term here. If Si ≠ Sj, then we replaced a base with a different base
and score it as a mismatch; if Si = Sj, we replace the base with an identical copy and score it as a match.

Page 9 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Putting the three cases together, we see that in ALIGN((si,sm),(tk,tn)) either si

replaces tk, tk is inserted, or si is deleted. Therefore to find the optimal score for
ALIGN((si,sm),(tk,tn)), we just have to choose the action from {replace, insert, delete} that
has the best score. We then have the recurrrence:

ALIGN((si,sm),(tk,tn)) = best of
replace score(si,tk) + ALIGN((next(si),sm), (next(tk),tn))
insert score(-,tk) + ALIGN((si,sm), (next(tk),tn))
delete score(si,-) + ALIGN((next(si),sm), (tk,tn))

Since each alignment depends only on three smaller subalignments, we should be
able to compute the full alignment ALIGN((s1,sm),(t1,tn)) by starting with the smallest
subalignments and gradually building them up. What are the smallest subalignments?
Well, they are alignments that include the empty sequence. ALIGN(Ø,Ø) is an empty
alignment. An alignment of a suffix with Ø must put gaps against every nucleotide in the
suffix, so it only contains insertions or deletions. Hence

ALIGN(Ø,Ø) = 0

ALIGN((si,sm),Ø) = ∑
s j∈si , sm

scores j , - 

ALIGN(Ø,(tk,tn)) = ∑
t l∈ tk , tn 

score - , tl

Now we have our algorithm: we initialize it with the optimal scores for these
small subalignments, then use the recurrence ALIGN to compute larger and larger
alignments until we finally have ALIGN((s1,sm),(t1,tn)), the optimal alignment of S and T.

It is easy to see that the algorithm's space complexity is O(mn) - it needs to store
the subalignments of each of the m suffixes of S with each of the n suffixes of T. To
compute each subalignment, the algorithm just looks up the scores of three subalignments
and does a little addition, so it does O(1) work for each subalignment. Hence the time
complexity is also O(mn).

This algorithm computes the optimal alignment score, but how can we reconstruct
the optimal alignment? Well, each alignment is built from an operation on single bases -
replace, insert, or delete - and a smaller subalignment. For each subalignment
ALIGN((si,sm),(tk,tn)), let us keep a record π((si,sm),(tk,tn)) of the operation we chose to
build it. Then we can reconstruct the alignment by traceback through these records. The
full alignment's record π((s1,sm),(t1,tn)) tells us which subalignment it was built from,
which in turn tells us which subalignment it was built from, and so on. Each traceback
step tells us one position in the alignment. We continue this traceback until we reach
π(Ø,Ø), at which point we have the full alignment.

Page 10 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 2.: alignment of two sequences. Top: the two sequences. Bottom: their alignment. Matched bases are
circled, while mismatched bases are not. Note that gaps have been inserted into each ot the sequences.

The reason that I've spent so much time explaining a well-known algorithm is that
all of the methods I discuss in this thesis are variations on this simple dynamic
programming algorithm. We can describe them as follows:

 1. Compute the optimal scores for the smallest, trivial subalignments,
 2. Use a recurrence to build optimal large alignments from optimal small ones,

 a) while keeping a record of how we built them.
 3. Trace back through our records to reconstruct the optimal alignment

In general, I will only explain step 2 in depth. Steps 1, 2a, and 3 are trivial for
most of the algorithms,3 so I will only discuss them briefly.

Note that in the recurrence above, I used a 'best' operator rather than 'min' or 'max'.
There are two main goals for aligning two sequences: to minimize the distance between
them, or maximize the similarity between them. We calculate the distance between two
aligned sequences by setting the match reward to 0 and mismatch and gap scores to be
positive. Thus the alignment distance between two sequences is always positive, unless
they are perfectly aligned and have zero distance. On the other hand, similarity scores can
be either positive or negative; we calculate the similarity between two aligned sequences
by setting match scores to be positive and mismatch and gap scores to be negative.

So far we have considered only global alignment - aligning the whole sequence S
with the whole sequence T. Both distance and similarity scores are effective in this case.
However, if we want to find a local alignment which aligns only part of S to only part of
T, then we have to use similarity scores. Why is this? Let us say we are allowed to choose
only a subsequence (si,sj) of S to align against a subsequence (tk,tl) of T. Then the optimal-
distance alignment will always be (si,sj) = (tk,tl) = Ø, since they have zero distance from
each other and we can never do better than zero distance. On the other hand, an optimal-

3 Unless we want to improve the space complexity. With many DP algorithms we can find ways to store
fewer records or delete unnecessary ones. This isn't my focus here, but the algorithms in this paper could be
improved in this way.

Page 11 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

similarity alignment will find some tradeoff between bigger and smaller subsequences;
bigger subsequences can have more matches, but also more gaps and mismatches.
Depending on how we define the similarity score, we can bias it to small regions of very
high homology or large regions of moderate homology.

Local alignment is very useful for analysis of biological sequences. After all, we
are using alignment to find regions of homology between S and T, and we may not know
where those regions of homology begin. Also, if we want to search a large sequence S for
a small pattern T, then global alignment is likely to give poor results. Therefore I've
chosen to develop methods that can be used for both global and local alignment. For
sequences, we can do local alignment with just a small modification to the global
algorithm (Smith and Waterman, 1981). Since the more complex algorithms I discuss in
this thesis can be modified in an exactly analogous way, I will explain it here for this
simple case.

We will make two modifications to the global alignment algorithm. First, we
initialize the algorithm with ALIGN((si,sm),Ø) = ALIGN(Ø,(tk,tn)) = 0. This means that
all all gaps at the end of the alignment are free of cost. Second, we no longer assume that
the optimal alignment includes the full sequences of both S and T. That is, we don't
necessarily start our traceback at π((s1,sm),(t1,tn)). Instead, we start at the best alignment
with at least one full sequence, so that all gaps at the start of an alignment are free of cost.
That is, we choose to start our traceback at
 argmax {∪t k∈T

{ALIGN s1, sm ,t k , tn }∪∪
si∈S

{ALIGN si , sm , t 1, t n }}
This is a very most commonly used method for local alignment. However, note

that it doesn't find the highest-similarity alignment over all substrings of S and substrings
of T. For example, if we align “aaauuuu” with “ggguuuu”, we still have to add three gaps
inside the alignment no matter where we place our cost-free start gaps. However, the
Smith-Waterman method is generally the right thing to do for phylogenetically related
sequences, in which case we assume that S and T are descendants of a common ancestral
sequence A. If S and T are descended from non-overlapping subsequences of A, they
shouldn't align at all. On the other hand, if S and T are descended from overlapping
subsequences of A, then they should only need gaps at the ends for their homologous
regions to match.

That said, we can find the optimal alignment of any two substrings in S and T if
we wish. First, we change our recurrence to always maximize over an extra term,
ALIGN(Ø,Ø) = 0. This lets us replace any score-worsening suffix of the alignment with
an empty alignment. Second, we simply start our traceback at the highest scoring
subalignment. This lets us ignore any score-worsening prefix of the alignment. Hence our
traceback will give us the pair of subsequences in S and T that have the highest alignment
similarity.

Page 12 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 3.: local sequence alignment. Top: Smith-Waterman local alignment. Because start and end gaps
are free of cost, its alignment score doesn't include any gaps. Bottom: alignment of the most-similar pair of
subsequences from two sequences. Here the right and left sides the the alignmetn are 'empty', without any
gaps at all.

As I said earlier, the major alignment algorithms that I discuss in this thesis are
generalizations of this simple dynamic programming method. It is important to note that
there are many methods to solve pairwise sequence alignment with lower complexity
bounds, or under more biologically correct scoring schemes for indels, or as fast
approximations, and so on. Certainly, the algorithms in this thesis can also make use of
some of these augmentations, and I will consider a few interesting ones in the 'Discussion'
section. For example, all of the algorithms in this paper can be modified to use the
popular 'affine' gap costs, in which the cost of an indel is (ax + b), where x is the number
of gaps, a is the penalty for each additional gap, and b is a penalty for 'opening' the gap in
the first place. This is a better approximation of natural evolutionary processes in which
insertion and deletion mutations are rare but have variable sizes. There are many other
models for scoring indels that are more biologically motivated (e.g. logarithmic gap
penalties suggested by (Gu and Li, 1995)) which might also be applicable to the
algorithms developed in this thesis. However, my main focus in this thesis is partial
ordering, not scoring schemes. I will mostly consider alignment under a simple scoring
model with unit-cost gaps.

Page 13 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

2.2 Progressive profile alignment of multiple sequences
So far we have considered alignments of two sequences, commonly known as

pairwise alignments. Now, let us consider the problem of aligning multiple sequences. A
row-column multiple sequence alignment is just like a pairwise alignment, but with many
sequences in a stack:

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc

Qualitatively, we can see that this alignment does a good job of matching similar
regions of S1, S2, and S3. We need to quantify this goodness with a scoring function before
we can write an algorithm for multiple alignment. Although there is no general agreement
on a 'best' type of multiple alignment score [cite], the most popular one is sum-of-pairs
[cite]. The sum of pairs score is just the sum of the scores of all pairwise alignments that
are contained in the multiple alignment. For example, the alignment above would have a
score equal to the sum of the scores for these pairs:

S1 = aug---gacugug-----
S2 = agg---gacaaugcauuc

S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc

S1 = aug---gacugug-----
S3 = ---cccgacaau--acuc

In order to make these into valid pairwise alignments, we ignore all of the
columns that only have gaps. Although it is simple to calculate the sum-of-pairs score of
an alignment, it is NP-Complete to find an alignment with the optimal sum-of-pairs score
under the scoring model we've considered (Wang and Jiang, 1994). This is unfortunate,
because multiple alignments are bread and butter for studies of molecular evolution.
Multiple alignments allows us to find evolutionary relationships between DNA, RNA,
and protein sequences, to build models for recognizing and analyzing families of genes,
and to gain insight into their biological roles. For example, positions of a multiple
alignment that are the same for many related sequences are probably crucial for that
molecule to function properly. Therefore multiple alignment has been the subject of
unrelenting, intense study; there are many, many approximation algorithms for this
problem.

The algorithms I will discuss in this paper are based on variations of progressive

Page 14 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

alignment.4 Progressive alignment algorithms build a multiple alignment from a series of
pairwise alignments. Of course, this means that our previous ALIGN(sequence,sequence)
algorithm isn't enough; it outputs pairwise alignments but only takes sequences as input,
so we can never produce an alignment with more than two sequences. Therefore we have
to define an ALIGN(alignment,alignment) algorithm which takes two alignments as
inputs and merges them together into a single, larger alignment.

The earliest method of this type is due to (Feng and Doolittle, 1987). Rather than
trying to align two entire alignments, they compressed alignments into alignment profiles.
An alignment profile just keeps track of the number of nucleotides at each position. For
example, the alignment written above would be squished into a profile as follows:

Alignment:
 aug---gacugug-----
 agg---gacaaugcaugc
 ---cccgacaau--acuc
Profile:
a count = 2 3 22 2
u count = 1 1 3 11
g count = 12 3 1 2 1
c count = 111 3 1 1 2
- count = 111222 121111

This is lossy compression, since the profile doesn't have any information about
which bases follow which. For example, this profile would be consistent with an
alignment that has a sequence starting in “augccc”. However, this profile representation
allows us to use our ALIGN(sequence,sequence) algorithm to align profiles with only a
slight modification. All we need to do is define a scoring function score(p,p') for aligning
two profile positions p and p', where p and p' are in {a,u,g,c,-} x ℜ .5 For example, we
might use a sum-of-pairs style score by setting score(p,p') as follows:

 score p , p ' =∑
b ∈p
b '∈ p '

scoreb , b'  fraction of b in p fraction of b ' in p ' 

An important note is that since sum-of-pairs multiple alignment is NP-complete,
ALIGN(alignment,alignment) can only approximate an optimal alignment, even if it is
based on a more faithful representation than profiles. These approximations are generally
much better if the alignments they merge are relatively similar to each other. Intuitively,
we don't have to insert many gaps if the alignments are similar, so there are fewer ways to

4 'Progressive alignment' is sometimes used to refer only to methods guided by phylogenetic trees. Here, I
will use the term to refer to any algorithm for building multiple alignments from a series of pairwise
'alignments of alignments'.

5 That is, a profile position is a set of pairs of (character, character count).

Page 15 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

insert them poorly. Therefore the the order we choose for merging the multiple
alignments is very important. If we simply merge each sequence into a multiple alignment
one by one, we will get very bad results.

(Feng and Doolittle, 1987) and many others since then have used phylogenetic
trees to guide the multiple alignment. A phylogenetic tree represents the evolutionary
relationships of a set of species. Each leaf on the tree is a sequence, and each internal
node represents the most recent common ancestor of all the sequences in its subtree.
Therefore, the more closely related the sequences, the closer to each other they are on the
tree. This is why phylogenetic guide trees are so popular for this purpose; a good
phylogenetic guide tree greatly improves the quality of an alignment. There are many
methods for computing a phylogenetic tree for n sequences from an n by n matrix of the
distance between each pair (e.g. Fitch and Margoliash, 1967; Saitou and Nei, 1987),
which we can compute using pairwise alignments. With the tree in hand, we now build a
multiple alignment by successively merging the two children of each internal node.

Table 4.: progressive profile alignment guided by a phylogenetic tree. Alignment profiles are drawn on the
nodes of the tree. Alignments are drawn above the profiles. Ideally, each successive alignment merges the
two most similar sequences.

If we have k sequences to align of length at most n, this method calls
ALIGN(sequence,sequence) k(k - 1)/2 times to compute the matrix of pairwise distances,

Page 16 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

then calls some combination of ALIGN(sequence,sequence) and
ALIGN(alignment,alignment) to compute alignments for the (k - 1) internal nodes of the
tree. Hence the algorithm runs in O(n2k2) time and O(n2) space.6 This is not actually true;
each alignment will insert some gaps into the sequences, and once inserted, gaps can
never be removed. Hence each merged alignment will be longer than the alignments from
which it was generated. We can imagine a nightmare scenario in which each alignment
contains as many gaps as possible, so each profile for k sequences has O(kn) positions,
greatly increasing the method's running time. However, we are using this method to align
sequences with some significant evolutionary relationships to each other, so they are not
too dissimilar. Typically sequences with very low similarity are simply not aligned or are
processed separately from the rest (e.g. Thompson et al., 1994). This sort of issue is not
my main concern in this thesis, although I will touch on it briefly.

2.3 Partial-order alignment of sequences
As I alluded to in the previous section, there are several troubling aspects of the

traditional row-column and row-column profile representations for multiple alignments.
Each sequence is filled with 'gap' characters that don't represent any of its actual features,
but rather its relationships to other sequences. Shouldn't we represent these relationships
with some kind of direct mapping, rather than manipulating the sequences themselves?
However, a row-column profile doesn't have any information about a mapping between
sequences. For example, let us consider two different sequences we might to the
alignment that we examined in the previous section. In the first case, we'll just add
another copy of S2; in the second case, we'll add a new sequence S4.

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc
S2 = agg---gacugugcaugc

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc
S4 = agg---gacugugcacgc

Even though S2 is already in the alignment and S4 has a subsequence (“cacgc”) that
never appeared in any of the original sequences, they both receive an equal alignment
score. We could avoid this problem by guiding the alignment with a phylogenetic tree so
that the identical sequences are aligned together before any gaps or mismatches can
pollute the profile. But it still seems like a strange order dependence when an alignment
can't recognize when it has a perfect template for matching a new sequence unless the
alignment was built in a correct order.

In addition, gaps are a highly degenerate representation for indels. We only insert
gaps in order to maximize the match/mismatch scores, but there are combinatorically
many ways to insert gap characters and still have exactly the same matches and

6 Plus O(n|S|) space to store the alignment, but typically |S| << n, so the O(n2) factor is the bottleneck.

Page 17 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

mismatches. Yet the choice of gap insertions has a large effect on alignment. We can
generate two equally scoring alignments which represent the same sequence of insertions
and deletions:

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc

S1 = ---auggacugug-----
S2 = ---agggacaaugcaugc
S3 = ccc---gacaau--acuc

But if we align a sequence “ggcgacaaugc” with these, we get very different results:

S1 = aug---gacugug-----
S2 = agg---gacaaugcaugc
S3 = ---cccgacaau--acuc
S4 = --gcc-gacaaugc----

S1 = ----auggacugug-----
S2 = ----agggacaaugcaugc
S3 = -ccc---gacaau--acuc
S4 = gcc----gacaaugc----

(Lee et al., 2002) argue that the root of these problems is that a row-column
alignment forces a total ordering on its positions. That is, each position in the alignment
has one predecessor and one successor.7 However, even with an optimal pairwise
alignment, we can only deduce a partial ordering. Based on the information in S1, S2, and
S3, we simply can't know whether “agg” comes 'before' or 'after' “ccc” in some ancestral
sequence, or if they even ever coexisted in a sequence. Yet row-column alignments
assume that “agg” and “ccc” do have some ordering.

To avoid the difficulties of gapped, total-order methods, (Lee et al., 2002)
introduced partial-order multiple sequence alignments (PO-MSA). A partial order
alignment is a directed acyclic graph. Each node in the PO-MSA is a position in the
alignment. If the graph were constrained to have a total ordering, each node would have
at most one incoming edge (predecessor) and one outgoing edge (successor). However, in
a PO-MSA, each node can have multiple predecessors and multiple successors. This
allows the PO-MSA to preserve all of the information about each of its sequences; each
sequence that has been merged into a PO-MSA still exists as a subgraph of that PO-MSA.
Therefore when we align a sequence S with a PO-MSA T, we implicitly consider the
optimal alignment of S with every sequence in T. See the following figure for an
illustration of PO-MSA in action.

The idea behind the PO-MSA algorithm is simple. In total-order sequence
alignment, each subsequence (si,sm) that we consider has exactly one 'next' suffix, but in a
PO-MSA, each node si has one suffix for each outgoing edge. So to find an optimal
alignment, instead of maximizing over a single 'next' suffix, we maximize over several
different 'next' suffixes. That's all there is to it; we can use exactly the same algorithms as
we do in ordinary sequence alignment. The key step is how we merge together two

7 To be technically correct, the first position has no predecessor and the last position has no successor.

Page 18 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

aligned sequences into a partial order graph.

a)

b)

c)

d)

e)

f)

Table 5: partial order alignment of sequences. a) two sequences represented as graphs. b) Ordinary
sequence alignment with gaps. c) node fusion. Note that each sequence is a subgraph of the PO-MSA. d) a

Page 19 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

third sequence. e) alignment of the sequence with the PO-MSA. The alignment considers all paths through
the PO-MSA and aligns the sequence with the optimal one. f) node fusion into a new PO-MSA .

I will now give a more formal presentation of the algorithm ALIGN(PO-MSA,PO-
MSA) (as in Grasso and Lee, 2004). Recall that for two suffixes (si,sm) and (tk,tn) of
sequences S and T, the standard algorithm's recurrence was:

ALIGN((si,sm),(tk,tn)) = best of
replace= score(si,tk) + ALIGN((next(si),sm), (next(tk),tn))
insert = score(-,tk) + ALIGN((si,sm), (next(tk),tn))
delete = score(si,-) + ALIGN((next(si),sm), (tk,tn))

For two PO-MSAs, however, each node can have more than one next suffix. That
is, next(n) is not a single successor node, but rather a set of successor nodes. To find the
optimal alignment, we simply maximize over all possible pairs of next suffixes:8

ALIGN s i , sm, t k , tn=

max{
replace = score  s i , t k + max

snext∈nextsi
tnext∈nexttk

ALIGN (s next, sm ,t next , t n)

insert = score - , tk  + max
tnext∈next tk

ALIGN (si , sm ,t next , t n)

delete = score  s i , -  + max
snext∈nextsi

ALIGN (s next, sm ,t k , t n)

Note that the notation score(-,tj) just means the score for an insertion of tj; we
don't actually introduce gaps into the alignment.

