
Abstract of “Improving Application Security at Scale by Reducing System Call and Library

Overprivilege” by Nicholas DeMarinis, Ph.D., Brown University, October 2021.

Software is becoming increasingly complex. To keep up with evolving applications, modern

operating systems (OSes) provide a rich and continually-growing set of features through OS in-

terfaces, system libraries, and APIs. However, applications typically have indiscriminate access

to this entire range of features, regardless of how much functionality is actually required. As a

result, programs are often overprivileged, allowing a potential attacker to (ab)use functionality

otherwise irrelevant to the program. Existing methods to reduce application privileges are often

fragile or have a prohibitive deployment cost, such as source code, which is not always available,

or collection of execution traces, which inherently have limited accuracy due to incomplete code

coverage.

In this thesis, we present a set of techniques for reducing overprivilege without requiring ac-

cess to source code or dynamic tracing, thus enabling more widespread deployment. We charac-

terize overprivilege in applications written in type- and memory-unsafe code (C, C++, assembly)

and develop low-cost tools to safely and automatically enforce the principle of least privilege by

restricting program code to necessary features only. Specifically, we present sysfilter, a frame-

work to reduce the attack surface of the OS kernel by reducing overprivilege with respect to the

system call API. sysfilter builds on contemporary binary analysis to statically identify a pro-

gram’s system call usage by reconstructing its function call graph (FCG) so that unused system

calls can be restricted. We use sysfilter to analyze≈30K binaries in a major Linux distribution to 1)

characterize system call overprivilege in situ, 2) demonstrate how our techniques can analyze and

improve the security posture of a wide range of programs, 3) investigate challenges to improv-

ing the precision of our analysis in real-world programs involving dynamically-loaded code and

varied privileges across execution phases. Finally, we extend our FCG extraction techniques into

a generic framework, libfcg, to facilitate new tools to identify overprivilege in other security

domains. Our tools and distribution-wide studies demonstrate the security benefits of reducing

overprivilege, as well as the feasibility of using static analysis to improve system security in a

precise, effective, and scalable manner.

Improving Application Security at Scale by

Reducing System Call and Library Overprivilege

by

Nicholas DeMarinis

M.Sc. Brown University, 2019

M.S. Worcester Polytechnic Institute, 2015

B.S. Worcester Polytechnic Institute, 2013

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

October 2021

© Copyright 2021 by Nicholas DeMarinis

Thank you to everyone who has supported me on this journey.

You have made me a better person.

This dissertation by Nicholas DeMarinis is accepted in its present form

by the Department of Computer Science as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date

Vasileios P. Kemerlis, Advisor

Recommended to the Graduate Council

Date

Rodrigo Fonseca, Reader

Date

Michalis Polychronakis, Reader

Approved by the Graduate Council

Date

Andrew G. Campbell, Dean of the Graduate School

iv

Table of Contents

1. Introduction 1

1.1. Defining overprivilege . 1

1.2. The need for tools to reduce overprivilege . 2

1.3. Thesis goals and contributions . 3

2. Characterizing overprivilege 6

2.1. What is overprivilege? . 6

2.1.1. Overprivilege in system calls . 7

2.1.2. Overprivilege from code bloat . 9

2.2. Efforts to reduce application privileges . 10

2.2.1. Reducing system call API usage . 11

2.2.2. Reducing code bloat . 13

2.3. The need for scalable tools to reduce overprivilege . 16

3. sysfilter: Automated system call filtering 17

3.1. Overview . 17

3.1.1. Background and threat model . 19

3.2. sysfilter design . 20

3.2.1. Analysis scope . 20

3.2.2. Function-call graph construction . 20

3.2.3. System call set construction . 27

3.2.4. System call set enforcement . 28

3.3. Prototype implementation . 31

3.4. Evaluation: correctness and performance . 31

3.4.1. Correctness . 32

v

3.4.2. Performance . 32

4. Reducing syscall overprivilege at scale 35

4.1. Measuring overprilege at scale . 35

4.2. autopkg design . 36

4.2.1. Identifying package candidates . 37

4.2.2. Package installation and analysis . 38

4.3. System call usage in the wild . 39

4.3.1. Syscall set size per binary . 39

4.3.2. System call invocation sites . 41

4.3.3. Effectiveness of FCG approximation . 42

4.3.4. Effectiveness of syscall restrictions . 42

4.3.5. Analysis performance and scalability . 43

4.4. Inferring policies for container images . 45

5. Improvements to callgraph precision 48

5.1. Handling dynamically-loaded code . 48

5.1.1. Background . 48

5.1.2. Resolving symbol names automatically . 50

5.1.3. dlsym usage in the wild . 51

5.1.4. Case study: handling GNU NSS . 53

5.1.5. Resolver Implementation . 55

5.2. Partitioning the callgraph . 57

5.2.1. Fixed partitions: before and after main . 59

5.2.2. Partitioning effectiveness in Debian sid . 67

6. Generic tools for reducing overprivilege 72

6.1. libfcg framework . 72

6.2. libfilter: Debloating binary shared libraries . 73

6.2.1. Library bloat in the wild . 75

6.2.2. Container set debloating . 78

7. Conclusions and future work 81

7.1. Future work . 82

vi

7.1.1. Refining indirect call targets . 82

7.1.2. Extending the scope of privilege reductions . 82

7.1.3. Flexible system call policy enforcement . 83

7.1.4. Continued libfcg development . 84

vii

List of Figures

2.1. Size of Debian stable repository over time . 7

2.2. Size of system call API in x86_64 Linux . 8

3.1. sysfilter architecture . 18

3.2. VCG construction example . 26

3.3. Classic BPF (cBPF) program. 29

3.4. Impact of sysfilter on Nginx . 33

3.5. Impact of sysfilter on Redis . 33

4.1. autopkg architecture . 37

4.2. Distribution of syscall set size across binaries on Debian sid 40

4.3. Distribution of functions in extracted callgraphs . 42

4.4. distribution for different FCG construction methods 43

4.5. sysfilter extraction tool runtime . 45

5.1. dlopen/dlsym example . 49

5.2. dlopen/dlsym with dynamic values . 51

5.3. NSS resolution example . 54

5.4. Theoretical impact of DL resolvers for common libraries 58

5.5. Partitioning before and after main . 61

5.6. Example program with initialization routines . 62

5.7. Thread partitioning example . 65

5.8. Distribution of system call sets with partitioning . 68

5.9. Comparison of ACG vs. VCG syscall set sizes . 70

6.1. libfcg architecture . 73

viii

6.2. Unused code in 20 most popular libraries in Debian sid 76

6.3. Unused code in cryptographic libraries in Debian sid 77

6.4. Unused code in X11 libraries in Debian sid . 78

ix

List of Tables

2.1. Comparison of software debloating approaches . 15

3.1. Summary of sysfilter correctness tests . 32

4.1. Binaries using the most syscalls in Debian sid . 41

4.2. sysfilter effectiveness analysis . 44

4.3. System call sets for container images . 46

5.1. Categories of dlopen/dlsym usage . 52

5.2. Comparison of partitioning effectiveness . 68

5.5. Most common removed syscalls by partition type . 69

6.1. Dynamically-loaded symbols used by libfilter correctness tests 75

6.2. Erasure for container image sets (using packages from Debian sid) 79

x

1

Chapter 1

Introduction

1.1. Defining overprivilege

Software frameworks, applications, and interfaces are becoming increasingly complex. In

what has been called the “first law of software development” [1], programs have a tendency to

increase in size and scope over time. As program requirements evolve, operating system (OS) fea-

tures, system libraries, and other APIs inevitably add functionality to support new applications

and use cases, while often retaining support for older features. This inevitable “feature creep” has

serious implications for both application and system security, as programs often have indiscrimi-

nate access to all of the functionality provided by OS services, regardless of how much functional-

ity is required. In the event a program is compromised, OS services and libraries can therefore fall

victim to the confused deputy problem [2], in which an attacker that seizes control of a vulnerable

program may ab(use) additional functionality not relevant to the program. We define these at-risk

programs as overprivileged, as this access to unnecessary system features violates the principle of

least privilege [3], effectively increasing the capabilities of an adversary post-compromise.

Overprivilege can take multiple forms, including at the most fundamental methods by which

programs interact with the operating system. In particular, the system call (syscall) API [4] pro-

vides a range of fundamental OS services—such as allocating memory, executing programs, cre-

ating network connections, and performing file system operations—with a total of 352 syscalls

available in the latest stable Linux version (v5.8, x86_64). While not all applications use all system

calls, each program has complete access to the entire system call set. For example, in a study of≈30K

applications in Debian sid (§ 4.3), only 55% use execve to execute new programs, while 34% use

listen to wait for new network connections. The remainder of these programs–i.e., over half of

CHAPTER 1. INTRODUCTION 2

those observed—are overprivileged with respect to these system calls: they have the capability to

run new programs or listen for network connections, respectively, even though they do not use

these features. This is a clear violation of the principle of least privilege, which threatens the in-

tegrity of the entire system: after gaining control of a vulnerable program, an attacker can utilize

additional syscalls not part of the application, or potentially escalate their privileges even further by

exploiting additional vulnerabilities in less-frequently-used—and therefore less-stressed—kernel

code [5, 6, 7].

Overprivilege is also evident in usage of system shared libraries. Consider a simple “hello

world” program built for a Linux system that links with a standard C library, e.g., glibc. When

compiled with gcc version 10.2.0 on the latest Debian Linux distribution, the main program com-

prises less than 200 bytes of code—but it links with glibc version 2.31, which contains ≈1.4MB

of code [8]. Despite only using the code required for the printf function, the program still

loads all of the code for glibc into its memory. Modern exploits are predominantly built using

code reuse techniques like return/jump/call-oriented programming (ROP/JOP/COP), where an

attacker redirects a vulnerable program’s control flow to a series of useful code fragments from the

program’s address space. Thus, unused library code, or code bloat [1] can therefore 1) increase the

amount of “ammunition” available to an attacker for code reuse attacks, and 2) increase overhead

for software-based defenses like CFI and continuous code randomization, making deployment of

these techniques more challenging.

1.2. The need for tools to reduce overprivilege

A number of efforts in both research and industry have explored methods to restrict appli-

cation privileges to OS services. With regard to the Linux syscall API, there have been attempts

to restrict the set of syscalls based on per-application policies. Early examples attempt to model

the set of allowed syscalls using automata-based static analysis [9, 10], statistical models similar

to intrusion detection [11, 12], compile-time static analysis [13], and dynamic tracing [14]. More

recently, high-profile applications like Firefox and OpenSSH, as well as container runtimes, use

manually-crafted policies to sandbox their execution using seccomp-BPF, aided by dynamic trac-

ing [15]. With regard to addressing code bloat, there have been a number of recent efforts to debloat

software using a variety of methods to identify unused code sections, including piece-wise compi-

lation [16], user-defined policies and configuration files [17, 18], delta-debugging [19, 20, 21], and

dynamic tracing [22].

CHAPTER 1. INTRODUCTION 3

While these efforts have demonstrated the security benefits of reducing overprivilege in cer-

tain contexts, they are often fragile and have a prohibitive cost for widespread deployment. Ap-

proaches requiring source code analysis or program recompilation [13, 16, 18] are restricted to

applications where source code is available, and require the source code to be present at anal-

ysis time. Policies generated using runtime tracing [14, 15, 22] or delta debugging [19, 20, 21]

are inherently incomplete for non-trivial programs as they rely on the presence of test cases or

runtime traces to provide information about how code is executed. These dynamic analyses re-

quire significant effort to develop or generate test cases or traces with sufficiently high coverage

for a certain workload, which is itself a significant area of ongoing research. In terms of reduc-

ing overprivilege, these limitations are exemplified by the scope of prior evaluations: to the best

of our knowledge, all prior works in this area are only tested on a small number (<200) of pro-

grams. This demonstrates that existing approaches have a high setup cost per application, due to

the overhead associated with recompilation, dynamic testing methods, or creation of user-defined

configurations.

Accordingly, there is a need for low-cost methods to automatically reduce overprivilege at

scale—i.e., for a wide variety of programs, and without the intensive developer oversight required

by source code or dynamic tracing. Approaches based on static analysis provide a compelling

method to remove the runtime tracing requirement, and current state-of-the-art disassembly tools

(§ 3.2.2) show promise for analyzing program control flow without source code. However, there

are significant challenges to building robust tools that can a) analyze a wide variety of complex

programs, and b) demonstrate effective reductions in application privileges. It is therefore an open

question as to the extent which static, binary-only analysis can produce robust and effective tools

for reducing overprivilege.

1.3. Thesis goals and contributions

The goal of this thesis is to investigate the extent to which static, binary-only analysis can serve

as a low-cost, effective method for reducing overprivilege in type- and memory-unsafe programs.

We explore techniques for reducing overprivilege by developing an effective method for identify-

ing a program’s required functionality without requiring access to source code or dynamic tracing.

In doing so, we develop a set of tools that can 1) safely and automatically reduce overprivilege in

a wide range of programs and 2) can be used to significantly improve their security posture. The

contributions of this thesis are as follows:

CHAPTER 1. INTRODUCTION 4

sysfilter sysfilter is a framework to reduce overprivilege with respect to the system call

API in order to reduce the attack surface of the OS kernel. We present a set of techniques (Chap-

ter 3) based on contemporary binary analysis tools to identify the set of system calls made by an

application binary and its shared libraries by constructing a safe, right overapproximation of the

program’s function call graph (FCG). Once the system call set has been identified, sysfilter

restricts the program from executing other syscalls at runtime, thereby enforcing the principle of

least privilege with respect to the system call set. In addition to an extensive validation and perfor-

mance analysis, we perform a large-scale analysis (Chapter 4) to investigate challenges in building

our analysis into a robust and scalable tool. We used sysfilter to analyze≈30K C/C++ applica-

tions in the Debian sid Linux distribution to demonstrate system call overprivilege “in the wild”

as well as how our tools can effectively improve the security posture of a large set of programs

and systems by restricting syscall sets.

Improvements to callgraph construction and partitioning In Chapter 5, we further explore how

our static analysis techniques can be used to limit overprivileging within a single program by iden-

tifying fixed partitions in the program’s FCG that can use different enforcement policies. Informed

by our large-scale studies on Debian sid, we demonstrate areas where our analysis tools can

identify partitions based on well-known control flow transition points (such as thread creation)

and report on their effectiveness of reducing system call sets at these transition points. In addi-

tion, we explore challenges in deploying our analysis tools at scale by characterizing the effect of

dynamically-loaded code (i.e., using dlopen/dlsym) on system call policies and demonstrate

how common-case usages of dynamic loading can be handled in practice.

Generic framework and libfilter Motivated by our work with sysfilter and other re-

search efforts in software debloating, we extend our FCG extraction techniques as a generic frame-

work, libfcg (Chapter 6), that can be used to identify overprivilege in other domains. We use

our framework to implement libfilter, a software debloating tool to remove unused code

from shared libriares. Given a set of application binaries and shared libraries, libfilter pro-

duces a set of “thinned” libraries that contain only necessary code to support the given applica-

tions. We conduct further distribution-wide studies using libfilter to demonstrate code bloat

and demonstrate that our framework can extract control flow information from a wide range of

programs and improve their security posture.

CHAPTER 1. INTRODUCTION 5

Thesis Statement Modern software requires a rich set of features that are typically provided in-

discriminately by the operating system through various interfaces, system libraries, or runtime

environments, effectively resulting in overprivileged code. In this thesis, we characterize over-

privilege in applications written in type- and memory-unsafe code (e.g., C, C++, assembly) and

present a set of techniques to safely and automatically enforce the principle of least privilege by

restricting program code to necessary system features only. We demonstrate a set of low-cost tools

for identifying overprivilege and restricting access to system call and library APIs, as well as a

framework to extend our techniques to other security domains. In doing so, we improve the security

posture of systems by restricting programs to necessary features only, thereby enforcing the principle of least

privilege in a precise, effective, and scalable manner.

6

Chapter 2

Characterizing overprivilege

2.1. What is overprivilege?

Overprivilege has resulted from the inherent complexity in modern software. As applications,

libraries, and interfaces have evolved, there is an inexorable tendency for software to increase

in both size and complexity. Holzmann [1], cites this trend as the “first law of software devel-

opment,” stating that software tends to grow over time to keep up with modern standards and

requirements.

Figure 2.1 demonstrates this trend for the Debian Linux distribution. Over the past 10 years,

the number of software packages (i.e., installable software units) in Debian’s stable version

has nearly doubled (Figure 2.1)—in 2021, the repository now has over 30K packages that must be

maintained by distribution developers. The amount of code to support these applications has simi-

larly increased (Figure 2.1b), from approximately 400 million source lines of code in the “squeeze”

release in 2011, to over 1 billion lines of code the current version, “buster,” in 2021, a 2.3x increase.

As programs evolve, it demands new functionality of the operating system (OS) APIs and

system libraries that support them. As these system services add new functionality to support

new applications and use cases, they often retain support for older features, thus rendering them

subject to an inevitable feature creep where more and more code is accumulated to support a wide

range of programs. Feature creep in system libraries and APIs can have serious implications for

security, since programs often have indiscriminate access to all functionality provided by these OS

services, regardless of how much functionality the program actually requires for operation.

Since OS services inherently provide key system functionality (e.g., accessing the network,

performing filesystem operations, manipulating permissions), access to each feature represents a

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 7

2006 2008 2010 2012 2014 2016 2018 2020
Year

0

5000

10000

15000

20000

25000

30000
Pa

ck
ag

es

bu
st

er

st
re

tc
h

je
ss

ie

w
he

ez
y

sq
ue

ez
e

le
nn

y

et
ch

(a) Total number of packages

2006 2008 2010 2012 2014 2016 2018 2020
Year

400M

600M

800M

1B

So
ur

ce
 L

in
es

 o
f C

od
e

etch
lenny

squeeze

wheezy

jessie
stretch

buster

(b) Source lines of code (SLOC)

Figure 2.1: Size of Debian stable repository over time. We show the number of packages
(a) and total lines of code (b) contained in Debian’s stable distribution throughout its release
history, as reported by Debian’s repository monitoring tools [23].

critical security resource. If an attacker gains control of a vulnerable program using exploitation

techniques such as code injection or code reuse, they can ab(use) any OS features to which the

program has access. Thus, access to additional, unnecessary OS features increases the capabilities

of an attacker post-compromise while providing no benefit to the original program. We define

these programs as overprivileged, as this access to additional features violates the principle of least

privilege [3], exacerbating the risk to the system as a whole by increasing the capabilities of an

adversary after a program is compromised.

In the remainder of this chapter, we discuss two sources of overprivilege that are pervasive in

modern operating systems, syscall API usage, and library code bloat, and the threats they pose to

system security. We review existing research efforts to reduce applications privileges in these ar-

eas, highlighting challenges to deploying these methods at scale. In doing so, we demonstrate the

need for development of low-cost tools to identify and reduce overprivilege in a precise, scalable,

and effective manner in order to improve security system-wide.

2.1.1. Overprivilege in system calls

The system call (syscall) API [24] provides the core interface for applications to access fun-

damental OS services, such as allocating memory, executing programs, creating network con-

nections, and more. On the x86-64 architecture, system calls are performed using the syscall

instruction, where the value in the rax register holds the syscall number, an integer that selects the

OS feature being requested. Some system calls are virtually ubiquitous in all programs, such as

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 8

2013 2014 2015 2016 2017 2018 2019 2020
Release date

300

310

320

330

340

350

Sy
sc

al
l c

ou
nt

 (x
86

_6
4)

Figure 2.2: Size of system call API in x86_64 Linux on a single system. Number of syscalls
gathered from kernels used on a Gentoo Linux system. Syscall set size was determined based on
the number of x86_64 syscalls listed in the file arch/include/generated/asm/syscalls_-
64.h. This is an empirical measurement from a single system and does not reflect the growth
between periodic kernel releases. Nevertheless, it demonstrates significant growth in the syscall
API over time, with >50 syscalls added since 2013.

read and write, while others provide access to fundamental, and, often, security-critical, fea-

tures, such as creating or opening network connections (e.g., connect, socket, bind), creating

threads or processes (execve, clone), or managing permissions (chmod).

On Linux, the size of the system call API has grown throughout its lifetime. In a study of the

kernel source from 2005–2014, 76 system calls were added to the API, but only 6 were removed.

Figure 2.2 shows the growth of the syscall API over time since 2013. At the time of this writing, the

current stable version of Linux (v5.8) provides a total of 352 for the x86-64 architecture. System

calls are typically added to accommodate new kernel features, or to expand the capabilities of

existing interfaces. As an example of the former, kernel v5.1 (released in 2019) added 4 new system

calls to support a new asynchronous I/O interface io_uring [25]. In the latter case, some system

calls duplicate existing functionality, but add new capabilities: for example, the kernel has three

versions of the “open” syscall to create file descriptors: open, openat, and openat2—the latter

was added in v5.6 (2020) to provide additional error handling.

Accordingly, the size of the system call API is a significant source of overprivilege. While not

all applications use all system calls, each application has full access to the entire syscall set. Thus,

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 9

an attacker that gains control of a vulnerable program may make use of syscalls unused by an ap-

plication, demonstrating a clear violation of the principle of least privilege. For example, a simple

shell utility like cat or grep may not need to access the network, but if an adversary can exploit

a vulnerability such a program and achieve arbitrary code execution, they could make arbitrary

system calls and, e.g.,, listen for network connections by opening a socket. More critically, ac-

cess to the entire syscall API also increases the attack surface of the operating system itself. An

attacker already in control of a program could potentially exploit additional vulnerabilities in less-

used—and therefore potentially less-stressed—system calls, thus using a kernel vulnerability to

escalate their privileges even further [5, 7, 26, 27, 28, 29]. As one example, the ptrace system call,

used for runtime process tracing, was responsible for a privilege escalation vulnerability (CVE-

2019-13272 [30]) for kernels v5.1 and earlier. Even though ptrace is used by very few programs

directly (§ 4.3.4), all applications have the ability to use this system call by default and thus are

capable of triggering the vulnerability in an unpatched system.

2.1.2. Overprivilege from code bloat

Shared library code represents another source of overprivilege. Shared libraries inherently

contain code for use by many programs, but not all code a single library may be used by all pro-

grams that require it. On Linux, most C/C++ applications link with, at minimum, a standard C

library to provide required functionality for program startup as well as helper utilities for com-

mon OS and system features. On the latest Debian Linux distribution, a simple “hello world”

program compiled with gcc has less than 200 bytes of code in its .text section (i.e., located in

the program’s own binary), yet the program requires glibc version 2.31, which contains ≈1.4MB

of executable code. Even though the program may only require a small fraction of glibc code

(i.e., for program startup and the printf function), all of the code for glibc (and any other

required shared libraries) is loaded into the program’s address space.

