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Abstract

Reasoning about uncertainty is an increasingly important aspect of automated decision making in
domains such as airline crew scheduling, vehicle routing, and supply chain management. In this thesis,
I examine the impact of various types of uncertainty on automated reasoning in such domains, as well
as effective methods for addressing the uncertainty. The specific problem facing agents in the Trading
Agent Competition in Supply Chain Management (TAC SCM) provides a rich setting for the discussion
of uncertainty, and is the application domain of primary focus.

The production scheduling component of TAC SCM is examined, which concerns the optimization of
a single finite capacity machine to satisfy pending contracts, and possible future ones. This problem is
formulated as a stochastic program and is solved using the sample average approximation (SAA) [1] in
an online setting to find today’s optimal schedule, given probabilistic models of the future.

In addition, the architecture of Brown University’s agent, Botticelli, (a finalist in the 2003 TAC
SCM) is discussed, and the bidding component of TAC SCM is formulated as an extension of produc-
tion scheduling. Mathematical programming approaches are applied in attempt to solve the problems
optimally, and greedy methods that yield useful approximations are described. Test results compare the
performance and computational efficiency of these alternative techniques.

1 Introduction

For many years, researchers in artificial intelligence and operations research have studied difficult problems in
combinatorial optimization such as supply chain management, vehicle routing, and airline crew scheduling.
The majority of this research has focused on solving deterministic problems; however, in many applications
there is inherent uncertainty that is not captured by deterministic models. Moreover, in many optimization
settings, stochastic information about the shape of the future is readily available in the form of probabilistic
models built from historical data. Recently, computational and technological advances have made it feasible
to reason about this stochasticity.

In general, two strategies are adopted when dealing with uncertainty in combinatorial optimization. The
first strategy treats problems in an online fashion: algorithms are forced to make decisions in the face of
incomplete information and accommodate new information only as it becomes available. Such algorithms
typically fall into two categories. The first category includes simple, greedy heuristics for handling new
information as it unfolds. The second category includes algorithms for finding optimal solutions given
what is known; then, as new information becomes available, the solutions are re-optimized with the new
information, respecting any unalterable prior decisions.

The second strategy for dealing with uncertainty in combinatorial optimization focuses on determining
ahead of time a solution that is optimal in the expected sense. Stochastic programming is one example of

∗This thesis includes joint work by Amy Greenwald, Victor Naroditsky, Michael Tschantz, Roger Lederman, and Ioanna
Grypari [4] [3].
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this strategy [7]. At a high level, stochastic programming considers problems in two stages. Decisions must
be made in the first stage before pertinent information about the second stage is revealed, but the objectives
in the second stage are dependent on the first stage decisions. Given stochastic information available about
the second stage outcomes, the goal is to find the first stage decisions that maximize the profits of the first
stage plus the expected profits of the second stage.

One computational bottleneck to solving stochastic programs is the calculation of expected profits in the
second stage. This calculation typically involves enumerating all possible outcomes of the second stage (also
known as scenarios). In many problems there are combinatorially many scenarios, making it prohibitively
expensive to calculate the expected profits of the second stage. One common means of approximating this
calculation is the so-called expected value method [7] (defined below).

Unfortunately, the expected value method ignores large portions of the given stochastic information. It
has been shown that using additional stochastic information can improve the quality of solutions in dynamic
vehicle routing [5, 6], packet scheduling [8], and elevator dispatching [20]. In these sample applications,
stochastic information is exploited in widely different ways; however, the unifying theme seen throughout
this research is that there are considerable advantages to taking account of stochastic information.

Shapiro, et al. [1, 16, 23] recently proposed an alternative approximation technique called Sample Average

Approximation (SAA), which reduces the number of scenarios in consideration. They suggest that reasoning
about only a subset of the scenarios, randomly sampled according to the scenario distribution, can effectively
approximate the full scenario space. An important theoretical justification for this method is that as the
sample size increases, the solution converges to an optimal solution in the expected sense. Indeed, the
convergence rate is exponentially fast.

In the first part of this thesis, these two strategies to handling uncertainty are combined: techniques for

finding optimal solutions in the expected sense are used to solve combinatorial problems in an online setting.

The problem addressed is the scheduling component of the Trading Agent Competition in Supply Chain
Management (TAC SCM), a classic combinatorial optimization problem with uncertainty (see www.sics.

se/tac/). The problem is formulated as a stochastic program (SP) and SAA is used in an online setting to
find today’s optimal schedule, given predictive information about the future. This optimization procedure
forms the heart of Botticelli, one of the finalists in the TAC SCM 2003 competition.

Two sets of experiments are described, using either one or two days of information about the future. In
our two day experiments (using one day of information about the future), we show that SAA outperforms
the expected value method, which solves a deterministic variant of the problem assuming all stochastic inputs
have deterministic values equal to their expected values. In our three day experiments (using two days of
information about the future), we show that SAA with lookahead outperforms greedy SAA.

The second part of this thesis focuses on the architecture of our agent, Botticelli. This architecture
emphasizes three problems—bidding, production scheduling, and delivery scheduling. Section 8 describes
a heuristic approach to these problems: greedy scheduling and bidding via hill-climbing. Section 9 details
solutions that approximate optimal stochastic programming solutions. Section 10 presents experimental
results.

2 TAC SCM

In recent years, the amount of time available for making complex managerial decisions in commercial settings
has decreased dramatically [18]. Assuming this trend continues, it will become increasingly more important
to develop tools that automate the decision making process. TAC SCM is a simulated market economy in
which software agents tackle complex optimization problems in dynamic supply chain management.

In TAC SCM, six software agents compete in a simulated sector of a market economy, specifically the
personal computer (PC) manufacturing sector. Each agent can manufacture 16 different types of computers,
characterized by different stock keeping units (SKUs). Building each SKU requires a different combination
of components, of which there are 10 different types. These components are acquired from a common pool
of suppliers at costs that vary as a function of demand. After assembly, each agent can sell its PCs to a
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common pool of customers by underbidding the other agents. The agents are ranked based on their profits
over 220 days, each of which lasts 15 seconds.

