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Chapter 1

Introduction

Bugs often are caused by erroneous assumptions about a program and its intended use. One reason

debugging is difficult is that it often involves challenging or correcting these bad assumptions. Find-

ing and examining those assumptions can be an arduous process because there is a large amount of

code and many assumptions that must be examined. Also, examining objectively what we think to

be true is difficult. Tools which check these assumptions are valuable because they are less likely to

share the programmer’s bias.

A second reason debugging is difficult is that it often involves understanding and processing a

large amount of information simultaneously. A bug is a global property of the program. Ideally,

programmers would look at a problematic run and analyze it effectively in the context of the entire

code base to determine where the bug lies. Few programs are small enough, or few programmers

are talented enough, to be able to understand and process the entire code base of a large project.

The solution most programmers use is to examine pieces of the program individually, assuring the

correctness of that piece. Until a debugging program is created which can understand the purpose of

the program and identify the problematic point, or all code comes with detailed formal specifications,

the best that can be done is to assist the programmer to eliminate parts of the program that do not

need to be examined and suggest pieces of code to examine first.

One way to facilitate debugging is to provide a tool to examine the differences between correct

runs and faulty ones. In this paper we present a method for comparing runs by contrasting program

traces. This method does not depend on any knowledge of the program’s input structure. First,

we find predicates that are true for all correct runs. Then we find places in a faulty run which

contradict those predicates. We believe that potential invariants[1] can serve as the predicates

which we compare.

A potential invariant is a relationship of one, two, or more variables, to which a counter example

has not been found. Potential invariants offer abstraction from the written code of the program.

Potential invariants can allow a programmer to chunk information into larger structures, reducing

the effort needed to understand a program in its entirety. We conjecture that comparing potential

invariants of working and non-working runs of a program will offer useful information to find bugs
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in the non-working programs. To test these ideas, we built Carrot which finds and compares these

potential invariants.

The rest of this paper is structured as follows: Chapter 2 describes our methodology; Chapter 3

discusses related work; Chapter 4 describes the potential invariants Carrot uses; Chapter 5 discusses

the level of instrumentation Carrot uses; Chapter 6 describes experiments and results; Chapter 7

outlines two approaches to improve performance that we explored but for which we do not have

formal results; Chapter 8 describes other ideas for future work; Chapter 9 outlines the conclusions

we have drawn from the project.



Chapter 2

Methodology

Ideally, fault localization tools do not require a specification of the subject program’s intended

behavior or the structure of its inputs and outputs. Requiring any of these pieces of information

creates more work for the programmer and limits the domain of programs which the tool can analyze.

For example, creating specifications for legacy code is a difficult and time-consuming process. One

piece of information remaining is that a run has failed, which often is not inherently informative.

This knowledge becomes valuable when situated in a larger context of information. The context

that Carrot uses is a (large) number of runs that do not fail. This context does not provide much

information that would be useful for localizing a bug unless it is augmented with information about

what happens during runs, i.e. program traces.

Our method contrasts the traces of working runs with the traces of the runs that did not work. To

incorporate information from many successful runs, we construct a model representative of successful

runs and contrast that model with a unsuccessful run. Rather than viewing a run as a sequence of

events, Carrot views a run as a set of predicates that held during the run. We call these predicates

potential invariants. A potential invariant is a relationship, of one, two, or more variables, to

which a counter example has not been found. Our method uses two types of potential invariants,

value sets, which track individual values of variables, and relational potential invariants, which track

relations between values of variables. Value sets are extended to accommodate new values while

relational potential invariants are invalidated when a counter example is found. (See chapter 4 for

more details about potential invariants.)

Carrot can compute the set of potential invariants that are true for every run in a set of runs.

As the size of the set of runs grows, the number of relational potential invariants should drop since

more counter examples will be seen. The potential invariants a run invalidates or extends show

situations which have not occurred in the runs in the previously examined set. Those potential

invariants which remain after a set of runs have been examined form a model of those runs. Given

a sufficiently large test suite, the model will stabilize as the rate of novel situations seen drops.

To compare the working and non-working runs, Carrot finds the potential invariants which hold

for all working runs. Next Carrot identifies the potential invariants in the set that are broken by a
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single non-working run. These differences demonstrate what makes this run different from all the

working runs and, hopefully, what makes it fail. To call Carrot successful, there must be a correlation

between many of the differences reported and the bug in the program. We would like for a causal

relation to be apparent between the differences reported and the bug, but a correlation is easier to

establish and serves as a reasonable initial goal.

This work focuses on examining a single non-working run. For example, imagine a company has

released a program which has passed a large test suite. A customer discovers a bug and sends them

a report. By finding the differences of the run which caused this bug and the runs over the rest of

the test suite, Carrot should be able to locate the bug.

A single faulty run has the advantage that it likely stems from a single bug. Combining multiple

non-working runs might be more complicated because each of the non-working runs might be caused

by a separate bug.

2.1 Carrot’s Process

Carrot needs four inputs. First, it needs the program to be debugged. Second, it needs a test suite

of inputs for that program and the outputs that a correct program would produce. Third, it needs

an oracle for the correctness of a run. Fourth, it needs a faulty run.