This extra code, or code bloat can constitute a form of overprivilege as it can provide addi-

tional resources for an attacker after a program is compromised. Modern exploits constructed us-

ing code reuse techniques such as return/jump/call-oriented programming (e.g., ROP, JOP, COP,

etc.) [31, 32, 33, 34, 35, 36, 37], in which an attacker redirects a program’s control flow to a se-

ries of useful code fragments, or gadgets, in the program’s address space. Accordingly, unused

library code can increase the amount of “ammunition” available to an attacker to carry out an

attack using code reuse. Further, code bloat can increase overhead for many software-based de-

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 10

fenses against code reuse and other control-flow hijacking attacks, such as Control Flow Integrity

(CFI) [38, 39, 40] and continuous code randomization [41], which rely on instrumenting and run-

time rewriting, respectively, to restrict the program’s control flow, thus increasing the deployment

cost of these defenses.

2.2. Efforts to reduce application privileges

In this section, we provide an overview of existing research efforts to reduce application priv-

ileges in terms of system call API usage and library code usage. We present these works through

the lens of identifying effective, scalable methods that can support analysis on a wide range of pro-

grams. To assess scalability, we focus on enumerating the tradeoffs in requirements for each type

of analysis, such as the types of program information required and the amount of per-program

intervention required by a developer, in addition to understanding their overall effectiveness for

reducing privileges.

Accordingly, for many areas we distinguish between approaches using static and dynamic

analysis methods, as this classification has a significant impact on scalability. In broad terms, static

program analysis methods infer properties about a program solely by examining its program code,

or a representation thereof, before it is executed. These methods require some representation of the

program, such as the source code, a compiled binary, or some intermediate representation thereof,

which is parsed to determine certain properties about how the program would act during execu-

tion. In contrast, dynamic methods identify program features at runtime by tracing or otherwise

measuring program behavior based on some input. In general, dynamic analysis methods require

test cases or traces of valid program behavior to exercise the program features being analyzed.

For a non-trivial program, this process is inherently incomplete as it is generally not feasible to

enumerate all possible inputs to the program. Thus, building or generating test cases or traces can

require significant effort to obtain sufficiently high coverage to represent a certain workload.

In order to develop an effective, scalable approach for reducing application privileges, we focus

on using static analysis techniques, as these can support analysis of a wide range of programs

without requiring costly developer intervention to build or maintain test cases for each program.

In the following sections, we demonstrate the challenges inherent to such an analysis and show

that there is a need for low-cost, effective analysis tools to identify and reduce overprivilege at

scale.

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 11

2.2.1. Reducing system call API usage

Early efforts: host-based intrusion detection System call usage patterns have been extensively

studied for host-based intrusion detection since the late 1990s. These works mainly focus on de-

veloping models for the program’s system call usage that can be checked against real-time traces

to detect anomalous behavior. Types of models used for these works have included fixed-length

sequences of system calls [42, 43], statistical and other learned models [11, 12, 44, 45], interactive

policy generation [14], and automata-based representations [10, 46, 47, 48]. Of these, most ap-

proaches rely on using runtime tracing [11, 12, 14, 42, 43, 44, 45], to “train” or build models of

normal program behavior to. An notable outlier among these is the work of Wagner and Dean [9],

which constructed models of a program’s system call usage by extracting a form of a program’s

control-flow graph using static source code analysis. In terms of static analysis, these works share

similar challenges to later works, and our own, on attack surface reduction, but applied to the con-

text of intrusion detection, which has different requirements on soundness and requires relatively

complex models of program behavior.

System call filtering More recent efforts have focused on identifying and restrict system call

usage, known as system call filtering. Rather detect whether a process has been compromised,

syscall filtering aims to reduce the capabilities of an attacker by restricting the number of system

calls the process can make in the first place. Instead of requiring a potentially complex model of

how the program operates, the most common form of syscall filtering approaches only require

the set of system calls—and, potentially, their arguments—required by the application. This set of

system calls defines a policy that can be enforced at runtime, thereby sandboxing the process to use

only the system calls specified by the policy, reducing an attacker’s capabilities after a program is

compromised. System call filtering is widely deployed in practice in certain contexts, but mainly

using manually-generated policies for specific contexts.

Enforcing system call policies The Linux kernel includes built-in support for system call filter-

ing as part of its seccomp [49] framework. Using the prctl or seccomp system calls, a process

can attach a BPF [50] program that is executed at each syscall invocation, allowing programmable

filters.1 seccomp-BPF is currently used by a number of security-critical applications to sand-

box certain high-risk components. Firefox [52] and Chrome [53] use seccomp-BPF to sandbox

1Note that seccomp-BPF only supports classic BPF programs. Extended BPF (eBPF), which supports persistent state
and other, more expressive, features, is not supported. Proposals to add eBPF support to seccomp were considered in
February 2018 [51], but appear to have been dropped due to security and performance concerns.

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 12

rendering processes, while OpenSSH [54] uses uses it to provide privilege separation between

the main sshd server process and client-handling child processes. These applications use custom,

developer-created syscall filtering policies that must be maintained by their respective developers.

Container runtimes like Docker [55] and Podman [56] install seccomp-BPF policies for all

containers by default and supports using custom policies on a per-container basis. By default,

Docker applies a manually-crafted, one-size-fits-all policy that disables 44 syscalls [57] (out of a

total of 352 on Linux kernel v5.8). This default profile aims to prevent containers from making sys-

tem calls related to privileged operations that should only be performed by the host (e.g., shut-

down, load_module) as well as those that might otherwise allow a container to modify host

resources. Users may optionally start containers with a different policy, which has created interest

generating more fine-grained, container-specific policies.

Aside from seccomp-BPF, Systrace [14] and Ostia [58] are earlier examples of userspace agent

processes that can enforce custom system call policies, at the cost of a round-trip to userspace for

each system call, plus additional overhead for the verification process. The work of Zeng et al. [59]

provides an in-kernel alternative to filtering with seccomp-BPF by creating per-process system

call tables. This improves performance of the filtering operation by only requiring a table lookup

per system call, rather than evaluation of a cBPF program.

Automatic generation of system call filters A line of recent work has focused on identifying

system calls automatically, mostly in the context of building seccomp-BPF policies for contain-

ers. Much of this work has used dynamic analysis build syscall policies by tracing runtime be-

havior. Podman has support for tracing syscalls dynamically with ptrace to build container

policies [15]. DockerSlim [60] is a tool to remove unneeded files and generate seccomp-BPF poli-

cies from Docker images using dynamic tracing and HTTP API probing. Similarly, Wan et al. [61]

use dynamic analysis to generate seccomp-BPF policies automatically. SPEAKER [62] extends

this to separate a container’s system calls into two phases: those required to start the container,

and those required for normal operation, using time-based heuristics to determine the boundary

between profiling phases.

Comparatively, relatively few works have investigated generation of system call using static

analysis, for containers or for single programs. To address the inherent completeness issues with

dynamic generation of container policies, Confine [63] is a (mostly) static analysis-based system

for automatically extracting and enforcing syscall policies. Confine analyzes binaries present in

container images, but requires access to the source code of the C library (e.g., glibc or musl).

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 13

Zeng et al. [59] also infer valid syscall sets for generic (i.e., not containerized) binaries from using

static analysis, but this approach has several limitations affecting soundness. Ghavamnia et al. [13]

uses static analysis of source code to perform temporal specialization, to generate system call policies

for server applications before and after program startup, based on manual annotations to separate

program phases. We discuss these works using static analysis in more detail in § 3.2.2.

2.2.2. Reducing code bloat

Efforts to reduce code bloat have been investigated by research efforts in softwrae debloating.

Software debloating involves removing or restricting access to code regions not used by an ap-

plication. Related techniques have been studied to reduce memory usage on embedded sys-

tems [64, 65, 66] and improve performance. In a security context, debloating reduces the amount

of code available to an attacker once a process has been compromised. For example, reducing

the amount of accessible code in a process’ memory, software debloating limits ability to harvest

gadgets for mounting code reuse attacks [31, 32, 33, 34, 35, 36, 37], potentially reducing their post-

exploitation capabilities.

Broadly, this entails identifying code sections of a binary or shared libraries that are used in

a target application. Using this information, regions of code that are not used by the application

can be removed, or otherwise made inaccessible to the program at runtime. Recent approaches

have explored various methods of identifying utilized code, including input and configuration

specifications [17, 18], dynamic tracing [22] and testing [19, 20, 21, 67] methods to find used code

paths based on a series of test inputs, to static analysis-based approaches [16, 68, 69] that build a

CFG of the program’s execution. Another key variation is the method of restricting unused code:

approaches that operate on application binaries (i.e., binary files containing a main) often rewrite

binaries or modify compilation to remove unneeded sections [67, 67, 69], while approaches that

also remove code from shared libraries must either specialize libraries to a specific set of binaries,

or dynamically adjust what library code is loaded for each binary that uses it [16, 68].

“Piece-wise” loading Early approaches focused on debloating shared libraries by removing un-

used components from the program’s memory at load time. In 2015, Mulliner and Neugschwandt-

ner [68] developed an debloating mechanism for Windows DLLs. Their approach disassembles

target applications and their libraries to reconstruct the program’s CFG. A runtime component

loads the CFG information before application startup and replaces unused portions of DLLs with

halt instructions to prevent execution. Mulliner and Neugschwandtner note several issues re-

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 14

constructing the CFG from static analysis that required manual intervention to prevent certain

functions from being removed. Specifically, they utilize bounded address tracking [70] to resolve

indirect function calls, which is incomplete and can therefore generate a CFG that is too restrictive.

Despite these limitations, their approach demonstrated significant code reduction, stripping 28%

of code from Adobe Reader. Subsequent works have aimed to improve CFG generation, but many

require source code.

Quach et al. [16] perform software debloating on Linux systems. They develop an LLVM-based

piece-wise compiler to embed information about the program’s CFG into each program at compile

time and use a custom, piece-wise loader2 to load only required portions of shared libraries into

memory. The authors were unable to debloat glibc, which does not compile in LLVM. When

debloating other libraries, or those compiled against musl, they demonstrated significant reduc-

tions in both code size and number of code reuse gadgets. While these approaches demonstrated

significant reductions in code size, using a custom loader to selectively identify code regions to

load increases program startup times, which may not be desirable in certain applications.

Feature removal Another line of works focus on debloating by feature removal, using a user-

defined configuration to identify program features not required for a certain use case and gener-

ate specialized versions of programs (or their libraries) tailored for the application. Trimmer [18]

performs argument-based specialization, using a list of user-specified configuration flags that are

fixed at constant values to remove portions of the program depending on other values. Koo et

al. [17] perform library debloating based on user configurations for modular applications, such as

webservers. Their compilation-based approach maps configuration directives to shared libraries

and generates targeted server binaries to exclude features for unused configuration directives.

Davidsson et al. [71] use a compilation-based approach to create application specific shared li-

braries for use with web applications. During the compilation process, they add domain knowl-

edge about the target web application and script runtimes it uses (e.g., PHP) to generate shared

libraries limited to only the functions required by the script interpreter for the target application.

While this generates highly specific libraries, it shows promise for containerized web applications

distributed as a whole system image.

2The concept of the piece-wise loader, selectively loading components of shared libraries based on a certain pro-
gram’s usage is similar to Mulliner and Neugschwandter’s earlier work, though Quach et al. coined the term—we use
the term “piece-wise” broadly to refer to both works.

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 15

Category Work Analysis Tracing Config Apps Tested

Loader-based Mulliner et al. [68] Binary • 1
Quach et al. [16] Source 109

Feature removal
Trimmer [18] Source • 13
Koo et al. [17] Source • 3
Davidsson et al. [71] Source • 5

Delta debugging
C-Reduce [19] Source • • –
Perses [20] Source • • 20
CHISEL [21] Source • • 10

Static disassembly Razor [22] Binary • 13
Nibbler [69]† Binary 117

Table 2.1: Comparison of software debloating approaches. For each work, we specify if the ap-
proach uses source code or binary analysis, runtime tracing/test case evaluation, or requires user
or developer-specified configurations or instrumentation. “Apps Tested” indicates the number of
programs tested (for correctness) as part of the program’s evaluation.
†: Nibbler, which was developed concurrently to our work, shares many design goals with our
efforts. We implement Nibbler’s analysis using our tools to produce libfilter, a debloating
tool with improved performance compared to Nibbler’s original prototype (§ 6.2).

Delta debugging A line of works has investigated program minimization using delta debug-

ging [72, 73] techniques. Generally, delta debugging involves generation of a minimal program

satisfying a property or test case. C-Reduce [19] and Perses [20] use delta-debugging to gener-

ate minimized versions of programs based on test cases, aimed at generating example programs

demonstrating compiler bugs. CHISEL [21] extends this work with reinforcement learning to

speed up example generation for large programs, in the context of debloating for to reduce a pro-

gram’s attack surface. All of these approaches require source code for iterative recompilation of

minimized programs depend on test cases to exercise required code.

Debloating without source code Razor [22] aims to perform debloating with a combination of

static and dynamic analysis. Razor does not require source code, and instead implements a basic-

block level dynamic tracer to reconstruct the program’s CFG from a set of traces on test inputs.

The authors aim to address some of the incompleteness in dynamic tracing by developing several

heuristics using static analysis techniques for incorporating related code into minimized programs,

in addition to blocks exercised by tracing.

Concurrently and independently with our work, Agadakos et al. developed Nibbler [69],

which performs debloating on shared libraries using static binary analysis. We extended Nib-

bler together to build our library debloating tool, libfilter, which addresses some issues in

Nibbler’s initial prototype to produce a more complete analysis. We discuss Nibbler in further

CHAPTER 2. CHARACTERIZING OVERPRIVILEGE 16

detail in § 6.2.

Otherwise, we summarize relevant efforts in software debloating in Table 2.1, highlighting the

differences in required inputs to the analysis that would require per-application such as runtime

traces or per-application configurations. These metrics indicate the amount of human input re-

quired per-application, a critical factor required for analyzing programs at scale. Only Quach et

al.’s piece-wise compilation and Nibbler can be considered fully “automatic” methods, as they do

not require runtime tracing or per-application configurations. These works analyzed the largest

number of programs, which shows promise for scalability; however, piece-wise compilation oper-

ates at compile time, limiting its deployment to applications where source code is available. Over-

all, this demonstrates the need for static, binary-only analysis tools to reduce code bloat across a

wide range of programs.

2.3. The need for scalable tools to reduce overprivilege

In this chapter, we have introduced overprivilege in two forms, system call API access and

code bloat, and describe how such violations of the principle of least privilege constitute a security

risk. In both we cases, we have shown how there is a need for static binary analysis tools to

reduce privileges in an effective and scalable manner. Prior approaches have lacked soundness

by relying on dynamic testing or incomplete callgraph analysis methods, which have a high per-

application cost that precludes large-scale analysis. We have also demonstrated that reducing

application privileges in both domains leverage the same principle: determining a representation

of the program’s call graph to from which to identify required components. In the next chapter, we

present sysfilter and our function call graph (FCG) extraction techniques designed to provide

a safe over-approximation of the program’s FCG to enable construction of more scalable tools

reduce overprivilege to improve program and system security.

17

Chapter 3

sysfilter: Automated system call

filtering

3.1. Overview

sysfilter, performs system call filtering by statically and automatically identifying a pro-

gram’s system call footprint and limiting the system calls a program can make at runtime. sys-

filter aims at mitigating the effects of application compromise by restricting access to the syscall

API [4]. This 1)limits post-exploitation capabilities [14], and 2) prevents compromised applications

from escalating their privileges further via exploiting vulnerabilities in unused, or less-stressed,

kernel interfaces [5, 7, 26, 27, 28, 29].

Applications primarily interact with the kernel via the syscall API in order to perform useful

tasks. Indicatively, at the time of writing, the Linux kernel (v5.8) provides support for 352 syscalls

in x86-64. However, despite the fact that applications only require access to part of the syscall API

to function properly (e.g., non-networked applications do not need access to the socket-related

syscalls), the OS kernel provides full and unrestricted access to the entirety set of syscalls. This ap-

proach violates the principle of least privilege [3], enabling attackers to utilize additional OS services

after seizing control of vulnerable applications. By restricting access to certain syscalls, sysfil-

ter naturally limits what OS services attackers can (ab)use and enforces the principle of least

privilege with respect to the syscall API—thus, programs are allowed to issue only developer-

intended syscalls. In other words, if the developer of an application is not using, say, socket,

then even if the application is compromised, the attacker will not be able to issue that syscall and

acquire a network socket. Similarly, if the application is not (legitimately) invoking execve, then

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 18

Syscall Set Extraction

Syscall Set Enforcement

Callgraph Construction Syscall Set Extraction

Syscall
APIseccomp-BPF

Kernel

Enforced Program

...

Analysis Scope

❸

➊ Explicit Dependencies

➋ Implicit Dependencies

1mov 1, %eax
syscall

0mov 0, %eax
syscall

{0,1,3,...}Syscall Policy

BPF Filter Generation
if nr in {0,1,3,...}

then ALLOW
else DENY

Binary

libc.so

. . .

libplugin.so

Binary

libc.so

. . .

libsysfilter.so

➐ Inject as library

➍

➎ Output as JSON

➏

➑ On syscall

Figure 3.1: sysfilter architecture. sysfilter consists of two parts: system call set extraction
(top) and the system call set enforcement (bottom).

an attacker will not be able to issue that syscall and execute programs.

Further, multiple studies have repeatedly divulged that the exploitation of vulnerabilities in

kernel (or in even lower-level, more-privileged [74, 75]) code is an essential part of privilege esca-

lation attacks [5, 7, 26, 27, 28, 29]. To this end, sysfilter reduces the attack surface of the kernel

by restricting the syscall set available to userland processes, effectively providing defense-in-depth

protection.

sysfilter consists of two parts (see Figure 3.1): a syscall-set extraction component, and a

syscall-set enforcement component. The extraction component uses our FCG extraction tools to

construct a safe over-approximation of the program’s FCG across all objects in scope. Finally, it

performs a set of program analyses atop the FCG in order to make the over-approximation as

tight as possible and construct the syscall set in question. The tasks above are performed stati-

cally and the syscall set returned by the extraction tool is complete: i.e., under any given input,

the syscalls performed by the corresponding process are guaranteed to exist in the syscall set—

this includes syscalls that originate from the binary itself, libc, or any other dynamically-loaded

shared library. The latter part enforces the extracted set of syscalls, effectively sandboxing the input

binary. Specifically, given a set of syscall numbers, the enforcement tool converts them to a BPF

program [76] to be used with seccomp-BPF [77].

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 19

3.1.1. Background and threat model

Adversarial capabilities In this work, we consider userland applications that are written in

memory-unsafe languages, such as C/C++ and assembly (ASM). The attacker can trigger vul-

nerabilities, either in the main binaries of the applications or in the various libraries the latter

are using, resulting in memory corruption [78]. Note that we do not restrict ourselves to spe-

cific kinds of vulnerabilities (e.g., stack- or heap-based memory errors, or, more generally, spatial

or temporal memory safety bugs) [79, 80] or exploitation techniques (e.g., code injection, code

reuse) [31, 32, 35, 78, 81].

More specifically, the attacker can: (a) trigger memory safety-related vulnerabilities in the tar-

get application, multiple times if needed, and construct and utilize exploitation primitives, such as

arbitrary memory writes [82] and reads [83]; and (b) use, or combine, such primitives to tamper-

with critical data (e.g., function and vtable pointers, return addresses) for hijacking the control

flow of the target application and achieve arbitrary code execution [84] via means of code injec-

tion [81] or code reuse [31, 32, 33, 34, 35, 36, 37]. In terms of adversarial capabilities, our threat

model is on par with the state of the art in C/C++/ASM exploitation [78, 85]. Lastly, we assume

that the target applications consist of benign code: i.e., they do not contain malicious components.

Hardening assumptions The primary focus of this work is modern, x86-64 Linux applications,

written in C, C++, or ASM (or any combination thereof), and compiled in a position-independent [86]

manner via toolchains that (by default) do not mix code and data [87, 88], such as GCC and LLVM.1 In

addition to the above, we assume the presence of stack unwinding information (.eh_frame section)

in the ELF [89] files that constitute the target applications.

In § 3.2, we explain in detail the reasons for these two requirements—i.e., position-independent

code (PIC) and .eh_frame sections. However, note that (a) PIC is enabled by default in mod-

ern Linux distributions [90, 91], while (b) .eh_frame sections are present in modern GCC- and

LLVM-compiled code [88, 90]. The main reason for (a) is full ASLR (Address Space Layout Ran-

domization): in position-dependent executables ASLR will only randomize the process stack and

mmap- and brk-based heap [92]. Moreover, PIC in x86-64 incurs negligible performance over-

head due to the existence of PC-relative data transfer instructions (%rip-relative mov) and extra

general-purpose registers (16 vs. 8 in x86). As far as (b) is concerned, stack unwinding infor-

mation is mandated by C++ code for exception handling [93], while both GCC and LLVM emit

1Andriesse et al. [87], and Alves-Foss and Song [88], have independently verified that modern versions of both GCC
and LLVM do not mix code and data. icc (Intel C++ Compiler) still embeds data in code [88].

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 20

.eh_frame sections even for C code to support interoperability with C++ [90] and various fea-

tures of certain libc (C library) implementations—e.g., backtrace in glibc (GNU C Library).

Lastly, we assume a Linux kernel with support for seccomp-BPF (SECure COMPuting with

filters) [77]. (All versions ≥ v3.5 provide support for seccomp-BPF in x86-64.) Every other

standard userland hardening feature (e.g., NX, ASLR, stack-smashing protection) is orthogonal

to sysfilter; our proposed scheme does not require nor preclude any such feature. The same

is also true for less-widespread mitigations, like CFI [94, 95], CPI [96, 97], code randomization/di-

versification [41, 85, 98], and protection against data-only attacks [99].

3.2. sysfilter design

3.2.1. Analysis scope

A crucial first step toward constructing a precise callgraph is collecting all code that may be

used by the target application. This is a complex processes due to the various nuances in how

shared libraries may be loaded. The input to sysfilter is an (x86-64) ELF file that corresponds

to the main application binary. To aid in determination of function boundaries, sysfilter re-

quires PIC binaries as input—this is is the default setting in modern Linux distributions [90, 91].

