
Abstract of “Building an Intelligent Agent to Design Neural Networks” by Linnan Wang, Ph.D., Brown Uni-

versity, Feb 2022.

Designing Artificial Intelligence (AI) is still reserved for experts, and the existing design paradigm follows

a data-driven approach: domain experts start with a hypothetical model, verify the model on a task-specific

dataset to acquire performance metrics, then revise the model based on prior experiences, hoping to improve

the model in the next loop. This thesis seeks to build an intelligent agent to substitute domain experts in this

design process. I start with formalizing the current design process as a computational model, upon which I

further investigate issues to the algorithmic efficiency and system utilization to build an agent that algorithm

and system can synergistically work together. Specifically, I propose a new black box solver, Latent Action

Monte Carlo Tree Search (LA-MCTS), to address the sample efficiency and build a deep learning framework

to expand the design space far beyond the available GPU DRAM. These results collectively provide a partial

path toward AI democratization by creating a practical MCTS-based AI agent that efficiently designs complex

AI without experts in a reasonable amount of time.

Building an Intelligent Agent to Design Neural Networks

by

Linnan Wang

B. E., University of Electronic Science and Technology of China, 2011

M. Sc., Rutgers University, 2013

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

February 2022

© Copyright 2022 by Linnan Wang

This dissertation by Linnan Wang is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Rodrigo Fonseca, Director

Recommended to the Graduate Council

Date
Yuandong Tian, Reader

Facebook

Date
George Konidaris, Reader

Brown University

Date
Stephen Bach, Reader

Brown University

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii

01/08/2021

Aug. 2, 2021

Aug 2 2021

Sep 2, 2021

Acknowledgements

I came to U.S. to study Ph.D. in 2011, and it toke me 10 years to finally present this thesis to you. This would

not be possible without the help of so many brilliant people across the world. I’m extremely grateful to my

mentors for their support and guidance in this journey, my collaborators for their help and splendid ideas, my

friends for their encouragement, and my family for their unconditioned love and support.

First, I want to thank my advisor, Rodrigo Fonesca. The biggest thing I learned from Rodrigo is to

pursue your interests. Rodrigo works in the distributed system, but he always supports and encourages me

to explore artificial intelligence. I’m incredibly grateful to have the research freedom to work on the topic

of this thesis that genuinely excites me in the last four years. On top of this, Rodrigo is both greatly wise,

respectful, and humble. I can recall many occasions in my early Ph.D., where I claim to build a deep learning

system to replace TensorFlow and PyTorch, and I know how foolish it sounds now. But he never laughed

at me, encouraged and guided me to look into the specific problems in these systems. Some of my absolute

memorable experiences at Brown are these moments Rodrigo and I spent hours in his office to think through

a tricky problem on the whiteboard. These conversations eventually turned into several exciting ideas and

publications that constitute this thesis. I want to sincerely thank Rodrigo for his support for giving me the

freedom to explore, being respectful to my reckless ideas, guiding me in the right direction, and being such

an outstanding mentor and advisor. I am so lucky to have had the opportunity to work with you!

To my mentor Yuandong Tian, I want to thank him for showing me that there is always someone wiser

than me. I feel very fortunate to intern with Yuandong at Facebook AI Research, where I had a chance to

learn from some of the most brilliant minds in AI today. Yuandong is immeasurably wise. Whenever I was

stuck on a problem, he always quickly summarized the intrinsic nature of the problem and then led me in

the right direction. This thesis also greatly benefited from his insight that the definition of actions in MCTS

is critical to efficiency. This insight eventually grew into a new search method for black-box optimizations,

produced several publications in path planning, multi-objective optimizations, and neural architecture search

iv

with numerous applications that constitute most of this thesis. Our time doing research together is one of the

most memorable times during my study, and I look forward to continuing our collaborations in the future.

Many of my works wouldn’t have been possible without the help from my collaborators. I have been

working closely with Yiyang Zhao in the last five years, and we have been through ups and downs together.

Yiyang is an accountable research buddy and a true friend to me. Doing a Ph.D. is hard, but having a close

friend like Yiyang makes it a lot easier. From the bottom of my heart, I truly appreciate our time together.

I look forward to our continued collaboration on conquering the most challenging problems together. Next,

I’m immensely grateful to Yanyi Guo for being with me from 2013 to 2018. Although our path diverted, I

cherish our memory and sincerely wish you the best of luck in your future. I also want to thank Yuu Jinnai,

John Meehan, Jeff Rasley, George Boscia, Hang Liu, Jinmian Ye, Zenglin Xu, Jianxiong Xiao, Junyu Zhang,

and Shuohang Wang for their help, trust, and time in doing research together with me. Finally, I want to thank

George Konidaris and Maurice Herlihy for providing valuable guidance and thank Tim Kraska and Carsten

Binnig for recruiting me to Brown.

Here I want to thank my two other friends, Alex Zhang and Fuguo Jiang (in Memoriam). Alex is such

a nice guy that helped me a lot in English writing; Fuguo taught me to be a man of integrity, one of the

most important lessons in my life. I also want to thank the staff and faculties at Brown CS. Lauren is very

resourceful to the department rules and requirements, and I also learned a lot from our program director David

Laidlaw. I want to thank Saining Xie, Teng Li, Yuxiong He, Samyam Rajbhandari, and Yi Yang for hosting

my internships at Facebook, Microsoft, and NEC Labs.

Finally, I want to thank my family. To my father, Xinli Wang, I want to thank him for his support. He

bought my first laptop in 2004, which nearly cost him a whole year’s salary. I love playing computers since I

was a kid, and that laptop is the best gift I ever had; and it later motivates me to pursue a career in computer

science. Before the university, I was never a good student. I want to thank my mother, Qiuxiang Liu, and

stepfather Mingfang Wu for their encouragement and unconditioned love. To my wife, Ying Wang, I’m

forever grateful for your love and support, and the sacrifice you made to our family. Marrying you is the best

decision I ever made.

To Michelle Wang, your mother and I are so blessed to have you as our daughter! Your smiles always

cure me, and I wish you good health and joy throughout your life.

v

Contents

List of Tables xi

List of Figures xiv

I Preliminaries 1

1 Introduction 2

1.1 Problem Formulation and Technical Challenges . 4

1.1.1 Problem Formulation . 5

1.1.2 Technical Challenges . 6

1.2 Contributions . 7

1.2.1 Details of Contributions . 8

2 Background and Related Work 13

2.1 Design Space . 15

2.1.1 Graph Based Search Space . 15

2.1.2 Graph Generator based Search Space . 17

2.2 The Optimization Module . 18

2.2.1 Black Box Optimization . 19

2.2.2 Reinforcement Learning . 26

2.2.3 Gradient Descent . 30

2.3 Evaluation Module . 31

vi

II Sample-Efficient Neural Architecture Search using Monte Carlo Tree Search 34

3 Building the NAS agent using MCTS 35

3.1 Motivation . 35

3.2 AlphaX: A Scalable MCTS Design Agent . 36

3.2.1 Design, State and Action Space . 36

3.2.2 Search Procedure . 38

3.2.3 The design of Meta-DNN and its related issues . 40

3.2.4 Transfer Learning . 41

3.2.5 Distributed AlphaX . 41

3.3 Experiments . 42

3.3.1 Evaluations of architecture search . 42

3.3.2 Component Evaluations . 44

3.4 Additional Details . 46

3.5 Conclusion . 47

4 Sample-Efficient NAS by Learning Actions for MCTS 49

4.1 Motivation . 49

4.2 Learning Latent Actions for MCTS . 50

4.2.1 Learning Phase . 51

4.2.2 Search Phase . 53

4.2.3 Integrating with one-shot NAS . 55

4.2.4 Partition Analysis . 57

4.3 Experiments . 58

4.3.1 Evaluating the search performance . 58

4.3.2 Analysis of LaNAS . 64

4.4 Related Work . 65

4.5 Additional Details . 66

4.6 Conclusion . 68

5 Latent Action Monte Carlo Tree Search 69

5.1 Motivation . 69

vii

5.2 Related Work . 71

5.3 Latent Action Monte Carlo Tree Search (LA-MCTS) . 72

5.4 Experiments . 77

5.4.1 MuJoCo Locomotion Tasks . 78

5.4.2 Small-scale Benchmarks . 79

5.4.3 Validation of LA-MCTS . 82

5.4.4 Ablations on Hyper-parameters . 82

5.5 Conclusion . 83

5.6 Additional Details . 84

5.6.1 Hyper-parameter Settings for All Baselines in the Benchmarks 84

5.6.2 Additional Experiment Results . 86

III Building the Evaluation Module 87

6 Few-shot NAS 88

6.1 Motivation . 88

6.2 Methodology . 91

6.2.1 The Design of Split Strategy . 91

6.2.2 Transfer Learning . 93

6.2.3 Integration with Gradient-based Algorithms . 93

6.2.4 Integration with Search-based Algorithms . 93

6.3 Experiments . 94

6.3.1 Evaluation on NASBENCH-201 . 95

6.3.2 Deep Learning Applications . 97

6.4 Related Work . 98

6.5 Conclusion . 99

7 Efficient Distributed Training via Gradient Sparsification 100

7.1 Introduction . 100

7.2 Background and Motivation . 103

7.2.1 Communication Challenges in Distributed Training of DNNs 104

7.3 Methodology . 106

viii

7.3.1 The Compression Framework . 106

7.3.2 Packing sparse data into a dense vector . 108

7.3.3 Sensitivity Analysis . 112

7.3.4 Convergence Analysis . 113

7.4 Evaluation . 115

7.4.1 Validation of Theorems . 117

7.4.2 Algorithm Comparisons . 119

7.5 Related Work . 122

7.6 Conclusion . 123

IV System Building 124

8 SuperNeurons: A Deep Learning Framework to Support Large Models 125

8.1 Introduction . 125

8.2 Background and Motivation . 127

8.2.1 Challenges for Processing Super Deep Neural Networks 127

8.2.2 Limitations of GPU Memory Management in Mainstream Deep Learning Frameworks 131

8.3 Design Methodologies . 132

8.3.1 Prerequisites . 132

8.3.2 Liveness Analysis and Its Related Issues . 133

8.3.3 Unified Tensor Pool(UTP) and Its Related Issues 135

8.3.4 Cost-Aware Recomputation . 139

8.3.5 Finding the Best Convolution Algorithm under the Memory Constraint 140

8.4 Evaluations . 140

8.4.1 Components Evaluations . 141

8.4.2 Going Deeper and Wider . 145

8.5 Related Work . 147

8.6 Conclusion . 148

ix

V The Design Agent in Action 149

9 Applications 150

9.1 Designing Convolutional Neural Networks . 150

9.1.1 CIFAR-10 . 151

9.1.2 ImageNet . 153

9.2 Designing Recurrent Neural Networks . 154

9.3 Designing Backbone for Detection Systems . 155

9.4 Designing Generative Adversarial Networks . 156

9.5 Designing Neural Style Transfer System . 157

9.6 NeurIPS-2020 Black Box Optimization Challenges . 158

Bibliography 159

x

List of Tables

3.1 The comparisons of our NASNet search results to other state-of-the-art results on CIFAR-10.

M is the number of sampled architectures in the search. 43

5.1 Definition of notations used through this paper. 73

5.2 Compare with gradient-based approaches on MuJoCo v1; and the performance on MuJoCo v2 is sim-

ilar. Despite being a black-box optimizer, LA-MCTS still achieves good sample efficiency in low-

dimensional tasks (Swimmer, Hopper and HalfCheetah), but lag behind in high-dimensional tasks due

to excessive burden in exploration, which gradient approaches lack. For more details of ARS V2-t, NG-

lin, NG-rbf and TRPO-nn, please refer to [Mania et al., sARS], [Rajeswaran et al., 2017], [Rajeswaran

et al., 2017] and [Mania et al., sARS], respectively. 79

6.1 The definition of notations used through the paper. 91

6.2 Rank correlation analysis using Kendall’s Tau [Kendall., 1938] for different split strategies. 92

6.3 Rank correlation on NASBENCH-201 using different methods. 96

6.4 Applying few-shot NAS on existing NAS methods on CIFAR-10 using the NASNet search

space. Our results demonstrate that 1) few-shot NAS consistently improves the final accuracy

of various one-shot based NAS methods under the same setup. Please note we only extend

one-shot based DARTS, REA, and LaNAS by replacing the single supernet with 7 supernets

in their public release; 2) after integrating with multiple supernets, few-shot DARTS achieves

SOTA 98.72% top-1 accuracy on CIFAR-10 using the cutout [Devries and Taylor, 2017] and

auto-augmentation [Cubuk et al., 2018]. Without auto-augmentation, few-shot DARTS-Small

still consistently outperforms existing models that have similar parameters. 97

xi

6.5 Applying few-shot NAS on existing NAS methods on ImageNet using the EfficientNet search

space. Being consistent with the results on CIFAR-10 in Table. 6.4, the final accuracy from

few-shot OFA and ProxylessNAS also outperforms their original one-shot version under the

same setting, except for replacing the single supernet with 5 supernets. Particularly, Few-shot

OFA-Large achieves SoTA 80.5% top1 accuracy at 600M FLOPS. 98

7.1 Symbols of equations in Section 7.3.3. 112

7.2 Summarization of Figure 7.14: the difference of test accuracy and the speedup over lossless

SGD. 119

8.1 The counts of recomputations (extra) and peakm using the speed-centric, the memory-centric

and Cost-Aware Recomputation. 140

8.2 The improvement of the GPU memory pool over cudaMalloc and cudaFree on various net-

works. The batch size for AlexNet is 128, while the rest is 16. 143

8.3 Communications with/without Tensor Cache. We benchmark the result on AlexNet by in-

creasing the batch size from 256 to 1024. 143

8.4 Going Deeper: the deepest ResNet that different frameworks can reach on a 12GB NVIDIA

K40. The batch size is fixed at 16. ResNet has 4 for-loops to control its depth: depth =

3 ⇤ (n1 + n2 + n3 + n4) + 2, where ni is the upper limit of ith for-loop. We fix n1 = 6,

n2 = 32, and n4 = 6, while varying n3 to increase the depth. 145

8.5 Going Wider: the largest batch size that several mainstream neural architectures can reach in

different frameworks with a 12GB NVIDIA K40. 145

9.1 Results on CIFAR-10 using the NASNet search space. LaNet-S and LaNet-L are same in

structure, but the filter size of LaNet-S is 36, while LaNet-L is 128. Fig. 9.1 shows the

structure of LaNet. 151

9.2 Transferring LaNet from CIFAR-10 to ImageNet using the NASNet search space. 152

9.3 Results on ImageNet using the EfficientNet search space. The LaNet architecture can be

found in Table. 9.4. 152

9.4 LaNet architecture found on the EfficientNet search space, i.e. results in Table. 9.3. 153

9.5 Comparison with state-of-the-art language models on PTB (lower perplexity is better). . . . 154

xii

9.6 Results on test-dev set of MS COCO with different decoder, backbone and channels. R-50

abbreviates for ResNet50. All networks have the same input image resolution. 155

9.7 Designing the Generative Adversarial Network (GAN) to generate CIFAR-10 style images.

The inception score is higher the better, while the FID score is lower the better. 156

xiii

List of Figures

1.1 This thesis intends to build an Artificial Intelligence that replaces domain experts in the data-

driven design process of deep neural networks. 3

2.1 The abstraction of key components in the neural architecture search. 14

2.2 The design space used by [Zoph and Le, 2016]. 15

2.3 The illustration of NASNet search space. 16

2.4 The illustration of EfficientNet search space. 17

2.5 The illustration of networks generated by Erdős–Rényi(ER), Barabási–Albert(BA) and Watts–Strogatz(WS)

random graph generators. These models takes in a few parameters to generate graph that fol-

lows the certain pattern. Figure courtesy of [Xie et al., 2019]. 18

2.6 The workflow of RL that interacts with a MDP. 27

2.7 Integrating supernet with search algorithms. Before the search comes into play, we pre-train

a supernet by applying a random mask at each iteration until the convergence. The supernet

remains static in the search. When a search algorithm proposes a network, we transform the

supernet to the target architecture by multiplying a mask to deactivate the extra operations on

a compound edge, or deactivate the entire edge. 32

xiv

3.1 Comparisons of NAS algorithms: (a) random search makes independent decision without us-

ing prior rollouts (previous search trajectories). An online model is to evaluate how promising

the current search branch based on prior rollouts, and random search has no online model.

(b) Search methods guided by online performance models built from previous rollouts. With

static, coarse-grained exploration strategy (e.g., ✏-greedy in Q-learning), they may quickly be

stuck in a sub-optimal solution; and the chance to escape is exponentially decreasing along

the trajectory. (c) AlphaX builds online models of both performance and visitation counts for

adaptive exploration. The numbers in nodes represent values. (d) Performance of different

search algorithms on NASBench-101. AlphaX is 3x, 1.5x more sample-efficient than random

search and ✏-greedy based Q-learning. 36

3.2 Design space: (a) the cell structure of NASNet and (b) the DAG structure of NASBench-101.

Then the network is constructed by stacking multiple cells or DAGs. 37

3.3 An overview of AlphaX search procedures, please see details in sec. 3.2.2. 38

3.4 Encoding scheme of NASBench and NASNet. 40

3.5 Distributed AlphaX: we decouple the original back-propagation into two parts: one uses

predicted accuracy (green arrow), while the other uses the true accuracy (blue arrow). The

pseudocode for the whole system is available in Sec.3.4 42

3.6 Finding the global optimum on NASBench-101: AlphaX is 3x, 2.8x faster than Random

Search and Regularized Evolution on NASBench-101 (nodes  6). The results are from 200

trails with different random seeds. (c) and (d) show the performance of AlphaX in cases of

with/without meta-DNN on NASBench-101 . 43

3.7 meta-DNN design ablations: True v.s. predicted accuracies of MLP, RNN and multi-stage

MLP on architectures from NASBench. The scatter density is highlighted by color to reflect

the data distribution; Red means high density, and blue otherwise. 44

3.8 Validation of transfer learning: transferring weights significantly reduces the number of

epochs in reaching the same accuracy of random initialization (Transfer 17 ! 70 epochs

v.s. random initialization), but insufficient epochs loses accuracy (Transfer, 9 epochs). 45

xv

4.1 Illustration of motivation: (a) visualizes the MCTS search trees using sequential and

global action space. The node value (i.e. accuracy) is higher if the color is darker. (b)

For a given node, the reward distributions for its children. d is the average distance over all

nodes. global better separates the search space by network quality and provides distinctive

rewards in recognizing a promising path. (c) As a result, global finds the best network

much faster than sequential. This motivates us to learn actions to partition the search

space for the efficient architecture search. 50

4.2 An overview of LaNAS: Each iteration of LaNAS comprises a search and learning phase.

The search phase uses MCTS to sample networks, while the learning phase learns a linear

model between network hyper-parameters and accuracies. 51

4.3 The cell structure of supernet used in searching nasnet. The supernet structure of normal and

reduction cell are same. (a) Each edge is a compound edge, consisting of 4 independent edges

with the same input/output to represent 4 layer types. (b) Each node allows for two inputs

from previous nodes. To specify a NASNet architecture, we use 5 variables for defining con-

nectivity among nodes, and 10 variables for defining the layer type of every edge. Supernet

can transform to any network in the search space by applying the mask. 55

4.4 The top row shows the time-course of test regrets of different methods (test regret between

current best accuracy v
+ and the best in dataset v⇤ with the interquartile range), while the

bottom row illustrates Cumulative Distribution Function (CDF) of v
+ for each method at

4 ⇤ 104 unique valid samples. ConvNet-60K compensates NASBench to test the case of

|D| = |⌦|, and supernet compensates for the case of |⌦| � |⌦nasbench|, where |D|, |⌦| are

the size of the dataset and search space, respectively. LaNAS consistently demonstrates the

best performance in 3 cases. 59

4.5 Comparisons of ⇡bayes to ⇡random in sampling from the selected partition ⌦j 62

4.6 Ablation study: (a) the effect of different tree heights and #select in MCTS. The number in

each entry is #samples to reach global optimal. (b) the choice of predictor for splitting search

space. (c) the effect of #samples for initialization toward the search performance. (d) the

effect of hyper-parameter c in UCB on NASBench performance. 63

xvi

4.7 Evaluations of search dynamics:(a) KL-divergence of pj and p
⇤
j dips and bounces back. v̄�v̄⇤

continues to grow, showing the average metric v̄ over different nodes becomes higher when

the search progresses. (b) sample distribution pj approximates dataset distribution p
⇤
j when

the number of samples n 2 [200, 700]. The search algorithm then zooms into the promising

sub-domain, as shown by the growth of v̄j when n 2 [700, 5000]. 64

5.1 The model of latent actions: each tree nodes represents a region in the search space, and latent action

splits the region into a high-performing and a low-performing region using x and f(x). 73

5.2 The workflow of LA-MCTS: In an iteration, LA-MCTS starts with building the tree via splitting, then

it selects a region based on UCB. Finally, on the selected region, it samples by BO. 74

5.3 The visualization of partitioning 1d sin(x) using LA-MCTS. 75

5.4 Illustration of sampling steps in optimizing the acquisition for Bayesian Optimization. We uniformly

draw samples within a hyper-cube, then expand the cube and reject outliers. 76

5.5 Benchmark on MuJoCo locomotion tasks: LA-MCTS consistently outperforms baselines on 6 tasks.

With more dimensions, LA-MCTS shows stronger benefits (e.g. Ant and Humanoid). This is also

observed in Fig. 5.8. Due to exploration, LA-MCTS experiences relatively high variance but achieves

better solution after 30k samples, while other methods quickly move into local optima due to insufficient

exploration. 77

5.6 Evaluations on Lunar landing and Trajectory Optimization: LA-MCTS consistently outper-

forms baselines. 79

5.7 Evaluations on synthetic functions: the best method varies w.r.t functions, while LA-MCTS

consistently improves TuRBO and being among top methods among all functions. 80

5.8 LA-MCTS as an effective meta-algorithm. LA-MCTS consistently improves the performance of TuRBO

and BO, in particular in high-dimensional cases. We only plot part of the curve (each runs lasts for 3

day) for BO since it runs very slow in high-dimensional space. 81

5.9 Validation of LA-MCTS: (a) the value of selected node becomes closer to the global optimum as #splits

increases. (b) the visualization of ⌦selected in the progress of search. (c) the visualization of ⌦selected

that takes the intersection of nodes on the selected path. 81

5.10 Ablation studies on hyper-parameters of LAMCTS. 83

5.11 The visualization of LA-MCTS in iterations 1!20: the purple region is the selected region

⌦selected, and the red star represents the global optimum. 86

xvii

6.1 (a) masking supernet to a specific architecture. (b) the motivation of using few-shot NAS to

alleviate the co-adaption impact. After splitting on edge a, supernet ⌦B exclusively predicts

architectures in ⌦B , so does supernet ⌦C . 89

6.2 (a) Using multi-supernets clearly improves the correlation and (c) provides the correlation

score (Kendall Tau) at different numbers of supernets in (a); (b) shows the improved perfor-

mance predictions result in better performance on NAS. 90

6.3 Comparison of various gradient-based algorithms in the one-shot and few-shot settings. We

also plot the 75% interquartile range from 5 runs. 94

6.4 The progress of best accuracy during the search. few-shot NAS clearly demonstrates better

results than one-shot NAS, while maintaining the similar end-to-end search time. 95

7.1 Two parallelization schemes of distributed DNN training:(a) Bulk Synchronous Parallel (BSP)

strictly synchronizes gradients with all-to-all group communications, e.g. MPI collectives;

(b) Parameter Server (PS) exchanges gradients with point-to-point communications, e.g.

push/pull. 103

7.2 layer-wise communications (all-reduce) v.s. computations in an iteration of BSP SGD using

16 P100 (4 GPUs/node with 56Gbps FDR). 104

7.3 The gradient compression framework (sender). 106

7.4 Histogram of DNN gradients: we sampled gradients every 103 and 104 iterations in a full

training. 107

7.5 FFT Top-k v.s. direct Top-k sparsificaiton: Top-k aggressively loses gradients (err=0.0246),

while FFT preserves more relevant information (err=0.0209) at the same sparsification ratio. 107

7.6 the effect of status vector: given 100 MB gradients, the improvement after dropping > 95%

gradients (✓ = 0.05, compression ration is 20) is limited. 109

7.7 comparisons of quantization schemes: the uniform distribution and IEEE 754 format. 109

7.8 Illustration of range based quantizer: an example conversion of between 32 bits IEEE 754

and 8 bits our representation. 110

7.9 Adjustable representation range: our quantization successfully adjusts its distribution. 111

xviii

7.10 Minimal compression ratio k exhibits performance benefits at different network bandwidths

Tcomm, packing throughput Tp and selection throughput Ts. It is easy to get performance

improvement from a slow network, while it requires faster compression primitives to be ben-

eficial on a fast network. 111

7.11 the latency for all-gather AlexNet and ResNet32 from 2 to 32 GPUs. 116

7.12 Empirical verification of Assumption 3. 117

7.13 Empirical validation of Theorem 3. 117

7.14 Training wall time on a 8 GPUs cluster: FFT outperforms TernGrad, QSGD and Top-k in

both the speed and test accuracy. FFT is faster for a high compression ratio by combining

sparsification and quantization, while the better gradient quality of FFT explains the good

accuracy, as we will show in Figure 7.15. 118

7.15 (a)!(d): Histogram of reconstructed gradients (blue) by FFT (✓ = 0.85), Top-k (✓ = 0.85),

QSGD and Terngrad v.s. the original. The reconstructed gradients by FFT is the closest to

the original(FP32). (e) Cumulative error distribution of |gi � ĝi|, where gi is the i-th true

gradient, and ĝi is the i-th sparsified gradient. FFT incurs less errors than other approaches

for 99.7% of the gradients. 120

7.16 Weak scalability from 2 to 32 GPUs: we measure the iteration throughput, and calculate the

speedup w.r.t 1 GPU. 121

8.1 The non-linear connections in inception v4 (fan), ResNet (join, left) and DenseNet (join,

right). DenseNet utilizes a full-join. 127

8.2 The left axis depicts the memory usages of networks. The batch size of AlexNet is 200, and

the rest use 32. The right axis and red x marks depict the speedup (imgs/s) with and without

convolution workspaces. 128

8.3 Data dependencies of different neural architectures. Tensors in red are ready to free when the

computation back propagates to the POOL layer. Solid lines represent forward dependencies

and dashed lines represent backward dependencies. 130

xix

8.4 Applying Liveness Analysis on the nonlinear network shown in Fig.8.3c. The number after

the layer name (e.g., DATA0, CONV1, etc.) represents the step, which are calculated by Alg.

8. We mark the prerequisite tensors for a layer in red, such that t7, t8, t0 are required by

CONV9. Each in and out set tracks live tensors before and after the layer’s computations.

We can free t2 and t5 at step 7 since no subsequent dependencies from POOL8, CONV9,

CONV10, and DATA11. 133

8.5 The structure of tensors used in DNN. 133

8.6 Execution route created by Algorithm 8 on a nonlinear network. The left digit represents the

forward step, while the right digit represents the backward step. 134

8.7 The unified tensor pool provides a consolidated memory abstraction to include various phys-

ical memory pools for tensor allocations. 134

8.8 The percentages of execution time and memory usages by layer types in different networks.

Note that the execution time includes both forward and backward passes. 136

8.9 The speed-centric strategy only recomputes the segment once, and other backward layers

within the segment will reuse the recomputed tensors. Thus, it only incurs O(N) additional

computations, but memcost is
Pseg

i=1 l
f
i + l

b
seg . The memory-centric strategy recomputes

forward dependencies every time for each backward layers. Though it incurs O(N2) ad-

ditional computations, memcost is the lowest, i.e. l
b
i . Cost-Aware Recomputation profiles

the memory usages across recomputation segments. It uses the speed-centric strategy (red) if

memcost of a segment is less than lpeak, and the most memory saving strategy (blue) otherwise.137

8.10 The evaluations of Liveness Analysis, Prefetching/Offloading and Cost-Aware Recomputation

on AlexNet at the batch size of 200. AlexNet has 23 layers, and a training iteration consists

of 1 ! 23 forward steps and 24 ! 46 backward steps. The blue curve (left axis) depicts

memory usages at each step, while the orange curve (right axis) depicts live tensor counts at

each step. (a) demonstrates how Liveness Analysis affects memory usages w.r.t the baseline

(horizontal lines). (b) demonstrates how Offloading/Prefetching improve Liveness Analysis

by comparing the memory usages of both techniques (blue dashed lines in (b)) with Liveness

alone (solid blue curve in (b)). Similarly, (c) demonstrates how Cost-Aware Recomputation

improve the previous two; and dashed lines in (c) are from (b). 141

8.11 Normalized performance with and without Tensor Cache. The batch size of AlexNet is 128,

and 32 for the rest. 143

xx

8.12 Dynamic Conv workspace allocations in the runtime. The digit in the x-axis represents the

ith CONV layer, while the ”f” or ”b” represent the forward or backward computations. . . . 144

8.13 Going Wider: the corresponding memory usages for the batch size in TABLE 8.5. 145

8.14 An end-to-end evaluation of different DL frameworks. We benchmark the data on a TITAN XP.146

9.1 The searched cell structure for LaNet. 151

9.2 The structure of our searched RNN cell. 154

9.3 The visualization of differences in Table 9.6. 155

9.4 The randomly sampled CIFAR-10 images from the GAN designed by our agent. 156

9.5 The neural style transfer using the network designed by our agent V.S. VGG. 157

xxi

Part I

Preliminaries

1

Chapter 1

Introduction

The resurgence of connectionism since early 2010 marks a remarkable new chapter for Artificial Intelligence

(AI). The boom of General-Purpose computing on Graphics Processing Units (GPGPU) and Big Data all

serve as a catalyst to fuel AI’s exponential growth consistently. At this wave of AI revolution, Deep Neu-

ral Networks (DNNs) are no doubt the backbone technology behind the scene, manifested by the countless

successful applications in many areas, including the superhuman AI for multiplayer poker [Brown and Sand-

holm, 2019], the self-taught AI for Go [Silver et al., 2017, Tian et al., 2019a], the near-human performance

of self-driving cars [DMV, 2020] at Cruise Automation and Waymo, the Grandmaster level II AI for Starcraft

II [Vinyals et al., 2019], the super-radiologists AI in the breast cancer screening [McKinney et al., 2020], and

real-time super-translator AI for speech to speech translation [Jia et al., 2019]. Besides, the prevailing trend

of DNN based unsupervised learning in both Natural Language Processing (NLP) [Devlin et al., 2018] and

Computer Vision (CV) [He et al., 2019b] are also achieving presumably impossible things. These examples

strongly demonstrate the dominance of DNNs in various sub-fields of AI today for solving problems that

have resisted the best attempts of the AI community for many years [LeCun et al., 2015].

In the era of Big Data and Big GPU, the success of DNNs is by no means a coincidence. For decades, the

conventional Machine Learning techniques, e.g., Support Vector Machine (SVM) [Cortes and Vapnik, 1995],

were majorly limited by the proper craft of feature vectors to the raw data, which requires considerable

and painstakingly engineering from domain experts [LeCun et al., 2015]. This conventional approach is

usually inefficient in practice, especially at internet giants such as Facebook and Google, due to the massive

amount of user images or texts to be handled. Whereas DNNs successfully alleviate the burden of feature

engineering at the cost of extra computations, that is no longer a problem with the emergence of GPGPU since

2

3

ARTIFICIAL
INTELLIGENCE

EVALUATION

TRAINING

MODEL

EXPERT

Figure 1.1: This thesis intends to build an Artificial Intelligence that replaces domain experts in the data-
driven design process of deep neural networks.

2006. Specifically, DNNs directly learn the intricate structures of any high-dimensional data such as images,

videos, voices, and texts using several non-linear operators to sequentially transform the data into layers

of abstract representations to be processed by other Machine Learning primitives. One classical success is

applying DNNs at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2011 [Krizhevsky

et al., 2012], which significantly outperformed all the conventional feature-based methods and ignited the

Deep Learning revolution afterward.

With the advent of big and powerful DNNs, machine learning practitioners have gradually shifted their

focus to the structural engineering of neural architectures [Xie, 2018]. Though DNNs alleviate the burden of

feature engineering, a deep, wide, and densely connected neural network is not a viable solution to all tasks.

The structure of a DNN needs to be carefully tailored for a particular task before working well. Therefore,

finding useful structural priors has been one of the principal goals in the development of DNNs. For example,

the convolution operators in Convolution Neural Networks (CNNs) make CNN faster to run and far more

accurate than Multi-layer Perceptions (MLPs) in computer vision tasks using the sparse connections among

neurons. Another notable example is the residual connection in ResNet [He et al., 2016], which drastically

improves the performance of conventional CNNs such as AlexNet. By accumulating helpful structure priors,

machine learning practitioners have transformed their workflow to the structural assembly of these structural

priors, then fine-tuning the model by their experience in an iterative manner.

To be specific, the existing paradigm of neural network design follows a data-driven trial and error. Do-

main experts start with a hypothetical model built from structure priors, verifying the model on some task-

specific dataset to acquire performance metrics. Then, the experts revise the model according to their previous

4

experiences to improve the model in the next iteration. Domain experts keep iterating this process, maybe a

few hundred times, until reaching a model that satisfies the design requirements. This process can be pretty

tricky for a human to handle, especially considering the prolonged design process typically lasting for months

or even years, as the DNN training is rather challenging. For example, the complex design choices induce a

high-dimensional model space with an immense amount of model possibilities, e.g., the design space of non-

linear Convolution Neural Networks (CNN) can quickly go beyond 1030 possibilities [Zoph et al., 2018b].

Besides the accuracy, the requirements sometimes prefer considering multiple factors together, e.g., resource

requirements, which further complicates the design to trade-off multi-objectives. Therefore, it is urgent to

find a principled method to efficiently tackle these challenges that emerged from the recent progress, which is

the core research question this thesis seeks to answer. The following statement articulates the central research

question studied by this thesis,

How to formulate the DNN design into a computational model that is feasible on the existing com-

puting hardware? Taking it one step further, can we build an intelligent agent to replace the domain

experts in artificial intelligence design entirely?

This research question also has a tremendous social impact. Countries like China or the United States

have established their own AI initiatives to facilitate AI innovation as part of their national strategies. For

example, U.S. executive order 13859 stresses the necessity of sustained advancements in AI and details

five pillars for bolstering AI, including greater investment in AI R&D, the elimination of barriers to AI

development, enhanced AI training of the workforce, and the encouragement of international standards that

foster the success of American AI innovation. Seeking solutions to the proposed research question will

improve targeting and utilization of investment capital in AI R&D, e.g., domain experts can devote more of

their scarce time and monetary resources to innovation. It will also significantly lower the bar for general

workers to use AI and drastically accelerate the AI workforce’s training to meet the urgent demand from the

market. Therefore, studying the proposed research question is a crucial step toward AI democratization.

1.1 Problem Formulation and Technical Challenges

At first glance, this research question seems to seek an Artificial General Intelligence (AGI), solving it could

solve the rest of the questions in AI. Nevertheless, AGI is too broad for now, and we have to simplify the

problem into a concise theoretical framework to make concrete progress. Therefore, we start with formalizing

5

the data-driven DNN design before elaborating on the technical challenges from both the algorithm and

system sides.

1.1.1 Problem Formulation

Let’s first define the notations for formulating the problem. The layer-wise data processing nature of DNNs

defines itself to be a data-flow graph, and all the existing types of DNNs, including CNN, Transformer, Gener-

ative Adversarial Network (GAN), or Recurrent Neural Network (RNN) confirm to this representation [Tch,

2017]. Representing a data-flow graph is a well-studied problem, and one simple solution is to use the adja-

cent matrix and node list [Cormen et al., 2009]. This allows us to reasonably assume that a vector x can fully

specify the structure of any DNNs, by concatenating the flattened adjacent matrix and node list together. It

is a general practice to place several constraints in designing a neural network, such as setting the maximal

depth of a neural network. Here we use ⌦ to denote the feasible region for x. A neural network x also carries

a set of parameters ✓ for training, denoted as x(✓). In evaluating a neural network x(✓), we apply different

metrics based on tasks. For example, top-1 accuracy is widely used for image recognition in CV, but f1 score

is the key metric for the question-answering in NLP [Rajpurkar et al., 2016]. Here we denote the evaluation

metric as �. Please note the evaluation may also consider other factors such as the latency or memory usage

besides the performance, so � can be multi-objective. Dtrain and Dval represent the dataset for training and

testing, respectively.

Now we’re ready to formulate the data-driven design paradigm of DNNs as an optimization problem:

x⇤ = argmaxx�(x(✓
⇤
, Dval)),where x 2 ⌦

s.t. ✓⇤ = argmax✓�
0
(x(✓, Dtrain))

(1.1)

This optimization problem demonstrates two intimately connected steps. The first line represents the archi-

tecture search that maximizes the performance (�) by varying the design of networks x using the test dataset

Dval, given ✓⇤ as the optimal parameters of x. The final output is the best architecture performing on the test

dataset. The second line outputs the optimal parameters ✓⇤ for the architecture from the first step by training

toward Dtrain, i.e., training the neural network. In this formulation, we will find footing to make the study

of the proposed research question concrete.

6

1.1.2 Technical Challenges

The above optimization problem should be easy to solve with many existing algorithms, such as grid search

or gradient descent if the design of DNN only involved a few parameters and the training of DNN was

fast. However, many hurdles render the problem challenging to solve, requiring both algorithmic and system

innovations to make it practical. We summarize these challenges as follows.

• High-dimensional combinatorics: the problem formulation seeks an optimal configuration of architec-

ture vector x on the feasible region ⌦. This is a traditional problem widely studied in combinatorics that

finds the best structure or solution among several possibilities. The key challenge of the combinatorial

problem is that the feasible region grows exponentially with the number of problem dimensions, also

known as the curse of dimensionality [Bellman, 1966]. Configuring a practical neural network gener-

ally requires more than 20 parameters, making a sweep of all the possible parameters impossible. For

example, NASNet is one of the most popular search spaces for image recognition. The widely adopted

configuration of the NASNet search space has 1021 candidate architectures that require a vector of

28 discrete variables to fully specify [Wang et al., 2019a]. Therefore, sample efficiency is crucially

important in solving the problem with such a vast search space.

• Non-convex optimization: our research problem is also non-convex with many local optimums in the

solution space ⌦. The construction of DNN utilizes many non-convex operators [Bengio et al., 2006];

therefore, both the meta-design of DNN and itself are non-convex functions, which is also empirically

corroborated by NASBench-101 that contains over 4.2 ⇤ 105 the architecture and final evaluation ac-

curacy pairs [Ying et al., 2019]. Due to the multi-modal nature of the problem itself, gradient descent,

hill climbing, or other greedy-based search methods can easily trap into a local optimum, yielding a

sub-optimal solution. An efficient global algorithm is desired to explore a local optimum intelligently

and exploit a promising region to find a good solution.

• Expensive neural network training: today’s big neural network is trained with a massive amount of

data, which dramatically increases the computation cost in training. For example, ResNet-50 takes 29

hours to finish 90-epoch ImageNet training on eight NVIDIA P100 GPUs, while 81 hours to complete

BERT pre-training on 16 v3 Google TPUs [You, 2020]. These data suggest that our formulation of

DNN design can quickly become intractable to the current hardware without a highly sample-efficient

solver, such as using the grid search or exhaustive search. On the other hand, reducing the cost of neural

7

network training for the second step of Eq. 1.1 will also increase the number of samples evaluated in

a given time, i.e., the first step of Eq. 1.1. So, fully utilizing the heterogeneous distributed system to

train neural networks is also very important.

• Utilization of heterogeneous systems: undoubtedly, solving Eq. 1.1 requires a tremendous amount

of computations, urging us to harness the massive computing power from a large-scale distributed

system to approach the problem. Whereas, the distributed system today has evolved to be highly

heterogeneous: a workstation not only has one CPU, but also other co-processors such as NVIDIA

GPU, Google TPU, or Intel Phi. These co-processors are inserted in PCI-E and are equipped with an

independent DRAM, requiring explicit communications to move the data back to on-device DRAM if

the data is located on CPU DRAM. Besides the heterogeneity of processors, the network bandwidth

is also highly heterogeneous. For example, the bandwidth for inter-GPU communications via PCI-E

3.0 is 15.75 GB/s, while NVLink is up to astonishingly 50 GB/s. All of these heterogeneities greatly

complicate the program to maximize the utilization of computing resources.

1.2 Contributions

With the main research question in play, I now summarize my contributions from years of study to build

an intelligent agent that designs DNNs. I study the research question in Eq. 1.1 by drawing insights from

the recent success of Monte Carlo Tree Search (MCTS) in playing Go [Tian et al., 2019a], and we tackle

the sample-efficiency from a brand new perspective of learning the search space partition using MCTS. To

sustain the computation needs from algorithms, we also developed novel software systems to support large

DNNs and a new parallelization strategy to accelerate the distributed DNN training with a theoretical guar-

antee. We have developed an intelligent agent driven by a novel MCTS based solver named Latent Action

Monte Carlo Tree Search (LA-MCTS). This agent has designed many SoTA models for computer vision

tasks using up to 500 GPUs at Facebook, such as finding a neural network that reaches 99% top-1 accu-

racy on CIFAR-10. LA-MCTS is also an award-wining algorithm in the black-box optimization challenge at

NeurIPS-2020 [Sazanovich et al., 2020, Kim et al., 2020b], which has over 68 global participating teams,

including companies such as NVIDIA, Huawei, and IBM [BBContest, 2017]. Therefore, these contributions

allow me to confidently make the following thesis statement:

8

Thesis Statement

With algorithmic improvements and new system designs, it is possible to build an intelligent agent

to replace domain experts in designing neural networks for a variety of AI applications using the

existing computing infrastructure.

1.2.1 Details of Contributions

Developing a practical agent to assist domain experts in designing neural networks requires new algorithms

to tackle the challenge from computational complexity and new systems to embody the algorithms efficiently.

In summary, this thesis has made the following contributions.

Alg1: Propose the principle of learning search space partition using MCTS to improve the sample efficiency

of existing black-box solvers such as Bayesian Optimization.

Application: Training a neural network is very expensive, so the number of networks sampled by the

design process is one of the major bottlenecks. This principle allows the agent to get a better result by

training fewer networks.

Alg2: Propose the principle of using multiple super-nets to improve the performance estimation of neural

networks in the design space.

Application: Super-net is an over-parameterized network used for predicting the performance of net-

works in a design space. It replaces network training with performance prediction, but the prediction is

quite inaccurate. This principle uses multiple super-nets to enhance the predicted ranking correlation

without compromising the speed.

Alg3: Propose the principle of Fourier transform-based gradient sparsification to accelerate distributed DNN

training with a theoretical guarantee to recover the accuracy.

Application: Distributed DNN training can significantly accelerate network training, while commu-

nication is the major bottleneck in this process. This principle allows to drop up to 90% of commu-

nications to expedite distributed training while maintaining the same accuracy as the case without

sparsification.

9

Sys1: Propose the principle of out-of-core GPU computations that pipeline computations and communica-

tions over multiple streams to eliminate the communication cost.

Application: We have seen a growing interest in designing very large DNN, especially in NLP, while

the limited GPU DRAM places an undesired constraint. This principle allows the agent to design large

DNNs with memory requirements far beyond the GPU DRAM without compromising the speed.

Sys2: Propose the principle of using GPU DRAM as a cache to alleviate communications in the pipelined

stream computations on GPUs.

Application: In supporting the large-scale DNN on the GPU, the out-of-core computations consistently

swap out operands to save the memory. This principle reduces unnecessary communication by fully

exploiting the free space on GPU DRAM.

Each principle provides one piece to the jigsaw puzzle of building an intelligent agent to design DNNs.

All of these principles together construct a concrete and coherent solution to the proposed research question.

We have evaluated each principle on various specific yet essential domains, and some principles are also

independently replicated and assessed by the community in public contests. These results consistently cor-

roborate that these algorithm and system principles are very effective at improving the sample efficiency and

sustaining the computation needs from algorithms. Based on these principles, we have developed a work-

ing agent capable of designing DNNs for various tasks to exceed SoTA results using hundreds of GPUs at

Facebook. The rest of this thesis is organized as follows:

PART 1. This part focuses on improving sample efficiency. By drawing insights from the recent

success of AlphaGo [Silver et al., 2016], we build the first agent using Monte Carlo Tree Search (MCTS)

for a better exploration policy to jump out of local optima. MCTS trades off the exploration and exploitation

based on the visiting statistics at individual states, while the static and coarse-grained ✏-strategy simply treats

all the states the same. In Chapter 2, I describe the development of our MCTS-based agent and elaborate the

background of how we approach the research problem. I empirically show that the exploration is critical to

help the agent jump out of a local optimum in the design space, thereby finding a better network than other

agents that use greedy approaches. While we were developing the initial agent, we made the critical insight

that the action space of MCTS is vital to the sample efficiency. This observation is empirically verified by a

controlled experiment with the setup of two experiments being the same except for using two different action

spaces for MCTS. This result motivates us to learn the action space for MCTS to best fit the performance

metric to be optimized. Chapter 3 presents a new algorithm to fulfill this goal, named Latent Action Monte

10

Carlo Tree Search (LA-MCTS), and a scalable and fault resilient software architecture for parallelizing LA-

MCTS. The latent actions in LA-MCTS are SVM boundaries learned from previously collected samples to

partition the search space into good and bad regions. Solvers such as Bayesian Optimization can focus on the

promising region rather than the entire search space. When LA-MCTS is paired with Bayesian optimization,

it introduces many benefits, such as avoiding the over-exploring in high-dimensional problems and signifi-

cantly reducing the complexity for the acquisition optimization. LA-MCTS is also independently replicated

and verified in the black-box optimization challenge at NeurIPS-2020. Specifically, JetBrains research [2]

and KAIST [3] independently replicated ’learning search space partition’ in LA-MCTS and won 3rd and 8th

places among 68 global participating teams, including companies and institutions such as NVIDIA, Huawei,

Oxford, KAIST, IBM, Preferred Networks, and Innovatrics. Finally, the following publications contribute to

this part of the thesis.

Wang, Linnan, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca. ”Neural architecture

search using deep neural networks and monte carlo tree search.” Proceedings of the AAAI Conference

on Artificial Intelligence, (AAAI, 2020).

Wang, Linnan, Rodrigo Fonseca, and Yuandong Tian. ”Learning search space partition for black-box

optimization using monte carlo tree search.” Proceedings of the Neural Information Processing Systems

Conference, (NeurIPS, 2020).

Wang, Linnan, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. ”Sample-efficient neural

architecture search by learning actions for monte carlo tree search.” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI, 2021).

PART.2. The next part describes our effort to expedite the evaluation of neural networks. The data-

driven design process requires evaluating many DNN configurations, and the most straightforward approach

is to train each neural network from scratch. However, training a neural network is quite time-consuming, not

to mention training thousands of them in the entire design process. Reducing the evaluation cost of neural

networks is critical. Otherwise, the computations can easily be prohibitive to the current hardware. This

chapter presents two solutions, either using multiple super-nets to predict the performance of a neural network

without training or training a network on distributed systems. Using the super-net only requires training the

super-net itself, while the super-net predicts the performance of the rest networks. Though the performance

prediction is inaccurate, the super-net approach is speedy. The training approach is very accurate in the

11

performance evaluation for training every neural network from scratch, but the cost is too high for people with

access to a few GPUs. So the training approach is suitable for chasing SoTA results with many GPUs, while

the super-net approach is suitable for getting a working solution with a few GPUs. Chapter 6 describes the

few-shot NAS developed together with Zhao et al. [Zhao et al., 2020] to drastically improve the performance

prediction by only training a few more super-nets. Our approach hits a middle ground between super-net

methods and the training methods, therefore being both accurate and fast in the performance evaluation. We

present extensive results on various search methods, datasets, and tasks to demonstrate the effectiveness of the

few-shot NAS. Chapter 5 presents a new Fast Fourier Transform (FFT) based gradient sparsification technique

to accelerate the distributed DNN training by reducing the size of communications. We present a theoretical

bound to show how the ratio of dropped information affects the convergence and accuracy and point out

a solution to recover the accuracy. Many empirical experiments also show that our FFT sparsification can

accelerate the distributed DNN training and maintain a good accuracy for incurring less approximation error

using FFT. The following publications contribute to this part of the thesis.

Zhao, Yiyang, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. ”Few-shot neural

architecture search.” Proceedings of the International Conference on Machine Learning, (ICML, 2021).