Carrot consists of 4 pieces: the instrumenter, the oracle, the invariant generator, and the invariant

differencer. The instrumenter takes the code of the subject program and produces modified code

and a file. That file lists the program locations, the function entry locations or exit locations at

which information is taken, and the variables at each program location about which the information

is taken. This file is called the declaration file. After the instrumented code is compiled, it is run

using each entry in the test suite as input. Each run produces a trace of the program execution and

the output of the program, if one exists. An oracle determines if the run is correct or faulty. Next,

all of the correct traces and the declaration file are given to the invariant generator. The invariant

generator produces a list of potential invariants for each program location. For each faulty trace,

Carrot gives the bad trace and the potential invariants that hold for all good traces to the invariant

generator which removes any of the potential invariants which are not true for the bad trace. Carrot

then feeds the potential invariants from all good traces and the potential invariants from all good

traces and one bad trace to the invariant differencing program which finds the potential invariants

that are modified or invalidated by the bad run.

2.1.1 Instrumenter

To instrument programs, we use dfec[1], daikon’s front end for C. Dfec instruments programs at

function entries and exits. The instrumented code reports the program point and the values for

all function parameters, global variables, object fields that are in scope, and, at function exits, the

return value. Each call or return is recorded individually in the order it happens.
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2.1.2 Oracle

The oracle is specific to each program being debugged. It must be able to distinguish between a

correct run and a incorrect run.

2.1.3 The Invariant Generator

The invariant generator takes a declaration file and a set of trace files for which potential invariants

are to be inferred. The invariant generator has a predefined set of potential invariant schemas to

use. Potential invariant schemas abstractly represent the different relationships which may occur

between any variables at any program point. Tying potential invariant schemas to specific program

locations or trace points and variables creates potential invariants. For each program location in

the declaration file, the invariant generator instantiates the potential invariant schemas over each

permutation of variables at that program point. For example, suppose a function has three integer

parameters, x, y, z and that one of the potential invariant schemas represents a test for one variable

always being less than another variable. The list of potential invariants would include

• x < y

• y < x

• x < z

• z < x

• y < z

• z < y

Some relational potential invariants are instantiated only during the run. For example, the sum

potential invariant (x + y = c where x and y are variables and c is some constant) is complete once

the invariant generator can compute c, which occurs the first time that x and y are bound to specific

values.

Once all potential invariants are instantiated, the invariant generator checks them against the

set of trace files. The invariant generator begins by assuming that all potential invariants are

true, including those that are mutually contradictory. At every trace point in every trace file, the

remaining potential invariants are checked against the values for variables at that runtime point.

If the values present a counter example to the potential invariant, the potential invariant is either

invalidated and removed from the list of potential invariants, or it is modified and left in the list

of potential invariants. Which action is taken depends on the type of the potential invariant. (See

chapter 4 for more detail.) For example, suppose the value set for x at some program location is

{3,4}. Next, suppose that while examining the trace, x is 3 at some point, then nothing happens to

the value set. Finally, suppose that after that, x is 5, then the value set is marked as changed and is

expanded to {3,4,5}. Similarly, imagine that x < y has always been true at some program location.
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If at some trace point, x = 3 and y = 4, then nothing changes. If at another trace point, x = 5 and

y = 4, then the potential invariant that x < y is invalidated.

2.1.4 The Invariant Differencer

The invariant differencer takes two inputs, each containing sets of potential invariants. One input

contains all of the potential invariants that were still true after all good traces had been examined.

These potential invariants form the basis set. The other input contains all of the potential invariants

left after all good traces and one bad trace were examined. These invariants are the remaining

potential invariants. For each program location, the invariant differencer examines each potential

invariant in the basis set of potential invariants and determines if the same potential invariant exists

at the same program location in the set of remaining potential invariants. If the potential invariant

has been deleted in the set of remaining potential invariants, the invariant differencer reports that

the potential invariant has been invalidated. If the potential invariant has been modified when the

bad run is included, the invariant differencer reports the differences between the basis set and the

remaining set. The invariant differencer reports each program location and the differences that

occurred at that program location.

2.2 A Possible Alternative Methodology

An alternative comparison method would be to find the potential invariants of a single non-working

run, and find which of those potential invariants did not hold for all working runs. If our system

of potential invariants is used, this approach would not work. For a single run, the set of potential

invariants remaining is typically very large and reflects the eccentricities of the single run rather

than being indicative of the typical behavior of the program. Also, the set of differences would be

enormous and would not indicate any specific bug. For example, if a function which was called once

took two integers as arguments, a and b, the values of these arguments would obey one of three

relations:

• a < b

• a = b

• a > b

This would be viewed as a potential invariant although it was a chance result of a single run.



Chapter 3

Related Work

Michael Ernst developed the notion of dynamically discovering invariants for a program[1]. His

system, daikon, begins by instrumenting the program at function entries and exits. The programs

are run multiple times, producing traces of the runs. The traces contain information about the

values of function parameters, global variables, object fields that are in scope, and the return value

at function exits. The traces are analyzed by daikon to determine which potential invariants hold

for the runs examined. A potential invariant is a relationship among some variables which holds for

all examples of values for these variables seen. Daikon looks for a predetermined set of invariants.

Daikon’s invariants include value sets, which track the values variables have taken, and comparison

invariants, which track the ordering relation between the values of two variables. Other examples

of daikon’s invariants include the values of variables x and y summing to a constant, checking the

ordering relationship of array elements, and using a pairwise comparison of vectors to determine

which is less than the other. Daikon reports a confidence level for each invariant based on the

number of examples seen. Ernst’s thesis is that examining the invariants for a program provides

interesting insight into how a program behaves.