Once sysfilter verifies that the main binary is indeed PIC, it adds it to the analysis scope, and

proceeds to resolve dependencies regarding dynamic shared libraries. The process for this step

is similar to the dependency resolution of ldd. In addition to the above, it is also possible to

provide as input a set of implicit dynamic shared object dependencies to sysfilter: i.e., a list

of additional .so ELF files that need to be added to the analysis scope, irrespectively of whether

they exist in any of the loaded objects’ .dynamic section. This functionality is important in order

to support the analysis of binaries that have run-time dependencies to shared objects (e.g., via

dlopen) or use LD_PRELOAD.

3.2.2. Function-call graph construction

Once every ELF object is added to the analysis scope, sysfilter proceeds with the construc-

tion of the function-call graph (FCG) of the whole program. The FCG contains parts of the code

(functions) that are reachable, under any possible input to the corresponding process. Critically,

not all code used by the libraries in the analysis scope is used is used: e.g., applications that link

with libc, libpthread, libdl, etc., do not use all functionality in libc—usually, only part of

library functionality is utilized [16, 69]. Accurately identifying unreachable code is crucial: iden-

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 21

tifying unused functions excludes them from our FCG, providing security benefits when code is

removed or restricted for debloating. However, incorrectly excluding code is potentially catas-

trophic, as it can cause application crashes. We describe how our callgraph construction process

in two steps: 1) accurately disassembling ELF files to identify the boundaries between functions,

and 2) building the callgraph by recovering edges from function calls.

Precise disassembly Obtaining the complete and precise disassembly of arbitrary binary pro-

grams is an undecidable task [100]. The problem stems from two main reasons: (a) not being able

to decisively differentiate code from data [100]; and (b) not being able to precisely identify function

boundaries [101, 102]. Fortunately, modern toolchains, like GCC and LLVM, (1) do not mix code

and data [87, 88] and (2) embed stack unwinding information to (x86-64) C/C++ binaries [90].

sysfilter takes advantage of (1) and (2) in order to precisely disassemble the executable

code from all ELF files in the analysis scope. More specifically, for each .so object in the anal-

ysis scope, sysfilter uses the stack unwinding information (.eh_frame section) to get the

exact boundaries of all functions in executable sections (e.g., .text, .plt). Moreover, special

care is taken to correctly identify functions of crtstuff.c (libgcc), which are compiled into

the sections .init and .fini, as well as crtbegin.o, and executed as part of the dynamic

linker/loader.

Armed with precise information about function boundaries, and given the strict separation

of code and data, sysfilter performs a linear sweep [103] in all code regions that correspond

to identified functions, to disassemble their executable code. The resulting disassembly does not

contain any invalid instruction, due to data treated as code or incorrect function boundary detec-

tion, nor does it miss instructions due to unidentified code—the resulting disassembly is complete,

precise, and accurate.

Callgraph construction: Direct call graph Using the precisely-disassembled function informa-

tion, sysfilter proceeds to construct the FCG of the input program. Broadly, this entails recov-

ering edges between the identified functions by following control flow transfer instructions. In the

general case, this is a hard problem due to the various types of control flow transfers, the varying

amount of information that can be recovered about control flow targets statically.

As a first step, sysfilter contructs the direct call graph (DCG), which is the part of the FCG

that corresponds to directly-invoked functions/code. This is achieved by first adding to the DCG

the entry point of the main binary (i.e., the setup functions called before main), followed by all

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 22

the functions whose addresses are stored at the subsequent (ELF) sections: .preinit_array,

.init_array, and .fini_array; the code/function in .init and .fini is also added to the

DCG. Subsequently, the same process is repeated for every other .so ELF object in the analysis

scope. At the end of this step, a set of initial functions are added to the DCG, which correspond to

the entry points of the code that is executed during the initialization/finalization of the respective

process by the dynamic linker/loader (ld.so). sysfilter also supports adding an additional

set of implicit function dependencies specified externally, which this is required to aid the analysis

of binaries that have run-time dependencies to certain functions (e.g., via dlsym) or use LD_-

PRELOAD [104].

Next, the code of each such function in the DCG is linearly scanned to identify direct call

instructions, which instruction encode the target address as a %rip-relative immediate operand.

Since the value of %rip is known during the linear sweep, the target functions of these instructions

(callees) can be statically identified, and do not change at run-time.

Branch instructions, like (un)conditional jmp instructions, that cross function boundaries, are

also considered as they are typically used for implementing tail-call elimination [105]. Each identi-

fied target function (callee) is also added to the DCG, and the process is repeated until no ad-

ditional functions can be added. Cross-shared library calls, via the Procedure Linkage Table

(PLT) [106], are handled by inspecting the .dynsym, and .dynstr, sections of the ELF files in

scope and “emulating” the binding (symbol resolution) rules of ld.so [104, 107]. This is analo-

gous to executing ld.so with ‘LD_BIND_NOW=1’.

The net result of this process is a subset of the FCG rooted from the program’s contains the en-

try point(s) and initialization/finalization functions of the ELF objects in scope (plus the implicitly-

added functions, if provided), followed by every other function that is directly-reachable from direct

control flow transfers.

Callgraph construction: Address-taken call graph The direct call graph process does not ac-

count for functions targeted by indirect call/jmp instructions. These instructions have as operand

a (general-purpose) register, or a memory location, which stores the target address, i.e., the ad-

dress of the callee. Indirect control flow instructions are typically used for dereferencing function

pointers (C/C++) and implementing dynamic dispatch (C++) [108]. Statically resolving the target

addresses of indirect call/jmp instructions is a hard problem [109], mostly due to the impreci-

sion of points-to analysis [110]. Indeed, all of the authors of the approaches using static analysis for

system call filtering [10, 46, 59] and software debloating [22, 68, 69] discussed in Chapter 2 cited

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 23

issues resolving indirect control flow transfers as affecting the soundness of their results.

sysfilter handles this problem by over-approximating the FCG by constructing the address-

taken call graph (ACG). The ACG is complete: i.e., it never excludes functions that can be executed

by the program (under any possible input). This concept is similar to the handling of address-

taken (AT) functions used by Nibbler [69]. sysfilter extends this approach using Egalito’s

state-of-the-art precise disassembly techniques, including the best known jump table detection

and handling to date, improving the precision of the control-flow and dataflow analyses.

The first step to construct the ACG is to identify all address-taken functions: i.e., functions

whose address appears in rvalue expressions, function arguments, struct/union initializers,

and C++ object initializers, or functions that correspond to virtual methods (C++). The set of all

address-taken (AT) functions is a superset of the possible targets of every indirect call site in scope.

This is because indirect call/jmp instructions take as operands (general-purpose) registers, or

memory locations, which can only hold absolute addresses; therefore, in order for a function to be

invoked via an indirect call/jmp instruction, its address much first be “taken”, and then loaded

in the respective operand, be it a register or memory location.

sysfilter leverages the fact that every ELF object in the analysis scope is compiled as PIC,

in order to identify all AT functions. (PIC is mainly used to provide full Address-Space Layout

Randomization (ASLR) is enabled by default in modern Linux distributions [90, 91] and incurs

negligible performance overhead on x86-64.) Specifically, locations in code, or data, ELF regions

that correspond to absolute function addresses must always have accompanying relocation entries

(relocs), if PIC is enabled [91]. This is because these addresses need to be updated with the new,

relocated addresses of the respective functions, each time a PIC-enabled ELF object is loaded to a

different region in the address space.

sysfilter begins with identifying all the relocation sections (i.e., sections of type SHT_-

REL or SHT_RELA) in the ELF objects in scope. Next, it processes all the relocs, searching for

cases where the computation of the relocation involves the starting address of a function (recall

that we have already identified the boundaries of every function in scope, during the construc-

tion of the DCG). Every such function, whose starting address is used in relocs computation,

is effectively an AT function. The same function can have its address taken multiple times in dif-

ferent locations (e.g., function arguments, rvalue expressions in function bodies, or as part of

global struct/union/C++ object initializers). Relocations that are applied to special sections

(e.g., .plt, .dynamic) are ignored, as they are only related to dynamic binding.

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 24

Armed with the set of all AT functions, sysfilter proceeds with computing the reachable

functions from (each one of) them using the same approach we employed for constructing the

DCG, by following targets of direct control flow instructions and resolving PLT entries. The ACG

effectively treats the discovered AT functions as “entry points,” and then includes every other

function that is directly-reachable from them. The combined set of functions in DCG and ACG is

a superset of the set of functions in the program’s FCG, i.e.:

V [FCG] ⊆ (V [DCG] ∪ V [ACG]) (3.2.1)

Quach et al. [16] have previously shown that this approach provides a complete over-approximation

to the FCG .

Callgraph construction: Vacuumed call graph Although the combined direct and indirect call

graphs, e.g., DCG ∪ ACG, represents a safe over-approximation of FCG, it is not a tight one: every

AT function included in the considered call graph is (potentially) “polluting” it in a considerable

manner by bringing in scope every other function that is reachable from itself. In order to keep

the over-approximation as tight as possible, sysfilter prunes the ACG using a technique for

software debloating [16, 69]. sysfilter terms this optimization as the vacuumed call graph (VCG).

Specifically, construction of the VCG considers the location where code pointers for AT func-

tions are created. For code pointers found in code (e.g., .text) regions, AT functions can be

pruned if their address is only taken form functions that are strictly not part of the already-

constructed callgraph. Handling code pointers found in data regions (e.g., .(ro)data) is more

complex, as code pointers in these sections may be part of nested data structures, the usage of

which cannot be tracked statically without debug symbol information. If symbol information is

available, the VCG construction process can prune these functions using a similar process. Com-

plete details on the VCG construction process is provided in [111]

In particular, we begin with the observation that each time the address of a function is taken, a

code pointer is created. By taking into account the location (ELF section) that such code pointers

are created, sysfilter further separates those found in code (e.g., .text) and data (e.g., .data,

.rodata) regions. For the former, it iterates every function that has been deemed as unreachable,

and checks if the address of an AT function is only taken within functions that are (strictly) not

part of the call graph. If this condition is true, it removes the respective AT function from ACG,

which may result in additional removals (e.g., everything directly-reachable from the removed AT

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 25

function); sysfilter iteratively performs the above until no additional functions can be pruned.

While this adds a required component to the analysis beyond a common (stripped) ELF binary,

modern toolchains (GCC, LLVM) include symbols in the resulting ELF objects (.symtab section)

by default, while popular Linux distributions provide symbols for their packaged binaries [112,

113, 114].

The resulting VCG represents a pruned subset of the ACG, specifically:

V CG = DCG ∪ ACG′ (3.2.2)

where ACG′ denotes the pruned ACG using the approach outlined in this section. Again, VCG is

a complete, tight over-approximation of the true FCG: i.e., sysfilter only excludes functions

that can never be executed by the program (under any possible input); more formally:

V [FCG] ⊆ V [V CG] ⊆ (V [DCG] ∪ V [ACG]) (3.2.3)

Call graph construction example The following example illustrates the construction of each call-

graph type from the given program. Figure 3.2 illustrates a C-like program, which we will be us-

ing as an example to demonstrate the VCG construction. sysfilter will initially include main

(ln. 19) and f9 (ln. 5). DCG will also include all the directly-reachable functions from the above

initial set: f1 (reachable from main, ln. 22) and f10 (reachable from f9, ln. 22). Thus, at this stage,

the callgraph can be represented as:

V [DCG] = {main,f1,f9,f10} (3.2.4)

Next, sysfilter will proceed with the construction of the ACG, which, initially, will include all

the address-taken functions: f3 (ln. 14), f4 (ln. 13), and f6 and f7 (ln. 17). ACG will also include

all the directly-reachable functions from set of AT functions: f5 (reachable from f4, ln. 10) and f8

(reachable from f7, ln. 7). Thus:

V [ACG] = {f3,f4,f5,f6,f7,f8} (3.2.5)

sysfilter will then continue with pruning the ACG as follows. First, it will remove f4, as its

address is only taken in function f2 (ln. 13), which is unreachable. This will also result in removing

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 26

1 #define ctor __attribute__((constructor))
2 typedef void (*fptr)(void);
3
4 void f10(void) { ... }
5 ctor void f9(void) { ... f10(); ... }
6 void f8(void) { ... }
7 void f7(void) { ... f8(); ... }
8 void f6(void) { ... }
9 void f5(void) { ... fp_arr[n](); ... }

10 void f4(void) { ... f5(); ... }
11 void f3(void) { ... }
12
13 fptr f2(void) { ... return &f4; }
14 fptr f1(void) { ... return &f3; }
15
16 fptr fp;
17 fptr fp_arr[] = {&f6, &f7};
18
19 int main(void)
20 {
21 ...
22 fp = f1();
23 ...
24 fp();
25 return EXIT_SUCCESS;
26 }

Figure 3.2: VCG construction example. Without symbol information V [V CG] =
{main,f1,f3,f6,f7,f8,f9,f10}, whereas with symbols (or debugging information) available,
V [V CG] = {main,f1,f3,f9,f10}.

f5, as it is only directly-reachable from f4 (ln. 10). If the respective ELF object is stripped [115],

the pruning process will terminate at this point, resulting in the following set of functions:

V [ACG′] = {f3,f6,f7,f8} (3.2.6)

If symbol (or debugging) information is available, then sysfilter can perform more aggressive

pruning by identifying that fp_arr is not referenced by any function in scope. (i.e., fp_arr is

only referenced by f5, ln. 9, which has been deemed unreachable). Therefore, the AT functions f6

and f7 can also be removed from the ACG, as well as f8 that is directly-reachable only from f7

(ln. 7). The net result of the above is the following set of functions:

V [ACG′′] = {f3} (3.2.7)

Further details on other nuances associated with callgraph construction, including how sys-

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 27

filter handles GNU IFUNC and NSS symbols, overlapping code, and hand-written assembly,

are described further in [111].

Comparison with existing work As discussed in Chapter 2, other works have used similar

methods to statically construct a program’s FCG. We believe our analysis provides the tightest and

most complete representation using binary analysis. Our callgraph construction process follows

Wagner and Dean’s [46] over-approximation for handling address-taken functions to compose the

ATCG, but their approach requires program source code, and our VCG representation produces

a tighter approximation of the callgraph. Giffin et al. [10] use similar methods to Wagner and

Dean’s approach to analyze SPARC binaries, but their approach does not consider code included

in shared libraries.

Confine [63] uses mostly binary static analysis, but relies on source code for analyzing glibc,

and its callgraph construction process considers all non-C library functions as reachable. Further,

it relies on objdump for disassembly, which requires symbol information to precisely identify

function boundaries [116]. In contrast, sysfilter can produce a tighter FCG, and can operate

without symbol information. Zeng et al. [59] uses techniques similar to sysfilter, but its han-

dling of indirect function calls relies on points-to analysis, which is inherently incomplete [110],

and instead proposes a runtime component to address completeness issues.

3.2.3. System call set construction

The x86-64 ABI dictates that system calls are performed using the syscall instruction [117].

sysfilter focuses solely on 64-bit applications (i.e., it does not consider syscalls via int $0x80

or sysenter). Moreover, during the invocation of syscall, the system call number is placed in

register %rax. Armed with the program’s VCG, sysfilter constructs the system call set in

question as follows.

First, it identifies all reachable functions that include syscall instructions, by performing a

linear sweep [103] in each function f ∈ V [V CG] to disassemble reachable code and pinpoint

syscall instances. Once the set of all the reachable syscall instructions is established, sys-

filter continues with performing a simple value-tracking analysis to resolve the exact value(s) of

%rax on every syscall site. The process relies on standard live-variable analysis using use-define

(UD) chains [118, § 9.2.5]. Specifically, sysfilter considers that syscall instructions “use”

%rax and leverages the UD links to find all the instructions that “define” it. In most cases, %rax

is defined via constant-load instructions (e.g., mov $0x3,%eax), and by collecting such instruc-

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 28

tions and extracting the respective constant values, sysfilter can assemble system call sets. If

%rax is defined via instructions that involve memory operands, sysfilter aborts (or issues a

warning, if invoked accordingly) as the resulting system call set may be incomplete [109]. The

output of the syscall-set extraction component is the collected set of system call numbers in JSON

format (see Figure 3.1).

We opt for applying the analysis above in an intra-procedural manner, as our results indi-

cate that this strategy works well in practice. System call invocation is architecture-specific, and

typically handled via libc using the following pattern (in x86-64):

mov $SYS_NR, %eax
syscall

where $SYS_NR = {$0x0, $0x1, ...}. One exception is the handling of glibc’s syscall()

function [24], which performs system calls indirectly by receiving the respective system call num-

ber as argument. If syscall() is not-address taken in VCG, then sysfilter first identifies

the reachable functions that directly-invoke syscall(), and performs intra-procedural, value-

tracking on register %rdi (first argument, system call number). If the address of syscall() is

taken in the reachable VCG, then sysfilter aborts (or issues a warning, if invoked accordingly)

as the resulting system call set may be incomplete.

3.2.4. System call set enforcement

The input to the syscall-set enforcement component of sysfilter is the set of allowed system

calls, as output by the extraction tool, as well as the ELF file that corresponds to the main binary

of the application (see Figure 3.1E). Armed with the set of developer-intended syscalls, termed the

syscall policy, sysfilter uses seccomp-BPF [77] to enforce it at run-time. The run-time compo-

nent receives as input a BPF “program” [76], passed via prctl, or seccomp, which is invoked

by the kernel on every system call. BPF programs are executed in kernel mode by an interpreter

for BPF bytecode [76], while just-in-time (JIT) compilation to native code is also supported [50].

Note that the Linux kernel provides support for two different BPF variants: (a) classic (cBPF) and

(b) extended (eBPF) [119]. As of Linux kernel v5.8, seccomp-BPF makes use of cBPF only.

The input to seccomp-BPF programs (filters) is a fixed-size struct of type seccomp_data,

passed by the kernel, which contains a snapshot of the system call context: i.e., the syscall number

(field nr), architecture (field arch), as well as the values of the instruction pointer and syscall ar-

guments. sysfilter performs filtering based on the value of nr as follows: if (nr ∈ {0, 1, ...})

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 29

1 #define ARCH AUDIT_ARCH_X86_64
2 #define NRMAX (X32_SYSCALL_BIT - 1)
3 #define ALLOW SECCOMP_RET_ALLOW
4 #define DENY SECCOMP_RET_KILL_PROCESS
5
6 struct sock_filter filter[] = {
7 BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
8 (offsetof(struct seccomp_data, arch))),
9 BPF_JUMP(BPF_JMP| BPF_JEQ|BPF_K, ARCH, 0, 7),

10 BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
11 (offsetof(struct seccomp_data, nr))),
12 BPF_JUMP(BPF_JMP|BPF_JGT|BPF_K, NRMAX, 5, 0),
13 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 0, 3, 0),
14 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 1, 2, 0),
15 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 15, 1, 0),
16 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 60, 0, 1),
17 BPF_STMT(BPF_RET|BPF_K, ALLOW),
18 BPF_STMT(BPF_RET|BPF_K, DENY)
19 };

Figure 3.3: Classic BPF (cBPF) program. Compiled-by sysfilter, enforcing the following
syscall set: 0 (read), 1 (write), 15 (exit), and 60 (sigreturn). The filter checks if the value
of field nr (syscall number) ∈ {0, 1, 15, 60} via means of linear search.

then ALLOW else DENY, where {0, 1, ...} is the set of allowed system call numbers. Given such

a set, sysfilter compiles a cBPF filter that implements the above check via means of linear or

skip list-based search. Figure 3.3 depicts a filter that uses the linear search approach to enforce

the following set of syscalls: read (0), write (1), exit (15), and sigreturn (60). Ln. 7 – 12

implement a standard preamble, which asserts that the architecture is indeed x86-64. This check

is crucial as it guarantees that the mapping between the allowed syscall numbers and the syscalls

performed is the right one.

To inject the compiled filter, sysfilter first generates a dynamic shared object (e.g., lib-

sysfilter.so) and links it with the main binary using patchelf [120]. The library contains

a single function, install_filter, registered as a constructor. This directs ld.so to automat-

ically load libsysfilter.so, and invoke the function during the initialization of the main bi-

nary (see Figure 3.1), which installs the filter—and prevents the binary from adding new filters—at

load time. For further details on the filter implementation, see [111].

Once the filter is installed, the process process can execute only syscalls specified by the policy.

Note that in order to support runtime loading initialization of additional libraries, as well as other

loader-related functionality, the system call policy for ld.so should also be included in the set

of syscalls passed to the enforcement tool. To facilitate this, our enforcement tool accepts a list of

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 30

policies as arguments, and builds the filter based on the union of all specified policies. (In practice,

however, we observe that most binaries already include all system calls used by ld.so in their

own syscall sets, so this does not represent a significant different in the enforced policies.)

Crucially, our seccomp-BPF filters configured as pinned to the protected process during its

lifetime. Even if the process is completely compromised, attackers cannot remove filters. Since

the filtering itself takes place in kernel mode using only the syscall number as input; the syscall

arguments are not inspected, and user space memory is not accessed, thereby avoiding the pitfalls

related to concurrency and (wrapper-based) syscall filtering [121, 122]. In addition, applications

that make use of seccomp-BPF are seamlessly supported as well. BPF filters are stackable, mean-

ing that more than one filter can be attached to a process; if multiple filters exist, the kernel always

enforces the most restrictive action.

Handling execve sysfilter prevents enforcement bypasses via the execution of different

programs. Specifically, even if a (compromised) process is allowed to invoke execve, it still can-

not extend its set of allowed syscalls by invoking a different executable that has a (potentially)

larger set of allowed syscalls; the same is also true if the process tries to craft a rogue executable

in the filesystem, which allows all syscalls (or some of the blocked ones), and execute it. Filter

pinning and stacking are essential for ensuring that processes can only reduce their set of allowed

syscalls, in accordance to the principle of least privilege [3], but they do interfere with execve as

they are preserved process attributes.

For example, suppose that programs P1 and P2 have the following syscall sets. P1: 0 (read),

1 (write), 15 (exit), and 59 (execve); P2: 0 (read), 1 (write), 2 (open), 3 (close), 8 (lseek)

,9 (mmap), 11 (munmap), and 15 (exit). If P2 is invoked normally, then it will operate successfully.

However, if P2 is invoked via P1, then the resulting process will not be able to issue any other

syscall than read, write, exit, and execve (the last two are not even required by P2).

To deal with this issue sysfilter can be configured to enforce P1 with the union of the

syscall sets of P1, and P2. In this case, both programs will function correctly. However, this over-

privileges P1. as it must have access to the additional syscalls required by P2 (in this case, lseek,

mmap, and munmap).