The TAC SCM simulation proceeds as follows: Each day, customers send a set of requests for quotes

(RFQs) to the agents. Each RFQ contains a SKU, a quantity, a due date, a penalty rate, and a reserve
price—the highest price the customer is willing to pay. Each agent sends an offer to each customer for each
RFQ, representing the price at which it is willing to satisfy that RFQ.1 After the customer receives all its
offers, it selects the agent with the lowest-priced offer and awards that agent with an order. Either: the
winning agent delivers the entire order by its due date, in which case it is paid in full; it delivers the entire
order within five days of its due date, in which case it is paid the amount of its offer less a penalty based on
the number of late days; or, it cannot deliver the entire order within five days of its due date, in which case
the order is canceled, no revenues are accrued, and the maximum penalty is incurred.

In the meantime, the agents themselves are sending RFQs to suppliers, requesting a specific quantity of
a component to arrive on a particular day. The suppliers respond to these requests the next day with either
partial or full offers, indicating the price per unit at which the RFQ can be satisfied. If an agent receives
a partial offer, the supplier cannot deliver the requested quantity of the component on the day on which it
was requested, but it can deliver a lesser quantity on that day. Full offers either have a delivery date on the
day requested, or a delivery date later than the one requested, in which case they are often accompanied
by partial offers. Among these offers, an agent can choose to accept at most one, in which case agent and
supplier enter into a contract agreeing that the agent will be charged for the components upon their arrival.

At the end of each day, each agent converts components acquired from suppliers into SKUs according
to a production schedule it generates for its finite-capacity, single-machine factory. In addition, it reports a
delivery schedule assigning the SKUs in its inventory to customer orders.

Each simulated day represents a decision cycle for an agent, during which time the agents must solve the
following four problems: bidding, scheduling, procurement, and allocation.

• The bidding problem determines the offer price for each RFQ.

• The scheduling problem determines the production schedule for each day.

• The procurement problem determines which components to buy from suppliers.

• The allocation problem matches SKUs in inventory to orders.

These four problems are highly interconnected. Indeed, an optimal solution to the scheduling problem
yields an optimal solution to the procurement and allocation problems, since revenue maximization and cost
minimization, which guide scheduling decisions, depend on how inventory is allocated to orders and on what
supplies are procured. Moreover, an optimal solution to the bidding problem yields an optimal solution
to the scheduling problem, since bidding decisions depend on manufacturing capacity constraints: too few
winning bids lead to missed revenue opportunities, while too many winning bids lead to late penalties.

All of these problems involve decisions that must be made today with only stochastic information about
tomorrow. TAC SCM agents face combinatorial, online optimization problems with inherent uncertainty.

Due to an artifact in the design of TAC SCM 2003—namely, negligible component prices on day 1, which led
to the placement of essentially infinite orders on day 1 for supplies to be delivered throughout the game—
Botticellifocused on solving only three of these four problems: bidding, scheduling, and allocation.

To solve the scheduling problem, an agent must choose a schedule that accounts for outstanding orders,
possible orders (among the existing RFQs), future RFQs, outstanding component orders, future component
costs, and current component and SKU inventory. Which orders will materialize among the existing RFQs,
the shape of future RFQs, possible supplier defaults on outstanding component orders, and future component
costs are all stochastic elements of the scheduling problem. The following sections are concerned with solving
simplified yet representative formulations of this scheduling problem.

1An agent may select to not send an offer for an RFQ, but this is equivalent to issuing an offer price above the reserve price.
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3 Simple Scheduling

The simple scheduling problem is defined as follows: Given a set of orders, characterized by SKU, quantity,
due date, penalty, and price; initial component inventory; a procurement schedule for components on each
day; initial product inventory; one machine of finite capacity; the number of production cycles required to
produce each product; and product specifications, namely which components comprise which products, find

a production schedule that optimizes profit, or revenue less costs. This problem is dubbed simple (relative
to the TAC SCM scheduling problem), since revenues and costs are deterministic.

3.1 Integer Linear Programming Solution

In this section, an integer linear programming (ILP) solution to the simple scheduling problem is presented.

3.1.1 Constants and Variables

Let O denote the set of orders. Each order i ∈ O is characterized by the following information: SKU si, price
pi, quantity qi, due date di, penalty ρi, and reserve price ri. Let D denote the maximum due date among
all orders and E denote the maximum acceptable overdue date. Let l range over days 1, 2, . . . , D + E ≡ N .
Now, ρil is the penalty incurred if order i is filled on day l. For notational simplicity, let πil represent the
profit for filling order i on day l. The constant πil is formally defined as follows:

πil =







pi l ≤ di

pi − ρil di < l ≤ di + E

−ρi(di+E) l > di + E

Let ak denote the quantity of component k in initial inventory and bj denote the quantity of SKU j in
initial inventory. According to the procurement schedule, let akl denote the quantity of component k to be
delivered on day l. Let C denote the capacity of the machine in terms of production cycles, and let cj denote
the number of production cycles required to manufacture SKU j. If component k is part of SKU j, then
ejk = 1; otherwise, ejk = 0. Similarly, if order i is for SKU j, then fij = 1; otherwise, fij = 0.

In addition to these constants, this solution relies on the following variables:

• zil ∈ {0, 1}, which indicates whether or not order i is filled on day l. (For notational simplicity, allow
an order i to be filled on days l > di + E; however, conceptually, orders filled on day di + E + 1 are in
fact unfilled orders and are treated as such in the formalization.)2

• yjl ∈ Z+, which denotes the amount of SKU j scheduled for production on day l.

3.1.2 Objective Function and Constraints

The simple scheduling problem can be stated as follows:

max
∑

i∈O

di+E+1
∑

l=1

zilπil (1)

2We introduce these variables for ease of exposition of the ILP, but in the implementation zidi+E+1 = 1 −

“

Pdi+E

l=1
zil

”

.
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subject to:

di+E+1
∑

l=1

zil = 1, ∀i (2)

∑

{i | fij=1}

L
∑

l=1

qizil ≤ bj +

n−1
∑

l=1

yjl, ∀j, n ∈ {1, . . . , N}, L = min(n, di + E) (3)

∑

{j | ejk=1}

n
∑

l=1

yjl ≤ ak +

n−1
∑

l=1

akl ∀k, n ∈ {1, . . . , N} (4)

∑

j

cjyjl ≤ C, ∀l (5)

zil ∈ {0, 1}, ∀i, l (6)

yjl ∈ Z+, ∀j, l (7)

• Equation 1 is the objective function, namely to maximize profits, where the quantity
∑di+E+1

l=1 zil

indicates whether or not order i is filled on day l.