This recurrence make sense on the face of it, but what is a 'suffix' of a partial order
alignment? A row-column profile has a clear 'start' and 'end' because the positions have a
total ordering. But a PO-MSA represents many different sequences, each of which could
have different starting and ending nodes. Therefore a PO-MSA S has to keep lists of the
start nodes Sstart and end nodes Send for each sequence in the alignment. To do global
alignment, we'll find the optimal alignment between any one sequence in S and any one
sequence in T. We'll do this by maximizing over all pairs of starting and ending nodes:

ALIGN S ,T =
max
si∈S start

sm∈S end

t k∈T start

t n∈Tend

{ALIGN si , sm , t k , t n

However, we don't actually have to compute O(|Sstart||Send||Tstart||Tend|) alignments!
We can see this by representing Sstart and Send with nodes in the PO-MSA. Sstart is a
8 (Lee et al., 2002) and (Grasso and Lee, 2004) describe POA in terms of prefixes rather than suffixes.

Page 20 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

predecessor of each start node, and Send is a successor of every end node. Then a global
alignment is just ALIGN((Sstart,Send),(Tstart,Tend)).

Table 6: Alignment of PO-MSAs with 'start' and 'end' nodes. Top: sequence S. Middle: sequence T.
Bottom: their alignment A. A global alignment with A would be an alignment with (Astart,Aend).

To compute an optimal local alignment, we use the same approach we used for
total order sequence alignment. We initialize the alignment so that ALIGN((si,Send),Ø) =
ALIGN(Ø,(tk,Tend)) = 0 for all si and tk., which makes 'end gaps' cost nothing. We then
start the traceback at the subalignment with the highest similarity score, which makes
'start gaps' cost nothing.

Note that this algorithm does not find an optimal alignment of each path in S with
each path in T. Rather, it finds the optimal alignment of any one path in S with any one
path in T. This is a somewhat different notion than row-column profile alignments, which
try to match the entirety of each profile. We can think of the PO-MSA algorithm as a
pattern matching procedure something like “is any path is S like any path in T”, whereas
row-column profile alignment is more like “are all the paths combined in S like all the
paths combined in T”.

Once we've found the optimal alignment of S and T, we merge them together into
a new alignment A. We do this by processing each aligned pair of nodes (si,tk) as follows:

1. If si and tk are matched, merge them into a new node aik. The new node has all of
the incoming and outgoing edges from both si and tk. Remove any redundant
edges.

2. If si and tk are mismatched:
1. If neither si nor tk have been mismatched before, put them into a set of nodes

alignedik that are aligned at the same 'position' in A (drawn as dotted circles in
the diagrams above).

2. If either si or tk has been mismatched before, then combine their sets alignedi

and alignedk into a single set of aligned nodes alignedik. Then merge any nodes
in the set that have the same nucleotide.

3. If si or tk is a gap, do nothing.

The first step joins the two PO-MSAs at every one of their matched positions.

Page 21 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

This corresponds to an assumption that matched bases are homologous, so paths through
one of the bases are equivalent to paths through the other matched base. The second step
doesn't merge mismatched nodes; it preserves them as alternate paths through the PO-
MSA. However, we do remember which nodes were aligned together using aligned sets
(indicated by dashed circles in the illustration). We treat node alignment according to a
transitive property: if node1 is aligned with node2 and node2 is aligned with node3, then
node1 is aligned with node3. Thus, if we align a 'U' with a 'G' and the 'G' had been aligned
with another 'U' node in the past, then we merge the two 'U' nodes.9 In addition, the
aligned node sets allow us to translate the PO-MSA into a row-column alignment.
Otherwise, we wouldn't know which alternate paths are indels and which are due to
mismatches. Finally, the third merging step leaves gapped nodes alone - they will end up
as alternate paths through the graph.

At the end of this merging, each of the old PO-MSAs is a subgraph of the new
PO-MSA. Note that this merging avoids the degeneracies of 'gapped' representations. A
PO-MSA can be translated into a large number of equivalent row-column alignments.
This property makes partial-order alignment resistant to order-of-alignment dependencies.
Indeed, the first version of PO-MSA simply merged sequences into the alignment one by
one without calculating a guide tree. There is still some order dependence,10 and a tree-
guided method improves the results (Grasso and Lee, 2004).

What is the complexity of PO-MSA? If we just do a pairwise alignment of two
sequences, its complexity is the same as ordinary sequence alignment. However, if the
number of branches is high, we have to do more operations. The most costly step is
computing replace, becaue we have to optimize over all snext in next(si) and all tnext in
next(tk). Let |S| be the number of nodes in S and Edges(S) be the number of edges in S.
We have to store alignment scores for each pair of suffixes, so we need O(|S||T|) space.
Note that for each pair of nodes (si,tk), we look up an ALIGN score exactly once for each
pair of next nodes (snext , tnext). That is, over the course of the whole alignment, we test
each edge in S once against each edge in T. The number of insert and delete lookups at
each step are fewer than the number of replace lookups, so they don't increase the
complexity. Hence the pairwise alignment time is O(Edges(S)Edges(T)).

As we can see in the illustration, this merging step compresses a PO-MSA down
to a small number of nodes. The more closely related the sequences are, the more
compact the graph. We can contrast this to row-column profile alignments, in which
every sequence that is aligned adds another row to the multiple alignment and in which
every profile position has five separate counts that factor into its scoring function. The
compact nature of PO-MSAs results in impressive alignment speeds. (Grasso and Lee,
2004) note that for sequences with high similarity, the program POA2 comes close to the
speed of the MAFFT alignment program (Katoh et al., 2002), even though POA2
computes optimal alignments in quadratic time and MAFFT uses fast fourier transforms to
do approximate sequence alignments in log-linear time.
9 In POA2 (Grasso and Lee, 2004), this behavior is optional; it is activated with a “-fuse_all” switch.
10 See section 3.3 for a more detailed discussion.

Page 22 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

2.4 Basics of RNA structure
DNA and RNA molecules are very similar to each other. Both are sequences (aka

strands) composed of nucleotides (aka bases) with adenine, cytosine, and guanine
residues ('a', 'c', and 'g'); DNA also has thymine ('t'), whereas RNA has the similar
nucleotide uracil ('u'). In both DNA and RNA, some bases pair to each other using
hydrogen bonds: G to C and A to U. Less stable G-T and G-U 'wobble' pairs are also
common. Most other combinations are possible but they are very unstable and hence rare.

However, while DNA molecules are generally locked into long, double-stranded
helices, single-stranded RNAs can take on a rich set of structural features that have a
great influence on their roles in the cell. The schematic below illustrates some common
terms for RNA structural features.

...(((....)))..((..((.((..((....))..))))..((....))..))
GCCAGUGGAGGCUACGGAUCACAUGGUGUAACCAAGGUUGAAUUGAGAAACGCC

Table 7: a hypothetical RNA secondary structure. Top: structure drawn as a typical schematic. Solid lines
are bonds between bases. Arrowed lines are the molecule's phosphate backbone, starting at the 5' side and
ending at the 3' side. Structures are often described in terms of stems - series of paired bases that form a
double helix - and loops - sequences of unpaired bases. The 'zero' loop is formed by the start and end of
the sequence. A hairpin loop touches only one stem. An internal loop has two sides, each touching two
different stems. A bulge loop has one side with zero bases. A multibranch loop touches more than two
stems; a series of connected multibranch loops give rise to complex shapes with many branches. Bottom:
the structure in 'bracket' notation. '.' is an unpaired base, '(' is a bases paired toward downstream, toward
the 3' end of the structure, and ')' is a base paired upstream, toward the 5' start of the structure.

Page 23 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

This thesis is about algorithms for comparing RNA structures. In order to compare
them, we'll first have to choose data structures to represent them. As a first step, I will
consider some theoretical and practical restrictions we can impose on RNA structures.

There are a few theoretical constraints on the number of nucleotides in RNA
loops. The phosphate backbone of an RNA strand has a physical limit on its bond angles,
so the molecule cannot make sharp twists. Therefore RNAs cannot form hairpin loops of
fewer than three bases. Also, although there is no hard upper limit on loop sizes, their
sizes are not completely arbitrary. This is due to combinatorics and thermodynamics: a
long enough stretch of a nucleotides is bound to have some potential pairings, and base
pairs are thermodynamically favorable. For this reason, many algorithms on RNA
structures limit their consideration to loops of size less than 30 bases or so (e.g., see
Lyngsø et al., 1999), which is still rather large, since loops are typically 10 or fewer
bases. Although the algorithms that I build on and develop in this thesis do not require
limits on the size of loops, some of them will run more efficiently for structures with
small loops.

In computational studies, it is also common to consider only RNA secondary
structures, rather than their full tertiary structures. A secondary structure is one in which
all base pairs are nested; no base pairs are crossing. To be formal: let us denote a pair
from the i-th base to the j-th base as (i,j), for i < j. An RNA's secondary structure consists
of all base pairs such that for any (i,j) and (u,v), if i < u, then v < j. The RNA's tertiary
structure consists of all other base-pairing interactions, as well as a some exotic
interactions such as base triplets.

...(((........[[.)))..]]
Table 8: a simple tertiary structure. Top: a H-type pseudoknot (so-called because it is formed on a hairpin
loop). Bottom: bracket notation for tertiary structure. Ordinary bracket notation can only represent nested
base pairs. Here, square brackets denote non-nested base pairs that 'cross' the secondary structure.

Tertiary structure is sometimes left out of consideration because it is
computationally hard to work with. For example, it is NP-hard to compute the
energetically optimal tertiary structure of an RNA (Akutsu 2000; Deogun et al. 2004) or
to compute the optimal edit distance between two tertiary structures under certain editing

Page 24 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

models (Wang and Zhang, 2001), whereas both of these problems can be solved in
polynomial time for secondary structures (Zuker et al., 1999; Bafna et al., 1996). Most of
this thesis is devoted to optimal comparisons between of secondary structures. However,
following (Wang and Zhang, 2001), I will develop an algorithm that builds approximate
tertiary comparisons from a series of secondary structure comparisons.

There are quite a few classes of algorithms for the study of RNAs. There are many
methods for predicting the structure of RNA sequences based on thermodynamics or
evolutionary information, for scanning genomes for RNAs that can fold into a particular
structure, and even for simply drawing RNA structures without overlapping lines. Even
within the class of RNA structure comparison algorithms, there are a large number of
methods and representations for RNA structures. In this thesis I will only address the
problem of aligning multiple RNA structures: establishing a correspondence between
structural features so that we can overlay a set of structures upon each other.

2.5 Alignment of two RNA secondary structures

2.5.1 Pairwise alignment of arc-annotated str ings
(Bafna et al., 1996) represented and aligned RNA structures as arc-annotated

strings. An arc-annotated string S is a sequence of m nucleotides Ss = (s1,s2,...,sm) and a set
of mp base-pairs Sp = {(si,sj),(sk,sl),...}. The main idea is to constrain a sequence alignment
to take into account base pairing interactions.

The algorithm of (Bafna et al., 1996) for aligning two arc-annotated strings S and
T has to align each substring of Ss with each substring of Ts, so it has time and space
complexity O(m2n2). (Wang and Zhang, 2001) showed that certain substring-substring
alignments can be omitted, which reduces the time and space complexity to O(mmpnnp).
In general O(mp) = O(m), but this is still an improvement because there are always fewer
pairs than bases, and typically mp < (m / 3). Here I will present the method of (Wang and
Zhang, 2001).11

11 For simplicity, I will present the algorithm using unit-cost gap penalties. (Wang and Zhang, 2001) show
how to extend the algorithm to use affine gap penalties, which is relatively straightforward.

Page 25 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 9: arc-annotated strings. Top: arc-annotated strings S (left) and T (right). Bottom: alignment of the
two. Note that to satisfy the arc-constraint, a base pair must be aligned as a whole unit: either it is aligned
with another base pair, or it is aligned with a 'gap' base pair. The alignment has only a single set of arcs
that is imposed on both structures.

The algorithm basically forces a sequence alignment to satisfy an arc-matching
constraint: if (si,sj) is in Sp, then we can only align si with tk if (tk,tl) is in Tp and we align sj

with sl. That is, (si,sj) is treated as a whole unit rather than as two individual bases. This
means that the resulting arc-annotated alignment has only a single set of arcs, and hence
represents only a single consensus structure. See the table above for an example of an arc-
annotated alignment.

First, we'll need some notation. For an arc-annotated string S with sequence Ss and
pairs Sp:

(si,sj) is a subsequence containing all of the nucleotides from si to sj.
next(si) = si+1, or Ø if i = m.

Page 26 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

prev(si) = si-1, or Ø if i = 1.
pair(si) = (si,sj) or (sj,si) if either base pair is in Sp, or Ø if si is unpaired.
base_score(si,tk) is the score for aligning si with tk.
pair_score((si,sj),(tk,tl)) is the score for aligning the pair (si,sj) with the pair (tk,tl).
(si,sj) is a suffix if next(sj) = Ø
(si,sj) is a pair-suffix of base pair p = (sa,sb) if a < i and next(sj) = sb.

For example, consider the the arc-annotated string S in the table above.
“auaccuaugg” and “augg” are suffixes of Ss. “cc” and “c” are pair-suffixes of the
innermost base pair. “uaccua” and “cua” are pair-suffixes of the outermost base pair.

As in sequence alignment, the optimal score for a global alignment will the the
score computed for ALIGN((s1,sm),(t1,tn)). Let us now consider how we can break each
ALIGN((si,sj),(tk,tl)) into subalignments. If si is not paired and tk is not paired, then we
proceed as we would in sequence alignment:

if pair(si) = pair(tk) = Ø:
ALIGN((si,sj),(tk,tl)) = max of
replace base_score(si,tk) + ALIGN((next(si),sj), (next(tk),tl))
insert base_score(-,tk) + ALIGN((si,sj), (next(tk),tl))
delete base_score(si,-) + ALIGN((next(si),sj),(tk,tl))

If si is paired but tk is not paired (i.e. (si,sm) or (sm,si) is in Sp), we must place a gap
against either si or tk. Otherwise, we would break the arc-constraint. If we place a gap
opposite si, we'll charge it half of the cost for gapping (si,sm). Why only half the cost?
Since we gapped si, the arc-matching constraint will force the remaining subalignment,
ALIGN((next(si),sj), (tk,tl)), to gap sm (as we'll see later on). When it does, we'll charge it
the other half of the cost. Thus the whole alignment includes the total cost for gapping the
base pair (si,sm).

if pair(si) = (si,sm) and pair(tk) = Ø:
ALIGN((si,sj),(tk,tl)) = max of
insert base_score(-,tk) + ALIGN((si,sj), (next(tk),tl))
delete (1/2)*pair_score((si,sm),(-,-)) + ALIGN((next(si),sj), (tk,tl))

If si is unpaired but tk is paired, it is a mirror case of the above.
What if both si and tk are paired, i.e. (si,sm) is in Sp and (tk,tn) is in Tp? There are two

cases. First, if sm is not in the subsequence (si,sj) or tn is not in the subsequence (tk,tl), then
we can't align those base pairs; they are incompatible with the substrings (si,sj) and (tk,tl).
This can happen if si is the second base in its pair, so sm occurs before (si,sj) - that is, if the
current alignment is part of a large alignment that will gap sm. This can also happen if the
arc-annotated string has tertiary structure (explained in more detail below). In either case,
we must again gap si or tk.

Page 27 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

if pair(si) = (si,sm) or pair(tk) = (tk,tn) is incompatible with (si,sj) or (tk,tl):
ALIGN((si,sj),(tk,tl)) = max of
insert (1/2)*pair_score((-,-),(tk,tn)) + ALIGN((si,sj), (next(tk),tl))
delete (1/2)*pair_score((si,sm),(-,-)) + ALIGN((next(si),sj), (tk,tl))

In the second case, (si,sm) is inside (si,sj) and (tk,tn) is inside (tk,tl), so we can align
the two base-pairs. Then the optimal alignment constrained by that base pair will include
two subalignments. The first is an alignment of the 'loops' defined by the base pairs - the
nucleotides between the paired bases (si,sm) and between (tk,tn). Hence we must align
(next(si),prev(sm)) with (next(tk),prev(tn)). The second is an alignment of the rest of the
bases that are left over - we must align (next(sm),sj) with (next(tn),tl).

if pair(si) = (si,sm) and pair(tk) = (tk,tn), and they are compatible with (si,sj) and (tk,tl):
ALIGN((si,sj),(tk,tl)) = max of
replace pair_score((si,sm),(tk,tn))

+ ALIGN((next(si),prev(sm)),(next(tk),prev(tn)))
+ ALIGN((next(sm),sj),(next(tn),tl))

insert (1/2)*pair_score((-,-),(tk,tn)) + ALIGN((si,sj), (next(tk),tl))
delete (1/2)*pair_score((si,sm),(-,-)) + ALIGN((next(si),sj), (tk,tl))

To complete these recurrences, we have to define what happens when we have an
empty subsequence, i.e. (si,sj) where sj comes before si in Ss. We do this in the same way
that we did for sequence alignment: ALIGN(Ø,Ø) = 0, ALIGN((si,sj),Ø) is the sum of the
scores for gapping each base or base-pair in (si,sj), and likewise for ALIGN(Ø,(tk,tl)).

To compute an optimal global alignment, we find ALIGN((s1,sm),(t1,tn)) using these
recurrences. We can compute a local alignment in exactly the same way as we do for a
local sequence alignment; we prevent any suffix-suffix alignment from having a score
below zero, and we start our traceback at the highest-scoring suffix-suffix alignment. We
don't have to modify the pair-suffix alignments because pair-suffixes are bookended by
aligned base pairs and hence don't have 'start gaps' or 'end gaps'.

Page 28 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 10: arc-annotated string editing operations during alignment. All images depict alignments of (si,sj)
with (tk,tl), but some have different structures. Aligned bases are enclosed in dashes. Subalignments are
colored pink or blue. Top left: base replacement. Top right: base insertion. Bottom left: pair replacement.
Note that pair replacement splits into two subalignments - pink pair-suffixes 'inside' the paired bases and
blue suffixes 'outside'. Since tn = tl, (next(tn),tl) is empty, so the second subalignment will have to insert
(next(sm),sj). Bottom right: pair insertion. We only actually insert tk, paying half of the total cost for
inserting the pair (tk,tn). All subalignments of (next(tk),tn) will have to insert tn, paying the other half of
the cost. We guarantee that we'll insert tn in those subalignments; tn's pair, tk, is incompatible with them.

Page 29 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 11: two ways to have incompatible base pairs during alignment. Left: si's partner appears before the
substring si,sj. This occurs after pair indels, as in the previous table. Right: si's partner appears after si,sj.
This can only occur if there are crossing base pairs, i.e. tertiary structure.