Given these limitations, sysfilter is not geared towards sandboxing applications that in-

voke arbitrary scripts or programs (e.g., command-line interpreters, managed runtime environ-

ments); other schemes, like Hails [123], SHILL [124], and the Web API Manager [125], are better

suited for this task. Exploring ways to handle execve while safely permitting changes in filters

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 31

is ongoing work. As one example, our preliminary results (§ 4.3) indicate that combined policy

creation can be automated to some extent by employing static value-tracking analysis to resolve

the first argument of execve calls.

3.3. Prototype implementation

sysfilter is built atop the Egalito framework [90]. Egalito is a binary recompiler; it allows

rewriting binaries in-place by first lifting binary code into a layout-agnostic, machine-specific in-

termediate representation (IR), dubbed EIR, and then allowing “tools” to inspect or alter it, as a

way to simplify tasks such as for instrumentation, hardening, or patching.

We implemented sysfilter as an Egalito “pass” (in C/C++), which creates the analysis

scope and constructs the VCG (or can stop at construction of the DCG or ACG, if desired). Note

that we do not utilize the binary rewriting features of Egalito; we only leverage the framework’s

API to precisely disassemble the corresponding binaries and lift their code in EIR form, which, in

turn, we use for implementing the analyses required for constructing the DCG, identifying all AT

functions for building the ACG, pruning unreachable parts of the call graph for assembling the

VCG. We chose Egalito over similar frameworks as it employs the best jump table analysis to date.

During the development of our prototype tools we also improved Egalito by adding better support

for hand-coded assembly, fixing various symbol resolution issues, and re-architecting parts of the

framework to reduce memory pressure, and upstreamed all our changes.

Our prototype implementation consists of ≈2.5 KLOC of C/C++ and ≈150 LOC of Python,

along with various shell scripts (glue code; ≈120 LOC). The C/C++ component uses the Egal-

ito framework [90]. The extraction tool is a further set of Egalito “passes” on top of sysfilter,

which identifies identifying syscall instructions in all VCG functions, and performs value track-

ing.

The enforcement tool is implemented in Python and is responsible for generating the cBPF

filter(s), and libsysfilter.so, and attaching the latter to the main binary using patchelf.

Both tools are open-source and available at https://gitlab.com/brown-ssl/sysfilter.

3.4. Evaluation: correctness and performance

We begin our evaluation of sysfilter by investigating its correctness and runtime perfor-

mance. In § 4.3, we continue this evaluation with a detailed study of its effectiveness based on our

initial large-scale experiments when running sysfilter on ≈30K binaries in Debian sid.

https://gitlab.com/brown-ssl/sysfilter

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 32

Application Version Syscalls Tests Pass?

FFmpeg (124) 4.2 167 3756 3

GNU Core. (100) 8.31 148 672 3

GNU M4 (1) 1.14 70 236 3

MariaDB (156) 10.3 153 2059 3

Nginx (1) 1.16 128 356 3

Redis (6) 5.0 104 81 3

SPEC CINT. (12) 1.2 82 12 3

SQLite (7) 3.31 139 31190 3

Vim (3) 8.2 163 255 3

GNU Wget (1) 1.20 107 130 3

Table 3.1: Correctness test. The numbers in parentheses count the different binaries included in
the application/package. “Syscalls” indicates the number of system calls in the allowed set; in
case of applications with multiple binaries that number corresponds to the unique syscalls across
the syscall sets of all binaries in the package. “Tests” denotes the number of tests run from the
validation suite of the application.

Testbed Our experiments in this section were performed on an 8-core Intel Xeon W-2145 3.7GHz

CPU, armed with 64GB of (DDR4) RAM, running Devuan Linux (v2.1, kernel v4.16). All appli-

cations (except SPEC CINT2006) were obtained from Debian sid, which is the development (un-

stable) distribution of Debian Linux [126], as it provides the latest versions of upstream packages

along with debug/symbol information [113].

3.4.1. Correctness

We used 411 binaries from various packages/projects with sysfilter, including GNU Core-

utils, Nginx, Redis, SPEC CINT2006, SQLite, FFmpeg, MariaDB, Vim, GNU M4, and GNU Wget,

to extract and enforce their corresponding syscall sets. The results are shown in Table 3.1. Once

sandboxed, we stress-tested them with ≈37.3K tests from the projects’ validation suites. We did

not include tests that required the application to execute arbitrary external programs, such as tests

with arbitrary commands used in Vim scripts, Perl scripts in Nginx, and arbitrary shell scripts to

load data in SQLite and M4. In all cases, sysfilter managed to extract a complete and tight

over-approximation of the respective syscall sets, demonstrating that our prototype can success-

fully handle complex, real-world software.

3.4.2. Performance

To assess the run-time performance impact of sysfilter, we used SPEC CINT2006 bench-

marking suite, Nginx web server, and Redis data store—i.e., 19 program binaries in total; the

selected binaries represent the most performance-sensitive applications in our set and are well-

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 33

1KiB 100 KiB 1 MiB
Request size

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

.821x .878x
.950x.980x .998x .943x.932x .971x .951x.967x .995x .953x

Linear Linear + JIT Skip list Skip list + JIT

Figure 3.4: Impact of sysfilter on Nginx.

GET SET
Operation

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

.922x .922x.974x .974x
.895x .895x

.980x .980x

Linear Linear + JIT Skip list Skip list + JIT

Figure 3.5: Impact of sysfilter on Redis.

suited for demonstrating the relative overhead(s). We also explored different settings and con-

figurations, including interpreted vs. JIT-compiled BPF filters, and filter code that implements

sandboxing using a linear search vs. filter code that utilizes a skip list-based approach (Sec. 3.2.4).

In the case of SPEC, we observed a run-time slowdown of ≤1% under all conditions and search

methods.

In our experiments, we disable the default seccomp filter flag SECCOMP_FILTER_FLAG_-

SPEC_ALLOW [49] to disable the speculative store bypass (SSB) mitigation. This is a configurable

option in our enforcement tool—however, the SSB mitigation is only relevant when BPF programs

of unknown provenance are loaded in kernel space to further assist mounting Spectre attacks [127]

(variant 4 [128])—sysfilter cBPF programs are not malicious nor attacker-controlled. When

the mititation is enabled, we observe that it incurs an additional ≈10% overhead in all cases.

Figure 3.4 and Figure 3.5 illustrate the impact of sysfilter on Nginx (128) and Redis (103)—

the numbers in parentheses indicate the corresponding syscall set sizes, while “Binary” corre-

sponds to skip list-based filters. We configured Nginx to use 4 worker processes and measured

its throughput using the wrk tool [129], generating requests via the loopback interface from 4

threads, over 256 simultaneous connections, for 1 minute. Overall, sysfilter diminishes reduc-

tion in throughput by using skip list-based filters (compared to linear search-based ones) when JIT

is disabled, with maximum reductions in throughput of 18% and 7%, respectively. The differences

in compilation strategy appear to be normalized by jitting, which showed a maximum drop in

throughput of 6% in all conditions. We evaluated Redis similarly, using the memtier tool [130],

performing a mix of SET and GET requests with a 1:10 request ratio for 32 byte data elements. The

requests were issued from 4 worker threads with 128 simultaneous connections, per thread, for 1

minute. sysfilter incurs maximum throughput reductions of 11% and 3%, with and without

JIT support, respectively. Considering everything, the sandboxed versions of SPEC, Nginx, and

CHAPTER 3. SYSFILTER: AUTOMATED SYSTEM CALL FILTERING 34

Redis, exhibited minimal or negligible run-time slowdown—suggesting that sysfilter can be

readily used in real-world settings and deployments.

35

Chapter 4

Reducing syscall overprivilege at scale

4.1. Measuring overprilege at scale

A primary goal of our work is to identify effective to reduce overprivilege for a wide variety

of programs. In order to address this challenge, we conduct a series of large-scale studies to

characterize overprivilege—and the extent to which our techniques can help reduce it—across a

whole Linux distribution. Broadly, our studies have three goals:

1. To test our techniques on a large set of binaries, highlighting edge cases where static disas-

sembly may fail

2. To characterize system call overprivilege at scale, motivating the need for tools to reduce

overprivilege in a wide variety of programs

3. To demonstrate the effectiveness of our techniques by showing how their application across

a diverse set of programs can improve the security posture of a system

To conduct our studies, we built autopkg, a framework to run our tools on all ELF application

binaries in a Linux system. We chose to use Debian Linux [126] for our studies. Debian is a large,

well-established distribution—at the time of this writing, it contains over 50K software packages

for the x86-64 architecture. Specifically, we chose to use Debian sid, the development branch,

due to its high availability od debug symbol packages [113]. To analyze each package, we imple-

mented autopkg, a custom framework to download and install each package in the repository,

locate ELF binaries in each package, and run our tools on each binary to gather information about

syscall API usage and library code bloat. The following sections describe the autopkg framework

and present preliminary results gathered from analysis of over ≈30K binaries.

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 36

Related studies We are aware of two similar distribution-wide studies that have been conducted

in the past. Tsai et al. [131] performed a similar study to ours (on binaries in Ubuntu v15.04) to

characterize the usage of the syscall API, as well as that of ioctl, fcntl, prctl, and pseudo-

filesystem APIs. Their study focuses on quantifying API complexity and security-related usage

trends, such as unused syscalls and adoption of secure APIs over the legacy ones. Our study of

the syscall API is focused on evaluation of our syscall extraction tool. In antithesis to our FCG con-

struction tools, the call graph construction approach of Tsai et al. does not consider initialization/-

finalization code nor does it identify AT functions that are part of global struct/union/C++ ob-

ject initializers. Prior to their work on piecewise compilation, Quach et al. [132] perform a study

of code bloat across 12 large applications (web browsers, text editors, media players, etc.) on De-

bian Wheezy, using static analysis to construct an FCG similar to our ACG (§ 3.2.2). Our study

explores a much wider range of binaries, and presents a more precise analysis of function usage

with our more concise VCG. Overall, we consider this work complementary, and focus on making

the analysis more scalable, precise, and complete.

4.2. autopkg design

Broadly, the goal of our autopkg framework is to run an analysis tool (i.e., sysfilter or

libfilter) on every x86-64 ELF binary in the repository. At the time of writing, Debian sid

contains over 50K packages for the x86-64 architecture, distributed over three major repositories:

main, contrib, and nonfree. In Debian, a package represents a single installable software unit:

one package may contain multiple ELF binaries that require analysis (or may contain none, in the

case of, e.g., packages containing only documentation). Each package has a list of dependencies,

which specify the shared libraries required by its binaries. Analyzing each binary in the distri-

bution is a challenging task. In order to correctly resolve shared library loading, packages, their

dependent libraries, and (to support our analysis) all required debug symbols, must be installed to

their canonical paths as on a normal system. Further, not all packages can be installed at the same

time due to dependency conflicts, necessitating a more segmented approach. To meet these chal-

lenges, we developed autopkg to automate the installation and analysis of a large set of binaries

in Debian.

Figure 4.1 depicts the architecture of autopkg. The analysis process has two steps: an offline

phase to generate a list of candidate packages, and a distributed, online phase where a coordinator

dispatches package analysis jobs to a set of workers that install and process individual packages.

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 37

Coordinator

Figure 4.1: autopkg architecture.

4.2.1. Identifying package candidates

The first step in our analysis involves identifying the list of candidate packages that contain exe-

cutable C/C++ binaries. We consider packages from the three major Debian repositories, namely

main, contrib, and nonfree. To build a list of candidate packages, we excluded packages

that did not contain executable code by definition, including: documentation packages (*-doc);

development headers (*-dev); debug symbols (*-dbg, *-dbgsym); metapackages and virtual

packages; architecture-agnostic packages (architecture type ‘all’), which cannot include x86-64

binaries; kernel packages; and packages that contain only shared libraries. Note that shared li-

braries and other excluded packages can be installed during processing as dependencies of candi-

date packages.

Before beginning analysis, we divide the candidate packages into batches of at least one pack-

age. A batch represents a group of packages processed by a worker at one time, and therefore

must represent a set of packages that can be installed simultaneously. To construct a batch, we

attempt a “dry-run” installation of a package to identify other packages that will be installed at

the same time. If any of the installed packages are in the list of candidates, they are included in

that batch for processing as well.1

1While we tested using larger batch sizes, we found this did not improve overall performance due to the high
potential for installation errors and conflicts.

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 38

The resulting batch list provides the list of jobs to dispatch to worker processes. Since De-

bian sid is an unstable distribution, the list of available packages changes continuously, so we

perform this step at the start of each analysis run. As analyses are completed, we also update the

list of excluded packages with packages that were found to contain no x86-64 binaries during pro-

cessing: these usually include packages containing scripts, modules for scripting languages (e.g.,

Python, Perl, Ruby), or non-code assets like icon sets.

4.2.2. Package installation and analysis

Once the batch list is prepared, autopkg dispatches batches among a set of worker processes.

Critically, our framework uses containers to isolate and automate installations for each package.

A template container image is prepared using debootstrap [133] containing a base install of De-

bian sid and a curated list of common packages and symbol packages. Each worker is spawned

inside a new container built from the template image using an overlay filesystem, thus isolating

any filesystem changes from other worker invocations. The worker process installs the package

and its dependencies, scans the installed files for suitable binaries, identifies and installs required

symbol packages, and, finally, runs the analysis tool using the configuration specified by the coor-

dinator. When the process is complete, the worker sends the results back to the coordinator and

then exits. Upon exiting, the container and its filesystem overlay are deleted. While this means

that workers may spend significant time installing packages for large applications, we opted for

this “clean slate” approach to reduce error handling associated with dependency conflicts.

autopkg is built using a distributed architecture to allow for distribution of batches across

multiple analysis machines. At the start of each analysis run, a central coordinator process is in-

voked with the batch list and a configuration file specifying the analysis tool and any configura-

tion arguments required to run it. Each analysis machine runs an executor process, responsible for

launching a configurable number of workers (usually one per CPU core). When a worker slot is

free, the executor requests a batch from the coordinator and launches a new container with the

worker process. To ensure no memory contention between workers, workers are spawned with

fixed memory limits out of a total allocation for the system.

Our implementation of autopkg is built with≈4.4KLOC of Python and uses python-apt [134]

as an interface to Debian’s libapt to install packages and track dependencies. We use Pod-

man [56] to run container images and enforce memory limits. All interprocess communication

occurs using gRPC [135]. While autopkg’s architecture supports distribution of batches on mul-

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 39

tiple machines, for our current studies we have found it sufficient to run on a single machine.

We note that a significant portion of autopkg’s code relates to error handling. Since De-

bian sid is an unstable distribution containing developers’ latest package changes, the subset of

packages in the repository that can be processed at a given moment varies continuously. Broken

packages are common, and some packages may not be installable due to missing or outdated de-

pendencies. We typically find that 2–5% of the packages fail to install in a given analysis run.

Amusingly, during one experiment, an update to the package containing libc.so caused instal-

lations to fail for all packages—the problem was resolved by the Debian maintainers within a few

hours. For less catastrophic errors, identifying ways to improve resolution of certain install errors

is an area of ongoing work.

We performed our analysis runs from a single host, armed with an 8-core AMD Ryzen 2700X

3.7GHz CPU with 64GB of RAM, running Arch Linux (kernel v5.2). This section presents results

from analysis runs for sysfilter conducted in July 2021. We have performed multiple analysis

runs with each tool and achieved broadly similar results across runs, demonstrating (relative) sta-

bility in our analysis procedure given the variability in package stability in sid. We also conduct

similar analyses of code bloat using our libfilter tool, which we discuss in § 6.2.

4.3. System call usage in the wild

In this study, we processed a total of 34781 binaries across 9024 packages, 31659 (91%) of which

could be analyzed successfully. For this study, we configured sysfilter to report syscall usage

for each FCG type described in § 3.2.2: the direct call graph (DCG), address-taken call graph (ACG)

and the vacuumed call graph (VCG). Except where otherwise noted, all reported data is based on

the VCG representation.

4.3.1. Syscall set size per binary

Across all binaries, we observe that nearly all of the system call API is utilized, but many

binaries only use a small portion of the syscall API. Out of the total set of 352 syscalls (as of

kernel v5.8) we observe 334 syscalls utilized across all ≈31.6K binaries, which represents 94.8%

of the total set. Figure 4.1 shows the distribution of the number of syscalls used by each binary

processed. Overall, we observe that this distribution has a long tail, with a few binaries using a

large number of syscalls—Table 4.1 shows the top 10 binaries by syscall set size. The application

using the most syscalls is stress-ng a stress-testing tool designed to exercise hardware and OS

functionality, which uses 316 syscalls, or 90% of the total syscall API. The median syscall count per

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 40

0 50 100 150 200 250 300 350 400
Syscall Count

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
CD

F

All syscalls

Maximum number of syscalls
used by a single binary

N = 31933

Percentile
Syscalls

(% of API)

Min 17 (5%)
50th 89 (25%)
90th 144 (41%)
95th 155 (44%)
99th 166 (47%)
99.5th 192 (55%)
Max 316 (90%)

Figure 4.2: Distribution of syscall set size across binaries on Debian sid.

binary is 89 syscalls, with the 95th percentile at only 155 syscalls—thus, 50% of binaries use ≤50%

of the syscall API, with 95% of binaries using at most 47% of the API. This demonstrates that most

binaries in the distribution are significantly overprivileged in terms of syscall API access, and can

thus benefit from reducing their privileges.

With one exception, we find that all binaries processed use at least 40 syscalls. The sole ex-

ception is the statically-linked binary mtcp_restart that in package dmctp (which provides

distributed, multi-threaded checkpointing) uses only 17 syscalls—this binary performs syscalls

directly, without using any library wrappers.

In the general case, even the simplest of programs, such as a program equivalent to /bin/-

false, utilize 40 syscalls due to the paths included by initialization functions that load shared

libraries: e.g., mmap and mprotect are ubiquitous as they are always reachable from _start,

even before main is invoked.

Binaries that make arbitrary syscalls We found 105 binaries (0.55% of those analyzed) where

sysfilter was unable to construct the complete syscall sets. Many of these binaries are found

in the programs using the highest number of syscalls, as listed in Table 4.1. These programs con-

tain code where the syscall number is not defined as a constant but instead determined at runtime,

so sysfilter’s static value tracking approach (§ 3.2.3) cannot determine a constant value. On

manual examination, we found that these cases are fairly isolated. Specifically, the Qemu vir-

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 41

Package Binary Syscalls
(% of API)

stress-ng stress-ng 316 (90%)†

qemu-user qemu-* (30 binaries) 242 (69%)†

linux-perf-5.10 perf_5 219 (62%)†

vim-gtk3 vim 214 (61%)†

vim-athena vim 210 (60%)†

vim-nox vim 208 (59%)†

aoflagger rfigui 208 (59%)
radare2-cutter Cutter 207 (59%)
gnubg gnubg 206 (58%)
profanity profanity 205 (58%)

Table 4.1: Binaries using the most syscalls. Binaries marked with a (†) can also make arbitrary
system calls.

tualization framework and stress-ng stress-testing tool contain application-specific, arbitrary

syscall dispatchers (like glibc’s syscall()), which is expected given their functionality. We

also find binaries that link with scripting language runtimes like libperl and libruby (such as

vim), which also contain arbitrary system call dispatchers. Otherwise, we find that syscall sites

follow the pattern ‘mov $constant, %eax; syscall’, supporting our static value tracking

approach.

Dynamically-loaded code (dlopen/dlsym) and execve We further employ our value-tracking

approach to investigate the impact of execve as well as code loaded dynamically with dlopen

and dlsym. sysfilter can resolve ≈89% of all dlsym arguments, ≈45% of all dlopen ar-

guments, and ≈19% of all execve arguments. We observed several cases in common libraries

where value-tracking fails, which may benefit from special-case handling handling: e.g., ≈20%

of dlopen/dlsym usages relate to NSS functionality, while ≈22% relate to OpenGL APIs. Code

loaded dynamically with dlopen/dlsym represents a case where sysfilter (or any static anal-

ysis tool) may provide an incomplete analysis, since the libraries and functions loaded may be

dependent on program input (such as configuration files). We discuss methods for handling

common-case usages of dlopen/dlsym in Chapter 5 and provide an analysis of the maximum

impact on syscall sets.

4.3.2. System call invocation sites

For each system call site, we record the ELF file and function name that contained the syscall,

which provides insights into how programs invoke system calls. Nearly all programs invoke most

system calls via the standard C library, glibc. We find that 162 syscalls, 48.5% of those observed,

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 42

100 1K 10K 100K
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

N = 31933

DCG
VCG
DCG ACG

(a) Total functions

10 100 1K 10K 100K
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

N = 31933

(b) Funcs. with indirect callsites

10 100 1K 10K 100K
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

N = 31933

(c) Address-taken functions

Figure 4.3: Distribution of functions in extracted callgraphs. Note that the DCG only contains
direct function calls, and thus does not track indirect calls or address-taken functions.

are invoked only from glibc. Conversely, 77 syscalls are never made via glibc, and are instead

invoked directly by binaries or other shared libraries, most commonly set_tid_address and

set_robust_list, which do not have glibc wrappers.

4.3.3. Effectiveness of FCG approximation

Figure 4.3 shows the number of functions using the three FCG approximation methods (§ 3.2.2):

DCG, DCG ∪ ACG, and VCG. For all binaries, the total number of functions in the VCG (shown

in Figure 4.3a) is always in between DCG and DCG ∪ ACG, with≈85% fewer functions observed

at the median and ≈42% fewer at the 90th percentile. Similarly, we observe that the VCG reduces

the number of functions with indirect callsites and AT functions in the callgraph by an order of

magnitude, demonstrating the effectiveness of the VCG’s additional pruning.

We also examine the number of syscalls reported for each FCG type. Figure 4.4 shows the

number of syscalls we extract from each binary sorted by the count for the VCG. Each binary

represents three points on the figure (i.e., one for each method). For all binaries, the count for the

VCG is always in between that of DCG and DCG ∪ ACG. Thus, for our dataset, VCG represents

a safe, tight over-approximation of the FCG.