• Equation 2 states that an order must be filled exactly once. (Every order is either filled on some day
l ≤ di + E, or it is filled on day di + E + 1, meaning it is not filled.)

• Equation 3 states that the total quantity of SKU j associated with all orders filled by day n does not
exceed the total inventory produced by day n − 1 plus any initial inventory of SKU j.

• Equation 4 expresses the resource constraints on components: The total quantity of component k

used through day n must not exceed the total quantity of component k ordered by day n − 1 from all
suppliers plus any initial inventory of component k.

• Equation 5 enforces the capacity constraint: The total number of production cycles used to produce
all SKU types on day l must not exceed the machine’s daily capacity C.

4 Probabilistic Scheduling

The simple scheduling problem is extended to a probabilistic scheduling problem with an additional input.
We add a set of RFQs, characterized like orders, but with an additional parameter αi that represents i’s
likelihood of becoming an order. Implicitly, this formulation of the problem assumes that all likelihoods
are independent. In probabilistic scheduling, the objective is to find a production schedule that maximizes
expected profit. The following stochastic program (SP) achieves this objective.

4.1 Stochastic Programming Solution

Given a set of orders, and a set of RFQs today only a fraction of which will be realized tomorrow, we seek
to produce an “optimal” set of SKUs today s.t. tomorrow’s profits will be maximized. More specifically, we
seek to produce some set of SKUs, trading off production of those SKUs that can be used to fill the most
profitable RFQs with those that can be used to fill those RFQs that are most likely to become orders.

Let wi ∈ {0, 1} indicate whether or not order i is filled on day 1,3 and let vj ∈ Z+ denotes the amount
of SKU j scheduled for production on day 1. Let Ωm denote the set of RFQs that are realized in the mth
scenario (σm). Now let zilm ∈ {0, 1} indicate whether or not order i ∈ O or RFQ i ∈ Ωm is filled on day l in
scenario m, and let yjlm ∈ Z+ denote the amount of SKU j scheduled for production on day l in scenario m.

max
∑

i∈O

wiπi1 +
∑

m

P (σm)

[

∑

i∈O∪Ωm

di+E+1
∑

l=2

zilmπil

]

(8)

3Note: wi = 0 for all RFQs i.
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subject to: wi +

di+E+1
∑

l=2

zilm = 1, ∀m, i ∈ O ∪ Ωm (9)

Stage 1 :
∑

{i | fij=1}

qiwi ≤ bj , ∀j (10)

∑

{j | ejk=1}

vj ≤ ak, ∀k (11)

∑

j

cjvj ≤ C (12)

wi ∈ {0, 1}, ∀i and vj ∈ Z+, ∀j (13)

Stage 2:
∑

{i | fij=1}

qi

(

wi +

L
∑

l=2

zilm

)

≤ bj + vj +

n−1
∑

l=2

yjlm, ∀j, m, n ∈ {2, . . . , N}, L = min(n, di + E)(14)

∑

{j | ejk=1}

(

vj +

n
∑

l=2

yjlm

)

≤ ak +

n−1
∑

l=1

aklm ∀k, m, n ∈ {2, . . . , N} (15)

∑

j

cjyjlm ≤ C, ∀m, l ∈ {2, . . . , N} (16)

zilm ∈ {0, 1}, ∀i, l, m and yjlm ∈ Z+, ∀j, l, m (17)

• Equation 8 is the objective function, namely to maximize profits, where the quantity
∑di+E+1

l=1 zilm

indicates whether or not order i is filled on day l in scenario Ωm.

• Equation 9 states that orders and RFQs must be filled exactly once. In particular, an order can be
filled on day 1, or it can be filled at some later date in the scenarios. An RFQ can only be filled at
some later date in the scenarios.

• Equations 10, 11, and 12 pertain to the wi and vj variables: i.e., production and the allocation of
inventory to orders on day 1. The total quantity of SKU j allocated to orders on day 1 cannot exceed
the initial inventory of SKU j. The total quantity of component k used in production on day 1 cannot
exceed the initial inventory of component k. The total number of production cycles used to produce
all SKU types on day 1 must not exceed the machine’s daily capacity C.

The final set of constraints pertains to production and the allocation of inventory to orders and RFQs
on days 2, . . . , N in the various scenarios.

• Equation 14 expresses the resource constraints on inventory. In all scenarios, the total quantity of
SKU j associated with all orders filled by day n (either on day 1 or on some later date in the scenarios)
cannot exceed the total inventory produced by day n − 1 plus and the initial inventory.

• Equation 15 expresses the resource constraints on components. In all scenarios, the total quantity of
component k used through day n cannot exceed the total quantity of component k procured by day
n − 1 and any initial inventory.

• Equation 16 enforces the capacity constraint. In all scenarios, the total number of production cycles
used to produce all SKU types on day l cannot exceed the machine’s daily capacity C.

Lastly, let us the compute the probabilities of the various scenarios σm. Viewing σm as a bit vector,
σmi ∈ {0, 1} indicates whether or not RFQ i is realized in scenario m. Now, the probability of the mth
scenario is given by:

P (σm) =
∏

i

ασmi

i (1 − αi)
1−σmi (18)
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Algorithm Output
Expected-Value (EV) ILP with expected profits and quantities
Expected-Profit (EP) ILP with expected profits
Expected-Quantity (EQ) ILP with expected quantities
SAA SP using sample average approximation with current RFQs
SAA-Average (SAAA) SP using average future RFQs
SAA-Sampling (SAAS) SP using sampled future RFQs
Not-in-time Production (NTP) ILP ignoring RFQs

Table 1: Approximation Algorithms

5 Approximation Algorithms

Table 1 summarizes the seven algorithms that are featured in the experiments. The first three algorithms
approximate the SP solution by solving variants of the simple scheduling problem. The expected-value

algorithm solves the simple scheduling problem using expected profits and expected quantities. The expected-

profit (respectively, expected-quantity) algorithm solves the simple scheduling problem using only expected
profits (respectively, quantities).