Carrot builds off of the ideas behind daikon. It uses the idea of potential invariants from daikon

as the unit for comparing good and bad runs. The major difference between daikon and Carrot

is that Carrot is designed to identify bugs in a program using potential invariants while daikon is

designed to notice interesting behavior of a program.

Sudheendra Hangal and Monica S. Lam developed Diduce[2], a system for detecting changes in

established patterns of behavior for a program. Their approach begins by instrumenting program

points, which are all of the read and write locations for objects and static variables as well as all

of the procedure call sites. At each program point, Diduce tracks three types of values, “the value

being read or written”, “the parent object”, and the difference between the old and new values.[2]

All invariants are represented by bit strings. Diduce tracks the starting values of each bit in the bit

string and whether each bit has taken a different value. As new values for bits are encountered, an

invariant violation is reported and the invariant is changed to note that more bits have been seen

with different values. Diduce detects invariant violations during a program run and can store the
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invariants after a run to be used as the initial invariants for another run. Diduce also reports a

confidence level associated with invariant violations which is a function of the number of examples

which have confirmed the invariant.

Like diduce, Carrot uses the values of variables to examine the behavior of programs. While

diduce examines the values on a bit level, Carrot records values separately and examines potential

invariants in all combinations of variables. The largest difference between Carrot and diduce is that

Carrot examines various relationships among variables which are not captured by examining bit

differences.

Ralf Hildebrandt and Andreas Zeller created a system, delta debugging[4] for locating the pieces

of input which caused problems for the program. Delta debugging selects pieces of the input to the

program and determines if they produce the same bug as the larger input. If a piece of input does

preserve the bug in the execution of the program, then that piece is divided into more pieces which

are examined. If the piece in question does not preserve the bug in the execution of the program,

other pieces and other combinations of pieces are examined to test their preservation of the bug.

By iterating this processes, it becomes possible to locate the minimal input which reproduces the

bug in question. It is also possible to determine the smallest difference in the input which causes

the bug[6]. After establishing the smallest difference in the input, delta debugging builds a cause

effect chain which states what the differences between the two runs are and what the causal relation

is between the differences. Delta debugging is able to create the cause-effect chains by examining

the program at the instruction level and finding the differences in instructions when the smallest

difference which causes the bug is applied.

Carrot works at a higher level of abstraction than delta debugging does when looking for the

bug location. Carrot locates the function which contains the bug while delta debugging works on an

instruction level.



Chapter 4

Potential Invariants

Carrot currently uses six potential invariants. Those six potential invariants can be divided into

two groups, value sets and relational potential invariants. Relational potential invariants describe

relations among variables. The less than potential invariant in 2.1.3 is an example of a relational

potential invariant. Typically, relational potential invariants can only be invalidated, not modified.

The other group of potential invariants are value sets. This kind of potential invariant tracks the

individual values that a variable or group of variables has taken. Value sets are never invalidated.

Instead, as new values are encountered, the value set expands to include the new values seen.

The potential invariants in Carrot do not have confidence levels, unlike the potential invariants

in daikon[1]. In daikon, confidence levels convey how much faith the program had in its potential

invariants. The confidence levels were roughly based on the numbers of examples seen confirming

the potential invariant. For the purposes of Carrot, confidence levels only complicate the comparison

of potential invariant sets. Choosing an arbitrary minimum confidence level needed for a potential

invariant to be reported does not seem a useful route to pursue. If a minimum level is chosen, then

potential invariants can disappear because their confidence level drops, then reappear once more

supportive examples are seen and their confidence level grows again. The effect of a non-working

run on the confidence levels does not appear to be a useful measure for comparing the potential

invariant sets.

4.1 Value Sets

Value sets record sets of values for variables. If a new value is encountered while checking a run,

that value is added to the value set for the variable(s) associated with that value. Value sets are

initially empty and are extended each time a new value is seen. Value sets provide a high degree of

detail about a specific run of a program.

In this work, we use value sets of single variables and pairs of variables. In principle, it is possible

to extend the number of value sets to a large, finite number. In practice, two problems occur as the

number of variables is increased. First, the number of value set potential invariants for a particular

9
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size at a program location is equal to p choose k where p is the number of variables and k is the

number of variables the value set tracks. If p is large and k ≈ 1

2
p then constructing all possible

instances of those value sets could be prohibitively expensive.

The second problem is sparse data. Assuming a finite test suite, as the dimensions of the value

set space increases, the probability of selecting the same point twice drops. For example, if an

integer variable can take on values between 1 and 20, 000, then a value set tracking that integer

might have to cover a space of size 20,000. Suppose that there are now two integer variables that

span 1 to 20, 000. A value set which tracks pairs of values now has to track a space of size is now

400,000,000. Clearly, the chances of encountering a value previously seen is much greater when the

space has a size of 20,000 instead of 400,000,000. Tracking a large value space increases the number

of differences which appear and increases the likelihood of the differences which are not related to

the bug. The differences instead reflect the limited nature of the test suite.

Carrot uses two kinds of value sets.

• OneOf: A OneOf value set stores the value of a single variable at a single program location.

Each time a new value is seen, the value set is augmented to include the new value.

• OnePairOf: A OnePairOf value set stores unique pairs of values. Suppose a function receives

the values 4 and 5 for x and y, and that x and y have taken those values previously, but never

at the same time. The value 4 would already be in the OneOf set for x and the value 5 would

be in the OneOf set for y. These sets would not recognize any novel event. The OnePairOf

would recognize that a new pair of values has been encountered.