Wang, Linnan, Wei Wu, Junyu Zhang, Hang Liu, George Bosilca, Maurice Herlihy, and Rodrigo Fon-

seca. ”FFT-based Gradient Sparsification for the Distributed Training of Deep Neural Networks.” Pro-

ceedings of the 29th International Symposium on High-Performance Parallel and Distributed Comput-

ing, (HPDC, 2020).

PART.3. I then turn to the system designs to support algorithms. It is a standard practice to train neural

networks on the GPU today, while limited GPU DRAM places an undesired restriction on the network design

domain. We have seen a growing interest in training large neural networks such as language models [Brown

et al., 2020] or using the super-net for the performance predictions [Pham et al., 2018a]. All of these models

require memory footprint far beyond the GPU DRAM. Chapter 6 presents a new deep learning framework

to support very large neural networks on the limited GPU DRAM. The framework features three new system

memory optimization techniques, including liveness analysis, unified tensor pool, and cost-aware recompu-

tation. Together they effectively reduce the network-wide peak memory usage down to the maximal memory

usage among layers. On a 12GB GPU DRAM, our system can train ResNet up to 1920 layers, which is

3.2x deeper than TensorFlow and 12.63x deeper than Torch on the same GPU. The following publication

contributes to this part of the thesis.

12

Wang, Linnan, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu, and Tim

Kraska. ”Superneurons: Dynamic GPU memory management for training deep neural networks.” Pro-

ceedings of the 23rd ACM SIGPLAN symposium on Principles and Practice of Parallel Programming,

(PPoPP, 2018).

PART.4. The three parts above should collectively present a coherent solution to build an MCTS based

agent to design neural networks. Finally, I show that our agent can design DNNs for various tasks to beat

SoTA results.

Chapter 2

Background and Related Work

Using computer simulations to design the neural network via a data-driven approach has been tried since

the 1980s [Schaffer et al., 1992]. Yet those early attempts to solve this daunting problem, while yielding

some notable success in some small-scale tasks, had also encountered many difficulties, especially when

the community did not fully recognize the power of neural networks at that time. For example, the limited

computing power in the 1980s is one major hurdle to try out thousands of design configurations. Besides,

the lack of large-scale labeled datasets also limits neural networks to unleash their remarkable capabilities

in tasks such as translation and image recognition. With the advent of powerful GPU and ImageNet in the

2010s, the community recognized neural networks as a powerful technology. But it was not until 2016 that

the interests in automating the design of neural networks have been stirred once again for showing the case

that an algorithm-designed neural network for the first time reached the SoTA human-designed network on

the ImageNet using 500 GPUs [Zoph and Le, 2016]. And that time, the technology was named Neural

Architecture Search (NAS).

This chapter provides a review of recent advances in automating the design of neural networks and ex-

plains the basic technical details and their pros and cons as a prerequisite to introducing our work. Much

of our review is engineering focused, which means that we will scrutinize the methodology from building a

practical agent to design neural networks. Therefore, we’re unconcerned about questions such as whether the

perception in a neural network captures the actual biological structure or not. Instead, we focus on building

a practical agent to use existing operators such as convolution, pooling, or activation to assemble a neural

network as a data flow graph for solving various tasks in natural language processing or computer vision.

With this goal, we seek new efficient algorithms and build a reliable distributed system infrastructure so that

13

14

DESIGN
SPACE

OPTIMIZATION

EVALUATION

TRAIN

ESTIMATION

SYSTEM
INFRA

DESIGN AGENT

F(X)

X =

Figure 2.1: The abstraction of key components in the neural architecture search.

the algorithm and system can work together synergistically.

After surveying a variety of journals and proceedings, we abstract any existing NAS agent into 3 key

modules, which are design space, optimization and evaluation. Fig. 2.1 provides an overview of these com-

ponents. The design space represents the desired way to create the neural networks, such as setting the

maximal depth, the types of operators to use, or constructing linear or non-linear structures [Wang et al.,

2018a]. The design space varies from task to task, and these constraints imposed on the design space can

alternatively be viewed as constraints to bound the following architecture optimization. Here we assume any

architecture can be represented by a vector x, and the optimization intends to find the optimal configuration

of x on the feasible region bounded by the design space. The optimization module proposes an architecture

x for the evaluation module to get the performance of the network f(x). Please note that the metrics used

by evaluation can be multi-objective, then the optimization finds the optimal Pareto front to make the trade-

off among all the objectives. The extremely costly evaluation of a neural network gives rise to techniques

for approximating the performance of a neural network without training. Therefore, the evaluation module

contains a sub-module for the performance estimation and a sub-module to get true performance by training.

Finally, with the new evaluated neural network, the optimization module augments the data to inform the next

decision.

We organized the rest of this chapter to focus on the recent advances in these three modules. Sec. 2.1

reviews several design spaces for various tasks. Many methods can be applied in the optimization module,

such as reinforcement learning, Bayesian optimization, evolutionary algorithms, gradient descent, Monte

Carlo tree search, etc. We discuss the pros and cons of these algorithms for NAS in sec. 2.2. Finally,

we demystify the estimation and the training methods in the evaluation module so that readers can clearly

understand the trade-off between the computations and final accuracy. Though there is a rich literature on

NAS in the 1980s, the rest of this chapter primarily focuses on recent works after 2016.

15

HT-1 XT HT-1 XT

HT

(a) The CNN
design space

(b) The searched
CNN structure

(d) The searched
RNN structure

(c) The RNN
design space

Zoph and Le, 2016 Zoph and Le, 2016

Figure 2.2: The design space used by [Zoph and Le, 2016].

2.1 Design Space

2.1.1 Graph Based Search Space

Perhaps the most intuitive way to represent a neural network is the graph. Despite their different functionali-

ties, the 27 types of existing neural networks [Tch, 2017] suggests the graph structure. Using a graph-based

design space, Zoph and Le [Zoph and Le, 2016] are the first to perform a large-scale NAS on 500 GPUs

by showing that an algorithm-designed neural network can perform nearly as good as the SoTA network

designed by the expert. Fig. 2.2 shows the design space used in [Zoph and Le, 2016]. For example, the

tunable components for a CNN are the length of the neural network and the configurations of the convolution

layer, including filters, strides, and the source of input. For generating recurrent neural networks, they use the

basic motif shown in Fig. 2.2(c) to construct a hierarchical search space. Each node in this motif can choose

operators from element-wise multiplications, activation functions, addition, and other basic operations. By

recursively applying these motifs, Fig. 2.2(d) suggests the design of this search space can incorporate the

formulation of LSTM.

Here we review two design spaces inspired by this early work in Fig. 2.2 that are also widely used in this

thesis and NAS literature today.

NASNet Search Space

Fig. 2.2 suggests the hierarchical motif pattern used for designing RNN is more generic than the sequential

CNN search space, then Zoph et al. [Zoph et al., 2018b] explores this motif pattern for designing CNN and

16

NORMAL

REDUCE

NORMAL

REDUCE

NORMAL

XN

XN

XN

NORMAL

XN

XN-1 XN-2

BLOCK BLOCK

B
LO
C
K

+BLOCK

0

7

1

avg
3x3none

+
3

nonesep
3x3

+
5

max
3x3

avg
3x3

+
2

sep
3x3

sep
5x5

+
4

sep
3x3

avg
3x3

+
6

(a) The NASNet
network structure

(b) The cell structure (c) The searched cell structure

Real et al., 2019

Figure 2.3: The illustration of NASNet search space.

propose the NASNet search space. It turns out that the NASNet search space works astonishingly well for im-

age recognition. Notably, using the NASNet search space, their algorithm found a family of networks termed

NASNet that beat the best human-designed networks on ImageNet by a non-negligible margin. Though priors

works [Zoph and Le, 2016, Baker et al., 2016] conducted a large-scale search on CIFAR-10, it is the first time

that NAS pushes SoTA results on ImageNet that is an authoritative dataset widely recognized by academia

and industry and far more challenging than CIFAR-10 in any dimensions.

A network in the NASNet design space constitutes two types of normal and reduce cells sequentially

stacked together by following the pattern in Fig.2.3(a). The image sequentially flows through these cells, and

the output of the last normal cell feeds into a softmax to produce a probabilistic distribution. The normal cell

maintains the input and output dimensions with the padding, while the reduce cell halves the height and width

by setting the stride to 2. Fig. 2.3(b) demonstrates the internal hierarchical structure of a cell, and Fig. 2.3(c)

provides an example of NASNet cell. Please note we only describe normal cells here, as the reduce cell

shares the same structure. Fig. 2.3(b) suggests the two inputs of a cell are from the outputs of the last two

cells. A cell has blocks in it, and each block also has two inputs, which can be any outputs of proceeding

blocks or the inputs to the cell inputs, e.g., in Fig. 2.3(b). Finally, all the outstanding outputs of blocks are

concatenated in the channel dimension as the cell’s output. A block consists of a left and a right branch, and

a branch consists of one or multiple basic network layers sequentially linked together. The outputs of both

branches add together as the block’s output. We have extensively used this NASNet search for evaluations.

17

IRB

IRB

+
1*1

1*1

K*K

IRB

(a) The EfficientNet design space (b) The searched CNN

Cai et al., 2019

Figure 2.4: The illustration of EfficientNet search space.

EfficientNet Search Space

The branches in a NASNet cell complicate the design; therefore networks from this search space are generally

slower to execute than the AlexNet style linear networks. In many scenarios, the latency of a network is

critical in practice, motivating researchers to look for a simplified search space to design good performing yet

fast CNN. The EfficientNet search space is one of the most popular search spaces for this purpose. Compared

to the NASNet search space, the EfficientNet only comprises sequentially connected Inverted Residual Block

(IRB) [Tan and Le, 2019a]. Fig 2.4(a) demonstrates the 3 components inside a IRB. After the first convolution

with the 1-by-1 kernel size to scale up the channels, there is a depth-wise k-by-k convolution followed by

another 1-by-1 convolution to scale back the channels. So the design space searches for the expansion ratio

induced by two 1-by-1 convolutions, the filter, and kernel size for the middle depthwise convolution. We use

this search space to design low flops models.

While the search spaces discussed so far are acyclic graphs, some networks can have the cyclic graph

pattern. For example, the parameter sharing in ALBERT [Lan et al., 2019] diverts the output from attention

or several attention layers back to its input, looping for a few times. The design space should vary from tasks

to tasks, and the EfficientNet and NASNet search spaces are majorly for tasks in computer visions. Therefore,

the design of search space can be diverse to cover a broad scope of tasks.

2.1.2 Graph Generator based Search Space

Apart from explicitly building neural networks, another interesting direction is to find a meta-function that

generates neural networks following certain patterns. One example is using graph generators. For exam-

ple, [Xie et al., 2019] draw insights from random graph theory, using Erdős–Rényi [Erdős and Rényi, 1960],

18

ER(0.8)

ER(0.6)

ER(0.4) ER(0.2)

BA(7) BA(5)

BA(3)

BA(2) BA(1)

WS(8, 1.0)

WS(6, 1.0)

WS(4, 1.0)

WS(2, 1.0)

WS(8, 0.75)

WS(6, 0.75)

WS(4, 0.75)

WS(2, 0.75)

WS(8, 0.5)

WS(6, 0.5)

WS(4, 0.5)

WS(2, 0.5)

WS(8, 0.25)

WS(6, 0.25)

WS(4, 0.25) WS(2, 0.25)

WS(8, 0.0)

WS(6, 0.0)

WS(4, 0.0)

WS(2, 0.0)

Figure 2.5: The illustration of networks generated by Erdős–Rényi(ER), Barabási–Albert(BA) and
Watts–Strogatz(WS) random graph generators. These models takes in a few parameters to generate graph
that follows the certain pattern. Figure courtesy of [Xie et al., 2019].

Barabási–Albert model [Albert and Barabási, 2002] and Watts–Strogatz model [Watts and Strogatz, 1998] to

generate 3 classes of randomly connected neural networks. Fig. 2.5 demonstrates some networks generated

by these three random graph generators. Though these graphs look pretty random, their results are surpris-

ingly better than or comparable to all existing hand-designed networks [Xie et al., 2019, You et al., 2020].

The result introduces a new perspective to learn a meta-function to represent various search spaces so that

the optimization can tweak the hyper-parameters for the graph generators to find a class of good networks.

Please note that the graph generator [Li et al., 2018b] is not the only way to represent search spaces; it can

be any meta-function to delegate a set of search spaces. Though this thesis does not explore this direction, it

can be great future work.

2.2 The Optimization Module

The optimization module maximizes predefined evaluation metrics by tuning the network architectures. It

proposes a new network design x that satisfies the definitions of design space, queries the network perfor-

mance f(x) from the evaluation module. This section reviews a broad spectrum of optimization methods and

discusses each techniques’ pros and cons in the context of NAS.

19

2.2.1 Black Box Optimization

Black-box optimization refers to solve a set of problems without algebraic formulation of the system. Yet

there are some advances in the deep learning theory [Du et al., 2018], an analytical formulation of meta-

design of neural networks is still largely unknown. Therefore, it is natural to treat neural networks as a

black box and use this class of techniques to optimize the design. Actually, it has been a long history to

combine the black-box optimization and the neural network design; some early works can be dated back to

the 1980s [Belew and McInerney, 1989, Changeux, 1980, Schaffer et al., 1992].

The black box optimization solves the following problem preferably with fewer samples x:

x⇤ = argmax
x2X

f(x) (2.1)

Though we don’t know the formulation of system f , the system returns f(x) given an input x. This mech-

anism gives rise to a set of techniques that maximize f by trying different configurations of x based on the

previous experience. Here we review a few prominent black-box solvers, including evolutionary algorithm

and Bayesian optimization.

Grid Search

Grid search is among one of the simplest yet prevalent methods to solve black-box optimization. It specifies

a set of values for each problem dimension, then performs a Cartesian product of these sets to generate a

set of points that take a sweep of search space [Bergstra and Bengio, 2012]. Another alternative technique

to generate near uniformly distributed points are Latin hypercube sampling [McKay et al., 2000] or Sobol

sequences [Sobol’, 1967]. Apparently, the grid search is only limited to small scale problem due to the curse

of dimensionalities, so people usually practiced grid search in an iterative manner such that reducing the

search space at iteration N+1 to the adjacent regions of good points at iteration N. Grid search renders two

major drawbacks when applied to NAS. First, it evaluates many samples in sweeping the search space, while

the cost of evaluating a neural network, even by the performance prediction, is non-trivial. Second, the grid

search lacks a mechanism to systematically balance the exploration and exploitation, as the global optimum

is not necessarily located around the good points at iteration N.

20

Evolutionary Algorithm

Evolutionary Algorithm (EA) is a set of optimization techniques inspired from Darwinism [Huxley, 1860]

that ’all species arise and develop through the natural selection of small and inherited variations that increase

the individual’s ability to survive and reproduce’ [Darwin, 1909]. By mimicking the biological evolution,

EA is an iterative algorithm that gradually improves the solution over generations. First, EA starts with a

random population of individuals, with their performance measured by a fitness function. Second, EA weeks

out the low-performing individuals and only keeps the top-performing candidates for reproducing offspring

through crossover or mutations. Finally, the new offspring and the high-performing individual will form a

new population for the next iteration. Here we can view the individual as a candidate solution to the problem

and the fitness function as the objective function. The mutation and crossover are equivalent to perturbing the

current candidate solutions. While the process of EA seems to be simple, it can solve very complex problems

in practice [Salimans et al., 2017]. EA is a vast family of algorithms; here, we focus on three prominent

evolutionary strategies for choosing individuals in reproduction.

• Simple Evolution: this is the simplest strategy that uses a threshold to keep individuals with the highest

fitness scores for the reproduction, e.g., choosing the top 10%. Let’s represent an individual as a vector;

then, the crossover randomly selects two survivors for recombining a segment of them to form a new

individual, and the mutation simply randomly perturbs a segment of the survivor. One drawback of this

approach is that we need to define the mutation and crossover rules for different tasks explicitly. An

alternatively generic approach is to sample new individuals from a multi-variate Gaussian N (µ,⌃),

and the update rule of N (µ,⌃) is as follows

µt+1 =
1

N

X

x2X t

xt (2.2)

⌃t+1 = I (2.3)

where X t is the group of survivors that surpass the fitness threshold at iteration t, and I is the identity

matrix. The update rule suggests that the simple evolution strategy only adapts µ from top individuals

in the population, so the improvement is bounded by I at each iteration.

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES): following the idea of sampling from

a multivariate Gaussian N (µ,⌃), CMA-ES adapts both µ and ⌃ based on top individuals. There

21

are several advanced versions of CMA-ES [Hansen, 2006], here we describe the simplest form to

demonstrate the gist of CMA-ES. Similarly, CMA-ES employs a threshold to pick the candidates (X)

with top fitness scores, and adjust µ according to individuals x 2 X . The key change is to adjust

variance ⌃ as follows,

⌃t+1
ij =

1

N

X

x2X t

(xi � µt
i)(xj � µt

j) (2.4)

where ⌃t+1
ij represents the covariance located at the ith row and jth column at iteration t+1, and µi is

the ith element of µ. Since ⌃ controls the size of the sampling region, the above equation suggests

the sampling region grows if survivors sparsely scatter in the sampling region when the algorithm is

making an improvement, and shrink otherwise. Therefore, CMA-ES is generally faster than simple

evolution.

• Natural Evolutionary Strategies (NES): previous approaches all discard individuals with a low fitness

score, while discarded individuals may provide a better estimate about what not to do. So the im-

provement of NES over CMA-ES is to use all the individuals in updating N (µ,⌃) by calculating the

gradient toward µ and ⌃ to maximize the expected fitness under the search distribution N (µ,⌃), i.e.

J(✓) =

Z
f(x)⇡(x|✓)dx (2.5)

where ⇡(x|✓) is a probability distribution function, and ✓ is the parameter of this density, e.g. µ and ⌃

for the density of Gaussian distribution. f(x) is the fitness function. By using the same log-likelihood

trick as in the REINFORCE algorithm [Williams, 1992], we can calculater✓J(✓) as follows:

r✓J(✓) t
1

N

NX

k=1

f(xk)r✓log⇡(xk,✓) (2.6)

The complete derivation is straightforward in [Wierstra et al., 2014], and they also provide the update

equations for using the multi-variate Gaussian distribution.

These evolutionary strategies all suggest that there are numerous evaluations of candidate solution x

inside the fitness function at each iteration. Even if it can pair with a surrogate model [Jin, 2011], Evolutionary

Algorithm still requires many samples to work well. In NAS, x is equivalent to a design of neural network

and evaluating x is either from training or predicting (Fig. 2.1). Training a neural network is very expensive,

22

while the prediction is also non-trivial as we need to evaluate the masked Supernet on a test dataset. Therefore,

Evolutionary Algorithm usually needs many GPUs to work well.

Muller et al. [Miller et al., 1989] and Kitano [Kitano, 1990] pioneer in applying Evolutionary Algorithm

to the design of neural networks. Their work uses the genetic algorithm to propose architectures and use the

back-propagation to train and evaluate an architecture. [Stanley and Miikkulainen, 2002] further explores

the idea of evolving both the topology of a neural network and the weights. Due to the previous success,

many researchers also explore Evolutionary Algorithm for NAS in recent years. [Real et al., 2019a] proposes

Regularized Evolution to design a neural network using the NASNet search space. The performance of

searched network beats the best human-designed network on ImageNet, and they also show many downstream

tasks such as object detection can be improved using the searched network. Though Regularized Evolution

is similar to the simple Evolution described above, they performed experiments on 500 GPUs to get this

astonishingly good result. Deploying neural networks to mobile devices is also an important topic today.

In this scenario, we need to trade-off multiple objectives on the Pareto front in the design optimization.

NSGA [Deb et al., 2002] is a popular multiple-objective Evolutionary Algorithm, and [Lu et al., 2019] et al.

applies NSGA to find the Pareto front in designing a fast and good neural network.

Bayesian Optimization

Bayesian optimization is an efficient global optimization method that utilizes the Bayesian rules to optimize

a black-box function. It is known to be sample efficient for using Gaussian Process as a surrogate model;

therefore, Bayesian Optimization seems to be a great fit to the optimization module since evaluating a neural

network is very expensive. Bayesian optimization consists of two major parts, a surrogate model that main-

tains a probabilistic belief about the function and an acquisition function that determines where to sample

next. The surrogate model captures the prior belief about the function by modeling toward all the previ-

ous samples (x, f(x)), then it yields the posterior distribution to the acquisition function for sampling the

next x. The new x and f(x) will be merged into the dataset to update the surrogate in the next iteration.

Here we mainly review the Gaussian Process and several commonly used acquisition functions in Bayesian

optimization.

• Gaussian Process is inarguably the foundation to the Bayesian Optimization. The beauty of Gaussian

Process Regression (GPR) is the non-parametric modeling that the posterior predictive distribution

can be acquired by marginalizing all the possible models without learning it. Let’s consider a general

23

regression problem,

y = wT
�(x) + ✏ (2.7)

where � is a kernel function. This regression is generic as we can use different kernels to perform

the various types of regression. So different w corresponds to different predictive models. Given the

dataset D = {(x1, y1), ..., (xn, yn)}, the posterior predict distribution is

P (y|D,x) =

Z

w
P (y,w|x, D)dw (2.8)

=

Z

w
P (y|x,w, D)P (w|D)dw (2.9)

The elegance of GPR is that we are averaging all the possible results from all the possible w, and

P (y|D,x) is a Gaussian distribution if the priors are also Gaussian likelihood, i.e.

P (y⇤|D,x) ⇠ N (µy⇤|D,⌃y⇤|D) (2.10)

and x⇤ and y
⇤ = f(x⇤) are predictive test points and results, respectively. Let’s assume y follows a

Gaussian ⇠ N (µ,⌃) and we can center the distribution at 0 by subtracting the mean estimated from

samples. Because an entry in ⌃ measures the similarity between two data points, here we can use a

kernel function to compute ⌃ instead, such as RBF kernel below

⌃ij = ⌧e

�kxi�xjk
2

�2 (2.11)

If we represent ⌃ as | K K⇤
KT

⇤ K⇤⇤
|. K represents the kernel results among training samples, K⇤ repre-

sents the kernel results among training samples x 2 D and predicting points x⇤, and K⇤⇤ represents

the kernel results among predicting points. Then the conditional distribution in Eq. 2.10 is

µy⇤|D = K
T
⇤ K

�1
y (2.12)

⌃y⇤|D = K⇤⇤ �K
T
⇤ K

�1
K⇤ (2.13)

Now we complete the introduction of GPR, and more information can be found at [Weinberger, 2017].

Bayesian optimization further utilizes µy⇤|D and ⌃y⇤|D in the acquisition to select samples.

24

K
�1 in Eq. 2.12 indicates the complexity cubically increases with the number of training samples since

the matrix inverse is an O(n3) operation. While most real-world problems are high dimensional, and reliably

optimizing a complex function requires many evaluations, which has motivated many works to scale up BO by

approximating the expensive Gaussian Process (GP), such as using Random Forest in SMAC [Hutter et al.,

2011a], Bayesian Neural Network in BOHAMIANN [Springenberg et al., 2016], and the tree-structured

Parzen estimator in TPE [Bergstra et al., 2011]. BOHB [Falkner et al., Ster] further combines TPE with

Hyperband [Li et al., 2017] to achieve strong any time performance. Using a sparse GP is another way to

scale up BO [Seeger et al., 2003, Hensman et al., 2013]. However, sparse GP only works well if there exists

sample redundancy, which is barely the case in high-dimensional problems.

• The acquisition function (�) selects where to sample next using the Gaussian process priors. There are

many strategies to implement �, but the process can be generalized as follows:

maximize �(µy⇤|D,⌃y⇤|D, y
+) (2.14)

s.t. x⇤ 2 D (2.15)

where x⇤ is the predictive point, and y
+ is the best f(x) sampled so far. Please note K⇤ and K⇤⇤ in

the equation 2.12 are computed from x⇤ and current samples x. Here we review 2 commonly used �

in the Bayesian optimization.

The first one is Probabilistic Improvement (PI). The intuition of PI is to maximize the probability that

the subsequent evaluation will improve upon the current best y+. Let’s denote as the cumulative

distribution function of the standard Gaussian distribution, so �PI is defined as follows:

�PI(x
⇤) = 1� P (f(x⇤) < y

+) = 1� P (
f(x⇤)� µy⇤|D

⌃y⇤|D
<

y
+ � µy⇤|D

⌃y⇤|D
) (2.16)

= (
y
+ � µy⇤|D

⌃y⇤|D
) (2.17)

Expected Improvement is another acquisition function that maximizes the average improvement w.r.t

f(x⇤) after sampling at x⇤, i.e.

�EI(x
⇤) = E(max(f(x⇤)� y

+
, 0)) (2.18)

25

[Jones et al., 1998] shows that �EI can be analytically solved, yielding the following update rule

�EI(x
⇤) = (µy⇤|D � y

+ � ⇠) (
µy⇤|D � y

+ � ⇠
⌃y⇤|D

) +⌃y⇤|Dp(
µy⇤|D � y

+ � ⇠
⌃y⇤|D

) (2.19)

Optimizing the acquisition function is not trivial, especially when X is high dimensional, while a sub-

optimal solution to the acquisition optimization will deteriorate the performance. Existing Bayesian methods

such as SMAC [Bergstra et al., 2011], TPE [Bergstra et al., 2011], and BOHB [Falkner et al., Ster] use

iterated local search/evolutionary algorithm to optimize the acquisition, and [Wilson et al., 2018] provides

an in-depth discussion of the impact of different optimization algorithms on the performance. In this thesis,

chapter 5 proposes a new MCTS based method that learns to partition the search space; then, the acquisition

function can be easily optimized inside a partition instead of the entire search space.

The existing acquisition function also tends to be myopic, leading to over-exploring the boundary of a

search space [Oh et al., 2018]. Therefore, ML practitioners usually observe that the performance of Bayesian

optimization is as poor as a random search, especially in high-dimensional problems. There is much work

to specifically study high-dimensional Bayesian optimization [Wang et al., 2013, Kawaguchi et al., 2015,

McIntire et al., 2016, Chen et al., 2012, Kandasamy et al., 2015, Wang et al., 2016c]. One category of methods

decomposes the target function into several additive structures [Kandasamy et al., 2015, Gardner et al., 2017],

which limits its scalability by the number of decomposed structures for training multiple GP. Besides, learning

a good decomposition remains challenging. Another category of methods is to transform a high-dimensional

problem into low-dimensional subspaces. REMBO [Wang et al., 2016c] fits a GP in low-dimensional spaces

and projects points back to a high-dimensional space that contains the global optimum with a reasonable

probability. Binois et al. [Binois et al., 2020] further improve the distortion from Gaussian projections in

REMBO. While REMBO works empirically, HesBO [Nayebi et al., esBO] is a theoretical sound framework

for BO that optimizes high-dimensional problems on low dimensional sub-spaces embeddings; In BOCK [Oh

et al., 2018], Oh et al. observed that existing BO spends most evaluations near the boundary of a search space

due to the Euclidean geometry, and it proposed transforming the problem into a cylindrical space to avoid

over-exploring the boundary. Recent works explore space partitioning and local modeling that fits local

models in promising regions to achieve strong empirical results in high-dimensional problems. For example,

EBO [Wang et al., 2017b] uses an ensemble of local GP on the partitioned problem space. Based on the

same principle of local modeling as EBO, recent trust-region BO (TuRBO) [Eriksson et al., uRBO] has

outperformed other high-dimensional BO on a variety of tasks. However, their space partitions follow a fixed

26

criterion (e.g., K-ary uniform partitions) independent of the objective to be optimized. Following the learning

path, one under-explored direction is to learn the space partition, and this thesis explores this direction in

Chapter 5.

Monte Carlo Tree Search

Besides the recent success in games [Silver et al., 2016, Schrittwieser et al., 2019, Silver et al., 2017], Monte

Carlo Tree Search (MCTS) is also widely used in robotics planning and black box optimization [Buşoniu

et al., 2013, Munos, 2014, Weinstein and Littman, 2012, Mansley et al., 2011]. The formal introduction

of MCTS can be found in chapter 3. Here we focus on reviewing recent advances of MCTS in black-box

optimization.

When MCTS is applied to optimize a function, it can be seen as an optimistic sampling strategy where, at

each round, MCTS explores the space believed to be promising according to previous samples [Munos, 2011].

Alternatively, we can view MCTS as partitioning the search space into regions of different performance, then

sample from the promising region. Munos pioneers in this line of research by proposing Deterministic Opti-

mistic Optimization (DOO) and Simultaneous Optimistic Optimization (SOO) [Munos, 2011]. DOO uses a

tree structure to partition the search space by recursively bifurcating the region with the highest upper bound,

i.e., optimistic exploration, while SOO relaxes the Lipschitz condition in DOO on the objective function.

HOO [Bubeck et al., 2011] is a stochastic version of DOO. While prior works use K-ary partitions, Kim et

al. show Voronoi [Kim et al., 2020a] partition can be more efficient than previous linear partitions in high-

dimensional problems. In this thesis, based on the idea of space partitioning, we extend current works by

learning the space partition so that the partition can adapt to the distribution of f(x). Besides, the sample ef-

ficiency of MCTS alone is not attractive for lacking a surrogate model such as GP in Bayesian Optimization.

We further show that MCTS and Bayesian optimization can work synergistically together: the learned space

partition helps Bayesian optimization avoid over-exploring by bounding within a small region and reduce

the complexity in optimizing the acquisition function. Chapter 5 provides more details to our approach to

learning the search space partition, and Chapter 4 discusses applying our new MCTS method to build the

optimization module in the NAS agent.

2.2.2 Reinforcement Learning

Reinforcement Learning (RL) studies the problem of learning a policy for an agent to act in an environment

so that the cumulative reward can be maximized. RL is one of 3 basic pillars in machine learning alongside

27

MDP

!!"#, "!"# #!

"!"#= T("!, #!)
!!"#= R("!, #!, "!"#)

EXPERIENCE
"#, ##, !#
"$, #$, !$
"%, #%, !%

"&, #&, !&
….

!! 	= Policy(#!)
AGENT

Figure 2.6: The workflow of RL that interacts with a MDP.

with the supervised and unsupervised learning. This section briefly reviews of basic concepts in RL and their

applications to NAS.

Background

Markov Decision Process (MDP) [Bellman, 1957] is a general mathematical framework to formalize the

agent-environment interactions in RL. The NAS agent builds a neural network by wiring various operators

together, so the process can be modeled by a discrete time MDP that defines the reward and the probability of

destination states after taking an action at the current state. The discrete time MDP consists of six tuple, (S, A,

R, T, �), where S represents states in MDP that describe all the possible configurations of this discrete world;

A is a set of possible actions; R is a reward function that outputs a reward given the current state after taking

an action to the next state; T is a transition function that outputs the probability of arriving the next state after

taking an action on the current state; � is a discount factor to regulate the preference over a long-term and

shot-term rewards. There are many kinds of MDPs designed for different scenarios. For example, continuous

time MDP is often used in the robotics such as the joint rotation control in a robot arm. An agent may not

observe its current state in an MDP such as the case in Elevator Control [Cassandra, 1998], so this kind of

problems use Partially Observable Markov Decision Process (POMDP) to model the environment.

While MDP is a very generic in the above formulation, modeling the neural network design only requires

a deterministic MDP. In NAS, an architecture corresponds to a state so the actions are adding a new layers

from a pool of operators or modify the hyper-parameters in existing layers. Every time an agent modifies an

architecture (s), the next architecture (s
0
) is always certain, i.e. s⇥ a! s

0
is deterministic. The reward of a

state is the performance of the network represented by the state. Fig. 2.6 depicts how RL interacts with MDP

in the context of NAS. Given an architecture st, an agent selects an action at following the current policy that

modifies the architecture to st+1. The agent collects the reward rt+1 after taking the action at. The agent

loops this action for indefinite steps until reaching a terminating condition, and all the past state, action and

28

reward will be stored into the experience to train the policy. RL tries to learn a good policy for an agent that

maximizes the long term discounted reward,

1X

t=1

rt�
t (2.20)

Here the agent tries to find a path with the largest cumulative performance sum of networks located on the

path. However, NAS mostly concerns about a single architecture that delivers the best performance. RL also

optimizes a policy for the entire states, so the number of samples required to find a good policy for all states

is inevitably higher than the black box optimization that only finds a good solution.

RL algorithms

RL algorithms, in general, can be classified into model-based RL, model-free RL, and policy-based RL.

This three-category is based on the functions to be estimated. Model-based RL estimates the reward (R̂)

and transition (T̂) functions. If the action-value function, e.g. (Q̂), is estimated, it is the model-based RL.

Policy-based RL directly estimates the policy ⇡. When combined with deep neural networks, model-free and

policy-based RL, a.k.a deep RL methods, have demonstrated great success in many challenging domains from

Atari [Mnih et al., 2013] to robotics [Levine et al., 2016]. Here we only focus on reviewing the model-free

and policy-based RL methods.

Q-learning [Watkins and Dayan, 1992] is one of the classical algorithms in model-free RL. Q-learning

utilizes a Q-function to build the policy, which can be viewed as a giant lookup table that inputs the current

state s and action a and outputs a score. At any states, Q-learning follows the policy of

⇡q(a|s) = argmaxa0Q(s, a
0
) (2.21)

which takes the action yielding the highest q score. So the task is to learn the optimal Q-function (Q⇤) from

the past experiences (st, at, rt) to maximize the cumulative rewards. At each step, Q-learning updates the

Q-function as follows,

Q̂(st, at) = Q̂(st, at) + ↵(rt + � ⇤ argmaxa2AQ̂(st+1, a)� Q̂(st, at)) (2.22)

where st+1 represents the next state after taking action a at the current state st, � is the discounted factor

and ↵ is the learning rate. Every step generates an entry of st, at and rt to update the Q-function. Using

29

a ✏ exploration strategy, Q-learning is theoretically guaranteed to converge to the optimal policy Q
⇤ [Melo,

2001]. There are also many works to extend the Q-learning to the deep RL regime by implementing the

Q-function with a deep neural network, such as Deep Q Network [Mnih et al., 2015].

Baker et al. [Baker et al., 2016] implemented the first Q-learning based NAS agent, which treats a state

s as a concrete neural architecture and an action a as adding a layer or modifying the hyper-parameters of

an existing layer. Training a neural network is very expensive, so training every new network at a new state

s is not desired. Baker et al. ingenuously introduce the terminal action to solve this question. Specifically,

the agent can choose to terminate at any state when the network represented by the state is actually trained.

So the reward for selecting the terminal action is the actual network accuracy, while the reward for transiting

among non-terminal states is 0. The terminal action allows the agent to build a very deep neural network

before the actual network training. Following this design of MDP and the update rule in Eq. 2.22, they found

a network that achieves the top-1 accuracy of 95.38 on CIFAR-10.

The policy-based RL methods directly update the parameterized policy w.r.t the cumulative reward by

the gradient descent. Weng provides a comprehensive review of various policy gradient methods in [Weng,

2018]. Here we focus on REINFORCE [Williams, 1992], which has been applied in NAS to achieve great

success. Let’s define a parameterized stochastic policy as ⇡✓, e.g., implemented with a deep neural network.

So the expected return is

J(✓) = E(
TX

t=0

rt|⇡✓) =
TX

t=i

P (st, at|⌧)rt+1 (2.23)

where i is a starting point, and P (st, at|⌧) is the probability of st, at on the trajectory ⌧ . By using the log

trick, Williams derives the update rule for a parameterized policy ⇡✓ is as follows,

r✓J(✓) =
T�1X

t=0

r✓log⇡✓(at|st)(
TX

t0=t+1

�
t
0
�t�1

rt0) (2.24)

The full derivation of the above equation is available in [Williams, 1992].

Zoph and Le utilize REINFORCE to implement a NAS agent [Zoph and Le, 2016] that designs a network

to achieve the competitive performance as the best human-designed network. They use a Recurrent Neural

Network (RNN) to generate the architecture and update the parameters of RNN using REINFORCE. This

agent samples an architecture from a Recurrent Neural Network then evaluates the network to get the accuracy

as the reward. Finally, the agent computes the gradient w.r.t the rewards and sampled networks following the

30

equation 2.23. This process suggests that the agent needs evaluate a network at every update step, and they

use 800 GPUs to evaluate 800 networks concurrently. After training 12800 architectures, the agent finds

a network that achieves 96.35% top1 accuracy on CIFAR-10. Although REINFORCE has shown NAS as

a promising direction, the results are from massive computations using hundreds of GPUs. However, very

few groups have access to hundreds of GPUs running for weeks. The lack of GPUs naturally motivates

researchers to look into several possible directions to improve the efficiency, either from enhancing the sample

efficiency [Wang et al., 2019a] or expediting the network evaluation [Pham et al., 2018a]. Indeed the goal of

RL is to find a policy that maximizes the cumulative rewards, while NAS mainly concerns the performance

of the final architecture. Therefore, methods from black-box optimization are more suitable than RL in NAS.

2.2.3 Gradient Descent

Another popular approach is to formalize the architecture optimization and the network training as a bi-level

optimization, solved by gradient descent. The formulation of this bi-level optimization is as follows,

min↵ Lval(w
⇤(↵),↵) (2.25)

s.t. w
⇤(↵) = argminwLtrain(w,↵) (2.26)

which is exactly the same as equation 1.1. The second optimization is the bottleneck of bi-level optimization

as training a neural network is extremely expensive, while the gradient descent approximates the architecture

gradient by using only one step of the weight update in the network training:

r↵Lval(w
⇤(↵),↵) ⇡ r↵Lval(w � ⌘ ⇤ rwLtrain(w,↵),↵) (2.27)

this approximation avoids training the network until the convergence [Liu et al., 2018b]; therefore, it can solve

the problem within days, even using 1 GPU. Alternatively, black box optimizations or reinforcement learning

either evaluate an architecture by training from scratch or approximate the optimal weight by transferring

from a trained Supernet. We will discuss the pros and cons of each method in sec. 2.3.

The above approximation significantly lowers the computation requirement for performing NAS, which

has stirred much interest to study gradient-based methods. One direction is to improve the gradient method

itself. For example, P-DARTS [Chen et al., 2019b] observes there is a depth gap in the architecture during

31

the search and evaluation steps in the search for CNN on the NASNet search space. Then, P-DARTS pro-

poses progressively increasing the network depth during the search for CNN to match the evaluation setting.

Besides, Zela et al. [Zela et al., 2019] observes the regularization robustifies the gradient-based method,

either via augmenting data for training or adding an L2 regularization in the training step. One problem with

these methods is that these task-dependent settings can change from tasks to tasks or search space to search

space. The effectiveness of these methods on different tasks is not guaranteed since most of their evaluations

are limited to building a CNN. Most importantly, one of the critical evaluation criteria is the tabular results of

final CNN accuracy on CIFAR-10 or ImageNet; while the accuracy can be improved by the tricks irrelevant

to the methods such as distillation [Cai et al., 2019a], data augmentation [Nayman et al., 2019a], and Expo-

nential Moving Average (EMA) [Dai et al., 2020]. Although the gradient-based methods are cheap to run, the

problem is the aggressive approximation of the optimal weight parameters by only one update. Therefore, the

networks found by gradient-based algorithms are generally worse than other methods that train every network

from scratch on the same search space [Wang et al., 2021, Luo et al., 2018a].

2.3 Evaluation Module

The evaluation module takes a network architecture proposed from the optimization module to output the

network’s performance. The simplest evaluation method is to train the network with SGD until convergence.

However, training a neural network is highly time-consuming, especially on a large dataset and the data-

driven design process constantly evaluates the architectures during the progress of the search. The high cost

naturally motivates us to look into solutions to utilize many GPUs to tackle the computation challenges. While

parallelizing the search over many GPUs requires careful consideration of the underlying heterogeneous

system, an intelligent job scheduler specifically designed to handle the computation pattern in NAS is desired.

On the other hand, not everyone can access hundreds of GPUs; this gives rise to a set of approximation

techniques that quickly estimates the performance of architecture so that NAS can be done within a few days

on a GPU. These approximation techniques are also no magic, trading the evaluation quality for speed. We

will also discuss these trade-offs for each method discussed below.

Parallelization

The GPU of today can easily deliver massive computing power such that one NVIDIA V100 server node

delivers up to the same performance as 135 CPU only server nodes. This huge advances in the computing

32

current mask: [[0,1,0] a, [1,0,0] b, [0,0,0] c, [0,0,1] d, [0,0,1] e]

Activated opr

Deactivated opr

[opr1, opr2, opr3]

a

b

c
d

e

a

b

c
d

e

Su
pe

rn
et

M
as

ke
d

su
pe

rn
et

a

b
d

e

Se
le

ct
ed

ar
ch

ite
ct

ur
e

Figure 2.7: Integrating supernet with search algorithms. Before the search comes into play, we pre-train a
supernet by applying a random mask at each iteration until the convergence. The supernet remains static in
the search. When a search algorithm proposes a network, we transform the supernet to the target architecture
by multiplying a mask to deactivate the extra operations on a compound edge, or deactivate the entire edge.

infrastructure enables researchers to roll out unprecedently large scale NAS using hundreds of GPUs. For

example, the RL agent implemented by Zoph and Le [Zoph and Le, 2016] utilizes 800 GPUs to concurrently

train sampled neural networks to update the RNN controller. They parallelize the computations using the

parameter server [Li et al., 2014], where they have several shards of a parameter server, that store the shared

parameters for several RNN controller replicas. Each controller replica samples a few different architectures,

sending each of architecture to a downward GPU computing node to train and evaluate the architecture. The

accuracy of the architecture is used as the reward, which is sent back to the parameter servers to calculate

the policy gradient. The gradient is subsequently broadcast to update the controller, and the update is in

asynchronous fashion to avoid the straggler problem. Besides architecting on the parameter server, this thesis

proposes a scalable and fault tolerant client and server style job scheduler to support our MCTS based NAS

agent. We will elaborate the details in Chapter 3.

The parallelization accurately evaluates an architecture by training toward the convergence, but the draw-

back is requiring hundreds of GPUs. Therefore this approach is limited to a small group of researchers who

have such access in big tech companies or national labs. While it is possible to rent the GPU node on the

cloud, the cost is very high. Recently, the emerging serverless computing seems to be a promising solution

to reduce down the cost by taking advantage of spot instances on the cloud. Serverless computing has shown

very promising in other application domains [Fouladi et al., 2017], and Ray library has demonstrated some

excellent results [Liaw et al., 2018] in the large scale hyper-parameter search using the serverless. Although

we did not exploit this direction in this thesis, I strongly believe this is a promising direction and leave it as

future work.

33

Performance Prediction

Another interesting direction is to predict the performance of a neural network. The methods in this cat-

egory are often distinguished by features used in the prediction. There are numerous works to predict the

performance of a network based on the progress of training. For example, Rasley et al. [Rasley et al., 2017]

build a cloud scheduler that provisions more computing resources for neural networks that show good loss

trace in the early stage. Similarly, Li et al. develop hyperband [Li et al., 2017] to dynamically allocate the

resource w.r.t the training progress along with the search. This early stopping technique is also employed by

Bowen et al. to save computations from terminating the low-performing networks in the early stage [Baker

et al., 2017b]. In general, these works usually use a surrogate model trained with the loss traces of evaluated

networks. When a network comes in, the algorithm uses the surrogate model to extrapolate the loss progress

in the next several epochs. If the trend predicted from the surrogate model does not look promising, the

system terminates the training to provision resources to good candidates. Another group of works tries to

learn a predictor that directly predicts the final accuracy of an architecture. For example, in chapter 3, we

have discussed several performance predictors using MLP and RNN, and Shi et al. [Shi et al., 2019a] further

shows that Graph Neural Network performs better than other regressors. Although several works demonstrate

great results [Chau et al., 2020, Shi et al., 2019a, Wen et al., 2020], their search is exclusively guided by the

predictor, which can easily trap into a local optimum without implementing any exploration mechanism.

Supernet

Pham et al. [Pham et al., 2018a] proposes a weight sharing scheme to avoid the model re-training using

an over-parameterized supernet, which can transform to any architectures in the search space by deactivat-

ing extra edges to the network as shown in Fig. 2.7. Many works formulate the training of supernet and

architecture optimization as integrated bi-level optimizations solved by SGD [Liu et al., 2018b], while recent

works [Guo et al., 2019a, Sciuto et al., 2019] show this also can be decoupled. We choose to separate the

two procedures as it enables us to evaluate various algorithms on the same supernet. We train the supernet by

applying a random mask at each iteration. After training the supernet, we fix the parameters, then evaluate

various search methods with the supernet. For example, a search algorithm samples an architecture, masking

the supernet to assess the architecture, e.g., in Fig. 2.7; then the performance of the architecture is estimated

from the performance of masked supernet on the test dataset.

Part II

Sample-Efficient Neural Architecture

Search using Monte Carlo Tree Search

34

Chapter 3

Building the NAS agent using MCTS

3.1 Motivation

Designing efficient neural architectures is extremely laborious. A typical design iteration starts with a heuris-

tic design hypothesis from domain experts, followed by the design validation with hours of GPU training.

The entire design process requires many of such iterations before finding a satisfying architecture. Neural

Architecture Search has emerged as a promising tool to alleviate human effort in this trial and error design

process, but the tremendous computing resources required by current NAS methods motivate us to investigate

both the search efficiency and the network evaluation cost.

AlphaGo/AlphaGoZero [Silver et al., 2016, Tian et al., 2019a] have recently shown super-human per-

formance in playing the game of Go, by using a specific search algorithm called Monte-Carlo Tree Search

(MCTS). Given the current game state, MCTS gradually builds an online model for its subsequent game

states to evaluate the winning chance at that state, based on search experiences in the current and prior

games, and makes a decision. The search experience is from the previous search trajectories (called rollouts)

that have been tried, and their consequences (whether the player wins or not). Different from the traditional

MCTS approach that evaluates the consequence of a trajectory by random self-play to the end of a game,

AlphaGo uses a predictive model (or value network) to predict the consequence, which enjoys much lower

variance. Furthermore, due to its built-in exploration mechanism using Upper Confidence bound applied to

Trees (UCT) [Kocsis and Szepesvári, 2006], based on its online model, MCTS dynamically adapts itself to

the most promising search region, where good consequences are likely to happen.

Inspired by this idea, we build AlphaX, a NAS agent that uses MCTS for efficient architecture search

35

36

No Online Model

Start: End:

(a) random search

!

!

!!

Q
selected
path

Online Model,
Coarse-grained

Static Exploration

(b) greedy methods

5

10

4

4 2 1

12

#

Visits	
Selected
path

Online Model,
Fine-grained

Dynamic Exploration

of
visits

(c) MCTS (d) Performance

Figure 3.1: Comparisons of NAS algorithms: (a) random search makes independent decision without us-
ing prior rollouts (previous search trajectories). An online model is to evaluate how promising the current
search branch based on prior rollouts, and random search has no online model. (b) Search methods guided
by online performance models built from previous rollouts. With static, coarse-grained exploration strategy
(e.g., ✏-greedy in Q-learning), they may quickly be stuck in a sub-optimal solution; and the chance to escape
is exponentially decreasing along the trajectory. (c) AlphaX builds online models of both performance and
visitation counts for adaptive exploration. The numbers in nodes represent values. (d) Performance of differ-
ent search algorithms on NASBench-101. AlphaX is 3x, 1.5x more sample-efficient than random search and
✏-greedy based Q-learning.

with Meta-DNN as a predictive model to estimate the accuracy of a sampled architecture. Compared with

Random Search, AlphaX builds an online model which guides the future search; compared to greedy methods,

e.g. Q-learning, Regularized Evolution or Top-K methods, AlphaX dynamically trades off exploration and

exploitation and can escape from locally optimal solutions with fewer search trials. Fig. 3.1 summarizes

the trade-offs. Toward a practical MCTS-based NAS agent, AlphaX has two novel features: first, a highly

accurate multi-stage meta-DNN to improve the sample efficiency; and second, the use of transfer learning,

together with a scalable distributed design, to amortize the network evaluation costs. As a result, AlphaX is

the first MCTS-based NAS agent that reports the competitive performance.

3.2 AlphaX: A Scalable MCTS Design Agent

Please note the focus of this chapter is to describe our first MCTS based NAS agent, therefore you may find

the content is engineering focused accompanied with lots of implementation details.

3.2.1 Design, State and Action Space

Design Space: the neural architectures for different domain tasks, e.g. object detection and image classi-

fication, follow fundamentally different designs. This renders different design spaces for the design agent.