The next three algorithms approximate the SP solution using sample average approximation (SAA),
whereby they sample a subset of the scenario space according to its distribution, and optimize only with
respect to those samples. SAA-greedy samples scenarios only consisting of one day’s worth of actual RFQs.
This algorithm makes no attempt to reason about future RFQs. SAA-average samples scenarios consisting
of N days’ worth of RFQs, assuming that all future RFQs look like an average RFQ. SAA-sampling samples
scenarios consisting of N days’ worth of RFQs; but, SAA-sampling generates sample future RFQs from an
RFQ distribution, rather than assume that all future RFQs look like an average RFQ.

Finally, not-in-time production ignores stochastic information entirely. It only schedules orders—i.e.,
RFQs that have been realized. As its name suggests, this strategy can often lead to late penalties, since
production does not begin until one day after RFQs are received.

6 Scheduling Experiments

The experiments we performed modeled the scheduling problem faced by an agent competing in the TAC
SCM game, and similar problems faced by dynamic supply chain management systems. These experiments
tested two hypotheses: (i) algorithms that utilize more stochastic information outperform those that do not;
and (ii) algorithms that look ahead into the future outperform greedy algorithms.

Each N day trial of our experiments proceeded as follows. On each day, the algorithms received randomly
generated RFQs drawn from a distribution similar to that of the TAC SCM game specification. Specifically,
200 RFQs were generated at random, with parameters uniformly distributed in the ranges shown in Table 5.
Unlike in TAC SCM, (i) each RFQ was assigned some probability of becoming an order, and (ii) each RFQ
was due on the day immediately after it was issued. Given a set of outstanding orders and new RFQs, the
algorithms generated schedules and produced inventory. (Note: Based on the above distributions, 100 RFQs
were expected to be converted to orders each day. Since each RFQ takes an average of 55 production cycles,
the production of all orders requires more than the 2000 cycle capacity granted—the numbers 55 and 2000
are based on the TAC SCM game specification.) The next day after some more of the RFQs became orders,
the algorithms allocated (i.e., delivered) product inventory resulting from production on previous days to
current orders. Each order that was filled yielded some revenue, orders filled after their due dates also yielded
revenue but incurred a penalty, and orders that were not filled at all incurred the maximum penalty of 5
times the RFQ’s daily penalty value.

In our experiments, we made the following simplifying assumptions: no initial orders, no initial product
inventory, and infinite component inventory. The third simplification, as alluded to earlier, is an artifact of
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Parameter Range
SKU [1, 16]
Price [$1600, $2300]
Quantity [1, 20]
Penalty [5%, 15%] of Price
Probability [0, 1]

(a) Ranges of Uniform Distributions

Metric Description
P mean profit per order
C % cycles used to fill orders
P/C mean profit per cycle
EVPI expected value of perfect information
VSI value of stochastic information

(b) Description of Metrics

Table 2: Distribution Ranges and Metric Descriptions

the TAC SCM game design in 2003. These first two simplifications were designed to isolate the effects being
tested by avoiding unnecessary complexity.

6.1 Metrics

Table 2(b) describes the metrics computed during each trial that were used to evaluate the approximation
algorithms. The first metric, mean profit per order, was the primary measure of an algorithm’s performance.
Secondly, the percentage of cycles used to fill orders, indicates that percentage of the 2000 available cycles
which were used by an algorithm to produce PCs that were actually sold. Perhaps more informatively,
the next metric, profit per cycle, measures how well the algorithms filled more profitable, rather than less
profitable, orders.

The expected value of perfect information is calculated by subtracting the mean profit an algorithm
achieved from the maximum possible, which it could have achieved had it had perfect foresight: i.e., if it
knew exactly which RFQs would become orders. The maximum possible mean profit was calculated using
the ILP described in Section 3 after the fact. The value of stochastic information is the difference between
an algorithm’s mean profit and that of the Expected Value algorithm. This metric describes how much an
algorithm gained or lost by utilizing stochastic information beyond simple expected values.

6.2 Two Day Experiments

In the two day experiments, algorithms received one set of RFQs and scheduled one day of production. The
resulting product inventory was allocated to orders on the day 2. Any orders that were not filled incurred
the maximum late penalty.

These experiments tested the ability of the algorithms to schedule production relying on only stochastic
information. After day 1, there was no opportunity for production; thus, there was no opportunity to satisfy
any orders that could not be filled from production on day 1.

The metric values described in Table 2(b) for the two day experiments are shown in Table 3. In addition,
the 95% confidence intervals of each algorithm’s mean profit are shown in Figure 1(a).4 Since SAAA and
SAAS are identical to SAAG when there is only one day of production; these lookahead algorithms were
excluded from the two day experiments. The NTP algorithm does not have a chance to schedule any
production at all in these experiments, and was also excluded.

In the two day experiments, SAAG outperformed the other algorithms under all metrics. Figure 1(a)
shows with 95% confidence that SAAG was significantly better in terms of mean profit. In second place (in
terms of mean profit) was the EV algorithm. Despite selling fewer cycles, the EV algorithm outperformed
the EP algorithm in terms of mean profit. These results suggest that the EV algorithm was filling fewer
orders, but choosing some of the more profitable ones (as evidenced by the P/C values). The EP algorithm
uses a more risky technique when scheduling production, since it attempts to fill every RFQ in its entirety.