4.2 Relational Potential Invariants

Relational potential invariants express a relationship among variables. The relationship can be

equality between two variables at a program point, or it may be more complex. For example, the

values of two variables always sum to the same value. Before any runs are examined, all relational

potential invariants are assumed to be true. There are a pre-defined, finite, set of relational potential

invariant schemas from which the relational potential invariants are created. Relational potential

invariant schemas represent the relation among variables but are not attached to a specific program

location or variable. A relational potential invariant is instantiated by applying a relational potential

invariant schemata to a specific variable or variables at a specific program location. All possible

relational potential invariants are created by applying them to all variables in scope at all program

locations. A relational potential invariant is assumed true until shown to be false, at which point it

is discarded. It is shown to be false when a counter-example is found. For example, if the relational

potential invariant is that “at the entry to function foo, variable x is always less then variable y,”

but a run shows y is greater than x, the potential invariant is discarded.

Carrot current uses four kinds of relational potential invariants.
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• Equality: The equality relational potential invariant compares if two variables were always

equal at a program location.

• Sum: The sum relational potential invariant notes if two variables always summed to the same

value. For example x+y always equaled 5.

• Less Than: The less than relational potential invariant checks if one variable was always less

than another variable at a program location.

• Constant Equality: The constant equality relational potential invariant checks if a variable is

always equal to a constant that was declared someplace in the code.



Chapter 5

Level of Instrumentation

Carrot gathers information at the function level by using dfec[1] to instrument function entries and

exits. Programs instrumented by dfec record the values for function parameters, global variables,

object fields in scope, and, at function exits, the return value of the function.

Programs instrumented by dfec do not track the their call structure. We believe that some

rudimentary information about the calling contexts of functions might provide valuable information

about program behavior. By examining the ordering of function entries and exits, the invariant

generator gathers three pieces of information: which function was the last to be entered before

this program point; which function was the last to exit before this program point; which function

invoked the function at this program point. This information was treated the same as data provided

by programs instrumented using dfec; variables were created and the variables’ values were the

names of the functions for the three contexts. For examples and pictures of these relationships see

Appendix A.

12



Chapter 6

Experiments and Results

Does Carrot work? We must show the following things to be true for value sets or relational potential

invariants to be useful.

• Value Sets

1. Adding another good run to the model is unlikely to cause extensions

2. Adding a bad run to a model is likely to cause extensions

3. The extensions are related to the bug in the code

• Relational Potential Invariants

1. Adding another good run to the model is unlikely to cause invalidations

2. Adding a bad run is likely to cause invalidations

3. The invalidations are related to the bug in the code

We test Carrot on three programs in the Siemens suite[3, 5], tcas, print tokens, and replace. tcas

is a large predicate that handles collision avoidance between two airplanes. It takes thirteen integers

as inputs and compares these values to determine the output. The second program from the Siemens

suite is print tokens. It tokenizes its input file and outputs the set of tokens. The other program from

the Siemens suite is replace. Replace takes a string and a specifications for substitutions, written as

regular expressions, and performs the substitutions.

In addition to those programs, we created two small programs recognize (see Appendix B) and

recognize2 (see Appendix C) that determine whether an input string matches the regular expression

(a(bb + cc))∗).

Each program has a correct version, a number of versions with a single inserted fault, and a set

of inputs. Each faulty version has at least one input that causes the faulty version to produce an

incorrect output. We use the correct version as an oracle to provide the correct answer for each

input.

13
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Figure 6.1: Number of extensions (on the y axis) made by each run as it was added to the existing
model for the correct version of tcas

To check the first requirements for value sets and relational potential invariants, we gather

information about how the correct versions of all 4 programs perform. To check the second and third

requirements, we examine all faulty versions available for tcas (41 faulty versions), print tokens (8),

recognize (10) and recognize2 (9).

6.1 Value Sets

6.1.1 Is adding another good run to the model unlikely to cause exten-

sions?

We examine the number of extensions made to the model after each run was added. We test the

correct versions of tcas, print tokens, replace, recognize, and recognize2. Figures 6.1, 6.2, 6.3, 6.4 and

6.5 show the pattern of extensions that occur as more runs are added to the existing model. The

graphs for tcas, print tokens, recognize and recognize2 clearly show that adding more good runs does

cause many extensions to value sets. Because so many extensions happen when any run is added,

any interesting extensions a faulty run causes will be lost in the noise. Print tokens (figure 6.2)

displays a unique pattern. The runs where the lull of extensions occurs cause a designed error to

happen. These traces tend to be very short and simple. While the number of invalidations appears

small in comparison to the other runs, the number of extensions still varies between 0 and 50 (see
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Figure 6.2: Number of extensions (on the y axis) made by each run as it was added to the existing
model for the correct version of print tokens
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Figure 6.4: Number of extensions (on the y axis) made by each run as it was added to the existing
model for the correct version of recognize
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Figure 6.5: Number of extensions (on the y axis) made by each run as it was added to the existing
model for the correct version of recognize2
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Figure 6.6: Number of extensions (on the y axis) made by each run (1200 - 2400) as it was added
to the existing model for the correct version of print tokens

figure 6.6). Twenty or thirty extensions that are not clustered around one or two program locations

in a program with 18 functions (36 program locations) is too many to be useful for a user.

These results show that value sets are not useful for debugging in Carrot’s methodology. The

amount of noise produced by adding a good run to an existing model shows that any interesting

differences a faulty run produces will be lost in the noise that adding any run produces.