4.3.4. Effectiveness of syscall restrictions

To assess the security impact of syscall filtering, we investigated how sysfilter reduces the

attack surface of the OS kernel, by inquiring what percentage of all C/C++ applications in Debian

sid (≈30K main binaries) can exploit 23 (publicly-known) Linux kernel vulnerabilities—ranging

from memory disclosure and corruption to direct privilege escalation—even after hardened with

sysfilter. A list of the number of binaries in our dataset affected by each CVE is shown in

Table 4.2. Depending on the exact vulnerability, the percentage of binaries that can still attack the

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 43

0 5000 10000 15000 20000 25000 30000
Binary

0

50

100

150

200

250

300

Sy
sc

al
l C

ou
nt

DCG VCG DCG ACG

Figure 4.4: Syscall count for different FCG construction methods. The number of syscalls re-
ported for each binary is shown, sorted by the count for the VCG.

kernel ranges from 0.2% – 67.19%. Although sysfilter does not defend against particular types

of attacks (e.g., control- or data-flow hijacking [78]), our results demonstrate that it can mitigate

real-life threats by means of least privilege enforcement and OS attack surface reduction. For

example, we observed 152 binaries (only 0.48% of those analyzed) using the ptrace syscall—the

remainder of the binaries in the study have the ability to invoke ptrace, even though they do not

use it. By restricting other binaries from invoking ptrace, we reduce the kernel’s attack surface

by limiting access to this interface.

4.3.5. Analysis performance and scalability

To collect data for our studies, we configured sysfilter to collect system call sets for four

separate FCG passes, the three mentioned in this section and the ATCG, which we discuss further

in Section 5.2. In this configuration, the median runtime is about 70s per binary, with 90% of

binaries completing in 300s. For a single pass that generates only the VCG, which would be a

more suitable configuration in production, the median runtime is reduced to about 30s per binary,

with 90% of binaries completing within 105 seconds. In either case, however, we believe that this

demonstrates sysfilter’s scalability: sysfilter can automatically analyze each binary in the

Debian sid distribution (e.g., ≈30K binaries) in a relatively short time (i.e., 1-2 minutes for the

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 44

CVE Syscalls Involved Vulnerability Type Binaries (%)

CVE-2019-11815 clone, unshare Memory corruption 21455 (67.19)
CVE-2013-1959 write Direct privilege escalation 21455 (67.19)
CVE-2015-8543 socket Number overflow leads to type confusion 20190 (63.23)
CVE-2017-17712 sendto, sendmgs Memory corruption 20102 (62.95)
CVE-2013-1979 recvfrom, recvmsg Direct privilege escalation 19848 (62.16)
CVE-2017-18509 setsockopt, getsockopt Memory corruption 19810 (62.04)
CVE-2021-22555 setsockopt Memory corruption 19801 (62.01)
CVE-2016-4997 setsockopt Memory corruption 19801 (62.01)
CVE-2016-4998 setsockopt Memory disclosure 19801 (62.01)
CVE-2018-14634 execve, execveat Memory corruption on suid program 13870 (43.43)
CVE-2017-14954 waitid Memory disclosure 13171 (41.25)
CVE-2014-9529 keyctl Memory corruption 4468 (13.99)
CVE-2016-0728 keyctl Memory corruption 4468 (13.99)
CVE-2018-12233 setxattr Memory corruption 2605 (8.16)
CVE-2014-5207 mount Direct privilege escalation 367 (1.15)
CVE-2019-13272 ptrace Direct privilege escalation 154 (0.48)
CVE-2018-1000199 ptrace Memory corruption 154 (0.48)
CVE-2014-4699 fork, clone, ptrace Register corruption 119 (0.37)
CVE-2017-6001 perf_event_open Direct privilege escalation 81 (0.25)
CVE-2014-7970 pivot_root DoS 79 (0.25)
CVE-2019-10125 io_submit Memory corruption 73 (0.23)
CVE-2016-2383 bpf Memory corruption 65 (0.20)

Table 4.2: Effectiveness analysis. The column “Binaries” indicates the number (and percentage)
of binaries observed in the large scale analysis on Debian sid applications that use the system
calls related to the respective vulnerability. (Underlined entries correspond to vulnerabilities that
involve namespaces.)

VCG configuration). This represents a significant reduction in cost compared to approaches that

require runtime tracing or source code analysis, which would require specific configuration and

testing for each individual application.

While analyzing each binary, we measured the time for each stage of processing: disassem-

bly to construct the analysis scope, FCG construction, syscall number extraction, and additional

value tracking studies, such as collecting dlsym and execve usage (§ 4.3.1). Figure 4.5 shows

the runtime of our extraction tool to disassemble all binaries and construct just the VCG for each

analysis phase (excluding the times for the other callgraph passes used only for testing). The most

dominant phase is the time to disassemble the binary and all its shared libraries, compromising

≈70% or more of the analysis time for most binaries. The next highest phase was system call set

extraction (§ 3.2.3), comprising ≈10–20% of the analysis time, due to the required data-flow track-

ing. We believe these areas are opportunities for improving the tool’s performance, as well as that

of the Egalito framework, to further improve our analysis.

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 45

0 5000 10000 15000 20000 25000 30000
Binary

1

10

100

1000

Ru
nt

im
e

(se
co

nd
s)

Disassembly
FCG Construction
Syscall Value Tracking
Other Value Tracking
Other Processing

(a) Runtime per binary

0 5000 10000 15000 20000 25000 30000
Binary

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 R
un

tim
e

(b) Normalized

Figure 4.5: Extraction tool runtime. Runtime is shown for the different phases of analysis to
construct the VCG for each binary, sorted by the largest runtime. Points are smoothed to show the
overall distribution between analysis phases. The phase “Other processing” refers to non-analysis
tasks such as startup, output generation, and cleanup.

4.4. Inferring policies for container images

We used sysfilter to identify system call policies for sets of binaries in container images.

Container runtimes like Docker [55] and Podman [56] automatically apply a configurable seccomp-

BPF policy when running containers to restrict the system calls they can invoke, which is critical

for preventing containers from bypassing the containerized environment. The default Docker pol-

icy permits 287 syscalls for standard containers and 306 syscalls for privileged containers, i.e., 74%

and 78% of the total syscall API, respectively, making this policy very coarse. Indeed, we find only

one binary in our study (stress-ng) that requires more than 287 syscalls.

Accordingly, we examine to what extent sysfilter can be used to infer more-restrictive sys-

tem call policies by reporting on the syscall sets we identified in common sets of Linux packages

in popular container images published in the Docker Hub image repository [136]. For this exam-

ple analysis, we do not analyze Docker container images directly—rather, we leverage our existing

dataset and autopkg infrastructure for processing Debain sid packages to provide an equivalent

analysis. Using sysfilter to analyze binaries inside container images is feasible with additional

engineering effort.

We selected 10 official images for popular C/C++ applications, each with >10M downloads

from the Docker Hub. To simplify the process of translating packages in the container’s base

distribution to Debian sid package names, we select container images that were build from dis-

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 46

Image #Pkg #Bin
Default Policy (287 total) Privileged (306 total)

Added Removed Reduced Policy Added Removed Reduced Policy

debian 91 321 21 (7%) 72 (25%) 215 (-25%) 11 (4%) 81 (28%) 225 (-21%)
haproxy 89 305 17 (6%) 72 (25%) 215 (-25%) 10 (3%) 84 (29%) 222 (-22%)
httpd 113 314 17 (6%) 72 (25%) 215 (-25%) 10 (3%) 84 (29%) 222 (-22%)
mariadb 178 412 21 (7%) 63 (22%) 224 (-21%) 11 (4%) 72 (25%) 234 (-18%)
memcached 90 304 17 (6%) 70 (24%) 217 (-24%) 10 (3%) 82 (29%) 224 (-21%)
nginx 134 309 17 (6%) 69 (24%) 218 (-24%) 10 (3%) 81 (28%) 225 (-21%)
postgres 137 360 17 (6%) 72 (25%) 215 (-25%) 10 (3%) 84 (29%) 222 (-22%)
redis 88 308 17 (6%) 70 (24%) 217 (-24%) 10 (3%) 82 (29%) 224 (-21%)
spiped 89 307 17 (6%) 73 (25%) 214 (-25%) 10 (3%) 85 (30%) 221 (-22%)
ubuntu 92 324 17 (6%) 70 (24%) 217 (-24%) 10 (3%) 82 (29%) 224 (-21%)

Mean 18 (6%) 70 (24%) 217 (-24%) 10 (3%) 82 (27%) 224 (-26%)

Table 4.3: System call sets for container images. “Added” denotes the number of syscalls iden-
tified by sysfilter not present in Docker’s policy. “Removed” denotes the number of syscalls
permitted by the policy but not found in the container image. “Reduced policy” denotes the size
of the container policy without the “removed” syscalls, i.e., a policy minimized to the specific
container using sysfilter. Percentages are relative to the size of the policy.

tributions using the apt package manager. For each container image, we mapped each binary to

its providing package using dpkg and then looked up the equivalent sid package in our dataset.

Across all images, we considered a total of 260 unique packages, all but 20 of which could be re-

solved automatically. We manually resolved the remainder, which differed only be version num-

bers (e.g., mariadb-server-10.5 vs. mariadb-server-10.4). While this mapping between

Linux distributions does not provide an exact representation of each container’s syscall sets, it

does provide a tight approximation of the syscall sets observed across a commonly-installed set of

packages in popular Docker images.

Table 4.3 shows the total syscall set size that sysfilter identified for each image, compared

to the default container policy. The mariadb image had the largest syscall set, with 245 syscalls

identified. We compare the syscall set sizes reported for each image against two container policies:

the default policy, and the policy for containers in “privileged” mode—the latter grants CAP_-

SYS_ADMIN to the container and includes 10 additional syscalls. We observe that sysfilter can

provide further privilege reductions beyond the fixed container policy by identifying system calls

that are unused across all binaries in the image, with an average of 70 syscalls removed from the

default policy, and 82 syscalls removed from the privileged policy, reducing the policy size by 24%

and 27%, respectively.

Interestingly, sysfilter also identifies a small number of syscalls that applications in a con-

tainer may invoke that are not permitted by either container policy. We find that these system

CHAPTER 4. REDUCING SYSCALL OVERPRIVILEGE AT SCALE 47

calls result from features of common system utilities that are not applicable inside a container.

For example, the GNU coreutils utilities hostname and date, frequently used to fetch the system

hostname and time, respectively, also have features to set the hostname and time (using sethost-

name and clock_settime, respectively). Since altering these system features is not permitted

inside a container by default, the policy blocks these syscalls—and a benign container should

never invoke them. This is evidence of code bloat inside the container, indicating an opportunity

for software debloating tools to remove unnecessary code (cf. § 2.2.2, 6.2). Nevertheless, even on

bloated images, we believe that sysfilter demonstrates utility for reducing container privileges

atop existing fixed container security policies.

48

Chapter 5

Improvements to callgraph precision

Our work with sysfilter demonstrated the feasibility and effectiveness of using static anal-

ysis techniques to reduce overprivilege in terms of system call sets. Our distribution-wide studies

on Debian sid have illustrated the need for reducing system call overprivilege and demonstrated

our ability to analyze a wide range of programs. In addition, our large-scale studies, comprising

≈30K binaries, provide a significant corpus for studying potential enhancements to our analysis

techniques that can benefit a large number of programs. Accordingly, we leverage our analysis

tools and our dataset to investigate two key challenges:

1. Characterizing the impact code loaded dynamically using dlopen/dlsym

2. Further reducing privileges within an application by identifying useful partitions in the call-

graph

The following sections discuss our efforts to explore each challenge and evaluate the extent to

which we can improve the scalability and effectiveness of our techniques.

5.1. Handling dynamically-loaded code

5.1.1. Background

Linux, and the POSIX API in general, provides an interface for applications to interact with the

dynamic loader at runtime to load libraries and functions during program execution. This API is

primarily provided by two functions (and several variants of them) [137]:

1. dlopen, which may load a shared object not part of the program’s current address space,

and

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 49

1 // Version a (linked with -lm)
2 #include <math.h>
3 #include <dlfcn.h>
4
5 int main(void) {
6 cos(1.0);
7 return 0;
8 }

(a) An ordinary call to the cos function.

1 // Version b
2 #include <dlfcn.h>
3 typedef double (*fptr)(double);
4
5 int main(void) {
6 / Load libm.so
7 void *hdl = dlopen("libm.so", 0);
8
9 // Get address of cos

10 fptr func = dlsym(hdl, "cos");
11
12 func(1.0);
13 return 0;
14 }

(b) Calling cos dynamically using dlsym.

Figure 5.1: Example usages of dlopen and dlsym.

2. dlsym, which looks up the address of a code or data symbol (i.e., a function or global

variable) by name, either in a specific shared object or from the program’s complete address

space.

As opposed to the standard methods for specifying required shared objects and function us-

ages in ELF metadata, dlopen/dlsym allows programmatic usage of shared libraries and func-

tions at runtime. This enables applications to provide dynamic features like plugin frameworks,

dynamic dispatch, or to test for libraries providing optional features. However, dynamically-

loaded code introduces challenges for reconstructing the program’s callgraph, as the functions

loaded may only be known during execution.

Figure 5.1 shows an example program using the math function cos in a basic form (a) and

rewritten using dlopen/dlsym (b) to look up the address of the function. In version (a), analysis

of the disassembled program can determine that cos is called through a call instruction to the

function’s PLT. However, in (b), the address of the call instruction is returned by the call to dl-

sym—and based on libm.so’s location in the address space—so its address cannot be resolved

statically using the same methods.

To handle these cases, sysfilter can take as input a user-provided “DL file” specifying a set

of symbols and shared libraries that are loaded dynamically. These extra functions are added to

the callgraph as additional starting points for the VCG and are always considered reachable for the

construction of syscall sets. While this method provides a complete analysis, it requires using an

out-of-band method to identify the set of functions and libraries loaded dynamically. This could

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 50

be performed manually a developer or administrator with knowledge about how the program

will execute, or generated from a runtime tracing tool. However, it remains an open question to

what extent our techniques can identify dynamically-loaded symbols.

5.1.2. Resolving symbol names automatically

One opportunity to handle this is to use static value tracking, which sysfilter already uses

to resolve syscall numbers (§ 3.2.3), to resolve the string argument to dlsym and map it to the

corresponding function in the analysis scope. In Figure 5.1(b), the argument to dlsym (i.e., the

string “cos”) is a constant and can therefore be read from the .rodata section of the ELF binary.

For these cases, argument tracking shows promise for resolving the names of dynamically-loaded

symbols, which can then be looked up in the program’s analysis scope in a manner similar to

sysfilter’s “DL files.”

However, not all symbol or shared library names can be resolved to constant values. First, only

constant string values can be resolved using static value tracking. The example in Figure 5.2a con-

structs the argument to dlsym dynamically in a buffer stored on the stack, rather than as constant

data in the .rodata section, so its value cannot be resolved using the same methods. Moreover,

the argument comes from variable func_name, which itself is an argument to the function run_-

init. While static tracking of certain values through memory or function calls may be feasible

in some cases, we avoid this and use a strictly inter-procedural value tracking approach, as the

alternative would increase the complexity of the tool significantly and potentially lead to path

explosion.

Second, and more critically, even with highly complex data-flow analysis, many dynamic loads

cannot be resolved statically using the binary alone. Figure 5.2b shows an example where the

arguments to both dlopen and dlsym are parsed from a configuration file, which is a common

behavior for applications with plugin support. Here, the library and symbol name are only known

at runtime by parsing the configuration file. Thus, knowledge of the system configuration is re-

quired to determine which functions must be loaded. We note that this is a limitation of any static

analysis tool, regardless of the techniques used, as the code to be loaded depends on the system

configuration or program inputs.

Finally, even complete knowledge of the string values passed to dlsym may not be sufficient

for constructing the a complete callgraph that contains all dynamically-loaded functions. Fig-

ure 5.2c shows a function get_foo that attempts to load function foo_v2 and instead loads

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 51

1 #include <string.h>
2
3 typedef void (*fptr)(void);
4
5 void run_init(char *func_name)
6 {
7 char buf[10];
8 strncpy(buf, 10, "init_");
9 strncpy(buf, 10, func_name);

10
11 fptr func = dlsym(hdl, buf);
12
13 func();
14 return 0;
15 }

(a) Dynamically-constructed string

1 config cfg = parse("/etc/foo.conf");
2 hdl = dlopen(cfg.plugin_path, 0);
3 func = dlsym(hdl, cfg.plugin_name)
4 func();

(b) Symbol/library names from an external file

1 fptr get_foo(void) {
2 func = dlsym(hdl, "foo_v2");
3 if (func != NULL) {
4 return func;
5 }
6 return dlsym(hdl, "foo_v1");
7 }

(c) Non-existant symbols

Figure 5.2: dlopen/dlsym with dynamic values.

function foo_v1 if foo_v2 is not present. Both function names (i.e., foo_v2 and foo_v1) are

constant values and can be recovered, but this is no guarantee that the code for both functions is

actually present on the system. In the case of get_foo, a functioning program only requires one

foo_* function to be loaded successfully—e.g., foo_v1 may be a legacy version of the function

that is only present in very old libraries and not found on the system. Since some symbol loads

may be expected to fail, this creates challenges for determining when all developer-intended dy-

namic function loads have been resolved. Handling these cases may require additional informa-

tion about older symbols that can be ignored, or, if all dynamically-loaded libraries are known, a

“best effort” approach may be used to ignore symbols that are not present in the current library

version.

For these reasons, we conclude that while static value tracking my assist with resolving dy-

namically loaded symbols, any complete approach requires some knowledge of the program’s

runtime environment to construct the callgraph with certainty. To build our approach, we leverage

our distribution-wide studies of programs in Debian sid to identify common usages of dynamic

loading and determine requirements for system-dependent resolution.

5.1.3. dlsym usage in the wild

To characterize the extent of dynamically-loaded code, and to what extent symbol names can

be resolved statically, we conducted further distribution-wide studies of ≈30K binaries in Debian

sid using our autopkg framework (§ 4.2). We conducted our studies in parallel with our syscall

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 52

Library Usage type Calls resolvable Calls Binaries
dlopen dlsym affected

glibc gconv -- 100% 95.8K (11%) 31.9K (100%)
glibc Exception handling -- 100% 176.0K (21%) 31.9K (100%)
glibc Name Service Switch (NSS) -- 23% 59.1K (7%) 18.4K (57%)
XCursor Fallback symbol load 100% 100% 36.4K (4%) 3.5K (11%)
Kerberos Plugin load 0% 0% 13.0K (2%) 4.3K (14%)
OpenGL Dynamic dispatch 71% 99% 285.9K (33%) 4.3K (14%)
OpenSSL Plugin load 0% 0% 13.2K (2%) 3.3K (10%)
libp11-kit Plugin load 0% 100% 5.8K (<1%) 2.9K (9%)
libsasl Plugin load 0% 0% 4.0K (<1%) 2.0K (6%)
GOMP GCC OpenMP plugins 0% 100% 59.5K (7%) 1.6K (5%)

Other shared libraries 11% 66% 91.5K (11%) 10.5K (33%)
Application-specfic usages 70% 63% 16.6K (2%) 2.8K (9%)

All dlopen/dlsym calls 45% 89% 856.8K (100%) 31.9K (100%)

Table 5.1: Categories of dlopen/dlsym usage. For each category, we report the number of
dlopen and dlsym calls for which argument tracking was able to resolve a constant value. glibc
uses internal mechanisms to load libraries instead of dlopen, so its usage is not reported here—
however, we expect that these cases do not resolve to constant values.

set analyses by extending sysfilter to report on usages of dlopen and dlsym for each binary

and attempt to recover the library name (for dlopen) and symbol name (for dlsym) passed in

their first argument. In our studies, we found that adding these additional static value tracking

passes had negligible impact on analysis performance (cf. Figure 4.5, “Other Value Tracking”).

Overall, we observe that static argument tracking was largely successful at recovering values,

but that it is not sufficient for resolving symbol names on its own. In ≈30K binaries analyzed, we

observed ≈851K dlopen/dlsym callsites (herein “DL callsites”), of which 45% of dlopen calls

and 89% of dlsym calls could be resolved statically. Critically, in order to provide a safe, complete

reconstruction of the callgraph all DL calls for a binary must be resolved, which was only true only

≈20% of binaries that made DL calls.1

However, we note common patterns in DL call usage that show promise for improving the

analysis. Table 5.1 shows the prevalence of DL call usages by popular categories. A significant

number of DL calls originate from shared libraries: only 2% of DL callsites, found in only 9% of

the binaries, originated in the application itself. We manually inspected some of the most common

shared library calls and matched them to well-known library APIs: over 80% of the DL callsites

observed pertain to the ten cases listed, which comprise common system libraries. The top three

cases (comprising 39% of all callsites) originate inside glibc to implement locale-specific character

1Excluding optional DL calls inside glibc for exception handling and gconv, which we discuss shortly.

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 53

set conversions (gconv), Name Service Switch (NSS), and dynamic lookups for exception han-

dling information. The other cases correspond to prominent plugin and dispatch mechanisms in

well-known libraries, such as Kerberos modules [138] and OpenGL’s glvnd dynamic dispatch

framework [139].

While static argument tracking alone is not sufficient for resolving all DL callsite arguments,

our results demonstrate that a significant number of calls can be resolved with built-in han-

dling for common library APIs that can identify and load required functions based on the li-

brary’s respective system configuration. We therefore devoted our effort to identifying an effec-

tive paradigm for adding this functionality to sysfilter—and, by extension, our larger libfcg

framework (§ 6.1)—to enable flexible, scalable development of handlers for common libraries. We

term these handlers resolvers, which are pluggable modules that identify dynamically-loaded code

for specific libraries.

As a case study, we explored how identify dynamically-loaded functions are used in glibc’s

NSS framework and extend sysfilter to automatically resolve these cases. We chose NSS as

it is the most popular library we identified with significant failures and its usage can result in

drastically different syscall sets. Our experience implementing NSS informed our design to realize

a generic framework for adding further resolvers to sysfilter to support other libraries in the

future.

5.1.4. Case study: handling GNU NSS

The Name Service Switch (NSS) subsystem [140] provides an interface for applications and

system services to access user databases and name resolution services. NSS is used to resolve

domain names, user and group names, and other service and directory information, and is thus

essential for nearly all applications that use network and directory services. On Linux, NSS is part

of glibc and can be used via standard API calls for translating names—e.g., gethostbyname to

look up domain names, or getpwent to get information about a username.

The key principle of NSS is modularity. The main API provides a series of databases, which

are accessed by programs using common glibc API functions. For example, the “passwd” and

“shadow” databases contain user identity and password information, respectively, and can be

accessed using the glibc functions getpwent and getswent (among others), respectively. The

hosts database contains information about resolving machine hostnames and domain names

(e.g., localhost or google.com). One function that can query the hosts database is gethost-

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 54

gethostbyname(...)

gethostbyname
libc.so

_nss_files_gethostbyname

libnss_files.so

_nss_dns_gethostbyname

libnss_dns.so

/etc/hosts

DNS
“Frontend” API call

/etc/nsswitch.conf

hosts: files dns
passwd: files
...