AlphaX is flexible to support various search spaces with an intuitive state and action abstraction. Here we

37

CeOO OXWSXW

CeOO IQSXW1 CeOO IQSXW2

BlRck

Oa\eU Oa\eU

lefW
bUeQch

UighW
bUeQch

RXWSXW

BlRck BlRck BlRck

BlRck

(a) NASNet Cell

input

conv 3*3

max 3*3

output

conv 1*1

input conv 1*1 max 3*3 outputconv 3*3

node list

0
0
0
0
0

1 11 0
0
0
0
0

1
0
0
0

0
1
0
0

1
0
1
0

adjacency matrix

(b) NASBench DAG

Figure 3.2: Design space: (a) the cell structure of NASNet and (b) the DAG structure of NASBench-101.
Then the network is constructed by stacking multiple cells or DAGs.

provide a brief description of two search spaces used in our experiments.

• NASNet Search Space: [Zoph et al., 2017] proposes searching a hierarchical Cell structure as shown

in Fig.3.2. There are two types of Cells, Normal Cell (NCell) and Reduction Cell (RCell). NCell

maintains the input and output dimensions with the padding, while RCell reduces the height and width

by half with the striding. Then, the network is constituted by stacking multiple cells.

• NASBench Search Space: [Ying et al., 2019] proposes searching a small Direct Acyclic Graph (DAG)

with each node representing a layer and each edge representing the inter-layer dependency as shown in

Fig.3.2b. Similarly, the network is constituted by stacking multiple such DAGs.

State Space: a state represents a network architecture, and AlphaX utilizes states (or nodes) to keep track

of past trails to inform future decisions. We implement a state as a map that defines all the hyper-parameters

for each network layer and their dependencies. We also introduce a special terminal state to allow for multiple

actions. All the other states can transit to the terminal state by taking the terminal action, and the agent only

trains the network, from which it reaches the terminal. With the terminal state, the agent freely modifies

the architecture before reaching the terminal. This enables multiple actions for the design agent to bypass

shallow architectures.

Action Space: an action morphs the current network architecture, i.e. current state, to transit to the next

state. It not only explicitly specifies the inter-layer connectivity, but also all the necessary hyper-parameters

for each layer. Unlike games, actions in NAS are dynamically changing w.r.t the current state and design

spaces. For example, AlphaX needs to leverage the current DAG (state) in enumerating all the feasible

actions of ’adding an edge’. In our experiments, the actions for the NASNet search domain are adding a new

layer in the left or right branch of a Block in a cell, creating a new block with different input combinations,

38

SelecWiRQ E[SaQViRQ SimXlaWiRQ BackSURSagaWiRQ

π¬tree¬ 2.� /
1�

�.� / 103.0 / 4

0.3 / 1 1.� / 2

0.� / 1

4 += 0.7
N += 1

Q(V,a) / N(V,a)

UCB1 VcoUe π random¬

11 11 11

1.9 1.�

2.12.0

2.1 +∞

2.� / 1�

�.� / 103.0 / 4

0.3 / 1 1.� / 2

0.� / 1 0 / 0

1.� 1.�

2.1

2.1 +∞

2.� / 1�

�.� / 103.0 / 4

0.3 / 1 1.� / 2

0.� / 1 0.� / 1

1.� 1.�

2.1

2.1 +∞

3.� /
1�

�.� / 103.� / �

0.3 / 1 2.� / 3

0.� / 1 0.� / 1

1.� 1.�

2.1

2.1 +∞

2.0 2.0 2.0

meWa_DNNAcWXUal WUaiQiQg

Figure 3.3: An overview of AlphaX search procedures, please see details in sec. 3.2.2.

and the terminating action. The actions for the NASBench search domain are either adding a node or an edge,

and the terminating action.

3.2.2 Search Procedure

This section elaborates the integration of MCTS and metaDNN. The purpose of MCTS is to analyze the

most promising move at a state, while the purpose of meta-DNN is to learn the sampled architecture per-

formance and to generalize to unexplored architectures so that MCTS can simulate many rollouts with only

an actual training in evaluating a new node. The superior search efficiency of AlphaX is due to balancing

the exploration and exploitation at the finest granularity, i.e. state level, by leveraging the visiting statistics.

Each node tracks these two statistics: 1) N(s, a) counts the selection of action a at state s; 2) Q(s, a) is the

expected reward after taking action a at state s, and intuitively Q(s, a) is an estimate of how promising this

search direction is. Fig.3.3 demonstrates a typical searching iteration in AlphaX, which consists of Selection,

Expansion, Meta-DNN assisted Simulation, and Backpropagation. We elucidate each step as follows.

Selection traverses down the search tree to trace the current most promising search path. It starts from

the root and stops till reaching a leaf. At a node, the agent selects actions based on UCB1 [Auer et al., 2002]:

⇡tree(s) = argmax
a2A

Q(s, a)

N(s, a)
+ 2c

s
2 logN(s)

N(s, a)

!
, (3.1)

where N(s) is the number of visits to the state s (i.e. N(s) =
P

a2A N(s, a)), and c is a constant. The

first term (Q(s,a)
N(s,a)) is the exploitation term estimating the expected accuracy of its descendants. The second

39

term (2c
q

2 logN(s)
N(s,a)) is the exploration term encouraging less visited nodes. The exploration term dominates

⇡tree(s) if N(s, a) is small, and the exploitation term otherwise. As a result, the agent favors the exploration

in the beginning until building proper confidences to exploit. c controls the weight of exploration, and it is

empirically set to 0.5. We iterate the tree policy to reach a new node.

Expansion adds a new node into the tree. Q(s, a) and N(s, a) are initialized to zeros. Q(s, a) will be

updated in the simulation step.

Meta-DNN assisted Simulation randomly samples the descendants of a new node to approximate Q(s, a)

of the node with their accuracies. The process is to estimate how promising the search direction rendered by

the new node and its descendants. The simulation starts at the new node. The agent traverses down the tree

by taking the uniform-random action until reaching a terminal state, then it dispatches the architecture for

training. The more simulation we roll, the more accurate estimate of this search direction we get. However,

we cannot conduct many simulations as network training is extremely time-consuming. AlphaX adopts a

novel hybrid strategy to solve this issue by incorporating a meta-DNN to predict the network accuracy in

addition to the actual training. We delay the introduction of meta-DNN to sec.3.2.3. Specifically, we estimate

q = Q(s, a) with

Q(s, a)

Acc(sim0(s

0)) +
1

k

X

i=1..k

Pred(simi(s
0))

!
/2 (3.2)

where s
0 = s + a, and sim(s0) represents a simulation starting from state s

0. Acc is the actually trained

accuracy in the first simulation, and Pred is the predicted accuracy from Meta-DNN in subsequent k simu-

lations. If a search branch renders architectures similar to previously trained good ones, Meta-DNN updates

the exploitation term in Eq.4.3 to increase the likelihood of going to this branch.

Backpropagation back-tracks the search path from the new node to the root to update visiting statistics.

Please note we discuss the sequential case here, and the backpropagation will be split into two parts in the

distributed setting. With the estimated q for the new node, we iteratively back-propagate the information to

its ancestral as:

Q(s, a) Q(s, a) + q, N(s, a) N(s, a) + 1

s parent(s), a ⇡tree(s)
(3.3)

until it reaches the root node.

40

BlRck1(NRUmal)¬

cell h-2

VeS 5*5

11

conY 1*1

7

encRdeU

ma[5*5 aYg 5*5

encRdeU encRdeU

5 2

+
lefW

bUaQch
UighW
bUaQch

encRdeU

encRdeU cell h-1 encRdeU 0 1

ÁaWWeQ
[11, 5, 7, 2, 0, 1]

OXWSXW

ÁaWWeQ
[X, X, X, X, X, X]

ÁaWWeQ
[X, X, X, X, X, X]

Block2 (Normal
Cell)¬

C
o

n
c

a
W

Block5 (RedXcWion
Cell)¬

adjacenc\
maWUi[

inpXW conY 1*1 ma[3*3 oXWpXW

encRdeU encRdeU encRdeU encRdeU

2 3 4 6

[2, 3, 4, 6]

ÁaWWeQ

[0, 0, 1, 0]

ÁaWWeQ

ConcaW

meWa_DNN

PUedicW AccXUac\

NASNeW SW\le NASBeQch SW\le

QRde liVW

Figure 3.4: Encoding scheme of NASBench and NASNet.

3.2.3 The design of Meta-DNN and its related issues

Meta-DNN intends to generalize the performance of unseen architectures based on previously sampled net-

works. It provides a practical solution to accurately estimate a search branch with many simulations without

involving the actual training (see the metaDNN assisted simulation for details). New training data is gener-

ated as AlphaX advances in the search. So, the learning of Meta-DNN is end-to-end. The input of Meta-DNN

is a vector representation of architecture, while the output is the prediction of architecture performance, i.e.

test accuracy.

The coding scheme for NASNet architectures is as follows: we use 6-digits vector to code a Block; the

first two digits represent up to two layers in the left branch, and the 3rd and 4th digits for the right branch.

Each layer is represented by a number in [1, 12] to represent 12 different layers. We use 0 to pad the vector

if a layer is absent. The last two digits represent the input for the left and right branch, respectively. For the

coding of block inputs, 0 corresponds to the output of the previous Cell, 1 is the previous, previous Cell,

and i+2 is the output of Blocki. If a block is absent, it is [0,0,0,0,0,0]. The left part of Fig.3.4 demonstrates

an example of NASNet encoding scheme. A Cell has up to 5 blocks, so a vector of 60 digits is sufficient to

represent a state that fully specifies both RCell and NCell. The coding scheme for NASBench architectures

is a vector of flat adjacency matrix, plus the nodelist. Similarly, we pad 0 if a layer or an edge is absent.

The right part of Fig.3.4 demonstrates an example of NASBench encoding scheme. Since NASBench limits

nodes  7, 7⇥7 (adjacency matrix)+ 7 (nodelist) = 56 digits can fully specify a NASBench architecture.

Now we cast the prediction of architecture performance as a regression problem. Finding a good metaDNN

41

is heuristically oriented and it should vary from tasks to tasks. We calculate the correlation between predicted

accuracies and true accuracies from the sampled architectures in evaluating the design of metaDNN. Ideally,

the metaDNN is expected to rank an unseen architecture in roughly similar to its true test accuracy, i.e. corr

= 1. Various ML models, such as Gaussian Process, Neural Networks, or Decision Tree, are candidates for

this regression task. We choose Neural Networks as the backbone model for its powerful generalization on

the high-dimensional data and the online training capability. More ablations studies for the specific choices

of metaDNN are available in sec.3.3.2.

3.2.4 Transfer Learning

As MCTS incrementally builds a network with primitive actions, networks falling on the same search path

render similar structures. This motivates us to incorporate transfer learning in AlphaX to speed network

evaluations up. In simulation (Fig. 3.3), AlphaX recursively traverses up the tree to find a previously trained

network with the minimal edit distance to the newly sampled network. Then we transfer the weights of

overlapping layers, and randomly initialize new layers. In the pre-training, we train every sample for 70

epochs if no parent networks are transferable, and 20 epochs otherwise. Fig. 3.8 provides a study to justify

the design.

3.2.5 Distributed AlphaX

It is imperative to parallelize AlphaX to work on a large scale distributed systems to tackle the computation

challenges rendered by NAS. Fig.3.5 demonstrates the distributed AlphaX. There is a master node exclusively

for scheduling the search, while there are multiple clients (GPU) exclusively for training networks. The

general procedures on the server side are as follows: 1) The agent follows the selection and expansion steps

described in Fig.3.3. 2) The simulation in MCTS picks a network archn for the actual training, and the

agent traverses back to find the weights of parent architecture having the minimal edit distance to archn

for transfer learning; then we push both archn and parent weights into a job queue. We define archn as

the selected network architecture at iteration n, and rollout�from(archn) as the node which it started the

rollout from to reach archn. 3) The agent preemptively backpropagates q̂ 1
k

P
i=1..k Pred(simi(s0))

based only on predicted accuracies from the Meta-DNN at iteration n.

Q(s, a) Q(s, a) + q̂, N(s, a) N(s, a) + 1,

s parent(s), a ⇡tree(s).
(3.4)

42

SeaUch¬
EQgiQe

cRQViVWeQWl\ VelecWiQg QeZ
aUch iQWR Whe jRb TXeXe

GPU

GPU

GPU

GPU

back-SURSagaWe ZiWh¬meWa-DNN
VimXlaWed accXUac\¬

Arch, Acc
Arch, Acc

VRckeW
VeQd

back-SURSagaWe ZiWh
WUXe¬accXUac\¬

AlShaX
AUchiWecWXUe

Arch
Parent Zeights

Arch
Parent Zeights

Arch
Parent Zeights

Figure 3.5: Distributed AlphaX: we decouple the original back-propagation into two parts: one uses predicted
accuracy (green arrow), while the other uses the true accuracy (blue arrow). The pseudocode for the whole
system is available in Sec.3.4

4) The server checks the receive buffer to retrieve a finished job from clients that includes archz , accz . Then

the agent starts the second backpropagation to propagate q accz+q̂
2 (Eq. 3.2) from the node the rollout

started (s rollout�from(archz)) to replace the backpropagated q̂ with q:

Q(s, a) Q(s, a) + q � q̂,

s parent(s), a ⇡tree(s).
(3.5)

The client constantly tries to retrieve a job from the master job queue if it is free. It starts training once

it gets the job, then it transmits the finished job back to the server. So, each client is a dedicated trainer. We

also consider the fault-tolerance by taking a snapshot of the server’s states every few iterations, and AlphaX

can resume the searching from the breakpoint using the latest snapshot.

3.3 Experiments

3.3.1 Evaluations of architecture search

First, we perform the search on the NASNet search space using 8 NVIDIA 1080 TI. One GPU works as

a server, while the rest work as clients. To further speedup network evaluations, we early terminated the

43

Model Params Err GPU days M

NASNet-A+cutout [Zoph et al., 2017] 3.3M 2.65 2000 20000
AmoebaNet-B+cutout [Real et al., 2019a] 2.8M 2.50±0.05 3150 27000
DARTS+cutout [Liu et al., 2018b] 3.3M 2.76±0.09 4 -

AlphaX+cutout (32 filters) 2.83M 2.54±0.06 12 1000

PNAS [Liu et al., 2018a] 3.2M 3.41±0.09 225 1160
ENAS [Pham et al., 2018a] 4.6M 3.54 0.45 -
NAONet [Luo et al., 2018a] 10.6M 3.18 200 1000

AlphaX (32 filters) 2.83M 3.04±0.03 12 1000

NAS v3[Zoph and Le, 2016] 7.1M 4.47 22400 12800
Hier-EA [Liu et al., 2017] 15.7M 3.75±0.12 300 7000

AlphaX+cutout (128 filters) 31.36M 2.16±0.04 12 1000

Table 3.1: The comparisons of our NASNet search results to other state-of-the-art results on CIFAR-10. M is
the number of sampled architectures in the search.

(a) best acc progression (b) #samples to the best (c) best acc progression (d) #samples to the best

Figure 3.6: Finding the global optimum on NASBench-101: AlphaX is 3x, 2.8x faster than Random Search
and Regularized Evolution on NASBench-101 (nodes  6). The results are from 200 trails with differ-
ent random seeds. (c) and (d) show the performance of AlphaX in cases of with/without meta-DNN on
NASBench-101

training at 70th epoch during the pre-training. We selected the top 20 networks from the pre-training and

fine-tuned them additional 530 epochs to get the final accuracy. For the ImageNet training, we constructed

the network with the same RCell and NCell searched on CIFAR10 following the accepted standard, i.e. the

mobile setting, defined in [Zoph et al., 2017]. In total, AlphaX sampled 1000 networks.

To further examine the sample efficiency, we evaluate AlphaX on the recent NAS dataset, NASBench-

101 [Ying et al., 2019]. NASBench enumerates all the possible DAGs of nodes  7, constituting of (420k+)

networks and their final test accuracies. This enables bypassing the computation barrier to fairly evaluate the

sample efficiency. In our experiments, we limited the maximal nodes in a DAG 6, i.e. constructing a subset

of NASBench-101 that contains 64521 valid networks. This allows us to quickly repeat each algorithm for

200 trials. The search target is the network with the highest mean test accuracy (the global optimum) at 108th

epochs, which can be known ahead by querying the dataset. We choose Random Search (RS) [Sciuto et al.,

2019] and Regularized Evolution (RE) [Real et al., 2019a] as the baseline. RE delivers competitive results

44

according to Table. 6.4 in the NASNet search space, and RS finds the global optimal in expected n/2, where

n is the dataset size. Fig. 3.6 demonstrates AlphaX is 2.8x and 3x faster than RE and RS, respectively. As we

analyzed in Fig. 3.1, Random Search lacks an online model. Regularized Evolution only mutates on top-k

performing models, while MCTS explicitly builds a search tree to dynamically trade off the exploration and

exploitation at individual states. Please note that the slight difference in Fig. 3.6a actually reflects a huge

gap in speed as indicated by Fig. 3.6b. According to NASBench-101, there are abundant architectures with

minor performance difference to the global optimum. Therefore, it is fast to find the top 5% architectures,

but extremely hard in reaching the global optimum.

3.3.2 Component Evaluations

(a) RNN train (b) MLP train (c) multi-stage train

(d) RNN test (e) MLP test

0 0.2 0.4 0.6 0.8 1
actual accuracy

0

0.2

0.4

0.6

0.8

1

pr
ed

ic
t a

cc
ur

ac
y

corr=0.803

low

density

high

y = x

(f) multi-stage test

Figure 3.7: meta-DNN design ablations: True v.s. predicted accuracies of MLP, RNN and multi-stage MLP
on architectures from NASBench. The scatter density is highlighted by color to reflect the data distribution;
Red means high density, and blue otherwise.

First, we exam the impact of meta-DNN design. The metric in evaluating metaDNN is the correlation

between the predicted v.s. true accuracy. We used 80% NASBench for training, and 20% for testing. Since

DNNs have shown great success in modeling complex data, we start with Multilayer Perceptron (MLP) and

45

Recurrent Neural Network (RNN) on building the regression model. The hidden state size of LSTM is 100,

and the embedding size is also 100. The final LSTM hidden state goes through a fully-connected layer to get

the final validation accuracy. The multi-stage model is an ensemble of multiple MLP models. The structure

of an MLP is 512!2048!2048!512!1. Fig. 3.7d and Fig .3.7e demonstrate the performance of MLP

(corr=0.784) is 4% better than RNN (corr=0.743), as the MLP (Fig. 3.7b) performs much better than RNN

(Fig. 3.7a) in the training set. However, MLP still mispredicts many networks around 0.1, 0.4 and 0.6 and 0.8

(x-axis) as shown in Fig. 3.7e. This clustering effect is consistent with the architecture distribution in Fig. ??

for having many networks around these accuracies. To alleviate this issue, we propose a multi-stage model,

the core idea of which is to have several dedicated MLPs to predict different ranges of accuracies, e.g. [0,

25%], along with another MLP to predict which MLP to use in predicting the final accuracy. Fig. 3.7f shows

a multi-stage model successfully improves the correlation by 1.2% from MLP, and the mispredictions have

been greatly reduced. Since the multi-stage model has achieved corr = 1 on the training set, we choose it as

the backbone regression model for AlphaX. Fig. 3.6 demonstrates our meta-DNN is effective to sustain NAS.

Figure 3.8: Validation of transfer learning: transferring weights significantly reduces the number of epochs
in reaching the same accuracy of random initialization (Transfer 17! 70 epochs v.s. random initialization),
but insufficient epochs loses accuracy (Transfer, 9 epochs).

The transfer learning significantly speeds network evaluations up, and Fig. 3.8 empirically validates the

effectiveness of transfer learning. We randomly sampled an architecture as the parent network. On the

parent network, we added a block with two new 5x5 separable conv layers on the left and right branch as

the child network. We trained the parent network toward 70 epochs and saved its weights. In training the

child network, we used weights from the parent network in initializing the child network except for two new

conv layers that are randomly initialized. Fig. 3.8 shows the accuracy progress of transferred child network

at different training epochs. The transferred child network retains the same accuracy as training from scratch

(random initialization) with much fewer epochs, but insufficient epochs lose the accuracy. Therefore, we

46

chose 20 epochs in pre-training an architecture if transfer learning applied.

3.4 Additional Details

Here I present the pseudocode of distributed AlphaX. Algorithm 3 describes the search engine; Algorithm 2

describes the procedures of server that implement a client-server communication protocol to send an ar-

chitecture searched by MCTS to a client for training. Algorithm 1 describes the procedures of client that

consistently listen new architectures from the server for training, and send the accuracy and network back to

the server after training.

Algorithm 1 Client
1: Require: Start working once building connection to the server
2: while True do
3: if The client is connected to server then
4: network Receive()
5: accuracy Train(network)
6: Send (network, accuracy) to the Server
7: else
8: Wait for re-connection
9: end if

10: end while=0

Algorithm 2 Server

1: while size(TASK�QUEUE) > 2 do
2: while no idle client do
3: Continue !Wait for dispatching jobs until there are idle clients
4: end while
5: Create a new connection to a random idle client
6: network TASK�QUEUE.pop()
7: Send network to a Client
8: if Received�Signal() then
9: network, accuracy Receive�Result()

10: acc(network) accuracy

11: state rollout�from(network)
12: Backpropagation(state, (accuracy � q̂(state))/2, 0)
13: Train the meta-DNN with a new data (network, accuracy)
14: else
15: Continue
16: end if
17: end while=0

47

Algorithm 3 Search Engine (MCTS)
1: function Expansion(state)
2: Create a new node in a tree for state.
3: for all action available at state do
4: Q(state, action) 0, N(state, action) 0
5: end for
6: end function
7:
8: function Simulation(state)
9: action none

10: while action is not term do
11: randomly generate an action

12: next�net Apply(state, action) {Apply returns the next state when action is applied to state}
13: end while
14: end function
15:
16: function Backpropagation(state, q, n)
17: while state is not root do
18: state parent(state)
19: Q(state, action) Q(state, action) + q

20: N(state, action) N(state, action) + n

21: end while
22: end function
23:
24: Require: Start from the root
25: while episode < MAX�episode do
26: Server()
27: cur�state root�node
28: i 0
29: while i < MAX�tree�depth do
30: i i+ 1
31: next�action Selection(cur�state)
32: if next�state not in tree then
33: next�state Expansion(next�action)
34: Tt Simulationt(next�state) for t = 0...k
35: TASK�QUEUE.push(T0)
36: rollout�from(T0) next�state
37: q̂(next�state) 1

k

P
i=1..k Pred(Ti)

38: Backpropagation(next�state, q̂)
39: end if
40: end while
41: end while=0

3.5 Conclusion

The focus of this section is to describe the implementation details of AlphaXm, our first MCTS based NAS

agent. Compared to prior works, AlphaX is the first practical MCTS based agent that achieves competitive

48

results on CIFAR-10 in a reasonable amount of computations using a predictive model. To harness many

GPUs, we also describe the distributed architect of AlphaX. In the next chapter, and we will present a new

MCTS algorithm that learns the latent action to improve the sample efficiency.

Chapter 4

Sample-Efficient NAS by Learning

Actions for MCTS

4.1 Motivation

While NAS is impressive to find a good network architecture in a large search space, one component that is

often overlooked is how to design the action space. Existing MCTS based NAS approaches utilize manually

designed action space, which is not directly related to the performance metric to be optimized (e.g., accuracy),

leading to sample-inefficient explorations of architectures. To demonstrate the importance of action space in

MCTS, we start with a motivating example. Consider a simple scenario of designing a plain Convolutional

Neural Network (CNN) for CIFAR-10 image classification. The primitive operation is a Conv-ReLU layer.

Free structural parameters that can vary include network depth L = {1, 2, 3, 4, 5}, number of filter channels

C = {32, 64} and kernel size K = {3 ⇥ 3, 5 ⇥ 5}. This configuration results in a search space of 1,364

networks. To perform the search, there are two natural choices of the action space: sequential and

global. sequential comprises actions in the following order: adding a layer l, setting kernel size Kl,

setting filter channel Cl. The actions are repeated L times. On the other hand, global uses the following

actions instead: {Setting network depth L, setting kernel size K1,...,L, setting filter channel C1,...,L}. For

these two action spaces, MCTS is employed to perform the search. Note that both action spaces can cover

the entire search space but have very different search trajectories.

Fig. 4.1(a) visualizes the search for these two action spaces. Actions in global clearly separates

49

50

global sequential

accuracy

sa
m
pl
es d = 0.023

sa
m
pl
es

accuracy

d = 0.043

(a) Visualization of MCTS search trees

sequential

global

0

0.75

(b) Reward distribution at two child nodes (c) Search efficiency

Can we learn to partition Ω into good/bad regions, as the case in global, from samples to boost the search efficiency?

Figure 4.1: Illustration of motivation: (a) visualizes the MCTS search trees using sequential and
global action space. The node value (i.e. accuracy) is higher if the color is darker. (b) For a given node,
the reward distributions for its children. d is the average distance over all nodes. global better separates
the search space by network quality and provides distinctive rewards in recognizing a promising path. (c) As
a result, global finds the best network much faster than sequential. This motivates us to learn actions
to partition the search space for the efficient architecture search.

desired and undesired network clusters, while actions in sequential lead to network clusters with a

mixture of good or bad networks in terms of performance. As a result, the accuracy distribution of two

branches (Fig. 6.1(b)) are separable for global, which is not the case for sequential. We also demon-

strate the overall search performance in Fig.6.1(c) that global finds desired networks much faster than

sequential.

This observation suggests that changing the action space can lead to very different search behavior and

thus potentially better sample efficiency. In this case, an early exploration of network depth is critical. In-

creasing depth is an optimization direction that can potentially lead to better model accuracy. One might come

across a natural question from this motivating example: is it possible to find a principle way to distinguish a

good action space from a bad action space for MCTS? Is it possible to learn an action space such that it can

best fit the performance metric to be optimized?

4.2 Learning Latent Actions for MCTS

Based on the above observations, we propose LaNAS that learns latent actions and prioritizes the search

accordingly. To achieve this goal, LaNAS iterates between learning and searching stage. In the learning

stage, LaNAS models each action as a linear constraint that bi-partitions the search space ⌦ into high-

performing and low-performing regions. Such partitions can be done recursively, yielding a hierarchical tree

structure, where some leaf nodes contain very promising regions. In the searching stage, LaNAS applies

51

A

D G

B C

E F

select w.r.t UCB

A

D G

B C

E F
!!"#$%& → network, #'
!(!)$*+,%!→ network, #'

search
space

sampling under linear constraints

A

D G

B C

E F

back-propagate reward

r: accuracy

B.v += r
B.n += 1
B.D.append(a)

A.v += r
A.n += 1
A.D.append(a)

!"#$!%!∈#($%(',)) + , -./	(# 2)
#(2,"))

SEARCH PHASE1. Learning
&$'%+)& = +' ,	

∀ '% ,+' ∈ 0(∩ Ω& ,	
3 ∈ {5,6, 7}

2. Estimate $%(-5)
9:(Ω&) =)*∑ +'*) , +' ∈ 0(∩	Ω& ,3 ∈ {5,6, 7}
3. Construct latent action

A

D G

B C

E F

!! ∩ Ω" 	 = (!!∩ Ω#) ∪ (!! ∩ Ω$)

LEARNINGPHASE

Latent action
decided by
W$,)& ,9:(Ω&)

Going right: W$'% +)& < 9: (Ω&), ∀'% ∈ 	Ω

Going left: W$'% +)& ≥ 9:(Ω&), ∀'% ∈ 	Ω

Figure 4.2: An overview of LaNAS: Each iteration of LaNAS comprises a search and learning phase. The
search phase uses MCTS to sample networks, while the learning phase learns a linear model between network
hyper-parameters and accuracies.

Monte Carlo Tree Search (MCTS) on the tree structure to sample architectures. The learned actions provide

an abstraction of search space for MCTS to do an efficient search, while MCTS collects more data with

adaptive exploration to progressively refine the learned actions for partitioning. The iterative process is

jump-started by first collecting a few random samples.

The following defines a list of notations used in this paper: ai represents the ith sampled architecture; vi

is the performance metric of ai; Dt is the set of collected (ai, vi) at the search step t; ⌦ represents the entire

search space; ⌦j represents the partition of ⌦ at the tree node j; Dt \ ⌦j is the samples classified in ⌦j ;

V (⌦j) is the mean performance metric in ⌦j ; V̂ (⌦j) is the estimated V (⌦j) from Dt \ ⌦j ; fj(ai) is the

predicted performance by the regressor on node j; n(s) represents the #visits of tree node s; v(s) is the value

of tree node s.

4.2.1 Learning Phase

In the learning phase at iteration t, we have a dataset Dt = {(ai, vi)} obtained from previous explo-

rations. Each data point (ai, vi) has two components: ai represents an architecture in specific encoding

(e.g., width=512 and depth=5, etc) and vi represents the performance metric estimated from training, or from

pre-trained dataset such as NASBench-101, or estimated from a supernet in one-shot NAS.

At any iteration, our goal is to learn a good action space from Dt that splits ⌦ so that the performance

of architectures is similar within each partition, but across partitions, the architecture performance can be

easily ranked from low to high based on partitions. This split can be recursively done to form a hierarchy;

and our motivating example in Fig. 6.1 suggests such partitions can help prioritize the search towards more

promising regions, and improve the sample efficiency. In particular, we model the recursive splitting process

as a tree. The root node corresponds to the entire model space ⌦, while each tree node j corresponds to

52

a region ⌦j . At each tree node j, we partition ⌦j into two disjoint regions ⌦j = [k2(good,bad)⌦k, such

that V̂ (⌦good) > V̂ (⌦bad) on each nodes. Therefore, a tree of these nodes recursively partitions the entire

search space into different performance regions to achieve the target behavior. The following illustrates the

algorithms in detail.

At each node j, we learn a regressor that embodies a latent action to split the model space ⌦j . The linear

regressor takes the portion of the dataset that falls into its own region Dt \⌦j , then the average performance

of a region is estimated by

V̂ (⌦j) =
1

N

X

vi2Dt\⌦j

vi (4.1)

To partition ⌦j into ⌦good and ⌦bad, we learn a linear regressor fj

minimize
(ai,vi)2Dt\⌦j

X
(fj(ai)� vi)

2 (4.2)

Once learned, the parameters of fj and V̂ (⌦j) form a linear constraint that bifurcates ⌦j into a good region

(> V̂ (⌦j)) and a bad region ( V̂ (⌦j)). A visualization of this process is available in Fig. 4.2 (learning

phase). For convenience, the left child always represents the good region. The partition threshold V̂ (⌦j),

combined with parameters of fj , forms two latent actions at node j,

go-left :fj(ai) > V̂ (⌦j)

go-right :fj(ai)  V̂ (⌦j), 8ai 2 ⌦

For simplicity, we use a full tree to initialize the search algorithm, leaving the tree height as a hyper-

parameter. Fig. 4.6 provides guidance in selecting the tree height. Because the tree recursively splits ⌦,

partitions represented by leaves follow V (⌦leftmost) > ... > V (⌦rightmost), with the leftmost leaf repre-

senting the most promising partition. Experiments in Sec. 4.3.2 validate the effectiveness of the proposed

method in achieving the target behavior.

Note that we need to initialize each node classifier properly with a few random samples to establish an

initial boundary in the search space. An ablation study on the number of samples for initialization is provided

in Fig. 4.6(c).

53

4.2.2 Search Phase

Once actions are learned, the search phase follows. The search uses learned actions to sample more architec-

tures ai, and get vi either via training or predicted from a supernet, then store (ai, vi) in dataset Dt to refine

the action space in the next iteration. Note that during the search phase, the tree structure and the parameters

of those classifiers are fixed and static. The search phase decides which region ⌦j on tree leaves to sample.

Given existing samples, a trivial go-left strategy, i.e. greedy-based search, can be used to exclusively

exploit the most promising ⌦k. However, the search space partitions or the latent actions learned from

current samples can be sub-optimal such that the best model is located on any non-leftmost tree leaves. There

can be good model regions that are hidden in the right (or bad) leaves that need to be explored.

To avoid this issue in a pure go-left search strategy, we integrate Monte Carlo Tree Search (MCTS) into

the proposed search tree to enable adaptive explorations of different leaves. Besides, MCTS has shown great

success in high dimensional tasks, such as Go [Tian et al., 2019a] and NAS [Wang et al., 2019c]. MCTS

avoids trapping into a local optimum by tracking both the number of visits and the average value on each

node. For example, MCTS will choose the right node with a lower value if the left node with a higher value

has been frequently visited before. More details are available in the paragraph of select w.r.t UCT below.

Like MCTS, our search phase also has select, sampling and backpropagate stages. LaNAS skips the

expansion stage in regular MCTS since we use a static tree. At each iterations, previously sampled networks

and their performance metrics in Dt are reused and redirected to (maybe different) nodes, when initializing

visitation counts n(s) and node values v(s) for the tree with updated action space. The details of these 3

steps are as follows.

1) select w.r.t UCB: UCB [Auer et al., 2002] is defined by

⇡UCB(s) = argmax
a2A

V̂ (s, a) + c

s
log n(s)

n(s, a)

!
, (4.3)

⇡UCB chooses the action that yields the largest UCB score. In our case, the action is either going left or right

on any non-leaf nodes. At the node s, V̂ (s, a) represents the estimated value of the child node by taking action

a, e.g. the value of left child by going left. n(s) is the number of visits of the node s, which corresponds to

the number of samples falling on the node represented partition. Similarly n(s, a) represents the number of

visits of the next node. Starting from root, we follow ⇡UCB to traverse down to a leaf.

In ⇡UCB , the first term of V̂ (s, a) represents the average value of next node after taking the action a at

54

the node s. By the construction of search tree, the average value of left child node is higher than the right.

Therefore, ⇡UCB degenerates to a pure go-left strategy if we set c = 0. The second term of log n(s)/n(s, a)

represents the exploration, and c is a hyper-parameter. n(s) is same regardless of the action taken at node

s, but the number of visits on the next node n(s, a) can be drastically different. So a less visiting node with

smaller n(s, a) can increase ⇡UCB . Therefore, ⇡UCB favors the node without any samples (dominated by

the exploration term), or the node value is significantly higher (dominated by the exploitation term). Because

of this mechanism, our algorithm can jump out of a sub-optimal action space learnt from current samples.

2) sampling from a leaf : select traverses a path from the root to a leaf, which defines a set of linear

constrains for sampling. A node j defines a constraint lj of fj(ai) � V̂ (⌦j), 8ai 2 ⌦ if the path chooses

the left child, and fj(ai) < V̂ (⌦j) otherwise. Therefore, the constraints from a path collectively enclose a

partition ⌦j for proposing the new samples. Fig. ?? visualizes the process of partitioning along a search path.

Within a partition ⌦j , a simple search policy is to use reject sampling: random sample until it satisfies

the constraints. This is efficient thanks to limited numbers of constraints [Gilks et al., 1995, Hörmann, 1995].

Other strategies, e.g. Bayesian optimizations, can also be applied to sample from ⌦j . Here we illustrate the

implementation of both ⇡bayes and ⇡random.

• Random search based ⇡rand: each component in the architecture encoding is assigned to a uniform

random variable, and the vector of these random variables correspond to random architectures. For

example, NASBench uses 21 Boolean variables for the adjacent matrix and 5 3-values categorical

variables for the node list. The random generator uses 26 random integer variables, with 21 variables

to be uniformly distributed in the set of [0, 1] indicating the existence of an edge, and 5 variables to be

uniformly distributed in the set of [0, 1, 2] indicating layer types. ⇡rand outputs a random architecture

as long as it satisfies the path constraints.

• Bayesian search based ⇡bayes: a typical Bayesian optimization search step consists of 2 parts: training

a surrogate model using a Gaussian Process Regressor (GPR) on collected samples Dt; and proposing

new samples by optimizing the acquisition function, such as Expected Improvement (EI) or Upper

Confidence Bound (UCB). However, GPR is not scalable to large samples; and we used meta-DNN

in [Wang et al., 2019c] to replace GPR. Training the surrogate remains unchanged, but we only compute

EI for architectures in the selected partition ⌦j , and returns ai with the maximum EI.

The comparisons of ⇡bayes to ⇡random is in Fig. 4.5. For the rest of the paper, we use ⇡random in LaNAS

for simplicity.

55

1

2

3

4

5

input1 input2

output

sep_conv_3x3
sep_conv_5x5
max_pool_3x3
skip_connect

=compound edge

(a) supernet

1

2

3

4

5

input1 input2

output

Connectivity mask:
[(1->3), (1->6), (1->10),
(1->15), (1->21)]
Edge type mask:
[1->4] x 10

(b) masked supernet

Figure 4.3: The cell structure of supernet used in searching nasnet. The supernet structure of normal and
reduction cell are same. (a) Each edge is a compound edge, consisting of 4 independent edges with the same
input/output to represent 4 layer types. (b) Each node allows for two inputs from previous nodes. To specify a
NASNet architecture, we use 5 variables for defining connectivity among nodes, and 10 variables for defining
the layer type of every edge. Supernet can transform to any network in the search space by applying the mask.

3) back-propagate reward: after evaluating the sampled network, LaNAS back-propagates the reward,

i.e. accuracy, to update the node statistics n(s) and v(s). It also back-propagates the sampled network so that

every parent node j keeps the network in Dt \ ⌦j for training.

There are multiple ways to evaluate the performance of architecture, such as training from scratch, or

predicted from a supernet as the case in one-shot NAS [Pham et al., 2018a]. Among these methods, training

every architecture from scratch (re-training) gives the most accurate vi but is extremely costly. While one-

shot NAS is fairly cheap to execute as it only requires one-time training of a supernet for predicting vi for

8ai 2 ⌦, the predicted vi is quite inaccurate [Sciuto et al., 2019]; therefore the architecture found by one-shot

NAS is generally worse than the re-training approaches as indicated in Table. 9.1. In this paper, we try both

one-shot based and training based evaluations. The integration of one-shot NAS is described as follows.

4.2.3 Integrating with one-shot NAS

The key bottleneck in NAS is the expensive evaluation that trains a network from scratch. [Pham et al., 2018a]

proposes a weight sharing scheme to avoid the model re-training using a supernet, which can transform to

any architectures in the search space by deactivating extra edges to the network. One popular approach for

one-shot NAS is to formulate the training of supernet and the search on supernet as an integrated bi-level

optimizations [Liu et al., 2018b], while recent works [Guo et al., 2019a, Sciuto et al., 2019] show this also

can be done by separating the training and the search. Our work primarily focuses on search efficiency,

56

and we choose to separate the two procedures as it enables us to evaluate various algorithms on the same

supernet (in Fig. 4.4(c)). We train the supernet by applying a random mask at each iteration following the

same training pipeline/hyper-parameters in DARTs. After training the supernet, we fix the parameters of

the supernet, then evaluate various search methods onto it. For example, LaNAS samples ai, masking the

supernet to evaluate ai as illustrated by Fig. 4.3; then vi is the validation accuracy evaluated from the masked

supernet. The result (ai, vi) is stored in Dt to guide the future search. The following elaborates the design of

the supernet for the NASNet search space, its training/search details, and the masking process.

The design of supernet

We have used two designs of supernet in this paper: one is for NASNet search space [Zoph et al., 2018b] to

be evaluated on CIFAR10, and the other is for EfficientNet search space [Tan and Le, 2019a] to be evaluated

on ImageNet.

• Supernet for NASNet search space: our supernet follows the design of NASNet search space [Zoph

et al., 2018b], the network of which is constructed by stacking multiple normal cells and reduction

cells. Since the search space of normal/reduction cells is the same, the structure of supernet for both

cells is also the same, shown in Fig. 4.3a. The supernet consists of 5 nodes, and each node connects to

all previous nodes. While a NASNet only takes 2 inputs, we enforce this logic by masking. Each edge

consists of 4 independent edges that correspond to 4 types of layers.

• Supernet for EfficientNet search space: we reused the supernet from [Cai et al., 2019a], please refer to

Once-For-All for details.

Transforming supernet to a specific architecture

There are two steps to transform a supernet to a target architecture by masking. Here we illustrate it on the

NASNet search space, and the procedures on EfficientNet are same.

1) Specifying an architecture: The NASNet search space specifies two inputs to a node, which can be

any previous nodes. Therefore, we used 5 integers to specify the connections of 5 nodes, and each integer

enumerates all the possible connections of a node. For example, node 4 in Fig. 4.3a has 5 inputs, there are

5 possibilities C(5, 1) if two inputs are same, and 10 possibilities C(5, 2) for different inputs, adding up to

15 possible connections. Similarly, the possibilities for node1,2,3,5 are 3, 6, 10 and 21. Therefore, we use a

vector of 5 integers with the range of 1 ! 3, 1 ! 6, 1 ! 10, 1 ! 15, and 1 ! 21 to represent possible

57

connections. After specifying the connectivity, we need to specify the layer type for each edge. In our

experiments, a layer can be one of 3x3 separable convolution, 5x5 separable convolution, 3x3 max pooling

and skip connect. Considering there are 10 edges in a NASNet cell, we use 10 integers ranging from 1 to 4

to represent the layer type chosen for an edge. Therefore, a NASNet can be fully specified with 15 integers

(Fig. 4.3b).

2) encoding to mask: we need to change the encoding of 15 integers to a mask to deactivate the edges.

Since the supernet in Fig 4.3a has 20 edges, we use a 20x4 matrix, with each row as a vector to specify a

layer or deactivation. The conversion is straightforward; if an edge is activated in the encoding, the edge is a

one-hot vector, or a vector of 0s otherwise.

Training supernet

As explained in sec. 4.2.3, we apply a random mask to each training iterations. We re-used the training

pipeline from DARTs [Liu et al., 2018b]. To generate the random mask, we used 15 random integers (ex-

plained in generating random masks above) to generate a random architecture with their ranges specified

in Fig. 4.3b; then we transform the random encoding to a random mask, which is subsequently applied on

supernet in training.

Searching using pre-trained supernet

After training the supernet, it is fixed during search. A search method proposes an architecture ai for the

evaluation; we mask the supernet to ai, then evaluate the masked supernet to get vi for ai. The new ai, vi

pair is stored in Dt to refine the search decision in the next iteration. Since the evaluation of ai is reduced to

evaluating masked supernet on the validation dataset, this has greatly reduced the computation cost, enabling

a search algorithm to sample thousands of ai in a reasonable amount of time.

4.2.4 Partition Analysis

The sampling efficiency is closely related to the partition quality of each tree node. Here we seek an upper

bound for the number of samples in the leftmost leaf (the most promising region) to characterize the sample

efficiency. LaNAS shows more speedup w.r.t random search as the size of the search space grows. Details

are in sec 4.2.4.

Assumption 1. Given a search domain ⌦ containing finite samples N , there exists a probabilistic density f

58

such that P (a < v < b) =
R b
a f(v)dv, where v is the performance of a network a.

With this assumption, we can count the number of networks in the accuracy range of [a, b] by N ⇤P (a 

v  b). Since v 2 [0, 1] and the standard derivation �v <1, the following holds ([Mallows, 1991])

|E(v �Mv)| < �v (4.4)

v is the mean performance in ⌦, and Mv is the median performance. Note v 2 [0, 1], and let’s denote ✏ =

|v̂�v|. Therefore, the maximal distance from v̂ to Mv is ✏+�v; and the number of networks falling between

v̂ and Mv is N ⇤max(
RMv

v̂�✏��v
f(v)dv,

R v̂+✏+�v

Mv
f(v)dv), denoted as �. Therefore, the root partitions ⌦ into

two sets that have  N
2 + � architectures.

Theorem 1. Given a search tree of height = h, the sub-domain represented by the leftmost leaf contains at

most 2⇤�max(1� 1
2h)+

N
2h architectures, and �max is the largest partition error from the node on the leftmost

path.

The theorem indicates that LaNAS is approximating the global optimum at the speed of N/2h, suggesting

1) the performance improvement will remain near plateau as h " (verified by Fig 4.6(a)), while the compu-

tational costs (2h � 1 nodes) exponentially increase; 2) the performance improvement w.r.t random search

(cost ⇠ N/2) is more obvious on a large search space (verified by Fig.5 (a)!(c)).

Proof of Theorem: In the worst scenario, the left child is always assigned with the large partition; and let’s

recursively apply this all the way down to the leftmost leaf h times, resulting in �h+ �h�1

2 + �h�2

22 + ...+ N
2h 

2 ⇤ �max(1 � 1
2h) +

N
2h . � is related to ✏ and �v; note � # with more samples as ✏ #, and �v becomes more

accurate.

4.3 Experiments

4.3.1 Evaluating the search performance

Setup for benchmarks on NAS datasets

NAS datasets record architecture-accuracy pairs for the fast retrieval by NAS algorithms to avoid time-

consuming model retraining. This makes repeated runs of NAS experiments in a tractable amount of com-

puting time to truly evaluate search algorithms. We use NASBench-101 [Ying et al., 2019] as one benchmark

59

(a) NASBench-420K (b) ConvNet-60K (c) Supernet

|Ω|: 5.1 ∗ 10%, ' : 4.2 ∗ 	10* |Ω|: 59049, |D|: 59049 |Ω|: 3.5 ∗ 10-.

Figure 4.4: The top row shows the time-course of test regrets of different methods (test regret between current
best accuracy v

+ and the best in dataset v⇤ with the interquartile range), while the bottom row illustrates
Cumulative Distribution Function (CDF) of v+ for each method at 4 ⇤ 104 unique valid samples. ConvNet-
60K compensates NASBench to test the case of |D| = |⌦|, and supernet compensates for the case of |⌦| �
|⌦nasbench|, where |D|, |⌦| are the size of the dataset and search space, respectively. LaNAS consistently
demonstrates the best performance in 3 cases.

that contains over 4.2 ⇤ 105 NASNet CNN models with edges  9 and nodes  7. To specify a network,

search methods need 21 boolean variables for the adjacent matrix, and 5 3-value categorical variables for the

node list1, defining a search space of |⌦| = 5 ⇤ 108 � the size of dataset |D| = 4.2 ⇤ 105. In practice, NAS-

Bench returns 0 for the missing architectures, which potentially introduces a bias in evaluations. Besides,

NASBench is still several orders of smaller than a search space in practice, e.g. NASNet [Zoph et al., 2018b]

|⌦| ⇠ 1020. To resolve these issues, we curate a ConvNet dataset having 5.9 ⇤ 104 samples to cover the case

of |D| = |⌦|, and a supernet with |⌦| = 3.5 ⇤ 1021 to cover the case of ⌦� ⌦nasbench for benchmarks.

The curation of ConvNet-60K follows similar procedures in collecting 1,364 networks in sec.4.1, free

structural parameters that can vary are: network depth D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, number of filters

C = {32, 64, 96} and kernel size K = {3 ⇥ 3}, defining a ⌦ = 59049. We train 8ai 2 ⌦ for 100

epochs, collect their final test accuracy vi, store (ai, vi) in the dataset D. This small VGG-style, no residual

connections, plain ConvNet search space can be fully specified with 10 3-value categorical variables, with

each representing a type of filters.

We use a supernet on NASNet search space, and sec. 4.2.3 provides the details about the curation and the

usage of a supernet in evaluating the search efficiency.

For NASBench-101, we used the architecture encoding of CIFAR-A in NASBench benchmarks from

1this is the best encoding scheme with the minimal missing architectures, which is also used in NASBench baselines.

60

this repository2, as the discrepancy between the size of the dataset and the search space is the minimal.

Specifically, an architecture is encoded with 21 Boolean variables and 5 3-values categorical variables, with

each value corresponding to 3 layer types, i.e. 3x3 convolution, 1x1 convolution, and max-pool. The 21

Boolean variables represent the adjacent matrix in NASBench, while the 5 categorical variables represent

the nodelist in NASBench. Therefore, |⌦| = 221 ⇤ 35 = 5.1 ⇤ 108. For ConvNet-60K, we used 10 3-values

categorical variables to represent a VGG style CNN up to depth = 10, with each value correspond to 3 types of

convolution layers , i.e. (filters=32, kernel = 3), (filters=64, kernel = 3) and (filters=96, kernel = 3). Therefore,

|⌦| = 59049. 3) Supernet: Since supernet implements the NASNet search space, the encoding of a supernet

is same as the one used for NASBench-101.

We adopt the same baselines established by NASBench-101, and the same implementations from this

public release3. These baselines cover diverse types of search algorithms. Regularized Evolution (RE) is

a type of evolutionary algorithm that achieves SoTA performance for image recognition. While traditional

BO method suffers from the scalability issue (e.g. the computation cost scales O(n3) with #samples), ran-

dom forest-based Sequential Model-based Algorithmic Configuration (SMAC) and Tree of Parzen Estimators

(TPE) are two popular solutions by using a scalable surrogate model. HyperBand (HB) is a resource-aware

(e.g. training iterations or time) search method, and Bayesian optimization-based HyperBand (BOHB) ex-

tended HB for strong any time performance. In addition to baselines in NASBench-101, we also added MCTS

to validate latent actions. We have extensively discussed LaNAS v.s. these baselines in sec 4.3.1.