6.2 Relational Potential Invariants

6.2.1 Is adding another good run to the model unlikely to cause invali-

dations?

To determine if adding good runs to the model would cause invalidations, we again examine the

correct versions of tcas, print tokens, replace, recognize, and recognize2. We count the number of

remaining relational potential invariants after each good trace has been added to the model. The

graphs of these counts appear in figures 6.7, 6.8, 6.9, 6.10, and 6.11. Figure 6.12 offers more detail

about the first 200 runs for print tokens.

The graphs show that the number of remaining relational potential invariants drops quickly as

the first runs were added. The rate at which the relational potential invariants are invalidated also

drops quickly. All programs examined reach a stable state. Once that state was reached, adding a
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Figure 6.7: Number of potential invariants remaining (on the y axis) as the number of runs included
in the model increases (on the x axis) for the correct version of tcas
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Figure 6.8: Number of potential invariants remaining (on the y axis) as the number of runs included
in the model increases (on the x axis) for the correct version of print tokens
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Figure 6.9: Number of potential invariants remaining (on the y axis) as the number of runs included
in the model increases (on the x axis) for the correct version of replace

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Figure 6.10: Number of potential invariants remaining (on the y axis) as the number of runs included
in the model increases (on the x axis) for the correct version of recognize
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Figure 6.11: Number of potential invariants remaining (on the y axis) as the number of runs included
in the model increases (on the x axis) for the correct version of recognize2
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Figure 6.12: A closer look at the first 200 runs of print tokens
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Program Range
Traces with
invalidations

Total Traces

tcas 0 0 568
recognize 0-1 17 89
recognize2 0 0 27

print tokens 0-4 50 532

Table 6.1: The second column shows the range in the number of invalidations that occur. For
example, 0-4 in print tokens means that at least one run causes 0 invalidations and at least one run
causes 4 invalidations. The third column shows the number of traces, across all versions that of a
program, that cause at least one invalidation. The fourth column shows the total number of traces
that exist across all versions.

Version
Traces with
invalidations

Total Traces

1 0 10
2 0 6
3 6 25
4 0 6
5 0 1
6 0 18
7 5 7
8 6 6
9 0 6
10 0 4

Table 6.2: The invalidations for recognize for each faulty version.

good run to the model is unlikely to cause any invalidations.

6.2.2 Is adding a bad run likely to cause invalidations?

Since adding good runs to a stable model is unlikely to cause new invalidations, the next question

to answer is whether a bad run will violate the model and cause invalidations. Relational potential

invariants are useless for trying to debug tcas and recognize2 (see Table 6.1). No faulty run for either

of these programs causes a single invalidation.

Recognize Results

Table 6.2 shows that some of the faulty runs for recognize cause invalidations. Versions 1, 2, 4, 5, 6,

9, and 10 do not have any faulty runs which cause invalidations. The relational potential invariants

that Carrot uses cannot help debug these versions of recognize.

Version 3 has 6 runs that cause the same invalidation which is related to the bug in the code.

The invalidation reported is that, at the exit of isDone, c+return no longer equals 98 (see Appendix

B.2 for the faulty version). The trouble is that only 6 of 25 runs triggered this invalidation. The
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Versions Traces with invalidations Total traces
1-7 2 484
8 48 48

Table 6.3: The invalidations for print tokens for each faulty version.

Correct Faulty Version 8
static int keyword(int state)

{

switch(state)

{

case 6 : return(LAMBDA);

case 9 : return(AND);

case 11: return(OR);

case 13: return(IF);

case 16: return(XOR);

default: fprintf(stdout, "error\n");

break;

}

exit(0);

}

static int keyword(int state)

{

switch(state)

{

case 6 : return(LAMBDA);

case 9 : return(AND);

case 11: return(OR);

case 13: return(IF);

default: return(XOR);

}

exit(0);

}

Table 6.4: The code for keyword in the correct version of print tokens and the faulty version 8

goal of Carrot is to detect the bug given any single faulty run for a program, not a subset of the

possible faulty runs.

Version 7 has 5 faulty runs which cause invalidations. The invalidation is the same as is triggered

by the faulty runs in version 3. In this case, the invalidations are only distantly related to the bug

in the code and would not quickly direct the user to the correct program location (see Appendix B.3

for the faulty version).

Version 8 has 6 faulty runs, all of which cause the same invalidation. The counter example is

that return<c is not true. The invalidation again is distantly related to the bug in the code, but

would not guide the user toward finding the bug (see Appendix B.4 for the faulty version).

Print tokens Results

Table 6.3 shows that invalidations do not offer any help for versions 1 through 7 of print tokens.

Only two faulty runs produced any invalidations and neither of the invalidations caused were related

to the bug in the program. Version 8 is a unique case. All 48 faulty runs had invalidations and

all of the invalidations were related to the bug. The important function is shown in table 6.4. At

the program location for default: return(XOR), the model for all good runs states that state =

return and state+XOR=32 (XOR is defined as 16). Both of these relational potential invariants are

invalidated when other values are passed to keyword. This was the one instance where relational

potential invariants were invalidated and the invalidations pointed to the bug in the program.
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6.3 Analysis

Value sets are useless in our framework because adding any run, buggy or not, causes too many

extensions making it difficult for the user to find the extensions that are related to the bug. For the

most part, relational potential invariants are also not useful in our framework. One version of one

program out of 68 versions examined had a bug that the relational potential invariants found.