System Configuration

“Backend” Functions

❶

❷
❸ dlopen, dlsym, call

❹ dlopen, dlsym, call

Figure 5.3: NSS resolution example.

byname, which translates domain names to network addresses (e.g., IP addresses). Databases are

implemented by a series of services, which are shared libraries that implement a set of API calls

to query the appropriate name information for each database. The file /etc/nsswitch.conf

contains a list of services providing each database. This architecture allows developers to cre-

ate custom service implementations to support additional functionality without extending glibc.

Accordingly, NSS services have a wide range in complexity, from simple file lookups (like query-

ing /etc/passwd) to rich, featureful modules for enterprise-level directory and authentication

systems (e.g., NIS, LDAP, SASL, etc.).

Figure 5.3 illustrates the NSS resolution process for a call to gethostbyname, which uses

the hosts database. When the function is called (¶), glibc parses the configuration file (·) and

dynamically loads (using dlopen) the service libraries listed for the hosts database, i.e., the

files and dns services and sequentially calls the appropriate backend function in each library.

Using the configuration in Figure 5.3, glibc will first query the “files” service (¸) by loading lib-

nss_files.so and then calling the function _nss_files_gethostbyname, which looks up

the name in /etc/hosts. Depending on the return value, glibc may either return a result, or

dynamically load and query the next service. In this case, if a result is not found in /etc/hosts,

glibc will query the the dns service (¹), which will try to resolve the name using the DNS protocol.

To summarize, the NSS subsystem has three relevant interfaces: the “frontend” glibc API func-

tions that use NSS features, the “backend” functions provided by service libraries, and the con-

figuration file. When an NSS frontend function is called, glibc dynamically loads a set of backend

functions from the service libraries using dlopen/dlsym, as determined by the configuration file,

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 55

/etc/nsswitch.conf. We find that this high-level view is shared among other plugin-based

subsystems we examined, which guided our design in sysfilter.

5.1.5. Resolver Implementation

We extended sysfilter to automatically detect NSS usage and include the appropriate back-

end service functions in the callgraph. Our implementation over-approximates the set of backend

functions that may be dynamically-loaded by considering the program’s callgraph, the NSS con-

figuration file, and a mapping between frontend and backend functions generated using an offline

analysis. We designed our implementation as a generic, modular resolver which can be replicated

to handle dynamically-loaded code in other libraries or plugin systems.

Offline function mapping The key component of the resolver is a mapping between frontend

NSS functions, i.e., glibc API functions that cause NSS code to be loaded dynamically, and the

backend functions that are loaded from the NSS service libraries. We constructed this mapping

in an offline manner using a combination of manual examination of glibc’s source code and au-

tomatic analysis with sysfilter itself. We ran sysfilter on each exported function in glibc

to identify which frontend functions interact with the NSS subsystem and load code dynamically

using dlsym. This provided a list of the total set of glibc frontend functions that used NSS for

investigation. By examining the NSS subsystem source code, we found that the names of the

backend functions were dynamically crafted from constant strings that were passed to several

internal glibc functions to perform NSS lookups. We used our static value tracking on these func-

tions (examples include __nss_library_load and __nss_hosts_lookup2) to resolve these

names manually, which was successful for most usages. We manually examined any callsites

where value tracking failed to identify any other functions loaded and complete the mapping.

While we were able to leverage sysfilter to construct the function mapping, we emphasize

that this is not a fully-automatic process. Rather, sysfilter’s callgraph construction and static

value tracking aided our manual analysis by identifying the total set of functions to investigate

and creating an initial mapping from constant string values. Expert oversight was required to

determine how to apply argument tracking to glibc and to fill in any gaps in the analysis based on

knowledge of the source code. While the full process requires developer oversight, we believe our

analysis techniques, and other state-of-the-art analysis tools can significantly reduce the workload.

Online resolution After the analysis scope for the program has been constructed (§ 3.2.1), the

NSS resolver examines the dynamic symbol table (.dynsym) for each shared object to find any

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 56

NSS frontend functions used in the program. Notably, the dynamic symbol table is present in all

dynamically-linked shared objects, as this metadata is required to support dynamic linking. Once

the set of frontend functions has been identified, the resolver determines which NSS service li-

braries may be loaded by parsing /etc/nsswitch.conf. Each library specified for the required

services is then disassembled and added to the analysis scope. Using the function mapping, we

find the set of backend functions matching each frontend function. For the example with geth-

ostbyname in Figure 5.3, the resolver will load the shared objects corresponding to each library

in the hosts database, (libnss_files.so and libnss_dns.so, respectively) and locate the

matching backend functions for gethostbyname. The resulting list of backend functions repre-

sents a safe, tight overapproximation of the set of functions that glibc may load dynamically when

gethostbyname is called.

The result of the resolver pass is a map of frontend API functions to the set of backend func-

tions that may be loaded at runtime. During callgraph construction (§ 3.2.2), if a frontend function

is considered reachable, its corresponding backend functions are added to the set of reachable

functions as well. This ensures that the dynamically-loaded functions are added only if they are

reachable, maintaining the tightest overapproximation.

To validate our NSS resolver, we used our resolver implementation in our correctness tests and

distribution-wide studies described throughout Chapter 4 and Chapter 5. In each of our studies,

we ran sysfilter on each binary using a standard NSS configuration from a default install

of Debian sid. We believe that this configuration represents a reasonable baseline for a typical

Debian system. We note that system configurations that use more featureful NSS libraries, such as

network-backed directory services like LDAP, may result in different system call sets for binaries

that use NSS. For example, applications that fetch user information may require system calls to

access the network (e.g., socket) if the NSS configuration contains network-based user services.

Supporting other resolvers We implemented our NSS resolver as a case study to demonstrate

the feasibility of building similar resolvers for other common libraries that load functions at run-

time (§ 5.1.3). Figure 5.4 shows the impact of our NSS resolver, and potential extensions for other

libraries, for resolving DL callsites across our dataset. Each point represents the proportion of bi-

naries in our dataset that would have all of their dlopen and dlsym usages resolved—and thus

a fully complete callgraph that includes dynamically-loaded code—given a certain makeup of re-

solvers. The x-axis denotes the combined set of resolvers for the top 10 libraries (Table 5.1), e.g.,

the point “Kerberos” represents the number of binaries that would be resolved if all DL callsites

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 57

related to Kerberos were resolved, as well as those for XCursor, NSS, etc.

In the present version of sysfilter, which uses our NSS resolver, we are able to resolve

dynamically-loaded strings to determine all dynamically-loaded code for ≈50% of the binaries in

our dataset. (Again, we consider the callsites for gcov and glibc exception handling as resolved

without any special handling, as these are strictly optional features, and the names loaded are fully

known.) Adding resolvers for the top 10 libraries, could resolve all DL callsites for up to ≈60%

of binaries. Beyond this, implementing resolvers for other shared libraries has further potential

impact, up to ≈90% of our dataset, as shared libraries are responsible for 98% of DL callsites. We

also note that the proportion of binaries covered does not change significantly with when adding

naive, automatic, string-based resolution, suggesting that library-specific resolvers can provide

the best impact.

Based on our implementation, we believe that building resolvers is a feasible solution for han-

dling dynamically-loaded code in common libraries. The initial cost of building a resolver is high,

as it requires an in-depth understanding of how each library may load code dynamically and

where it may utilize information about the system (e.g., configuration files). However, this is a

one-time and that can be aided by state of the art binary analysis tools to highlight cases for man-

ual analysis. In Chapter 6, we discuss how we have extracted the relevant functionality from

sysfilter as a generic framework to support similar analyses.

5.2. Partitioning the callgraph

Our current analysis techniques focus on identifying all reachable functions in the program by

constructing a safe, tight representation of its FCG. In sysfilter, we have used this representa-

tion to identify the total set of system calls used by a program. In Chapters 3 and 4, we have shown

that identifying reachable functions, and, by extension, syscall sets, is feasible for a large number

of binaries, and effective for reducing application privileges. Following this, we explored the fea-

sibility and effectiveness of partitioning the callgraph to allow for further privilege reductions at

certain parts of the program.

In sysfilter, the system call set covers all possible execution paths in a program. While we

have shown that this is effective for reducing overprivilege with respect to the full OS system call

API, it follows that certain components of the program may be overprivileged with respect to the

program itself. For example, a simple webserver may use the bind and listen syscalls at startup

to open and listen on a serving port, and then spawn worker threads to handle client requests.

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 58

N
on

e

+g
co

nv

+E
xc

ep
t

+N
SS

+X
Cu

rs
or

+K
er

be
ro

s

+O
pe

nG
L

+O
pe

nS
SL

+l
ib

p1
1-

ki
t

+l
ib

sa
sl

+G
O

M
P

+O
th

er
 L

ib
s

+A
pp

s

Resolvers added (Cumulative)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n

of
 b

in
ar

ie
s c

ov
er

ed

Resolver
Resolver + Strings

Figure 5.4: Theoretical impact of DL resolvers for common libraries. “Resolver” indicates the
proportion of binaries that would have all dlopen/dlsym callsites resolved given the cumulative
set of resolvers indicated on the x-axis. “Resolver + Strings” indicates the proportion of binaries
resolved if string values for other DL callsites are also considered resolved—this represents the
best-case scenario for an automatic attempt to resolve dlopen/dlsym strings not handled by a
resolver.

Since the worker threads do not need to open new ports to merely serve requests, the worker

threads are overprivileged as they have access to bind and listen, even though they are not

required for operation. In this case, the overprivileged have a significant security impact, as the

unnecessary access to bind and listen provides and adversary the capability to open ports for

new connections, an extremely valuable primitive for escalating an attack.

In order to further improve the program’s security posture in these cases, we aimed to use

our callgraph construction techniques to identify partitions in program execution that resulted in

safe, effective reductions in application privileges. Specifically, we conducted studies to determine

the feasibility and security impact of automatically partitioning the callgraph at two well-known

transition points in the program’s execution:

1. At program startup, i.e., before and after main is called

2. At creation of new threads with pthread_create

We select these transition points for our studies as they represent changes in program execution

that are relatively simple to identify in automatic processing and apply to a wide range of bina-

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 59

ries: nearly all binaries have an identifiable main function, and ≈53% of binaries in our dataset

(i.e., ≈17K programs) use pthread_create. In addition, these transition points represent stages

of program execution where some runtime penalty is already required due to kernel involvement

(i.e., due to program initialization or thread creation, respectively), making them good opportu-

nities for switching enforcement policies without introducing significant performance impact.

Similar to our analysis of dynamically-loaded code (§ 5.1), our approach is data-driven: we

leverage our autopkg infrastructure to analyze two partitioning schemes on binaries in Debian

sid to assess their effectiveness in reducing privileges in a large set of programs. In the remainder

of this section, we discuss the mechanics of constructing each partitioning scheme, discuss chal-

lenges inherent to partitioning the callgraph, and discuss our findings based analysis with on our

dataset. Overall, we focus our studies on assessing the feasibility of creating partitions at these

transition points and their effectiveness at scale, with the goal of informing the development of

future, partition-aware enforcement mechanisms.

Related work in partitioning Matching system call usage to phases of program execution has

been widely studied for host-based intrusion detection, which we discuss in § 2.1.1. In terms

of partitioning system call usage to reduce application privileges, and concurrently with our

work, Ghavamnia et al. [13] perform temporal specialization of system call sets instrumenting tran-

sition points between the initialization and serving phases of common server applications. Their

compiler-based approach relies on expert identification of the transition point between applica-

tion and serving phase and uses source-level information to prune the callgraph for each partition.

Our efforts focus on automatically identifying transition points a without requiring source code—

we consider this a complementary analysis that can trade off partition specificity with scalability

to a larger number of applications without requiring expert intervention.

5.2.1. Fixed partitions: before and after main

Our initial partitioning approach, and perhaps the most straightforward, involves separating

the program’s functionality during and after program initialization, i.e., before and after main is

called. From a developer’s perspective, the execution of a standard C/C++ program begins at

main. However, all programs run a number of initialization routines prior to calling main in order

to set up the program. Accordingly, this initialization code requires system calls to function, and

thus adds to the set of privileges required by the program.

Consider the most minimal C program (e.g., int main(void) { return 0; }), which

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 60

makes no system calls from main. Running sysfilter on this program will result in a system

call set with 40 syscalls, owing to code contained in the program’s initialization routines, and other

code considered reachable from them as determined by the callgraph extraction process (§ 3.2.2).

Therefore, initialization routines represent an opportunity for partitioning programs to reduce

privileges that may be required only by initialization routines.

Figure 5.5 shows a simplified view of the program startup process for dynamically-linked

binaries compiled using glibc. Program initialization functions are typically divided among ini-

tialization code linked into each binary (usually from the crt*.o family of object files, which are

provided by the toolchain) and setup routines built into the standard C library. Program execution

begins at the entry point specified in the ELF binary, usually _start, which performs operations

to set up the program stack and calls __libc_start_main, a function in libc.so that performs

basic initialization tasks including: setting up global data structures (e.g., .bss, initializing thread

storage, and other setup routines for the standard library itself. In addition, __libc_start_-

main calls the constructors for the program as specified in the .init and .init_array sections

of the program ELF, as well as other constructors specified by shared libraries, and finally calls

main. Once main returns, the program calls any destructor functions registered in the .fini

and .fini_array sections of the binary and any shared libraries, runs other exit handlers, and,

finally, terminates execution. A complete discussion of all initialization and finalization routines

involved in this process is beyond the scope of this document—we refer interested readers to [141]

for more details.

Creating the callgraphs To extract the program’s system call usage before and after main is

called, we generate the program’s callgraph in two partitions, as shown in Figure 5.5. To con-

struct the callgraph for each partition, we construct the vacuumed callgraph (VCG, § 3.2.2) as

usual, but restrict the set of starting functions to the entry points for the partition. The first parti-

tion, FCGinit, is generated from the program’s initialization routines, including _start and any

constructors found in the binary and shared libraries.

For the second partition, FCGmain+fini, we use the program’s main function and any destruc-

tor functions present in .fini and .fini_array as starting points for constructing the VCG. In

our prototype implementation, this requires that the main application binary (but not necessarily

its shared libraries) have symbol information in order to look up the address of the main by its

name—1142 binaries (3.5% of our dataset) did not meet this requirement. Locating main without

symbol information is also feasible without symbols by using value tracking to recover the ad-

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 61

_start

libc.so
__libc_start_main

main

Constructors
(.init_array)

Destructors
(.fini_array)

FCGinit ELF entry
point

FCGmain+fini

Figure 5.5: Partitioning before and after main. FCGinit and FCGmain+fini represent the scope
of the partitions we identify for our analysis. Note that the elements of program initialization/fi-
nalization shown here is not a complete view of all functions executed, but represents the sets of
functions considered as the starting points for constructing the callgraph for each partition.

dress passed to __libc_start_main; we leave this implementation to future work to support

more binaries.

Handling address-taken (AT) functions At this stage, the resulting callgraphs represent a sub-

set of the callgraph for the entire program, FCGall, composed from a restricted set of starting

functions. However, the partitioned callgraphs are inherently incomplete, as they may contain

address-taken (AT) functions that were address-taken in other parts of the program. Our parti-

tioned callgraphs must include these functions in order capture a safe, complete representation of

the FCG.

Figure 5.6 shows an example program with some initialization code in a constructor ctor. For

simplicity, we ignore other initialization code not shown in this listing, such as _start. To begin,

we construct a naive representation the callgraph for both partitions, FCG′init and FCG′main+fini

using the VCG construction process as described in the previous paragraph. From this step, the

current (incomplete) representation of the set of reachable functions V for each partition can be

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 62

1 typedef void (*fptr)(void);
2
3 void f6(void) { ... }
4 void f5(void) { ... }
5 void f4(void) { ... }
6 void f3(void) { ... }
7 void f2(void) { ... }
8 void f1(void) { f3(); }
9

10 fptr g_ptr = NULL;
11
12 __attribute__((constructor))
13 void ctor(void) {
14 g_ptr = &f1;
15 f4();
16
17 fp = &f6;
18 fp();
19 }
20
21 __attribute__((destructor))
22 void dtor(void) { ... }
23
24 void main(void)
25 {
26 g_ptr();
27 f5();
28
29 return 0;
30 }

Figure 5.6: Example program with initialization routines. Functions ctor and dtor are regis-
tered as constructor and destructor functions, respectively, using the given compiler attributes.

written as follows:

V [FCG′init] = V CG({ctor}) = {ctor, f1, f3, f4, f6}

V [FCG′main+fini] = V CG({main, dtor}) = {main, f5, dtor}
(5.2.1)

The constructor loads the address of f1 into the global pointer g_ptr, which is then called by

main. Thus, FCGmain+fini is not complete, as it does not contain f1. This is because the VCG

locates AT functions by identifying code pointers created as it traverses the callgraph (§ 3.2.2).

Since ctor is not traversed in FCG′main+fini, f1 is not found.

To resolve this safely, for each partitioned callgraph we must also include the set of address-

taken functions found for the VCG of the complete program. Recall that the VCG is composed as

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 63

follows:

V [V CG] = (V [DCG] ∪ V [ACG]) (5.2.2)

where DCG is the callgraph created from all direct function calls, and ACG is a pruned repre-

sentation of all reachable AT functions in the program. For any partition FCG∗, we can find the

complete representation for its reachable functions as the union of the VCG for the partition and

the program’s ACG:

V [FCG∗] = (V [V CG∗] ∪ V [ACG]) (5.2.3)

In the example, ACG contains the pruned set of AT functions identified in Figure 5.6:

V [ACG] = {f1, f6} (5.2.4)

In practice, main is itself an address-taken function, as it is called from __libc_start_main. We

exclude main from this set as a special case, since it should only be called once, at program start,

in any reasonable program. Thus, the ACG can be added to each partition to construct a complete

representation of the callgraph for each part of the program, FCGmain+fini and FCGinit:

V [FCGinit] = V CG({ctor}) ∪ V [ACG] = {ctor, f1, f3, f4, f6}

V [FCGmain+fini] = V CG({main, dtor}) ∪ V [ACG] = {main, f1, f5, f6, dtor}
(5.2.5)

The addition of the ACG from the entire program represents an safe, but significant overap-

proximation of the callgraph for each partition. In the example, f6 is only called by ctor, yet

it remains as part of FCGmain+fini. In our tests, this overapproximation resulted in very similar

syscall sets compared to the original program. We discuss our results and potential mechanisms

for reducing the number of AT functions added in § 5.2.2.

Partitioned syscall filters Once the partitioned callgraphs have been constructed, we determine

the system call sets for each partition. Critically, syscall policies added after the start of program

execution can only add restrictions to previous policies. This is a necessary security requirement

to prevent a compromised, restricted process from modifying the policy to increase its privileges.

Our system call filters are enforced in kernel mode using seccomp-BPF, which allows stackable

filters and only permits system calls if they are allowed by all attached filters.

To determine system call sets from our partitioned callgraphs, we must compose the sets such

that any transitions yield a more restrictive set. For fixed partitions before and after main is

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 64

called, this results in two system call sets (S): an initial set Sall representing the total syscall set

for the program, and FCGmain+fini representing the syscall set after main is invoked. These can

be composed from the partitioned callgraphs as follows:

Sall = S[FCGinit ∪ FCGmain+fini]

Smain = S[FCGmain+fini]
(5.2.6)

Thus, a program with a system call set partitioned in this way would install a system call filter

on startup (cf. § 3.2.4), and then add another system call filter before calling main to drop any

syscalls that are no longer required.

Partitioning on thread creation We also explored the effectiveness of partitioning the program’s

callgraph at the start of new threads, with the goal of further restricting program privileges at mul-

tiple points in the program. Since a new thread of execution may indicate a separate component

of a program’s execution, this partitioning scheme offers the potential for identifying differing

system call sets between threads, such as the webserver example discussed at the start of § 5.2.

The process of constructing the partitioned callgraph for each thread function is mostly similar

to partitioning before and after main, with the added challenge of automatically identifying the

thread functions.

Figure 5.7 shows an example program that creates three threads. To identify the functions

that are spawned as new threads, we leverage sysfilter’s value tracking analysis to identify

function addresses in a similar manner to locating syscall numbers (§ 3.2.3) and dlopen/dlsym

arguments (§ 5.1.2). Specifically, we configure sysfilter to track instances of pthread_create

and attempt to fetch the value of the third argument, which denotes the “start routine” for the new

thread. If a constant value is recovered, we search the program’s analysis scope to find a function

with a matching address.

Candidates for thread partitioning In our studies on Debian sid, we found that ≈53% of the

≈30K binaries in our study used pthread_create to create at least one thread. As with our

other uses of value tracking, the data-flow analysis may fail to recover a value if the argument to

pthread_create is not a constant address, e.g., if the value is computed dynamically, passed

as a function argument, or loaded from the stack or heap. We observed ≈48K pthread_create

callsites in our dataset, ≈54% of which could be resolved successfully.

In contrast to our analysis for dynamically-loaded code, we do not require all thread routine

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 65

1 #include <pthread.h>
2 typedef void (*fptr)(void);
3
4 pthread_t pt1, pt2, pt3;
5
6 void f4(void) { ... }
7 void f3(void) { ... }
8 void f2(void) { ... }
9 void f1(void) { ... }

10
11 fptr g_fptr = NULL;
12
13 void *t1(void *arg) {
14 g_fptr();
15 f4();
16 }
17
18 void t2(void *arg) {
19 fptr fp = (fptr)arg;
20 fp();
21
22 pthread_create(&pt3, NULL, &t3, (void*)0);
23 }
24
25 void *t3(void *arg) {
26 f3();
27 return NULL;
28 }
29
30 void main(void)
31 {
32 // ... Initialize pt1, pt2, pt3 ...
33 g_fptr = &f1;
34
35 pthread_create(&pt1, NULL, &t1, (void *)0);
36 pthread_create(&pt2, NULL, &t2, (void *)&f2);
37
38 return 0;
39 }

Figure 5.7: Thread partitioning example.

functions to be known in order to apply thread partitioning. Instead, this optimization could

be applied to any thread for which its address (and the address of any threads spawned by its

children, as we discuss later) are known. We observed ≈11K binaries in which at least one thread

routine address could be resolved, with ≈7.8K binaries (or ≈70% of binaries that create threads)

meeting this requirement for all child threads. Across the entire dataset, this indicates that 24% of

programs could support thread partitioning for at least one thread function.