In LaNAS, the height of the search tree is 8; we used 200 random samples for the initialization, and

#select = 50 (the number of samples from a selected partition, see sec. 4.3.1).

Details about Ensuring Fairness

1) The encoding scheme decides the size of the search space, thereby significantly affecting the perfor-

mance. We ensure LaNAS and MCTS to use the same encoding as NASBench baselines on both

datasets.

2) We noticed NASBench baselines allow the same architecture to be sampled at different steps, and we

modified LaNAS and MCTS to be consistent with baselines (by not removing samples from the search

space).

2https://github.com/automl/nas benchmarks

3https://github.com/automl/nas benchmarks

61

3) We choose the number of unique, valid4 samples instead of time to report the performance as model-

free methods such as random search can easily iterate through the search space in a short time.

4) The hyper-parameters of baselines are set w.r.t ablation studies in NASBench-101, and we also tuned

LaNAS and MCTS for the benchmark.

5) Each method is repeated 100 runs with different random seeds.

Empirical results

The top row of Fig. 4.4 shows the mean test regret, |v+ � v
⇤| where v

+ is the current best and v
⇤ is the best

in a dataset, along with the 25th and 75th percentile of each method through the course of searching, and

the bottom row shows the robustness of methods at 40000 UVS on NASBench and ConvNet-60K, and 2000

UVS on supernet, respectively. Noted not all baselines are guaranteed to reach the global optimum, 40000 is

the maximum UVS collected in 3 CPU days for all baselines on datasets, and 2000 is the maximum UVS on

supernet in 3 GPU days.

We made the following observations: 1) strong final performance: LaNAS consistently demonstrates

the strongest final performance on 3 tasks. On NASBench (Fig. 4.4(a)), the final test error of LaNAS is

0.011%, an order of smaller than the second best (0.137%); Similarly, on supernet (Fig. 4.4(c)), the highest

test accuracy found by LaNAS is 83.5%, 0.75% better than the second best. 2) good for one-shot NAS: the

strong final performance of LaNAS is more relevant to one-shot NAS as shown in Fig 4.4(c), as evaluations

are fairly cheap. 3) performance behavior: across 3 experiments, the performance of LaNAS is comparable

to Random Search in the few hundreds of samples⇠ 500, and surpass baselines afterward. As an explanation

for this behavior, we conduct a set of controlled experiments in Appendix. 4.3.2. We conclude that LaNAS

needs a few hundreds of samples to accurately estimate boundaries, thereby good performance afterward. 4)

faster in larger ⌦: LaNAS is 700x and 22x faster than random in reaching similar regrets on NASBench-101

and ConvNet-60K. The empirical results validate our analysis that better performance w.r.t random search

are observable on a larger search space.

Discussions of baselines v.s. LaNAS

Like existing SMBO methods, LaNAS uses a tree of linear regressor as surrogate S in predicting the perfor-

mance of unseen samples, and its S is proven to be quite effective as the resulting partitions clearly separate

4we define valid samples as the samples in NASBench, and invalid as those in the search space but not in NASBench.

62

Figure 4.5: Comparisons of ⇡bayes to ⇡random in sampling from the selected partition ⌦j

good/bad ⌦j (validated by Fig. 4.7(a), and Fig. 4.7(b) in Appendix 4.3.2). Besides, LaNAS uses ⇡ucb in

MCTS as the acquisition to trade-off between exploration and exploitation; All together makes LaNAS more

efficient than non-SMBO baselines. For example, RS relies on blind search, leading to the worst performance.

RE utilizes a static exploration strategy that maintains a pool of top-K architectures for random mutations,

not making full use of previous search experience. MCTS builds online models of both performance and

visitation counts for adaptive exploration. However, without learning action space, the performance model at

each node cannot be highly selective, leading to inefficient search (Fig. 6.1). The poor performance of HB

attributes to the low-rank correlation between the performance at different budgets (Fig.7 in Supplement S2

of [Ying et al., 2019]).

Compared to Bayesian methods, LaNAS learns the state partitions to simplify optimization of the ac-

quisition function �. With learned actions, optimization is as simple as a quick traverse down the tree to

arrive at the most performant region ⌦j , regardless of the size of |⌦| and the dimensionality of tasks, and

random sample a proposal within. Therefore, LaNAS gets a near-optimal solution to maxai2⌦ �(ai) but

without explicit optimization. In contrast, Bayesian methods such as SMAC, TPE, and BOHB use iterated

local search/evolutionary algorithm to propose a sample, which quickly becomes intractable on a high di-

mensional task, e.g. NAS with |⌦| > 1020. As a result, a sub-optimal solution to maxai2⌦ �(ai) leads to

a sub-optimal sample proposal, thereby sub-optimal performance (shown in Fig ??, Appendix). Consistent

with [Wang et al., 2014], our results in Fig. 4.4 also confirms it. For example, Bayesian methods, BOHB in

particular, perform quite well w.r.t LaNAS on ConvNet (the low dimensional task) especially in the beginning

when LaNAS has not learned its partitions well, but their relative performances dwindle on NASBench and

supernet (high dimensional tasks) as the dimensionality grows, |⌦supernet| � |⌦nasbench| � |⌦convnet|.

Therefore, LaNAS is more effective than Bayesian methods in high-dimensional tasks.

63

(a) tree height v.s. #select (b) choice of classifiers (d) the impact of C in UCB(c) #samples for initialization

Figure 4.6: Ablation study: (a) the effect of different tree heights and #select in MCTS. The number in each
entry is #samples to reach global optimal. (b) the choice of predictor for splitting search space. (c) the effect
of #samples for initialization toward the search performance. (d) the effect of hyper-parameter c in UCB on
NASBench performance.

Hyper-parameters tuning in LaNAS

The effect of tree height and #selects: Fig. 4.6(a) relates tree height (h) and the number of selects (#selects) to

the search performance. Each entry represents #samples to find v
⇤ on NASBench, averaged over 100 runs. A

deeper tree leads to better performance since the model space is partitioned by more leaves. Similarly, small

#select results in more frequent updates of action space allowing the tree to make up-to-date decisions, and

thus leads to improvement. On the other hand, the number of classifiers increases exponentially as the tree

goes deeper, and a small #selects incurs a frequent learning phase. Therefore, both can significantly increase

the computation cost.

Choice of classifiers: Fig.4.6(b) shows that using a linear classifier performs better than an multi-layer

perceptron (MLP). This indicates that adding complexity to the decision boundary of actions may not help

with the performance. Conversely, performance can get degraded due to potentially higher difficulties in

optimization.

#samples for initialization: We need to initialize each node classifier properly with a few samples to

establish the initial boundaries. Fig.4.6(c) shows cold start is necessary (init > 0 is better than init = 0), and

a small init=100-400 converges to top 5% performance much faster than init=2000, while init=2000 gets the

best performance a little faster.

The effect of c in UCB: Fig. 4.6(d) shows that the exploration term, c
q

log(ncurt)
nnext

, improves the perfor-

mance as c increases from 0 to 0.1, while using a large c, e.g. > 0.5, is not desired for over-exploring. Please

noted the optimal c is small as the maximum accuracy = 1. In practice, we find that setting c to 0.1⇤max ac-

curacy empirically works well. For example, if a performance metric in the range of [0, 100], we recommend

setting c = 10.

Using ⇡bayes v.s. ⇡random for sample proposal: though ⇡bayes is faster in the beginning, ⇡random delivers

64

the better final result due to the consistent random exploration in the most promising partition. Therefore, we

used ⇡random for simplicity and good final performance through this paper.

(a) Search dynamics: KL-divergence and mean distance (b) Search dynamics: sample distribution vs. dataset distribution

leftmost leaves: 15, 16
rightmost leaves: 28, 29

Figure 4.7: Evaluations of search dynamics:(a) KL-divergence of pj and p
⇤
j dips and bounces back. v̄ �

v̄
⇤ continues to grow, showing the average metric v̄ over different nodes becomes higher when the search

progresses. (b) sample distribution pj approximates dataset distribution p
⇤
j when the number of samples

n 2 [200, 700]. The search algorithm then zooms into the promising sub-domain, as shown by the growth of
v̄j when n 2 [700, 5000].

4.3.2 Analysis of LaNAS

To validate the effectiveness of latent actions in partitioning the search space into regions with different

performance metrics, and to visualize the search phase of LaNAS, we look into the dynamics of sample

distributions on tree leaves during the search. By construction, left nodes contain regions of the good metric

while the right nodes contain regions of the poor metric. Therefore, at each node j, we can construct reference

distribution p
⇤
j (v) by training toward a NAS dataset to partition the dataset into small regions with concen-

trated performances on leaves, i.e. using regression tree for the classification. Then, we compare p
⇤
j (v) with

the estimated distribution p
n
j (v), where n is the number of accumulated samples in Dt \ ⌦j at the node j at

the search step t. Since the reference distribution p
⇤
j (v) is static, visualizing p

n
j (v) to p

⇤
j (v) and calculating

DKL[pnj kkp⇤j] enables us to see variations of the distribution over partition ⌦j on tree leaves w.r.t growing

samples to validate the effectiveness of latent actions and to visualize the search.

We used NASBench-101 that provides us with the true distribution of model accuracy, given any subset

of model specifications, or equivalently a collection of actions (or constraints). In our experiments, we use a

complete binary tree with the height of 5. We label nodes 0-14 as internal nodes, and nodes 15-29 as leaves.

By definition, v̄⇤15 > v̄
⇤
16... > v̄

⇤
29 reflected by p

⇤
15,16,28,29 in Fig. 4.7b.

At the beginning of the search (n = 200 for random initialization), p20015,16 are expected to be smaller

than p
⇤
15,16, and p

200
28,29 are expected to be larger than p

⇤
15,16; because the tree still learns to partition at that

65

time. With more samples (n = 700), pj starts to approximate p
⇤
j , manifested by the increasing similarity

between p
700
15,16,28,29 and p

⇤
15,16,28,29, and the decreasing DKL in Fig. 4.7a. This is because MCTS explores

the under-explored regions, and it explains the comparable performance of LaNAS to baselines in Fig. 4.4.

As the search continues (n! 5000), LaNAS explores deeper into promising regions and p
n
j is biased toward

the region with good performance, deviated from p
⇤
j . As a result, DKL bounces back in Fig. 4.7a. These

search dynamics show how our model adapts to different stages during the course of the search, and validate

its effectiveness in partitioning the search space.

The mean accuracy of p700,500015 > p
700,5000
16 > p

700,5000
28 > p

700,5000
29 in Fig. 4.7(b) indicates that LaNAS

successfully minimizes the variance of rewards on a search path making architectures with similar metrics

concentrated in a region, and LaNAS correctly ranks the regions on tree leaves. These manifest that LaNAS

fulfills the online partitioning of ⌦.

4.4 Related Work

Sequential Model Based Optimizations (SMBO) is a classic black box optimization framework [Hutter et al.,

2011a], that uses a surrogate S to extrapolate unseen region in ⌦ and to interpolate the explored region

with existing samples. In the scenarios of expensive function evaluations f(ai), SMBO is quite efficient

by approximating f(ai) with S(ai). SMBO proposes new samples by solving maxai�(ai) on S, where

� is a criterion, e.g. Expected Improvement (EI) [Jones, 2001] or Conditional Entropy of the Minimizer

(CEM) [Villemonteix et al., 2009], that transforms the value predicted from S for better trade-off between

exploration and exploitation.

Bayesian Optimization (BO) is also an instantiation of SMBO [Wang et al., 2013, Gardner et al., 2014]

that utilizes a Gaussian Process Regressor (GPR) as S. However, GPR suffers from the issue of O(n3)

where n is #samples. To resolve these issues, [Hutter et al., 2011a] replaces GPR with random forests,

called SMAC-random forest, to estimate µ̂ and �̂ for predictive Gaussian distributions, and [Bergstra et al.,

2011] proposes Tree-structured Parzen Estimator (TPE) in modeling Bayesian rule. Though both resolves

the cubic scaling issue, as we thoroughly explained in sec 4.3.1, the key limitation of Bayesian approaches is

at auxiliary optimization of acquisition function on an intractable search space. Similarly, recent predictor-

based methods [Shi et al., 2019b] have achieved impressive results on NASBench by predicting every unseen

architecture from the dataset. Without predicting over the entire dataset, their performance can drastically

deteriorate. LaNAS eliminates this undesired constraint in BO or predictor-based methods, being scalable

66

regardless of problem dimensions, while still captures promising regions for sample proposals.

Besides the recent success in games [Silver et al., 2016, Tian et al., 2019a], Monte Carlo Tree Search

(MCTS) has also been used in robotics planning, optimization, and NAS [Buşoniu et al., 2013, Munos,

2014, Weinstein and Littman, 2012, Mansley et al., 2011]. AlphaX is the first MCTS based NAS agent to

explore the search space assisted with a value function predictor. However, the action space of AlphaX is

manually defined w.r.t the search space. In sec. 4.1, we have clearly demonstrated that manually defined

search space provides a confusing reward signal to the search, therefore low sample efficiency. In contrast,

LaNAS learns the action space to partition the search space into good and bad regions, providing a stronger

reward signal to guide the search; and [Wang et al., 2020a] extends LaNAS to be a generic black box meta-

solver.

XNAS [Nayman et al., 2019a] and many other existing NAS methods in Table. 9.1 are specifically de-

signed to improve the search by exploiting the architecture characteristics in the NASNet or EfficientNet

search space, while LaNAS is a new generic search algorithm applicable to the much broader scope of tasks.

For example, P-DARTS [Chen et al., 2019b] observes there is a depth gap in the architecture during the

search and evaluation steps in the search for CNN on the NASNet search space. Then, P-DARTS proposes

progressively increasing the network depth during the search for CNN, so that the network depth can match

the evaluation setting. But these task-dependent settings can change from tasks to tasks, or search space to

search space. LaNAS treats NAS as a black box function without making any assumptions to the underlying

search space, being adaptable to different problems. In the black box optimization challenge at NeurIPS-

2020, LaNAS is proven to be effective in solving 216 different ML tasks [Sazanovich et al., 2020].

4.5 Additional Details

Algorithm 4 get ucb(X̄next, nnext, ncurt) in Alg. 6
1: c = 0.1
2: if nnext = 0 then
3: return +1
4: else
5: return X̄next

nnext
+ 2c

q
2log(ncurt)

nnext

6: end if=0

67

Algorithm 5 LaNAS search procedures
1: while acc < target do
2: for n 2 Tree.N do
3: n.g.train()
4: end for
5: for i = 1! #selects do
6: leaf, path = ucb select(root)
7: constraints = get constraints(path)
8: network = sampling(constraints)
9: acc = network.train()

10: back propagate(network, acc)
11: end for
12: end while=0

Algorithm 6 ucb select(c = root) in Alg. 5

1: path = []
2: while c not leaf do
3: path.add(c)
4: lucb = get ucb(c.left.X̄, c.left.n, c.n)
5: rucb = get ucb(c.right.X̄, c.right.n, c.n)
6: end while
7: while c not leaf do
8: path.add(c)
9: if lucb > rucb then

10: c = c.left

11: else
12: c = c.right

13: end if
14: end while
15: return path, c =0

Algorithm 7 get constraints(path) in Alg. 5
1: constraints = []
2: for node 2 s path do
3: W, b = node.g.params()
4: X̄ = node.X̄

5: if node on left then
6: constraints.add(Wa+ b � X̄)
7: else
8: constraints.add(Wa+ b < X̄)
9: end if

10: end for
11: return constraints =0

68

4.6 Conclusion

This work presents a novel MCTS based search algorithm that learns action space for MCTS. With its applica-

tion to NAS, LaNAS has proven to be more sample-efficient than existing approaches, validated by the cases

with and without one-shot NAS on a diverse of tasks. The proposed algorithm is not limited to NAS and has

been extended to be a generic gradient-free algorithm [Wang et al., 2020a], applied to different challenging

black-box optimizations.

Chapter 5

Latent Action Monte Carlo Tree Search

5.1 Motivation

Black-box optimization has been extensively used in many scenarios, including Neural Architecture Search

(NAS) [Zoph and Le, 2016, Wang et al., 2019a, Wang et al., 2019c], planning in robotics [Kim et al.,

2020a, Buşoniu et al., 2013], hyper-parameter tuning in large scale databases [Pavlo et al., 2017] and dis-

tributed systems [Fischer et al., 2015], integrated circuit design [Mirhoseini et al., 2020], etc.. In black-box

optimization, we have a function f without explicit formulation and the goal is to find x⇤ such that

x⇤ = argmax
x2X

f(x) (5.1)

with the fewest samples (x). In this paper, we consider the case that f is deterministic.

Without knowing any structure of f (except for the local smoothness such as Lipschitz-continuity [Gold-

stein, 1977]), in the worst-case, solving Eqn. 5.1 takes exponential time, i.e. the optimizer needs to search

every x to find the optimum. One way to address this problem is through learning: from a few samples we

learn a surrogate regressor f̂ 2 H and optimize f̂ instead. If the model class H is small and f can be well

approximated within H, then f̂ is a good approximator of f with much fewer samples.

Many previous works go that route, such as Bayesian Optimization (BO) and its variants [Brochu et al.,

2010, Frazier, 2018, Shahriari et al., 2015, Bubeck et al., 2011]. However, in the case that f is highly

nonlinear and high-dimensional, we need to use a very large model class H, e.g. Gaussian Processes (GP)

or Deep Neural Networks (DNN), that requires many samples to fit before generalizing well. For example,

69

70

Oh et al [Oh et al., 2018] observed that the myopic acquisition in BO over-explores the boundary of a

search space, especially in high dimensional problems. To address this issue, recent works start to explore

space partitioning [Kim et al., 2020a, Munos, 2011, Wang et al., 2014] and local modeling [Eriksson et al.,

uRBO, Wang et al., 2017b] that fits local models in promising regions, and achieve strong empirical results

in high dimensional problems. However, their space partitions follow a fixed criterion (e.g., K-ary uniform

partition) that is independent of the objective to be optimized.

Following the path of learning, one under-explored direction is to learn the space partition. Compared to

learning a regressor f̂ that is expected to be accurate in the region of interest, it suffices to learn a classifier

that puts the sample to the right subregion with high probability. Moreover, its quality requirement can be

further reduced if done recursively.

In this section, we propose LA-MCTS, a meta-level algorithm that recursively learns space partition in a

hierarchical manner. Given a few samples within a region, it first performs unsupervised K-mean algorithm

based on their function values, learns a classifier using K-mean labels, and partition the region into good and

bad sub-regions (with high/low function value). To address the problem of mis-partitioning good data points

into bad regions, LA-MCTS uses UCB to balance exploration and exploitation: it assigns more samples to

good regions, where it is more likely to find an optimal solution, and exploring other regions in case there

are good candidates. Compared to previous space partition method, e.g. using Voronoi graph [Kim et al.,

2020a], we learn the partition that is adaptive to the objective function f(x). Compared to the local modeling

method, e.g. TuRBO [Eriksson et al., uRBO], our method dynamically exploits and explores the promising

region w.r.t samples using Monte Carlos Tree Search (MCTS), and constantly refine the learned boundaries

with new samples.

LA-MCTS extends LaNAS [Wang et al., 2019a] in three aspects. First, while LaNAS learns a hyper-

plane, our approach learns a non-linear decision boundary that is more flexible. Second, while LaNAS simply

performs uniform sampling in each region as the next sample to evaluate, we make the key observation that

local model works well and use existing solvers such as BO to find a promising data point. This makes LA-

MCTS a meta-algorithm usable to boost existing algorithms that optimize via building local models. Third,

while LaNAS mainly focus on Neural Architecture Search (¡ 20 discrete parameters), our approach shows

strong performance on generic black-box optimization.

We show that LA-MCTS, when paired with TurBO, outperforms various SoTA black-box solvers from

Bayesian Optimizations, Evolutionary Algorithm, and Monte Carlo Tree Search, in several challenging

71

benchmarks, including MuJoCo locomotion tasks, trajectory optimization, reinforcement learning, and high-

dimensional synthetic functions. We also perform extensive ablation studies, showing LA-MCTS is relatively

insensitive to hyper-parameter tuning. As a meta-algorithm, it also substantially improves the baselines.

The implementation of LA-MCTS can be found at https://github.com/facebookresearch/LaMCTS.

5.2 Related Work

Bayesian Optimization (BO) has become a promising approach in optimizing the black-box functions [Brochu

et al., 2010, Frazier, 2018, Shahriari et al., 2015], despite much of its success is typically limited to less than

15 parameters [Nayebi et al., esBO] and a few thousand evaluations [Wang et al., 2017b]. While most real-

world problems are high dimensional, and reliably optimizing a complex function requires many evaluations.

This has motivated many works to scale up BO, by approximating the expensive Gaussian Process (GP), such

as using Random Forest in SMAC [Hutter et al., 2011a], Bayesian Neural Network in BOHAMIANN [Sprin-

genberg et al., 2016], and the tree-structured Parzen estimator in TPE [Bergstra et al., 2011]. BOHB [Falkner

et al., Ster] further combines TPE with Hyperband [Li et al., 2017] to achieve strong any time performance.

Therefore, we choose BOHB in comparison. Using a sparse GP is another way to scale up BO [Seeger et al.,

2003, Snelson and Ghahramani, 2006, Hensman et al., 2013]. However, sparse GP only works well if there

exists sample redundancy, which is barely the case in high dimensional problems. Therefore, scaling up

evaluations is not sufficient for solving high-dimensional problems.

There are lots of work to specifically study high-dimensional BO [Wang et al., 2013, Kawaguchi et al.,

2015, McIntire et al., 2016, Chen et al., 2012, Kandasamy et al., 2015, Binois et al., 2015, Wang et al.,

2016c, Gardner et al., 2017, Rolland et al., 2018, Mutny and Krause, 2018]. One category of methods

decomposes the target function into several additive structures [Kandasamy et al., 2015, Gardner et al., 2017],

which limits its scalability by the number of decomposed structures for training multiple GP. Besides, learning

a good decomposition remains challenging. Another category of methods is to transform a high-dimensional

problem in low-dimensional subspaces. REMBO [Wang et al., 2016c] fits a GP in low-dimensional spaces

and projects points back to a high-dimensional space that contains the global optimum with a reasonable

probability. Binois et al [Binois et al., 2020] further improves the distortion from Gaussian projections in

REMBO. While REMBO works empirically, HesBO [Nayebi et al., esBO] is a theoretical sound framework

for BO that optimizes high-dimensional problems on low dimensional sub-spaces embeddings; In BOCK [Oh

et al., 2018], Oh et al observed existing BO spends most evaluations near the boundary of a search space due

72

to the Euclidean geometry, and it proposed transforming the problem into a cylindrical space to avoid over-

exploring the boundary. EBO [Wang et al., 2017b] uses an ensemble of local GP on the partitioned problem

space. Based on the same principle of local modeling as EBO, recent trust-region BO (TuRBO) [Eriksson

et al., uRBO] has outperformed other high-dimensional BO on a variety of tasks. In comparing to high

dimensional BO, we picked SoTA local modeling method TuRBO and dimension reduction method HesBO.

Evolutionary Algorithm (EA) is another popular algorithm for high dimensional black-box optimizations.

A comprehensive review of EA can be found in [Jin and Branke, 2005]. CMA-ES is a successful EA method

that uses co-variance matrix adaption to propose new samples. Differential Evolution (DE) [Storn and Price,

1997] is another popular EA approach that uses vector differences for perturbing the vector population. Re-

cently, Liu et al proposes a metamethod (Shiwa) [Liu et al., grad] to automatically selects EA methods based

on hyper-parameters such as problem dimensions, budget, and noise level, etc., and Shiwa delivers better

empirical results than any single EA method. We choose Shiwa, CMA-ES, and differential evolution in

comparisons.

Besides the recent success in games [Silver et al., 2016, Schrittwieser et al., 2019, Silver et al., 2017,

Browne et al., 2012], Monte Carlo Tree Search (MCTS) is also widely used in the robotics planning and

optimization [Buşoniu et al., 2013, Munos, 2014, Weinstein and Littman, 2012, Mansley et al., 2011]. Several

space partitioning algorithms have been proposed in this line of research. In [Munos, 2011], Munos proposed

DOO and SOO. DOO uses a tree structure to partition the search space by recursively bifurcating the region

with the highest upper bound, i.e. optimistic exploration, while SOO relaxes the Lipschitz condition of DOO

on the objective function. HOO [Bubeck et al., 2011] is a stochastic version of DOO. While prior works use

K-ary partitions, Kim et al show Voronoi [Kim et al., 2020a] partition can be more efficient than previous

linear partitions in high-dimensional problems. In this paper, based on the idea of space partitioning, we

extend current works by learning the space partition so that the partition can adapt to the distribution of f(x).

Besides, we improve the sampling inside a selected region with BO. This also helps BO from over-exploring

by bounding within a small region.

5.3 Latent Action Monte Carlo Tree Search (LA-MCTS)

This section describes LA-MCTS that progressively partitions the problem space. Please refer to Table. 5.1

for definitions of notations in this paper.

The model of MCTS search tree: At any iteration t, we have a dataset Dt collected from previous

73

Table 5.1: Definition of notations used through this paper.

xi the ith sample f(xi) the evaluation of xi Dt collected {xi, f(xi)} from iter 1 ! t

⌦ the entire search space ⌦j the partition represented by node j Dt \ ⌦j samples classified in ⌦j

nj #visits at node j vj the value of node j ucbj the ucb score of node j

A

…

Ω

Ω!

"" ∩ Ω!
Ω!

SVM learns
a boundary

Kmean learns
two clusters

latent action

B C

Ω#

Ω$

(a) (b) (c) (d)

!! = #$%&%'&
(! = $)*+,

Figure 5.1: The model of latent actions: each tree nodes represents a region in the search space, and latent action splits
the region into a high-performing and a low-performing region using x and f(x).

evaluations. Each entry in Dt contains a pair of (xi, f(xi)). A tree node (e.g. node A in Fig. 5.1) represents a

region ⌦A in the entire problem space (⌦), then Dt \⌦A represents the samples falling within node A. Each

node also tracks two important statistics to calculate UCB1 [Auer et al., 2002] for guiding the selection: nA

represents the number of visits at node A, which is the #sample in Dt \⌦A; and vi represents the node value

that equals to 1
ni

P
f(xi), 8xi 2 Dt \ ⌦i.

LA-MCTS finds the promising regions by recursively partitioning. Starting from the root, every internal

node, e.g. node A in Fig. 5.1, use latent actions to bifurcate the region represented by itself into a high

performing and a low performing disjoint region (⌦B and ⌦C) for its left and right child, respectively (by

default we use left child to represent a good region), and ⌦A = ⌦B[⌦C . Then a tree enforces the behavior of

recursively partitioning from root to leaves so that regions represented by tree leaves (⌦leaves) can be easily

ranked from the best (the leftmost leaf), the second-best (the sibling of the leftmost leaf) to the worst (the

rightmost leaf) due to the partitioning rule. The tree grows as the optimization progress, ⌦leaves becomes

smaller, better focusing on a promising region (Fig. 5.9(b)). Please see sec 5.3 for the tree construction.

By directly optimizing on ⌦leaves, it helps BO from over-exploring, hence improving the BO performance

especially in high dimensional problems.

Latent actions: Our model defines latent action as a boundary that splits the region represented by a

node into a high-performing and a low performing region. Fig. 5.1 illustrates the concept and the procedures

of creating latent actions on a node. Our goal is to learn a boundary from samples in Dt \ ⌦A to maximize

the performance difference of two regions split by the boundary. We apply Kmeans on the feature vector

of [x, f(x)] to find a good and a bad performance clusters in Dt \ ⌦A, then use SVM to learn a decision

74

A

D

B C

E

select w.r.t UCB

A

D

B C

E

search
space

min f(x) in selected partition

SELECT

D E

!! ∩Ω" = (!!∩Ω#)∪ (!!∩ Ω$)

B

min f(x), x ∈ Ω!

Ω!= Ω" ∩Ω#

LEARNING & SPLITTING

Splittable = Yes No leaf is splittable

SAMPLING

A

D

B C

F G

eE

(a) (b) (c)

"#$" = &' ()*# = 3 Ω!

Integration with TuRBO

• Initialized with , in Ω!
• Bounding box centered

at max , , , ∈ Ω!
• Only samples from Ω$ ∩

Ω! for the acquisition.

Bounding box
(Ω$) in TuRBO

Figure 5.2: The workflow of LA-MCTS: In an iteration, LA-MCTS starts with building the tree via splitting, then it
selects a region based on UCB. Finally, on the selected region, it samples by BO.

boundary. Learning a nonlinear decision boundary is a traditional Machine Learning (ML) task, Neural

Networks (NN) and Support Vector Machines (SVM) are two typical solutions. We choose SVM for the ease

of training, and requiring fewer samples to generalize well in practices. Please note a simple node model is

critical for having a tree of them. For the same reason, we choose Kmeans to find two clusters with good and

bad performance. The detailed procedures are as follows:

1. At any node A, we prepare 8[xi, f(xi)], i 2 Dt \ ⌦j as the training data for Kmeans to learn two

clusters of different performance (Fig. 5.1 (b, c)), and get the cluster label li for every xi using the

learned Kmeans, i.e. [li,xi]. So, the cluster with higher average f(xi) represents a good performing

region, and lower average f(xi) represents a bad region.

2. Given [li,xi] from the previous step, we learn a boundary with SVM to generalize two regions to

unseen xi, and the boundary learnt by SVM forms the latent action (Fig. 5.1(d)). for example, 8xi 2 ⌦

with predicted label equals the high-performing region goes to the left child, and right otherwise.

The search procedures

Fig. 5.2 summarizes a search iteration of LA-MCTS that has 3 major steps. 1) Learning and splitting dynam-

ically deepens a search tree using new xi collected from the previous iteration; 2) select explores partitioned

search space for sampling; and 3) sampling solves minimizef(xi),xi 2 ⌦selected using BO, and SVMs on

the selected path form constraints to bound ⌦selected. We omit the back-propagation as it is implicitly done

in splitting. Please see [Wang et al., 2019c, Browne et al., 2012] for a review of regular MCTS.

Dynamic tree construction via splitting: we estimate the performance of a ⌦i, i.e. v
⇤
i , by v̂

⇤
i =

1
ni

P
f(xi), 8xi 2 Dt \ ⌦i. At each iterations, new xi are collected and the regret of |v̂⇤i � v

⇤
i | quickly

decreases. Once the regret reaches the plateau, new samples are not necessary; then LA-MCTS splits the

75

region using latent actions (Fig. 5.1) to continue refining the value estimation of two child regions. With

more and more samples from promising regions, the tree becomes deeper into good regions, better guiding

the search toward the optimum. In practice, we use a threshold ✓ as a tunable parameter for splitting. If the

size of Dt \ ⌦i exceeds the threshold ✓ at any leaves, we split the leaf with latent actions. We presents the

ablation study on ✓ in Fig. 5.10.

The structure of our search tree dynamically changes across iterations, which is different from the pre-

defined fixed-height tree used in LaNAS [Wang et al., 2019a]. At the beginning of an iteration, starting from

the root that contains all the samples, we recursively split leaves using latent actions if the sample size of any

leaves exceeds the splitting threshold ✓, e.g. creating node D and node E for node B in Fig.2(a). We stop the

tree splitting until no more leaves satisfy the splitting criterion. Then, the tree is ready to use in this iteration.

Select via UCB: According to the partition rule, a simple greedy based go-left strategy can be used to

exclusively exploit the current most promising leaf. This makes the algorithm over-exploiting a region based

on existing samples, while the region can be sub-optimal with the global optimum located in a different place.

To build an accurate global view of ⌦, LA-MCTS selects a partition following Upper Confidence Bound

(UCB) for the adaptive exploration; and the definition of UCB for a node is ucbj =
vj
nj

+2Cp⇤
p

2log(np)/nj ,

where Cp is a tunable hyper-parameter to control the extent of exploration, and np represents #visits of the

parent of node j. At a parent node, it chooses the node with the largest ucb score. By following UCB from the

root to a leaf, we select a path for sampling (Fig. 5.2(b)). When Cp = 0, UCB degenerates to a pure greedy

based policy, e.g. regression tree. An ablation study on Cp in Fig. 5.10(a) highlights that the exploration is

critical to the performance.

e

a
cb

d e
f g

h I

…
…
…

(a) search tree (b) split on node a
average sin(x): -0.234
average sin(x): 0.127

(c) split on node b
average sin(x): 0.05
average sin(x): 0.204

(d) split on node d
average sin(x): -0.123
average sin(x): 0.694

(e) split on node f
average sin(x): 0.398
average sin(x): 0.99

b c e d g f h I
The range of x for sampling on leftmost node

decision
boundary

Figure 5.3: The visualization of partitioning 1d sin(x) using LA-MCTS.

Sampling via Bayesian Optimizations: select finds a path from the root to leaf, and SVMs on the path

collectively intersects a region for sampling (e.g. ⌦E in Fig. 5.2(c)). In sampling, LA-MCTS solves minf(x)

on a constrained search space ⌦selected, e.g. ⌦E in Fig. 5.2(c).

76

!!
!!

(a) (b)

expand
!!

(c)

Figure 5.4: Illustration of sampling steps in optimizing the acquisition for Bayesian Optimization. We uniformly draw
samples within a hyper-cube, then expand the cube and reject outliers.

Sampling with TuRBO: here we illustrate the integration of SoTA BO method TuRBO [Eriksson et al.,

uRBO] with LA-MCTS. We use TuRBO-1 (no bandit) for solving minf(x) within the selected region, and

make the following changes inside TuRBO, which is summarized in Fig. 5.2(c). a) At every re-starts, we

initialize TuRBO with random samples only in ⌦selected. The shape of ⌦selected can be arbitrary, so we use

the rejected sampling (uniformly samples and reject outliers with SVM) to get a few points inside ⌦selected.

Since we only need a few samples for the initialization, the reject sampling is sufficient. b) TuRBO centers

a bounding box at the best solution so far, while we restrict the center to be the best solution in ⌦selected. c)

TuRBO uniformly samples from the bounding box to feed the acquisition to select the best as the next sample,

and we restrict the TuRBO to uniformly sample from the intersection of the bounding box and ⌦selected. The

intersection is guaranteed to exist because the center is within ⌦selected. At each iteration, we keep TuRBO

running until the size of trust-region goes 0, and all the evaluations, i.e. xi and f(xi), are returned to LA-

MCTS to refine learned boundaries in the next iteration. Noted our method is also extensible to other solvers

by following similar procedures.

Sampling with regular BO: following the steps described in Sec. 5.3, we select a leaf for sampling by

traversing down from the root. The formulation of sampling with BO is same as using other solvers that

minf(x),x 2 ⌦selected. ⌦selected is constrained by SVMs on the selected path. We optimize the acquisition

function of BO by sampling, while sampling in a bounded arbitrary ⌦selected is nontrivial especially in

high-dimensional space. For example, rejected sampling can fail to work as the search space is too large to

get sufficient random samples in ⌦selected; hit-and-run [Bélisle et al., 1993] or Gibbs sampling [Gelfand and

Smith, 1990] can be good alternatives. In Fig. 5.4, we propose a new heuristic for sampling. At every existing

samples x inside ⌦selected, we draw a rectangle r
� of length equals to � centered at xi (Fig. 5.4(a)), and

xi 2 ⌦ \Dt, where � is a small constant (e.g. 10�4). Next, we uniformly draw random samples using sobol

sequence [Sobol’, 1967] inside r
� . Since � is a small constant, we assume all the random samples located

77

(e) Ant-888d(d) Half-Cheetah-102d

(b) Hopper-33d (c) 2dWalker-102d

(f) Humanoid-6392d

(a) Swimmer-16d

Figure 5.5: Benchmark on MuJoCo locomotion tasks: LA-MCTS consistently outperforms baselines on 6 tasks. With
more dimensions, LA-MCTS shows stronger benefits (e.g. Ant and Humanoid). This is also observed in Fig. 5.8. Due to
exploration, LA-MCTS experiences relatively high variance but achieves better solution after 30k samples, while other
methods quickly move into local optima due to insufficient exploration.

inside ⌦selected. Then we linearly scale both the rectangle r� and samples within r
� until certain percentages

(e.g. 10) of samples located outside of ⌦selected (Fig. 5.4(b)). We keep those samples that located inside

⌦selected (Fig. 5.4(c)) for optimizing the acquisition, and repeat the procedures for every existing samples in

⌦selected\Dt. Finally, we propose the sample with the largest value calculated from the acquisition function.

5.4 Experiments

We evaluate LA-MCTS against the SoTA baselines from different algorithm categories ranging from Bayesian

Optimization (TuRBO [Eriksson et al., uRBO], HesBO [Nayebi et al., esBO], BOHB [Falkner et al., Ster]),

Evolutionary Algorithm (Shiwa [Liu et al., grad], CMA-ES [Hansen et al., ycma], Differential Evolution

(DE) [Storn and Price, 1997]), MCTS (VOO [Kim et al., 2020a], SOO [Munos, 2011], and DOO [Munos,

2011]), Dual Annealing [Pincus, html] and Random Search. In experiments, LA-MCTS is defaulted to use

TuRBO for sampling unless state otherwise. For baselines, we used the authors’ reference implementations

(see the bibliography for the source of implementations).

78

5.4.1 MuJoCo Locomotion Tasks

MuJoCo [Todorov et al., 2012] locomotion tasks (swimmer, hopper, walker-2d, half-cheetah, ant and hu-

manoid) are among the most popular Reinforcement Learning (RL) benchmarks, and learning a humanoid

model is considered one of the most difficult control problems solvable by SoTA RL methods [Salimans

et al., 2017]. While the push and trajectory optimization problems used in [Eriksson et al., uRBO, Wang

et al., 2017b] only have up to 60 parameters, MuJoCo tasks are more difficult: e.g., the most difficult task

humanoid in MuJoCo has 6392 parameters.

Here we chose the linear policy a = Ws [Mania et al., sARS], where s is the state vector, a is the action

vector, and W is the linear policy. To evaluate a policy, we average rewards from 10 episodes. We want to

find W to maximize the reward. Each component of W is continuous and in the range of [�1, 1].

Fig. 5.5 suggests LA-MCTS consistently out-performs various SoTA baselines on all tasks. In particular,

on high-dimensional hard problems such as ant and humanoid, the advantage of LA-MCTS over baselines

is the most obvious. Here we use TuRBO-1 to sample ⌦selected (see sec. 5.3). (a) vs TuRBO. LA-MCTS

substantially outperforms TuRBO: with learned partitions, LA-MCTS reduces the region size so that TuRBO

can fit a better model in small regions. Moreover, LA-MCTS helps TuRBO initialize from a promising region

at every restart, while TuRBO restarts from scratch. (b) vs BO. While BO variants (e.g., BOHB) perform

very well in low-dimensional problem (Fig. 5.5), their performance quickly deteriorates with increased prob-

lem dimensions (Fig. 5.5(b)!(f)) due to over-exploration [Oh et al., 2018]. LA-MCTS prevents BO from

over-exploring by quickly getting rid of unpromising regions. By traversing the partition tree, LA-MCTS also

completely removes the step of optimizing the acquisition function, which becomes harder in high dimen-

sions. (c) vs objective-independent space partition. Methods like VOO, SOO, and DOO use hand-designed

space partition criterion (e.g., k-ary partition) which does not adapt to the objective. As a result, they perform

poorly in high-dimensional problems. On the other hand, LA-MCTS learns the space partition that depends

on the objective f(x). The learned boundary can be nonlinear and thus can capture the characteristics of

complicated objectives (e.g., the contour of f) quite well, yielding efficient partitioning. (d) vs evolutionary

algorithm (EA). CMA-ES generates new samples around the influential mean, which may trap in a local

optimum.

Comparison with gradient-based approaches: Table 5.2 summarizes the sample efficiency of SOTA

gradient-based approach on 6 MuJoCo tasks. Note that given the prior knowledge that a gradient-based

approach (i.e., exploitation-only) works well in these tasks, LA-MCTS, as a black-box optimizer, will spend

79

Table 5.2: Compare with gradient-based approaches on MuJoCo v1; and the performance on
MuJoCo v2 is similar. Despite being a black-box optimizer, LA-MCTS still achieves good sample
efficiency in low-dimensional tasks (Swimmer, Hopper and HalfCheetah), but lag behind in high-
dimensional tasks due to excessive burden in exploration, which gradient approaches lack. For
more details of ARS V2-t, NG-lin, NG-rbf and TRPO-nn, please refer to [Mania et al., sARS],
[Rajeswaran et al., 2017], [Rajeswaran et al., 2017] and [Mania et al., sARS], respectively.

The average episodes (#samples) to reach the threshold
Task Reward Threshold LA-MCTS ARS V2-t NG-lin NG-rbf TRPO-nn

Swimmer-v2 325 126 427 1450 1550 N/A
Hopper-v2 3120 2913 1973 13920 8640 10000
HalfCheetah-v2 3430 3967 1707 11250 6000 4250
Walker2d-v2 4390 N/A(rbest = 3523) 24000 36840 25680 14250
Ant-v2 3580 N/A(rbest = 2871) 20800 39240 30000 73500
Humanoid-v2 6000 N/A(rbest = 3202) 142600 130000 130000 unknown

N/A stands for not reaching reward threshold.
rbest stands for the best reward achieved by LA-MCTS under the budget in Fig. 5.5.

extra samples for exploration and is expected to be less sample-efficient than the gradient-based approach for

the same performance. Despite that, on simple tasks such as swimmer, LA-MCTS still shows superior sample

efficiency than NG and TRPO, and is comparable to ARS. For high-dimensional tasks, exploration bears an

excessive burden and LA-MCTS is not as sample-efficient as other gradient-based methods in MuJoCo tasks.

We leave further improvement for future work.

Comparison with LaNAS: LaNAS lacks a surrogate model to inform sampling, while LA-MCTS sam-

ples with BO. Besides, the linear boundary in LaNAS is less adaptive to the nonlinear boundary used in

LA-MCTS (e.g. Fig. 5.10(b)).

5.4.2 Small-scale Benchmarks

(a) Lunar landing, #params = 12 (b) Rover trajectory planning, #params = 60

Figure 5.6: Evaluations on Lunar landing and Trajectory Optimization: LA-MCTS consistently outperforms
baselines.

80

(b) Ackley-100d(a) Ackley-20d

(d) Rosenbrock-100d(c) Rosenbrock-20d

(g) Rastrigin-20d

(f) Levy-100d

(h) Rastrigin-100d

(e) Levy-20d

Figure 5.7: Evaluations on synthetic functions: the best method varies w.r.t functions, while LA-MCTS
consistently improves TuRBO and being among top methods among all functions.

81

Ackley-100dAckley-20d Rosenbrock-100dRosenbrock-20d

Figure 5.8: LA-MCTS as an effective meta-algorithm. LA-MCTS consistently improves the performance of TuRBO
and BO, in particular in high-dimensional cases. We only plot part of the curve (each runs lasts for 3 day) for BO since it
runs very slow in high-dimensional space.

A

D

B C

eE

F eG

node A node B

node D

node F = A ∩ B ∩ D

iter=0 iter=2

iter=4 iter=19

(b) the visualization of selected region
at different search iterations

(c) the selected region (iter=19 in (b)) is
collectively bounded by SVMs in the path.

(a) the progress of the value of selected node !!
to the global optimum	!∗ = 0, and the #splits.

Figure 5.9: Validation of LA-MCTS: (a) the value of selected node becomes closer to the global optimum as #splits
increases. (b) the visualization of ⌦selected in the progress of search. (c) the visualization of ⌦selected that takes the
intersection of nodes on the selected path.

The setup of each methods can be found at Sec 5.6.1 in appendix, and figures are in Appendix 5.6.2.

Synthetic functions: We further benchmark with four synthetic functions, Rosenbrock, Levy, Ackley and

Rastrigin. Rosenbrock and Levy have a long and flat valley including global optima, making optimization

hard. Ackley and Rastrigin function have many local optima. Fig. 5.7 in Appendix shows the full evaluations

to baselines on the 4 functions at 20 and 100 dimensions, respectively. The result shows the performance of

each solvers varies a lot w.r.t functions. CMA-ES and TuRBO work well on Ackley, while Dual Annealing

is the best on Rosenbrock. However, LA-MCTS consistently improves TuRBO on both functions.

Lunar Landing: the task is to learn a policy for the lunar landing environment implemented in the Open

AI gym [Brockman et al., 2016], and we used the same heuristic policy from TuRBO [Eriksson et al., uRBO]

that has 12 parameters to optimize. The state vector contains position, orientation and their time derivatives,

and the state of being in contact with the land or not. The available actions are firing engine left, right, up, or

idling. Fig. 5.6 shows LA-MCTS performs the best among baselines.

Rover-60d: the task was proposed in [Wang et al., 2017b] that optimizes 30 coordinates in a trajectory

on a 2d plane, so the state vector consists of 60 variables. LA-MCTS still performs the best on this task.

82

5.4.3 Validation of LA-MCTS

LA-MCTS as an effective meta-algorithm: LA-MCTS internally uses TuRBO to pick promising samples

from a sub-region. We also try using regular Bayesian Optimization (BO), which utilizes Expected Im-

provement (EI) for picking the next sample to evaluate. Fig. 5.8 shows LA-MCTS successfully boosts the

performance of TuRBO and BO on Ackley and Rosenbrock function, in particular for high dimensional tasks.

This is consistent with our results in MuJoCo tasks (Fig. 5.5).

Validating LA-MCTS. Starting from the entire search space ⌦, the node model in LA-MCTS recursively

splits ⌦ into a high-performing and a low-performing regions. The value of a region v
+ is expected to

become closer to the global optimum v
⇤ with more and more splits. To validate this behavior, we setup

LA-MCTS on Ackley-20d in the range of [�5, 10]20, and keeps track of the value of a selected partition,

v
+
i = 1

ni

P
f(xi), 8xi 2 Dt \ ⌦selected, and as well as the number of splits at each steps. The global

optimum of Ackley is at v⇤ = 0. We plot the progress of regret |v+i � v
⇤| in the left axis of Fig. 5.9(a),

and the number of splits in the right axis of Fig. 5.9(a). Fig. 5.9 shows the regret decreases as the number of

splits increases, which is consistent with the expected behavior. Besides, spikes in the regret curve indicate

the exploration of less promising regions from MCTS.

Visualizing the space partition. We further understand LA-MCTS by visualizing space partition inside

LA-MCTS on 2d-Ackley in the search range of [�10, 10]2, which the global optimum v
⇤ is marked by a red

star at x⇤ = 0. First, we visualize the ⌦selected in first 20 iterations, and show them in Fig. 5.9(b) and the full

plot in Fig. 5.11(b) at Appendix. The purple indicates a good-performing region, while the yellow indicates a

low-performing region. In iteration = 0, ⌦selected misses v⇤ due to the random initialization, but LA-MCTS

consistently catches v
⇤ in ⌦selected afterwards. The size of ⌦selected becomes smaller as #splits increases

along the search (Fig. 5.9(a)). Fig. 5.9(c) shows the selected region is collectively bounded by SVMs on the

path, i.e. ⌦F = ⌦A \ ⌦B \ ⌦D \ ⌦F .

5.4.4 Ablations on Hyper-parameters

Multiple hyper-parameters in LA-MCTS, including Cp in UCB, the kernel type of SVM, and the splitting

threshold (✓), could impact its performance. Here ablation studies on HalfCheetah are provided for practical

guidance.

Cp: Cp controls the amount of exploration. A large Cp encourages LA-MCTS to visit bad regions

more often (exploration). As shown in Fig 5.10, too small Cp leads to the worst performance, highlighting

83

(a) Ablation on Cp (b) Ablation on SVM kernel (c) Ablation on splitting threshold

Figure 5.10: Ablation studies on hyper-parameters of LAMCTS.

the importance of exploration. However, a large Cp leads to over-exploration which is also undesired. We

recommend setting Cp to 10% to 1% of max f(x).

The SVM kernel: the kernel type decides the shape of the boundary drawn by each SVM. The linear

boundary yields a convex polytope, while polynomial and RBF kernel can generate arbitrary region boundary,

due to their non-linearity, which leads to better performance (Fig 5.10(b)).

The splitting threshold ✓: the splitting threshold controls the speed of tree growth. Given the same

#samples, smaller ✓ leads to a deeper tree. If ⌦ is very large, more splits enable LA-MCTS to quickly focus

on a small promising region, and yields good results (✓ = 10). However, if ✓ is too small, the performance

and the boundary estimation of the region become more unreliable, resulting in performance deterioration

(✓ = 2, in Fig. 5.10).