Note that (next(si),prev(sm)) and (next(tk),prev(tn)) are both pair-suffixes. All of the
other suffixes considered by ALIGN are always of the same type as (si,sj) and (tk,tl). Since
we start with an alignment of two suffixes (s1,sm) and (t1,tn), ALIGN only has to compute
alignments of suffixes to suffixes and pair-suffixes to pair-suffixes. Each pair in Sp has
O(m) pair-suffixes, so there are O(mmp) pair-suffixes in S. Hence the alignment space
complexity is O(mmpnnp). To compute each subalignment, we do only a few constant-
time lookups, so the time complexity is also O(mmpnnp).

Earlier, I noted that incompatible base pairs could arise from tertiary structure. If S
and/or T have tertiary structure, the algorithm will find the optimal alignment of S and T
whose arcs form a valid secondary structure. For example, consider the crossing base
pairs (si,sj) and (sk,sl) such that i < k < j < l. If the algorithm chooses to replace either pair,
then it splits the alignment into two parts that are incompatible with the other pair.
Therefore the aligned base pairs in the optimal arc-annotated alignment are all non-
crossing; the algorithm chooses the set of non-crossing base pairs that give the highest
alignment score.

(Wang and Zhang, 2001) outline a two-pass method for aligning tertiary structures
that takes advantage of this property. In the first pass, they run the algorithm as usual to
find the optimal alignment of a secondary structure of S with a secondary structure of T.
In the second pass they run the algorithm again, but with two modifications. First, they
remove all base pairs (si,sm) and (tk,tn) that were aligned in the first pass. This way, the
second pass can include base pairs that cross them. The second modification is to
constrain the alignment so that si must be aligned with tk and sm must be aligned with tn.
Thus the second pass aligns tertiary structure, but is constrained to respect the base pair

Page 30 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

matchings made by the first pass.12 This procedure might not produce an optimal
alignment of tertiary structure; the constraints from the optimal first pass might prohibit a
good second pass alignment. However, this method appears to produce good alignments
in practice. Most RNA structures have only a few tertiary interactions, so the optimal first
pass does most of the work.

A final note: arc-annotated alignments can be thought of as matching “sequence
and structure”, not “sequence or structure”. For example, if we align a structured RNA
with its unstructured sequence, the arc-constraint would force us to gap every paired base.
This is partially a theoretical point, because in practice we want structure-to-sequence
alignments to do things that a structure-to-structure alignment might not, e.g. favor the
alignment of paired bases in the structure with complementary bases in the sequence.
However, it shows the restrictiveness of the arc-annotated representation - because the
alignment imposes a consensus structure on all aligned RNAs, the alignment don't
distinguish between structural and non-structural differences. This is an issue that I will
address in this thesis.

12 (Wang and Zhang, 2001) do not explain their method in detail, but it appears to work in this fashion.

Page 31 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

arc-annotated strings S (top) and T (bottom)

pass 1 result

pass 2 result

final result

Table 12: arc-annotated alignment of tertiary structures. Top: structures S (top) and T (bottom). Middle
left: the first pass computes the optimal alignment of secondary structures of S and T. Constrained bases
are highlighted in gray. Middle right: the second pass computes optimal alignment of remaining structure,
ignoring the base-pairs for constrained bases. Bottom: the resulting arc-annotated alignment.

Page 32 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

2.5.2 Pairwise alignment of for ests
RNA secondary structures can be compared and aligned as ordered trees or

ordered forests. An early example is due to (Shapiro and Zhang, 1990), who used trees to
represent RNA structure topology. Each node in a tree represents a type of loop. The root
of a tree is the zero loop, and each internal node is an internal, bulge, or multibranch loop.
All leaf nodes are hairpin loops. This is a very compact but coarse-grained representation;
it tells us about an RNA's overall shape, but not about its individual base pairs.

Table 13: Schematics of several tree and forest representations. Top: coarse tree representation (left) of an
RNA secondary structure (right). Bottom left: tree representation of (Hofacker et al., 1994). Pair nodes
(ellipses) represent two nodes and the pair between them. Bottom right: forest representation of
(Hochsmann, 2003). Pair nodes (diamonds) represent a pair between their leftmost and rightmost children.

Page 33 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

There are several more fine-grained tree representations for RNA structures.
(Hofacker et al., 1994), among others, places unpaired bases on tree leaves and base pairs
on internal nodes. Hence each internal node represents two bases and the pair between
them.13 This is analogous to an arc-annotated string, in that each base pair (si,sj) must be
aligned as a whole unit; si and sj cannot be aligned individually. (Hochsmann et al.,
2003), represents a base pair with a special 'pair' node and its paired bases as its leftmost
and rightmost children. Unlike the other types of trees, this allows us to generalize
sequence alignment. If a 'G' and a 'U' are paired in one structure and unpaired in the other,
the nucleotides will still be matched; only the pair node will be gapped. This is the
representation I will use in this thesis.

We'll define an alignment A of labeled, ordered forests F and G as follows. A is a
forest in which each node has a pair of labels: one from a node in F and one from a node
in G, or else one from either F or G opposite a gap. A must be a “componentwise
projection” of both F and G (Hochsmann et al., 2003). That is, we can recover F from A
by erasing the the part of each node label in A that comes from G, deleting each base
nodes that has a 'gap' label, and merging each pair node that has a 'gap' label with its
parent node. It is useful to think about forest alignments as generalizations of sequence
alignments. A sequence alignment is a componentwise projection of each of its
sequences. Each node in A is like a column in a sequence alignment; the only difference
is that each column of A is placed on a graph node rather than in a sequence. We score
forest alignments in the same way as sequence alignments: summing the match,
mismatch, and gap scores from each column. Hence sequence alignments are just forest
alignments that have no pair nodes.

13 (Hofacker et al., 1994) also use 'homeomorphically irreducible trees' which collapse consecutive
internal nodes into single nodes representing stems, and consecutive leaf nodes into single nodes
representing loops.

Page 34 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Forest F Forest G

Alignment A of F and G

Table 14: alignment of two RNA forests. Nodes in the forests are labeled with their nucleotide, and a pair
of indexes (structure, sequence position). For example, g0 is the first nucleotide in structure G. All pair
nodes have 'sequence position' off the end of the sequence, e.g. f9 when F only has sequence positions 1
through 8. Each node in the alignment represents a gap or the alignment of a node in F with a node in G.

We'll need some definitions for describing these forests. For a forest F with |F|
nodes {f1,f2,...,fm}:

Bases(F) is the number of base nodes in F (i.e. number of nodes with no children)
Pairs(F) is the number of pair nodes in F.
MaxLoop(F) is the maximum number of children of any node of F.14

14 For these forests, MaxLoop(F) is just the degree of F. I use this notation because the degree of partial-
order graphs has a different meaning than MaxLoop, so it is useful to keep them distinct.

Page 35 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

next(fi) is the right brother of fi. If fi has no right brother, next(fi) = Ø
pair(fi) = (fk,fl), where (fk) is the leftmost child of fi and fl is the rightmost child of

fi. If fi is not a pair node, pair(fi) = Ø.

(fi,fj), where fj is a brother of fi that can be reached by repeatedly applying next, is a
closed subforest. A closed subforest is to a forest as a subsequence is to a sequence.

(fi,fj) is a suffix if next(fi) = Ø.
(fi,fj) is a nonsuffix if next(fi) is not Ø.
I will typically use (fi,fj) to refer only to the sequence of brother nodes from fi to fj;

to indicate all of the nodes in that subforest, I will say subforest(fi,fj).

score(fi,tk) is the score for putting fi and tk at the same position in an alignment.

For example, in F in the table above, Bases(F) = 8, Pairs(F) = 1, and MaxLoop(F)
= 6. next(f2) = f3, and pair(f9) = (f2,f7). (f1,f9) is a nonsuffix, while (f9,f8) and (f2,f6) are
suffixes. (f3,f8) is an invalid closed subforest because f7 isn't a brother of f3. (f5,f2) is an
invalid closed subforest because f2 can't be reached from f5 by using next. Note that (f1,f8)
has only three nodes in it - {f1,f9,f8} - while subforest(f1,f8) contains all of the nodes in F.

Here I will present the alignment algorithm of (Jiang et al., 1995). The original
algorithm aligns trees and requires distance scores; I will describe a straightforward
extension that aligns forests and uses similarity scores.15

I will explain the algorithm in terms of closed subforests, a term introduced by
(Hochsmann et al., 2003). Just as we can solve alignment of sequences by aligning their
subsequences, we will solve alignment of forests by aligning their closed subforests. A
global alignment of F and G is an alignment of the closed subforests (f1,f8) and (g1,g10) -
that is, an alignment of all of F with all of G (as shown in the figure above). A local
alignment of F and G is an alignment of the the closed subforests (fi,fj) and (gk,gl) that
have the highest similarity.

As in sequence alignment, ALIGN((fi,fj),(gk,gl)) maximizes over subalignments
produced by replacement, insertion and deletion.

ALIGN((fi,fj),(gk,gl)) = max of
ALIGN((fi,fj),(gk,gl)) , replacement
ALIGN((fi,fj),(gk,gl)) , insertion
ALIGN((fi,fj),(gk,gl)) , deletion

This is a bit trickier than sequence or arc-annotated string alignment. The first
tricky bit is that we have to consider aligning both next(fi) and pair(fi); in arc-annotated

15 see e.g. (Bille, 2003) for a variant that aligns forests, and see (Wang and Zhao, 2003), who base their
parametric, affine-gapped, space-saving algorithm on a variant that uses similarity scores.

Page 36 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

string alignment, we only needed to consider one or the other. In addition, we will have to
consider both suffixes and nonsuffixes. First, let us consider a replacement operation:

ALIGN((fi,fj),(gk,gl)), replacement =
score(fi,gk)
+ ALIGN(pair(fi),pair(gk))
+ ALIGN((next(fi),fj), (next(gk),gl))

For replacement, we first align fi and gk at the same position. This splits (fi,fj) into
two closed subforests. One of them is a loop defined by the paired bases pair(fi). If fi is a
base node, then it doesn't have any paired bases and pair(fi) = Ø. The second is
(next(fi),fj); this is the remainder of (fi,fj) after fi and fi's children have been aligned.
Likewise, we split (gk,gl) into two closed subforests. The optimal alignment of (fi,fj) is
built from an optimal alignment of the first subforest of (fi,fj) with the first of (gk,gl) and
an optimal alignment of the second subforest of (fi,fj) with the second of (gk,gl). This is
just like the 'compatible pair' step of an arc-annotated alignment, in which we split an
alignment into two subalignments. However, these forests represents base pairs with
special 'pair nodes'. Note that it would be meaningless to align a nucleotide to a molecular
bond, so we prohibit alignments between pair nodes and base nodes (e.g. we set
(score(pairnode,basenode) = -∞).

What happens for insertion or deletion? If we place a gap opposite gk, then we'll
again split (gk, gl) into two separate subforests: pair(gk) and (next(gk),gl). Clearly, we will
have to split (fi,fj) into two subforests as well. We don't know which split of (fi,fj) is best,
so we'll have to try all possible splits. Each node fsplit in (fi,fj) splits it into two subforests:
one starting at fi and ending at fsplit, and another starting after fsplit and ending at fj. Also,
although the notation below doesn't show it, we must try splits in which we align the
entire (fi,fj) with either pair(gk) or (next(gk),gl) and align Ø with the remaining subforest of
G. For example, if gk is a base node then pair(gk) = Ø, so we don't want to align any
subforest of F with pair(gk).

Note that even if (fi,fj) is a suffix, (fi,fsplit) will be a nonsuffix (unless fj = fsplit).
Therefore, unlike arc-annotated string alignment, we have to consider nonsuffixes.

ALIGN((fi,fj),(gk,gl)), insertion =
score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGN((fi,fsplit),pair(gk))
+ ALIGN((next(fsplit),fj), (next(gk),gl))

}

Deletion is just a mirror image of insertion - we place a gap opposite fi, then
maximize over all splits gsplit in (gk,gl). Finally, we have to initialize this algorithm just as
we did for the others:

Page 37 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

ALIGN(Ø,Ø) = 0
ALIGN((fi,fj),Ø) = sum {fa in subforest(fi,fj) } score(fa,-)
ALIGN(Ø,(gk,gl)) = sum {gb in subforest(gk,gl) } score(-,gb)

What is the complexity of a dynamic programming algorithm based on these
recurrences? Since each pair defines a loop, Pairs(F)MaxLoop(F) = O(|F|), and there are
O(MaxLoop(F)2) closed subforests defined on each loop.16 So there are
O(Pairs(F)MaxLoop(F)2) = O(|F|MaxLoop(F)) closed subforests in F. To store
alignments of each subforest of F with each subforest of G, we would need O(|F||G|
MaxLoop(F)MaxLoop(G)) space. For each subforest-subforest alignment we have to
check O(MaxLoop(F)) split points for insertions and O(MaxLoop(G)) split points for
deletions. Hence O(|F||G|MaxLoop(F)MaxLoop(G)(MaxLoop(F) + MaxLoop(G)) is an
obvious time complexity bound.

However, if we look at the algorithm more carefully, we can see that its
complexity is a bit better. Do we really have to align all closed subforests? After all, to
align two sequences, we only align suffixes, not all subsequences. Let us try a similar
approach here.

When will we need to consider nonsuffixes? When we indel a pair node, we have
to divide our alignment into two subalignments. If (fi,fj) was a nonsuffix and (gk,gl) was
also a nonsuffix, then we would have to consider nonsuffix-nonsuffix subalignments - the
subalignment ALIGN((next(fi),fj), (gsplit,gl)) would be between two nonsuffixes. However,
as long as either (fi,fj) or (gk,gl) is a suffix, this division won't require us to consider a
nonsuffix-nonsuffix subalignment (as shown in the next figure). So we only need
nonsuffix-nonsuffix subalignments to compute the values of other nonsuffix-nonsuffix
subalignments. Since we start with an alignment of two suffixes - the alignment of the
whole of F with the whole of G - we never have to compute any nonsuffix-nonsuffix
subalignments.

16 Just as there are O(n2) substrings of a string of length n

Page 38 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

A gap in a suffix-suffix alignment produces suffix-nonsuffix, suffix-suffix

A gap in a nonsuffix-suffix alignment produces suffix-nonsuffix, nonsuffix-suffix

A gap in a suffix-nonsuffix alignment produces suffix-nonsuffix, suffix-nonsuffix

Table 15: So long as we don't start with a nonsuffix-nonsuffix alignment, we will never have to consider
one. This is because the all other types of alignment (Suffix-suffix, nonsuffix-suffix, and suffix-nonsuffix)
can be computed without considering nonsuffix-nonsuffix subalignments. 'Split' points are depicted as
black slashes that divide the subforest of G into two adjacent subforests.

Page 39 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

How much time and space does this save? Well, there are O(|F|) suffixes in F,
since there is one suffix for each node. If we subtract the suffixes from the total number
of closed subforests, we see that there are O(|F|MaxLoop(F) - |F|) = O(|F|MaxLoop(F))
nonsuffixes in F. Hence there are:

1. O(|F||G|) suffix-suffix subalignments
2. O(|F||G|MaxLoop(G)) suffix-nonsuffix subalignments
3. O(|F|MaxLoop(F)|G|) nonsuffix-suffix subalignments
4. O(|F|MaxLoop(F)|G|MaxLoop(G)) nonsuffix-nonsuffix subalignments

Since we only have to consider 1, 2, and 3, the space complexity is better than the
naive approach: we only need to compute and store O(|F||G|
(MaxLoop(F)+MaxLoop(G))) subalignments. The time complexity is also improved: we
check O(MaxLoop(F)+MaxLoop(G)) split nodes for each subalignment, so the total time
is O(|F||G|(MaxLoop(F)+MaxLoop(G))2).

Incidentally, note that we only have to consider splits and nonsuffixes of F when
we gap pair nodes in G. If G has no base pairs, then we don't have to compute any
nonsuffix-suffix alignments, and we don't have to do O(MaxLoop(F)) split node tests per
step. Then the algorithm requires only O(|F||G|MaxLoop(F)) space and O(|F||G|
MaxLoop(F)2) time. If neither F nor G has base pairs, then the algorithm only needs O(|
F||G|) space and time - it reduces to Needleman-Wunsch sequence alignment. So with
these modifications, forest alignment is a generalization of classic sequence alignment.17

Can we modify this algorithm for local alignment, in which we want to find the
closed subforests (fi,fj) and (gk,gl) with the highest similarity? Both (fi,fj) and (gk,gl) could
be nonsuffixes. A simple method used by (Hochsmann et al., 2003) is to simply bite the
bullet and compute all nonsuffix-nonsuffix alignments. This is the naive algorithm that
runs in O(|F||G|MaxLoop(F)MaxLoop(G)(MaxLoop(F)+MaxLoop(G))) time and O(|F||
G|MaxLoop(F)MaxLoop(G)) space. It would be surprising if this was the best we could
do. After all, we don't have to compute all subsequence-subsequence alignments for local
sequence alignment, so why should we have to compute all subforest-subforest
alignments for local forest alignment?

(Jansson et al., 2004) give a two-pass method to locally align two forests without
increasing the time and space complexity. In the first pass we compute a global alignment
as usual, storing its results in a matrix Mglobal. In the second pass we recompute the suffix-
suffix alignments and store them in a matrix Mlocal. However, the second pass computes
its alignments with a few modifications reminiscent of the 'most similar subsequence'
alignment algorithm (discussed in section 2.2). The first modification is to set the
maximum cost of a suffix-suffix alignment to 0. The second modification is that we start
our alignment traceback at the highest-scoring subalignment in Mlocal, rather than only
starting the traceback at the 'entire forest' suffixes like we did in the global case. These

17 We could also get the algorithm to do O(|F||G|) sequence alignment by transforming each sequence S so
that next(sn) = Ø and pair(sn) = (sn+1,sn+1).

Page 40 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

two modifications are just like the ones for 'most similar subsequence' alignment - they let
us put any number of 'cost-free' indels at the start or end of a suffix.

The crucial third modification is as follows. Whenever we look up the value of a
subalignment with pair(fi) or pair(gk), we look up that subalignment's score in Mglobal

instead of Mlocal. That is, we don't allow any 'free' gaps in subforests within our alignment.
We modify the recurrences in this manner:

ALIGNlocal((fi,fj),(gk,gl)), replacement =
score(fi,gk)
+ ALIGNglobal(pair(fi),pair(gk))
+ ALIGNlocal((next(fi),fj), (next(gk),gl))

ALIGNlocal((fi,fj),(gk,gl)), insertion =
score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGNglobal((fi,fsplit),pair(gk))
+ ALIGNlocal((next(fsplit),fj), (next(gk),gl))

}

Now the highest scoring alignment can be between any two subforests (fi,fj) and
(gk,gl). The alignment score will include gap costs for all nodes in subforest(fi,fj) and
subforest(gk,gl), but we get free 'start gaps' and 'end gaps' for all other nodes.

As I implied earlier in this section, there are several interesting modifications to
this algorithm which could also be used for other algorithms that I develop in this paper.
In particular, (Wang and Zhao, 2003) modify forest alignment to use affine gap penalties
and to reduce its space complexity. They implement affine gap penalties in a way
analogous to traditional affine-gapped sequence alignment (Gotoh, 1982). Reducing the
space complexity is a little trickier. The idea is as follows. For each subalignment A,
there is a set of other subalignments A1...n that maximize over A. What if all A1...n have
been computed and none of them chose A as an optimal subalignment? Then we know
that the optimal alignment doesn't include A, so we don't have to store its score anymore.
(Wang and Zhao, 2003) show that if we delete these unused subalignments, the space
complexity for global alignment is only O(MaxLoop(F)log(|F|)|G|
(MaxLoop(F)+MaxLoop(G))).