A reasonable objection to these results is that Carrot does not have the correct relational potential

invariants to identify the problems in the buggy versions of programs.We used tcas as a case study

to determine if there were other simple relational potential invariants that we could create to catch

bugs in those versions. Relational potential invariants could be written to capture the bug, but the

only by first identifying the bug and then writing the potential invariant schemata to catch the bug.

The potential invariant schemas needed to catch the tcas bugs would have to be very large, on the

order of seven variables, and would essentially replicate the code. See appendix D for examples of the

complexity of the bugs involved. Further, daikon continues to allow users to create domain specific

potential invariant schemas. This suggests that if a simple, common, interesting set of potential

invariants exists, they have not yet been found.



Chapter 7

Nascent Work

This section describes some of the approaches currently being examined.

7.1 Using Temporal Information:The Map Back Program

The number of extensions to value sets that Carrot reports appears overwhelming. Manos Renieris

and I hypothesized that combining temporally distinct differences for a program location was causing

problems. To solve this problem, we wrote the map back program. The differences produced

by the invariant differencer and the bad trace which produced them are given to the map back

program which aligns the differences to the runtime points in the trace file at which the differences

could have occurred. We hypothesized that by organizing the differences temporally, a cascade of

differences would appear. A single difference would appear at some function entry or exit and all

other differences would appear after and be caused by the initial difference.

7.1.1 The Map Back Program Details

The map back program takes the output produced by the invariant differencer and the trace file

which produced the differences reported and produces an output listing the differences at the trace

points at which they could have occurred. The map back program steps through each of the trace

points listed in the trace file it was given. At each runtime point, it checks if there are any differences

at the program location corresponding to that trace point. It performs this check by determining

if any of the values of the variables in scope at that trace point would have produced the observed

difference. For example, if a difference was that for function f, x < y was invalidated and this

instance of a call to foo had values for x and y of 5 and 4, then this call to f could have invalidated

x < y.

24
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7.1.2 The Map Back Program Results

We hypothesized that the map back program would demonstrate a cascade of differences between

the good runs and the bad run. We were not able to find any instances of a cascade of differences by

manual examination. The flood of information simply increased. A single difference at a program

location may appear at each trace point associated with that static program point.

7.2 More Analysis using Temporal Information

The differences, as organized by the map back program, are still too numerous to be of use to

a programmer or to find the beginning of a cascade of differences. The map back and remove

duplications program was created to attempt to simplify the output of the map back program. The

temporally aligned differences from the map back program are given to the map back and remove

duplications program which reports only the temporally first instance of each difference.

7.2.1 The Map Back and Remove Duplications Program Details

The map back and remove duplications program takes the output of the map back program and

removes all but the temporally first instance of a difference. The map back and remove duplications

program examines each trace point listed in the output of the map back program. For each trace

point, it checks whether the difference listed has occurred previously. If it has, it is removed from

the report. If it is the first instance of this difference, it is left in the report and is added to a

list of previously reported differences. The map back and remove duplications program reduced the

number of differences reported to the user.

One impact of the map back and remove duplications program is that Carrot is no longer conser-

vative. Before removing duplications, if the buggy function had any difference detectable by Carrot,

it would be tagged as potentially buggy. The possibility now exists that Carrot will fail to tag the

buggy function because the difference that marked the buggy function had occurred in an earlier

function.

7.2.2 Results for The Map Back and Remove Duplications Program

The removal of duplications helps to reduce the information load on the user. Fewer differences

allows the user to focus more attention on the differences reported. The cascade of differences still

does not appear, but in some cases, the number of differences is small enough to perhaps be useful

to the user. Even with the reduced number of differences, a problem still exists: the differences often

are not clearly tied to the bug in the code.

There are three sources of the problem of linking differences reported by the map back and

remove duplications program to locations of bugs in code. The value sets are affected differently by

the removal of duplicate differences than relational potential invariants were. In a program like tcas,

the value set differences all appear as arguments to main. While the bug may be several function
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calls deep, the value set differences are reported at the top level function. In programs which use

data sources other than program arguments as their inputs, the differences may be reported closer

to the buggy function. However, the difference probably will appear for the function which makes

the system call to read the next item in the data source. Unless the buggy function happens to

be the function making the system call, the difference will appear under a different function. For

all potential invariants, the other source of difficulty is that the differences provide no information

about whether the marked function contains a bug or is being used incorrectly.



Chapter 8

Future Work

The current results for Carrot are not promising. There are several avenues to pursue that may

improve Carrot’s performance.

The first avenue is to improve the resolution of the instrumentation. The function level informa-

tion does not give enough detail about how the program runs to be effective. By instrumenting the

code at a basic block level, the information might be detailed enough to make Carrot useful.

A second approach to improving the map back program approaches is to organize the differences

using a dynamic control flow graph. Structuring the differences this way may show the cascade of

differences for which we are looking. Mapping the invalidations on a dynamic control flow graph

may illuminate paths along which there are many invalidations.

A third approach is to use multiple faulty runs. The amount of noise presented to the user may

be reduced by first finding the differences that each faulty run causes and then intersecting those

differences. Manually examining differences of many bad runs for a single version of a program

suggests that the interesting differences often are those that are caused by each faulty run.

An approach that could be used with the previous idea is to reintroduce confidence levels for

the differences to aid the programmer in prioritizing the differences to examine. Both diduce[2] and

daikon[1] use confidence levels to prioritize reports to the users. A similar scheme might be useful

for Carrot.