5.5 Conclusion

The global optimization of high-dimensional black-box functions is an important topic that potentially im-

pacts a broad spectrum of applications. We propose a novel meta method LA-MCTS that learns to partition

the search space for Bayesian Optimization so that it can attend on a promising region to avoid over-exploring.

Comprehensive evaluations show LA-MCTS is an effective meta-method to improve BO. In the future, we

plan to extend the idea of space partitioning into Multi-Objective Optimizations.

84

5.6 Additional Details

5.6.1 Hyper-parameter Settings for All Baselines in the Benchmarks

Setup for MuJoCo tasks: Fig. 5.5 shows 13 methods in total, and here we describe the hyper-parameters

of each method. Since we’re interested in the sample efficiency, the batch size of every method is set to

1. We reuse the policy and evaluation codes from ARS [Mania et al., sARS], and the URL to the ARS

implementation can be found in the bibliography. The implementations of VOO, SOO, and DOO are from

here 1; methods including CMA-ES, Differential Evolution, Dual Annealing are from the optimize module

in scipy, and Shiwa is from Nevergrad2. Please see the bibliography for the reference implementations of

BOHB and HesBO.

LA-MCTS we use 30 samples for the initialization; and the SVM uses RBF kernel for easy tasks including swim-

mer, hopper, half-cheetah, and linear kernel for hard tasks including 2d-walker, ant and humanoid to

get over 3 ⇤ 104 samples. Cp is set to 10, and the splitting threshold ✓ is set to 100. LA-MCTS uses

TuRBO-1 for sampling, and the setup of TuRBO-1 is exactly the same as TuRBO described below.

TuRBO-1 returns all the samples and their evaluations to LA-MCTS once it hits the re-start criterion.

TuRBO we use 30 samples for the initialization, and CUDA is enabled. The rest hyper-parameters use the

default value in TuRBO. In MuJoCo, we used TuRBO-20 that uses 20 independent trust regions for the

best f(x).

LaNAS we use 30 samples for the initialization; the height of search tree is 8, and Cp is set to 10.

VOO default setting in the reference implementation.

DOO default setting in the reference implementation.

SOO default setting in the reference implementation.

CMA-ES the initial standard deviation is set to 0.5, and the rest parameters are default in Scipy.

Diff-Evo default settings in Scipy.

Shiwa default settings in Nevergrad.

1https://github.com/beomjoonkim/voot

2https://github.com/facebookresearch/nevergrad

85

Annealing default settings in Scipy.

BOHB default settings in the reference implementation.

HesBO The tuned embedding dimensions for swimmer, hopper, walker, half-cheetah, ant, and humanoid are

8, 17, 50, 50, 400, and 1000, respectively.

Setup for synthetic functions, lunar landing, and trajectory optimization: similar to MuJoCo tasks,

the batch size of each method is set to 1. The settings of VOO, DOO, SOO, CMA-ES, Diff-Evo, Dual

Annealing, Shiwa, BOHB, TuRBO are the same as the settings from MuJoCo. We modify Cp = 1 and the

splitting threshold ✓ = 20 in LA-MCTS. Similarly, we also changed Cp = 1 in LaNAS. We set the upper

and lower limits of each dimension in Ackley as [-5, 10], Rosenbrock is set within [-10, 10], Rastrigin is set

within [-5.12, 5.12], Levy is set within [-10, 10].

Runtime: LaNAS, VOO, DOO, SOO, CMA-ES, Diff-Evo, Shiwa, Annealing are fairly fast, which can

collect thousands of samples in minutes. The runtime performance of LAMCTS and TuRBO are consistent

with the result in [Eriksson et al., uRBO] (see sec.G in appendix) that collects 104 samples in an hour using

1 V100 GPU. BOHB and HesBO toke up to a day to collect 104 samples for running on CPU.

86

5.6.2 Additional Experiment Results

iter=0 iter=1 iter=2 iter=3

iter=4 iter=5 iter=6 iter=7

iter=8 iter=9 iter=10 iter=11

iter=12 iter=13 iter=14 iter=15

iter=16 iter=17 iter=18 iter=19

Figure 5.11: The visualization of LA-MCTS in iterations 1!20: the purple region is the selected region
⌦selected, and the red star represents the global optimum.

Part III

Building the Evaluation Module

87

Chapter 6

Few-shot NAS

6.1 Motivation

Vanilla NAS requires a tremendous amount of computational costs (e.g., thousands of GPU hours) in order to

find a superior neural architecture [Zoph et al., 2018a, Baker et al., 2017a, Real et al., 2019b], most of which

is due to evaluating new architecture proposals by training them from scratch. To reduce the cost, one-shot

NAS [Pham et al., 2018b, Liu et al., 2019] proposes to train a single supernet that represents all possible

architectures in the search space. With supernet, the performance of architecture can be approximately eval-

uated by inheriting the corresponding weights from the supernet without training, reducing the search cost to

just a few days (hours).

However, one-shot NAS suffers from degraded search performance due to the inaccurate predictions

from the supernet. On NASBench-201, the best reported Kendall’s Tau [Kendall., 1938] (a measurement

of rank correlation) between the performance predicted from a supernet and the true performance is only

0.5748 [Yiming Hu, 2020]. Other works also have explicitly shown using supernet degrades the final perfor-

mance due to the inaccurate performance predictions. For example, [Yu et al., 2019b] observes that, without

using the supernet, the average performance of NAS algorithms such as ENAS and NAO is 1% higher than

using it on NASBench-101, and they also conclude that the supernet never produces the true ranking. Besides,

many works [Bender et al., 2018, Yu et al., 2020b, Luo et al., 2018b, Dong and Yang, 2020, Luo et al., 2020]

also show that there is a non-trivial performance gap between the architectures found by one-shot NAS and

vanilla NAS. Being consistent with the analysis in [Yu et al., 2019b], the main reason is that the performance

predicted by the supernet has a low correlation with the true performance.

88

89

supernet

target
(a) Masking supernet

!"#$%&'!()
!"#$%&'!(*

(b) Enumerating a supernet into individual architectures
in the search space by splitting every compounded edges

…
…

One-shot
NAS

Few-shot
NAS

Vanilla
NAS

a

a

a

Split on edge a Split on every edges

Supernet_!!

Supernet_+!

Supernet_+"

			!!

			+"

			+!

=

Figure 6.1: (a) masking supernet to a specific architecture. (b) the motivation of using few-shot NAS to
alleviate the co-adaption impact. After splitting on edge a, supernet ⌦B exclusively predicts architectures in
⌦B , so does supernet ⌦C .

One explanation of the supernet’s poor performance is the co-adaption of operations from a compound

edge. Bender et al [Bender et al., 2018] show that the compound operations on an edge of the supernet can

degrade the correlation between the estimated performance from a supernet and the true performance from

training-from-scratch. While Bender et al primarily focused on using drop path or dropout to ensure a robust

supernet for performance prediction, our method was motivated by the following observation on one-shot

NAS and vanilla NAS.

One-shot NAS uses a supernet to predict the performance of a specific architecture by deactivating the

extra edges w.r.t a target architecture on the supernet via masking (Fig. 6.1(a)), then perform evaluations using

the masked supernet. Therefore, we can view supernet as a representation of search space ⌦, and by masking,

supernet can transform to any architectures in ⌦. This also implies we can enumerate all the architectures

in ⌦ by recursively splitting every compound edge in a supernet. Fig. 6.1(b) illustrates the splitting process,

the root is the supernet and leaves are individual architectures in the search space ⌦; the figure illustrates the

case of splitting the compound edge a, and the recursively split follows similar procedures on all compound

edges. In Fig. 6.1(b), one-shot NAS is the fastest but the most inaccurate in evaluations, while vanilla NAS is

the most accurate in evaluations but the slowest. However, the middle ground, i.e. using multiple supernets,

between one-shot NAS and vanilla NAS remains unexplored.

In a supernet, the effect of co-adaption results from combined operations on edges; therefore the eval-

uation of vanilla NAS is the most accurate. Based on this logic, it seems using several sub-supernets is a

90

�b�Search performance using
regularized evolution

�a�Ground truth vs predicted accuracy

vanilla NAS v.s. predicted performance from one-shot NAS and few-shot NAS

#Supernets 1 6 36 216 1296
Kendall Tau 0.013 0.12 0.26 0.63 1.0
�c�Rank correlations(Kendall Tau) for different numbers of supernets

Figure 6.2: (a) Using multi-supernets clearly improves the correlation and (c) provides the correlation score
(Kendall Tau) at different numbers of supernets in (a); (b) shows the improved performance predictions result
in better performance on NAS.

reasonable approach to alleviate the co-adaption effect by dissecting a compound edge into several separate

sub-supernets that take charge of different sub-regions of the search space. For example, Fig. 6.1(b) shows

few-shot NAS eliminates one compound edge a after splitting, resulting in two supernets for ⌦B and ⌦C ,

respectively. So, the predictions from resulting sub-supernet are free from the co-adaption effects from the

split compound edge a.

We designed a controlled experiment to verify the assumption that using multi-supernets improves the

performance prediction. First, we designed a search space having 1296 architectures, and trained each archi-

tecture toward the convergence to collect the final evaluation accuracy as the ground truth. Then we split the

one-shot version of supernet into 6, 36, 216 sub-supernets following the procedures in Fig. 6.1(b). Finally,

we trained each supernet with the same training pipeline in [Bender et al., 2018], and compared the predicted

1296 architecture performance to the ground truth using 1 (one-shot NAS), 6, 36, 216 supernets. Fig. 6.2

visualizes the results, and it indicates using multi-supernets significantly improves the correlation between

predicted performance and the ground truth. Specifically, in Fig. 6.2(c) the Kendall’s Tau [Kendall., 1938]

ranking correlation of using 1 supernet (one-shot NAS), 6 supernets, 36 supernets, 216 supernets are 0.013,

0.12, 0.26, 0.63, respectively. As a result, the search algorithm takes fewer samples to find better networks

91

Table 6.1: The definition of notations used through the paper.

⌦ the whole architecture space A an architecture in the architecture space
m number of operations in the architecture space S supernet
Ni the ith node in the architecture space n number of nodes in the architecture space
⌦

0
a sub-region of the whole architecture space Eij the mixture operations between node i and j

W weights of neural network S⌦
0

a sub-supernet
f(A) the evaluation of A f(SA) the evaluation of A by supernet

due to more accurate performance predicted from supernets (Fig. 6.2(b)).

In this chapter, we propose few-shot NAS that uses multiple supernets in the architecture search. Instead

of having one supernet covering the entire search space, which may be beyond its capacity and suffer from the

co-adaption effect from the compound edges, we show that using multiple supernets can effectively address

these issues by having each supernets modeling one part of the search space and by reducing the number of

compound edges.

6.2 Methodology

In designing few-shot NAS, we answer the following several key questions: 1. how to divide the search space

represented by the one-shot model to sub-supernets and how to choose the number of sub-supernets given

a search time budget (Section 6.2.1)? 2. how to reduce the training time of multiple sub-supernets (Sec-

tion 6.2.2)?; We also describe how to integrate few-shot NAS with existing NAS algorithms in Section 6.2.3

and Section 6.2.4.

6.2.1 The Design of Split Strategy

Our empirical observation from Section 6.1 can be summarized as following: the evaluation f(S⌦k

A) of an

architecture A using a sub-supernet S⌦k

is closer to the true accuracy f(A) as ⌦k gets smaller, i.e., deeper

in the tree. However, the prediction improvement for A diminishes with any sub-region ⌦p smaller than sub-

region ⌦q where A 2 ⌦q . Furthermore, the time to split the initial architecture space ⌦ grows exponentially

with tree depth. In short, the ideal split would be determined based on individual architecture and find the

sub-supernet at the shallowest tree depth.

Before describing the split strategy, let’s first define a generic NAS space that is compatible with one-shot

NAS. We use this architecture space for introducing some necessary concepts that will be used throughout the

paper. The whole architecture space ⌦ is represented by a directed acyclic graph (DAG) shown in Figure 6.1.

92

Table 6.2: Rank correlation analysis using Kendall’s Tau [Kendall., 1938] for different split strategies.

#edges to split edge choices Mean Std.

1 6 0.653 0.012

2 15 0.696 0.016

3 20 0.752 0.018

Each node denotes a latent state, e.g., feature maps in CNNs, and each edge represents a mixture of operations.

We consider an architecture space with n nodes and m operations. Each node i is denoted as Ni where i 2 [1,

n]; Eij represents a set of m edges that connects node Ni and Nj , where m denotes the number of operations.

Any architecture candidate that can be found in the space has only one edge in Eij . In other words, there

is exactly one operation from Ni to Nj in any architecture candidate. In addition, an available architecture

at least has one edge from its predecessor node. For a search space that has n nodes, a full DAG contains
n(n�1)

2 edges. Each edges has m choices from the operations, resulting in a total of mn(n�1)/2 architectures.

To further investigate the choices of edge splitting to the architecture ranking, we calculate the Kendall’s

Tau (rank correlation) for splitting the same number but different choices of edges on the NASBENCH-201.

We reuses the supernet from NASBENCH-201 that has 5 operation types. The supernet is a 4 nodes full DAG

containing 6 independent compound edges, and each compound edges consists of the 5 parallel predefined

operations. Therefore, there are 6 (C(1,6)), 15 (C(2,6)), and 20 (C(3,6)) choices to split 1, 2, and 3 edges,

respectively. Each splitting of one compound edge results in 5 sub-supernets, and 5k sub-supernets for

splitting k compound edges. For example, splitting 1 compound edge results in 5 sub-supernets, but there are

6 choices on the selection of one edge to split. Here our goal is to investigate the impact of edges choices on

the ranking prediction. Therefore, we trained all 6, 15, 20 edges choices for splitting 1, 2, 3 compound edges

for the prediction, and present the results in Table. 6.2.

Table 6.2 shows the rank correlation after splitting by different numbers of edges. We have made the

following observations: 1) Similar to the observation in Section 6.1, splitting more edges is a stronger signal

to improve the rank correlation. 2) Given the same number of edges to split, the choice of splitting edges

seems to have a limited impact on the rank correlation, e.g., the low standard deviation in Table. 6.2. Since

this paper focuses on the insight that edge splitting on a supernet improves the rank prediction, we choose to

use a random splitting strategy for now. While, the current random strategy does not rule out the possibility

that a learned, task-specific strategy can do better. Or exploring the partial splitting, e.g., we split a compound

93

edge with four independent edges into two separate compound edges, each with two independent edges. We

leave these potential directions as future work. We also pre-define a training time budget T to curb the number

of sub-supernets trained in the splitting process, and aborted immediately after exceeding the budget.

6.2.2 Transfer Learning

The number of sub-supernets still grows exponentially using the proposed splitting strategy, therefore the

sub-supernets training can be really expensive after splitting a few compound edges, which is also against

the key motivation of one-shot NAS. Here we describe how we use Transfer Learning to accelerate the

training procedure of sub-supernets. Similar to how an architecture candidate A inherits weights WA from

the supernet weights WS , we allow a sub-supernet S⌦
0

to inherit weights from its parent sub-supernet. For

example, in Figure 6.1(b), after training the supernet of ⌦A, the supernet of ⌦B and ⌦C can inherit the

weights from shared operations in supernet of ⌦A as initialization and then start training. By using transfer

learning, each sub-supernet only needs a few additional epochs to to be trained, which is far cheaper than

training from scratch.

6.2.3 Integration with Gradient-based Algorithms

Gradient-based algorithms treat the NAS as a bi-level optimization problem where both the weight and archi-

tecture distribution parameters are optimized jointly at each training step [Liu et al., 2019]. To apply few-shot

NAS to gradient-based algorithms, we start with training the supernet until it converges. Then, we split the

supernet S to several sub-supernets following the random strategy in section 6.2.1. The weights parameters

and architecture distribution parameters of each sub-supernet are subsequently initialized by inheriting from

the corresponding parent supernet. We repeat the process until reaching the predefined search time budget.

Lastly, we choose the sub-supernet S⌦
0

with the lowest validation loss from all the converged sub-supernets,

and pick the best architecture A⇤ from the S⌦
0

based on the architecture distribution parameters.

6.2.4 Integration with Search-based Algorithms

Search-based algorithms query the performance of an architectures either by training as the case of vanilla

NAS or by a pre-trained supernet as the case of one-shot NAS. The experience of this round, i.e. the perfor-

mance of queried architecture, will be augmented into the memory to inform the decision of future sampling.

The search repeats this process until an architecture with desired performance is found. To apply few-shot

94

NAS to search-based algorithms, we train a few sub-supernets using the randomly splitting and weight trans-

fer, similar to the procedures described in section 6.2.3. Then we will uses the trained sub-supernets to

estimate the performance of a sampled architectures. Please note each sub-supernet covers a disjoint region

in the search space, so an architecture to a supernet maintains a one to one mapping. For example, if a sam-

pled architecture A falls into sub-supernet S⌦
0
, we will evaluate its performance f(S⌦

0

A) by inheriting the

weights WS⌦
0 . In the end, we will pick the top performing architecture for fine-tuning.

6.3 Experiments

(a) DARTS (d) SETN(c) ENAS(b) PCDARTS

Ci
fa

r-1
0

Im
ag

eN
et

-1
6-

12
0

Figure 6.3: Comparison of various gradient-based algorithms in the one-shot and few-shot settings. We also
plot the 75% interquartile range from 5 runs.

We first evaluate few-shot NAS on the impact of search performance by using different NAS algorithms.

Here the evaluation metrics are search cost and accuracy. We use a variety of baselines, including DARTS,

PCDARTS, ENAS, SETN, REA, REINFORCE, HB, BOHB, SMAC, and TPE [Liu et al., 2019, Xu et al.,

2020, Pham et al., 2018b, Dong and Yang, 2019, Real et al., 2019b, Zoph et al., 2018a, Li et al., 2018a, Falkner

et al., 2018, Hutter et al., 2011b, Bergstra et al., 2012] by directly comparing their one-shot/few-shot versions

on NASBENCH-201. In addition, we also evaluate the few shot versions of DARTS, PCDARTS, and ENAS

on NasBench1-shot-1 [Zela et al., 2020]. To validate few-shot NAS in practice, we also extend few-shot NAS to

different open domain search problems, and show that the founded architectures by few-shot NAS outperform

the architectures discovered by one-shot NAS by a significant margin. Particularly, the architectures searched

by few-shot NAS reaches SoTA results on various tasks including CIFAR10, ImageNet, AutoGAN [Gong

et al., 2019], and Penn Treebank.

95

�g�Search time

�a�REA �b�BOHB �c�TPE

�d�REINFORCE �e�HB �f�SMAC

Figure 6.4: The progress of best accuracy during the search. few-shot NAS clearly demonstrates better results
than one-shot NAS, while maintaining the similar end-to-end search time.

6.3.1 Evaluation on NASBENCH-201

NASBENCH-201 is a NAS dataset that contains 15625 architecture-accuracy pairs, along with re-implementations

of several popular NAS algorithms [Dong and Yang, 2020]. The dataset allows us to thoroughly evaluate var-

ious NAS algorithms without training the actual networks.

Gradient-based Algorithms

The supernet defined for NASBENCH-201 has five nodes, and between two nodes there are five operations.

Therefore, we will obtain 5 sub-supernets if fully splitting one compound edge that has 5 operations. For this

experiment, we skip the transfer learning so that we can compare the performance of one-shot and few-shot

NAS epoch by epoch. Here we only split one compound edge to show that even a few supernets can yield

to the non-trivial improvement. Our baselines cover a list of prominent gradient-based search algorithms

including DARTS and ENAS, and the following metrics are used in the evaluations: 1)the test accuracy of

the final architecture found by a NAS algorithm; and 2) the search time that includes the supernet training

and validation time.

Figure 6.3 shows the progress of test accuracy during the search. In training on CIFAR-10, the one-shot

version of DARTS and ENAS demonstrate the bad performance, being consistent with other paper [Dong

and Yang, 2020]. One potential reason is that one-shot NAS traps into a sub-optimal region due to inaccu-

rate performance prediction. In contrast, few-shot NAS consistently finds a high quality of searched models

96

Table 6.3: Rank correlation on NASBENCH-201 using different methods.

Method Kendall’s Tau Cost(Hours)
Random 0.0022 0

EN2AS [Zhang et al., 2020] 0.378 N/A
One-shot 0.5436 6.8

Angle [Yiming Hu, 2020] 0.5748 N/A
Few-shot(5-supernets) 0.653 10.1

Few-shot(25-supernets) 0.696 18.6
Few-shot(125-supernets) 0.752 31.8

since multiple supernets improves the performance prediction to better guide the search than one-shot NAS.

Although one-shot version of PCDARTS and SETN could find a good architecture with > 90% accuracy,

it took nearly 10X more search epochs than our few-shot NAS. In short, we show that few-shot versions of

various gradient-based algorithms consistently demonstrate better results than one-shot counterpart in terms

of found architectures and the number of search epochs.

Search-based Algorithms

Being consistent with the evaluations above, we also split the first compound edge of supernet into five

sub-supernets. But we used transfer learning described in section 6.2.2 for training sub-supernets this time

since we can decouple the search and supernet training. Our baseline consists of six search-based algorithms

that covers Bayesian optimization, evolutionary algorithm and reinforcement learning, including REA, RE-

INFORCE, BOHB , HB, SMAC, and TPE. We report the performance of each search-based algorithms by

averaging 50 independent runs with different random seeds. For details of integrating few-shot NAS with

search methods, please refer to section 6.2.4. Two metrics is used in the evaluation. First, we denote i
th

best accuracy as the best test accuracy after sampling i architectures. A good search algorithm is expected to

yield a higher accuracy with fewer samples. The second metric is also the total search time to verify that the

transfer learning helps in reducing the end-to-end time.

Result Analysis. Figure 6.4 shows the progress of best accuracy during the search. First, we observe that

the few-shot verison of REA can find the global optimal in 3500 samples. Second, the few-shot versions

of REA, BOHB, and TPE significantly improve the search efficiency over their one-shot counterparts, while

the few-shot versions of REINFORCE, HB and SMAC are still better than one-shot versions. Figure 6.4(g)

details the search time. All search-based algorithms took three to four orders of magnitude more GPU hours

when using vanilla NAS than one-shot and few-shot NAS. few-shot NAS only incurs slightly more search time,

roughly 10 GPU hours, than one shot NAS. Both one-shot and few-shot NAS complete the search within 24

97

hours. With a little more computing time, we do observe better rank correlation from few-shot NAS than other

one-shot methods, which explains the good performance of few-shot NAS in the progress of search.

6.3.2 Deep Learning Applications

Table 6.4: Applying few-shot NAS on existing NAS methods on CIFAR-10 using the NASNet search space.
Our results demonstrate that 1) few-shot NAS consistently improves the final accuracy of various one-shot
based NAS methods under the same setup. Please note we only extend one-shot based DARTS, REA, and
LaNAS by replacing the single supernet with 7 supernets in their public release; 2) after integrating with mul-
tiple supernets, few-shot DARTS achieves SOTA 98.72% top-1 accuracy on CIFAR-10 using the cutout [De-
vries and Taylor, 2017] and auto-augmentation [Cubuk et al., 2018]. Without auto-augmentation, few-shot
DARTS-Small still consistently outperforms existing models that have similar parameters.

Method Data Augmentation #Params Err GPU days
NASNet-A [Zoph et al., 2018a] cutout 3.3M 2.65 2000

AmoebaNet-B-small [Real et al., 2019b] cutout 2.8M 2.50±0.05 3150
AmoebaNet-B-large [Real et al., 2019b] cutout 34.9M 2.13±0.04 3150

AlphaX [Wang et al., 2019c] cutout 2.83M 2.54±0.06 1000
NAO [Luo et al., 2018b] cutout 3.2M 3.14±0.09 225

DARTS [Liu et al., 2019] cutout 3.3M 2.76±0.09 1
P-DARTS [Chen et al., 2019a] cutout 3.4M 2.5 0.3
PC-DARTS [Xu et al., 2020] cutout 3.6M 2.57±0.07 0.3

Fair-DARTS [Chu et al., 2019b] cutout 3.32M 2.54±0.05 3
BayeNAS [Zhou et al., 2019a] cutout 3.4M 2.81±0.04 0.2

CNAS [Lim et al., 2020] cutout 3.7M 2.60±0.06 0.3
MergeNAS [Wang et al., 2020c] cutout 2.9M 2.68±0.01 0.6

ASNG-NAS [Akimoto et al., 2019a] cutout 3.32M 2.54±0.05 0.11
XNAS [Nayman et al., 2019b] cutout + autoaug 3.7M 1.81 0.3

one-shot REA cutout + autoaug 3.5M 2.02±0.03 0.75
one-shot LaNas [Wang et al., 2019b] cutout + autoaug 3.6M 1.68±0.06 3

few-shot DARTS-Small cutout 3.8M 2.31±0.08 1.35
few-shot DARTS-Large cutout 45.5M 1.92±0.08 1.35
few-shot DARTS-Small cutout + autoaug 3.8M 1.70±0.08 1.35
few-shot DARTS-Large cutout + autoaug 45.5M 1.28±0.08 1.35

few-shot REA cutout + autoaug 3.7M 1.81±0.05 0.87
few-shot LaNas cutout + autoaug 3.2M 1.58±0.04 3.8

CIFAR-10 in Practice. We implement few shot versions of one gradient-based algorithm (DARTs) and

two search-based algorithms including regularized evolution (REA) and LaNas [Liu et al., 2019, Real et al.,

2019b, Wang et al., 2019b] in the evaluations. Their results are compared to several recent NAS algorithms

listed in Table 6.4. We see that the few-shot version of DARTS outperforms the one-shot version by 0.43% in

the test accuracy. Further, the best architecture reported from few-shot NAS is also the state-of-the-art results

98

Table 6.5: Applying few-shot NAS on existing NAS methods on ImageNet using the EfficientNet search
space. Being consistent with the results on CIFAR-10 in Table. 6.4, the final accuracy from few-shot OFA and
ProxylessNAS also outperforms their original one-shot version under the same setting, except for replacing
the single supernet with 5 supernets. Particularly, Few-shot OFA-Large achieves SoTA 80.5% top1 accuracy
at 600M FLOPS.

Method Space #Params #FLOPs Top 1 Acc(%) GPU hours
AutoSlim [Yu and Huang, 2019] Mobile 5.7M 305M 74.2 N/A

MobileNetV3-Large [Howard et al., 2019a] Mobile 5.4M 219M 74.7 N/A
MnasNet-A2 [Tan et al., 2019] Mobile 4.8M 340M 75.6 N/A

FBNetV2-L1 [Wan et al., 2020b] Mobile N/A 325M 77.2 600
EfficientNetB0 [Tan and Le, 2019b] Mobile 5.3M 390M 77.3 N/A

AtomNAS [Mei et al., 2020] Mobile 5.9M 363M 77.6 N/A
few-shot OFA Net-Small Mobile 5.6M 238M 77.50 68

MobileNetV2 [Sandler et al., 2018] Mobile 6.9M 585M 74.7 N/A
ShuffleNet-V2 [Ma et al., 2018] Mobile N/A 590M 74.9 N/A

ProxylessNAS [Cai et al., 2019b] Mobile 7.12M 465M 75.1 200
ChamNet [Dai et al., 2019] Mobile N/A 553M 75.4 N/A

RegNet [Radosavovic et al., 2020] Mobile 6.1M 600M 75.5 N/A
OFA Net [Cai et al., 2020] Mobile 9.1M 595M 80.0 40
few-shot ProxylessNAS Mobile 4.87M 521M 75.91 280

few-shot OFA Net-Large Mobile 9.2M 600M 80.50 68

on CIFAR-10. Although we used 7 supernets in this experiment, few-shot NAS only incurred 35% more time

than the one shot NAS. Similarly, few-shot NAS also improved the search efficiency of one-shot REA, finding

an architecture with 0.21 lower error using only 16.7% more time. Few-shot version of LaNas also decrease

the test error from 1.68 to 1.58 in the one shot version using only 26.7% extra search time. All of our few-shot

results outperform the one-shot results in the table by using the exactly same setup.

Neural Architecture Search on ImageNet. We selected ProxylessNAS and Once-for-All NAS(OFA) [Cai

et al., 2019b, Cai et al., 2020] in this evaluation. Table 6.5 show the final result. Few-shot NAS significantly

improves the accuracy on two NAS algorithms that uses one-shot model.

6.4 Related Work

Weight-sharing supernet was first proposed as a way to reduce the computational cost of NAS [Pham et al.,

2018b]. Centering around supernet, a number of NAS algorithms including gradient-based [Liu et al.,

2019, Xu et al., 2020, Dong and Yang, 2019] and search-based [Bender et al., 2018, Chu et al., 2019a, Guo

et al., 2019b] were proposed. The search efficiency of these algorithms is dependent on the ability of super-

net to approximate architecture performance. To improve the supernet approximation accuracy, Bender et

al. [Bender et al., 2018] proposed a path dropout strategy that randomly drops out weights of the supernet

99

during training. This approach improves the correlation between one-shot NAS and individual architecture

accuracy by reducing weight co-adaptation. In a similar vein, Guo et al. [Guo et al., 2019b] proposed a

single-path one-shot training by only activating the weights from one randomly picked architecture in for-

ward and backward propagation. Additionally, Yu et al. [Yu et al., 2019a] found that training setup greatly

impacts supernet performance and identified useful parameters and hyper-parameters. Lastly, an angle-based

approach [Zhiyuan Li, 2020, Arora et al., 2019, Carbonnelle and Vleeschouwer, 2018] was proposed to im-

prove the supernet approximation accuracy for individual architecture [Yiming Hu, 2020] and was shown to

improve the architecture rank correlation. However, our few-shot models achieved better rank correlation

than this angle-based approach(see table 6.3). Our work focuses on reducing the supernet approximation

error by dividing the supernet to a few sub-supernets to eliminate the co-adaption among supernet operations.

As such, our work is complementary and can be integrated into the aforementioned work.

6.5 Conclusion

Recently, one-shot NAS substantially reduces the computation cost by training only one supernetwork, a.k.a.

supernet, to approximate the performance of every architecture in the search space via weight-sharing. How-

ever, the performance estimation can be very inaccurate due to the co-adaption among operations [Bender

et al., 2018]. In this chapter, we propose few-shot NAS that uses multiple supernetworks, called sub-supernet,

each covering different regions of the search space to alleviate the undesired co-adaption. Compared to one-

shot NAS, few-shot NAS improves the performance prediction with a small increase of evaluation cost. With

only up to 7 sub-supernets, few-shot NAS establishes new SoTAs: on ImageNet, it finds models that reach

80.5 top-1 at 600 MB FLOPS and 77.5 top-1 at 238 MFLOPS; on CIFAR10, it reaches 98.72 top-1 without

using extra data or transfer learning.

Chapter 7

Efficient Distributed Training via

Gradient Sparsification

7.1 Introduction

The performance and efficiency of distributed training of Deep Neural Networks (DNN) highly depend on

the performance of gradient averaging among participating processes, a step bound by communication costs.

There are two major approaches to reduce communication overhead: overlap communications with com-

putations (lossless), or reduce communications (lossy). The lossless solution works well for linear neural

architectures, e.g. VGG, AlexNet, but more recent networks such as ResNet and Inception limit the op-

portunity for such overlapping. Therefore, approaches that reduce the amount of data (lossy) become more

suitable. In this paper, we present a novel, explainable lossy method that sparsifies gradients in the frequency

domain, in addition to a new range-based float point representation to quantize and further compress gradi-

ents. These dynamic techniques strike a balance between compression ratio, accuracy, and computational

overhead, and are optimized to maximize performance in heterogeneous environments.

Unlike existing works that strive for a higher compression ratio, we stress the robustness of our methods,

and provide guidance to recover accuracy from failures. To achieve this, we prove how the FFT sparsification

affects the convergence and accuracy, and show that our method is guaranteed to converge using a diminishing

✓ in training. Reducing ✓ can also be used to recover accuracy from the failure. Compared to STOA lossy

methods, e.g., QSGD, TernGrad, and Top-k sparsification, our approach incurs less approximation error,

100

101

thereby better in both the wall-time and accuracy. On an 8 GPUs, InfiniBand interconnected cluster, our

techniques effectively accelerate AlexNet training up to 2.26x to the baseline of no compression, and 1.31x

to QSGD, 1.25x to Terngrad and 1.47x to Top-K sparsification.

Parameter Server (PS) and allreduce-style communications are two core parallelization strategies for dis-

tributed DNN training. In an iteration, each worker produces a gradient, and both parallelization strategies

rely on the communication network to average the gradients across all workers. The gradient size of current

DNNs is at the scale of 102 MB, and, even with the state-of-the-art networks such as Infiniband, repeatedly

transferring such a large volume of messages over millions of iterations is prohibitively expensive. Further-

more, the tremendous improvement in GPU computing and memory speeds (e.g., the latest NVIDIA TESLA

V100 GPU features a peak performance of 14 TFlops on single-precision and memory bandwidth of 900

GB/s with HBM2) further underscores communication as a bottleneck.

Recently, several methods have shown that training can be done with a lossy gradient due to the iterative

nature of Stochastic Gradient Descent (SGD). It opens up new opportunities to alleviate the communication

overhead by aggressively compressing gradients. One approach to compress the gradients is quantization.

For example, Terngrad [Wen et al., 2017] maps a gradient into [-1, 0, 1], and QSGD [Alistarh et al., 2017]

stochastically quantizes gradients onto a uniformly discretized set larger than that of Terngrad. Such coarse

approximation not only incurs large errors between the actual and quantized gradients as we demonstrate in

Figure 7.15 [QSGD, TernGrad], but also fails to exploit the bit efficiency in the quantization (Figure 7.7).

Another approach to gradient compression, sparsification, only keeps the top-k largest gradients [Han et al.,

2015, Aji and Heafield, 2017, Alistarh et al., 2018]. Similarly, Top-k loses a significant amount of actual

gradients around zeros to achieve a high compression ratio (Figure 7.15, [Top-k]). In summary, existing lossy

methods greatly drop gradients, incur large approximation errors (Figure 7.15e), leading to the deterioration

of the final accuracy (Table 7.2). To avoid compromising the convergence speed, both quantization and spar-

sification must limit the compression ratio, leading to sub-optimal improvement of the end-to-end training

wall time.

In this paper, we propose a gradient compression framework that takes advantages of both sparsification

and quantization with two novel components, FFT-based sparsification, and a range-based quantization.

FFT-based sparsification allows removing the redundant information, while preserving the most relevant in-

formation (Figure 7.15 [FFT]). As a result, FFT incurs fewer errors in approximating the actual gradients

(Figure 7.15e), thereby better in accuracy than QSGD, TernGrad, and Top-K (Table 7.2). We treat the gra-

dient as a 1D signal, and drop near-zero coefficients in the frequency domain, after an FFT. Deleting some

102

frequency components after the FFT introduces magnitude errors, but the signal maintains its distribution

(Figure 7.5). As a result, the sparsification in the frequency domain can achieve the same compression ratio

as in the spatial domain but preserving more relevant information.

To further improve the end-to-end training wall time, we introduce a new range-based variable precision

floating point representation to quantize and compress the gradient frequencies after sparsification. Most

importantly, unlike the uniform quantization used in existing approaches, the precision of representable floats

in our method can be adjusted to follow the distribution of the original gradients (Figure 7.9). The novel

range-based design allows us to fully exploit the precision given limited bits so that the approximation error

can be further reduced. By combining sparsification and quantization, our framework delivers a higher

compression ratio than the single method, resulting in shorter end-to-end training wall time than QSGD,

Terngrad, and Top-k.

Lastly, our compression framework is highly efficient and scalable. The primitive algorithms in our com-

pression scheme, such as FFT, top-k select, and precision conversions, are efficiently parallelizable and thus

GPU-friendly. We resort to existing highly optimized GPU libraries such as cuFFT, Thrust, and bucketSelect

[Alabi et al., 2012], while we propose a simple yet efficient packing algorithm to transform sparse gradients

into a dense representation. Minimizing the computational cost of the compression is crucial for high-speed

networks, such as Infiniband networks, as we analyzed in Figure 7.10.

Specifically, the contributions of this paper are as follows:

1 A novel FFT-based, tunable gradient sparsification that retains the original gradient distribution.

2 A novel range-based variable precision floating-point that allocates precision according to the gradient

distribution.

3 An analytic model to guide people when to enable compression and how to set a compression ratio

according to hardware specifications.

4 The convergence proof of our methods, and its guidance in selecting a compression ratio ✓, to ensure

the convergence, or reduce ✓ to recover the accuracy. To the best of our knowledge, this paper is the

first one to discuss the relationship between compression ratio and accuracy of neural networks.

5 Highly optimized system components for a compression framework that achieves high throughput on

GPUs and is beneficial even on state-of-the-art Infiniband networks.

103

(a) BSP (b) PS

Figure 7.1: Two parallelization schemes of distributed DNN training:(a) Bulk Synchronous Parallel (BSP)
strictly synchronizes gradients with all-to-all group communications, e.g. MPI collectives; (b) Parameter
Server (PS) exchanges gradients with point-to-point communications, e.g. push/pull.

7.2 Background and Motivation

In general, there are two strategies to parallelize DNN training: Model Parallelism and Data Parallelism.

Model Parallelism splits a network into several parts, with each being assigned to a computing node [Dean

et al., 2012]. It demands extensive intra-DNN communications in addition to gradient exchanges. It largely

restricts the training performance, and thereby Model Parallelism is often applied in scenarios where the DNN

cannot fit onto a computing node [Dean et al., 2012]. The second approach, Data Parallelism [Wang et al.,

2017a], partitions the image batch, and every computing node holds a replica of the network. In a training

iteration, a node computes a sub-gradient with a batch partition. Then, nodes all-reduce sub-gradients to re-

construct the global one. The only communications are for necessary gradient exchanges. Therefore, current

Deep Learning (DL) frameworks such as SuperNeurons [Wang et al., 2018b], MXNet [Chen et al., 2015],

Caffe [Jia et al., 2014], and TensorFlow [Abadi et al., 2016] parallelize the training with Data Parallelism for

the high-performance.

There are two common strategies to organize the communications with data parallelism: with a cen-

tralized Parameter Server (PS) (Figure 7.1b), or with all-to-all group communications, e.g., (Figure 7.1a).

TensorFlow [Abadi et al., 2016], MXNet [Chen et al., 2015], and PaddlePaddle implement distributed DNN

training with a Parameter Server (PS) [Li et al., 2014]. In this distributed framework, the parameter server

centralizes the parameter updates, while workers focus on computing gradients. Each worker pushes newly

computed gradients to the parameter server, and the parameter server updates parameters before sending the

latest parameters back to workers. Though this client-server [Berson, 1992] style design easily supports fault

tolerance and elastic scalability, the major downside is the network congestion on the server. Alternatively,

104

0 2 4 6
ith layer

10�4

10�3

10�2

10�1

la
te

nc
y

in
se

co
nd

s

comm

compt

(a) AlexNet

0 20 40 60 80
ith layer

10�4

10�3

10�2

la
te

nc
y

in
se

co
nd

s

comm

compt

(b) ResNet32

Figure 7.2: layer-wise communications (all-reduce) v.s. computations in an iteration of BSP SGD using 16
P100 (4 GPUs/node with 56Gbps FDR).

-based Bulk Synchronous Parallel SGD can better exploit the bandwidth of a high-speed, dense interconnects,

such as modern Infiniband networks. Instead of using a star topology, pipelines the message exchanges at

a fine granularity with adjacent neighbors in a ring-based topology. Since the pipeline fully utilizes the in-

bound and outbound link of every computing node, it maximizes network bandwidth utilization and achieves

appealing scalability where the cost is largely independent of the number of computing nodes.

There are trade-offs between the BSP and PS schemes, with PS having better fault tolerance, and better

exploits the network bandwidth. However, as we argue below, in both cases, the communication cost is high,

and reducing it can yield substantial gains in training latency.

7.2.1 Communication Challenges in Distributed Training of DNNs

Communications for averaging sub-gradients is widely recognized as a major bottleneck in scaling DNN

training[Zhao et al., 2017, Dean et al., 2012, Wang et al., 2017a]. With increasing data complexity and

volume, and with emerging non-linear neural architectures, two critical issues exacerbate the impact of com-

munications in the scalability and efficiency of distributed DNN training with data parallelism: I) the in-

creasing amounts of data to be exchanged, and II) the decreasing opportunity to overlap computation and

communication.

Challenge I: Enormous amounts of communications during training. DNNs are extremely effective at

modeling complex nonlinearities thanks to the representation power of millions of parameters. The number of

parameters dictates the size of the gradients. Specifically, the gradient sizes of AlexNet, VGG16, ResNet32,

105

and Inception-V4 are 250MB, 553MB, 102MB, and 170MB. Even with the highly optimized allreduce imple-

mentation on a 56 Gbps FDR network, communication overhead remains significant. For example, the com-

munication for AlexNet, VGG16, Inception-V4 and ResNet32 at regular single-GPU batch sizes1 consumes

64.17%,

18.62%, 33.07% and 43.96% of an iteration time, respectively.

Challenge II: Decreasing opportunity to overlap computation and communication. One promising so-

lution to alleviate the communication overhead is hiding the communication for averaging the gradient of the

i
th layer by the computation of i � 1th layer in the backward pass. This lossless technique has proven to

be effective on linear networks such as AlexNet and VGG16 [Awan et al., 2017, Rhu et al., 2016], as these

networks utilize large convolution kernels to process input data. Figure 7.2a demonstrates the computation

time of the convolution layers is 10⇥ larger than the communication time, easy for overlapping. However, the

overlapping technique is not always applicable for two reasons. First, the degree of overlapping is largely

decided by the computation pattern of the neural network model. The opportunity for computation and com-

munication overlap is very limited in recent neural architectures, such as Inception-V4 [Szegedy et al., 2017]

and ResNet [He et al., 2016]. The sparse fan-out connections in the Inception Unit (Figure 1a in [Wang

et al., 2018b]) replace one large convolution (e.g. 11⇥11 convolution kernel in AlexNet) with several small

convolutions (e.g. 3⇥3 convolution kernels). Similarly, ResNet utilizes either 1⇥1 or 3⇥3 small convolution

kernels. As a result, the layer-wise computational cost of ResNet is similar to or smaller than communication

(Figure 7.2b); hence, it is much harder to overlap these neural networks than AlexNet. Second, the degree of

overlapping is also impacted by the bandwidth of networks. With slower networks, there are less opportunity

to overlap communications and computations. Specifically, as seen in Figure 7.2a, the computation cost of

convolution layers of the AlexNet is 10⇥ larger than the communication cost with 56Gbps InfiniBand. How-

ever, when training AlexNet in a low profile network such as 1Gbps Ethernet, it becomes impossible to hide

the communication cost as it is significantly larger than the computation cost.

These two challenges – increasing data exchanged, and decreasing opportunity to hide communication

latency – make it attractive to look for solutions that minimize the communication cost by decreasing the

communication volume. Training a neural network with imprecise gradient updates still works as parameters

are iteratively refined [Aji and Heafield, 2017]. Particularly, lossy gradient compression can achieve higher

compression rates and still allow the network to deliver target accuracy [Alistarh et al., 2017]. Given this,

it is not surprising that several gradient compression approaches have been proposed in the literature. They

1the single GPU batch size for AlexNet is 64, and 16 for others.

106

g1 g2
g3 g4

g1 g2 g3 g4

Linearized Gradients

FFT Top-k
selection

retain

remove

Pack Range-based
Quantization

Figure 7.3: The gradient compression framework (sender).

generally fall into two categories: quantization of the gradients ([Seide et al., 2014, Wen et al., 2017, Alistarh

et al., 2017, De Sa et al., 2015]), where these are represented with lower precision numbers, and sparsification

([Aji and Heafield, 2017, Alistarh et al., 2018, Wangni et al., 2018]), where small gradient are treated

as zero and not transmitted. We discuss these approaches in detail in Section 7.5. As we describe next, we

propose a novel gradient compression scheme that uses adaptive quantization and tunable FFT-based gradient

compression that, together, achieve variable compression ratios that can maintain convergence quality, and,

critically, is cheap enough computationally to be beneficial.

7.3 Methodology

7.3.1 The Compression Framework

Figure 7.3 provides a step-by-step illustration of our compression pipeline.

1 Linearize the gradients by re-arranging gradient tensors into a 1-d vector for Fast Fourier Transform

(FFT), which is discussed in Section 7.3.1.

2 Truncate the gradient frequencies based on their magnitudes to sift out the top-k low-energy frequency

components, which is discussed in Section 7.3.1.

3 Transform the frequencies’ representation from 32-bit float to a new, range-based, N -bit float (N <

32) to further compress down the gradient frequency, which is discussed in Section 7.3.2.

4 Pack sparse data into dense vector and transfer them out, which is discussed in Section 7.3.1.

On the receiver side, a similar approach (but using the inverse operations in the reverse order) is used to

decompress the gradient frequency vector into gradients. Detailed discussions of compression components

107

�0.005 0.000 0.005
gradient value

0

10000

20000

th
e

fre
qu

en
cy

co
un

t

(a) CIFAR-10, ResNet (b) ImageNet, AlexNet

Figure 7.4: Histogram of DNN gradients: we sampled gradients every 103 and 104 iterations in a full training.

0 25 50 75 100
ith gradient

?0.5

0.0

0.5

1.0

va
lu

e

gradients
FFT top-k reconstructed gradients

(a) FFT Top-k

0 25 50 75 100
ith gradient

?0.5

0.0

0.5

1.0

va
lu

e

gradients
top-k reconstructed gradients

(b) Top-k

Figure 7.5: FFT Top-k v.s. direct Top-k sparsificaiton: Top-k aggressively loses gradients (err=0.0246), while
FFT preserves more relevant information (err=0.0209) at the same sparsification ratio.

and their motivations are as follows.

Removing redundant information with FFT based Top-K sparsification

Motivation: the gradient points to a descent direction in the high dimensional space, thereby small per-

turbations on gradients can be viewed as introducing local deviations along the descent direction. If such

deviations are limited during the training, these imprecise descent directions still iteratively lead to a local

optimum at the cost of additional iterations. This is the intuition for the gradient sparsification. Besides,

Figure 7.4 indicates high redundancy in DNN gradients due to a lot of near-zero components, that may have

limited contributions in updating gradients. Recently, several top-k based methods [Han et al., 2015, Aji and

Heafield, 2017, Alistarh et al., 2018] have also shown the possibility to train DNNs with only the top 10%

largest gradients. However, the resulting gradients, as shown in Figure 7.5, significantly deviate from the

original, for entirely dropping the gradients below the threshold. This has motivated us to sparsify gradients,

instead, in the frequency domain for preserving the trend of the original signal even after removing the same

amount of information. For a gradient vector of length N, each gradients is gi =
PN�1

n=0 xne
�i2⇡kn

N after FFT.

If we sparsify on xn, i.e. gi =
Ptopk

n xne
�i2⇡kn

N , gi still preserves some of the original gradient information.

108

Therefore, FFT based top-k shows better results than top-k in Figure 7.5. More validations are available in

the experimental section.

Our approach: The detailed computation steps of our FFT sparsification are highlighted in Figure 7.3.

Recent generations of NVIDIA GPUs support mixed-precision; and computing with half-precision increases

the FFT throughput up to 2⇥. So, we convert 32-bit (full-precision) gradients into 16-bit (half-precision)

gradients to improve the throughput before applying FFT, and the information loss from the conversion is

negligible due to the bounded gradients.

After FFT, the next step is to filter the low energy gradient in the frequency domain. We introduce a new

hyper-parameter, ✓, to regulate the sparsity of frequencies. Here, we only describe the procedures, and the

tuning of ✓ is thoroughly discussed in Section 3 and experiments. If ✓ = 0.9, we keep the top 10% frequency

components in magnitude and drop the rest by resetting to zeros (Figure 7.3). The selection is implemented

with either sorting or Top-k. Since Thrust2 and cuFFT3 provide highly optimized FFT and sorting kernels for

the GPU architecture, we adopted them in our implementations.

7.3.2 Packing sparse data into a dense vector

Thresholding gradient frequencies in the last step yields a highly irregular sparse vector, and we need to

pack it into a dense vector to reduce communications. The speed of packing a sparse vector is critical to the

practical performance gain. Here, we propose a simple parallel packing algorithm:

1 Create a status vector and mark an element in status as 1 if the corresponding scalar in sparse vector

is non-zero (e.g., sparse = [a, 0, b, 0, c, 0, 0] and status = [1, 0, 1, 0, 1, 0, 0]).