Page 41 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

2.6 Alignment of multiple RNA secondary structures
Despite the large number of algorithms for pairwise comparison of RNA

secondary structures, only a few methods have been proposed for multiply aligning them.
All of them are progressive alignment approaches. We can divide them into two
categories: sequence based methods and structure-based methods.

Sequence-based methods represent RNA structures as text strings and align them
with sequence alignment algorithms. The challenge is to use a clever scoring scheme to
get sequence alignment algorithms to implicitly take structure into account. However,
although the structural information encoded in a text string can guide a sequence
alignment, it cannot constrain the alignment to be structurally valid. For example, even if
the 5' sides of two stems are aligned with each other, the 3' sides may not be.

Structure-based methods represent RNAs using data structures that explicitly
represent base pairing interactions. Some of them represent base pairs as constraints on an
alignment of sequences, whereas others represent base pairs as entities which can be
deleted and inserted individually. In either case, these methods can enforce structural
constraints explicitly and thus guarantee valid alignments.

2.6.1 Sequence-based methods

The first approach to multiple alignment of RNA structures is due to (Shaprio,
1988), who represented RNA structures as text strings and aligned them with a standard
progressive multiple sequence alignment algorithm. These text strings only had characters
to represent topological features (e.g. “B” for a bulge loop, “M” for a multibranch loop,
etc.), but strings can be enriched with individual base-pairs (Hofacker et al., 1994) and
sequence information using variations on 'bracket' notation.18 The advantage of this
approach is that it is as fast as multiple sequence alignment - e.g. about O(n2k2) time for
tree-guided progressive alignment of k structures of at most n bases each. However,
alignments often include structurally invalid regions. In (Bromberg-Martin et al.,
unpublished), I use an alignment method of this type as part of a system for exploring
large datasets of secondary structures. The alignments can be used to quickly cluster and
visualize many structures at once, but they are not suitable for rigorous genetic analysis.

18 'bracket' notation is explained in section 2.4

Page 42 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 16: portion of a multiple string alignment using secondary structure and topology information
(Bromberg-Martin et al., unpublished). "H" and "h" indicate the start and end of hairpin loops, and
"M"/"m" are for multibranch loops. All of the structures have a multibranch loop in this region, but only
one of its hairpin loops is conserved (green box). Note that structurally dissimilar regions can match each
other, and 'topology' characters can even align with nucleotides (e.g. to the right of the box).

The MARNA program of (Siebert and Backofen, 2003) multiply aligns RNA
structures by making clever use of the T-COFFEE sequence alignment algorithm
(Notredame et al., 2000). T-COFFEE uses a library of pairwise sequence alignments to
constrain a progressive multiple sequence alignment. The main idea is that bases matched
in pairwise alignments should still be matched in a multiple alignment. The resulting
constraints greatly improve multiple alignment accuracy. MARNA feeds T-COFFEE a
library of RNA alignments made using the pairwise RNA tree editing method of (Jiang et
al., 2002). Thus the resulting mulitple alignment is constrained to take structural
similarities into account. The drawbacks of MARNA are that it is relatively slow (T-
COFFEE runs in O(n2k3) time) and that, despite its alignment constraints, it still does not
guarantee that the multiple alignment is structurally valid.

The StructMiner program of (Yang and Blanchette, 2004) guides RNA
multiple sequence alignment using base-pairing probability matrices, a method first
introduced for pairwise alignments by (Bonhoeffer et al., 1993). A base-pairing
probability matrix P is defined for a sequence S such that Pij = Pr{ base si is paired to base
sj }. If P represents a known RNA secondary structure, then all of its entries are 0 or 1.
However, the great advantage of this approach is that we are rarely certain of an RNA's
true structure, but we can estimate an RNA's base-pairing probabilities using
thermodynamic and/or phylogenetic methods (e.g. the popular program mfold (Zuker,
1999)). Thus this alignment method can be used in cases when purely structural
approaches cannot.

To compute pairwise alignments, StructMiner uses a method very much like
that of (Bonhoeffer et al., 1993). The method involves standard pairwise alignment of
structures represented in a manner very similar to 'bracket' notation, but instead of bases
being categorized as one of {paired upstream, paired downstream, unpaired}, a base's
match and mismatch scores depend on the probability that it is in each of those
categories. For example, a base with a 50% probability of being unpaired will not match

Page 43 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

perfectly to a base with a 100% probability of being unpaired. To compute multiple
alignments, StructMiner uses a progressive profile approach. It is somewhat
unconventional in that it simply merges structures into the multiple alignment one by one
without use of a guide tree. Once this is done, it scans through the alignment to find and
fix structurally inconsistent regions which are within a small distance of their correct
location. Finally, StructMiner rejects any remaining base-pairings which are
structurally invalid (e.g. tertiary structure and bases paired to multiple partners).

Because StructMiner uses a simple progressive alignment without computing
a guide tree, it is very fast - O(kn2) time and O(n2) space (although the base-pairing
matrices must be computed by an O(n3) prediction algorithm (Hofacker et al., 1994)). In
addition, it appears to give quite good results for aligning small numbers of structurally
related RNAs, even when they have low sequence similarity. I should note that (Hofacker
et al., 2004) (discussed below) give a more rigorous, structure-based method for multiple
alignment of base-pairing probability matrices. (Yang and Blanchette, 2004) reference
Hofacker et al., but do not mention their work or compare the results of the two
algorithms. It would be interesting to compare their results, especially since Hofacker et
al. found that using the string alignment method, even if only to produce a guide tree for
their more rigorous structural method, significantly reduced the quality of alignments.

2.6.2 Structure-based methods

(Wang and Zhang, 2004) represent structures as arc-annotated strings and their
alignments as arc-annotated alignments of strings. They extend the algorithm of (Wang
and Zhang, 2001) to approximate the optimal alignment of two arc-annotated alignments.
Arc-annotations strongly constrain the alignment to be structurally valid, since all
nucleotides aligned in a column have exactly the same structure. ALIGN(structure
alignment, structure alignment) takes O(n1n2p1p2) time and O(n1n2 + n1k2 + n2k1) space,
where n is the number of columns (i.e. nucleotides), k is the number of rows (i.e.
structures), and p is the number of pairs in each alignment. To the best of my knowledge,
there is no publicly available implementation of this method, and (Wang and Zhang,
2004) do not show the results of any multiple alignments. Therefore it is difficult to
evaluate the effectiveness of this method. However, some authors have argued that the
structural constraints of this type of RNA comparison model are too strong, since two
unpaired bases can never align to two paired bases. To edit a "U-G" pair into "G G", we
must treat it as two insertions of single bases followed by two deletions of paired bases,
but it seems more natural to treat it as a "U to G" substitution and a deletion of a base-pair
(Jiang et al. 2002). In essence, arc-annotated alignments represent only a single consensus
structure.

The pmmulti program of (Hofacker et al., 2004) aligns RNA sequences whose
structures are described by base-pairing probability matrices. As discussed above, this
approach can be used for aligning RNAs with known structure, but is also useful when

Page 44 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

we can only predict an RNA's structure probabilistically. pmmulti's pairwise algorithm
is a variant of Sankoff's maximum circular matching algorithm for simultaneously
aligning and folding two RNA sequences (Sankoff, 1985). Their multiple alignments use
a standard progressive profile approach.

pmmulti appears to be considerably more accurate for predicting and aligning
secondary structures than sequence-based methods such as MARNA. However, it has two
major drawbacks. First, the Sankoff algorithm is very slow. Enforcing several restrictions
on the size of indels reduces the time complexity from O(n6) to O(n4) and the space
complexity from O(n4) to O(n3), but it is still only practical for rather small sequence
lengths. This is an especially limiting factor when doing n(n-1)/2 pairwise alignments to
create a guide tree for the final (n-1) sequence alignments. The authors mitigate this to
some extent by including an option to use the fast but less accurate pairwise algorithm of
(Bonhoeffer et al., 1993) for constructing the guide tree, but this reduces the quality of
alignments. Second, in a manner analogous to arc-annotated alignments, each of
pmmulti's alignments cannot represent fine structural variation; they represent only a
single consensus probability matrix.

The RNAForester program of (Höchsmann et al. 2004) represents RNA
structures as forests and their alignments as 'RNA profile' forests. RNA profiles are
exactly analogous to row-column sequence alignment profiles. Each node of an RNA
profile represents a 'column' of an alignment, and its label counts the number of nodes of
each type in that column. The cost of matching two nodes depends on all of bases, pairs,
and gaps they contain. See the following figure for an example of an alignment between
two RNA structures and the resulting RNA profile.

 RNAForester implements ALIGN(structure, structure) and ALIGN(RNA
profile, RNA profile) with the pairwise alignment algorithm of (Jiang et al. 1995). Hence
each alignment takes O(|F||G |(MaxLoop(F) + MaxLoop(G))2) time and O(|F ||G |
(MaxLoop(F) + MaxLoop(G))) space. For most real RNA molecules, for which the
maximum loop size is practically constant, RNAForester should be the fastest
structure-based multiple alignment algorithm. Another advantage of this approach is that
the forest representation doesn't impose the same set of arcs or base-pairing probabilities
on each structure. Since base-pairs are just like any other node in a RNA profile, they can
be matched, deleted, and inserted. Thus "U-G" can now align with "G G" with the
intuitive editing cost of a base substitution and a base-pair deletion.

Page 45 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 17: Alignment between two RNA structures of (Höchsmann et al., 2004). Top left: structure X. Top
right: structure Y. Bottom left: Alignment between X and Y. Bottom right: RNA profile created from the
alignment. Each node holds the fraction of aligned nodes that are in {a,u,g,c,pair,-}, respectively.

RSMatch (Liu et al., 2005) represents structures as trees and aligns them with a
very fast algorithm - O(mn), the same complexity as sequence alignment. Their method is
meant for aligning very large numbers of structures, e.g. for database searches. The
method appears to be effective at detecting conserved motifs in sequences based on folds

Page 46 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

computed by structure prediction programs. However, it has a more restrictive editing
model than any other structural alignment method mentioned in this paper. First, like
(Hofacker et al., 1994), RSMatch represents base pairs as whole, unbreakable entities. In
addition, it represents sequences of unpaired bases as unbreakable 'circles' as well. We
can achieve a similar effect with the forest alignment algorithm of (Jiang et al., 1995) by
ignoring all 'splits'; when gk is gapped, we gap its entire subforest as well. Then we never
need to compute alignments with nonsuffixes and never need to consider split nodes, so
the time and space complexity becomes O(|F||G|), i.e. quadratic like RSMatch. With this
sort of editing model, RNAs that have similar sequences but regions of dissimilar
structure cannot be aligned. (Liu et al., 2005) cast this editing model in a positive light,
arguing that it produces structurally consistent alignments by preserving the integrity of
paired and unpaired regions of aligned RNAs. As I will discuss in the next section, this
approach is best suited to tasks such as pattern-matching and database search, but its
multiple alignments do not capture the full range of structural variation between RNAs.

2.6.3 Room for improvement?
How can we improve multiple alignments of RNA secondary structures? This is a

special case of the general question: what do we want out of any 'alignment'? The goal of
any alignment is to 'line up' or overlay many individual data structures to show their
similarities and variations. Within that framework, there are as many objectives for
alignment as there are scoring functions, but there are some general principles we can
apply. Here I will focus on two criteria for RNA structure alignments which I believe are
reasonable and intuitive, but which existing methods do not fully address.

The first criterion is the naturalness of an alignment. An alignment should be able
to handle arbitrary sets of RNAs, and should include a faithful representation of each
individual RNA sequence and structure. A natural representation makes it possible to see
the variations within a set of RNAs, not just a certain type of similarity. The second
criterion is that the alignment should generalize both sequence and structure alignments.
Structural features should be able to inform the alignment of nucleotides and vice versa.
Our scoring function alone should determine whether we give first priority to sequence
similarities or structural similarities; our alignments shouldn't have a built-in bias either
way.

If we desire a natural representation for RNA structure alignments, we cannot rely
on sequence-based methods. Despite various clever ways of embedding structural
information in text strings, they use an inherently unnatural representation for RNA
structure and hence are prone to structurally invalid alignments. It is possible to
postprocess string alignments to enforce structural validity, but this adds structural
considerations 'after the fact' rather than taking them into account directly during the
alignment. MARNA and StructMiner take steps in the right direction. I am particularly
intrigued by StructMiner because its reported performance seems to be much better
than we would expect based on the results of (Hofacker et al., 2004). Nevertheless, I will
concentrate on structure-based methods in this thesis.

Page 47 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Structure-based methods are an improvement because they can stay faithful to the
structures of individual RNAs. However, representing an alignment of RNA sequences
and structures is still problematic.

Consider sequence alignments. Sequence alignments find the commonalities
between sequences, but that is only one reason they are useful. They also tell us a great
deal about the variation within a set of aligned sequences. Even a row-column profile
tells us a great deal about each position's sequence variation. We can use this data to look
for evolutionary or functional relationships, whether by quantitative analysis or by
visualization. For example, sequence logos (Scheneider and Stephens, 1990) display
subtle sequence variations in information-theoretic terms that can reveal functionally
important nucleotides. Partial-order graphs contain each aligned sequence as a subgraph,
and hence they preserve even more sequence variation than row-column profiles.
Programs like POAVIZ (Grasso et al., 2003) that visualize PO-MSAs can illustrate the
complex evolutionary histories of large multi-domain proteins.

On the other hand, existing RNA structure alignment methods impose strong
restrictions on structural variation. The arc-annotated alignments of (Wang and Zhang,
2004) represent only a single consensus secondary structure. Furthermore, they do not
make a strong distinction between alterations in structure and alterations in sequence. The
alignments are constrained to put structural similarity 'first', and make up for the
difference with nucleotide indels. For example, if two RNAs have identical sequences but
different structural features, then an arc-annotated alignment will always have to insert
gaps in the sequences. In this sense, these alignments do not align sequence features or
structure features, but rather “sequence and structure” features. RSmatch alignments
also have this property due to their restrictive editing model.

pmmulti's probabilistic alignments represent an ensemble of possible RNA
structures. These alignments are also relatively flexible: they can match an unpaired 'A'
with a paired 'A', depending on the scoring function. Unfortunately, its base pairing
probability matrices represent consensus variations rather than variations between
individual structures. In general, if Pij = 0.3, it could be because all structures have Pij =
0.3; alternately, one structure is certain to pair i with j but other structures are unlikely to
do so. We can see this effect in a 'toy example' alignment of RNAs with known structure
in (Hofacker et al., 2004). A “G-U” base pair known to exist for an RNA with probability
1.0 actually gets deleted from the structure during the course of alignment. This happens
because the other RNAs didn't have complementary nucleotides at those positions, and
therefore had zero pairing probability at that position. In this sense, pmmulti boils down
structural variations into a consensus probability matrix.

The RNA profiles of RNAForester are an improvement because they represent
variations in both sequence and structure. For example, a profile pair node that has many
gaps is an infrequent but possible base pair. However, RNA profiles can only represent a
small subset of mappings between secondary structures. Each RNA is a componentwise
projection of its RNA profile, and the profile itself is a secondary structure. Hence all
RNAs must be 'nested' within a single secondary structure scaffold, and each RNA added

Page 48 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

to the profile further constrains the scaffold. A few mutations may make a small alteration
to an RNA's structure that prevents it from being nested within the same scaffold. In that
case, forest alignments will create artifactual indels to force the two molecules into a
single secondary structure. For example, if any structure contains '(...)', then the
central nucleotide in the loop can never be paired outside of that loop.

A ((...))((...))
B ..(((....)))..
A aaggguuaacccuu
B aaggguuaacccuu

A ((...))((..---.))--
B ..-----(((....)))..
A aaggguuaacc---cuu--
B aa-----ggguuaacccuu

(([[[))((]]]))
aaggguuaacccuu

Table 18: a toy example showing a limitation of forest alignment. Left: two hypothetical RNA secondary
structures, A and B. Middle: RNAForester alignment. Although the two structures have identical
sequences, the alignment creates artifactual indels in order to force the two structures into a single
ordered forest, no matter the scoring function. Right: in theory, A and B could be represented as a tertiary
structure.

In summary, current RNA structure alignments are not natural representations for
the similarities and variations of arbitrary RNAs, and have strong structural constraints
that give structural similarity precedence over sequence similarity regardless of the
scoring function. From the last example, we might expect that our limitation is that our
alignments are themselves secondary structures. Perhaps a secondary structure alignment
should be represented by some kind of tertiary structure profile. I will make a stronger
claim: the problem is that RNA structure alignments are inherently partially ordered, and
they cannot be represented faithfully under a total ordering. There are three main
arguments in support of this claim.

First, (Lee et al., 2002) make a compelling argument that sequence alignments are
better represented with a partial ordering. Since a RNA secondary structure alignment
essentially contains an alignment of sequences, we should expect a partial-order
representation to be just as beneficial for structures. Therefore we expect it to provide a
non-degenerate representation for insertions and deletions, multiple alignments that
consider the optimal alignment of each structure against each other structure, and a
compressed representation that results in faster alignments.

In addition, an RNA structure alignment should ideally tell us something like “the
sequences are similar here, the structures are similar there, and this is how variations in
sequence produce variations in structure”. This is a second sense in which we expect a
partial ordering to improve RNA alignment. The structural constraints inherent in
existing alignment methods make them give structural features first priority; later, they
make up for any discrepancies by creating sequence indels. This makes it hard to analyze
the alignments in an evolutionary context, since there is no clean separation between
sequence and structure variation. Partial order alignments can represent 'one path or the
other', so perhaps they can represent 'sequence or structure' similarity.

There is a third, stronger sense in which a partial-order representation is natural

Page 49 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

for RNA structure alignments. Let us consider base pair shifts, a relatively common
structural variation. Base pair shifts happen when a base switches to a different pairing
partner, often because its original pairing partner was substituted or deleted.

The table below shows a segment of an arc-annotated string alignment of RNAse
P RNAs, as seen in (Wang and Zhang, 2001). RNAse P, in concert with a protein
cofactor, has a vital role in the processing of transfer RNAs in bacteria, archaea, and
eukaryotes. To carry out its function, RNAse P relies on several conserved structural
features. The center region of this alignment, for example, has a long stem common to
both RNAs despite sequence variations. For example, two C-G base pairs in A. eutrophus
become G-U and G-C base pairs in S. bikiniensis. These compensatory base mutations are
an indication that the structure has been conserved by evolution; if the structure was not
conserved, we would see random mutations that could change its structure.

arc-annotated alignment (interpretation A)
..-((((.((((((((....)))))))).))--)).
...(((--((((((((....))))))))--)..)).
AG-UCUUGCCGCCGGGUUCGCCCGGCGGGAA--GGG
AGACCG--CCGGGGACCUCGGUCCUCGG--UAAGGG

manual alignment (interpretation B)
..((((.((((((((....)))))))).)))).
...((-(((((((((....)))))))))..)).
AGUCUUGCCGCCGGGUUCGCCCGGCGGGAAGGG
AGACC-GCCGGGGACCUCGGUCCUCGGUAAGGG

Table 19: segment of pairwise alignments of A. eutrophus (top rows) and S. bikinensis (bottom rows)
RNAsePs. Left: arc-annotated alignment from (Wang and Zhang, 2001). Right: an alternate interpretation
of the evolutionary relationship between the two RNAs.