Another approach is to automatically build more complex relational potential invariants out of

simple relational potential invariants as they become invalidated. For example, suppose at a program

location that x < y and z + w = 10 are invalidated by the same run. Two new relational potential

invariants could be created, (x < y) → (z + w = 10) and (z + w = 10) → (x < y). Using a process

like this might allow Carrot to automatically create the complex relational potential invariants that

some programs may need to be debugged.

Lastly, one promising approach is to contrast the faulty runs not with the full set of correct runs,

but with some runs which we have established are similar to the faulty run by some orthogonal

means. In particular, it would be useful to contrast a faulty run with successful runs that have

similar control flow.
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Chapter 9

Conclusion

I presented a methodology for automatically debugging programs. Using many correct runs, Carrot

builds a model of all of the correct runs. Carrot then compares a single faulty run against the model

and locates places where the run violates the model.

Carrot builds the model out of potential invariants. Potential invariants can be divided into

two types, value sets and relational potential invariants. Value sets offer a very precise measure of

what occurs in a run but notice too many violations of the model to be useful. Relational potential

invariants are a more abstract representation of what runs do. When a faulty run violates the

model by invalidating a relational potential invariant, the invalidation often illustrates the bug.

Unfortunately, it is extremely rare for a relational potential invariant to be invalidated by a faulty

run.

Carrot is currently fails to be a useful debugging tool. It identifies one bug out of sixty-eight

versions examined. Value sets are not useful as long as only a single faulty run is considered because

any run, correct or faulty, produces too much noise. Value sets may be useful if information from

multiple faulty runs is used. Relational potential invariants can be useful for debugging, though only

one example of their usefulness was found. More complex relational potential invariants are needed

to debug most programs.
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Appendix A

Function Relationships

Current Function

Last function entered
and exited.

Calling FunctionA

B C
void A(){

B();

C();

}

void B(){
}

void C(){
}

Table A.1: The call structure of the code on the right is pictured in the graph on the left. The labels
for each node are for when the current function is C.

29
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Current Context

last function entered
Last function exited

Calling function and

A

B C

D

void A(){
B();

C();

}

void B(){
}

void C(){
D();

}

void D(){
}

Table A.2: The call structure of the code on the right is pictured in the graph on the left. The labels
for each node are for when the current function is D.



Appendix B

Recognize

B.1 Correct Recognize with Faults of Versions Commented

char isDone(char c);

char checkA(char c);

char checkTwo(char, char* str);

main(int argc, char **argv)

{

int i = 0;

char * str;

char subs[2];

/* Version 5 checks for (argc < 1). */

if(argc < 2){

printf("1\n");

exit(0);

}

str = argv[1];

while(!isDone(str[i])){

if(checkA(str[i])){

i+=1;

subs[0] = str[i];

subs[1] = str[i+1];

/* Version 9 replaces || with &&. */

31
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if((checkTwo(’b’,subs))| |(checkTwo(’c’,subs))){

/* Version 4 increments i by 1 instead of 2. */

i+=2;

} else {

/* Version 6 prints 1 instead of 0. */

/* Version 10 removes the following two lines. */

printf("0\n");

exit(1);

}

} else {

/* Version 7 prints 1 instead of 0. */

printf("0\n");

exit(1);

}

}

/* Version 8 prints 0 instead of 1. */

printf("1\n");

exit(0);

}

char isDone(char c){

/* Version 3 replaces == with ! =. */

return (c == ’\0’);

}

char checkA(char c){

/* Version 2 replaces == with ! =. */

return (c == ’a’);

}

char checkTwo(char c, char* str){

/* Version 1 replaces && with ||. */

return ((str[0]==c) && (str[1]==c));

}
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B.2 Faulty Recognize Version 3

The bug is that ! = in isDone should be ==.

char isDone(char c);

char checkA(char c);

char checkTwo(char, char* str);

main(int argc, char **argv)

{

int i = 0;

char * str;

char subs[2];

if(argc < 2){

printf("1\n");

exit(0);

}

str = argv[1];

while(!isDone(str[i])){

if(checkA(str[i])){

i+=1;

subs[0] = str[i];

subs[1] = str[i+1];

if((checkTwo(’b’,subs))| |(checkTwo(’c’,subs))){

i+=2;

} else {

printf("0\n");

exit(1);

}

} else {

printf("0\n");

exit(1);

}

}

printf("1\n");

exit(0);

}
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char isDone(char c){

/*!= should be ==*/

return (c != ’\0’);

}

char checkA(char c){

return (c == ’a’);

}

char checkTwo(char c, char* str){

return ((str[0]==c) && (str[1]==c));

}
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B.3 Faulty Recognize Version 7

The bug is that next to last printf in main should print 0, not 1.

char isDone(char c);

char checkA(char c);

char checkTwo(char, char* str);

main(int argc, char **argv)

{

int i = 0;

char * str;

char subs[2];

if(argc < 2){

printf("1\n");

exit(0);

}

str = argv[1];

while(!isDone(str[i])){

if(checkA(str[i])){

i+=1;

subs[0] = str[i];

subs[1] = str[i+1];

if((checkTwo(’b’,subs))| |(checkTwo(’c’,subs))){

i+=2;

} else {

printf("0\n");

exit(1);

}

} else {

/*Should print 0 instead of 1*/

printf("1\n");

exit(1);