2 Perform a parallel prefix-sum on status to generate a location vector ([1, 1, 2, 2, 3, 3, 3]).

3 if status[i] == 1, write sparse[i] to dense[location[i]], and dense vector is the packed result.

This parallel algorithm has a 689⇥ speedup over the single-threaded algorithm on a TESLA V100 with a

throughput of 34 GB/s.

We need to send the status vector and the compressed gradient to perform the decompression. The status

vector is a bitmap that tracks the location of non-zero elements, and its length in bits is the same as the

gradient vector. Figure 7.6 shows the cost of the status vector is non-negligible after the compression ratio

exceeding 20. Therefore, setting ✓ < 0.05 is not desired.

2https://developer.nvidia.com/thrust

3https://developer.nvidia.com/cufft

109

0 25 50 75 100 125 150
(total message)/(compressed gradients)

0.000

0.005

0.010

0.015

to
ta

l c
om

m
 c

os
t i

n
se

co
nd

s

0.97

0.98

0.99

1.00

st
at

us
/(t

ot
al

 m
es

sa
ge

)

Figure 7.6: the effect of status vector: given 100 MB gradients, the improvement after dropping > 95%
gradients (✓ = 0.05, compression ration is 20) is limited.

Figure 7.7: comparisons of quantization schemes: the uniform distribution and IEEE 754 format.

Range based Quantization

Motivation: the range of single precision IEEE-754 floating point is [�3.4 ⇤ 1038,+3.4 ⇤ 1038], while the

range of gradients and their frequencies are much smaller (e.g. [-1, +1]). This motivates us to represent the

bounded gradients with fewer bits. The problem of using an N bits IEEE 754 format, as seen in Figure 7.7,

is the inconsistency between the range of gradients [min, max] and the range of the IEEE representable

numbers. Given N bits for IEEE 754, there are N�2 combinations of exponent-mantissa. The representation

range is either too large or too small for gradients, regardless of which combinations to choose. Another

conventional way is to equally divide the max � min into 2N , i.e., uniform quantization. Still, the actual

gradient distribution is far from the uniform, and thereby it is also inefficient, as shown in Figure 7.7.

Our approach: we propose an offset-based N-bit floating point, which intends to match the distribution

of representable numbers to the real gradients. Our representation is to use the N-bit binary format of a

positive number as base number pbase, and encode it to 0...01. The rest positive numbers are encoded as

0...01 (pbase) + offset. The negative numbers also follow the same rule. Therefore, the total 2N representable

numbers consist of P positive numbers and 2N � P negative numbers. To match the range of real gradients,

our quantization permits the manual setting of a representation range, defined by min and max. We estimate

min and max from the first few iterations of gradients. Then, we tune m and eps to adjust the precision of

representable numbers, as shown in Figure 7.7. m represents the number of bits left for the mantissa, and

eps represents the minimal representable positive number whose corresponding N-bit binary is pbase. The

110

CRQÀJXUaWLRQV: m = 3; ma[= 2; miQ = -2; eSV = 0.125
SbaVe = eSV >> (23-3) = 001111100000

iQSXW = 0.256

00111110100000110001001001101111

001111101000

RXWSXW = 00001001

iQSXW = 00001001

RXWSXW = 0.25

001111101000

00111110100000000000000000000000

Dec WR IEEE-754 BiQ

cXW Rff Whe UighWmRVW 20 biWV

miQXV ¬SbaVe, aQd ¬add 1

add SbaVe, aQd miQXV 1

Àll Whe UighWmRVW 20 biWV ZiWh 0

IEEE-754 BiQ WR Dec

32-bLW IEEE-754 WR 8-bLW RIIVeW-baVed 8-bLW RIIVeW-baVed WR 32-bLW IEEE-754

Figure 7.8: Illustration of range based quantizer: an example conversion of between 32 bits IEEE 754 and 8
bits our representation.

following further explains how m and eps adjust the precision:

• m: let’s denote the difference between two consecutive numbers as diff . For m bits mantissa, the

exponent increases by 1 after 2m number, and increasing diff = diff ⇤2. Since diff is exponentially

growing, this creates a Gaussian like representation range that matches to real gradients. If max,

min and eps are fixed, P is small for a small m, as it takes fewer numbers to increase the exponent.

Similarly, a large m leads to a larger P . Therefore, m is very sensitive for precision.

• eps: with max, min and m, diff is also fixed. If eps is small, it takes more steps to reach max

yielding a large P ; and vice versa.

Since m and eps determine P , we need to tune them to make P close to 2N/2 for balancing the range of

positive and negative numbers. In practice, N , min, and max are empirically decided from gradients, and

the m 2 [1, N]. We iterate every m to tune for eps. Given N , m, min, and max, we initialize eps as a

reasonably small number, e.g., 0.002, then de-compress the 1..1 (the minimal representable negative number)

back to FP32 with the selected eps, and the resulting number is the current actual minimal negative number

actual min; if actual min is smaller than min, we decrease eps, and increase otherwise. Following this

path, P converges to 2N/2, a state with equal positive and negative numbers, and yielding the optimal eps.
Input: init(min, max)

pbase binary = eps ¿¿ (23-m) Input: 32bit to Nbit(32bit float)

if 32bit float ¿ max then
32bit float = max;

111

(a) (-0.5, 0.5) (b) (-5, 5)

Figure 7.9: Adjustable representation range: our quantization successfully adjusts its distribution.

(a) Top-k selection (b) Packing

Figure 7.10: Minimal compression ratio k exhibits performance benefits at different network bandwidths
Tcomm, packing throughput Tp and selection throughput Ts. It is easy to get performance improvement from
a slow network, while it requires faster compression primitives to be beneficial on a fast network.

32bit binary = 32bit float ¿¿ (23-m) Nbit binary = 32bit binary - pbase binary + 1 Input: Nbit to 32bit(Nbit binary)

32bit binary = Nbit binary + pbase binary - 1 32bit float = 32bit binary ¡¡ (23-m)

Alg. ?? summarizes the conversion from 32-bit IEEE 754 to our N-bit offset based float, and N is set w.r.t

the precision requirement for the training. Figure 7.8 provides a step-by-step conversion between IEEE 754

and our 8 bits representation.

Figure 7.9 shows the resulting number distributions of our approach when the range is set to [-0.5, 0.5],

and [-5, 5]. This shows our approach successfully adjusts representation ranges, while still maintaining

similar distribution to actual gradients. This is because diff increases 2x after 2m numbers, leading to more

numbers around 0, and less to max or min. Unlike prior static approach, our offset based float dynamically

changes the representable range to sustain the various precision requirements from different training tasks.

Besides, the float quantizations are embarrassingly data-parallel, so it is easy to achieve the high-performance.

112

Symbol Explanation
Tm Maximum throughput of precision conversion including

float-to-half and range-based quantization
Tf Maximum throughput of FFT
Tp Maximum throughput of packing
Ts Maximum throughput of top-k selection
Tcomm Maximum throughput of communication via networks
k Overall compression ratio

Table 7.1: Symbols of equations in Section 7.3.3.

7.3.3 Sensitivity Analysis

The compression cost shall not offset the compression benefit to acquire practical performance gain. In

this section, we analyze the performance of compression primitives and their impact on perceived network

bandwidth. Table 7.1 defines all symbols used in the analysis. It is noted that we use the same notation Tm

for both float-to-half and range-based quantization as they are O(N) algorithms and embarrassingly parallel.

Given a message of size M , the cost of compression is:

costcomp = M(
2

Tm
+

1

Tf
+

1

Tp
+

1

Ts
) (7.1)

The communication cost after compression is :

costcomm =
M

Tcomm
(
1

k
) (7.2)

So the communication cost saved by compression is:

saved costcomm =
M

Tcomm
(1� 1

k
) (7.3)

To compensate for the cost of compression and decompression, 2costcomp < saved costcomm must hold to

acquire the practical performance gain, that is

k >
1

1� 2Tcomm(2
Tm

+ 1
Tf

+ 1
Tp

+ 1
Ts
)

(7.4)

The performance of Tm depends on the hardware characteristics (such as GPU DRAM bandwidth), and Tf

depends on cuFFT. It is therefore reasonable to consider them fixed for a particular GPU hardware. Ts and

113

Tp depend on the libraries and algorithms applied. By varying Ts and Tp in Equation 7.4 we analyze the min-

imal compression ratio k that will show benefits for a particular network infrastructure. Figure 7.10 shows

the relationship between k and Tcomm. If the network throughput is low, like Ethernet, a small k could com-

pensate for the cost of compression and decompression, which means increasing k would significantly boost

the performance of communications. For example, Figure 7.10 shows that k = 2 is enough to compensate

for the overhead of compression and decompression on a 10Gbps Ethernet. One the other hand, if the net-

work throughput is high, like InfiniBand, a larger k would be necessary; otherwise, the overall performance

will be impacted by the overhead of compression and decompression. More precisely, the red line in Fig-

ure 7.10 indicates that the minimal compression ratio k should be about 30 to exhibit any benefit on a 56Gbps

InfiniBand.

Figure 7.10 also predicts that the performance of the compression primitives is crucial for high bandwidth

networks. As seen in Figure 7.10.a, if Ts is 12GB/s, for any Tcomp larger than 22Gbps no compression ratio

will be able to provide any tangible communication improvement. as long as the Tcomm is larger than 22

Gbps, the k is 1, which indicates it is impossible to get any benefit from our compression framework in

this case. indicating that the performance of compression primitives is critical to a high-end network like

InfiniBand.

7.3.4 Convergence Analysis

In order to analyse the convergence of our proposed technique we formulate the DNN training as:

min
x

f(x) :=
1

N

NX

i=1

fi(x), (7.5)

where fi is the loss of one data sample to a network. For non-convex optimization, it is sufficient to prove

the convergence by showing krf(xt)k2  ✏ as t ! 1, where ✏ is a small constant and t is the iteration.

The condition indicates the function converges to the neighborhood of a stationary point. Before stating the

theorem, we need to introduce the notion of Lipschitz continuity. f(x) is smooth and non-convex, and rf

are L-Lipschitz continuous. Namely,

krf(x)�rf(y)k  Lkx� yk.

114

For any x, y,

f(y)  f(x) + hrf(x), y � xi+ L

2
kx� yk2.

Assumption 2. Suppose j is a uniform random sample from {1, ..., N}, then we make the following bounded

variance assumption:

E[krfj(x)�rf(x)k2]  �2
, for any x.

This is a standard assumption widely adopted in the SGD convergence proof [Nemirovski et al., 2009]

[Ghadimi and Lan, 2013]. It holds if the gradient is bounded.

Assumption 3. In the data-parallel training, the gradient of each iteration is v̄ = 1
p

Pp
1 vi; p is the number

of processes, and vi is the gradient from the i
th process. Let’s denote ✓ 2 [0, 1] to control the percentage

of information loss in the compression function v̂i = T (vi, ✓) that does quant(FFT-sparsification(vi)), so

¯̂v =
Pp

1 v̂i. We assume there exists a ↵ such that:

kv̄ � ¯̂vk  ↵kv̄k.

So, v̂ only loses a small amount of information with respect to v̄, and the update from the sparsified

gradient is within a bounded error range of true gradient update. It is a necessary condition for deriving the

upper bound.

With our compression techniques, one SGD update becomes:

x
t+1 = x

t � ⌘t(
1

P

pX

1

v̂i) = x
t � ⌘t ¯̂vt. (7.6)

Then, we have the following lemma for one step:

Lemma 1. Assume ⌘t  1
4L , ✓

2
t  1

4 . Then

⌘t

4
E[krf(xt)k2]  E[f(xt)]� E[f(xt+1)] + (L⌘t + ✓

2
t)
⌘t�

2

2bt
. (7.7)

Please check the supplemental material for the proof of this lemma. Summing over (7.7) for K iterations,

we get:

PK�1
t=0 ⌘tE[krf(xt)k2]4(f(x0)�f(xK))+

PK�1
t=1 (L⌘t+✓2

t)
2⌘t�

2

bt
. (7.8)

115

Next, we present the convergence theorem.

Theorem 2. If we choose a fixed learning rate, ⌘t = ⌘; a fixed dropout ratio in the sparsification function,

✓t = ✓; and a fixed mini-batch size, bt = b; then the following holds:

min0tK�1 E[krf(xt)k2] 4(f(x0)�f(xK�1))
K +(L⌘+✓2) 2⌘�2

b .

Proof. min0tK�1 E[krf(xt)k2]  1
K

PK�1
t=0 ⌘tE[krf(xt)k2], as krf(xt)k2 � 0. By (7.8), we get the

theorem.

Theorem 3. If we apply the diminishing stepsize, ⌘t, satisfying
P1

t=0 ⌘t =1,
P1

t=0 ⌘
2
t <1, our compres-

sion algorithm guarantees convergence with a diminishing drop-out ratio, ✓t, if ✓2t = L⌘t.

Proof. If we randomly choose the output, xout, from {x0
, ..., x

K�1}, with probability ⌘tPK�1
t=0 ⌘t

for xt, then

we have:

E[krf(xout)k2] =
PK�1

t=0 ⌘tE[krf(xt)k2]PK�1
t=0 ⌘t

(7.9)

 4(f(x0)�f(x⇤)PK�1
t=0 ⌘t

+
PK�1

t=0 (L⌘t+✓2
t)2⌘t�

2

b
PK�1

t=0 ⌘t
. (7.10)

Note that
PK�1

t=0 ⌘t !1, while
PK�1

t=0 (L⌘t + ✓
2
t)2⌘t�

2 =
PK�1

t=0 4L⌘2t �
2
<1,

and we have E[krf(xout)k2]! 0.

7.4 Evaluation

Our experiments consist of two parts to assess the proposed techniques. First, we validate the convergence

theory and its assumptions with AlexNet on ImageNet and ResNet32 on CIFAR10, which sufficiently cover

typical workloads in traditional linear and recent non-linear neural architectures, and also provide coverage

on two widely used datasets. Then, we show that the FFT-based method demonstrates better convergence and

faster compression than other state-of-the-art compression methods such as QSGD [Alistarh et al., 2017],

TernGrad [Wen et al., 2017], Top-k sparsification [Lin et al., 2017, Alistarh et al., 2018], as our techniques

incur fewer approximation errors, while still delivering a competitive compression ratio for using both spar-

sification and quantization.

116

0 10 20 30
#GPUs

0

1

2

3

4

la
te

nc
y/

se
co

nd
s

all-gather AlexNet, 250MB
compute

(a) AlexNet

0 10 20 30
#GPUs

0.00

0.05

0.10

0.15

0.20

0.25

la
te

nc
y/

se
co

nd
s

all-gather ResNet32, 6MB
compute

(b) ResNet32

Figure 7.11: the latency for all-gather AlexNet and ResNet32 from 2 to 32 GPUs.

Parallelization scheme: we choose BSP for parallelization for its simplicity in the theoretical analysis:

BSP follows strict synchronizations, allowing us to better observe the effects of gradient compression toward

the convergence by iterations.

Implementation: we implemented our approach, losses SGD(no compression), QSGD, Top-K, and Tern-

Grad in a C++ DL framework, SuperNeurons [Wang et al., 2018b]; We used the allgather collective from

NVIDIA NCCL2 to exchange compressed gradients since existing communication libraries lack the support

for sparse all-reduce (Figure 7.1a). Even though SGD usually uses allreduce instead of allgather as it does

not have compression; for a fair comparison, we applied allgather for all algorithms to demonstrate the algo-

rithmic benefit of our FFT compression. Every GPU has a copy of global gradients for updating parameters

after all-gather local gradients. Parameters need to be synchronized after multiple iterations to eliminate the

precision errors, and here we broadcast parameters every 10 iterations. It is noticed that we did not adopt

communication and computation overlapping strategy as it could be another optimization method orthogonal

to compression, and is not in the scope of this paper.

Training setup: The single GPU batch is set to 128 and 64 for ResNet32 and AlexNet, respectively. The

momentum for both networks is set to 0.9. The learning rate for Resnet32 is 0.01 at epochs 2 [0, 130], and

0.001 afterwards; the learning rate for AlexNet is 0.01 at epochs 2 [0, 30], 0.001 at epochs 2 [30, 60], and

0.0001 afterwards.

Machine setup: we conducted experiments on the Comet cluster hosted at San Diego Supercomputer

Center. Comet has 36 GPU nodes, and each node is equipped with 4 NVIDIA TESLA P100 GPUs and

56 Gbps FDR InfiniBand, Figure 7.11 shows the allgather cost almost linearly increases with the number of

GPUs. This is because the total exchanged messages in allgather linearly increase with #GPUs [Gabriel et al.,

2004]. In our experiments, we used 8 GPUs in evaluating the accuracy and performance when integrating our

117

0 20 40 60
epochs

0.1

0.2

0.3

0.4

al
ph

a
in

 A
ss

um
pt

io
n

3.
2

AlexNet

(a) AlexNet

0 50 100
epochs

0.2

0.4

0.6

0.8

1.0

al
ph

a
in

 A
ss

um
pt

io
n

3.
2

ResNet32

(b) ResNet32

Figure 7.12: Empirical verification of Assumption 3.

0 20 40 60
epochs

0.0

0.2

0.4

0.6

to
p

1
ac

cu
ra

cy

no sparsification
sparsify 50%
sparsify 70%
sparsify 90%
sparsify 90% before 30, then 0%

(a) AlexNet

0 50 100 150 200 250
epochs

0.4

0.6

0.8

to
p

1
ac

cu
ra

cy

no sparsification
sparsify 50%
sparsify 70%
sparsify 90%
sparsify 90% before 130, then 0%
sparsify 99% before 130, then 0%

(b) ResNet32

Figure 7.13: Empirical validation of Theorem 3.

compression methods in training, and up to 32 GPUs in evaluating the scalability of the distributed training.

7.4.1 Validation of Theorems

Verification of assumptions: our convergence theorems rely on Assumption 2 and Assumption 3. Assump-

tion 2 automatically holds due to the bounded gradients. Assumption 3 always hold if p = 1, but it can

break in very rare cases for p > 1. For example, ↵ does not exist if v̄ = [0, 0], given two opposite gradients,

e.g. v̄1 = [�0.3, 0.5] and v̄2 = [0.3,�0.5]. Though the scenario is very unlikely, we empirically validate

Assumption 3 on different training tasks by calculating ↵ = kv̄�¯̂vk
kv̄k . From Figure 7.12, ↵ 2 [0, 1] practically

sustaining Assumption 3.

Validation of theorems: Theorem 2 states a large compression ratio, i.e. large ✓, can jeopardize the con-

vergence, and theorem 3 states that our FFT-based sparsified SGD is guaranteed to converge with a diminish-

ing compression ratio. The goal of optimization is to find a local optimum, where the gradient approximates

to zero, i.e, E[krf(xt)k2] ! 0, as K ! 1. From the inequality in theorem 2, 4(f(x0)�f(xK�1))
K ! 0

as K ! 1, leaving E[krf(xt)k2] bounded by (L⌘ + ✓
2) 2⌘�

2

b . L⌘
2⌘�2

b is the error term from SGD, and

118

0 5 10
wall time/hours

0.3

0.4

0.5

0.6

to
p

1
ac

cu
ra

cy
SGD, FP32
FFT
Top-k
QSGD
Terngrad

(a) AlexNet

0 20 40 60 80
wall time/minutes

0.6

0.7

0.8

0.9

to
p

1
ac

cu
ra

cy

SGD, FP32
FFT
Top-k
QSGD
Terngrad

(b) ResNet32

Figure 7.14: Training wall time on a 8 GPUs cluster: FFT outperforms TernGrad, QSGD and Top-k in
both the speed and test accuracy. FFT is faster for a high compression ratio by combining sparsification
and quantization, while the better gradient quality of FFT explains the good accuracy, as we will show in
Figure 7.15.

✓
2 2⌘�2

b is the error term from the compression. Compared to the SGD, using a large ✓ in the gradient com-

pression slacks off the bound for E[krf(xt)k2], causing the deterioration on both the validation accuracy

and training loss. As shown in Figure 7.13, when ✓ = 0.5 (i.e., sparsify 50%), the accuracy and loss traces

of AlexNet and ResNet32 behave exactly the same as SGD (shown as no sparsification). When ✓ = 0.9 (i.e.,

sparsify 90%), both the training loss and validation accuracy significantly deviate from SGD, as a large ✓

increases the error term 2⌘�2✓2

b loosening the bound for E[krf(xt)k2]. Therefore, ✓ is critical to retain the

same performance as SGD, and it is tricky to select ✓ in practice. We present Theorem.3 to resolve this issue.

The theorem compensates for Theorem 2, indicating that a large ✓ can still deliver the same accuracy as SGD

if we shrink the ✓ during the training. Empirical results in Figure 7.13 validate Theorem 3. For example, by

setting ✓ = 0.9 (drop 90%, red line), both AlexNet and ResNet32 fail to converge to the same case of SGD.

However, it is able to bring the accuracy back to the same result as the SGD in the same epochs simply by

diminishing ✓ from 0.9 to 0 at the 30th epoch for AlexNet, and at the 130th epoch for ResNet32. Therefore,

we claim both Theorem 2 and Theorem 3 are legitimate.

Implications of theorems: these two theorems explain the relationship between the accuracy and com-

pression ratio ✓, and act as a guide to help preserve the training network accuracy by tuning the compression

ratio during the training. Hence, in practice, to ensure the convergence, we can shrink ✓ along with the learn-

ing rate ⌘ for the condition of ✓2t = L⌘t. In order to recover the accuracy, we can also reduce ✓ as the case in

Fig. 7.13 that a failure case (✓ = 0.9) recovers the accuracy after reducing ✓ to 0 in the middle of training.

119

Method AlexNet
top1 acc

Speedup
w.r.t SGD

ResNet32
top1 acc

Speedup
w.r.t SGD

SGD, FP32 56.52% 1 92.11% 1
FFT 56.61%, (+0.09%) 2.26 91.99%, (�0.12%) 1.33x

Top-K 55.07%, (�1.45%) 1.53 90.31%, (�1.80%) 1.12x
QSGD 53.54%, (�2.98%) 1.73 88.66%, (�3.45%) 1.21x

TernGrad-noclip 52.86%, (�3.66%) 1.81 86.90%, (�5.21%) 1.24x

Table 7.2: Summarization of Figure 7.14: the difference of test accuracy and the speedup over lossless SGD.

7.4.2 Algorithm Comparisons

Choice of Algorithms: Here we evaluate our FFT-based techniques against 3 major gradient compression

algorithms, Top-k sparsification [Lin et al., 2017, Alistarh et al., 2018, Aji and Heafield, 2017], and Tern-

grad [Wen et al., 2017] and QSGD [Alistarh et al., 2017]. The baseline method is SGD using 32 bits float.

Top-k sparsification thresholds the gradients w.r.t their magnitude, and the compression ratio is determined

by 1/(1-✓), where ✓ is the drop-out ratio. Please note that Top-k variant e.g. DGC [Lin et al., 2017] utilizes

heuristics like error accumulation and momentum correction to boost performance. To fairly evaluate Top-k

sparsification against FFT based sparsification, we evaluated the vanilla Top-k v.s. the vanilla FFT sparsifica-

tion, and finding heuristics to boost FFT sparsification is orthogonal to this study. Both Terngrad and QSGD

map gradients to a discrete set. Specifically, Terngrad maps each gradient to the set of {�1, 0, 1} ⇤max(|g|),

and thus 2 bits are sufficient to encode a gradient. Instead, QSGD uses N bits to maps each gradient to

a uniformly distributed discrete set containing 2N bins. Please note TernGrad does not quantize the last

classification layer to keep good performance [Wen et al., 2017], while we sparsify the entire gradients.

Algorithm Setup: Regarding Top-k and FFT based sparsification, results from Figure 7.13 and [Alistarh

et al., 2018] show a noticeable convergence slowdown after ✓ > 90%. To maintain a reasonable accuracy,

we choose ✓ = 85% for both top-k and FFT based sparsification. We use min = �1 and max = 1 as the

boundaries, and 10 bits in initializing our N-bit quantizer. Therefore, the compression ratio for Top-k is 1/(1-

✓) = 6.67x and FFT based is 21.3x with an additional 32/10 from quantizers. Terngrad uses 2 bits to encode

a gradient, while we use 8 bins (3 bits) for QSGD to encode a gradient. As a result, the compression ratio of

Terngrad is 16x and QSGD is 10.6x. Please note we calculate the compression ratio w.r.t gradients as gradient

exchanges dominate communications in BSP. Following a similar setup in Figure 7.13, each algorithm is set

to run 180 epochs on CIFAR10 and 70 epochs on ImageNet using 8 GPUs.

Figure 7.14 demonstrates that our framework outperforms QSGD, Terngrad, and Top-k in both the fi-

nal accuracy and the training wall time on an 8 GPU cluster, and Table 7.2 summarizes the test accuracy

120

(a) Ours (b) Top-k

(c) Terngrad (d) QSGD

10-6 10-4 10-2 100

reconstruction error

0

0.2

0.4

0.6

0.8

1

c
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y

FFT

Topk

Terngrad

QSGD

(e) reconstruction error

Figure 7.15: (a)!(d): Histogram of reconstructed gradients (blue) by FFT (✓ = 0.85), Top-k (✓ = 0.85),
QSGD and Terngrad v.s. the original. The reconstructed gradients by FFT is the closest to the original(FP32).
(e) Cumulative error distribution of |gi � ĝi|, where gi is the i-th true gradient, and ĝi is the i-th sparsified
gradient. FFT incurs less errors than other approaches for 99.7% of the gradients.

and speedup over the lossless SGD. Particularly, FFT consistently reaches a similar accuracy to SGD with

the highest speedup. To further investigate the algorithmic and system advantages of the FFT method, we

investigate the gradient quality and the scalability of iteration throughput.

The algorithmic advantages of FFT

We claim the algorithmic advantages of FFT for preserving the original gradient distribution and rendering

fewer reconstruction errors than others. We uniformly sampled the gradients of ResNet32 every 10 epochs

121

2 4 8 16 24 32

GPUs

0

10

20

30

sp
e
e
d
u
p
 w

.r
.t
 1

 G
P

U SGD

FFT

Top-K

QSGD

TernGrad

(a) AlexNet

2 4 8 16 24 32

GPUs

0

10

20

30

40

sp
e
e
d
u
p
 w

.r
.t
 1

 G
P

U SGD

FFT

Top-K

QSGD

TernGrad

(b) ResNet32

Figure 7.16: Weak scalability from 2 to 32 GPUs: we measure the iteration throughput, and calculate the
speedup w.r.t 1 GPU.

during the training. Figure 7.15 demonstrates the distribution of reconstructed gradients w.r.t the gradients

before the compression. FFT is the only one that retains the original gradient distribution, though ✓ = 85%

frequency has been removed. In contrast, Top-k loses the peak for eliminating the near-zero elements at the

same ✓. Similarly, QSGD presents 7 clusters for using 8 bins to represent a gradient; and, in general, TernGrad

shows 3 major clusters around {0, -0.05, 0.05} for using a quantization set of {-1, 0, 1}. Please note that

Terngrad shows 11 bars; this is due to the aggregation of sparsified gradients from each node. Aside from

qualitatively inspecting the gradient distribution, we also quantitatively examined the empirical cumulative

distribution of the reconstruction error in Figure 7.15e. FFT demonstrates the lowest error within the range

of [10�5
, 10�2]. Therefore, FFT can reach better accuracy in the same training iterations.

The system advantages of FFT

Our compression framework fully exploits both the gradient sparsity and the redundancy in 32-bit floating

point by further quantizing the FFT sparsified gradient. It enables FFT to deliver a much higher iteration

throughput than QSGD, TernGrad, and Top-K. Following the same setting in Figures 7.14, Figure 7.16

demonstrates the iteration throughput of training AlexNet and ResNet32 from 2 to 32 GPUs. Please note

that using a very large ✓ (e.g., 0.999) can get an impressive speedup, but it also drastically hurts the final

accuracy. Here we still use ✓ = 85%. The gradients of AlexNet (ImageNet) is around 250 MB, while the gra-

dients of ResNet32 (CIFAR-10) are only 6MB. Therefore, the scalability of AlexNet is generally better than

ResNet32. Better results are also observable if using a slow network, e.g., 100MB Gbps. When GPUs  4,

the speedup is similar as communications are intra-node through PCI-E. FFT still consistently demonstrates

the highest iteration throughput for a better compression ratio when GPUs increase from 8 to 32.

122

7.5 Related Work

We categorize the existing lossy gradient compression into two groups: (1) quantization and (2) sparsifica-

tion.

Quantization: 1-bit SGD [Seide et al., 2014] is among the first to quantize gradients to alleviate the

communication cost in the distributed training. Specifically, it quantizes a 32-bit IEEE-754 float into a binary

of [0, 1] to achieve a compression ratio of 32⇥. Though their methods are purely heuristic, and their empirical

validations demonstrate a slight loss of accuracy, it shows the possibility to train a network with highly lossy

gradients. Subsequently, several quantization methods have been proposed. Flexpoint [Köster et al., 2017]

uses block floating-point encoding based on current gradient/weight values. HOGWILD! [De Sa et al., 2015]

quantizes both weights and gradients into 8-bit integers by rounding off floats (i.e., low-precision training);

but this idea is largely restricted by the availability of low-precision instruction sets. TernGrad [Wen et al.,

2017] quantizes a gradient as [-1, 0, 1]⇤|max(g)|, while QSGD [Alistarh et al., 2017] stochastically quantizes

gradients onto a uniformly discretized set. Both approaches distribute the precision uniformly across the

representable range—ignoring both the distribution and the range of the gradients. As we show, gradients

follow a normal distribution (Figure 7.4). In our range-based quantizer, we allocate precision for the range

and the distribution of the values to better exploit the limited number of bits. Most importantly, QSGD and

TernGrad damage the original gradient distribution due to limited representable values after the quantization

(Figure 7.15). As a result, TernGrad and QSGD incur an observable deterioration in the final accuracy

(Table 7.2).

Sparsification: Aji and Heafield [Aji and Heafield, 2017] present the very first Top-k gradient sparsifica-

tion showing that the training can be done with a small accuracy loss by setting the 99% smallest gradients

to zeros. Based on the Top-k thresholding, Han et al. [Han et al., 2015] propose Deep Compression, which

uses heuristics like momentum correction and error accumulation to resolve the accuracy loss in the vanilla

Top-k. Please note that these heuristics are orthogonal to our methods and can also be applied to improve

ours. Jin et al. [Jin et al., 2019] propose DEEPSZ, which performs error-bounded lossy compression on the

pruned weight. It is a modification of the SZ lossy compression framework [Di and Cappello, 2016]. Cédric

et al. [Renggli et al., 2018] propose a communication sparsification approach called SPARCML. Different

from ours, the SPARCML focuses on the implementation of MPI collective operations of sparse data. D.

Alistarh et al. [Alistarh et al., 2018] analyze the convergence of Top-k compression. With [Alistarh et al.,

2018], we noticed a significant convergence slowdown at a large sparsity. As we investigated, these Top-k

123

methods also distort the gradient distribution at a large sparsity, yielding higher approximation errors than

the original gradients. At the same sparsity (✓), our FFT method is much better at preserving the original

gradient distribution and shows less approximation error and better results.

7.6 Conclusion

As indicated in Sec. 7.2, exchanging gradients is the major bottleneck for the distributed DNN training.

To alleviate this communication bottleneck, this paper proposes a lossy gradient compression framework that

uses an FFT-based gradient sparsification and a range-based, variable-precision, floating-point representation.

We theoretically prove that our techniques preserve the convergence and the final accuracy by adapting the

sparsification ratio ✓ during the training, and empirically verify the assumptions and the theory.

At the same sparsification ratio (✓), we show FFT preserves more gradient information than other state-

of-the-art lossy methodologies including Top-K sparsification, Terngrad, and QSGD. Besides, our adaptive

float quantization further improves the overall compression ratio with negligible loss of gradient information

(Fig. 7.15). These advantages enable us to use a larger compression ratio in retaining the same accuracy

as the lossless SGD, than other lossy methodologies to improve the scalability (Fig. 7.16) in the distributed

training.

Our lossy gradient compression framework demands a highly efficient allreduce that supports communi-

cations of sparse data, while current MPI implementations, such as Open MPI or MVAPICH, lack the support

of sparse collectives. Though this work uses all-gather to circumvent this issue, future research and develop-

ment of a bandwidth-efficient allreduce with the sparse support are highly desired to facilitate the deployment

of lossy gradient compression techniques in practice.

Part IV

System Building

124

Chapter 8

SuperNeurons: A Deep Learning

Framework to Support Large Models

8.1 Introduction

Deep Neural Network (DNN) is efficient at modeling complex nonlinearities thanks to the unparalleled repre-

sentation power from millions of parameters. This implies scaling up neural networks is an effective approach

to improve the generalization performance. The Deep Learning (DL) community now widely acknowledges

either going deeper or going wider on the nonlinear architecture improves the quality of image recognition

tasks. For example, 9-layer AlexNet won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition

Challenge) with a top-5 error of 17%. GoogLeNet (inception v1) refreshed the top-5 error rate to 6.67%

with 22 inception units in 2014 ILSVRC, and ResNet further reduced the error rate down to 3.57% in 2015

ILSVRC with 152 residual units.

While DL practitioners are enthusiastically seeking deeper and wider nonlinear networks, the limited size

of GPU DRAM becomes a major restriction. Training a deep network is inherently a computation-intensive

task. Almost every AI lab today, either in academia or industry, is deploying the network training on GPUs for

the purposes of better performance [Bahrampour et al., 2016]. Data need to be residing on GPU DRAM for

the GPU computing, but the largest commercial GPU DRAM so far is 24 GB. This is still far from sufficient

to accommodate a deep neural network. For example, the latest Inception v4 has 515 basic layers consuming

44.3 GB memory in the training. The deeper or wider we go, the higher memory usages will be. Therefore,

125

126

this deep trend subjects the rigid GPU DRAM to the severe space insufficiency.

Major DL frameworks, such as Caffe or MXNet, have tried to alleviate the GPU memory shortage with

several static memory reduction techniques. Those techniques, due to their static nature, are not well tuned

to address the new data and dependency variations in non-linear networks. For example, Caffe and Torch do

not fully support the data flow analysis on non-linear neural networks; the strategy of trading computation for

memory in MXNet is limited because it ignores the memory variations across network layers. These limita-

tions have motivated us to propose a dynamic approach for the emerging deep nonlinear neural architectures.

In this paper, we present the first dynamic GPU memory scheduling runtime for training deep non-linear

neural networks. The runtime allows DL practitioners to explore a much deeper and wider model beyond the

physical limitations of GPU memory. It utilizes tensors as the fundamental scheduling units to consist with the

layer-wise computations enforced in DL performance primitives cuDNN [Chetlur et al., 2014]. The runtime

seamlessly orchestrates the tensor placement, movement, allocation and deallocation so that the underlying

memory operations are entirely transparent to users.

Our runtime guarantees the minimal peak memory usage, peakm = max(li), at the layer-wise granularity.

We denote the memory usage of the ith layer as li, and the superscript, e.g. lfi or lbi , as the forward/backward.

The peak memory usage during the forward and backward computations is denoted as peakm. First, Live-

ness Analysis recycles no longer needed tensors to reduce peakm from baseline
PN

i=1 l
f
i +

PN
i=1 l

b
i to

PN
i=1 l

f
i + l

b
N (defined in Sec.8.3). Secondly, Unified Tensor Pool (UTP) offloads tensors in compute-

intensive layers, referred to as checkpoints, to the external physical memory. This further reduces peakm

from
PN

i=1 l
f
i + l

b
N to

PN
i=1(l

f
i /2 checkpoints) + l

b
N . Finally, Cost-Aware Recomputation drops the for-

ward results of cheap-to-compute or none-checkpoints layers and reconstructs them to reduce peakm from
PN

i=1(l
f
i /2 checkpoints) + l

b
N to peakm = max(li). The final peakm indicates the largest computable

network is bounded by the maximal memory usage among layers.

Our runtime also features three performance optimizations to improve the efficiency of Liveness Anal-

ysis and UTP. First, GPUs require memory allocations to create tensors and deallocations to free tensors.

Thus, the highly frequent large tensor allocations/deallocations incur the non-negligible overhead in Live-

ness Analysis [Wang et al., 2016b]. The runtime successfully amortizes the cost by directly reusing memory

segments from a huge pre-allocated memory pool, managed by a heap based GPU memory management

utility. Secondly, UTP swaps tensors among different physical memory spaces, while modern GPUs equip

with independent Direct Memory Access (DMA) engine exposing opportunities to hide communications un-

der computations. The runtime also meticulously overlap communications with computations. However, the

127

(a) fan (b) join

Figure 8.1: The non-linear connections in inception v4 (fan), ResNet (join, left) and DenseNet (join, right).
DenseNet utilizes a full-join.

overlapping opportunity is limited given the fixed amount of computations. We propose a LRU based Tensor

Cache built on GPU DRAM to minimize total communications by tensor reusing.

This paper claims the following contributions:

1. We demonstrate the new memory scheduling challenges in nonlinear neural networks, and discuss the

key limitations of existing approaches.

2. By dynamically allocating memory for convolution workspaces, SuperNeurons delivers the leading

performance among state-of-art DL systems on the GPU.

3. We design and implement SuperNeurons to enable DL practitioners to explore deep neural networks;

and the largest computable network of SuperNeurons is only bounded by the maximum memory usage

among layers.

8.2 Background and Motivation

8.2.1 Challenges for Processing Super Deep Neural Networks

Traditional Convolutional Neural Networks (CNN) [LeCun et al., 1998, Krizhevsky et al., 2012, Simonyan

and Zisserman, 2014] are typically composed of several basic building layers, including Convolution (CONV),

Pooling (POOL), Activation (ACT), Softmax, Fully Connected (FC), Local Response Normalization (LRN),

Batch Normalization (BN), and Dropout. For linear CNNs, these layers are independent and inter-connected

to their neighbors in a sequential manner: 1$ 2$ · · ·$ n. Recently, several deep non-linear neural archi-

tectures have been proposed to further improve the state-of-the-art accuracy on the 1K ImageNet recognition

128

0.5

1

1.5

2

2.5

3

S
p

e
e
d

u
p

 w
it

h
 C

o
n

v
 B

u
ff

AlexNet
VGG16

VGG19

Inceptio
nV4

ResNet50

ResNet101

ResNet151
0

1

2

3

4

5

6

7

M
e
m

o
ry

 A
ll
o

c
a
ti

o
n

 i
n

 M
B

104

Memory Memory with Conv Buff SpeedUp with Conv Buff

Figure 8.2: The left axis depicts the memory usages of networks. The batch size of AlexNet is 200, and
the rest use 32. The right axis and red x marks depict the speedup (imgs/s) with and without convolution
workspaces.

challenge, e.g., Inception v4[Szegedy et al., 2017], ResNet[He et al., 2016], and DenseNet[Huang et al.,

2016]. These prominent network designs (especially the one that solves the classic gradient vanishing [Ben-

gio et al., 1994] problem) pave the algorithmic foundation for DL practitioners to harness the unparalleled

representation power brought forth by the super deep non-linear neural architectures. For example, the latest

inception v4 delivers 95% top-5 accuracy with 515 basic building layers while ResNet1511 achieves 94.3%

top-5 accuracy with 567 layers. In Figure 8.1, we illustrate two classic types of non-linear connections: fan

and join. Compared with the linear connection pattern, the sparse fan-out connection (Figure 8.1a) avoids one

huge computing-inefficient dense layer [Szegedy et al., 2015] while the join connection prevents gradients

from quickly vanishing in the back-propagation [He et al., 2016].

Training these super deep and complex non-linear neural architectures is a computation-intensive task.

Due to its DL-driven novel architecture designs and massive parallelism, GPUs have been widely adopted

in today’s industry and academia for the efficient neural network training. However, there are critical issues

for efficiently training in these newly-developed super deep non-linear neural architectures: limited GPU

resident memory and a high degree of variation in computational dependencies.

Challenge I: Limited GPU Resident Memory. The prominent deep neural architectures share a common

feature: high memory demand and computation intensity. Figure 8.2 illustrates the network-wide memory

usages of several recent DNNs in training with and without convolution workspaces (buffer). Among them,

1151 represents the number of convolutional units.

129

AlexNet and VGG are linear networks while the others are non-linear. We can observe that the non-linear net-

works demand a significant amount of GPU memory, e.g., ResNet152 and Inception v4 require up to 18.5GB

and 44.3 GB at only the batch size of 32, respectively. However, these sizes are either similar to or surpass

the resident memory sizes of commercial GPUs on the market today. For instance, the newest generations of

NVIDIA Pascal and Volta GPUs only have 16GB with HBM2 enabled (e.g., P100 and V100) while the one

with the most memory available in recent generations is Maxwell P40 with 24GB GDDR5. This limitation

poses a major bottleneck for deep learning practitioners for exploring deep and wide neural architectures

[Szegedy et al., 2015, Pleiss et al., 2017, Szegedy et al., 2017]. The most straightforward solution is to split

the network across GPUs, i.e. Model Parallelism. However, splitting either the computations of a network

or a layer incurs excessive intra-network and intra-layer communications that drastically deteriorate the per-

formance. For example, recent work has suggested the deficiency of applying model parallelism for deep

neural networks: it compromises at least 40% speed when training a network with 1.3 billion parameters

from 36 GPUs to 64 GPUs [Coates et al., 2013]. To address the performance issues from Model Parallelism,

Data Parallelism has been widely adopted in today’s mainstream deep learning frameworks such as Caffe[Jia

et al., 2014], TensorFlow[Abadi et al., 2016], Torch[Collobert et al., 2002], and MXNet[?]. In this model,

each GPU holds a network replica; and one GPU computes one sub-gradient with a sub-batch. Subsequently,

all sub-gradients are aggregated as one global gradient to update the network parameters [Wang et al., 2016a].

Although this process does not incur intra-network or intra-layer communications besides necessary gradi-

ent exchanges, it requires the network training to fit in the limited GPU DRAM. In this paper, we focus on

addressing the GPU memory shortage issue for training deep neural networks under data parallelism model

while taking the training performance into design considerations.

Challenge II: Variations in Computational Dependencies for Nonlinear Networks. Nonlinear net-

works exhibit a high degree of dependency variations while linear networks follow a fixed sequential exe-

cution pattern with predictable data dependencies [Rhu et al., 2016]. Fig.8.3 illustrates the data dependency

graph for linear (a) and nonlinear (b and c) neural architectures. One typical training iteration consists of two

phases: forward and backward propagation. For linear networks, data is sequentially propagated in the for-

ward pass; and a layer’s backward computation is simply contingent upon the previous layer as illustrated in

Figure 8.3a. Thus their computation and dependency patterns are static regardless of the total layers involved.

However, for nonlinear networks, a high degree of variation in computational dependencies appear.

Fig.8.3b and 8.3c show two simple examples of join and fan nonlinear connections. Join connections forward

a layer’s output tensor to another layer, creating a dependency between two layers. For example, the join

130

(a) linear

(b) join (nonlinear)

(c) fan (nonlinear)

Figure 8.3: Data dependencies of different neural architectures. Tensors in red are ready to free when the
computation back propagates to the POOL layer. Solid lines represent forward dependencies and dashed lines
represent backward dependencies.

in Fig.8.3b forwards t0 from DATA layer to FC layer in the forward pass. The dependency of join-based

non-linear networks is non-deterministic as any two layers can be connected with a join, e.g., in DenseNet.

For fan connections, it creates multiple branches in the execution flow: DATA layer forks two branches and

joins them before FC layer. Separate branches, each with a different number of layers, have to finish before

joining them back to the original branch, making this execution sequence nonlinear. Although the two basic

nonlinear scenarios shown here are intuitive, a typical deep nonlinear network today has hundreds of joins

and fans convoluted together, resulting in a complex network architecture. These significantly complicate

runtime resource-management compared to the static computational pattern in linear ones. Therefore, the

memory scheduling of deep non-linear neural networks demands a dynamic solution to effectively address

these variations in both the execution flow and computation dependencies.

131

8.2.2 Limitations of GPU Memory Management in Mainstream Deep Learning Frame-

works

Several static memory reduction techniques have been implemented in today’s deep learning frameworks to

address the GPU memory shortage at data parallelism level. For example, Caffe and Torch directly reuse

the forward data tensors for the backward data propagation, which saves up to 50% of memory on a linear

network [MXN,]. Although this technique works well on linear networks, it requires extra tensors to hold

the future dependencies for training non-linear networks, thereby limiting the effectiveness and efficiency.

Also, these frameworks still have to fit the entire network into GPU DRAM without leveraging NUMA ar-

chitectures, and this level of reuse is arguably not adequate for contemporary deep nonlinear neural networks.

MXNet and TensorFlow are built with a Directed Acyclic Graph (DAG) execution engine [Wu et al., 2015].

Users explicitly define the computation flow and tensor dependencies, which provide necessary information

for the DAG engine to analyze the life span of tensors. Both systems then free tensors that are no longer

needed in order to save memory. MXNet also implements a per-layer-based re-computation strategy that is

similar to Resilient Distributed Datasets (RDD) in Spark [Zaharia et al., 2010]. Basically it frees the tensors

produced by computation-inexpensive layers in the forward pass, and recomputes the freed dependencies for

the backward pass by doing another forward. However, this method neglects non-uniform memory distri-

bution of network layers, consequentially demanding large unnecessary memory usages. TensorFlow swaps

long-lived data tensors from GPU DRAM to CPU DRAM, but it fails to optimize data communications be-

tween the two (e.g., utilizing pinned data transfer) which compromises at least 50% of communication speed.

More importantly, none of aforementioned DL frameworks utilize a dynamic scheduling policy that pro-

visions necessary memory space for deep nonlinear network training while at the same time optimizing the

training speed given the existing GPU DRAM resource. In other words, these static memory-saving tech-

niques aggressively reduce the GPU memory usage at the expense of speed. Users either painstakingly tune

the performance or suffer from insufficient memory during the execution. Additionally, these frameworks

either have no optimization strategy or adopt a naive method on allocating the convolution workspace (see

Section 8.3.5), which is a decisive factor determining CNN training speed on the GPU. In summary, these

challenges motivate us to design a dynamic scheduling runtime to provision necessary memory for the train-

ing while maximizing the memory for convolution workspaces to optimize the training speed.

132

8.3 Design Methodologies

This section elaborates on three memory optimization techniques and their related performance issues in

SuperNeurons. From a high-level perspective, SuperNeurons provision necessary memory spaces for the

training while maximizing the speed by seeking convolution workspaces within the constraint of native GPU

memory size.

Notations and Baseline Definition: To facilitate the analysis of proposed techniques, we denote the for-

ward memory usage of the ith layer as lfi , the backward as lbi . We denote the peak memory usage as peakm.

We use the naive network-wide tensor allocation strategy as the baseline, which allocates an independent

tensor for each memory requests. Thus, the peakm of baseline is
PN

i=1 l
f
i +

PN
i=1 l

b
i . We also denote the

maximal memory usage among layers as lpeak = max(li), where i 2 [1, N], and N represents the network

length. ti represents the ith tensor.

First, Liveness Analysis reduces the baseline peakm to
PN

i=1 l
f
i + l

b
N by recycling free tensors amid back-

propagation, demonstrating up to 50% of the memory saving. This technique is guaranteed to work on various

non-linear architectures, and it is constructed in O(N2). Liveness Analysis involves high-frequent memory

operations on the large chunk memory, while native memory utilities, e.g. cudaMalloc and cudaFree, incur

the nontrivial overhead. We address this issue with a preallocated heap managed by the runtime.

Secondly, Unified Tensor Pool(UTP) further reduces peakm to
PN

i=1(l
f
i /2 checkpoints) + l

b
N , where

checkpoints represent the compute-intensive layers such as FC and CONV. UTP provides a consolidated

memory abstraction to external memory pools to supply for the training. Instead of using naive on-demand

data transfers, it hides communications under computations. While the overlapping opportunity is limited

given the fixed amount of computations, UTP further introduces a Tensor Cache built on GPU to reduce

communications.

Finally, Cost-Aware Recomputation reduces peakm to max(li), the minimum at the layer-wise granular-

ity. The method keeps track of memory distributions among checkpoints to minimize the extra computations

while ensuring peakm  max(li).

8.3.1 Prerequisites

A typical DNN network layer computes on a 4-dimension tensor indexed by batches (N), image channels

(C), height (H) and width (W) (Fig.8.5). Since cuDNN operates at the layer granularity, we use tensors as the

basic memory scheduling unit.