The sides of the alignment are more difficult to interpret. The arc-annotated
alignment inserts/deletes seven bases in order to map both structures onto the same
consensus set of arcs. In this view, despite the many indels and base substitutions, only
one base pair has changed; this part of the structure must have several conserved base
pairs that are very resistant to mutations. I will call this interpretation A.

Note that interpretation A leaves two adjacent 'AA' regions mismatched or
gapped. If we give enough weight to sequence information, we might allow such similar
regions to influence our structural alignment. In the lower table, I have constructed an
alignment of this type which I will call interpretation B. In this view there has only been a
single base indel, but it has combined with a few substitution mutations to remove two
base pairs and to shift several others. The 'U' of an 'A'-'U' pair has mutated to a 'C'; as a
consequence, the new 'C' pairs with a 'G' instead, and the 'G's old partner has shifted its
bonds to a different 'G'.

Interpretations A and B are both informative; they represent two plausible
functional/evolutionary relationships between the RNAs. Ideally, our scoring function
will determine which interpretation we choose. However, arc-annotated alignments
impose a single consensus structure on their RNAs, so they cannot generate interpretation
B. Forest alignments allow a wider variety of interpretations. For example, they can
partially align the two 'AA' regions; a forest allows an 'A' to be unpaired in one structure
but paired in another. RNAForester can actually generate interpretation B during its

Page 50 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

alignment phase, but fails to reconstruct it during its trace back. Each base node in an
RNA forest must have only a single partner, so base pair shifts are verboten.

In fact, base pair shifts can only be represented under a partial ordering. During
alignment, we need to say “match with this pairing partner or that pairing partner”,
whereas a total order alignment only has a notion of the 'next' base or pair. As a preview
of things to come, the table below shows how RNA partial-order alignments (RNAPOAs)
represent interpretations A and B. The sequence data in a RNAPOA is just like a normal
PO-MSA. Structural data is held in 'pair' nodes that connect pairs of nucleotides. One pair
node can connect to more than one pair of bases; for example, it might represent a “G-U”
pair or a “C-G” pair. Base pair shifts result in some bases that are connected to more than
one pair node; in future alignments, those bases can choose either pairing partner.

Page 51 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

arc-annotated alignment

 (interpretation A)

RNAPOA

(interpretation A)

RNAPOA

(interpretation B)

Table 20: comparison of partial-order and total-order alignments. Indels are drawn in pink. Matched
positions are drawn in gray. Mismatched bases are drawn in light blue and circled in gray. Interpretation
A adds indels to maximize the number of base pairs in common; in this view, a spate of insertion and
deletion mutations left the secondary structure largely intact. Interpretation B breaks base pairs to match
similar nucleotides; in this view, a small number of mutations created new base pairs and shifted existing
ones. Both interpretations are informative, but total-order alignments cannot represent base pair shifts and
hence can only generate interpretation A. Partial order alignments can produce either interpretation given
the appropriate scoring function.

Page 52 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Before I go any further, I should mention two important caveats. First, in this
thesis I consider RNAs with known structure. One might argue that RNA structure
alignment per se is not the right problem to consider. A major use for structure
alignments is to predict the structures of phylogenetically and/or functionally related
RNAs. However, it is difficult to determine RNA structures experimentally, so most large
datasets of RNA structures are generated by structure prediction programs. In that case, it
would be best to explicitly combine structure prediction and alignment, (e.g. Sankoff,
1985; Hofacker et al., 2004), rather than treating them as separate steps. In the Discussion
section, I will give some thoughts on integrating partial order RNA alignments with
structure prediction methods. In particular, RNAPOAs turn out to be a generalization of
the method of (Hofacker et al., 2004) but have better efficiency in some cases.

Second, partial ordering is best used in situations in which we need a detailed
representation of the variation within a set of RNAs. The main applications that I
envision are: 1) evolutionary analysis of structural RNAs, and 2) exploring the variation
within alternate folds generated by structure prediction algorithms. There are other
contexts in which a partial-order formulation isn't as useful. For example, if we are
searching a large database with a structured RNA as a query, we are not searching for
sequence or structure similarity, but rather sequence and structure similarity. Partial-order
queries would be a bit more flexible for pattern-matching than total-order queries.
However, if we use alignment scores to testing the statistical significance of our search
results, the permissive nature of partial-order alignment might actually be an impediment.

Page 53 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

3. RNA partial-order alignments (RNAPOAs)
3.1 RNAPOAs

An RNAPOA is a directed acyclic graph. For RNAs with no base pairs, an
RNAPOA is the same as a partial-order sequence alignment. Each node si represents a
nucleotide. si has has a list of predecessors prev(si) and a list of successors next(si).

Table 1: an RNAPOA without any base pairs is the same as a partial order sequence alignment.

Previously, we were able to discuss PO-MSAs in terms of suffixes only, but now
we'll have to talk about 'subsequences' as well. Subsequences are defined in terms of a
total ordering, so we'll have to use a new definition. For an RNAPOA S, I will assign
each pair of nodes (si, sj) one of four possible partial orderings:

1. si ≤ sj, if we can reach sj from si using next,
2. sj ≤ si, if we can reach si from sj using next,
3. si ≤ sj and sj ≤ si, if si and sj are the same.
4. si and sj are incomparable, if neither can be reached from the other via next.

Given those definitions, let (si, sj) define a span - a set of all sk such that si ≤ sk ≤ sj.
A span of a partial-order alignment is analogous to a subsequence in a sequence
alignment. For example, in the above sequence-only RNAPOA, a span from the first “C”
to the last “C” includes every node except for the first “G”. A span from the last “A” to
the last “C” only includes those two bases.

For RNAs with base pairs, I will define two separate types of RNAPOAs: string-
RNAPOAs, based on arc-annotated strings, and forest-RNAPOAs, based on ordered
forests. The two types are quite similar, but there are subtle differences in their editing
operations and alignment complexity which make one or the other preferable for specific
purposes.

A string-RNAPOA is analogous to an arc-annotated string, only it allows each
base to be involved in more than one base pair. Each base node si is has a set of pairs
pair(si). We can draw the RNAPOA with 'pair' nodes that have bidirectional edges to
their 5'-most and 3'-most bases.

Page 54 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 2: merging individual RNA structures (left) one-by-one into a string-RNAPOA (right). Note: in this
image, aligned bases are represented by dashed lines instead of dashed circles. After the first merging, we
see that the RNAPOA can represent base pair shifts; “G” can be bound to either “C”. The second merging
shows how string-RNAPOAs represent crossing bases. The third merging shows the representation for
alternate base pairs - the structures can have either a “U-A” bond or a “C-G” bond. After the final
merging, the RNAPOA also allows a “U-G” bond.

Page 55 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

What would happen if we placed a pair node between every pair of positions in
the RNAPOA? Then, for a suitably defined scoring function, it would be analogous to the
pairing probability matrices of (Hofacker et al., 2004). However, RNAPOAs can
represent individual structural variation, not just a consensus. For example, we could say
“the probability is 1.0 if (si, sj) = (C, G), but but the probability is 0.6 if (si, sj) = (U, G)”.

Table 3: string-RNAPOA representing base pairing probabilities. RNAPOAs can represent the changes in
base pairing probability due to point mutations; if there is a G-to-A mutation, it changes the probability of
pairing with U.

A forest-RNAPOA is analogous to an ordered forest, only it allows each pair node
to have multiple pair 'subforests'. Because of the partial ordering of next and pair edges, a
forest-RNAPOA need not look like a forest per se. For example, an alignment of ordered
forests can't generate tertiary structure, but a forest-RNAPOA can represent crossing base
pairs:

Page 56 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 4: forest-RNAPOAs. Left: just like a forest, but with variable structure. Note that each base pair can
represent more than one base pair; here, the top pair represents either a “G-C” or “G-U” pair. Right:
forest-RNAPOAs can represent sequence indels, pair indels, and crossing base pairs.

If we aligned a plain sequence to a forest-RNAPOA, we get something that looks
very much like a string-RNAPOA. In fact, I will call this sort representation 'stringlike'.
An ordinary forest forces us to visit each pair node during a traversal of the graph. In
contrast, all base pairs are optional in a 'stringlike' RNAPOA. This makes MaxLoop(F) =
|F|, removing the main efficiency advantage of forest alignment. However, stringlike
RNAPOAs are sometimes useful. As we'll see later, they will allow us to compute
alignments that include crossing base pairs with reasonable efficiency.

Table 5: 'stringlike' forest-RNAPOAs. We can create them by aligning a forest-RNAPOA (top) with each
sequence that it contains (middle), producing an RNAPOA in which all base pairs are optional paths.

Page 57 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

If we go further and add more pair nodes, and we'll again get something like an
RNA base pairing probability matrix. However, this greatly increases the number of
nodes in F. Since forest alignments have to consider suffixes and non-suffixes starting at
each node in F, they have very high time and space complexity for this case. As we'll see,
forest-RNAPOAs are not suitable for probabilistic alignments.

3.2 Optimal alignment of two RNAPOAs
Here I will develop algorithms for optimal alignment of string-RNAPOAs and

forest-RNAPOAs. I base the string-RNAPOA alignment algorithm on the arc-annotated
alignments of (Wang and Zhang, 2001). The algorithm takes essentially
O(Bases(S)Pairs(S)Bases(T)Pairs(T) + Bases(S)2 + Bases(T)2) time and space, plus a few
extra factors that grow slowly when the structures contained in the RNAPOAs are
dissimilar. I will show that when the number of pairs is large, string-RNAPOA alignment
becomes analogous to the base-pairing probability alignment algorithm of (Hofacker et
al., 2004).

In the second subsection, I will discuss forest-RNAPOA alignment. forest-
RNAPOAs can be aligned more efficiently than string-RNAPOAs in certain cases, but
have some of the same limitations as ordered forests. That is, they do not generate
alignments that have crossing base pairs. However, we can work around this problem. I
show that if one of the forest-RNAPOAs being aligned has a certain 'string-like' form, we
can still account for crossing base pairs.

3.2.1 string-RNAPOA alignment
Recall the approach of (Wang and Zhang, 2001) for arc-annotated alignment. In

that scheme, we used four separate recurrences - ALIGN(base,base), ALIGN(pair,base),
ALIGN(incompatible pair, incompatible pair), and ALIGN(compatible pair, compatible
pair). If we want to handle RNAPOAs, we can't special-case these situations; each node
can have several different pairs, or may be paired in some aligned structures and unpaired
in others. We will have to consider all of these cases in the same recurrence relation.

Let us consider an alignment of two spans, (si,sj) and (tk,tl). The base replacement,
base insertion, and base deletion operations are the same as in partial-order alignment of
sequences - we maximize over all next spans. The pair replacement operation is more
complicated; I explain it in detail below.

ALIGN((si,sj),(tk,tl)) = max of
base replace base_score(si,tk) + max over snext in next(si), tnext in next(tk) {

ALIGN((next(si),sj), (next(tk),tl))
}

base insert base_score(-,tk) + max over tnext in next(tk) {

Page 58 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

ALIGN((si,sj), (tnext,tl))
}

base delete base_score(si,-) + max over snext in next(si) {
ALIGN((snext,sj), (tk,tl))
}

pair replace max over (si,sm) in pair(si), (tk,tn) in pair(tk) {
pair_score((si,sm),(tk,tn))
+ max over snext in next(si), tnext in next(tk) {

ALIGNignore_end((snext,sm), (tnext,tn))
}
+ max over snext in next(sm), tnext in next(tn) {

ALIGN((snext,sj),(tnext,tl))
}

}

where ALIGNignore_end((si, sj), (tk, tl)) is just like ALIGN, except it ignores the last
base in each span. In other words, if si = sj, then it sets (si,sj) = Ø, and if tk = tl, then it sets
(tk,tl) = Ø.

What happens during the pair replace edit operation? Unlike arc-annotated
alignments, a base may have many alternate pairs. So pair(si) isn't just a single base pair
(si,sm) or (sm,si), but rather a set of such base pairs. We have to maximize over many pair
replacements - all replacements of base pairs that start with si and tk. Furthermore, for
each set of pairs (si,sm) and (tk,tn), we have to consider many different subalignments. In
arc-annotated alignment, a pair replacement divides the spans into exactly two
subalignments: an alignment of the bases 'inside' the pair - (next(si), prev(sm)) with
(next(tk), prev(tn)) - and an alignment of the bases 'outside' the pair - (next(sm), sj) with
(next(tn), tl). In string-RNAPOAs, pair replacement is not so simple. Each node can have
many nexts and prevs, so we have to maximize over many possible 'inside' and 'outside'
spans.

This introduces two dangers. First, not all of those potential inside and outside
spans are valid subalignments of (si,sj) and (tk,tl). For example, we shouldn't consider (snext,
sj) if there isn't any path from snext to sj. We also have to make the same validity checks on
base pairs that we did for arc-annotated alignment; we shouldn't consider a base pair
(si,sm) if sm isn't between si and sj. Second, for the 'inside' subalignment, we have to
optimize over many different prev(sm) and prev(tn) nodes. So for each base pair (si,sm)
such that prev(sm) = {s1, s2, ...}, a naive approach would compute and store many separate
sets of subalignments - subalignments ending at s1, subalignments ending at s2, etc.

Page 59 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 6: string-RNAPOA alignment edit operations. For simplicity, each RNAPOA represents only a single
structure; in general, there can be more than one next, prev, and pair node for each base. The spans to be
aligned are gray. Aligned nodes are enclosed by dashed circles. Subalignments are pink or blue. Top left:
alignment of the spans (si,sj) and (tk,tl). Top right: base replacement. Bottom right: base insertion. Bottom
left: pair replacement, which depends on two subalignments: one with spans 'between' the paired bases,
and another with spans 'outside' the paired bases. Note that since tn = tl, the blue span (next(tn),tl) is
empty, so the 'outside' subalignment will have to be a deletion of the other blue span (next(sm),sj).

Page 60 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

To solve the first problem, we want to be able to quickly test a span or pair's
validity.One way to do this is to simply precompute the partial-ordering '≤' between each
pair of nodes in S and store the results in a matrix S≤. For example, in my implementation,

S≤[i][j] = 1, if there is a path from si to sj using only next edges
0, otherwise.

We can then compute the validity of a span or base pair with a few constant-time
lookups. For example, (snext, sj) is invalid if S≤[next][j] = 0. We can ignore any base pair
(si,sm) if S≤[i][m] = 0 (i.e. when sm comes before si) or if S≤[m][j] = 0 (when sm comes after
sj, or when sm and sj are on alternate paths).

To solve the second problem, we want to avoid computing separate subalignments
for each predecessor node in prev(sm). That's why we use ALIGNignore_end. It pretends that
(sj,sj) = (tl,tl) = Ø, so it implicitly maximizes over all prev nodes of sj and tl :

ALIGNignore_end((snext), sm), (tnext, tn)) =
max over sprev in prev(sm), tprev in prev(tn) {

ALIGN((snext, sprev), (tnext, tprev))
}

Table 7: Left: base replacement of (si,sm) with (tk,tn). We have to optimize over all (2x4)x(2x3)
combinations of next and prev nodes (bright colored) in S and T. Hence we compute and store many
different subalignments. Right: ALIGNignore_end does this implicitly, but optimizes over fewer combinations
and only computes subalignments of spans ending in an ignored sm and an ignored tn (dark colored).

Page 61 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

We compute local/global alignments and merge S and T together in the same way
that we did for PO-MSAs. The only difference is that we also have to decide how to
merge pair nodes: we merge all pair nodes which were aligned by pair replacement
operations. The resulting RNAPOA combines the properties of PO-MSA and arc-
annotated alignments: it is the optimal 'threading' of any one secondary structure and
sequence of S with any one secondary structure and sequence of T.

What is the algorithm's complexity? We'll need some definitions.

Bases(S), the number of base nodes in S.
Pairs(S), the number of pair nodes in S.
BaseDeg(S), the max number of next nodes from any base in S.
PairDeg(S), the max number of pairs starting at any base in S.

Trivially, Pairs(S) < Bases(S)2 and PairDeg(S) < Bases(S). Also, we can generally
consider BaseDeg(S) to be constant. Intuitively, si shouldn't have more than one successor
with the same nucleotide. If it did, then an optimal alignment would have matched those
identical successors and merged them together into a single node. So we expect
BaseDeg(S) to be at most |{a,u,g,c}| = 4. This should be true for most real-world
alignments of homologous RNAs. It is analogous to the common assumption that the
number of gaps in a total-order alignment won't grow very quickly. Unfortunately, as I
will discuss in section 3.3, the partial order formulation of (Grasso and Lee, 2004) that I
build on in this thesis doesn't actually guarantee this property. I will have to keep track of
BaseDeg during these derivations, which will produce slightly ugly expressions; I will
also give simplified expressions to show the algorithm's likely real-world behavior.

As in arc-annotated alignments, we start by considering all O(Bases(S)Bases(T))
alignments of suffixes. Also, pair replacement operations create 'pair suffixes' - spans (si,
sm) that we align using the ALIGNignore_end function. For each pair (sk,sl) in S, there are at
most O(Bases(S)) pair suffixes. Therefore we need to store
O(Bases(S)Pairs(S)Bases(T)Pairs(T)) subalignments. In addition, we spend O(Bases(S)2

+ Bases(T)2) time and space to compute and store the partial-ordering matrices S≤ and T≤.
Hence the space complexity is O(Bases(S)Pairs(S)Bases(T)Pairs(T) +Bases(S)2

+Bases(T)2).
Actually, we can give a better bound. The worst case is when the RNAPOA

contains all possible base pairs. In that case Pairs(S) = O(Bases(S)2), but there are still
only O(Bases(S)2) spans in S, so there are only O(Bases(S)2Bases(T)2) subalignments.
Thus the space complexity is really:

O(Bases(S)2 + Bases(T)2 +
Bases(S)Bases(T)
* min(Pairs(S), Bases(S))min(Pairs(T), Bases(T))).

Page 62 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

For each subalignment we have to consider four edit operations. It is easy to see
their time complexity:

Edit Op. Edit Operation Time Complexity
base replace O(BaseDeg(S)BaseDeg(T))

base insert O(BaseDeg(T))

base delete O(BaseDeg(S))

pair replace O(PairDeg(S)PairDeg(T)BaseDeg(S)BaseDeg(T))

Which gives the algorithm the following time complexity:

O(Bases(S)2 + Bases(T)2 +
Bases(S)min(Pairs(S), Bases(S))
* Bases(T)min(Pairs(T), Bases(T))
* PairDeg(S)PairDeg(T)BaseDeg(S)BaseDeg(T))

For individual RNAs, O(BaseDeg(S)) = O(PairDeg(S)) = O(1), so the algorithm
requires O(Bases(S)Bases(T)Pairs(S)Pairs(T) + Bases(S)2 + Bases(T)2) time and space.
This is essentially the same as an arc-annotated string alignment. When we add many
structures to a RNAPOA, BaseDeg, and PairDeg will increase. As I argued earlier, for
most practical purposes we are interested in RNAs that are at least somewhat similar to
each other, so these factors will not grow too quickly.