}

}

printf("1\n");

exit(0);
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}

char isDone(char c){

return (c == ’\0’);

}

char checkA(char c){

return (c == ’a’);

}

char checkTwo(char c, char* str){

return ((str[0]==c) && (str[1]==c));

}



37

B.4 Faulty Recognize Version 8

The bug is that the last printf in main should print 1, not 0.

char isDone(char c);

char checkA(char c);

char checkTwo(char, char* str);

main(int argc, char **argv)

{

int i = 0;

char * str;

char subs[2];

if(argc < 2){

printf("1\n");

exit(0);

}

str = argv[1];

while(!isDone(str[i])){

if(checkA(str[i])){

i+=1;

subs[0] = str[i];

subs[1] = str[i+1];

if((checkTwo(’b’,subs))| |(checkTwo(’c’,subs))){

i+=2;

} else {

printf("0\n");

exit(1);

}

} else {

printf("0\n");

exit(1);

}

}

/*This should print 1, not 0*/

printf("0\n");

exit(0);
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}

char isDone(char c){

return (c == ’\0’);

}

char checkA(char c){

return (c == ’a’);

}

char checkTwo(char c, char* str){

return ((str[0]==c) && (str[1]==c));

}



Appendix C

Recognize2

C.1 Correct Recognize2 with Faults of Versions Commented

bool isDone(char str);

bool checkA(char str);

bool checkBB(char* str);

bool checkCC(char* str);

main(int argc, char **argv)

{

int i = 0;

char * str;

char subs[2];

if(argc < 2){

printf("1\n");

exit(0);

}

str = argv[1];

while(!isDone(str[i])){

if(checkA(str[i])){

i+=1;

/* Version 4 sets subs[0] equal to str[i+1].*/

subs[0] = str[i];
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/* Versions 2 sets subs[1] equal to str[i].*/

subs[1] = str[i+1];

if((checkBB(subs))| |(checkCC(subs))){

i+=2;

} else {

printf("0\n");

exit(1);

}

} else {

printf("0\n");

exit(1);

}

}

printf("1\n");

exit(0);

}

bool isDone(char c){

return (c == ’\0’);

}

bool checkA(char str){

return (str == ’a’);

}

bool checkBB(char* str){

bool ans = true;

if(str[0]==’\0’){

return false;

}

switch(str[0]){

case ’a’:

ans = false;

break;

case ’b’:

ans = true;

break;

case ’c’:

ans = false;
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break;

default:

ans = false;

break;

}

switch(str[1]){

case ’a’:

ans = false;

break;

case ’b’:

ans = ans;

break;

case ’c’:

ans = false;

break;

default:

ans = false;

break;

}

return ans;

}

bool checkCC(char* str){

bool ans = true;

if(str[0]==’\0’){

/* Version 8 returns true instead of false. */

return false;

}

switch(str[0]){

case ’a’:

ans = false;

break;

case ’b’:

ans = false;

break;

/* Version 1 removes the c case and has the default case set ans to true. */

/* Version 1 also changes the switch statement below.*/

case ’c’:
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ans = true;

break;

default:

/* Version 6 sets the value of ans to true. */

/* Version 7 sets the value of ans to true. */

/* Version 7 also makes a change to the default case below. */

ans = false;

break;

}

switch(str[1]){

case ’a’:

ans = false;

break;

case ’b’:

/* Version 9 sets ans equal to ans. */

ans = false;

break;

/* Version 1 removes the c case and has the default case set ans to ans. */

/* Version 1 also changes the switch statement above.*/

case ’c’:

/* Version 3 sets ans to true. */

ans = ans;

break;

default:

/* Version 5 sets ans to ans. */

/* Version 7 sets ans to ans. */

/* Version 7 also makes a change to the default case above. */

ans = false;

break;

}

return ans;

}



Appendix D

Examples of Bugs in tcas in the

Siemens Suite

D.1 tcas Faulty Version 1

To catch the bug in version 1 of tcas the relational potential invariant would have to keep track

when Inhibit Biased Climb was larger than Down Separation. Inhibit Biased Climb depends

on the values of Up Separation and Climb Inhibit. When Inhibit Biased Climb is larger than

Down Separation, the relational potential invariant must also track when Own Below Threat is

true and Down Separation equals ALIM. Own Below Threat depends on the relationship between

Own Tracked Alt and Other Tracked Alt while ALIM depends upon Alt Layer Value.

D.2 tcas Faulty Version 2

A relational potential invariant to find this bug would have to know that Climb Inhibit had never

been true when the difference between NOZCROSS and MINSEP is large enough enough so that adding

each to Up Separation produces one sum which is less than Down Separation and the other which is

larger than Down Separation at a time when the result of Inhibit Biased Climb had an impact on

the result of the function, which is itself a complex predicate. The result of Inhibit Biased Climb

matters when the result of Non Crossing Biased Climb matters and !(Own Below Threat()) ||

((Own Below Threat()) && (!(Down Separation >= ALIM()))) has a different truth value than

Own Above Threat() && (Cur Vertical Sep >= MINSEP) && (Up Separation >= ALIM()).

D.3 tcas Faulty Version 13

The relational potential invariant would need to track that the value of Own Tracked Alt Rate is

never between 600 and 700 at the same time that High Confidence is true and Cur Vertical Sep is
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greater than 600 and that enabled (the result of conjoining the three previous predicates together)

matters in the result of the program. Enabled matters when tcas equipped and intent not known

are true or tcas equipped is false.
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