133

Figure 8.4: Applying Liveness Analysis on the nonlinear network shown in Fig.8.3c. The number after the
layer name (e.g., DATA0, CONV1, etc.) represents the step, which are calculated by Alg. 8. We mark the
prerequisite tensors for a layer in red, such that t7, t8, t0 are required by CONV9. Each in and out set tracks
live tensors before and after the layer’s computations. We can free t2 and t5 at step 7 since no subsequent
dependencies from POOL8, CONV9, CONV10, and DATA11.

Figure 8.5: The structure of tensors used in DNN.

Algorithm 8 Construct execution steps for nonlinear neural architectures
Data: neural architecture definitions
Result: execution order
Function RouteConstruct(layer)

if layer is NULL then
return

layer ! counter inc()
if layer!get counter < size of prev layers then

return
computation route.push(layer);
next layers = b! get next();
for next l 2 next layers do

RouteConstruct(next l);
reset layer ! counter to 0

Alg.8 describes how SuperNeurons constructs execution steps for nonlinear neural architectures. The

input is the first network layer; then Alg.8 recursively explores the subsequent layers in Depth-First Searching

(DFS), except that it reaches a join where all prior layers must finish before proceeding. The behavior is

achieved by the counter in each layer that tracks the input dependencies (line 5! 6 in Alg.8).

Fig.8.6 demonstrates an example execution route for a nonlinear network constructed by Alg.8. Each

box represents a network layer indexed from a to j. Note that this network has two fan structures (layer

b, c,d and layer f ,g,h) nested together. Alg.8 successfully identifies layers e,g and h as the prerequisites

for executing i.

8.3.2 Liveness Analysis and Its Related Issues

Liveness analysis enables different tensors to reuse the same physical memory at different time partitions.

Our runtime implements a simple yet effective variant of the traditional data flow analysis constructed in

134

Figure 8.6: Execution route created by Algorithm 8 on a nonlinear network. The left digit represents the
forward step, while the right digit represents the backward step.

Figure 8.7: The unified tensor pool provides a consolidated memory abstraction to include various physical
memory pools for tensor allocations.

O(N2) for various nonlinear neural networks. The general procedures are as follows:

1. We construct an in and out set for every layers to track the live tensors before and after the layer, which

cost O(N), where N is the network length.

2. The runtime populates a layer’s in and out sets by checking the dependencies of subsequent layers. It

eliminates tensors in in from out if no subsequent layers need them. The cost is N(N�1)
2 ⇠ O(N2) as

each check costs N � 1, N � 2, ..., 2, 1, respectively.

Fig.8.4 demonstrates the detailed procedures of Liveness Analysis on the network shown in Fig.8.3c. It

explicitly lists the content of in and out sets at each steps. For instance, for FC7, in = t0, t1, t3, t2, t5.

It needs to create tensor t6 to finalize the current computation. Since t2 and t5 are no longer needed after

FC7, runtime eliminates them from FC7’s out set (step:7).

Liveness Analysis reduces the baseline peakm =
PN

i=1 l
f
i +

PN
i=1 l

b
i to

PN
i=1 l

f
i + l

b
N . In order to sim-

plify the analysis, let’s assume identical memory usages on every layers, i.e. l
f
i = l

b
i where i 2 [1, N].

In the network training, the results of forward pass are needed by the backward propagation2 [Wang et al.,

2017a, Chetlur et al., 2014]. Therefore, the forward total memory usages at step k is cost
f
k =

Pk
i=1 l

f
i ,

where k  N . During the back-propagation, Liveness Analysis frees l
f
i and l

b
i where i 2 [k + 1, N] at

the backward step k since no future dependencies on them as demonstrated in Fig.8.4. Therefore, the back-

ward total memory usages at step k is cost
b
k =

Pk
i=1 l

f
i + l

b
k and k  N . Since li > 0, the peakm is

max(max(costfk),max(costbk)) =
PN

i=1 l
f
i + l

b
N . Therefore, Liveness Analysis saves up to 50% memory

from the baseline.

2Not all layers require the previous forward output for the back-propagation, again we simplify the case for the analysis.

135

Toward a High Performance Liveness Analysis

Both the empty initial in set at step 0 and the empty final out set at step 11 in Fig.8.4 demonstrates Liveness

Analysis frequently stashes and frees tensors on the fly in a training iteration, while a typical training phase

consists of millions of iterations and such intense memory operations incur nontrivial overhead if using

the native cudaMalloc and cudaFree [Wang et al., 2016b]. According to the experiment, ResNet50 wastes

36.28% of the training time on memory allocations/deallocations with cudaMalloc and cudaFree. To alleviate

this performance issue, we implement a fast heap-based GPU memory pool utility. The core concept is

to remove the allocation/deallocation overhead by preallocating a big chunk of GPU memory as a shared

memory pool. Then we divide the entire GPU memory pool into 1KB blocks as the basic storage unit. The

memory pool contains a list of allocated and empty memory nodes. Each node in the two lists contains

memory address, occupied blocks and node ID. For an allocation request, the memory pool finds the first

node with enough free memory from the empty list. After that, it updates the empty list and creates a new

node in the allocated list to track the current allocation. For a deallocation request, the memory pool locates

the node in the allocated list with the ID-to-node hash-table, then the pool places the node back to the empty

list.

8.3.3 Unified Tensor Pool(UTP) and Its Related Issues

If the depth of a neural network goes to 103, the ImageNet training still consumes at least 102GB mem-

ory. Therefore, Liveness Analysis alone is inadequate for the emerging deep nonlinear neural architectures.

We provide Unified Tensor Pool (UTP) to further alleviate the GPU DRAM shortage by asynchronously

transferring tensors in/out of external memory. UTP is a consolidated memory pool abstraction for tensor

allocations/deallocations, using various external physical memory such as CPU DRAM, DRAM of other

GPUs, or remote CPU/GPU DRAM. In this paper, we focus on the scenario of using local CPU DRAM as

an external pool for the fast and efficient interconnect, but the abstraction also applies to other cases shown

in Fig.8.7. UTP intelligently manages the tensor placement, movement, allocation and deallocation, so that

the underlying memory management is entirely transparent to DL practitioners.

Basic UTP Memory Management: Memory Offloading and Prefetching

Not all the layers are suitable for Offloading and Prefetching. We define transferring tensors from GPU

to external physical pools as Offloading, and the reversed operation as Prefetching. Fig.8.8a and Fig.8.8b

136

AlexNet Inception_v4 ResNet101 ResNet151 ResNet50 VGG16 VGG19
0

20

40

60

80

%
 o

f
c

o
m

p
u

te
 t

im
e

CONV FC DROPOUT SOFTMAX POOL ACT BN LRN

(a) breakdown of execution time by layer types

AlexNet Inception_v4 ResNet101 ResNet151 ResNet50 VGG16 VGG19
0

20

40

60

m
e
m

o
ry

 u
s
a
g

e CONV FC DROPOUT SOFTMAX POOL ACT BN LRN

(b) breakdown of memory usages by layer types

Figure 8.8: The percentages of execution time and memory usages by layer types in different networks. Note
that the execution time includes both forward and backward passes.

demonstrate that POOL, ACT, BN and LRN all together occupy over 50% of the total memory, while their

computations only account for an average of 20% of the entire workload. Thus, offloading these layers incurs

a great overhead due to the insufficient overlapping of communications and computations. It is also not

fruitful to offload on Dropout, Softmax and FC layers since they only use less than 1% of the total memory.

Therefore, we only offload the tensors from CONV layers.

Offloading: the runtime asynchronously transfers the forward outputs of CONV layers to the preallocated

pinned CPU memory. It records an event for this data transfer and frees the tensor’s GPU memory once

the event is completed. The runtime has an independent thread running in the background to check events

of memory copies; and this enables GPU-to-CPU data transfers to overlap with the forward computations

starting from the current CONV layer to the next one.

Prefetching: the runtime asynchronously brings the offloaded and soon to be reused tensors back to the

GPU DRAM. At any CONV layers in the backward, the runtime asynchronously fetches the required tensors

for the previous CONV layer. This enables the CPU-to-GPU data transfer to overlap with the backward

computation starting from the current CONV layer to the previous one.

Offloading and Prefetching reduce peakm after Liveness Analysis to
PN

i=1(l
f
i /2 checkpoints) + l

b
N ,

where checkpoints = {CONV }. Since layers in checkpoints are offloaded, the total memory consumption

at each backward steps is cost(k) =
Pk

i=1(l
f
i /2 checkpoints) + l

b
k, where k 2 [1, N]. The memory usage

of each layers is non-negative, thus peakm = max(cost(k)) is
PN

i=1(l
f
i /2 checkpoints) + l

b
N .

137

(a) Speed-Centric Recomputation

(b) Memory-Centric Recomputation

(c) Cost-Aware Recomputation

Figure 8.9: The speed-centric strategy only recomputes the segment once, and other backward layers within
the segment will reuse the recomputed tensors. Thus, it only incurs O(N) additional computations, but
memcost is

Pseg
i=1 l

f
i + l

b
seg . The memory-centric strategy recomputes forward dependencies every time for

each backward layers. Though it incurs O(N2) additional computations, memcost is the lowest, i.e. l
b
i .

Cost-Aware Recomputation profiles the memory usages across recomputation segments. It uses the speed-
centric strategy (red) if memcost of a segment is less than lpeak, and the most memory saving strategy (blue)
otherwise.

Caching Tensors on GPU DRAM

While the overlapping opportunity is limited given the fixed amount of computations in an iteration, the afore-

mentioned on-demand Prefetching/Offloading protocol can quickly exhaust the chance. Nowadays CPU-to-

GPU data movements over PCI-E, GPU-to-GPU data movements over the same PCI-E switch, and GPU-to-

remote GPU over GPU-Direct RDMA deliver a practical speed of 8 GB/s, 10 GB/s, and 6 GB/s respectively

but transferring Gigabytes data in each training iterations incurs the nontrivial overhead. Therefore, this on-

demand tensor transfer protocol must be optimized. SuperNeurons proposes a Tensor Cache to exploit the

temporal localities of tensors. It caches tensors on GPU DRAM to maximize their reuses and to minimize

the global communications. With Prefetching and Offloading, the runtime only triggers data transfers when

GPU DRAM is insufficient.

138

Algorithm 9 The basic LRU operations
Data: Tensor (T) and LRU
Result: Tensor with the GPU memory.
Function LRU.in (T)

T.Lock false /* A layer will lock its dependent tensors in the computation. */
LRU.insertFront(T)

Function LRU.out (T)
freedMem 0

while freedMem < T.size do
T 0 = LRU.getLastUnlockedTensor()
freedMem = freedMem+ T 0.size
remove T 0 from LRU list
offload T 0.GA to T 0.CA /* CA is CPU Addr */

T.GA Malloc(T.size)

Function Check (LRU , T)
isFound LRU.find(T)

if isFound = false then
T.GA Malloc(T.size) /* GA is GPU Addr */
if T.GA = ; then

T.GA LRU.out()

LRU.in(T) /* cache miss */

else
LRU.placeToFront(T) /* cache hit */

return T.GA

We adopt Least Recent Used (LRU) tensor replacement policy to build Tensor Cache. Since the back-

propagation demonstrates the head-to-tail and tail-to-head computation pattern, it subjects the most recent

used tensors to the earliest reusing as suggested in Fig.8.4. This motivates us to design Tensor Cache with

a simple variant of LRU. While there are other sophisticated cache replacement policies that might better fit

the scenario, thorough discussions of them fall out the scope of this paper.

Alg.9 demonstrates the three key operations of proposed LRU. 1) LRU.in function intends to place a

tensor into LRU. Each tensor has a lock, and a tensor cannot be removed from LRU if locked. A layer will

lock required tensors at calculations. LRU is implemented as a list with Most Frequently Used (MFU) at

the front. 2) LRU.out function intends to remove enough bytes for a new tensor. It offloads the unlocked

Least Recent Used tensors to CPU RAM until it has enough free memory for the new one. 3) Check function

decides what operator to run on the tensor. It takes in a tensor to check if the tensor is in LRU based on the

object address (line 2). If found, we place the tensor to the MFU position, i.e. the list front (line 9), and return

the tensor’s GPU address. This is the hit scenario. If not found, we call LRU.out to free enough memory for

the new tensor before inserting it into LRU. This is the miss scenario.

139

8.3.4 Cost-Aware Recomputation

POOL, ACT, LRN and BN all together use an average of 50% memory, while their forward computations

only account for less than 10% of the total time. This exposes an additional 50% memory savings with a

fraction of performance loss by recomputing the forward dependencies in the back-propagation. Basically,

the runtime frees the tensors in cheap-to-compute layers such as POOL for reconstructions. In general, there

are memory-centric and speed-centric strategies for the recomputation for memory.

The speed-centric strategy keeps the recomputed tensors so that other backward layers can directly reuse

them. Fig.8.9a denotes the procedures in red. At the backward step on l
b
4, it performs a forward pass from l

f
1

to l
f
3 to get dependencies for lb4. It keeps lf1 , l

f
2 so that they can be re-used for the backward computation on

l
b
3 and l

b
2. MXNet [Chen et al., 2016] adopts this strategy. It incurs the least O(N) additional computations,

but memcost is
Pseg

i=1(l
f
i) + l

b
seg . memcost will exceed lpeak if lpeak is within the segment.

The memory-centric strategy always recomputes the dependencies for each backward layer. In contrast to

the speed-centric one, it fully exploits the memory-saving opportunity by freeing the recomputed intermediate

results. For example, it recomputes lf1 ! l
f
3 for lb4, while it recomputes lf1 ! l

f
2 again for lb3 as demonstrated

by the blue lines in Fig.8.9b. The memcost stays at lbi guaranteed to be  lpeak, but the strategy incurs

O(N2) additional computations.

We present a new Cost-Aware Recomputation that leverages the advantages of both methods. It is

motivated by the observation that the memory costs of most recomputation segments are  lpeak, i.e.
Pseg

i=1(l
f
i)+ l

b
seg  lpeak. That implies we can leverage the least recomputations in the speed-centric strategy

while still guaranteeing a memory usage of lpeak as in the memory-centric strategy. The general procedures

of Cost-Aware Recomputation are as follows:

[leftmargin=*]The runtime iterates over all the layers to find lpeak = max(li) as the threshold. In a

recomputation segment, the runtime applies the speed-centric strategy (marked by red in Fig.8.9c) if
Pseg

i=1(l
f
i) + l

b
seg  lpeak, and the memory-centric strategy (marked by blue in Fig.8.9c) otherwise.

Table.8.1 summarizes the extra computations for two basic strategies and Cost-Aware Recomputation. Our

cost-aware method ensures peakm to be consistent with the memory-centric strategy, while the extra compu-

tations are comparable to the speed-centric strategy.

Cost-Aware Recomputation finally reduces peakm to max(li). Previously, Liveness Analysis and Offload-

ing jointly reduce the cost
b
k to

Pk
i=1(l

f
i /2 checkpoints) + l

b
k. Since non-checkpoints layers will be freed

for recomputations, only the nearest checkpoint layer exists in the GPU memory. Thus, costbk = lcheckpoint.

140

Table 8.1: The counts of recomputations (extra) and peakm using the speed-centric, the memory-centric and
Cost-Aware Recomputation.

speed-centric memory-centric cost-aware
extra peakm extra peakm extra peakm

AlexNet 14 993.018 23 886.23 17 886.23
ResNet50 84 455.125 118 401 85 401
ResNet101 169 455.125 237 401 170 401

During the recomputations, costbk can be either
Pk

i=1(l
f
i) + l

b
k  lpeak or lbi depending what recomputation

strategies to use. On the other hand, Cost-Aware Recomputation guarantees costbk  lpeak = max(li) (see

analyses above). Thus, the final network wide peakm = max(costbk) = lpeak, which is the minimal peakm

achievable at the layerwise granularity.

8.3.5 Finding the Best Convolution Algorithm under the Memory Constraint

The speed of CONV layers significantly impacts the training as it accounts for over 50% of total computing

time (Fig.8.8). cuDNN provides several convolution algorithms, e.g. using FFT, Winograd and GEMM, for

different contexts. Some of them, FFT in particular, require temporary convolution workspaces to delivery

the maximal speed as demonstrated in Fig.8.2. Therefore, the memory is also a critical factor to the high-

performance training.

We implement a dynamic strategy for allocating convolution workspaces. It is dynamic because the

memory left for convolution workspaces constantly changes in every step according to Liveness Analysis,

UTP and Cost-Aware Recomputation. Since convolution workspaces do not affect the functionality, the

allocations of functional tensors such as data and parameters are prioritized. The runtime then steps into each

layer to profile the free bytes left in GPU DRAM after those memory techniques have been applied. With

free memory information at individual steps, the runtime benchmarks all the memory-feasible convolution

algorithms to pick the fastest one. Please note the runtime skips convolution algorithms that require more

memory than it can provide. Each layer selects the fastest algorithm under the remaining GPU DRAM, and

therefore maximize the performance of CONV layers and the entire training.

8.4 Evaluations

In this section, we present the results of our experimental studies that evaluate each of the memory and

performance techniques in SuperNeurons. We also performed end-to-end evaluations against TensorFlow,

141

0 10 20 30 40 50

Steps in an Iteration

0

500

1000

1500

2000

2500

M
e
m

o
ry

0

10

20

30

40

L
iv

e
 T

e
n

s
o

r
C

o
u

n
tsbaseline memory usage

backwardforward

baseline tensor counts

peak
m

(a) liveness analysis

0 10 20 30 40 50

Steps in an Iteration

0

500

1000

1500

2000

2500

M
e
m

o
ry

0

10

20

30

40

L
iv

e
 T

e
n

s
o

r
C

o
u

n
tsbaseline memory usage

baseline tensor counts

backwardforward

peak
m

reduced 357.2MB

(b) prefetching/offloading + liveness

0 10 20 30 40 50

Steps in an Iteration

0

500

1000

1500

2000

2500

M
e
m

o
ry

0

10

20

30

40

L
iv

e
 T

e
n

s
o

r
C

o
u

n
tsbaseline memory usage

baseline tensor counts

forward backward

peak
m

reduced 245.77MBbottleneck,

max layer usage

(c) recomputation + previous two

Figure 8.10: The evaluations of Liveness Analysis, Prefetching/Offloading and Cost-Aware Recomputation on
AlexNet at the batch size of 200. AlexNet has 23 layers, and a training iteration consists of 1! 23 forward
steps and 24 ! 46 backward steps. The blue curve (left axis) depicts memory usages at each step, while
the orange curve (right axis) depicts live tensor counts at each step. (a) demonstrates how Liveness Analysis
affects memory usages w.r.t the baseline (horizontal lines). (b) demonstrates how Offloading/Prefetching
improve Liveness Analysis by comparing the memory usages of both techniques (blue dashed lines in (b))
with Liveness alone (solid blue curve in (b)). Similarly, (c) demonstrates how Cost-Aware Recomputation
improve the previous two; and dashed lines in (c) are from (b).

MXNet, Caffe and Torch on various neural networks to justify the design.

8.4.1 Components Evaluations

Memory Optimizations

We use the naive network-wide tensor allocation strategy as the baseline. Thus, the peakm of baseline is
PN

i=1 l
f
i +

PN
i=1 l

b
i , where N is the network length (defined in Sec.8.3). Since cuDNN operates at the

layerwise granularity, peakm is bounded by the maximal memory usage among layers, i.e. lpeak.

Liveness Analysis reduces the baseline’s peakm to
PN

i=1 l
f
i + l

b
N . Fig.8.10a demonstrates how Liveness

Analysis affect memory usages and live tensor counts at each forward/backward step on AlexNet. 3 Since
3the structure of AlexNet is CONV1!RELU1!LRN1!POOL1

!CONV2!RELU2!LRN2!POOL2!CONV3!RELU3

!CONV4!RELU4!CONV5!RELU5!POOL5!FC1!RELU6!Dropout1!FC2!RELU7!Dropout2!FC3!Softmax

142

AlexNet has 23 layers, there are 23 forward steps and 23 backward steps. The central vertical line separates

forward and backward, each of which contains 23 computational steps. The baseline allocates 36 data ten-

sors consuming 2189.437MB, while Liveness Analysis uses up to 17 tensors with a peak memory usage of

1489.355MB. This demonstrates 31.9% improvement over the baseline in terms of peakm. It is also observ-

able that the location of peakm is not necessarily consistent with the peak tensor count. This confirms our

claim that the memory is unevenly distributed across network layers.

To verify the cost model, i.e. costbk =
Pk

i=1 l
f
i + l

b
k, we delve into the memory usages of the peak layer.

Fig.8.10a suggests the 32th step reaches peakm. This corresponds to the backward POOL5 in AlexNet,

and k = 14 (or 46 - 32). The forward layers before POOL5 stash 5 tensors, consuming 1409.277MB

(
P14

i=1 l
f
i). Meanwhile the backward POOL5 stashes 3 tensors, consuming 80.078MB (lb14). Therefore,

cost
b
14 = 1409.277 + 80.078 = 1489.355MB, which is consistent with the measured peakm.

Prefetching and Offloading reduces the peakm after Liveness Analysis to
PN

i=1(l
f
i /2 checkpoints)+l

b
N .

Fig.8.10b demonstrates the updated memory usages and live tensor counts after Prefetching/Offloading is

applied on top of Liveness Analysis. We set CONV layers as checkpoints for offloading. The new peakm is

1132.155 MB at the 39th step or POOL2 backward. It further reduces 357.2MB off of the previous peakm,

for a total of 48.29% improvement over the baseline’s peakm. The new peakm shifts from POOL5 to POOL2

because of the number of CONV layers ahead of them. CONV1, CONV2, CONV3, and CONV4 are located

before POOL5, and they consume 221.56MB, 142.38MB, 49.51MB and 49.51MB, respectively. The runtime

offloads CONV 1 ⇠ 4 to CPU RAM and prefetches CONV5. This leads the new memory usage of POOL5

to be 1489.355 - 221.56 - 142.38 - 49.51 = 1075.9MB, which is less than the measured new peakm 1132.155

MB at POOL2.

To verify the updated cost model, i.e.
Pk

i=1(l
f
i /2 checkpoints) + l

b
k, we compare the calculated live

tensor count from the model with the actual measurement. There are 2 checkpoints, CONV1 and CONV2,

before POOL2, and the runtime prefetches CONV2 in the backward pass. As a result, the calculated live

tensor count at POOL2 is 10 (measured live tensors before POOL2) - 1 (CONV1) = 9. This is the same as our

actual measurement of 9 tensors at POOL2. Therefore, the updated cost model after Prefetching/Offloading

is still valid.

Finally, Cost-Aware Recomputation reduces peakm to max(li). In theory, max(li) is the minimal peakm

at the layerwise granularity as cuDNN needs to at least stash the tensors in a layer to compute. Fig.8.10c

demonstrates stepwise memory usages and live tensor counts with all three techniques. We profile that

max(li) = 886.385MB at the backward LRN1 by iterating through every layer. Fig.8.10c demonstrates

143

Figure 8.11: Normalized performance with and without Tensor Cache. The batch size of AlexNet is 128, and
32 for the rest.

a peakm of 886 MB at the 44th step, which is the backward computation of LRN1. Therefore, the three

proposed memory saving techniques successfully reduce the peakm from
PN

i=1 l
f
i +

PN
i=1 l

b
i to max(li).

Speed Optimizations

The runtime equips with a GPU Memory Pool and a Tensor Cache to improve the performance of memory

techniques, and it also has a dynamic strategy for allocating convolution workspaces to accelerate the training

speed. More specifically, the GPU Memory Pool amortizes the non-trivial overhead of high-frequency mem-

ory allocations/deallocations in Liveness Analysis, and Tensor Cache enables tensor reuse to minimize data

transfers in Prefetching/Offloading. Fig.8.10c demonstrates how the GPU free space dynamically changes

at each forward and backward step due to the three memory techniques. The runtime allocates convolution

workspaces within the free memory at each step. As a result, the performance is optimized at individual

layers under different stepwise memory constraints.

Table 8.2: The improvement of the GPU memory pool over cudaMalloc and cudaFree on various networks.
The batch size for AlexNet is 128, while the rest is 16.

img/s AlexNet VGG16 InceptionV4 ResNet50 ResNet101 ResNet152
CUDA 359.4 12.1 6.77 21.5 11.3 7.46
Ours 401.6 14.4 10.0 32.9 18.95 13.2

speedup 1.12x 1.19x 1.48x 1.53x 1.68x 1.77x

Table 8.3: Communications with/without Tensor Cache. We benchmark the result on AlexNet by increasing
the batch size from 256 to 1024.

Communications in GB 256 384 512 640 896 1024
Without Tensor Cache 2.56 3.72 4.88 6.03 8.35 9.50

Tensor Cache 0 0 0 0 0 0.88

GPU Memory Pool amortizes the non-trivial overhead of intensive memory operations in Liveness Anal-

ysis by preallocating a big chunk of GPU memory. Table 8.2 illustrates the performance improvement of

using GPU Memory Pool over cudaMalloc and cudaFree. Linear networks such as AlexNet and VGG in-

volve much fewer memory operations than nonlinear ones such as InceptionV4 and ResNet50 ! 152 due

to the limited depth. Therefore, the speedups on nonlinear networks (ResNet 50!152 and InceptionV4) are

more significant than linear networks (AlexNet, VGG).

144

1f 2f 3f 4f 5f 5b 4b 3b 2b 1b
0

500

1000

M
e
m

o
ry

/M
B Assigned WS

MAX Speed WS

(a) batch=100, pool = 3G
1f 2f 3f 4f 5f 5b 4b 3b 2b 1b

0

1000

2000

M
e
m

o
ry

/M
B Assigned WS

MAX Speed WS

(b) batch=300, pool = 3G

1f 2f 3f 4f 5f 5b 4b 3b 2b 1b
0

1000

2000

3000

M
e
m

o
ry

/M
B Assigned WS

MAX Speed WS

(c) 203(imgs/s), pool = 3G
1f 2f 3f 4f 5f 5b 4b 3b 2b 1b

0

1000

2000

3000

M
e
m

o
ry

/M
B Assigned WS

MAX Speed WS

(d) 240(imgs/s), pool = 5G

Figure 8.12: Dynamic Conv workspace allocations in the runtime. The digit in the x-axis represents the ith
CONV layer, while the ”f” or ”b” represent the forward or backward computations.

Tensor Cache intends to reduce unnecessary data transfers in Prefetching/Offloading. Specifically, the

offloading is unnecessary if a network can fit into the GPU DRAM. In Table 8.3, we can see Tensor Cache

successfully avoids communications at batch sizes of 256! 896, while the communications, in the scenario

without Tensor Cache, linearly increase along batch sizes. The training performance will deteriorate if com-

munications outweigh computations. Fig.8.11 demonstrates up to 33.33% performance loss without using

Tensor Cache. It is also noticeable that the speedup on linear networks (AlexNet, VGG16) is less significant

than nonlinear ones (ResNet50!152, Inception). In general, the computation intensity of a linear network

layer is far greater than the non-linear one. Because their communications can overlap with computations in

Prefetching/Offloading, Tensor Cache does not provide the comparable speed up for AlexNet and VCG16.

Dynamic Convolution Workspace Allocation intends to optimize each layer’s training speed together

with the three memory techniques. Convolution workspaces are critical for high performance, while the

amount of free memory for convolution workspaces constantly changes at different computing steps as

demonstrated in Fig.8.10c. The runtime picks the fastest memory-feasible convolution algorithm at a par-

ticular step.

Fig.8.12a and Fig.8.12b demonstrate that the runtime automatically reduces CONV workspaces to accom-

modate functional tensors with the increasing batch size. Specifically, the runtime prioritizes the functional

tensor allocations at batch 300 under 3 GB memory pool (Fig.8.12b), while it provisions the most workspace

145

Figure 8.13: Going Wider: the corresponding memory usages for the batch size in TABLE 8.5.

for the maximal speed at batch 100 (Fig.8.12a). In general, a higher speed is observable with more convolu-

tion workspaces. Fig.8.12c and Fig.8.12d demonstrate that the training speed (images per second) increases

from 203 img/s to 240 img/s with additional CONV workspaces.

8.4.2 Going Deeper and Wider

Our primary goal is to enable ML practitioners to explore deeper and wider neural architectures within the

limited GPU DRAM. In this section, we conduct end-to-end comparisions to TensorFlow, MXNet, Caffe and

Torch with several mainstream linear networks (AlexNet, VGG16) and non-linear ones (ResNet50 ! 150,

Inception V4) under the same experiment setup.

Table 8.4: Going Deeper: the deepest ResNet that different frameworks can reach on a 12GB NVIDIA K40.
The batch size is fixed at 16. ResNet has 4 for-loops to control its depth: depth = 3⇤(n1+n2+n3+n4)+2,
where ni is the upper limit of ith for-loop. We fix n1 = 6, n2 = 32, and n4 = 6, while varying n3 to increase
the depth.

Depth Caffe MXNet Torch TensorFlow SuperNeurons
ResNet 148 480 152 592 1920

Table 8.5: Going Wider: the largest batch size that several mainstream neural architectures can reach in
different frameworks with a 12GB NVIDIA K40.

peak batch Caffe MXNet Torch TensorFlow SuperNeurons
AlexNet 768 768 1024 1408 1792
VGG16 48 64 48 80 224

InceptionV4 16 N/A N/A 64 240
ResNet50 24 80 32 128 384

ResNet101 16 48 16 80 256
ResNet152 16 32 16 48 176

We increase the batch size to go wider. Table 8.5 presents the largest batch reachable by different frame-

works before the GPU out-of-memory error. SuperNeurons consistently outperforms the mainstream frame-

works on both linear and non-linear networks. On average, it handles 1.8947x larger batches than the second

best. SuperNeurons can train ResNet101 at the batch of 256, which is 3x larger than the second best Tensor-

Flow.

Fig.8.13 demonstrates the corresponding memory requirement to peak batches in Table 8.5. The trans-

lation is non-linear because of the convolution workspace. We calculate the memory requirement with
PN

i=1 l
f
i +

PN
i=1 l

b
i , and li is the sum of the memory usages of all tensors in the layer. It is observable

that SuperNeurons handles up to a 19.8x larger model than Caffe.

146

We add layers to go deeper. Table 8.4 demonstrates SuperNeurons trains 12.9730x, 12.6316x, 4.0000x,

and 3.2432x deeper ResNet than Caffe, Torch, MXNet, and TensorFlow, respectively. Particularly, SuperNeu-

rons can train a ResNet up to 2500 residual units having approximately 104 basic layers at the batch size of 1

on a 12GB GPU.

0 200 400 600 800 1000 1200 1400

batch size

0

500

1000

1500

2000

2500

s
p

e
e

d
 (

im
g

/s
)

Caffe TF MXNet Torch Ours

(a) AlexNet

0 50 100 150 200

batch size

0

50

100

150

200

250

s
p

e
e

d
 (

im
g

/s
)

Caffe TF MXNet Torch Ours

(b) ResNet50

0 50 100 150

batch size

60

80

100

120

140

160

180

s
p

e
e

d
 (

im
g

/s
)

Caffe TF MXNet Torch Ours

(c) VGG16

0 20 40 60 80 100 120

batch size

0

50

100

150

s
p

e
e

d
 (

im
g

/s
)

Caffe TF MXNet Torch Ours

(d) ResNet101

10 20 30 40 50 60 70 80

batch size

20

30

40

50

60

70

80

90

s
p

e
e

d
 (

im
g

/s
)

Caffe TF Ours

(e) InceptionV4

10 20 30 40 50 60 70 80

batch size

20

40

60

80

100

120

s
p

e
e

d
 (

im
g

/s
)

Caffe TF MXNet Torch Ours

(f) ResNet152

Figure 8.14: An end-to-end evaluation of different DL frameworks. We benchmark the data on a TITAN XP.

The training speed is measured by the number of processed images per second. Fig.8.14 presents an

end-to-end training speed comparison of SuperNeurons to the mainstream DL systems. SuperNeurons con-

sistently demonstrates the leading speed on various linear networks (AlexNet, VGG16) and nonlinear ones

(ResNet50! 152, Inception V4). The performance largely results from the abundant supply of convolution

147

workspaces saved by the dynamic GPU memory scheduler. We can also observe that the speed has slowly

deteriorated as batch size increases. This is due to the growing communications from more frequent tensor

swapping between CPU and GPU DRAM. The performance will be at its worst when GPU memory can

only accommodate one network layer. Then, the runtime has to constantly offload the current layer before

proceeding to the next one.

8.5 Related Work

Several solutions have been proposed to address the GPU DRAM shortage for training large-scale neural

networks. Model Parallelism provides a straightforward solution to the large network training. DistBelief

[Dean et al., 2012] partitions a network across multiple machines so that each machine holds a segment of

the original network. Coates et al [Coates et al., 2013] discuss another partition scheme on multi-GPUs.

Model Parallelism demands huge intra-network communications for synchronization. Therefore, most DL

systems parallelize the training with Data Parallelism for better performance [Jia et al., 2014, Abadi et al.,

2016, Collobert et al., 2002]. In this paper, we focus on the GPU DRAM shortage issue for Data Parallelism.

Under Data Parallelism, vDNN [Rhu et al., 2016] proposes a prefetching and offloading technique to uti-

lize the CPU DRAM as an external buffer for the GPU. It tries to overlap communications with computations

by asynchronously swapping the data between CPU and GPU amid the back-propagation. The performance

of this method largely depends on the communication/computation ratio. Some layers such as POOL are

very cheap to compute, while the GPU processing speed is several orders of magnitude faster than the PCI-E

16x bus. In nonlinear networks, the performance will quickly deteriorate once computations are inadequate to

overlap with communications. Chen et al [Chen et al., 2016] also introduces a recomputation strategy to trade

computations for memory. However, their method fails to fully exploit the memory-saving opportunities and

computation efficiency because it ignores the memory variations among layers.

Removing the parameter redundancy also reduces the memory usage. For example, network pruning [Han

et al., 2016] removes near zero parameters, and quantization [Vanhoucke et al., 2011] or precision reduction

[Judd et al., 2016] utilize low precision floats to save memory. Although the parameter reduction has immense

benefits in deploying neural networks on embedded systems, parameters only account for a negligible portion

of memory usage in the training. Therefore, these approaches are quite limited to training only.

148

8.6 Conclusion

In this paper, we focus on the GPU memory scheduling problem for training deep neural networks, and

we propose a novel dynamic scheduling runtime to tackle the issue. The runtime features three memory

techniques to reduce peakm to max(li), which is the minimum at the layer-wise granularity. We also propose

several performance optimizations to guarantee high performance. Evaluations against state-of-the-art DL

frameworks have demonstrated the effectiveness and efficiency of proposed dynamic scheduling runtime. It

creates new opportunities for DL practitioners to explore deeper and wider neural architectures, allowing the

opportunity for better accuracy with even deeper and wider designs.

Part V

The Design Agent in Action

149

Chapter 9

Applications

We have tested our design agent in building several real-world applications, and the results consistently show

that the neural network designed by the agent outperforms the manually created networks by the domain

experts. For example, our agent designs the convolutional neural network for image recognition that reaches

99% top-1 accuracy on CIFAR-10, establishing new SoTA without using the extra data and exceeding the

accuracy of ResNet-1001 [He et al., 2016] by 3.62%. Besides, on ImageNet, our agent designs an efficient

network that reaches with SOTA 80.8% top-1 accuracy (under the mobile setting) at only 598M FLOPs,

while the accuracy of manually designed ResNet-152 is 80.62% top1 but costing 18x more computations.

The rest of this chapter shows the additional success of our design agent in designing recurrent neural net-

works, generative adversarial networks, and the backbone networks for object detection, image captioning,

and neural style transfer. These data suggest that the agent proposed by this thesis can efficiently design

various neural networks for different tasks.

9.1 Designing Convolutional Neural Networks

To be consistent with existing literature, we also evaluate LaNAS in searching for architectures for CIFAR-10

using the NASNet search space and searching for architectures for ImageNet using the EfficientNet search

space. Please refer to [Wang et al., 2019a] for more details of experiments in this section.

150

151

Table 9.1: Results on CIFAR-10 using the NASNet search space. LaNet-S and LaNet-L are same in structure,
but the filter size of LaNet-S is 36, while LaNet-L is 128. Fig. 9.1 shows the structure of LaNet.

Model Data
Augmentation

Extra
Dataset Params Top1 err M GPU days

search based methods

NASNet-A [Zoph et al., 2018b] c/o X 3.3 M 2.65 20000 2000
AmoebaNet-B-small [Real et al., 2019a] c/o X 2.8 M 2.55±0.05 27000 3150
AmoebaNet-B-large c/o X 34.9 M 2.13±0.04 27000 3150
PNASNet-5 [Liu et al., 2018a] c/o X 3.2 M 3.41±0.09 1160 225
NAO [Luo et al., 2018a] c/o X 128.0 M 2.11 1000 200
EfficientNet-B7 c/m+autoaug ImageNet 64M 1.01
GPipe [Huang et al., 2018] c/m+autoaug ImageNet 556M 1.00
BiT-S c/m+autoaug ImageNet 2.49
BiT-M c/m+autoaug ImageNet-21k 928M 1.09
LaNet-S c/o X 3.2 M 2.27±0.03 800 150
LaNet-S c/m+autoaug X 3.2 M 1.63±0.05 800 150
LaNet-L c/o X 44.1 M 1.53±0.03 800 150
LaNet-L c/m+autoaug X 44.1 M 0.99±0.02 800 150

one-shot NAS based methods

ENAS [Pham et al., 2018a] c/o X 4.6 M 2.89 - 0.45
DARTS [Liu et al., 2018b] c/o X 3.3 M 2.76±0.09 - 1.5
BayesNAS [Zhou et al., 2019b] c/o X 3.4 M 2.81±0.04 - 0.2
P-DARTS ([Chen et al., 2019b]) c/o X 3.4 M 2.5 0.3
PC-DARTS ([Xu et al., 2019]) c/o X 3.6 M 2.57±0.07 0.3
CNAS ([Guo et al., 2020]) c/o X 3.7 M 2.6±0.06 0.3
FairDARTS ([Chu et al., 2020]) c/o X 3.32 M 2.54±0.05 3
ASNG-NAS [Akimoto et al., 2019b] c/o+autoaug X 3.9 M 2.83±0.14 - 0.11
XNAS [Nayman et al., 2019a] c/o+autoaug X 3.7 M 1.81 0.3
oneshot-LaNet-S c/o X 3.6 M 2.24±0.02 - 3
oneshot-LaNet-S c/o+autoaug X 3.6 M 1.68±0.06 - 3
oneshot-LaNet-L c/o X 45.3 M 1.88±0.04 - 3
oneshot-LaNet-L c/o+autoaug X 45.3 M 1.20±0.03 - 3
M: number of samples selected.
c/m: cutmix, c/o: cutout
autoaug: auto-augmentation

c_{k-2}

0

sep_conv_5x5

1sep_conv_3x3

sep_conv_5x5

2

skip_connect

3

max_pool_3x3

c_{k-1}

sep_conv_5x5

4max_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_3x3

c_{k}

(a) normal cell

c_{k-2} 0sep_conv_5x5

c_{k-1}

skip_connect 1

max_pool_3x3 3

skip_connect

4
skip_connect

sep_conv_5x5

sep_conv_5x5 2
max_pool_3x3

max_pool_3x3 c_{k}

skip_connect

(b) reduction cell

Figure 9.1: The searched cell structure for LaNet.

9.1.1 CIFAR-10

On CIFAR-10, our search space is same as NASNet ([Zoph et al., 2018b]). We used operations of 3x3 max

pool, 3x3, 5x5, depth-separable convolution, and skip connection. The search target is the architectures for

a reduction and a normal cell, and the number of nodes within a cell is 5. This formulates a search space of

152

3.5 ⇥ 1021 architectures. The setup of supernet on CIFAR-10 is consistent with the description in sec.4.2.3;

We selected the top architecture collected from the search and re-trained them for 600 epochs to acquire the

final accuracy in Table. 9.1. We reused the training logic from DARTS and their training settings.

Table. 9.1 compares our results in the context of searching NASNet style architecture on CIFAR-10.

The best performing architecture found by LaNAS in 800 samples demonstrates an average accuracy of

98.37% (#filters = 32, #params = 3.22M) and 99.01% (#filters = 128, #params = 44.1M), which is better

than other results on CIFAR-10 without using ImageNet or transferring weights from a network pre-trained

on ImageNet. It is worth noting that we achieved this accuracy with 33x fewer samples than AmoebaNet.

Besides, one-shot LaNAS also consistently demonstrates the strongest result among other one-shot variants

in similar GPU time. Besides, the results on ImageNet also consistently outperform SoTA models. The

performance gap between one-shot NAS and search-based NAS is largely due to inaccurate predictions of

vi from supernet [Sciuto et al., 2019, Zhao et al., 2020]. We have introduced few-shot NAS to alleviate this

issue at [Zhao et al., 2020].

Table 9.2: Transferring LaNet from CIFAR-10 to ImageNet using the NASNet search space.

Model FLOPs Params top1 err

NASNet-C ([Zoph et al., 2018b]) 558M 4.9 M 27.5
AmoebaNet-C ([Real et al., 2019a]) 570M 6.4 M 24.3
RandWire ([Xie et al., 2019]) 583M 5.6 M 25.3
PNASNet-5 ([Liu et al., 2018a]) 588M 5.1 M 25.8
DARTS ([Liu et al., 2018b]) 574M 4.7 M 26.7
BayesNAS ([Zhou et al., 2019b]) - 3.9 M 26.5
P-DARTS ([Chen et al., 2019b]) 557M 4.9 M 24.4
PC-DARTS ([Xu et al., 2019]) 597M 5.3 M 24.2
CNAS ([Guo et al., 2020]) 576M 5.3 M 24.6

LaNet 570M 5.1 M 23.5
oneshot-LaNet 567M 5.4 M 24.1

Table 9.3: Results on ImageNet using the EfficientNet search space. The LaNet architecture can be found in
Table. 9.4.

Model FLOPs Params GPU days top1 err

FairDARTS ([Chu et al., 2020]) 440M 4.3 M 3 24.4
FBNetV2-C ([Wu et al., 2019]) 375M 5.5 M 8.3 25.1
MobileNet-V3 ([Howard et al., 2019b]) 219M 5.8 M 24.8
OFA ([Cai et al., 2019a]) 230M 5.4 M 1.6 23.1
FBNetV2-F4([Wan et al., 2020a]) 238M 5.6 M 8.3 24.0
FairDARTS ([Chu et al., 2020]) 386M 5.3 M 3 22.8
BigNAS ([Yu et al., 2020a]) 242M 4.5 M 23.5

LaNet 228M 5.1 M 0.3 22.3

OFA ([Cai et al., 2019a]) 595M 9.1 M 1.6 20.0
BigNAS ([Yu et al., 2020a]) 586M 6.4 M 23.5
FBNetV3 ([Dai et al., 2020]) 544M 20.5

LaNet 598M 8.2 M 0.3 19.2

153

Table 9.4: LaNet architecture found on the EfficientNet search space, i.e. results in Table. 9.3.

ID Block Kernel Stride Output
Channel

Expand
Ratio

LaNet@228M FLOPS

0 Conv 3 2 24
1 IRB 3 1 24 1

2 IRB 3 2 36 3
3 IRB 3 1 36 3

4 IRB 3 2 40 3
5 IRB 3 1 40 4
6 IRB 3 1 40 4

7 IRB 5 2 80 4
8 IRB 5 1 80 4
9 IRB 3 1 80 4
10 IRB 3 1 112 4
11 IRB 3 1 112 4

12 IRB 5 2 168 6
13 IRB 4 1 168 6
14 IRB 3 1 168 6
15 IRB 3 1 168 6

16 Conv 1 1 960
17 Conv 1 1 1280
18 FC 1 1 1000

LaNet@598M FLOPS

0 Conv 3 2 24
0 IRB 3 1 24 1

0 IRB 3 2 36 3
0 IRB 5 1 36 4
0 IRB 3 1 36 4

0 IRB 5 2 48 4
0 IRB 5 1 48 4
0 IRB 3 1 48 6
0 IRB 3 1 48 6

0 IRB 7 2 96 6
0 IRB 5 1 96 6
0 IRB 3 1 96 6
0 IRB 5 1 96 6
0 IRB 3 1 136 6
0 IRB 5 1 136 6
0 IRB 5 1 136 6
0 IRB 3 1 136 6

0 IRB 3 2 200 6
0 IRB 5 1 200 6
0 IRB 5 1 200 6
0 IRB 3 1 200 6

16 Conv 1 1 1152
16 Conv 1 1 1536
18 FC 1 1 1000

9.1.2 ImageNet

We also transfer the architecture found on CIFAR-10 to ImageNet, and Table. 9.2 demonstrates the ImageNet

result using the NASNet search space. The NASNet result is not competitive, as the network is not directly

searched on ImageNet, and the non-linear connections of NASNet significantly increase the latency and

memory footprint. Therefore, the simplified, linearly connected Efficient-Net search space is more popular

154

on the ImageNet that only searches for a few hyper-parameters inside the Inverted Residual Block (IRB).

Specifically, the depth of an Inverted Residual Block (IRB) can vary in 2, 3, 4; the expansion ratio of an IRB

is within 3, 5, 7; and the stride is within 1, 2. We show the final results in Table. 9.3.

9.2 Designing Recurrent Neural Networks

Table 9.5: Comparison with state-of-the-art language models on PTB (lower perplexity is better).

Architecture Perplexity Params GPU days)

Variational RHN [Zilly et al., 2017] 65.4 23 –
LSTM [Merity et al., 2017] 58.8 24 –

LSTM + 5 softmax experts [Yang et al., 2017] 57.4 – –

NAS [Zoph and Le, 2016] 64.0 25 1e4
ENAS [Pham et al., 2018a] 63.1 24 0.5

Random search baseline 59.4 23 2
DARTS [Liu et al., 2018b] 55.7 23 1

Ours 54.8 23 1.56

x_{t}

0

1

3

2

6

8

5

7

4

h_{t-1}

h_{t}

sigmoid

identityrelu

relu

relu relu

tanh
tanh

Figure 9.2: The structure of our searched RNN cell.

Here the agent is set to design an RNN for the languages modeling on Penn Treebank dataset [Marcus et al.,

1994]. This experiment in this section is from the paper of [Zhao et al., 2020]. Specifically, please refer to

section 2.1 in [Pham et al., 2018a] for the details of RNN design space. We prefix the embedding and the

hidden size of RNN to 300. The batch size is 256, and the weight decay is 3 ⇥ 5�7. The dropout ratio for

the word embeddings is 0.2, 0.75 for cell input, 0.25 for all the hidden nodes, and 0.75 for the output layer.

Finally, our agent finds an RNN cell structure that achieved the state-of-the-art test Perplexity of 54.89 with

an overall cost of 1.56 GPU days, which leads to the results in Table. 9.5. The cell structure of searched RNN

is in Fig. 9.4.

155

9.3 Designing Backbone for Detection Systems

(a) Ours (b) MobileNetV2

(c) Ours (d) MobileNetV2

Figure 9.3: The visualization of differences in Table 9.6.

Decoder Backbone #Channels FLOPS(G) AP
FPN-FCOS [Tian et al., 2019b] R-50 [He et al., 2016] 256 169.9 37.4

NAS-FCOS [Wang et al., 2020b] MobileNetV2 [Sandler et al., 2018] 128 39.3 32.0
NAS-FCOS [Wang et al., 2020b] MobileNetV2 [Sandler et al., 2018] 256 121.8 34.7
FPN-FCOS [Wang et al., 2020b] MobileNetV2 [Sandler et al., 2018] 256 105.4 31.2
FPN-FCOS [Tian et al., 2019b] Ours 128 35.2 36.5
FPN-FCOS [Tian et al., 2019b] Ours 256 109.5 37.6

Table 9.6: Results on test-dev set of MS COCO with different decoder, backbone and channels. R-50 abbre-
viates for ResNet50. All networks have the same input image resolution.

We also use our agent to search the backbone CNN for the detection system. We reuse the Efficient-Net

search space described in section 9.1.2 to search for the backbone, and we use the FPN-FCOS [Tian et al.,

2019b] as the decoder to train on the COCO dataset. FPN-FCOS consists of three components, a backbone,

a FPN, and prediction heads. Since objects of different scales require different effective receptive fields, the

input of FPN is a set of feature maps with different channels and resolutions generated from the backbone.

Specifically, the size the of feature maps are (hi, wi, ci), where (hi, wi) = (h/2i, w/2i) given a base h and w.