What if we want to consider all possible base pairs? Then this algorithm becomes
a partial-order version of the method of (Hofacker et al., 2004). The complexity is
equivalent: O(Bases(S)2Bases(T)2) space and O(Bases(S)3Bases(T)3) time. In practice,
most base pairing probabilities are very low, so we can do better. First of all, there are
sixteen possible base pairs in {a,u,g,c} x {a,u,g,c}, but only six of them are common.19
Most RNAs have relatively equal proportions of each of nucleotide, so this greatly
reduces the number of probable pairs. Second, bases that are too near to each other cannot
be paired due to bond angle constraints. Third, each base's total pairing probability cannot
be above 1.0, so bases with a few highly favored folds will be unlikely to pair elsewhere.
For example, bases in the middle of a conserved hairpin stem-loop are very unlikely to
pair anywhere else. If we only add pair nodes for probable base-pairs (defining 'probable'
with some reasonable threshold), we should reduce the algorithm's time and space
requirements by a large factor.

It is important to note that string-RNAPOAs only allow three types of editing
operations: base replacement, base indels, and pair replacement. If we want to delete two
paired bases, we have to delete them individually; this is less flexible than arc-annotated

19 (a,u), (u,a), (g,c), (c,g), (g,u), and (u,g)

Page 63 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

alignment, in which we can define a separate score for simultaneous insertion/deletion of
two paired bases. Unfortunately, we can only do that efficiently if each base has only a
single associated structure. In that case, if we insert/delete a base pair, we only need to
gap its first base; any valid subalignment is forced to gap the second base as well. This is
why (Wang and Zhang, 2001) get away with the trick of allocating
(1/2)*pair_score((si,sj),(-,-)) to each base. In our case, each base has several alternate base
pairs. If we choose a subalignment that gaps si, we cannot assure that it also gaps sj.

Typical scoring models for sequence alignment assume that indels occur when
several consecutive bases are inserted or deleted. In this view, there is no reason why two
separate indels should co-occur. However, the prevalence of compensatory base
substitutions tells a different story: evolution culls RNA mutations that disrupt important
structural features. Indeed, structural RNAs often have simultaneous pair indels inside
conserved stems (e.g. see (Holmes, 2004)), although linear indels are also possible, as in
'interpretation B' of the alignment I discussed in section 2.6.3.

If we want to allow both base indels and base pair indels, it comes at a cost.20
Recall that pair indels in forest alignment divide a structure into two parts. We then have
to optimize over all ways to split the other structure into two parts. The same is true here.
Say we are aligning the spans (si,sj) and (tk,tl), and we want to delete the base pair (si,sm).
To guarantee that both si and sm are deleted simultaneously, we have to divide (si,sj) into
sub-spans that don't contain either si or sm. - the spans 'inside' and 'outside' the base pair.
Which parts of (tk,tl) should we align with the 'inside' and 'outside'? We don't know! As in
forest alignment, we have to optimize over all possible 'split nodes' to divide (tk,tl) into
two parts.21

pair delete max over (si,sm) in pair(si) {
pair_score((si,sm),(-,-))
+ max over tsplit in (tk,tl) {

max over snext in next(si) {
ALIGNignore_end((snext,sm), (tk,tsplit))

}
+ max over snext in next(sm) {

ALIGN((snext,sj),(tsplit,tl))
}

}
}

Combining all of these maximization steps, finding the pair deletion with the

20 By the way, we could modify arc-annotated alignment to use single base insertions/deletions against
paired bases. Unfortunately, then it couldn't efficiently handle pair indels; if it allows single base indels,
it can't guarantee that simultaneous indels of paired bases will gap both bases of the pair.

21 Again, the notation here doesn't show it, but we also have to try splits where one side of the split is an
empty span and the other side is just the full (tk,tl).

Page 64 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

highest score takes O(PairDeg(S)Bases(T)(BaseDeg(S) + BaseDeg(T))) time. Pair
insertion is just a mirror of pair deletion, with all the S and T terms switched. Note that
since we have to try all arbitrary splits of S and T, we will have to align all spans of S and
T. Hence our space complexity will increase to O(Bases(S)2Bases(T)2), and the total
alignment time will increase to:

O(Bases(S)2Bases(T)2

(PairDeg(S)PairDeg(T)BaseDeg(S)BaseDeg(T)
 + PairDeg(T)Bases(S)(BaseDeg(T) + BaseDeg(S))
 + PairDeg(S)Bases(T)(BaseDeg(S) + BaseDeg(T)))

The last three terms in this expression are for pair replacement, pair insertion, and
pair deletion operations, respectively. For most real-world cases, the complexity should
be:

space: O(Bases(S)2Bases(T)2)

time: O(Bases(S)2Bases(T)2

 * (PairDeg(S)PairDeg(T) + Bases(S)PairDeg(T) + PairDeg(S)Bases(T))

If S and T are individual RNA structures or RNAPOAs with few alternate paths,
the running time is quintic: O(Bases(S)2Bases(T)2(Bases(S)+Bases(T))). For RNAPOAs
with all possible base pairs, the running time is again O(Bases(S)3Bases(T)3).

3.2.2 forest-RNAPOA alignment
Next I will consider forest-RNAPOAs. I will base my alignment algorithms on

those of (Jiang et al., 1995; Jansson et al., 2004). First, however, I will soup them up to
handle the edit operations base pair replacement and base pair indels for the forest
representations of (Hochsmann et al., 2003). Hochsmann et al. define operations on pair
bonds, not on base pairs. To straighten out my terminology: editing operations on pair
bonds only replace/indel an individual pair node. Operations on base pairs replace/indel
the pair node and its paired bases at the same time. See the table below for a comparison.

Page 65 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 8: Comparison between 'pair bond' and 'base pair' edit operations. Replacements are blue circles,
indels are red circles, and the 'next subforests to be aligned' are in gray boxes. For simplicity, I have not
drawn the 'splits' for indel operations. Top left: pair bond replacement doesn't guarantee that the paired
bases will actually be aligned. It is likely that the “UAAAG”s will align and the paired “G” will be
gapped. Bottom left: base pair replacement solves the problem. Top right: pair bond deletion allows the
removal of bonds. Bottom right: base pair indels allow the simultaneous removal of two paired bases.

Clearly, a base pair replacement can be build from a pair bond replacement and
two base replacements, and similarly for indels. However, there are three reasons why we
should use 'base pair' operations. First, both pair bond and base pair indels correspond to
biologically common mutations,22 so allowing both operations improves the quality of
alignments. Second, base pair replacements allow us to use biologically motivated
scoring functions such as the RIBOSUM matrices of (Klein and Eddy, 2003). Third, we
should prefer base pair replacement because pair bond replacement leads to structurally
invalid alignments. When we replace an individual pair node, we ought to guarantee that
its paired bases will also be aligned. Otherwise, we might actually alter one of the aligned
structures, shifting a bond so that it lies between a real nucleotide and an artificial 'gap'
entity (as in the table above). In this thesis, I won't use pair bond replacement.

Hochsmann et al. appear to have forsworn pair bond replacement as well; the
RNAForester webserver seems to use base pair replacement rather than pair bond
replacement (data not shown). Since the algorithm of (Hochsmann et al., 2003) aligns
each pair of closed subforests, base pair replacement is easy to implement. Consider a
replacement of the pair node fi such that pair(fi) = (f5',f3').23 Recall that in pair bond
replacement, we applied a scoring function defined over individual nodes, score(fi,gk). We
then had to optimize over alignments of the subforest (f5',f3'). For base pair replacement,
we instead use a scoring function defined over base pairs, pairscore((fi,f5',f3'),(gk,g5',g3')).
Since the scoring function takes the paired bases into account, we have optimize over
subalignments 'inside' them, i.e. alignments of (next(f5'),prev(f3')). We could implement
base pair indels in a similar manner - charge a penalty pairscore((fi,f5',f3'),(-,-,-)), then
optimize over alignments of (next(f5'),prev(f3')).

22 As discussed in section 3.2.1.
23 I use (f5',f3') to indicate that these are the 5'-most and 3'-most bases of the pair.

Page 66 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

We can also implement base pair replacement/indels for the more efficient
algorithms of (Jiang et al., 1995; Jansson et al., 2004). In those algorithms we don't
consider nonsuffix-nonsuffix alignments; we can get away with it because the loop
defined by a base pair, (f5',f3'), is always a suffix. However, the loop resulting from a base
pair replacement or indel, (next(f5'),prev(f3')), is not a suffix: prev(f3') has f3' as a next node.
To solve this problem, we just treat all subforests (fi,prev(f3')) as if they were suffixes.
This essentially doubles the number of suffixes in the alignment, but the big-O
complexity remains the same.

To be more formal, we have divided the the recurrences for replacements and
indels into separate versions for each edit operation:

ALIGN((fi,fj),(gk,gl)), base replacement =
score(fi,gk)
+ ALIGN((next(fi),fj), (next(gk),gl))

ALIGN((fi,fj),(gk,gl)), base insertion =
score(-,gk)
+ ALIGN((fi,fj), (next(gk),gl))

ALIGN((fi,fj),(gk,gl)), base pair replacement where pair(fi) is (f5',f3') and pair(gk) is (g5',g3') =
pairscore((fi,f5',f3'),(gk,g5',g3'))
+ ALIGN((next(f5'),prev(f3')),(next(g5'),prev(g3')))
+ ALIGN((next(fi),fj), (next(gk),gl))

ALIGN((fi,fj),(gk,gl)), base pair insertion where pair(gk) is (g5',g3') =
pairscore((-,-,-),(gk,g5',g3'))
+ max over fsplit in (fi,fj) {

ALIGN((fi,fsplit), (next(g5'),prev(g3')))
+ ALIGN((next(fsplit),fj), (next(gk),gl))

}

ALIGN((fi,fj),(gk,gl)), pair bond insertion where pair(gk) is (g5',g3') =
score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGN((fi,fsplit), (g5',g3'))
+ ALIGN((next(fsplit),fj), (next(gk),gl))

}

As before, deletions are just mirrors of insertions and when we maximize over
splits, we also maximize over the empty splits Ø / (fi,fj) and (fi,fj) / Ø.

Now I will modify these recurrence relations to handle forest-RNAPOAs. The

Page 67 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

modification is mostly straightforward. The only difference between ordered forests and
forest-RNAPOAs is that each node can have multiple next, prev, and pair edges.
Therefore, wherever a forest alignment computes a value using next or prev, a forest-
RNAPOA alignment optimizes over all possible combinations of nexts and prevs. This
creates the same two dangers - invalid spans and wasteful subalignments - that we faced
during string-RNAPOA alignment. We'll use the same tricks to solve them: we'll use a
partial-ordering matrix F≤ to check span validity, and we'll use a function ALIGNignore_end

to store certain subalignments efficiently.
To put it explicitly, the recurrences for forest-RNAPOA alignment are:

ALIGN((fi,fj),(gk,gl)), base replacement =
score(fi,gk)
+ max over fnext in next(fi), gnext in next(gk) {

ALIGN((fnext,fj), (gnext,gl))
}

ALIGN((fi,fj),(gk,gl)), base insertion =
score(-,gk)
+ max over gnext in next(gk) {

ALIGN((fi,fj), (gnext,gl))
}

ALIGN((fi,fj),(gk,gl)), base pair replacement =
max over (f5',f3') in pair(fi), (g5',g3') in pair(gk) {

pairscore((fi,f5',f3'),(gk,g5',g3'))
+ max over fnext in next(f5'), gnext in next(g5') {

ALIGNignore_end((fnext, f3'), (gnext, g3'))
}

}
+ max over fnext in next(fi), gnext in next(gk) {

ALIGN((fnext,fj), (gnext,gl))
}

ALIGN((fi, fj),(gk, gl)), base pair insertion =
max over (g5', g3') in pair(gk) {

pairscore((-,-,-),(gk, g5', g3'))
+ max over fsplit in (fi, fj) {

max over gnext in next(g5') {
ALIGNignore_end((fi, fsplit), (gnext, g3'))

}
+ max over gnext in next(gk) {

ALIGN((fsplit, fj), (gnext, gl))

Page 68 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

}
}

}

ALIGN((fi,fj),(gk,gl)), pair bond insertion if pair(gk) is (g5',g3') =
max over (g5', g3') in pair(gk) {

score(-,gk)
+ max over fsplit in (fi,fj) {

ALIGN((fi, fsplit), (g5', g3'))
+ max over fnext in next(fsplit), gnext in next(gk) {

ALIGN((fnext, fj), (gnext, gl))
}

}
}

Here we use the same three 'tricks' as before. First, ALIGNignore_end((fi, fj), (gk, gl)) is
just like ALIGN, except it ignores the last base in each span. Second, we store and
compute a partial-ordering matrix F≤. This allows us to efficiently find all valid split
nodes fsplit and next nodes fnext within the span (fi,fj). We simply do a depth-first traversal of
F starting at fi, only following an edge next(fm) if F≤[m][j] = 1. Third, as in forest
alignment, we have to make sure we consider 'splits' which leave the entire span intact,
e.g. (fi,fj) / Ø and Ø / (fi,fj).

To analyze the complexity of this approach, I will use the following notation:

|F| = the number of nodes in F
Bases(F) = the number of base nodes in F
Pairs(F) = the number of pair nodes in F
Deg(F) = the max number of next edges from any node in F
PairDeg(F) = the max number of base pairs represented by any pair node in F
MaxLoop(F) = the max number of nodes fk in any span (fi,fj) in F, such that

 F≤[i][k] = 1 and F≤[k][j] = 1.

What is the space complexity of this algorithm? As in (Jiang et al., 1995), we
have to compute suffix-suffix, nonsuffix-suffix, and suffix-nonsuffix alignments. For
each end node, we can start a suffix at any of the O(MaxLoop(F)) other nodes in the same
loop. Hence there are O(Pairs(F)MaxLoop(F)) 'suffixes' of F. On the other hand, any
node can end a nonsuffix, so there are O(|F|MaxLoop(F)) nonsuffixes in F. Our
modification to use ALIGNignore_end essentially forces us to compute each of these
alignments twice - once including the end nodes, and once ignoring them24 - but it doesn't

24 Since some 'ignore end' alignments are very similar to some nonsuffix-suffix alignments, it may be
possible to compute their scores without storing them. It wouldn't reduce the big-O complexity, though.

Page 69 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

change the big-O complexity. So the number of alignments of each type that we have to
compute is as follows:

suffix-suffix: O(Pairs(F)MaxLoop(F)Pairs(G)MaxLoop(G))
suffix-nonsuffix: O(Pairs(F)MaxLoop(F)|G|MaxLoop(G))
nonsuffix-suffix: O(Pairs(G)MaxLoop(G)|F|MaxLoop(F))

Also, we have to compute and store the partial-ordering matrices F≤ and G≤, which
add time and space complexity O(|F|2) and O(|G|2), respectively. The total space
complexity is then:

space: O(|F|2 + |G|2 +
 MaxLoop(F)MaxLoop(G)(|F|Pairs(G) + |G|Pairs(F)))

What about the time complexity? For each subalignment, we have to consider
eight editing operations: base replace, base insert, base delete, base pair replace, base pair
insert, base pair delete, pair bond insert, and pair bond delete. If we inspect the
recurrences, we see that they have time complexities as follows:

Edit Op. Edit Operation Time Complexity
base replace O(Deg(F)Deg(G))

base insert O(Deg(G))

base delete O(Deg(F))

base pair replace O(PairDeg(F)PairDeg(G)Deg(F)Deg(G))

base pair insert O(MaxLoop(F)PairDeg(G)Deg(G))

base pair delete O(MaxLoop(G)PairDeg(F)Deg(F))

pair bond insert O(MaxLoop(F)PairDeg(G)Deg(F)Deg(G))

pair bond delete O(MaxLoop(G)PairDeg(F)Deg(G)Deg(F))

Base pair operations dominate the running time, so the total time complexity is:

time: O(|F|2 + |G|2 +
 MaxLoop(F)MaxLoop(G)(|F|Pairs(G) + |G|Pairs(F))
 * Deg(F)Deg(G) * (PairDeg(F)PairDeg(G)

+ MaxLoop(F)PairDeg(G)
+ MaxLoop(G)PairDeg(F)))

Most 'real world' situations are much simpler to analyze. For individual RNA
structures, PairDeg(F) = Deg(F) = 1 and MaxLoop(F)Pairs(F) = O(|F|). If we do a little
algebra, the complexities reduce to O(|F|2 + |G|2 + |F||G|(MaxLoop(F) + MaxLoop(G)))

Page 70 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

space and O(|F|2 + |G|2 + |F||G|(MaxLoop(F) + MaxLoop(G))2) time. This is essentially
the same as the algorithms of (Jiang et al. 1995; Jansson et al., 2004). For multiple RNA
structures, we can make the same argument that we did for string-RNAPOAs. So long as
they are reasonably similar, Deg(F) and PairDeg(F) will be small constants, so alignment
time shouldn't increase very quickly with the number of aligned structures.

A major drawback of this type of forest-RNAPOA alignment is that it enforces the
same nesting constraint as ordinary forest alignments. To visit each base node of an
ordered forest, we have to pass through each pair node. Hence an alignment's 'threading'
of F has to visit every pair fp in F (even if the pair is indel'd anyway). However, if we look
at the recurrence relations for forest alignment, any alignment visitng fp gets divided into
two subalignments - one starting at next(fp) and another enclosed by pair(fp). Likewise,
any alignment visitng gp is divided in the same way. But since all alignments have to visit
both fp and gp, our choice of alignments is limited. If we align any base in pair(fp) with
any base in pair(gp), then no base in pair(fp) can be aligned with next(gp) and no base in
pair(gp) can be aligned with next(fp). In other words, the alignment can't make fp and gp

cross.

Table 9: Forest-RNAPOAs F (top) and G (bottom) and their adventures with crossing base pairs. Left:
with ordinary forests, an alignment's threading must visit these spans (gray boxes). If we delete the pair
node (red circle), we divide F into two parts (blue boxes). None of the split points in G (blue triangles) will
let us match all of the identical nucleotides. Right: if F is a 'stringlike' RNAPOA, we can choose an
alternate path from the leftmost “G” base that doesn't visit the pair node. The alignment is no longer
constrained to 'nest'.

We can get around this problem by using 'stringlike' RNAPOAs. A stringlike
forest-RNAPOA, just like an string-RNAPOA, treats each base pair as an optional,
alternate path. Consider an optimal alignment A of a stringlike RNAPOA F and any
arbitrary forest-RNAPOA G. What if the A makes a pair node fp cross a pair node gp?
That is, what if pair(fp) = (f5',f3') and pair(gp) = (g5',g3'), but A aligns some base nodes in

Page 71 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

(f5',f3') with base nodes that aren't in (g5',g3')? The worst case is that G is an ordinary forest,
so the alignment's threading of G has to visit gp (if only to indel it). However, the
threading of F doesn't have to visit fp , since fp is on an optional, alternate path. Hence we
can still generate A as the optimal alignment.

This freedom comes at the cost of efficiency. If F is stringlike, then MaxLoop(F) =
|F|, so a pairwise alignment requires O(|G|2 + |F||G|(|F| + MaxLoop(G))) space and O(|G|2

+ |F||G|(|F| + MaxLoop(G))2) time. It is straightforward to interconvert ordinary and
stringlike RNAPOAs, so we can always choose the smaller structure to be stringlike.

A final note: it is very inefficient to align base pairing probability matrices using
forest-RNAPOAs. For a base-pairing probability matrix, |F|, Pairs(F), MaxLoop(F) =
O(Bases(F)2), and PairDeg(F) = Bases(F). e.g. when F and G have comparable sizes, the
algorithm would require O(Bases(F)8) space and O(Bases(F)11) time.