4These confidence were intervals calculated using the bootstrap percentile-t method (see, for example, [9])
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Algorithm P C P/C EVPI VSI
SAA-Greedy $1,207 95.7% $63.59 78,550 48,105

Expected Profit $448 93.9% $24.40 154,450 -27,800
Expected Quantity $-1,251 81.5% $-77.71 324,390 -197,740
Expected Value $726 90.8% $47.65 126,650 0

Table 3: Two Day Experiments: Metric Values
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(a) Two Day Experiments
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(b) Three Day Experiments

Figure 1: Mean Profits with 95% Confidence Intervals

When it chose to fill an RFQ with a large expected profit and the RFQ did not become an order, at best
the products that were made could be given to other less profitable RFQs. The EV algorithm subverts this
problem by only producing RFQs in proportion to their likelihood of becoming an order. EQ performed
relatively poorly on all computed metrics because it was scheduling production to fill expected quantities of
what were sometimes unlikely realizations.

By design, SAAG uses more stochastic information than the other algorithms; therefore, the results from
these experiments confirm our hypothesis that using more stochastic information leads to better performance.

6.3 Three Day Experiments

In the three day experiments, algorithms received two sets of RFQs and scheduled two days of production.
The optimal solution to this scheduling problem in the expected sense is described by the stochastic program
in Section 9, when the set of scenarios includes all combinations of realizations over both days of RFQs.

More specifically, the three day experiments proceeded as follows: The first set of RFQs, all of which were
due on day 2, was received on day 1. The algorithms then scheduled production and built up their product
inventory. On day 2, a subset of day 1’s RFQs was selected at random to become orders. In addition, a
second set of RFQs was received, all of which were due on day 3. The algorithms again scheduled production
and built up their product inventory. In addition, any orders due on day 2 that could be filled were shipped,
and revenues were recorded. On day 3, a subset of day 2’s RFQs was selected at random to become orders.
At this point, any outstanding orders due on day 2 that could be filled were shipped, and revenues were
recorded, less late penalties; any orders due on day 3 that could be fulfilled were shipped, and revenues were
recorded; and, penalties were recorded for any unfilled orders.

The purpose of these experiments was (i) to show that using more stochastic information is at least as
useful across multiple days as it was in the 2 day experiment, and (ii) to test the ability of the algorithms
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Algorithm P C P/C EVPI VSI
SAA-Greedy $1,567 98.6% $79.5 87,350 34,310
SAA-Sample $1,620 98.1% $82.6 76,810 44,848
SAA-Average $1,635 98.1% $83.4 73,670 47,990

Expected Profit $1,294 98.7% $65.69 142,000 -20,200
Expected Quantity $593 95.8% $31.34 282,100 -160,300
Expected Value $1,395 96.8% $72.34 121,800 0
Not-In-Time $-4,557 49.3% $-462.53 1,312,100 -1,190,400

Table 4: Three Day Experiments: Metric Values

that made use of stochastic information to plan for the future given stochastic knowledge about the shape
of future RFQs. To an extent, these experiments also tested the ability of the algorithms to recover from
possible misuse of stochastic information in the two day experiments; but, such affects would be better
uncovered by multiple day experiments.

As shown in Table 6.3, the stochastic programs outperformed all of the other schedulers in all but one
calculated metric. Once again, these results confirm our hypothesis that using more stochastic information
leads to better performance. All other results are consistent with results from the two day experiments.

Figure 1(b) shows that the stochastic algorithms that rely on forecasts about future RFQs outperformed
SAAG. Unlike the greedy algorithm, the algorithms with lookahead use stochastic information about future
RFQs to make scheduling decisions. These experiments confirmed our second hypothesis that utilizing more
stochastic information about the future also lead to better performance.

The improvement seen was the result of day 1’s with low-priced RFQs. The greedy algorithm was forced
to cope with these poor RFQs because it did not utilize any stochastic information about the future. On
the other hand, the algorithms with lookahead chose to schedule production that filled predicted future
RFQs with higher prices, rather than waste production cycles on RFQs with low prices. SAAS and SAAA
perform comparably in these experiments (see Figure 1(b)) because the RFQs sampled by SAAS were drawn
from a uniform distribution, and thus tended to reflect mean RFQs. Given a non-uniform distribution, we
conjecture that the sampling algorithm would make better use of stochastic information about future RFQs
than an algorithm that relies on only the mean.

7 Agent Architecture

Each simulated TAC day represents a decision cycle for an agent, during which time the agents must solve
four problems: procurement, bidding, production scheduling, and delivery scheduling. The procurement

problem involves communicating with suppliers via RFQs, and selecting supplier offers to accept among
those which are received in response to these RFQs. The bidding problem is to decide how to assign offer
prices to each customer RFQ. The production scheduling problem is to decide how many of each SKU to
assemble each day. The delivery scheduling problem is to decide which orders to ship to which customers,
using product inventory. The objective in all of these problems is to maximize expected profits, given some
probabilistic model that captures the uncertainty in the game. A high-level description of the TAC SCM
decision problem is presented in Figure 2.

An artifact in the design of TAC SCM 2003 (namely, negligible component prices on day 1), resulted in us
placing little emphasis on procurement. Rather, we focused on the development of solutions to the bidding,
scheduling, and delivery problems. These three problems are highly interconnected. Indeed, an optimal
solution to the production scheduling problem yields an optimal solution to the delivery scheduling problem,
since ultimately revenues depend on which orders are successfully delivered to their respective customers.
Moreover, an optimal solution to the bidding problem yields an optimal solution to both scheduling problems,
since bidding decisions depend on manufacturing and distribution constraints: too few winning bids lead to
missed revenue opportunities; too many winning bids lead to late penalties.
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TAC SCM Decision Problem

Objective:
Maximize Expected Profits

Inputs:
Product Pricing Model
Component Cost Model
Set of Supplier Offers
Set of Customer RFQs
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory

Outputs:
Procurement Schedule: set of Supplier RFQs and Orders
Bidding Policy: map from Customer RFQs to Prices
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 2: TAC SCM Decision Problem

The architecture of Botticelli was designed with these relationships in mind, and thus the bidding
module envelops the scheduling module, which in turn envelops the delivery module as shown in Figure 3.
Once a bidding policy is determined by the bidding module, the scheduling module finds a production
schedule, and the delivery module ships products to customers.