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 66

Constructing the callgraph For each thread function, we create the FCG in a similar procedure

to the partition for main. We construct the VCG using the thread routine as a starting function,

and add ACG from the entire program to cover all AT functions that may be called from the

thread. Thread routines may utilize AT functions from global data, e.g., t1 in Figure 5.7, may

also use function pointers passed to the thread during creation via the fourth argument (arg)

to pthread_create, e.g., t2. While it is feasible to apply our value tracking approach to this

argument as well, we found that this argument is almost never constant and thus offers limited

opportunity for recovering function pointers.

For example, based on the program in Figure 5.7, we can compute the ACG and the FCG for

thread routines t1 and t2 as follows:

V [ACG] = {f1, f2, t1, t2, t3} (5.2.7)

V [FCGt1] = V CG({t1}) ∪ACG = {t1, f4} ∪ACG = {f1, f2, f3, f4, t1, t2, t3} (5.2.8)

V [FCGt2] = V CG({t2}) ∪ACG = {t1} ∪ACG = {f1, f2, f3, f4, t1, t2, t3} (5.2.9)

Similar to the process for partitioning before and after main, the AT functions added from the

ACG represents a safe, but significant, overapproximation of the call targets for each indirect call

in t1 and t2, resulting in both threads having the same set reachable functions. Indeed, since

all thread routines are inherently address-taken functions in order to be passed to pthread_-

create, all thread routines, and all functions reachable from them via direct or indirect calls, will

be present in the ACG. For example, f4 is reachable from t2 via the direct call in t1, which is

present in the ACG.

Thread routine t3 offers a rare opportunity to reduce this overapproximation. Since t3’s func-

tion set ({t3, f3}) contains no indirect call instructions, it cannot call any address-taken function,

and thus the entire ACG can be pruned from its callgraph:

V [FCGt3] = V CG({t3}) = {t3, f3} (5.2.10)

While this optimization appears to show promise for restricting the set of AT functions, it

occurs rarely in practice. In our dataset, we only observed a very small number of binaries (<20)

with thread functions that contained zero indirect calls.

Constructing syscall policies for thread partitions is similar to partitioning before and after

main. For each thread function, we construct a syscall set based on the set of reachable functions

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 67

for the thread routine and any thread routines it calls. In Figure 5.7, t2 spawns thread t3, so the

resulting system call sets for each thread are as follows:

St1 =S[FCGt1]

St1 =S[FCGt2 ∪ FCGt3]

St3 =S[FCGt3]

(5.2.11)

In order to construct syscall policies for thread partitions, all thread routines spawned from a

given thread must be known. If any of the child thread routines cannot be recovered via argu-

ment tracking, as it could spawn a thread routine with a larger system call set. In our dataset,

we found that ≈70% of binaries with any single thread routine resolvable met this requirement.

Given that our current AT function handling strategy involves adding all AT functions to all par-

tition callgraphs, requiring all thread routine functions to be resolved via argument tracking is not

required, as each thread routing is inherently address-taken at some point in the program. How-

ever, we continue to report results using this child thread requirement, in order to better inform

studies that use more restrictive methods for pruning AT functions in each thread partition.

5.2.2. Partitioning effectiveness in Debian sid

We evaluated the effectiveness of each partitioning scheme as part of our large-scale studies

on Debian sid. For each binary considered in our study, identified the proportion of binaries that

could support each partitioning method and extracted the relevant information to obtain the sys-

tem call sets for each partition type. Thus, for each binary, we collected the system call sets for the

full-program VCG (as in a typical sysfilter run), FCGinit, FCGmain+fini, the ACG, and the

FCG for each thread function identified by value tracking. For this study, we created combined

system call sets for binaries meeting the conditions of each partition type in postprocessing rather

than as part of sysfilter itself, which permitted flexibility in our analysis after collecting infor-

mation about each binary. Once a viable partitioning scheme is identified, this component can be

easily integrated into sysfilter’s existing codebase.

Table 5.2 compares the applicability of each partitioning scheme and overall effectiveness for

reducing system call sets. Partitioning after main can be applied to all binaries, but offered little

effectiveness for reducing privileges: reducing the system call set at main only resulted in smaller

system call sets for 8% of binaries in our dataset. Thread-based partitioning is applicable to fewer

binaries: we observed≈11K binaries in which at least one thread routine could be resolved,≈70%

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 68

After main Thread-based Thread-based
(> 1 child routine) (all child routines)

Binaries considered 31933 (100%) 8768 (51%) 7838 (46%)
Binaries with reduced syscall sets 2466 (8%) 8768 (51%) 7838 (46%)
Median syscalls removed 0 5 5

Table 5.2: Comparison of partitioning effectiveness. “Binaries considered” reports the number
of binaries that supported partitioning using the given approach. “Binaries with reduced syscall
sets” lists binaries for which at least one system call could be removed in any partition. All per-
centages are relative to the total number of binaries in the study (31933).

0 25 50 75 100 125 150 175
Number of syscalls

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

N = 7838

SAll

SMain + Fini

SThread

Figure 5.8: Distribution of system call sets with partitioning. Note that the system call set dis-
tributions for SAll and SMain+Fini are virtually identical. For SThread, the thread with the largest
system call set is reported.

of which had all child threads resolved and were thus considered for partitioning. We note that

additional engineering effort for resolving thread function pointers using data-flow tracking may

increase the total set of closer to the true number of binaries using pthread_create.

Across the 7838 binaries supporting thread-based partitioning, we identified 13149 thread rou-

tines, with 90% of binaries using ≤3 identifiable threads. Table 5.5a lists the most common system

calls that could be removed in at least one thread partition per binary. The most common syscall

removed was set_tid_address, a benign syscall rarely used outside glibc initialization, which

could be removed from nearly all binaries. The next most common syscalls relate to the timerfd

and epoll interfaces, which could be removed from nearly half of the binaries in this dataset,

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 69

Syscall Binaries % of Usages
Removed Removed

sendmmsg 970 6.20
sched_getaffinity 644 22.24
statfs 464 5.36
inotify_add_watch 330 2.61
inotify_init1 330 2.62
timerfd_create 280 2.14
timerfd_settime 280 2.14
epoll_create1 278 2.14
epoll_wait 264 2.02
getegid 236 1.47

(a) After main (31933 binaries)

Syscall Binaries % of Usages
Removed Removed

set_tid_address 7837 99.99
timerfd_create 3972 76.30
epoll_create1 3933 77.27
timerfd_settime 3856 74.00
epoll_wait 3774 73.21
sendmmsg 2201 40.44
inotify_init1 2157 44.56
inotify_add_watch 2134 43.90
getpeername 1196 20.85
sched_setaffinity 642 8.19

(a) Thread-based (7838 binaries)

Table 5.5: Most common removed syscalls by partition type. For each system call, we report the
number of binaries where the given syscall could be removed from at least one partition and the
percentage of binaries using this system call for which it could be removed.

which is ≈70% of the binaries using these system calls. Based on the set of “security-critical” sys-

tem calls compiled by Ghavamnia et al. [13] (comprising 17 syscalls such as bind, execve, and

mprotect), only ≈10% of thread partitions (≈1.3K threads) removed a critical syscall.

Figure 5.8 compares the distribution of system call set sizes across all binaries for each partition

type for the binaries supporting both schemes. Partitioning after main had a negligible impact on

the size of system call policies. For binaries supporting thread-based partitioning, we observed

that the syscall set size in individual partitions decreased by ≈5% (5 syscalls) at the median, and

≈9% at the 90th percentile (10 syscalls), when compared to their respective binary. We did not

observe significant variations in system call sets between threads in the same binary—this is ex-

pected, since each thread shares the same set of AT functions, which itself includes the set of all

thread functions.

Overall, we believe that these small differences in system call sets across partitions is primarily

due to the large overapproximation for AT functions. Indeed, the ACG alone accounts for most of

the system call set across all applications. Figure 5.9 shows the proportion of a program’s system

call set that could be recovered from the ACG alone. Over 50% of binaries have >96% of their

system call set reachable from the just the ACG, creating an upper bound on the effectiveness

of our partitioning approaches. Therefore, despite the limited effectiveness we observed, we do

not claim that these partitioning schemes provide little security value. Rather, we show that our

analysis techniques can feasibly identify these types of partitions, and do so automatically across

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion of syscall set in ACG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

N = 7838

Figure 5.9: Comparison of ACG vs. VCG syscall set sizes. This distribution shows the proportion
of a binary’s system call set sysfilter finds when searching only AT functions in the program
(i.e., from the ACG).

a large set of binaries. Our results demonstrate the need for further methods to prune the set of AT

functions matched to indirect call targets in each partition (and across the program as a whole),

which can improve the effectiveness of future partitioning schemes.

Accurately determining the set of AT functions for indirect calls, or points-to analysis, is a

fundamental and well-studied problem in program analysis. In general, precisely identifying the

set of values of a function pointer using static analysis alone is undecidable [142, 143], both at the

binary-level, or using source code for memory-unsafe languages. Research efforts in this area have

spanned nearly three decades, and focus on various approximation strategies for different pro-

gram analysis contexts, including system call-based intrusion detection [9, 47, 144], control-flow

integrity (CFI) [38, 39, 40, 145, 146], attack-surface reduction [13, 111], among others. sysfilter’s

approach (§ 3.2.2) uses relocation information to provide the complete set of AT functions in the

program (which is then pruned further in the VCG), thus creating a callgraph that is sound (i.e., it

never excludes a potential AT function), but can provide a significant overapproximation of the

set of indirect call targets. This approach is consistent with contemporary practices for determin-

ing indirect targets solely from the program binary [13, 147, 148]. Other works have demonstrated

further pruning when more information about AT functions and indirect callsites is available, in-

CHAPTER 5. IMPROVEMENTS TO CALLGRAPH PRECISION 71

cluding using source code to prune AT functions by type or number of arguments [13, 40, 149],

or using runtime tracing to identify used targets [150, 151]. Pruning based purely on binary anal-

ysis, as would be most ideal for our tools, is much less common. TypeArmor [152] uses data-

flow analysis to infer the number of function call arguments to refine the set of indirect targets

to improve CFI strategies for disrupting COOP attacks, but it remains an open question as to

whether this analysis can be applied for callgraph reconstruction. We leave these questions for

future work—should such binary-only pruning methods become available, integrating them into

our partitioning framework can improve the effectiveness of our partitioning schemes, and our

callgraph construction as a whole.

72

Chapter 6

Generic tools for reducing overprivilege

6.1. libfcg framework

While sysfilter’s primary purpose is to identify a program’s system call usage, many of our

analysis techniques are not specialized to this goal. Our analysis constructs a representation of the

program’s callgraph by overapproximating the set of reachable functions from the program’s bi-

nary and shared libraries. Beyond system call filtering, this representation has applications in

other program analysis domains, such as attack surface reduction and software debloating. Ac-

cordingly, we realized the generic components of our tools as libfcg, a framework for identifying

reachable code in a program binary, in order to facilitate development of new security tools using

our analysis techniques.

Figure 6.1 shows the architecture of libfcg. libfcg provides a library, built atop the Egalito

framework, which includes our implementation to compose the vacuumed callgraph (VCG) and

find the set of reachable functions. In addition, we include our implementations for our modules

to resolve dynamic loading (§ 5.1.5) and static argument tracking (§ 3.2.3), which can be used to im-

prove the precision of the generated callgraph and extract features about the program (i.e., syscall

numbers, function arguments), respectively. Conceptually, sysfilter is an extension from these

generic components, using the VCG construction process to generate a representation of the call-

graph, and then using static argument and value tracking to recover system call numbers.

As we continue to develop our tools, our goal is to make libfcg a generic library of tools that

can support development of new security tools and techniques involving static program analysis.

Indeed, during our offline analysis to discover NSS usages in glibc (§ 5.1.4), we used libfcg’s

argument tracking on several internal glibc functions, which helped us to identify how symbol

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 73

Argument tracking

FCG extraction

DL resolvers

libfcg

Syscall extraction

sysfilter

egalito

Erasure report gen.

libfilter

Figure 6.1: libfcg architecture.

names were passed to dynamic load functions. This demonstrates a simple example for how some

or all of libfcg’s tools can be used for more generic program analysis tasks. As we continue to

use and develop these tools, we intend to continue developing libfcg as a robust, extensible

framework.

To further explore how well our techniques could support security mechanisms outside system

call filtering, we used libfcg to develop libfilter, a tool to reduce overprivilege in terms of

library code usage. In the remainder of this chapter, we discuss our development of libfilter

and leverage our autopkg framework for deploying our tools at scale to assess its scalability and

report findings on the prevalence of code bloat in Debian sid.

6.2. libfilter: Debloating binary shared libraries

Using libfcg, we developed libfilter, a tool to identify unused functions in binaries and

their shared libraries. libfilter is a software debloating tool: it identifies unused library functions

based on a program or set of programs so that unused functions can be removed. By removing un-

used functions, libfilter can generic specialized libraries that contain only the library functions

necessary for an application, reducing the “ammunition” available to an attacker for launching a

code reuse attack.

libfilter is based on contemporary efforts in software debloating research. Concurrently

and independently from our work with sysfilter and libfcg, Agadakos et al. developed

Nibbler [69], a static analysis tool to debloat shared libraries, which employs similar callgraph

construction methods. After the publication of Nibbler, we extended this work together by imple-

menting libfilter, a more scalable debloating tool based on libfcg. Specifically, we imple-

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 74

mented Nibbler’s FCG construction component using libfcg to and identify shared library func-

tions that are unused and thus can be removed. Since libfilter’s design goals are extremely

similar to Nibbler, we omit the design details and focus on our prototype implementation, how it

uses libfcg, and how it improves upon Nibbler’s initial prototype.

Prototype implementation Building on libfcg’s capabilities to over-approximate the FCG of

a target program, libfilter’s implementation is relatively straightforward. Like libfcg, the

input to libfilter is an ELF file containing a main application binary, from which libfcg

builds an analysis scope from the binary and its required shared libraries (§ 3.2.1) and parses

the program from its entry points to construct the VCG (§ 3.2.2). The VCG represents an over-

approximation of all code, in both the main binary and its shared libraries, that can be executed

by the program for any input. From this point, libfilter’s task is straightforward: enumerate

the set of all shared library functions to find those that are not present in the VCG, which represents

the set of unused functions. For each application binary, libfilter outputs a list of all shared

library functions, its location information in the program (i.e., its offset into its respective shared

ELF object) and a boolean flag indicating if it can be erased. This information can be passed to a

compatible debloating tool, such as Nibbler or an Egalito-based rewriting tool, to generate thinned

versions of the shared libraries containing only the required functions.

Our prototype implementation of libfilter comprises only 313 LOC atop our existing im-

plementation for libfcg. Like sysfilter, our implementation for libfilter is organized as

an Egalito “pass” atop our existing codebase to construct the VCG. Combined with our Egalito-

based implementation of libfcg, for ≈1.4 KLOC total, this is a substantial reduction compared

to the ≈7 KLOC of Python code required by Nibbler. In addition, our use of Egalito’s improved

jump table analysis methods provide improved precision compared to Nibbler’s original imple-

mentation, which was based on the objdump utility [90].

Evaluation: Correctness We evaluated libfilter in terms of correctness in a similar manner

to sysfilter (§ 3.4). In our preliminary evaluation, we erased 109 binaries from three projects:

GNU coreutils, Nginx webserver, and GNU m4. For each project, we erased all binaries using

libfilter and tested them using the projects’ unit test suites, comprising 1143 unit tests in

total.

In our preliminary tests, we found that libfilter can successfully debloat real-world prob-

lems, with some exceptions related to dynamic loading of symbols and libraries. Similar to our

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 75

Binary Symbol loaded dynamically Test File

cp _xstat tests/cp/nfs-removal-race.sh

df fopen
tests/df/no-mtab-status.sh
tests/df/skip-duplicates.sh

hostid __libc_readline_unlocked tests/misc/help-version.sh

ls
getxattr

tests/ls/getxattr-speedup.shlgetxattr
print_call_count

pinky __libc_readline_unlocked tests/misc/help-version.sh

rm readdir tests/rm/rm-readdir-fail.sh

uniq setvbuf tests/misc/stdbuf.sh

true setvbuf
tests/misc/help-version.sh
tests/misc/stdbuf.sh

Table 6.1: Dynamically-loaded symbols used by libfilter correctness tests. All binaries listed
are from GNU coreutils. Note that many feature pertain to optional features, like extended at-
tributes or readline support, which may suggest why these symbols are loaded dynamically.

sysfilter evaluation, we exclude tests involving dynamic loading to support arbitrary script-

ing languages, such as Perl support in Nginx. We found 11 tests that required us to manually

include symbols that were loaded dynamically (e.g., using dlsym), shown in Table 6.1. In these

cases, our current FCG construction approaches do not automatically find these functions and

mark them as used as the address of the function is determined at runtime by dlsym—thus, it

never appears in the statically-constructed call graph. This type of dynamic function usage is

problematic in any static analysis approach, e.g., [69]. In § 5.1, we discuss strategies for auto-

matically handling dynamically-loaded code in certain libraries, reducing the amount of manual

intervention required in these cases.

6.2.1. Library bloat in the wild

In our preliminary libfilter study, we processed 30631 binaries across 8641 packages, of

which 34537 (≈91.7%) could be analyzed successfully (the rest 8.3% corresponds to binaries with

missing symbols, non-C/C++ code, etc.). Across the set of all the successfully-analyzed binaries,

we observed 5295 unique dynamic shared libraries. The median time to process each binary is

around 20s, with 90% of binaries completing in under 200s—this is a substantial improvement

compared to Nibbler’s, Python-based prototype, which required more than 60s per binary [69].

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 76

0 10 20 30 40 50 60 70 80 90 100
Percentage of bytes erased

libX11 (7.1K)
libxcb (7.3K)

libXdmcp (7.3K)
libXau (7.3K)
libbsd (7.4K)

librt (9.0K)
libnss_db (9.4K)

libdb-5 (9.5K)
libnss_resolve (9.9K)

libnss_mdns4_minimal (9.9K)
libnss_dns (9.9K)
libstdc++ (11.6K)
libresolv (11.6K)

libz (12.5K)
libgcc_s (13.0K)

libdl (18.4K)
libm (19.3K)

libnss_files (19.6K)
libpthread (21.4K)

libc (30.6K)

Median Union

Figure 6.2: Unused code in the 20 popular libraries in Debian sid. Numbers in parenthesis
indicate the number of binaries (out of the 30631 analyzed) using the respective library.

Bloat in popular libraries For each binary, libfilter reports the set of libraries used by the

application, the total set of functions in each library, and the set of functions that are unused and

can be removed. We aggregate these results across all the ≈30K considered binaries to determine

and characterize code bloat at large (i.e., across the whole Debian distribution).

Figure 6.2 shows the distribution of the amount of code removed (x-axis) for the top 20 libraries

observed (y-axis), as a percentage of their total size. (Shared libraries are ranked based on the

number of packages they link-with.) With one exception, all the binaries we analyzed (i.e., 30631)

link-with libc; the exception is the binary mtcp_restart, an executable with no shared library

dependencies.

For libc, we observe that the median amount of code removed, per binary, is ≈35%, with

most binaries individually not requiring 20%–42% of its code. The next most popular libraries are

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 77

0 10 20 30 40 50 60 70 80 90 100
Percentage of bytes erased

libcrypto++ (0.0K)

libkrb5 (0.0K)

libkrb5samba (0.0K)

libkrb5-samba4 (0.0K)

libssl3 (0.3K)

libnss3 (0.6K)

libssl (1.9K)

libkrb5support (2.8K)

libkrb5 (2.8K)

libgnutls (3.0K)

libcrypto (3.2K)

libgcrypt (4.9K)

Median Union

Figure 6.3: Unused code in cryptographic libraries in Debian sid. Libraries used by ≤ 20
packages are excluded. Numbers in parenthesis indicate the number of binaries (out of the 30631
analyzed) using the respective library.

libpthread and libnss_files, used by≈20K and≈19K binaries, respectively, demonstrating

much wider distributions (i.e., 27%–76% and 47%–99%), similarly to libresolv and libstd++

(37%–99%, 52%–94%). In contrast, libnss_resolve (≈9K% binaries) has a very tight distri-

bution with a median of only ≈5% of code removed, owing to the relatively small number of

functions it exports and their tight coupling (i.e., all variations of gethostbyname and geth-

ostbyaddr). libm, libdl, librt, and libbsd also exhibit tight distributions, with a median

of ≈54%, ≈29%, ≈97%, and ≈99% of code removed, respectively.

Beyond per-binary metrics, we can gain further insights by considering the union of all func-

tions required across all binaries in the distribution, which identifies code not used by (almost)

any binary in the system. Accordingly, the union amount of code to remove is always lower than

the median reported in Figure 6.2. For libc, we observe that ≈5% of its code is unused across

all binaries. As another example, the popular NSS [140] libraries libnss_dns and libnss_db

have nearly 50% unused code across all binaries; likewise, libxcb and libstd++ exhibit ≈46%

and ≈38% unused code across all binaries.

Lastly, Figure 6.3 and Figure 6.4 illustrate the effect of libfilter on popular cryptographic,

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 78

0 10 20 30 40 50 60 70 80 90 100
Percentage of bytes erased

libXaw (0.1K)
libXss (0.3K)

libXmu (0.4K)
libXxf86vm (0.4K)

libXt (0.4K)
libXft (0.4K)

libXpm (0.7K)
libXdamage (1.5K)

libXcomposite (1.5K)
libXi (1.8K)

libXcursor (1.8K)
libXrandr (1.8K)
libXfixes (1.8K)

libX11-xcb (1.9K)
libXinerama (1.9K)

libXrender (2.6K)
libXext (3.2K)
libX11 (7.1K)

libXdmcp (7.3K)
libXau (7.3K)

Median Union

Figure 6.4: Unused code in X11 libraries in Debian sid. Libraries used by ≤ 20 packages are
excluded. Numbers in parenthesis indicate the number of binaries (out of the 30631 analyzed)
using the respective library.

and X11, libraries, across the whole Debian distribution.

6.2.2. Container set debloating

To assess the amount of code bloat in commonly-distributed sets of Linux binaries, we used

libfilter to examine packages from popular container images published in the Docker Hub

repository [136]. Rather than analyzing binaries in each image directly, we leverage our existing

dataset and infrastructure for processing Debian sid packages to provide an equivalent analysis.

Specifically, we used the container images to identify sets of binaries to consider from our Debian

sid dataset. By examining the union of library functions removed, across all binaries in each set,

we can we can quantify the total set of unused code across all libraries in the published image.