3.3 Approximate alignment of RNAPOAs with tertiary structure
The alignment algorithms that I developed in the previous section do not align two

entire RNAPOAs to each other. They align a single 'threading' of S onto T. When I say
'threading', I simply mean the nodes of S and T that are aligned with each other.
RNAPOAs, like partial-order sequence alignments, only generate an optimal threading of
any one sequence of S with any one sequence of T. Also, like arc-annotated structure
alignments, they only generate an optimal threading of any one secondary structure of S
with any one secondary structure of T - no 'alternate' or crossing base pairs are allowed.

In general, we'd like to do more - we want to align tertiary structure as well as
secondary structure. In addition, the nature of partial-order alignments gives us another
reason to go beyond a single threading. To see why, let us first consider the simpler case
of PO-MSAs.

Imagine two identical PO-MSAs S and T. Since they are identical, S and T have
the same alternate paths. When we align S and T, we find the best threading of a path in S
to a path in T. Then we merge the aligned nodes to form a new PO-MSA A. What
happens to the alternate paths that weren't threaded? We don't merge them, so they
remain in A as duplicate paths. In theory, this duplication increases the time and space
requirements of future alignments and decreases their quality. Future alignments could
add different replacements/indels to each duplicate path, but the two ought to be identical.
Of course, these statements about 'duplicates' also apply to any alternate paths, not just
duplicates; even if they aren't on the optimal threading, we still ought to align them.

Page 72 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Table 10: A hypothetical peril of alternate paths in PO-MSAs. Left: two identical PO-MSAs and their
alignment. Aligned nodes are colored gray. The alignment is a 'threading' of a single path in S onto a
single path in T. If S and T have alternate paths, those paths aren't merged. Right: in practice, indel costs
are much higher than mismatch costs, so 'alternate paths' are merely mismatched (dashed circles).
Aggressive merging of aligned, mismatched nodes solves the problem.

We would expect this to be a big problem for PO-MSAs - unless the guide tree is
very good, alignments should accumulate duplicate paths. In practice, these effects are
small. It is difficult to generate this kind of alternate path, since scoring functions
typically give higher penalties to sequence indels than to subsitution mutations.

RNAPOAs can't escape the problem so easily. After all, a major purpose of RNA
structure alignment is to take structural information into account when deciding where to
place indels. If we only consider one 'threaded' structure of many, we are throwing away a
lot of information. In the most extreme case - RNAPOAs that represent full base pairing
probability matrices - we only use a small fraction of the total structural information.25
This is an especially dangerous issue for forest-RNAPOAs. Since they represent base
pairs explicitly, any base pairs that cross the 'threaded' structure will not be aligned and
could easily become duplicated. For example, if a moderate-sized substructure of an RNA
has two common variations, and the variations appear in several different phylogenetic

25 The same criticism applies to the total order approach of (Hofacker et al., 2004).

Page 73 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

groups, a forest-RNAPOA would quickly accumulate duplicate paths containing many
extra pair nodes.

The main challenge here is to take crossing base pairs into account during
alignment; if we can do that, we can handle tertiary structure and avoid duplicate paths.
For string-RNAPOAs, we can solve this problem with a variation of the 'constrained
alignments' outlined by (Wang and Zhang, 2001).26 The basic idea is as follows. In the
first pass, we align S and T to produce the alignment A1. Then we generate constraints to
force future passes to respect the aligned base pairs in A1. Finally, we remove those base
pairs from S and T (so that we can cross them), and re-align S and T according to the
constraints. We keep repeating this process, adding more constraints and producing more
refined alignments A2, A3, A4, etc. We stop when Ap = Ap-1, i.e. when the next alignment
doesn't include any new base pairs.

Now for a more detailed explanation. Let aligned_base(si) = tk if si is constrained
to align with tk, and aligned_base(si) = empty otherwise. Let ignored_pairs be a set of
base pairs that have already been aligned in some previous alignment pass Ap. After we
generate an alignment, for each pair of aligned base pairs (si,sm) and (tk,tn), we set:

aligned_base(si) = tk

aligned_base(sm) = tn

aligned_base(tk) = si

aligned_base(tn) = sm

ignored_pairs = ignored_pairs U {(si,sm), (tk,tn)}

Now that we have our constraints, we apply them to ALIGN((si,sj), (tk,tn)) as
follows. First, we force the alignment to respect previously-aligned paired bases. If
aligned_base(si) = tk and aligned_base(tk) = si, then we don't allow indels. If we are forced
to accept an indel - e.g. if aligned_base(si) is not empty but aligned_base(tk) = empty -
then we give it a score of (- ∞). If aligned_base(si) ≠ tk and is not empty, or
aligned_base(tk) ≠ si and is not empty, then we don't allow base replacements. Second, we
don't consider base pairs that were in previous alignments. When we optimize over all
base pairs in pair(si), we ignore any pairs (si,sm) that are in ignored_pairs. We also ignore
any pairs (tk,tn) that are in ignored_pairs. That's all!

The constraints are easy to implement without changing the time or space
complexity of alignment. Actually, the constraints make alignments considerably more
efficient. We don't need to compute as many subalignments, since we don't have to align
pair-suffix spans if we are ignoring all of the pairs that depend on that span. Nevertheless,
the worst-case complexity is the pairwise complexity times the number of passes: about
O(Bases(S)Bases(T)min(Bases(S),Pairs(S))min(Bases(T),Pairs(T))(#passes)). If we are
dealing with tertiary structures or string-RNAPOAs with alternate paths, this procedure
should stop aligning new base pairs after a small number of passes. Alignments with
many more pair nodes than bases could potentially take much longer, since each pass

26 As discussed near the end of section 2.5.1.

Page 74 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

adds at most O(Bases(S)) base pairs to ignored_pairs. In such cases we might impose an
upper limit to the number of passes.

The method of (Wang and Zhang, 2001) preserved a total ordering, so each base
in the alignment had only one structural feature. In contrast, this partial-order method can
actually align multiple base pairs for the same base. For example, it can align (si,sm) and
(tk,tn) in the first pass, and then (si,sa) and (tk,tb) in the second pass. Thus the resulting
RNAPOA is not merely an alignment of two consensus structures or structural
threadings; it is an alignment of the entire set of alternate structures shared between two
ensembles of RNAs. The alignment is built greedily from a series of threadings of
secondary structure, so it may not be globally optimal. However, much of the similarity
between homologous structure ensembles can be captured by a single secondary structure
threading (e.g. see the results of (Hofacker et al., 2004)), so for most practical cases this
greedy method should give good results.

We can use the same basic strategy for forest-RNAPOAs. The aligned_base
constraint can be implemented just as for string-RNAPOAs. The ignored_pairs constraint
is a bit trickier; we can't just ignore pair nodes, since we have to visit them when we
traverse the graph. Instead, whenever we compute ALIGN((fi,fj), (gk, gl)), we force a pair
bond insertion if gk is in ignored_pairs and force a pair bond deletion if fi is in
ignored_pairs. This way we basically skip over all pair nodes that have already been
aligned. Again, the algorithm's complexity is the same; the total cost is just the pairwise
cost times the number of passes. Note that this method is mostly useful for alignments
that include a stringlike forest-RNAPOA; otherwise, the forest representation stops us
from considering crossing base pairs.

3.4 Approaches to multiple alignment
The main focus of this thesis is the RNAPOA representation of multiple

alignments and algorithms for aligning two RNAPOAs. With these in hand, there are
many methods we could use to build multiple alignments. Here I will review three such
methods and briefly discuss the advantages and disadvantages of each. Current RNA
multiple structural alignment programs use techniques originally developed for sequence
alignment. It may be that RNAs have certain properties that would benefit from
specialized alignment-building schemes. However, the methods that I will discuss here
are relatively straightforward and can be used with any type of 'alignment of alignments'.

The simplest way to build a multiple alignment is to merge single structures into
an alignment one-by-one in an arbitrary order. I will call this the linear scheme, because it
requires O(k) total alignments for k structures. With traditional, total-order sequence
alignments, this approach tends to produce bad alignments. On the other hand, (Lee et al.,
2002) used this simple scheme with partial order sequence alignments and got fairly good
results.

A more traditional way to build a multiple alignment is to construct a 'guide tree'

Page 75 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

that determines the order in which we merge a series of intermediate alignments. I will
call this the tree-guided scheme. We can choose a guide tree by applying a phylogenetic
tree reconstruction algorithm (e.g. (Saitou and Nei, 1987)) to a matrix of pairwise
distances between the input structures. To generate the distance matrix, we need to
perform O(k2) pairwise structure alignments. The guide tree will include O(k) internal
nodes, and we have to perform one pairwise alignment for each one.

Two of the programs that I've mentioned in this thesis - pmmulti (Hofacker et
al., 2004) and POA2 (Grasso and Lee, 2004) - use this approach. Because it takes so
many pairwise alignments to generate the distance matrix, both of these programs provide
a way to avoid using the full, optimal alignment algorithm during this step. pmmulti has
an option to use 'string-like' alignments of base pairing probabilities, and POA2 uses
BLAST (Altschul et al., 1997), a fast, approximate sequence comparison algorithm. Even
these rough guide trees significantly improved the quality of PO-MSAs.

RNAForester uses a third approach. One use of multiple alignments is as input
to programs for inferring phylogenetic trees. However, (Hochsmann et al., 2004) note that
inferred trees are strongly influenced by the alignment's choice of guide tree. In that case,
the multiple alignment isn't telling us anything about sequence phylogeny that we didn't
already know from the individual pairwise alignments. To avoid this dilemma,
RNAForester iteratively constructs a 'guide tree' during the course of alignment. I will
call this the tree-building scheme. The idea is as follows:

1. Compute all O(k2) pairwise distances between the k single-structure RNA profiles.
2. Align the two most similar RNA profiles. Merge them into new profile A.
3. Compute all O(k) pairwise distances between A and the other profiles.
4. If more than one profile remains, go to step 2.

So, rather than trusting a guide tree to figure out ahead of time which intermediate
profiles will have the smallest distances to each other, RNAForester recomputes
pairwise distances as it goes. For k structures we need only (k-1) pairwise alignments to
merge them all. If we compute O(k) distances after each step, we only do O(k2)
recomputations in all. Thus all of the additional pairwise alignments double the running
time but don't increase the alignment complexity.

Which of these approaches is best for RNAPOAs? It depends on the purpose of
the alignment. If speed is an issue, or if there are a large number of structures, the linear
method is the only one that will be efficient. The advantages of the partial order
formulation should let RNAPOAs give fairly accurate alignments even when the input
structures are merged one by one. If we are doing a phylogenetic comparison in which
accuracy is paramount, the more rigorous methods are the way to go. Following
(Hofacker et al., 2004), we might build a guide tree based on 'string-like' alignments to
keep the running time manageable for large sequence lengths.

Unfortunately, although I have implemented the linear method, I have yet to

Page 76 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

evaluate the other two. Given the improvement that even a rather rough guide tree makes
to PO-MSAs, it is likely that RNAPOAs will benefit from the tree-guided and tree-
building methods as well.

Page 77 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

4. Experimental Results
In this section I will present a few preliminary results. Before I begin, I should

mention an important caveat. In the realm of sequence alignments, standardized
alignment databases such as BaliBase (Bahr et al., 2001) make it easy for researchers to
to objectively compare sequence alignment algorithms. However, RNAPOAs are partial-
order alignments and are RNA structural alignments. Both of these properties make
RNAPOAs difficult to compare with existing methods. First, as (Lee et al., 2002) noted, a
PO-MSA represents a very large number of equivalent (but differently scored) total order
alignments. Therefore it is something of an apples-to-orangles comparison to evaluate
PO-MSAs accoring to row-column criteria. A measure like 'percent conserved residues
correctly aligned' essentially compares an alignment to a profile, even if the alignment is
better represented by a partial ordering with alternate paths.

Secondly, RNA structure alignments are even more difficult to objectively
compare. We might use RNA structural alignments for several tasks - to find similar
structures from a database, determine a consensus structure for a phylogenetic group,
infer phylogenetic relationships from aligned RNAs, or explore the variation within an
ensemble of computationally predicted structures. In each case, we have different criteria
for what makes an alignment 'good'. For example, repositories like the RNAse P Database
(Brown, 1999) and BRAliBase (Gardner and Giegerich, 2004) have structures for RNAs
from many different phylogenetic groups. The base pairs of each structure are generally
determined by aligning many sequences at once to consensus structures that have been
determined by experimental studies and phylogenetic analysis. In one sense this is the
'gold standard' for alignment programs, since the consensus is our best estimate of the
actual structure of the RNAs. However, if most of the RNAs can be fitted to the same
consensus structure, then it nullifies the advantages of RNAPOAs in capturing variations
as well as commonalities.

In any case, the above points are academic for now. I have implemented string-
RNAPOA and forest-RNAPOA alignment, but the algorithms are still in an experimental
state and aren't yet ready for a thorough evaluation. The code is written in python, using
the Numeric module for multidimensional arrays and the Psyco module for code
optimization. For reference, I can give some wall clock times for string-RNAPOA
alignment: it takes 90 seconds to align two 5S RNA structures with about 120 bases each,
5 minutes to align two RNAse Ps with about 270 bases each and a small number of base
pairs, and 30 minutes to align two RNAse Ps with about 350 nucleotides each and a
larger number of base pairs. I expect that a C++ implementation would be several times
faster.

Now I can show some results. The following images are from a multiple
alignment of nine bacterial 5S RNA structures obtained from the Comparative RNA Web
Site (Cannone et al., 2002). Each sequence is about 120 nucleotides long, and the RNAs
have a well-conserved structure. I used the graph editing program yEd to render and

Page 78 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

arrange the resulting RNAPOAs. In each image, circular nodes represent bases and
diamond nodes represent base pairs. Bases are colored light blue if they occur in only one
structure, but become red in proportion to the number of structures in which they appear.
All of the bases at a single position in the alignment - i.e. matched and mismatched bases
- are connected by by red dashed lines. These are not always visible. To remedy this, I
have moved all aligned base nodes so that they partially overlap, which seems to be a
better visual cue.

The left image in the table above shows a region with conserved sequence and
structure. There are several nodes which have exactly the same nucleotide and base pair
in all nine structures. There are a few alignment positions which have alternate base pairs;
for example, the position in the middle of the image has two aligned base pairs, one of
which is very common (bright red) and the other of which only occurs in a few structures
(light pink). One of the base pairs near the bottom of the image is extremely variable -
one of its bases has two variants and the other base has all four possible nucleotides.

The right image shows a region that is less well conserved; there are several
alternate paths through this part of the RNAPOA. In the center of the image, there are a
few adjacent positions whose nucleotides and pairing partners vary. Several of the base
pairs cross, representing base pair shifts. In addition, some of the base nodes have next
edges to several different positions. For example, the fully conserved base node (bright
red) in the top left has next edges to two different positions. One next is a variable
position, with two rare bases (light blue) and one common base (red). The other next

Page 79 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

(purple) is an insertion in front of the variable position. Furthermore, these two next
positions have highly variable structure; each alternate nucleotide can form several
different base pairs. In the bottom right of the image, we can see a high-level variation:
three consecutive base pairs (purple) which are present in some, but not all, of the RNAs.

I should note that the alignment quality is rather poor. In particular, the scoring
function I'm using is very simple and it better suited to testing toy examples than to
alignment of phylogenetically related RNAs. An accurate multiple alignment of these
structures would show very little variation. Nevertheless, these RNAPOAs show how
partial order alignments can represent complex indels, base pair shifts, and subtle
interactions between sequence and structure variations.

These two images show two different views of a stem and a four-base hairpin
loop. The hairpin's structure is fairly well conserved, but the nucleotide content is
extremely variable. In particular, consider the paired bases at the upper left corner of the
left image. Each of those paired positions has many different nucleotides, and some
nucleotides even have more than one pairing partner.27 The other positions are only
slightly less variable in nucleotide content. In contrast, the structure is mostly conserved,
but we can still see a few variations. Some positions have mutations that prevent them
from forming base pairs. For example, the bottom-most nodes in the image (light blue)
don't participate in base pairs, although they are aligned with other base nodes that do

27 In fact, there are more than four base nodes aligned at that position, due to a bug in my code for merging
aligned nodes.

Page 80 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

form pairs. Also, a small number of structures have base indels near the end of the hairpin
- note the crossing next edges and the wayward (light blue) base node on the right.

The right image shows a view of the region from farther back. Although the full
substructure is present in most of the RNAs, two of them have an alternate, truncated
form (highlighted in yellow). One of the RNAs has a base pair and a four-base hairpin
loop, while the other has only three unpaired bases and an indel against the rest.

Page 81 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

The image above shows an accurate alignment of four of the 5S RNAs. Base pairs
present in all structures are colored bright blue, and variable base pairs are colored green.
Their strongly conserved structure makes it a rather boring case, but we can see a few
places where the partial ordering formulation is useful. The RNAPOA represents mutated
regions as alternate paths rather than as a profile, and shows how sequence mutations
present in one RNA create a new base pair at the 3' end of the structure and induce a base
pair shift near a hairpin loop. One RNA has many substitution mutations, forming an
alternate path through the graph that induces only a small change in the structure (see
inset).

The timing statistics of this alignment show some of the algorithmic properties of
RNAPOAs. In a messy graph structure like the one depicted above, we would expect
BaseDeg and PairDeg to increase significantly, and hence force us to maximize over
many more possibilities at each step. Even so, the initial pairwise alignment processed
about 50,000 subalignments per second, and the final alignment of the RNAPOA to its
last structure processed about 45,000 per second. At least for the linear alignment
scheme, those pesky degree terms appear to be small in magnitude and slow in growth, as
expected.

However, the total alignment time was not as stable. For the initial pairwise
alignment, the first structure had 1968 suffixes/pair-suffixes and the second had 1881, so
the algorithm had to compute a total of 3.7 million subalignments - about 70 seconds.
However, the RNAPOA accumulated many additional nodes during the course of
alignment. By the last step, it had 11231 suffixes/pair-suffixes, whereas the last
individual structure had only 1758. Hence the final merging required 20 million
subalignments - about 8 minutes.

I should caution that this is an isolated data point measured for an algorithm in
development. These results may be artifacts of the simple scoring function I used, or even
bugs in my implementation. In addition, I haven't yet implemented the ALIGNignore_end

trick, which should greatly reduce the effect of node accumulation on the number of
subalignments that have to be computed. I will have to test the algorithm more
extensively to give a full evaluation of its properties 'in practice'.

Page 82 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

5. Discussion
5.1 Contributions

Individual RNAs must obey many structural constraints: each position can have
only one nucleotide; each nucleotide can have at most one predecessor, one successor,
and one pairing partner; if the RNA has only secondary structure, its base pairs do not
cross. However, an alignment of RNA structures should not obey the same constraints.