Suppliers

Procurement
Module

Component
Inventory

Factory

Product
Inventory

Bidding Module

Scheduling Module

Delivery Module

M
odelling M

odule

Bid Prices

Other Agents

Customers

RFQs & Orders

Offers

PC Deliveries

Components

RFQs & Orders

Offers

Botticelli

Figure 3: Botticelli: A Modular Design

The flow of information through the agent is as follows: Each day the modeling module receives infor-
mation about other agents’ actions on the previous day as well as information about the offers the bidding
module submitted and the orders that resulted from those offers. The modeling module uses this information
to update its models and passes an updated model to the bidding module. The bidding module uses the new
model to produce an offer for each of the day’s RFQs. The offer prices are determined with the aid of the
scheduling module. When invoked, the scheduling module learns from the procurement module the quantity
of each component that is expected to be in inventory on any particular day. It then determines how to
allocate machine cycles to make products for existing orders and likely future orders. The scheduling module
relies on the delivery module to determine how to allocate product inventory to existing orders and likely
future orders. After the bidding, scheduling, and delivery modules finalize their decisions, the procurement
module sends to suppliers RFQs for additional components and orders based on the current offers.
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8 Bidding: A Hill-Climbing Approach

In the preliminary rounds, Botticelli relied on a hill-climbing bidder, which successively adjusts bid prices
according to the results of a scheduler. At a high-level, the bidder is initialized with some set of bid prices;
given these prices, a production and delivery schedule is computed; and, based on the results of the scheduler,
bid prices are tweaked. The goal of this hill-climbing algorithm is to fill our production schedule, which we
assume is positively correlated with maximizing expected profits. TacTex utilizes a similar solution to the
bidding problem [21].

In a preprocessing step, we schedule only orders, no offers. As long as all orders can be scheduled for
delivery, we proceed with the hill-climbing bidder.

It is crucial to our approach that the scheduler make use of the probabilities of winning each offer: the
scheduler must schedule offers based on expected quantities.

We initialize bids to prices at which, according to our pricing model, we will win every RFQ with certainty.
At these initial prices, if the scheduler cannot fit every order and RFQ into the schedule, then those RFQs
which are not deemed profitable enough to include in the schedule at their current prices form a natural set
of RFQs for which to raise prices. Indeed, we increase the prices of these RFQs, thereby decreasing their
winning probabilities. In the next iteration, the scheduler, which schedules according to expected quantities,
may be able to schedule these RFQs for production. Prices are increased (i.e., probabilities are decreased)
until all RFQs can be scheduled. This process is guaranteed to converge, since the winning probability of
RFQs above their reserve prices is zero, yielding a corresponding expected quantity of zero.

8.1 Scheduling: A Greedy Approach

Our greedy scheduler is passed both orders and offers, which it sorts as follows:

• Orders are placed before offers, since offers might not be won.

– Orders are sorted by ascending due date, then by descending penalty.

– Offers are sorted by descending profit per cycle (pι/cj , where j = fι), then by ascending due date, and
lastly by descending penalty.

Note that offers are not sorted by probability. We experimented with this ordering, but profitability proved
to be more important than probability.

Let o be the current order or offer and let j be o’s SKU. The greedy scheduler addresses the orders and
offers in sorted order as follows:

1. Schedule backwards from o’s due date. That is, start by scheduling as much as possible of SKU j on the day o
is due. If more needs to be scheduled, then schedule as much as possible on each successively earlier day until
either no more is needed or the current day is reached.

2. If more of SKU j still needs to be produced, allocate as much as possible from product inventory.

3. If still more of SKU j is needed, schedule forwards from o’s due date until either all of order o is scheduled or
the cancellation date is reached.

4. If the cancellation date is reached, then cancel all scheduled production of SKU j for o.

Note that if o’s due date is the current day, then there is no time to produce any more of SKU j. In this
case, the greedy scheduler begins at step 2.

9 Bidding: A Mathematical Programming Approach

We now formulate mathematical programs to solve the delivery scheduling, production scheduling, and bid-
ding problems. Our proposed solution to the bidding problem relies on a solution to the production scheduling
problem. Similarly, our proposed solution to the production scheduling problem relies on a solution to the
delivery scheduling problem. In our exposition, we distinguish between simple optimization problems, in
which there is no uncertainty, and stochastic optimization problems. We present optimal solutions to the
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simple subproblems before describing our approximate solutions to the stochastic optimization problems. All
solutions are described in terms of the variables, constants, and abbreviations listed in Sections 3, and 4.

9.1 Stochastic Scheduling and Bidding

Allowing for customer RFQs as well as standing customer orders introduces uncertainty into the scheduling
problems, as discussed in Section 4. This uncertainty also arises in the bidding problem, where its exact
nature depends on bids.

To handle this uncertainty, the scheduling problem can be formulated as a stochastic program (see
Section 4). In solving this stochastic program, we show that the sample average approximation method
(SAA) [16] outperforms the expected value method [7] on this problem. Nonetheless, we relied on the
expected value method in our implementation of Botticelli-2003 because it readily applies to the bidding
problem, whereas SAA does not.

9.1.1 Bidding

Bidding

Inputs:
Product Pricing Model
Set of Customer RFQs
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory

Outputs:
Bidding Policy: map from Customer RFQs to Prices
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 4: Bidding

The objective in the bidding problem is to find an optimal bidding policy, a high level description of the
bidding problem is given in Figure 4. We solve this problem by extending the solution to the production
scheduling problem based on the expected value method. In production scheduling, all RFQs are equipped
with bid prices, which are constants. In the bidding problem, the prices at which to offer to fill RFQs are
variables. Once prices become variables rather than constants, the objective function is no longer linear.
(In fact, in our formulation, it is not even quadratic.) Thus, in our implementation we discretize prices to
recover a linear formulation:

M number of prices

µmι price of RFQ ι with index m

z′
ιlm 1 if RFQ ι is delivered on day l at price indexed by m;

0 otherwise

Now the following integer program approximates the bidding problem.

max
y,z,z′
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subject to Constraints 2, 4, 5, 6, 7, and the following:

z′
ιlm ∈ {0, 1}, ∀ι, l, m (20)

M
X

m=1
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ι+E+1
X

l=2

z′
ιlm = 1, ∀ι (21)
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yjl, ∀j, t (22)

10 Bidding Experiments

In this section we report on experiments designed to compare the performance of three bidding algorithms,
one based on our mathematical programming solution, one hill-climbing bidder, and one blend of the two.