156

Following the existing literatures [Tian et al., 2019b, Wang et al., 2020b], we set i to four and extract the four

feature maps that have different resolutions and channel sizes from our searched model, and use the output

tensors as the input of FPN. We set the channel numbers of FPN and prediction heads to either 128 or 256

in our experiments. We use the standard SGD optimizer with an initial learning rate of 0.005 and a norm

gradient clip at 35. We train each model for 24 epochs and use the first 500 iterations as the warm-up phase.

During the warm-up iterations, the learning rate starts at 0.002 and increases by 0.00033 every 50 iterations

until it reaches 0.005. After the warm-up phase, we divide the learning rate by 10 at the 10th and 22nd epochs

(i.e. to 5⇥ 10�4 and 5⇥ 10�5 respectively). We resize each image to 1333 by 800 and implement a random

flip with 0.5 flip ratios. Further, we apply both the center-ness and center sampling techniques on training,

following the suggestion from [Tian et al., 2019b, Wang et al., 2020b]. Table. 9.6 demonstrates the detection

result on MS COCO using our searched backbone. At 256 channels, our model outperforms ResNet50 at the

same setting by 0.2 AP and 60.4 G (35.6%) fewer FLOPS. Particularly, our model increases the AP scores of

MobileNet backed NAS-FCOS from 32 to 36.5 in similar (⇠35) FLOPS.

9.4 Designing Generative Adversarial Networks

Figure 9.4: The randomly sampled CIFAR-10 images from the GAN designed by our agent.

Table 9.7: Designing the Generative Adversarial Network (GAN) to generate CIFAR-10 style images. The
inception score is higher the better, while the FID score is lower the better.

Method Inception Score FID Score

ProbGAN[He et al., 2019a] 7.75±.14 24.60
SN-GAN[Miyato et al., 2018] 8.22±.05 21.70±.01
MGAN[Hoang et al., 2018] 8.33±.12 26.7

Improving MMD GAN[Wang et al., 2019d] 8.29 16.21

AutoGAN-top1[Gong et al., 2019] 8.55±.10 12.42
AutoGAN-top2 8.42±.06 13.67
AutoGAN-top3 8.41±.12 13.87

Ours-top1 8.60±.10 10.73±.10
Ours-top2 8.63±.09 10.89±.20
Ours-top3 8.52±.08 12.20

Here the agent is set to design GAN that consists of a generator and a discriminator network to generate

157

(a) content (b) style

(c) VGG (d) AlphaX-1

Figure 9.5: The neural style transfer using the network designed by our agent V.S. VGG.

CIFAR-10 style images. For more information, please refer to our few-shot NAS paper [Zhao et al., 2020].

We set up the search space of GAN following the AUTOGAN [Gong et al., 2019]. We set the learning rate

of both generator and discriminator to 2e�4, and we use the hinge loss and Adam optimizer. The batch size

of the discriminator is 64, and the generator is 128. The initial learning rate was set to 3.5e�4. Table 9.7

shows the top three performing GANs found by ours, other NAS algorithms in the literature, and the results

of manually defined GAN. The result indicates that we improve the inception score from 8.55 to 8.63 and

reduce the FID from 12.42 to 10.73, demonstrating a 16.8% improvement.

9.5 Designing Neural Style Transfer System

Here we set the agent to perform the neural style transfer by designing a CNN to replace the VGG model [Gatys

et al., 2015]. We did this experiment in [Wang et al., 2019c]. We searched the network on the NASNet search

space, then pre-trained the searched network on the ImageNet dataset. We set 10 as the style weight that rep-

resents the extent of style reconstruction and 0.025 as the content weight representing the extent of content

reconstruction. We also search on the different combinations of the layers’ outputs. Fig. 9.5 suggests that our

searched network is better than VGG, especially in capturing the rich details and textures of a sophisticated

style image.

158

9.6 NeurIPS-2020 Black Box Optimization Challenges

While demonstrating many successful cases in NAS above, the LA-MCTS proposed in this thesis is a generic

solver applying to a wide range of optimization problems. In NeurIPS 2020, companies that are actively

engaging in the field of black-box optimization held a contest to find the best black box solver for machine

learning [bbo, 2020]. This competition has a widespread impact as black-box optimization is relevant for

hyper-parameter tuning in almost every machine learning project, especially deep learning and many appli-

cations outside of machine learning such as A/B testing, optimizing system configurations many others. Our

LA-MCTS is an awarding-winning algorithm in this contest. Specifically, JetBrains research and KAIST

independently replicated the concept of ”learning search space partition” in LA-MCTS and won 3rd and

8th places among 68 global participating teams, including companies and institutions such as NVIDIA and

Huawei Oxford, KAIST, IBM, Preferred Networks, and Innovatrics. The contest thoroughly and rigorously

evaluates each team’s search algorithm on 216 different ML tasks for multiple runs to report the final result.

These public results shall be a strong demonstration of LA-MCTS to solve many real-world problems.

Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill

Bibliography

1.2.[MXN,] Mxnet’s graph representation of neural networks. http://mxnet.io/architecture/

note_memory.html.

[bbo, 2020] (2020). Black box optimization challenge. https://bbochallenge.com/.

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283.

[Aji and Heafield, 2017] Aji, A. F. and Heafield, K. (2017). Sparse communication for distributed gradient

descent. arXiv preprint arXiv:1704.05021.

[Akimoto et al., 2019a] Akimoto, Y., Shirakawa, S., Yoshinari, N., Uchida, K., Saito, S., and Nishida, K.

(2019a). Adaptive stochastic natural gradient method for one-shot neural architecture search. In Proceed-

ings of the 36th International Conference on Machine Learning (ICML), pages 171–180.

[Akimoto et al., 2019b] Akimoto, Y., Shirakawa, S., Yoshinari, N., Uchida, K., Saito, S., and Nishida, K.

(2019b). Adaptive stochastic natural gradient method for one-shot neural architecture search. arXiv

preprint arXiv:1905.08537.

[Alabi et al., 2012] Alabi, T., Blanchard, J. D., Gordon, B., and Steinbach, R. (2012). Fast k-selection algo-

rithms for graphics processing units. Journal of Experimental Algorithmics (JEA), 17:4–2.

[Albert and Barabási, 2002] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex net-

works. Reviews of modern physics, 74(1):47.

159

160

[Alistarh et al., 2017] Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). Qsgd:

Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural Informa-

tion Processing Systems.

[Alistarh et al., 2018] Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N., Khirirat, S., and Renggli,

C. (2018). The convergence of sparsified gradient methods. In Advances in Neural Information Processing

Systems, pages 5975–5985.

[Arora et al., 2019] Arora, S., Li, Z., and Lyu, K. (2019). Theoretical analysis of auto rate-tuning by batch

normalization. In International Conference on Learning Representations.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed

bandit problem. Machine learning, 47(2-3):235–256.

[Awan et al., 2017] Awan, A. A., Hamidouche, K., Hashmi, J. M., and Panda, D. K. (2017). S-caffe: Co-

designing mpi runtimes and caffe for scalable deep learning on modern gpu clusters. In Proceedings of

the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

[Bahrampour et al., 2016] Bahrampour, S., Ramakrishnan, N., Schott, L., and Shah, M. (2016). Comparative

study of caffe, neon, theano, and torch for deep learning.

[Baker et al., 2016] Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing neural network archi-

tectures using reinforcement learning. arXiv preprint arXiv:1611.02167.

[Baker et al., 2017a] Baker, B., Gupta, O., Naik, N., and Raskar, R. (2017a). Designing neural network

architectures using reinforcement learning. International Conference on Learning Representations.

[Baker et al., 2017b] Baker, B., Gupta, O., Raskar, R., and Naik, N. (2017b). Accelerating neural architecture

search using performance prediction. arXiv preprint arXiv:1705.10823.

[BBContest, 2017] BBContest (2017). Title. https://bbochallenge.com/.

[Belew and McInerney, 1989] Belew, R. K. and McInerney, J. (1989). Using the genetic algorithm to wire

feed-forward networks. Technical abstract, University of California, San Diego, La Jolla, CA.

[Bélisle et al., 1993] Bélisle, C. J., Romeijn, H. E., and Smith, R. L. (1993). Hit-and-run algorithms for

generating multivariate distributions. Mathematics of Operations Research, 18(2):255–266.

161

[Bellman, 1957] Bellman, R. (1957). A markovian decision process. Journal of mathematics and mechanics,

6(5):679–684.

[Bellman, 1966] Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

[Bender et al., 2018] Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understand-

ing and simplifying one-shot architecture search. In Proceedings of the 35th International Conference on

Machine Learning.

[Bengio et al., 2006] Bengio, Y., Le Roux, N., Vincent, P., Delalleau, O., and Marcotte, P. (2006). Convex

neural networks. Advances in neural information processing systems, 18:123.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

[Bergstra et al., 2012] Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2012). Algorithms for hyper-

parameter optimization. Nips.

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter opti-

mization. Journal of machine learning research, 13(2).

[Bergstra et al., 2011] Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-

parameter optimization. In Advances in neural information processing systems, pages 2546–2554.

[Berson, 1992] Berson, A. (1992). Client-server architecture. Number IEEE-802. McGraw-Hill.

[Binois et al., 2015] Binois, M., Ginsbourger, D., and Roustant, O. (2015). A warped kernel improving

robustness in bayesian optimization via random embeddings. In International Conference on Learning

and Intelligent Optimization, pages 281–286. Springer.

[Binois et al., 2020] Binois, M., Ginsbourger, D., and Roustant, O. (2020). On the choice of the low-

dimensional domain for global optimization via random embeddings. Journal of global optimization,

76(1):69–90.

[Brochu et al., 2010] Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian optimiza-

tion of expensive cost functions, with application to active user modeling and hierarchical reinforcement

learning. arXiv preprint arXiv:1012.2599.

162

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

[Brown and Sandholm, 2019] Brown, N. and Sandholm, T. (2019). Superhuman ai for multiplayer poker.

Science, 365(6456):885–890.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. arXiv preprint

arXiv:2005.14165.

[Browne et al., 2012] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,

P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of monte carlo tree search

methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43.

[Bubeck et al., 2011] Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. (2011). X-armed bandits. Journal

of Machine Learning Research, 12(May):1655–1695.

[Buşoniu et al., 2013] Buşoniu, L., Daniels, A., Munos, R., and Babuška, R. (2013). Optimistic planning for

continuous-action deterministic systems. In 2013 IEEE Symposium on Adaptive Dynamic Programming

and Reinforcement Learning (ADPRL), pages 69–76. IEEE.

[Cai et al., 2019a] Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2019a). Once-for-all: Train one

network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791.

[Cai et al., 2020] Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2020). Once for all: Train one network

and specialize it for efficient deployment. In International Conference on Learning Representations.

[Cai et al., 2019b] Cai, H., Zhu, L., and Han, S. (2019b). ProxylessNAS: Direct neural architecture search

on target task and hardware. In International Conference on Learning Representations.

[Carbonnelle and Vleeschouwer, 2018] Carbonnelle, S. and Vleeschouwer, C. D. (2018). On layer-level

control of DNN training and its impact on generalization. CoRR, abs/1806.01603.

[Cassandra, 1998] Cassandra, A. R. (1998). A survey of pomdp applications. In Working notes of AAAI 1998

fall symposium on planning with partially observable Markov decision processes, volume 1724.

[Changeux, 1980] Changeux, J.-P. (1980). Genetic determinism and epigenesis of the neuronal network: Is

there a biological compromise between chomsky and piaget. Language and learning.

163

[Chau et al., 2020] Chau, T., Dudziak, Ł., Abdelfattah, M. S., Lee, R., Kim, H., and Lane, N. D. (2020).

Brp-nas: Prediction-based nas using gcns. arXiv preprint arXiv:2007.08668.

[Chen et al., 2012] Chen, B., Castro, R., and Krause, A. (2012). Joint optimization and variable selection of

high-dimensional gaussian processes. arXiv preprint arXiv:1206.6396.

[Chen et al., 2015] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., and

Zhang, Z. (2015). Mxnet: A flexible and efficient machine learning library for heterogeneous distributed

systems. arXiv preprint arXiv:1512.01274.

[Chen et al., 2016] Chen, T., Xu, B., Zhang, C., and Guestrin, C. (2016). Training deep nets with sublinear

memory cost. arXiv preprint arXiv:1604.06174.

[Chen et al., 2019a] Chen, X., Xie, L., Wu, J., and Tian, Q. (2019a). Progressive DARTS: bridging the

optimization gap for NAS in the wild. CoRR, abs/1912.10952.

[Chen et al., 2019b] Chen, X., Xie, L., Wu, J., and Tian, Q. (2019b). Progressive differentiable architec-

ture search: Bridging the depth gap between search and evaluation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 1294–1303.

[Chetlur et al., 2014] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., and

Shelhamer, E. (2014). cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759.

[Chu et al., 2019a] Chu, X., Zhang, B., Xu, R., and Li, J. (2019a). Fairnas: Rethinking evaluation fairness

of weight sharing neural architecture search. CoRR, abs/1907.01845.

[Chu et al., 2019b] Chu, X., Zhou, T., Zhang, B., and Li, J. (2019b). Fair DARTS: eliminating unfair advan-

tages in differentiable architecture search. CoRR, abs/1911.12126.

[Chu et al., 2020] Chu, X., Zhou, T., Zhang, B., and Li, J. (2020). Fair darts: Eliminating unfair advantages in

differentiable architecture search. In European Conference on Computer Vision, pages 465–480. Springer.

[Coates et al., 2013] Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., and Andrew, N. (2013). Deep

learning with cots hpc systems. In International Conference on Machine Learning, pages 1337–1345.

[Collobert et al., 2002] Collobert, R., Bengio, S., and Mariéthoz, J. (2002). Torch: a modular machine

learning software library. Technical report, Idiap.

164

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to

algorithms. MIT press.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297.

[Cubuk et al., 2018] Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le, Q. V. (2018). Autoaugment:

Learning augmentation policies from data. CoRR, abs/1805.09501.

[Dai et al., 2020] Dai, X., Wan, A., Zhang, P., Wu, B., He, Z., Wei, Z., Chen, K., Tian, Y., Yu, M., Vajda, P.,

et al. (2020). Fbnetv3: Joint architecture-recipe search using neural acquisition function. arXiv preprint

arXiv:2006.02049.

[Dai et al., 2019] Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y.,

Jia, Y., Vajda, P., Uyttendaele, M., and Jha, N. K. (2019). Chamnet: Towards efficient network design

through platform-aware model adaptation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 11390–11399.

[Darwin, 1909] Darwin, C. (1909). The origin of species. PF Collier & son New York.

[De Sa et al., 2015] De Sa, C. M., Zhang, C., Olukotun, K., and Ré, C. (2015). Taming the wild: A unified

analysis of hogwild-style algorithms. In Advances in neural information processing systems, pages 2674–

2682.

[Dean et al., 2012] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P.,

Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep networks. In Advances in neural information

processing systems, pages 1223–1231.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[Devries and Taylor, 2017] Devries, T. and Taylor, G. W. (2017). Improved regularization of convolutional

neural networks with cutout. CoRR, abs/1708.04552.

165

[Di and Cappello, 2016] Di, S. and Cappello, F. (2016). Fast error-bounded lossy hpc data compression with

sz. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[DMV, 2020] DMV, C. (2020). Title. https://www.dmv.ca.gov/portal/

vehicle-industry-services/autonomous-vehicles/disengagement-reports/.

[Dong and Yang, 2019] Dong, X. and Yang, Y. (2019). One-shot neural architecture search via self-evaluated

template network. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

[Dong and Yang, 2020] Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible

neural architecture search. In International Conference on Learning Representations (ICLR).

[Du et al., 2018] Du, S., Lee, J., Tian, Y., Singh, A., and Poczos, B. (2018). Gradient descent learns one-

hidden-layer cnn: Don’t be afraid of spurious local minima. In International Conference on Machine

Learning, pages 1339–1348. PMLR.

[Erdős and Rényi, 1960] Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci, 5(1):17–60.

[Eriksson et al., uRBO] Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and Poloczek, M. (2019, the

implementation is from https://github.com/uber-research/TuRBO.). Scalable global optimization via local

bayesian optimization. In Advances in Neural Information Processing Systems, pages 5497–5508.

[Falkner et al., 2018] Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and efficient hyperparam-

eter optimization at scale. In Proceedings of the 35th International Conference on Machine Learning.

[Falkner et al., Ster] Falkner, S., Klein, A., and Hutter, F. (2018, the implementation is from

https://github.com/automl/HpBandSter). Bohb: Robust and efficient hyperparameter optimization at scale.

arXiv preprint arXiv:1807.01774.

[Fischer et al., 2015] Fischer, L., Gao, S., and Bernstein, A. (2015). Machines tuning machines: Configuring

distributed stream processors with bayesian optimization. In 2015 IEEE International Conference on

Cluster Computing, pages 22–31. IEEE.

[Fouladi et al., 2017] Fouladi, S., Wahby, R. S., Shacklett, B., Balasubramaniam, K. V., Zeng, W., Bhalerao,

R., Sivaraman, A., Porter, G., and Winstein, K. (2017). Encoding, fast and slow: Low-latency video

processing using thousands of tiny threads. In 14th {USENIX} Symposium on Networked Systems Design

and Implementation ({NSDI} 17), pages 363–376.

166

[Frazier, 2018] Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811.

[Gabriel et al., 2004] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M.,

Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., et al. (2004). Open mpi: Goals, concept, and

design of a next generation mpi implementation. In European Parallel Virtual Machine/Message Passing

Interface Users’ Group Meeting.

[Gardner et al., 2017] Gardner, J., Guo, C., Weinberger, K., Garnett, R., and Grosse, R. (2017). Discovering

and exploiting additive structure for bayesian optimization. In Artificial Intelligence and Statistics, pages

1311–1319.

[Gardner et al., 2014] Gardner, J. R., Kusner, M. J., Xu, Z. E., Weinberger, K. Q., and Cunningham, J. P.

(2014). Bayesian optimization with inequality constraints. In ICML, pages 937–945.

[Gatys et al., 2015] Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A neural algorithm of artistic style.

arXiv preprint arXiv:1508.06576.

[Gelfand and Smith, 1990] Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculat-

ing marginal densities. Journal of the American statistical association, 85(410):398–409.

[Ghadimi and Lan, 2013] Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for

nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368.

[Gilks et al., 1995] Gilks, W. R., Best, N. G., and Tan, K. (1995). Adaptive rejection metropolis sampling

within gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 44(4):455–

472.

[Goldstein, 1977] Goldstein, A. (1977). Optimization of lipschitz continuous functions. Mathematical Pro-

gramming, 13(1):14–22.

[Gong et al., 2019] Gong, X., Chang, S., Jiang, Y., and Wang, Z. (2019). Autogan: Neural architecture

search for generative adversarial networks. In The IEEE International Conference on Computer Vision

(ICCV).

[Guo et al., 2020] Guo, Y., Chen, Y., Zheng, Y., Zhao, P., Chen, J., Huang, J., and Tan, M. (2020). Breaking

the curse of space explosion: Towards efficient nas with curriculum search. In International Conference

on Machine Learning, pages 3822–3831. PMLR.

167

[Guo et al., 2019a] Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J. (2019a). Single path

one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420.

[Guo et al., 2019b] Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J. (2019b). Single path

one-shot neural architecture search with uniform sampling. CoRR, abs/1904.00420.

[Han et al., 2016] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., and Dally, W. J. (2016).

Eie: efficient inference engine on compressed deep neural network. In Proceedings of the 43rd Interna-

tional Symposium on Computer Architecture, pages 243–254. IEEE Press.

[Han et al., 2015] Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.

[Hansen, 2006] Hansen, N. (2006). The cma evolution strategy: a comparing review. Towards a new evolu-

tionary computation, pages 75–102.

[Hansen et al., ycma] Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003, the implementation is from

https://github.com/CMA-ES/pycma). Reducing the time complexity of the derandomized evolution strat-

egy with covariance matrix adaptation (cma-es). Evolutionary computation, 11(1):1–18.

[He et al., 2019a] He, H., Wang, H., Lee, G.-H., and Tian, Y. (2019a). Probgan: Towards probabilistic gan

with theoretical guarantees. In International Conference on Learning Representations(ICLR).

[He et al., 2019b] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2019b). Momentum contrast for

unsupervised visual representation learning. arXiv preprint arXiv:1911.05722.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual networks.

In European conference on computer vision, pages 630–645. Springer.

[Hensman et al., 2013] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data.

arXiv preprint arXiv:1309.6835.

168

[Hoang et al., 2018] Hoang, Q., Nguyen, T. D., Le, T., and Phung, D. (2018). MGAN: Training generative

adversarial nets with multiple generators. In International Conference on Learning Representations.

[Hörmann, 1995] Hörmann, W. (1995). A rejection technique for sampling from t-concave distributions.

ACM Transactions on Mathematical Software (TOMS), 21(2):182–193.

[Howard et al., 2019a] Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu,

Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H. (2019a). Searching for mobilenetv3. CoRR,

abs/1905.02244.

[Howard et al., 2019b] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu,

Y., Pang, R., Vasudevan, V., et al. (2019b). Searching for mobilenetv3. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 1314–1324.

[Huang et al., 2016] Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten, L. (2016). Densely con-

nected convolutional networks. arXiv preprint arXiv:1608.06993.

[Huang et al., 2018] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X., Chen, D., Lee, H., Ngiam,

J., Le, Q. V., Wu, Y., et al. (2018). Gpipe: Efficient training of giant neural networks using pipeline

parallelism. arXiv preprint arXiv:1811.06965.

[Hutter et al., 2011a] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011a). Sequential model-based op-

timization for general algorithm configuration. In International conference on learning and intelligent

optimization, pages 507–523. Springer.

[Hutter et al., 2011b] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011b). Sequential model-based opti-

mization for general algorithm configuration. In Proceedings of the conference on Learning and Intelligent

OptimizatioN (LION 5).

[Huxley, 1860] Huxley, T. (1860). Art. viii.-darwin on the origin of species. Westminster Review, pages

541–70.

[Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and

Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the

22nd ACM international conference on Multimedia, pages 675–678. ACM.

[Jia et al., 2019] Jia, Y., Weiss, R. J., Biadsy, F., Macherey, W., Johnson, M., Chen, Z., and Wu, Y. (2019).

Direct speech-to-speech translation with a sequence-to-sequence model. arXiv preprint arXiv:1904.06037.

169

[Jin et al., 2019] Jin, S., Di, S., Liang, X., Tian, J., Tao, D., and Cappello, F. (2019). DeepSZ: A Novel

Framework to Compress Deep Neural Networks by Using Error-Bounded Lossy Compression. HPDC’19,

page 159–170, New York, NY, USA. Association for Computing Machinery.

[Jin, 2011] Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and future chal-

lenges. Swarm and Evolutionary Computation, 1(2):61–70.

[Jin and Branke, 2005] Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain environments-a

survey. IEEE Transactions on evolutionary computation, 9(3):303–317.

[Jones, 2001] Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces.

Journal of global optimization, 21(4):345–383.

[Jones et al., 1998] Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of

expensive black-box functions. Journal of Global optimization, 13(4):455–492.

[Judd et al., 2016] Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., Jerger, N. E., and Moshovos, A.

(2016). Proteus: Exploiting numerical precision variability in deep neural networks. In Proceedings of the

2016 International Conference on Supercomputing, page 23. ACM.

[Kandasamy et al., 2015] Kandasamy, K., Schneider, J., and Póczos, B. (2015). High dimensional bayesian

optimisation and bandits via additive models. In International Conference on Machine Learning, pages

295–304.

[Kawaguchi et al., 2015] Kawaguchi, K., Kaelbling, L. P., and Lozano-Pérez, T. (2015). Bayesian opti-

mization with exponential convergence. In Advances in neural information processing systems, pages

2809–2817.

[Kendall., 1938] Kendall., M. G. (1938). A new measure of rank correlation.

[Kim et al., 2020a] Kim, B., Lee, K., Lim, S., Kaelbling, L. P., and Lozano-Pérez, T. (2020a). Monte carlo

tree search in continuous spaces using voronoi optimistic optimization with regret bounds. In AAAI, pages

9916–9924.

[Kim et al., 2020b] Kim, T., Ahn, J., Kim, N., and Yun, S. (2020b). Adaptive local bayesian optimization

over multiple discrete variables. arXiv preprint arXiv:2012.03501.

170

[Kitano, 1990] Kitano, H. (1990). Designing neural networks using genetic algorithms with graph generation

system. Complex systems, 4:461–476.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In

European conference on machine learning, pages 282–293. Springer.

[Köster et al., 2017] Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K., Constable, W., Elibol, O.,

Gray, S., Hall, S., Hornof, L., Khosrowshahi, A., Kloss, C., Pai, R. J., and Rao, N. (2017). Flexpoint:

An adaptive numerical format for efficient training of deep neural networks. In Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural

Information Processing Systems 30, pages 1742–1752. Curran Associates, Inc.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105.

[Lan et al., 2019] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). Albert:

A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[Levine et al., 2016] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep

visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373.

[Li et al., 2017] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyper-

band: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning

Research, 18(1):6765–6816.

[Li et al., 2018a] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018a). Hy-

perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning

Research.

[Li et al., 2014] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., Long, J.,

Shekita, E. J., and Su, B.-Y. (2014). Scaling distributed machine learning with the parameter server. In

OSDI.

171

[Li et al., 2018b] Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P. (2018b). Learning deep gener-

ative models of graphs. arXiv preprint arXiv:1803.03324.

[Liaw et al., 2018] Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., and Stoica, I. (2018). Tune:

A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118.

[Lim et al., 2020] Lim, H., Kim, M.-S., and Xiong, J. (2020). {CNAS}: Channel-level neural architecture

search.

[Lin et al., 2017] Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J. (2017). Deep gradient compression:

Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887.

[Liu et al., 2018a] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A.,

Huang, J., and Murphy, K. (2018a). Progressive neural architecture search. In Proceedings of the European

conference on computer vision (ECCV), pages 19–34.

[Liu et al., 2017] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. (2017). Hierarchi-

cal representations for efficient architecture search. arXiv preprint arXiv:1711.00436.

[Liu et al., 2018b] Liu, H., Simonyan, K., and Yang, Y. (2018b). Darts: Differentiable architecture search.

arXiv preprint arXiv:1806.09055.

[Liu et al., 2019] Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search.

In International Conference on Learning Representations(ICLR).

[Liu et al., grad] Liu, J., Moreau, A., Preuss, M., Roziere, B., Rapin, J., Teytaud, F., and Teytaud, O. (2020,

the implementation is from https://github.com/facebookresearch/nevergrad). Versatile black-box opti-

mization. arXiv preprint arXiv:2004.14014.

[Lu et al., 2019] Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., and Banzhaf, W. (2019).

Nsga-net: neural architecture search using multi-objective genetic algorithm. In Proceedings of the Ge-

netic and Evolutionary Computation Conference, pages 419–427.

[Luo et al., 2020] Luo, R., Qin, T., and Chen, E. (2020). Balanced one-shot neural architecture optimization.

abs/1909.10815.

[Luo et al., 2018a] Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. (2018a). Neural architecture optimiza-

tion. arXiv preprint arXiv:1808.07233.

172

[Luo et al., 2018b] Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. (2018b). Neural architecture optimiza-

tion. In Advances in Neural Information Processing Systems 31.

[Ma et al., 2018] Ma, N., Zhang, X., Zheng, H., and Sun, J. (2018). Shufflenet V2: practical guidelines for

efficient CNN architecture design. CoRR, abs/1807.11164.

[Mallows, 1991] Mallows, C. (1991). Letters to the editor. The American Statistician, 45(3):256–262.

[Mania et al., sARS] Mania, H., Guy, A., and Recht, B. (2018, the implementation is from

https://github.com/modestyachts/ARS). Simple random search provides a competitive approach to re-

inforcement learning. arXiv preprint arXiv:1803.07055.

[Mansley et al., 2011] Mansley, C., Weinstein, A., and Littman, M. (2011). Sample-based planning for con-

tinuous action markov decision processes. In Twenty-First International Conference on Automated Plan-

ning and Scheduling.

[Marcus et al., 1994] Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies, A., Ferguson, M.,

Katz, K., and Schasberger, B. (1994). The penn treebank: Annotating predicate argument structure. In

HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop held at Plainsboro, New Jersey, March

8-11, 1994.

[McIntire et al., 2016] McIntire, M., Ratner, D., and Ermon, S. (2016). Sparse gaussian processes for

bayesian optimization. In UAI.

[McKay et al., 2000] McKay, M. D., Beckman, R. J., and Conover, W. J. (2000). A comparison of three

methods for selecting values of input variables in the analysis of output from a computer code. Techno-

metrics, 42(1):55–61.

[McKinney et al., 2020] McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian,

H., Back, T., Chesus, M., Corrado, G. C., Darzi, A., et al. (2020). International evaluation of an ai system

for breast cancer screening. Nature, 577(7788):89–94.

[Mei et al., 2020] Mei, J., Li, Y., Lian, X., Jin, X., Yang, L., Yuille, A., and Yang, J. (2020). Atomnas: Fine-

grained end-to-end neural architecture search. In International Conference on Learning Representations.

[Melo, 2001] Melo, F. S. (2001). Convergence of q-learning: A simple proof. Institute Of Systems and

Robotics, Tech. Rep, pages 1–4.

173

[Merity et al., 2017] Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing and optimizing lstm

language models. arXiv preprint arXiv:1708.02182.

[Miller et al., 1989] Miller, G. F., Todd, P. M., and Hegde, S. U. (1989). Designing neural networks using

genetic algorithms. In ICGA, volume 89, pages 379–384.

[Mirhoseini et al., 2020] Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori, E., Wang, S., Lee, Y.-

J., Johnson, E., Pathak, O., Bae, S., et al. (2020). Chip placement with deep reinforcement learning. arXiv

preprint arXiv:2004.10746.

[Miyato et al., 2018] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization

for generative adversarial networks. In International Conference on Learning Representations.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,

A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep

reinforcement learning. nature, 518(7540):529–533.

[Munos, 2011] Munos, R. (2011). Optimistic optimization of a deterministic function without the knowledge

of its smoothness. In Advances in neural information processing systems, pages 783–791.

[Munos, 2014] Munos, R. (2014). From bandits to monte-carlo tree search: The optimistic principle applied

to optimization and planning. technical report, x(x):x.

[Mutny and Krause, 2018] Mutny, M. and Krause, A. (2018). Efficient high dimensional bayesian opti-

mization with additivity and quadrature fourier features. In Advances in Neural Information Processing

Systems, pages 9005–9016.

[Nayebi et al., esBO] Nayebi, A., Munteanu, A., and Poloczek, M. (2019, the implementation is from

https://github.com/aminnayebi/HesBO). A framework for bayesian optimization in embedded subspaces.

In International Conference on Machine Learning, pages 4752–4761.

[Nayman et al., 2019a] Nayman, N., Noy, A., Ridnik, T., Friedman, I., Jin, R., and Zelnik, L. (2019a). Xnas:

Neural architecture search with expert advice. In Advances in Neural Information Processing Systems,

pages 1977–1987.

174

[Nayman et al., 2019b] Nayman, N., Noy, A., Ridnik, T., Friedman, I., Jin, R., and Zelnik, L. (2019b). Xnas:

Neural architecture search with expert advice. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-

Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages

1977–1987. Curran Associates, Inc.

[Nemirovski et al., 2009] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic

approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609.

[Oh et al., 2018] Oh, C., Gavves, E., and Welling, M. (2018). Bock: Bayesian optimization with cylindrical

kernels. arXiv preprint arXiv:1806.01619.

[Pavlo et al., 2017] Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., Menon, P., Mowry, T. C.,

Perron, M., Quah, I., et al. (2017). Self-driving database management systems. In CIDR, volume 4,

page 1.

[Pham et al., 2018a] Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018a). Efficient neural architec-

ture search via parameters sharing. In International Conference on Machine Learning, pages 4095–4104.

PMLR.

[Pham et al., 2018b] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018b). Efficient neural

architecture search via parameter sharing. In International Conference on Machine Learning(ICML).

[Pincus, html] Pincus, M. (1970, the implementation is from https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual annealing.html).

Letter to the editor—a monte carlo method for the approximate solution of certain types of constrained

optimization problems. Operations Research, 18(6):1225–1228.

[Pleiss et al., 2017] Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., and Weinberger, K. Q. (2017).

Memory-efficient implementation of densenets. arXiv preprint arXiv:1707.06990.

[Radosavovic et al., 2020] Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and Dollar, P. (2020). De-

signing network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR).

[Rajeswaran et al., 2017] Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade, S. M. (2017). Towards

generalization and simplicity in continuous control. In Advances in Neural Information Processing Sys-

tems, pages 6550–6561.

175

[Rajpurkar et al., 2016] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+ ques-

tions for machine comprehension of text. arXiv preprint arXiv:1606.05250.

[Rasley et al., 2017] Rasley, J., He, Y., Yan, F., Ruwase, O., and Fonseca, R. (2017). Hyperdrive: Explor-

ing hyperparameters with pop scheduling. In Proceedings of the 18th ACM/IFIP/USENIX Middleware

Conference, pages 1–13.

[Real et al., 2019a] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019a). Regularized evolution for

image classifier architecture search. In Proceedings of the aaai conference on artificial intelligence, vol-

ume 33, pages 4780–4789.

[Real et al., 2019b] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019b). Regularized evolution for

image classifier architecture search. In Association for the Advancement of Artificial Intelligence(AAAI).

[Renggli et al., 2018] Renggli, C., Alistarh, D., and Hoefler, T. (2018). Sparcml: High-performance sparse

communication for machine learning. CoRR, abs/1802.08021.

[Rhu et al., 2016] Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and Keckler, S. W. (2016). vdnn: Vir-

tualized deep neural networks for scalable, memory-efficient neural network design. In Microarchitecture

(MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1–13. IEEE.

[Rolland et al., 2018] Rolland, P., Scarlett, J., Bogunovic, I., and Cevher, V. (2018). High-dimensional

bayesian optimization via additive models with overlapping groups. arXiv preprint arXiv:1802.07028.

[Salimans et al., 2017] Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution strategies

as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

[Sandler et al., 2018] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mo-

bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

[Sazanovich et al., 2020] Sazanovich, M., Nikolskaya, A., Belousov, Y., and Shpilman, A. (2020). Solving

black-box optimization challenge via learning search space partition for local bayesian optimization. arXiv

preprint arXiv:2012.10335.

[Schaffer et al., 1992] Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992). Combinations of genetic

algorithms and neural networks: A survey of the state of the art. In [Proceedings] COGANN-92: Interna-

tional Workshop on Combinations of Genetic Algorithms and Neural Networks, pages 1–37. IEEE.

176

[Schrittwieser et al., 2019] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,

Guez, A., Lockhart, E., Hassabis, D., Graepel, T., et al. (2019). Mastering atari, go, chess and shogi by

planning with a learned model. arXiv preprint arXiv:1911.08265.

[Sciuto et al., 2019] Sciuto, C., Yu, K., Jaggi, M., Musat, C., and Salzmann, M. (2019). Evaluating the

search phase of neural architecture search. arXiv preprint arXiv:1902.08142.

[Seeger et al., 2003] Seeger, M., Williams, C., and Lawrence, N. (2003). Fast forward selection to speed up

sparse gaussian process regression. Technical report, EPFL.

[Seide et al., 2014] Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent

and its application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of

the International Speech Communication Association.

[Shahriari et al., 2015] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking

the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175.

[Shi et al., 2019a] Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J. T., and Zhang, T. (2019a). Bridging the gap be-

tween sample-based and one-shot neural architecture search with bonas. arXiv preprint arXiv:1911.09336.

[Shi et al., 2019b] Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J. T., and Zhang, T. (2019b). Multi-objective neural

architecture search via predictive network performance optimization. arXiv preprint arXiv:1911.09336.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of

go with deep neural networks and tree search. nature, 529(7587):484.

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,

T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge.

Nature, 550(7676):354–359.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[Snelson and Ghahramani, 2006] Snelson, E. and Ghahramani, Z. (2006). Sparse gaussian processes using

pseudo-inputs. In Advances in neural information processing systems, pages 1257–1264.

177

[Sobol’, 1967] Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation

of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784–802.

[Springenberg et al., 2016] Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F. (2016). Bayesian op-

timization with robust bayesian neural networks. In Advances in neural information processing systems,

pages 4134–4142.

[Stanley and Miikkulainen, 2002] Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks

through augmenting topologies. Evolutionary computation, 10(2):99–127.

[Storn and Price, 1997] Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces. Journal of global optimization, 11(4):341–359.

[Szegedy et al., 2017] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4,

inception-resnet and the impact of residual connections on learning. In AAAI, pages 4278–4284.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1–9.

[Tan et al., 2019] Tan, M., Chen, B., Pang, R., Vasudevan, V., and Le, Q. V. (2019). Mnasnet: Platform-aware

neural architecture search for mobile. In Conference on Computer Vision and Pattern Recognition(CVPR).

[Tan and Le, 2019a] Tan, M. and Le, Q. (2019a). Efficientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning, pages 6105–6114. PMLR.

[Tan and Le, 2019b] Tan, M. and Le, Q. V. (2019b). Efficientnet: Rethinking model scaling for convolutional

neural networks. CoRR, abs/1905.11946.

[Tch, 2017] Tch, A. (2017). Title. https://towardsdatascience.com/

the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464.

[Tian et al., 2019a] Tian, Y., Ma, J., Gong, Q., Sengupta, S., Chen, Z., Pinkerton, J., and Zitnick,

C. L. (2019a). Elf opengo: An analysis and open reimplementation of alphazero. arXiv preprint

arXiv:1902.04522.

[Tian et al., 2019b] Tian, Z., Shen, C., Chen, H., and He, T. (2019b). FCOS: Fully convolutional one-stage

object detection. In Proc. Int. Conf. Computer Vision (ICCV).

178

[Todorov et al., 2012] Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-

based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

5026–5033. IEEE.

[Vanhoucke et al., 2011] Vanhoucke, V., Senior, A., and Mao, M. Z. (2011). Improving the speed of neural

networks on cpus. In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop, volume 1,

page 4.

[Villemonteix et al., 2009] Villemonteix, J., Vazquez, E., and Walter, E. (2009). An informational approach

to the global optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509.

[Vinyals et al., 2019] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,

Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft ii using

multi-agent reinforcement learning. Nature, 575(7782):350–354.

[Wan et al., 2020a] Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen,

K., et al. (2020a). Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12965–

12974.

[Wan et al., 2020b] Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen,

K., Vajda, P., and Gonzalez, J. E. (2020b). Fbnetv2: Differentiable neural architecture search for spatial

and channel dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR).

[Wang et al., 2020a] Wang, L., Fonseca, R., and Tian, Y. (2020a). Learning search space partition for black-

box optimization using monte carlo tree search. Advances in Neural Information Processing Systems.

[Wang et al., 2016a] Wang, L., Wu, W., Bosilca, G., Vuduc, R., and Xu, Z. (2016a). Efficient communica-

tions in training large scale neural networks. arXiv preprint arXiv:1611.04255.

[Wang et al., 2016b] Wang, L., Wu, W., Xu, Z., Xiao, J., and Yang, Y. (2016b). Blasx: A high performance

level-3 blas library for heterogeneous multi-gpu computing. In Proceedings of the 2016 International

Conference on Supercomputing, page 20. ACM.

[Wang et al., 2019a] Wang, L., Xie, S., Li, T., Fonseca, R., and Tian, Y. (2019a). Sample-efficient neural

architecture search by learning action space. arXiv preprint arXiv:1906.06832.

179

[Wang et al., 2019b] Wang, L., Xie, S., Li, T., Fonseca, R., and Tian, Y. (2019b). Sample-efficient neural

architecture search by learning action space. CoRR, abs/1906.06832.

[Wang et al., 2021] Wang, L., Xie, S., Li, T., Fonseca, R., and Tian, Y. (2021). Sample-efficient neural

architecture search by learning actions for monte carlo tree search. IEEE Transactions on Pattern Analysis

and Machine Intelligence.

[Wang et al., 2017a] Wang, L., Yang, Y., Min, R., and Chakradhar, S. (2017a). Accelerating deep neural

network training with inconsistent stochastic gradient descent. Neural Networks.

[Wang et al., 2018a] Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S. L., Xu, Z., and Kraska, T. (2018a).

Superneurons: Dynamic gpu memory management for training deep neural networks. In Proceedings of

the 23rd ACM SIGPLAN symposium on principles and practice of parallel programming, pages 41–53.

[Wang et al., 2018b] Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S. L., Xu, Z., and Kraska, T. (2018b).

Superneurons: Dynamic gpu memory management for training deep neural networks. In Proceedings of

the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

[Wang et al., 2019c] Wang, L., Zhao, Y., Jinnai, Y., Tian, Y., and Fonseca, R. (2019c). Alphax: ex-

ploring neural architectures with deep neural networks and monte carlo tree search. arXiv preprint

arXiv:1903.11059.

[Wang et al., 2020b] Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z., Shen, C., and Zhang, Y. (2020b). Nas-

fcos: Fast neural architecture search for object detection. In IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR).

[Wang et al., 2019d] Wang, W., Sun, Y., and Halgamuge, S. (2019d). Improving MMD-GAN training with

repulsive loss function. In International Conference on Learning Representations.

[Wang et al., 2020c] Wang, X., Xue, C., Yan, J., Yang, X., Hu, Y., and Sun, K. (2020c). Mergenas: Merge op-

erations into one for differentiable architecture search. In Bessiere, C., editor, Proceedings of the Twenty-

Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 3065–3072. ijcai.org.

[Wang et al., 2017b] Wang, Z., Gehring, C., Kohli, P., and Jegelka, S. (2017b). Batched large-scale bayesian

optimization in high-dimensional spaces. arXiv preprint arXiv:1706.01445.

180

[Wang et al., 2016c] Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and de Feitas, N. (2016c). Bayesian

optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence Research,

55:361–387.

[Wang et al., 2014] Wang, Z., Shakibi, B., Jin, L., and Freitas, N. (2014). Bayesian multi-scale optimistic

optimization. In Artificial Intelligence and Statistics, pages 1005–1014.

[Wang et al., 2013] Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and De Freitas, N. (2013). Bayesian

optimization in high dimensions via random embeddings. In Twenty-Third International Joint Conference

on Artificial Intelligence.

[Wangni et al., 2018] Wangni, J., Wang, J., Liu, J., and Zhang, T. (2018). Gradient sparsification for

communication-efficient distributed optimization. In Advances in Neural Information Processing Systems,

pages 1306–1316.

[Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–

292.

[Watts and Strogatz, 1998] Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-

world’networks. nature, 393(6684):440–442.

[Weinberger, 2017] Weinberger, K. (2017). Title. https://www.cs.cornell.edu/courses/

cs4780/2018fa/lectures/lecturenote15.html.

[Weinstein and Littman, 2012] Weinstein, A. and Littman, M. L. (2012). Bandit-based planning and learn-

ing in continuous-action markov decision processes. In Twenty-Second International Conference on Au-

tomated Planning and Scheduling.

[Wen et al., 2020] Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., and Kindermans, P.-J. (2020). Neural

predictor for neural architecture search. In European Conference on Computer Vision, pages 660–676.

Springer.

[Wen et al., 2017] Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li, H. (2017). Terngrad:

Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural Informa-

tion Processing Systems.

[Weng, 2018] Weng, L. (2018). Policy gradient algorithms. lilianweng.github.io/lil-log.

181

[Wierstra et al., 2014] Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J.

(2014). Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3-4):229–256.

[Wilson et al., 2018] Wilson, J. T., Hutter, F., and Deisenroth, M. P. (2018). Maximizing acquisition func-

tions for bayesian optimization. arXiv preprint arXiv:1805.10196.

[Wu et al., 2019] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and

Keutzer, K. (2019). Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture

search. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Wu et al., 2015] Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., and Dongarra, J. (2015). Hierarchical dag

scheduling for hybrid distributed systems. In Parallel and Distributed Processing Symposium (IPDPS),

2015 IEEE International, pages 156–165. IEEE.

[Xie, 2018] Xie, S. (2018). Deep Representation Learning with Induced Structural Priors. PhD thesis, UC

San Diego.

[Xie et al., 2019] Xie, S., Kirillov, A., Girshick, R., and He, K. (2019). Exploring randomly wired neural

networks for image recognition. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 1284–1293.

[Xu et al., 2019] Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., and Xiong, H. (2019). Pc-darts:

Partial channel connections for memory-efficient architecture search. arXiv preprint arXiv:1907.05737.

[Xu et al., 2020] Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., and Xiong, H. (2020). {PC}-

{darts}: Partial channel connections for memory-efficient architecture search. In International Conference

on Learning Representations.

[Yang et al., 2017] Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W. (2017). Breaking the softmax

bottleneck: A high-rank rnn language model. arXiv preprint arXiv:1711.03953.

[Yiming Hu, 2020] Yiming Hu, Yuding Liang, Z. G. R. W. X. Z. Y. W. . Q. G. J. S. (2020). Angle-based

search space shrinking for neural architecture search.

182

[Ying et al., 2019] Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). Nas-

bench-101: Towards reproducible neural architecture search. In International Conference on Machine

Learning, pages 7105–7114. PMLR.

[You et al., 2020] You, J., Leskovec, J., He, K., and Xie, S. (2020). Graph structure of neural networks. In

International Conference on Machine Learning, pages 10881–10891. PMLR.

[You, 2020] You, Y. (2020). Fast and accurate machine learning on distributed systems and supercomputers.

[Yu and Huang, 2019] Yu, J. and Huang, T. S. (2019). Network slimming by slimmable networks: Towards

one-shot architecture search for channel numbers. CoRR, abs/1903.11728.

[Yu et al., 2020a] Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.-J., Tan, M., Huang, T., Song, X., Pang,

R., and Le, Q. (2020a). Bignas: Scaling up neural architecture search with big single-stage models. In

European Conference on Computer Vision, pages 702–717. Springer.

[Yu et al., 2019a] Yu, K., Ranftl, R., and Salzmann, M. (2019a). How to train your super-net: An analysis of

training heuristics in weight-sharing nas.

[Yu et al., 2019b] Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2019b). Evaluating the search

phase of neural architecture search. arXiv preprint arXiv:1902.08142.

[Yu et al., 2020b] Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2020b). Evaluating the search

phase of neural architecture search. In International Conference on Learning Representations.

[Zaharia et al., 2010] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:

Cluster computing with working sets. HotCloud, 10(10-10):95.

[Zela et al., 2019] Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2019). Under-

standing and robustifying differentiable architecture search. arXiv preprint arXiv:1909.09656.

[Zela et al., 2020] Zela, A., Siems, J., and Hutter, F. (2020). Nas-bench-1shot1: Benchmarking and dissect-

ing one-shot neural architecture search. In International Conference on Learning Representations.

[Zhang et al., 2020] Zhang, M., Li, H., Pan, S., Liu, T., and Su, S. (2020). One-shot neural architecture

search via novelty driven sampling. In Bessiere, C., editor, Proceedings of the Twenty-Ninth International

Joint Conference on Artificial Intelligence, IJCAI-20, pages 3188–3194. International Joint Conferences

on Artificial Intelligence Organization. Main track.

183

[Zhao et al., 2020] Zhao, Y., Wang, L., Tian, Y., Fonseca, R., and Guo, T. (2020). Few-shot neural architec-

ture search. arXiv preprint arXiv:2006.06863.

[Zhao et al., 2017] Zhao, Y., Wang, L., Wu, W., Bosilca, G., Vuduc, R., Ye, J., Tang, W., and Xu, Z. (2017).

Efficient communications in training large scale neural networks. In Proceedings of the on Thematic

Workshops of ACM Multimedia 2017.

[Zhiyuan Li, 2020] Zhiyuan Li, S. A. (2020). An exponential learning rate schedule for deep learning.

[Zhou et al., 2019a] Zhou, H., Yang, M., Wang, J., and Pan, W. (2019a). BayesNAS: A Bayesian approach

for neural architecture search. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th

International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,

pages 7603–7613. PMLR.

[Zhou et al., 2019b] Zhou, H., Yang, M., Wang, J., and Pan, W. (2019b). Bayesnas: A bayesian approach for

neural architecture search. arXiv preprint arXiv:1905.04919.

[Zilly et al., 2017] Zilly, J. G., Srivastava, R. K., Koutnık, J., and Schmidhuber, J. (2017). Recurrent highway

networks. In International Conference on Machine Learning, pages 4189–4198. PMLR.

[Zoph and Le, 2016] Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning.

arXiv preprint arXiv:1611.01578.

[Zoph et al., 2018a] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. (2018a). Learning transferable architec-

tures for scalable image recognition. In Conference on Computer Vision and Pattern Recognition (CVPR).

[Zoph et al., 2017] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017). Learning transferable architec-

tures for scalable image recognition. arXiv preprint arXiv:1707.07012.

[Zoph et al., 2018b] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018b). Learning transferable archi-

tectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 8697–8710.