Early approaches to sequence analysis made no distinction between a sequence
and an alignment of sequences. An alignment was simply a single sequence with a
consensus nucleotide at each position. Profile-based approaches relax the 'one nucleotide
per position' constraint, which greatly improves alignment quality. However, this requires
the use of artificial 'gap' entities. Partial-order alignments relax the 'one predecessor, one
successor' constraint and achieve an even more natural representation.28

In the same vein, current RNA structure comparison methods do not make a clean
separation between individual sequences, individual structures, and alignments. In this
thesis, I have addressed this problem with a partial order formulation of RNA structure
alignment. An RNAPOA faithfully represents an set of individual structures without
splicing in 'gaps' or enforcing consensus features. In particular, RNAPOAs can handle
base pair shifting, a common structural mutation that cannot be represented under a total
ordering. This natural representation has the potential to considerably improve the quality
of alignments. Each aligned secondary structure is a path through an RNAPOA, and when
we find an optimal threading of two RNAPOAs, we find an optimal threading between
any two of their paths. In addition, RNAPOAs support an iterative method for
approximate alignment of 'alternate paths'. Not only does this allow for alignments of
tertiary structure, but it also minimizes a subtle source of error in current partial-order
alignment methods.

The table below summarizes the algorithms presented in this thesis. They are
based on existing structure alignment algorithms, so they generally have similar
complexity. In some cases they require additional time/space to relax the structural
constraints of a total ordering. I present algorithms for two types of alignments: string-
RNAPOAs and forest-RNAPOA. Forest-RNAPOAs are good when the structures are
generally described by a common nesting, since MaxLoop(F) is much smaller than
Pairs(F). On the other hand, string-RNAPOAs are best when the alignment contains
many crossing or alternate base pairs, since we don't have to visit pair nodes during
alignment. Both string-RNAPOAs and forest-RNAPOAs contain essentially the same
information, so it is straightforward to interconvert them when one or the other
representation is advantageous. Indeed, although I have chosen to treat them as separate
types of graph, we could likely unify them into a single type of graph structure which
supports both string-like and forest-like algorithms.

28 The method of (Raphael et al., 2004), further relaxes these constraints to allow cyclic graphs, which
represent shuffled/repeated sequence elements.

Page 83 of 90

Representation and
algorithm

Edit Operations Space Complexity Time Complexity Notes

RSMatch tree
(Liu et al., 2005)

unpaired base {replace, indel}
base pair replace
base-pair-and-substructure indel

O(Bases(S)2) O(Bases(S)2) Very strict matching. Deletes
entire substructures rather
than aligning unpaired and
paired bases.

RNA profile (forest)
(Hochsmann et al., 2004)

base {replace, indel}
base pair replace
pair bond indel

O(|F|2MaxLoop(F)) O(|F|2MaxLoop(F)2) Enforces a consensus
nesting; i.e. cannot represent
crossing pairs.

arc-annotated alignment
(Wang and Zhang, 2004)

unpaired base {replace, indel}
base pair {replace, indel}

O(Bases(S)2Pairs(S)2) O(Bases(S)2Pairs(S)2) Enforces a consensus
structure; cannot align
unpaired and paired bases.
Approx. tertiary structure
alignment.

base-pairing probability
matrix
(Hofacker et al., 2004)

base {replace, indel}
base pair replace

O(Bases(S)4)
constrained: O(Bases(S)3)

O(Bases(S)6)
constrained: O(Bases(S)4)

Enforces consensus pairing
probabilities.

Introduced in this thesis:
string-RNAPOA (1) base {replace, indel}

base pair replace
O(Bases(S)2Pairs(S)2) O(Bases(S)2Pairs(S)2) Partial-order. Approx.

tertiary structure alignment.
string-RNAPOA (2)
(allows base pair indel)

base {replace, indel}
base pair {replace, indel}

O(Bases(S)4) O(Bases(S)5) Partial-order. Approx.
tertiary structure alignment.

string-RNAPOA (3)
(for pairing prob. matrix)

base {replace, indel}
base pair {replace, indel}

O(Bases(S)4) O(Bases(S)6) Same as (1); Even when
Pairs(S) = O(Bases(S)2), the
complexity doesn't grow
beyond this.

forest-RNAPOA (1) base {replace, indel}
base pair {replace, indel}
pair bond indel

O(|F|2MaxLoop(F)) O(|F|2MaxLoop(F)2) Partial-order, but enforces a
consensus nesting.

forest-RNAPOA (2)
(for crossing base pairs)

base {replace, indel}
base pair {replace, indel}
pair bond indel

O(|F|3) O(|F|4) Partial-order. Approx.
tertiary structure alignment.

Table 1: Summary of the algorithms in this thesis, in comparison to other multiple alignment methods. Edit operations include edits restricted to certain classes of nucleotides
(e.g. unpaired base replacement), to paired bases (e.g. base pair indel), or just to the bond between two bases (e.g. pair bond indel). Algorithm space/time requirements are given
in terms of pairwise alignments between two structures with similar sizes. When we consider multiple alignments, complexity grows in a small but complicated way related to the
number of gaps or alternate paths in an alignment. Complexity notation: Bases(S) = number of nucleotides in S, Pairs(S) = number of base pairs in S, |F| = number of nodes in a
graph = (Bases(F) + Pairs(F)), MaxLoop(F) = number of bases in the largest loop in F.

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

5.2 Future Work
RNAPOAs are rather slow to compute, for two main reasons. First, RNAPOAs

respect sequence and structure information, but they don't use them as hard constraints. If
we permit structurally invalid alignments, we can just use a sequence-based algorithm
with quadratic complexity. If we force all aligned RNAs to have similar types of
structures, we can again achieve quadratic or near-quadratic complexity (Hochsmann et
al., 2004; Liu et al., 2005). On the other hand, RNAPOAs allow “sequence or structure”
alignments, so they have to optimize over a much larger search space. For example, a
pairwise sequence alignment of 120 nt 5S RNAs considers about 15,000 subalignments,
but a string-RNAPOA alignment considers nearly 4 million.

We could remedy this problem by imposing some reasonable restriction on the
search space. For example, the algorithm of (Hofacker et al., 2004) uses an
approximation parameter Δ to reduce alignment time compleixty from sextic to quartic.
The idea is to ignore subalignments in which one span has Δ more nucleotides than the
other; instead of aligning each span in S with each all |T|2 spans in T, we only try Δ2 spans
in T. In other words, S and T can only be 'out of register' by Δ positions. (Bafna and
Zhang, 2004) and (Yang and Blanchette, 2004) use a somewhat similar approach, in
which they only search for alignments that are within Δ of an approximate, sequence-
based alignment. In general, most approximation methods for total-order alignments
should also work for partial-order alignments.

A second reason why RNAPOAs are slow is that RNAs with conserved structure
may have highly variable sequences. In that case, a partial order alignment pays a high
cost for preserving every sequence/structure variation. Progressive alignment is an
approximation heuristic anyway, so it may not be worth it to pay this cost if it gives only
a marginal improvement in alignment accuracy. (Grasso and Lee, 2004) suggest that a
reasonable tradeoff is to merge mismatched bases into profile nodes. This reduces the
number of nodes while still preserving the main advantages of the partial order
formulation. A similar approach would produce even greater speedups for RNAPOAs,
since each extra node/edge forces us to consider O(Bases(S)) additional subalignments.

Table 2: Profile nodes for RNAPOAs. Left: a segment of a string-RNAPOA. Right: a profile string-
RNAPOA still contains alternate paths for indels and base pair shifts, but merges mismatched bases.

Page 85 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

The algorithms presented in this thesis charge the same cost for each indel'd base,
but this is not biologically accurate. It should be straightforward to use affine indel costs
for the RNAPOA algorithms, since they are based on total order alignment algorithms
that have affine gap variants.29 It is also straightforward to modify RNAPOAs to use
position-specific substitution and indel costs, which can greatly improve alignment
accuracy for sequences with low similarity (Thompson et al., 1994). It remains to be seen
whether partial order alignments can support more advanced editing models such as
logarithmic gap penalties (Gu and Li, 1995) or different gap penalties within regions of
paired bases (Klein and Eddy, 2003). In addition, to rigorously align phylogenetically
related RNAs using base pairing probabilities, we need a model of how to combine
probabilities based on thermodynamic predictions (as used by e.g. (Hofacker et al, 2004))
with log-odds scoring rules based on phylogenetic comparisons (as used by e.g. (Klein
and Eddy, 2003)). Another concern is that scoring models developed for total order
alignments have different statistical properties for partial order alignments. As (Lee et al.,
2002) note, adding a random sequence to a partial order alignment can only increase the
number of alternate paths, and hence can only improve the scores of future alignments. If
we want to test the statistical significance of an alignment, e.g. whether a query sequence
is better than a random sequence at matching a family of aligned RNAs, we need to
develop a different type of scoring function.

However, before attempting to improve the speed or scoring functions of
RNAPOAs, they should be fully implemented and tested on more interesting datasets.
Not only will this establish give the properties of the RNAPOA algorithms an empirical
grounding, but it will help determine which avenues for improvement are most
promising. This will also allow an investigation into how different schemes for
constructing multiple alignments interact with the properties of RNA structures and
partial-order alignments built from various types of datasets (phylogenetically determined
structures, thermodynamic predictions, base pairing probabilities, etc.).

RNAPOAs are rather complex graphs, so it is important to display them in a way
that makes their information accessible. I used the generic graph editor yEd to draw the
images in this thesis, but RNAPOAs required considerable manual tweaking to make
them presentable. This would quickly become tedious in a research environment,
especially for large alignments. There are quite a few programs specialized for drawing
RNA structures, but they typically draw only one structure at a time and don't allow
tertiary structure. In contrast, RNAPOAs may represent a large ensemble of tertiary
structures with many alternate pairs and alternate successors for each base! Of course, we
could always translate RNAPOAs into total-order, row-column alignments, but graph
drawings are a more intuitive representation for RNA structure. In short, it may actually
be more challenging to design interfaces for drawing and editing RNAPOAs than it was
to design algorithms to align them.

29 (Wang and Zhang, 2001) for arc-annotated strings, (Wang and Zhao, 2003) for ordered trees.

Page 86 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

6. References
Akutsu T. (2000) Dynamic programming algorithms for RNA secondary prediction

with pseudoknots. Discrete Applied Mathematics 104, 45-62

Altschul S.F., Madden T.L., Schäffer A.A. (1997): Gapped BLAST and PSIBLAST: a
new generation of protein database search programs. Nucleic Acids Res. 25,3389-
3402.

Bafna,V., Muthukrishnan,S., Ravi,R. (1995) Computing Similarity between RNA
Strings. CPM 1995, 1-16.

Bafna, V. and Zhang, S. (2004). FastR: Fast database search tool for non-coding RNA.
Proceedings of IEEE Computational Systems Bioinformatics (CSB) Conference,
2004 :52-61.

Bahr A, Thompson JD, Thierry JC, Poch O. (2001) BAliBASE (Benchmark
Alignment dataBASE): enhancements for repeats, transmembrane sequences and
circular permutations. Nucleic Acids Res. 2001 Jan 1;29(1):323-6.

Bellgard M, Gamble T, Reynolds M, Hunter A, Trifonov E, Taplin R. (2003) Gap
mapping: a paradigm for aligning two sequences. Appl Bioinformatics. 2(3
Suppl):S31-5.

Bille, P. (2003) Tree Edit Distance, Alignment Distance and Inclusion. Technical
report TR-2003-23 in IT University Technical Report Series, March 2003.

Bonhoeffer, S., McCaskill, J.S., Stadler, P.F., and Schuster, P., (1993) RNA multi-
structure landscape: A study based on temperature dependent partition functions,
Eur. Biophys. J., 22:14–24, 1993.

Bromberg-Martin, E., Kasprzak, W., Shapiro, B.A. A system for data mining large
numbers of RNA secondary structures. currently unpublished.

Brown, J.W. (1999) The Ribonuclease P Database. Nucleic Acids Research 27:314.

Cannone J.J., Subramanian S., Schnare M.N., Collett J.R., D'Souza L.M., Du Y., Feng
B., Lin N., Madabusi L.V., Muller K.M., Pande N., Shang Z., Yu N., and Gutell
R.R. (2002). The Comparative RNA Web (CRW) Site: An Online Database of
Comparative Sequence and Structure Information for Ribosomal, Intron, and other
RNAs. BioMed Central Bioinformatics. 3:15.

Dayhoff,M.O., Schwartz, R.M. & Orcutt, B.C. (1978) A model of evolutionary change
in proteins. In Atlas of Protein Sequence and Structure, vol 5. Suppl. 3. Pp. 345-
352, National Biomedical Research Foundation, Washington, DC.

Deogun, J.S., Yang, J., Ma, F. (2004) EMAGEN: An Efficient Approach to Multiple
Whole Genome Alignment. APBC 2004: 113-122

Page 87 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Feng,D. and Doolittle,R. F. (1987) Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. J. Mol. Evol. 25:351-360

Fitch, W.M. and Margoliash. (1967) E. Construction of phylogenetic trees, Science,
155, 279--284.

Gardner PP & Giegerich R (2004) A comprehensive comparison of comparative RNA
structure prediction approaches. BMC Bioinformatics.5(1):140.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. J. Mol.
Biol. 162, 705-708.

Grasso,C., and Lee,C. (2004) Combining Partial Order Alignment and Progressive
Multiple Sequence Alignment Increases Alignment Speed and Scalability to Very
Large Alignment Problems. Bioinformatics 20:1546-1556.

Grasso,C., Quist,M., Ke,K., and Lee,C. (2003) POAVIZ: A Partial Order Multiple
Sequence Alignment Visualizer. Bioinformatics 19: 1446-1448.

Gu X., Li W.-H. (1995). The size distribution of insertions and deletions in human and
rodent pseudogenes suggest the logarithmic gap penalty for sequence alignments. J.
Mol. Evol. 40:464-473.

Henikoff S, Henikoff JG. (1992) Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9.

Higgins DG, Sharp PM. (1988) CLUSTAL: a package for performing multiple
sequence alignment on a microcomputer. Gene 73:237-44

Hofacker,I., Bernhart,S., and Stadler,P. (2004) Alignment of RNA base pairing
probability matrices. Bioinformatics. 2004 Sep 22;20(14):2222-7.

Hofacker,I., Fekete,M., and Stadler,P. (2002) Secondary structure prediction for
aligned RNA sequences. Journal of Molecular Biology, 319:1059-66.

Hofacker,I., Fontana,W., Stadler,P., Bonhoeffer,L.S., Tacker,M., and Schuster,P.
(1994) Fast Folding and Comparison of RNA Secondary Structures.
Monatsh.Chem., 125, 167-188.

Höchsmann,M., Toller,T., Giegerich,R., and Kurtz,S. (2003) Local similarity in RNA
secondary structures. Proceedings of CS Bioinformatics, IEEE Computer Society
Press, 159-168.

Höchsmann,M., Voss,B., and Giegerich,R. (2004) Pure Multiple RNA Secondary
Structure Alignments: A Progressive Profile Approach. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 1, 53-62.

Jansson, J., Ngo, N.T., Sung, W-K. (2004) Local Gapped Subforest Alignment and Its
Application in Finding RNA Structural Motifs. ISAAC 2004: 569-580.

Page 88 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Jiang, T., Wang, L., and Zhang, K. (1995) Alignment of trees - an alternative to tree
edit. Theoretical Computer Science (TCS), 143.

Jiang,T., Lin,G-H., Ma,B., and Zhang,K. (2002). A General Edit Distance between
RNA Structures. Journal of Computational Biology 9(2): 371-388.

Katoh K, Misawa K, Kuma K, Miyata T. (2002). MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.
30(14), pg. 3059-66.

Klein, R. and Eddy, S. (2003) RSEARCH: Finding homologs of single structured
RNA sequences. BMC Bioinformatics 2003, 4:44.

Lee,C., Grasso,C., and Sharlow,M. (2002) Multiple Sequence Alignment Using Partial
Order Graphs. Bioinformatics 18: 452-464.

Liu, J., Wang, J., Hu, J., and Tian, B. (2005) A method for aligning RNA secondary
structures and its application to RNA motif detection. BMC Bioinformatics 6:89.

Lyngsø, R.B., Zuker, M., and Pedersen, C.N.S. (1999) An improved algorithm for
RNA secondary structure prediction. Tech. report BRICS-RS-99-15, Aarhus Univ.,
Datalogisk afdeling.

Moulton,V., Zuker,M., Steel,M., Pointon,R., Penny,D. (2000) Metrics on RNA
secondary structures. Journal of Computational Biology, 7, 277-292.

Needleman SB, Wunsch CD. (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol. Mar;48(3):443-
53.

Notredame C., Higgins D. G., Heringa J. (2000) T-Coffee: A novel method for fast
and accurate multiple sequence alignment. J. Mol. Biol. 302:205-17

Raphael, B., Zhi, D., Tang, H. and Pevzner, P. (2004). A novel method for multiple
alignment of sequences with repeated and shuffled elements. Genome Research 14,
2336-2346.

Saitou,N., and Nei,M. (1987) The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol., 4, 406-25.

Sankoff, D. (1985). Simultaneous solution of the RNA folding, alignment, and proto-
sequence problems. SIAM J. Appl. Math., 45, 810–825.

Schneider, T.D. and Stephens, R.M. (1990) Sequence Logos: A New Way to Display
Consensus Sequences, NAR 18:6097-6100.

Shapiro,B.A. (1988) An algorithm for comparing multiple RNA secondary structures.
Comput. Appl. Biosci., 4, 387-393.

Page 89 of 90

Partial-Order Alignment of RNA Structures
by Ethan Bromberg-Martin

Shapiro,B.A. and Zhang,K. (1990) Comparing multiple RNA secondary structures
using tree comparisons. Comput. Appl. Biosci., 6, 309-318.

Siebert,S., and Backofen,R. (2003) MARNA: A Server for Multiple Alignment of
RNAs. In Proceedings of the German Conference on Bioinformatics, pp. 135-140.

Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular
subsequences, J. Mol. Biol., 147(1):195–197.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids
Res 22:4673-4680.

Wang, L. and Jiang, T. (1994) On the complexity of multiple sequence alignment. J
Comp. Biol., 1 (4), 337-348.

Wang, L., and Zhao, J. (2003) Parametric alignment of ordered trees. Bioinformatics
Vol. 19 no. 17, pages 2237-2245

Wang, Z., and Zhang, K. (2001) Alignment between two RNA Structures. MFCS
2001, pags 690-702.

Wang, Z., and Zhang, K. (2004) Multiple RNA Structure Alignment. CSB 2004, pp.
246-254

Yang, Q. and Blanchette, M. (2004) StructMiner: A Tool for Alignment and Detection
of Conserved Secondary Structure. Genome Informatics, 15(2), 102-111.

Zuker,M., Mathews,D.H., and Turner,D.H. (1999) Algorithms and Thermodynamics
for RNA Secondary Structure Prediction: A Practical Guide. In Barciszewski,J.
And Clark,B.F.C. (eds), RNA Biochemistry and Biotechnology, NATO ASI Series,
Kluwer Academic Publishers.

Page 90 of 90

	Outline
	0. Abstract
	1. Overview
	1.1 Motivation
	1.2 Main Results
	1.3 Organization of this thesis

	2. Background
	2.1 Alignment of two sequences
	2.2 Progressive profile alignment of multiple sequences
	2.3 Partial-order alignment of sequences
	2.4 Basics of RNA structure
	2.5 Alignment of two RNA secondary structures
	2.6 Alignment of multiple RNA secondary structures

	3. RNA partial-order alignments (RNAPOAs)
	3.1 RNAPOAs
	3.2 Optimal alignment of two RNAPOAs
	3.3 Approximate alignment of RNAPOAs with tertiary structure
	3.4 Approaches to multiple alignment

	4. Experimental Results
	5. Discussion
	5.1 Contributions
	5.2 Future Work

	6. References