10.1 Heuristics

To bid optimally in TAC SCM, an agent would have to optimize with respect to (i) each of the other agent’s
individual strategies; and (ii) all possible future scenarios, weighted by their likelihoods. Agent modeling
is not feasible in TAC, since the behavior of individual agents is observed only by the server. Thus, we
collapse all agents’ behaviors into one model (see Section 10.1.1). Furthermore, since it would be intractable
to consider all possible futures, we rely on an heuristic that stands in the place of simulating the future—
specifically, future orders (see Section 10.1.2).

10.1.1 Modeling

The modeling module predicts the relationship between the bid price of an offer and the probability of
winning that offer. There are several sources of information available for modeling this relationship. In our
implementation, we utilize two: the first is a report provided by the server each day with the maximum and
minimum closing prices for each SKU on the previous day; the second is Botticelli’s past offer prices and
the orders that resulted. Our modeling module is concerned only with price and probability relationships
for each SKU, rather than for each RFQ, since maximum and minimum prices are SKU-specific.

For each SKU, the modeler plots the minimum and maximum prices from the previous day at probabilities
1 and 0, respectively. Intuitively, low prices are likely to be winning prices, while high prices are likely to
be losing prices. In addition, for each of the previous d days, Botticelli’s average offer prices are plotted
against the ratio of the number of offers won to the number of offers issued. In total, our modeling module
is provided with d + 2 points, which it fits using a least-squares linear regression. This linear cdf (price vs.
probability graph) is adopted as the model that is input to the bidding module. (See Figure 5.)

By experimentation, we found the value of 5 to be a good choice for d. This value allowed Botticelli

to be responsive enough to the changes in price that often accompanied another agent receiving a shipment
of supplies, but prevented any drastic overreactions. We experimented with using additional information
to create more stable models, such as providing weights for points based on the number of offers they
represented, and maintaining the average of the d previous days’ minimum and maximum prices. These
methods, however, did not respond well to price jumps that were typical of the 2003 TAC SCM competition.

10.1.2 The Triangle Method

In scheduling for multiple days of production, Botticelli’s scheduling module relies on the following heuris-
tic: do not use all cycles on all days, but rather save production cycles on future days for future RFQs (see
Figure 6). This heuristic is motivated by two assumptions. First, higher revenues can be earned by winning
the same quantity of RFQs over multiple days, rather than winning a large quantity of RFQs on one day,
since, according to our model, an agent can only win a large quantity on one day by bidding low prices.
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Second, the “character” RFQs of tomorrow will not differ significantly from the RFQs of today, since all
RFQs are drawn from a uniform distribution. In particular, future RFQs will not be significantly better or
worse than today’s RFQs in terms of quantity, due date, etc. If, however, a change in the number of RFQs is
predicted,5 Botticelli saves more (less) cycles if the number of RFQs is predicted to increase (decrease),
since prices tend to increase (decrease) accordingly.

10.2 Experimental Setup

Our experiments consisted of 20 day trials, which proceeded as follows: On each day, the algorithms received
a randomly generated set of RFQs drawn from a distribution similar to that of the TAC SCM game specifica-
tion. Specifically, 300 RFQs were generated at random, with parameters uniformly distributed in the ranges
shown in Table 5. Given these RFQs, the algorithms produced a bidding policy as well as production and
delivery schedules for D = 10 days. Based on its bid prices and the corresponding probabilities, an algorithm
won orders for some of the RFQs. The algorithms were then responsible for producing and delivering the
products for these RFQs before their due dates or they were penalized according to the rate specified in the
RFQ. The tests continued in this fashion for 20 days; this number was long enough to allow the algorithms
to distinguish themselves, but short enough to allow several hundred iterations.

5Botticelli predicts the level of demand using a particle filter. Details of this approach are beyond our scope here.

15



Parameter Range
Price [$1600, $2300]
Quantity [1, 20]
SKU [1, 16]
Penalty [5%, 15%] of Price

Table 5: Uniform Distribution Ranges

Profits Deliveries Price Penalty
HG $7,781,100 6,847 $1,193 $505,610
HE $8,019,600 7,286 $1,095 $285,950
EB $9,600,900 7,860 $1,222 $113,660

Table 6: Experimental Results

In order to mitigate any start effects in our experiments, the algorithms were initialized with the same set
of 150 customer orders (thus, the first day looked like all other days). We made the simplifying assumption
that all algorithms had an infinite component inventory, which, as alluded to earlier, is an artifact of the
TAC SCM game design in 2003. Finally, to isolate the effects of the bidding algorithms, we relied on models
that could perfectly predict the likelihood of winning any RFQ at any price.

10.3 Experimental Results

The algorithms included in our experiments were the hill-climbing bidder with a greedy production scheduler
(HG), the hill-climbing bidder with an expected production scheduler (HE), and the expected bidder (EB),
which used its own schedule for production. Both of the hill-climbing bidders utilized a greedy scheduler to
evaluate candidate bidding policies, as such policies needed to be evaluated hundreds of times. (The greedy
scheduler completed in .01 seconds, on average, whereas the expected production scheduler completed in 1
second.) However, we allowed one of the hill-climbing bidders to utilize an expected scheduler for production
scheduling only. Our hypothesis was that the expected bidder with built in scheduling and delivery modules
would out perform all of the others, as it would be capable of performing a more global optimization while
solving the bidding problem.

Relevant statistics of the 500 trials are given in Table 6. The mean profits of each algorithm over 20 days
with 95% confidence intervals are shown in Table 7. These results validated our hypothesis. The expected
bidder outperformed both instances of the the hill-climbing bidders in every category in Table 6. The 95%
confidence intervals shown in Table 7 reveal that the difference in profits is statistically significant. The
addition of the expected scheduling algorithm to the hill-climbing bidder helped it to achieve fewer penalties
by improving the production scheduling solutions; however, the lack of a global bidding strategy still crippled
its abilities. It seems that the expected bidder produced results that were close to optimal, since its total
penalty was relatively small and it managed to utilize its factory at nearly full capacity each day without
wasting many finished products.

Low High
HG $7,756k $7,804k
HE $7,988k $8,050k
EB $9,585k $9,617k

Table 7: Mean Profits—95% Confidence Intervals
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11 Related Work

The Trading Agent Competition has been held annually since it was first introduced in 2000 [28]. It has
fostered a community of researchers studying trading agent dynamics, and has produced extensive literature
on related topics. Wellman et al. [29] provide a detailed summary of the entrants in the 2001 Classic
variant of the Trading Agent Competition, a competitive Travel Agent simulation. In addition, Reeves and
Wellman [22] use the framework of TAC Classic to develop an approach to automating business contract
negotiation. Literature referring to TAC SCM is beginning to appear as well. For example, Kiekintveld
et al. [15] describe an effective distributed feedback mechanism which was utilized in the Univeristy of
Michigan’s TAC SCM 2003 entry, DeepMaize.

Studies of supply chain management problems are prevalent in the combinatorial optimization and op-
erations research literature. Generally, this research has advocated a decentralized approach to optimizing
the necessary managerial decisions. An overview of models with such coordinated decentralized approaches
to supply chain production scheduling and resource procurement is presented by Thomas and Griffin [27].
Swaminathan et al. provide an early description of dynamic supply chain practices, and explore computa-
tional mechanisms for partially automating them [26]. They also explore the benefits of modelling supply
chain management practices in a multi-agent fashion, which provides early motivation for TAC SCM [25].
Bassek and Akella [30] argue for a more centralized approach to optimizing production scheduling and pro-
curement planning of a single raw material, and Sun and Sadeh [12] extend this model to multiple raw
materials. Members of the electronic commerce community have considered bidding aspect of supply chain
management in isolation [2].

The deterministic TAC SCM production scheduling problem is closely related to the Discrete Lotsizing
and Scheduling Problem (DLSP), first presented by Lasdon and Terjung [17] in 1971. The DLSP concerns
optimizing several different sized batch scheduling jobs over discrete time periods on one or more finite
capacity machines. This is analogous in TAC SCM to optimizing delivery scheduling decisions for orders of
varying quantities, given finite daily factory production capacity. However, in TAC SCM, customer orders
can be filled by factory production that is broken across multiple days, as unused PCs from one day are
saved for the next. Although this will rarely occur in the deterministic TAC SCM production scheduling
problem, batch scheduling cannot span multiple time periods at all in the DLSP. Fleischmann [10] presents
a “generic” formulation of the DLSP as an integer linear program, which is very similar to our formulation
of the TAC SCM Simple Scheduling problem, described in Section 3. The main differences, in addition to
the important difference explained above, result from a lack of startup costs in TAC SCM, and the ability
to violate constraints concerning demand fulfillment by paying late penalties in TAC SCM. Furthermore,
the TAC SCM production scheduling problem involves varying rewards associated with different units of
customer demand, due to different prices associated with each order. Finally, the TAC SCM production
scheduling problem allows for a varied number of items to be scheduled in each time period, since each
order takes a different amount of factory capacity, which is constrained on a daily basis. Salomon et al. [19]
examine the computational complexity of various DLSP instances, and show that even very simple cases
(single machine problems with absent setup costs) are NP-Hard.

Recent work has been done to extend deterministic formulations of DLSP to account for uncertainty
about future events. For example, Haugen et al. [13] suggest using a progressive hedging algorithm to solve
a stochastic variant of the problem, dubbed the Stochastic Lotsizing and Scheduling Problem (SLSP). The
SLSP is very closely related to the TAC SCM probabilistic scheduling problem presented in Section 4, again
the main differences being the same as those found in the deterministic counterparts.

12 Conclusion

The research problems in the Trading Agent Competitions are typically approached using clever heuristics
and optimization techniques. With a few notable exceptions [11, 24], these methods have tended to ignore
some of the information that characterizes the uncertainty in the problems. We have seen that it is possible
to substantially improve the performance of algorithms by incorporating stochastic information about the
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future. More importantly, we have seen the precise methodology for including stochastic information is
an important indicator of an algorithm’s performance. Indeed, the scheduling decisions determined by a
stochastic programming approach that aims to characterize all of the uncertainly outperforms methods that
make no use or partial use of uncertainty.

Research on dynamic supply chain management can proceed in a number of future directions. By itself,
the probabilistic scheduling approach makes worthwhile decisions given a fixed distribution for future RFQs.
However, in the bidding problem, there is an opportunity to alter the distributions of the RFQs that could
become orders, namely by raising or lowering bids. In Botticelli, the probabilistic scheduling algorithm
serves as a critical component for evaluating various bidding strategies. The algorithms presented here
rely heavily on stochastic programming to handle uncertainty; however, there are other techniques, such as
consensus [5] and POMDPs [14], for coping with uncertainty, which may prove useful when the full TAC
SCM problem (including procurement) is considered.

Following Kiekintveld [15], we identify three key issues in supply chain management that are modeled in
TAC SCM: (i) uncertainty about the future; (ii) strategic behavior among the entities; and (iii) dynamism:
i.e., the temporal nature of the chain. Botticelli adequately handles uncertainty (in the bidding problem),
but makes simplifying assumptions to handle the strategic and dynamic components of the game. Rather
than model each competing agent’s strategic behavior individually, we collapse all agents’ behaviors into one
model, and optimize with respect to this model. In essence, we use decision-theoretic optimization techniques
to approximate solutions to game-theoretic problems. Dynamic optimization models and techniques (e.g.
MDPs) might be applicable in TAC SCM, but to optimize with respect to all possible future scenarios is
clearly intractable. Instead, we rely on an heuristic we call the triangle method, by which we save production
cycles on future days for future RFQs, particularly if prices are predicted to increase. In future versions of
Botticelli, we plan to build more powerful models of the agents’ strategic environment, and to incorporate
more sophisticated methods of dynamic optimization, particularly in the procurement problem.
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