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 79

Bytes Functions

Image #Bin #Lib Total Safe to Erase (%) Total Safe to Erase (%)

haproxy 293 62 14.9MB 3.5MB (23%) 46.8K 17K (36%)
influxdb 309 83 16.4MB 3.3MB (20%) 52.2K 16.8K (32%)
mariadb 394 84 17.1MB 3.7MB (22%) 53.2K 18.4K (35%)
memcached 292 61 13.4MB 3.3MB (25%) 39.6K 14.6K (37%)
nginx 294 59 13.1MB 3.2MB (24%) 38.5K 14K (36%)
postgres 363 83 20.6MB 4.7MB (23%) 69.1K 23.8K (34%)
redis 295 68 15.5MB 3.6MB (23%) 48K 17.4K (36%)
spiped 296 60 14.5MB 3.5MB (24%) 44.9K 17K (38%)
ubuntu 310 61 13.2MB 3.2MB (24%) 39.1K 14.3K (36%)

Mean 15.4MB 3.6MB (23%) 48K 17026 (36%)

Table 6.2: Erasure for container image sets (using packages from Debian sid).

We selected 9 official Docker images for popular C/C++ applications, each with >10M down-

loads, on Docker Hub. To simplify the process of translating packages in the container’s base

distribution to Debian package names, we selected container images that were built from distri-

butions using the apt package manager. For each container image, we mapped each binary to its

providing package using dpkg, and then looked up the equivalent sid package in our dataset.

Across all images, we considered a total of 255 unique packages. Mappings for all but 11 pack-

ages could be resolved automatically—we manually resolved the remainder, which differed only

by version numbers (e.g., mariadb-server-10.5 vs. mariadb-server-10.4). While this

mapping between Linux distributions does not provide an exact representation of the unused

code included in the container images, it does provide a tight approximation of code bloat across

a commonly-installed set of packages in popular Docker images.

Table 6.2 shows the union amount of code removed across all libraries in each container im-

age. Every image used roughly 300 binaries and less than 100 shared libraries. Across all images,

we observe that an average of 23.2% of code (in terms of bytes) is unused. All images exhib-

ited roughly the same amount of bloat, with image-wide union values within 4% of each other.

The majority of this bloat is due to common system libraries used in each image, rather than

application-specific libraries—we leave the analysis of comparing ancillary utilities and binaries

required for the application’s use-case as a future study. Interestingly, in 7 out of the 9 images, the

library with the most code removed (>94%) was libunistring [153], a common library for han-

dling Unicode. Conversely, all images utilized one library which had no code removed, i.e., lib-

debconfclient [154], which is used by dpkg. Overall, our results demonstrate opportunities

CHAPTER 6. GENERIC TOOLS FOR REDUCING OVERPRIVILEGE 80

for reducing code bloat using libfilter in commonly-used container images.

81

Chapter 7

Conclusions and future work

As software evolves and becomes even more complex—and as libraries and system APIs ex-

pand their capabilities to match them—overprivilege becomes an increasing threat to system se-

curity. In order to defend against this threat, it becomes important to understand the prevalence

of overprivilege across the wide range of deployed software and take actions to reduce it.

This thesis has investigated challenges in using static, binary-only analysis to develop a low-

cost, effective method for reducing overprivilege in type- and memory-unsafe programs. Since

overprivilege is widespread in fundamental OS interfaces, it affects nearly all programs that in-

teract with the operating system. In this thesis, we have explored techniques for identifying and

reducing overprivilege in programs without access to source code or dynamic tracing in order

to develop robust tools to analyze the wide variety of complex problems that make up modern

software ecosystems.

As a result, this thesis has developed tools to automatically characterize and reduce overpriv-

ilege by restricting programs to necessary features only, thus improving the security posture of

systems by enforcing the principle of least privilege in a precise, effective, and scalable manner.

We have demonstrated set of low-cost tools to identify overprivilege and restrict access to OS fea-

tures in two domains: system call API usage and shared library code access. In doing so, we have

used our tools to assess overprivilege a wide variety of programs, spanning an entire Linux distri-

bution, to characterize overprivilege in situ, as well as demonstrate and our tools’ scalability and

effectiveness. In addition, we present a framework to extend and further apply our tools in other

security domains.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 82

7.1. Future work

Software is constantly evolving. As applications, libraries, and APIs continue to grow, new

features and use cases will create more areas of overprivilege, with new requirements on how

to restrict application privileges to improve security. In addition, as binary analysis techniques

and enforcement mechanisms evolve, it will create new opportunities for deploying our current

techniques to a wider range of programs and improving the precision and effectiveness of our

analysis. In this section, we briefly outline future directions for extending and improving our

techniques.

7.1.1. Refining indirect call targets

Our callgraph construction process (§ 3.2.2) provides an safe, tight overapproximation of the

set of reachable functions in a program. The primary challenge in reconstructing the program’s

control flow is points-to analysis, i.e., determining the set of targets for each indirect call in the

program. This is fundamental and well-studied problem in program analysis—we discuss these

challenges in § 5.2.2.

The approach used by libfcg—and thus by sysfilter and libfilter—is consistent with

contemporary efforts for determining the complete set of address-taken (AT) functions used by in-

direct calls from the program binary alone. Improving points to-analysis analysis is an ongoing

area of research, fueled by program analysis efforts in other security domains, such as CFI. Future

developments in this area that could allow further pruning of AT functions for indirect callsites

could significantly improve precision of our callgraph overapproximation, especially for parti-

tions of the callgraph in the same program. Address-taken functions (i.e., the total set of possible

indirect call targets) make up a significant portion of any program’s callgraph. In terms of system

call sets, AT functions cover 95% of the syscall set for over half of binaries in our distribution-wide

studies (§ 4.3.3). As binary analysis techniques evolve, we recommend further study of how new

developments in points-to analysis can be integrated into our tools to improve the precision of our

callgraph construction process.

7.1.2. Extending the scope of privilege reductions

Our tools have demonstrated effective privilege reductions in both system call API usage and

library code access by identifying a program’s required features, so that unused components can

be restricted. A natural future direction is to explore how our analysis tools, available as an exten-

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 83

sible framework with libfcg can identify required functionality in other OS interfaces, such as

Linux capabilities [155], filesystem access, or usage of other kernel interfaces like netlink [156].

In addition, there is further opportunity to improve the precision of our existing syscall/library

restrictions by identifying key values of system call arguments, such as flags passed to socket

or ioctl to identify broad classes of functionality being requested. Identifying uses of other in-

terfaces can benefit from our existing callgraph construction methods, as well as our static value

tracking implementation, but will require additional effort to determine how specific API usages

can be resolved using static analysis. A similar, but further-reaching, dimension is investigating

how our tools may privileges may be from programs in other languages, potentially leveraging

our existing binary analysis techniques to explore how runtimes for higher-level languages may

use OS features.

7.1.3. Flexible system call policy enforcement

Current semantics for enforcing system call policies (such as seccomp-BPF) place restrictions

on how policies are inherited by new processes or partitions within the same process (e.g., be-

tween threads). In broad terms, syscall policies added on top of existing policies can only add

restrictions to previous policies. This is a necessary security requirement to prevent a compro-

mised, restricted process from modifying its own policy to increase its privileges. However, this

requirement creates difficulty for programs that create processes with a larger syscall set than its

parent. We discuss these challenges in detail in § 3.2.4. To provide one motivating example, sys-

filter is not well-suited for enforcing programs like shells, which inherently spawn arbitrary

processes with diverse system call sets.

While these requirements for syscall filter composition are paramount for maintaining the se-

curity of arbitrary programs, we note an opportunity for allowing more flexibility when executing

trusted applications. In an environment where the operating system could verify that a child pro-

cess is a known, trusted program with its own system call policy, a more flexible enforcement

mechanism could allow the child process to switch system call policies, rather than combining

them, allowing it to use its full range of functionality. While this kind of enforcement model offers

promising opportunities for applying system call filters to a wider range of programs, it would

require a framework for verifying trusted processes. Development of trusted execution environ-

ments is an ongoing area of work in both research and industry—as these systems evolve, critical

environments that use them could benefit from system call set restrictions using these more flexi-

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 84

ble policies.

7.1.4. Continued libfcg development

We have developed libfcg as an extensible framework to support new security tools using

our callgraph construction and analysis techniques. As new tools evolve, we recommend incor-

porating new techniques and lessons learned into libfcg to benefit further security tools. As

one example, libfcg’s DL resolver plugins (§ 5.1.5) can be extended to support new libraries

over time as required by future analyses, improving the library’s ability to handle dynamically-

loaded code without user intervention. In addition, further development of libfcg’s static value

tracking could improve its ability to recover constant arguments in more complex cases. Over-

all, improvements to libfcg’s core features, whether simply engineering improvements, or new

analysis techniques, have the potential to improve precision, effectiveness, and scalability for a

wider range of tools, contributing to security improvements across multiple domains.

85

Bibliography

[1] G. J. Holzmann, “Code inflation,” IEEE Software, no. 2, pp. 10–13, 2015.

[2] N. Hardy, “The Confused Deputy: (or why capabilities might have been invented),” ACM

SIGOPS Operating Systems Review, vol. 22, no. 4, pp. 36–38, 1988.

[3] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,”

IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[4] Linux Programmer’s Manual, “Syscalls – Linux system calls.” [Online]. Available:

http://man7.org/linux/man-pages/man2/syscalls.2.html

[5] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos, “Lock-in-pop: Securing privileged operat-

ing system kernels by keeping on the beaten path,” in USENIX Annual Technical Conference

(ATC), 2017, pp. 1–13.

[6] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P. Kemerlis, “kRˆX: Com-

prehensive Kernel Protection against Just-In-Time Code Reuse,” in Proceedings of the Twelfth

European Conference on Computer Systems. ACM, 2017, pp. 420–436.

[7] ——, “Kernel protection against just-in-time code reuse,” ACM Transactions on Privacy and

Security (TOPS), vol. 22, no. 1, pp. 1–28, 2019.

[8] Debian packages, “Package: Libc6.” [Online]. Available: https://packages.debian.org/

buster/libc6

[9] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Proceedings 2001 IEEE

Symposium on Security and Privacy. S&P 2001. IEEE, 2000, pp. 156–168.

[10] J. T. Giffin, S. Jha, and B. P. Miller, “Detecting manipulated remote call streams,” in USENIX

Security Symposium, 2002, pp. 61–79.

http://man7.org/linux/man-pages/man2/syscalls.2.html
https://packages.debian.org/buster/libc6
https://packages.debian.org/buster/libc6

BIBLIOGRAPHY 86

[11] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call detection,” ACM

Transactions on Information and System Security (TISSEC), pp. 61–93, 2006.

[12] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through system call sequence

and argument analysis,” IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4,

pp. 381–395, 2008.

[13] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal System Call

Specialization for Attack Surface Reduction,” in 29th USENIX Security Symposium

(USENIX Security 20), 2020, pp. 1749–1766. [Online]. Available: https://www.usenix.org/

conference/usenixsecurity20/presentation/ghavamnia

[14] N. Provos, “Improving host security with system call policies,” in USENIX Security Sympo-

sium (SEC), 2003, pp. 257–272.

[15] V. Rothberg, “Generate SECCOMP Profiles for Containers Using Podman

and eBPF,” Oct. 2019. [Online]. Available: https://podman.io/blogs/2019/10/15/

generate-seccomp-profiles.html

[16] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-wise compilation

and loading,” in 27th USENIX Security Symposium (USENIX Security 18), 2018, pp. 869–886.

[17] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-Driven Software Debloat-

ing,” in Proceedings of the 12th European Workshop on Systems Security. ACM, 2019, p. 9.

[18] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “TRIMMER: Application specialization for

code debloating,” in Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. ACM, 2018, pp. 329–339.

[19] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case reduction for C com-

piler bugs,” in Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2012, pp. 335–346.

[20] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided program reduction,” in

Proceedings of the 40th International Conference on Software Engineering, 2018, pp. 361–371.

https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html
https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html

BIBLIOGRAPHY 87

[21] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program debloating via reinforce-

ment learning,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-

nications Security. ACM, 2018, pp. 380–394.

[22] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee, “RAZOR: A framework

for post-deployment software debloating,” in USENIX Security Symposium (SEC), 2019, pp.

1733–1750.

[23] Debian Linux, “Statistics | Debian Sources.” [Online]. Available: https://sources.debian.

org/stats/

[24] Linux Programmer’s Manual, “Syscall—indirect system call.” [Online]. Available:

http://man7.org/linux/man-pages/man2/syscall.2.html

[25] “Ringing in a new asynchronous I/O API [LWN.net].” [Online]. Available: https:

//lwn.net/Articles/776703/

[26] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard: Lightweight kernel protec-

tion against return-to-user attacks,” in USENIX Security Symposium (SEC), 2012, pp. 459–474.

[27] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “Ret2dir: Rethinking kernel isola-

tion,” in USENIX Security Symposium (SEC), 2014, pp. 957–972.

[28] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P. Kemerlis, “kRˆX: Com-

prehensive Kernel Protection against Just-In-Time Code Reuse,” in Proceedings of the Twelfth

European Conference on Computer Systems. ACM, 2017, pp. 420–436.

[29] V. P. Kemerlis, “Protecting commodity operating systems through strong kernel isolation,”

Ph.D. dissertation, Columbia University, 2015.

[30] “NVD - CVE-2019-13272.” [Online]. Available: https://nvd.nist.gov/vuln/detail/

cve-2019-13272

[31] Solar Designer, “Getting around non-executable stack (and fix).” [Online]. Available:

https://seclists.org/bugtraq/1997/Aug/63

[32] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Func-

tion Calls (on the x86),” in ACM SIGSAC Conference on Computer and Communications Security

(CCS), 2007, pp. 552–561.

https://sources.debian.org/stats/
https://sources.debian.org/stats/
http://man7.org/linux/man-pages/man2/syscall.2.html
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://nvd.nist.gov/vuln/detail/cve-2019-13272
https://nvd.nist.gov/vuln/detail/cve-2019-13272
https://seclists.org/bugtraq/1997/Aug/63

BIBLIOGRAPHY 88

[33] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy,

“Return-oriented programming without returns,” in ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2010, pp. 559–572.

[34] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control: Overcoming

control-flow integrity,” in IEEE Symposium on Security and Privacy (S&P), 2014, pp. 575–589.

[35] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz, “Counterfeit object-

oriented programming: On the difficulty of preventing code reuse attacks in C++ applica-

tions,” in IEEE Symposium on Security and Privacy (S&P), 2015, pp. 745–762.

[36] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-oriented program-

ming: On the expressiveness of non-control data attacks,” in IEEE Symposium on Security and

Privacy (S&P), 2016, pp. 969–986.

[37] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented programming: Au-

tomating data-only attacks,” in ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2018, pp. 1868–1882.

[38] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity principles, im-

plementations, and applications,” ACM Transactions on Information and System Security (TIS-

SEC), vol. 13, no. 1, pp. 1–40, 2009.

[39] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,” in 22nd USENIX

Security Symposium (USENIX Security 13), 2013, pp. 337–352. [Online]. Available: https:

//www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang

[40] Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu, “Finding Cracks in Shields:

On the Security of Control Flow Integrity Mechanisms,” in Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security, ser. CCS ’20. New York, NY,

USA: Association for Computing Machinery, Oct. 2020, pp. 1821–1835. [Online]. Available:

https://doi.org/10.1145/3372297.3417867

[41] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan, P. Colp, M. Zheng,

V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler: Fast and deployable continuous code

re-randomization,” in USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2016, pp. 367–382.

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://doi.org/10.1145/3372297.3417867

BIBLIOGRAPHY 89

[42] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for unix pro-

cesses,” in Proceedings 1996 IEEE Symposium on Security and Privacy. IEEE, 1996, pp. 120–

128.

[43] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences of system

calls,” Journal of computer security, vol. 6, no. 3, pp. 151–180, 1998.

[44] D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer, “Exploiting execution context for the

detection of anomalous system calls,” in International Workshop on Recent Advances in Intru-

sion Detection. Springer, 2007, pp. 1–20.

[45] A. Chaturvedi, S. Bhatkar, and R. Sekar, “Improving Attack Detection in Host-Based IDS by

Learning Properties of System Call Arguments,” p. 19.

[46] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Proceedings 2001 IEEE

Symposium on Security and Privacy. S P 2001, May 2001, pp. 156–168.

[47] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller, “Formalizing sensitivity in static

analysis for intrusion detection,” in IEEE Symposium on Security and Privacy, 2004. Proceed-

ings. 2004, May 2004, pp. 194–208.

[48] J. T. Giffin, S. Jha, and B. P. Miller, “Automated discovery of mimicry attacks,” in International

Workshop on Recent Advances in Intrusion Detection. Springer, 2006, pp. 41–60.

[49] Linux Programmer’s Manual, “Seccomp—operate on Secure Computing state of the

process.” [Online]. Available: http://man7.org/linux/man-pages/man2/seccomp.2.html

[50] J. Corbet, “BPF: The universal in-kernel virtual machine.” [Online]. Available: https:

//lwn.net/Articles/599755/

[51] S. Dhillon, “[net-next v3 0/2] eBPF seccomp filters,” Mon Feb 26 07:26:54 UTC 2018. [On-

line]. Available: https://lists.linuxfoundation.org/pipermail/containers/2018-February/

038571.html

[52] “Mozilla wiki: Security/Sandbox/Seccomp.” [Online]. Available: https://wiki.mozilla.

org/Security/Sandbox/Seccomp

http://man7.org/linux/man-pages/man2/seccomp.2.html
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://lists.linuxfoundation.org/pipermail/containers/2018-February/038571.html
https://lists.linuxfoundation.org/pipermail/containers/2018-February/038571.html
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp

BIBLIOGRAPHY 90

[53] “A safer playground for your Linux and Chrome OS renderers,” Nov. 2012. [Online].

Available: https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.

html

[54] “OpenSSH 6.0 release notes.” [Online]. Available: https://www.openssh.com/txt/

release-6.0

[55] Docker, “Docker.” [Online]. Available: https://www.docker.com/

[56] Podman, “Podman.” [Online]. Available: https://podman.io/

[57] Docker Documentation, “Seccomp security profiles for Docker,” Mar. 2020. [Online].

Available: https://docs.docker.com/engine/security/seccomp/

[58] T. Garfinkel, B. Pfaff, M. Rosenblum et al., “Ostia: A delegating architecture for secure sys-

tem call interposition.” in Network and Distributed System Security Symposium (NDSS), 2004.

[59] Q. Zeng, Z. Xin, D. Wu, P. Liu, and B. Mao, “Tailored Application-specific System Call Ta-

bles,” Pennsylvania State University, Tech. Rep., 2014.

[60] DockerSlim, “DockerSlim - Lean and mean Docker containers. Smaller, faster, more secure

and frictionless!” [Online]. Available: https://dockersl.im/

[61] Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li, “Mining Sandboxes for Linux Containers,” in Inter-

national Conference on Software Testing, Verification and Validation (ICST), 2017, pp. 92–102.

[62] L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang, and Q. Li, “Speaker: Split-Phase Exe-

cution of Application Containers,” in International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA), 2017, pp. 230–251.

[63] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine: Automated System

Call Policy Generation for Container Attack Surface Reduction,” in International Symposium

on Research in Attacks, Intrusions and Defenses (RAID), 2020.

[64] C.-T. Lee, Z.-W. Rong, and J.-M. Lin, “Linux kernel customization for embedded systems

by using call graph approach,” in Proceedings of the ASP-DAC Asia and South Pacific Design

Automation Conference, 2003. IEEE, 2003, pp. 689–692.

https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://www.openssh.com/txt/release-6.0
https://www.openssh.com/txt/release-6.0
https://www.docker.com/
https://podman.io/
https://docs.docker.com/engine/security/seccomp/
https://dockersl.im/

BIBLIOGRAPHY 91

[65] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere, “System-wide

compaction and specialization of the Linux kernel,” in Proceedings of the 2005 ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, 2005, pp.

95–104.

[66] Debian, “Debian Installer / mklibs.” [Online]. Available: https://salsa.debian.org/

installer-team/mklibs/blob/master/src/mklibs

[67] G. Vigna and C. Kruegel, “BinTrimmer: Towards Static Binary Debloating Through Ab-

stract Interpretation,” in Detection of Intrusions and Malware, and Vulnerability Assessment:

16th International Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings.

Springer, 2019, p. 482.

[68] C. Mulliner and M. Neugschwandtner, “Breaking Payloads with Runtime Code Stripping

and Image Freezing,” 2015.

[69] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portokalidis, “Nibbler: Debloat-

ing binary shared libraries,” in Annual Computer Security Applications Conference (ACSAC),

2019, pp. 70–83.

[70] J. Kinder and H. Veith, “Precise static analysis of untrusted driver binaries,” in Formal Meth-

ods in Computer Aided Design. IEEE, 2010, pp. 43–50.

[71] N. Davidsson, A. Pawlowski, and T. Holz, “Towards Automated Application-Specific

Software Stacks,” arXiv:1907.01933 [cs], Jul. 2019. [Online]. Available: http://arxiv.org/

abs/1907.01933

[72] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE

Transactions on Software Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[73] G. S. Misherghi and Z. S. HDD, “Hierarchical delta debugging,” PhD Thesis, Citeseer, 2007.

[74] J. Geffner, “VENOM: Virtualized environment neglected operations manipulation.”

[Online]. Available: http://venom.crowdstrike.com

[75] H. Zhao, Y. Zhang, K. Yang, and T. Kim, “Breaking turtles all the way down: An exploitation

chain to break out of VMware ESXi,” in USENIX Workshop on Offensive Technologies (WOOT),

2019.

https://salsa.debian.org/installer-team/mklibs/blob/master/src/mklibs
https://salsa.debian.org/installer-team/mklibs/blob/master/src/mklibs
http://arxiv.org/abs/1907.01933
http://arxiv.org/abs/1907.01933
http://venom.crowdstrike.com

BIBLIOGRAPHY 92

[76] S. McCanne and V. Jacobson, “The BSD packet filter: A new architecture for user-level packet

capture,” in USENIX Winter Conference, 1993, pp. 259–270.

[77] The Linux Kernel, “Seccomp BPF (SECure COMPuting with filters).” [Online]. Available:

https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html

[78] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in memory,” in IEEE Sympo-

sium on Security and Privacy (S&P), 2013, pp. 48–62.

[79] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound: Highly compatible

and complete spatial memory safety for c,” in ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2009, pp. 245–258.

[80] ——, “CETS: Compiler enforced temporal safety for c,” in ACM SIGPLAN International Sym-

posium on Memory Management (ISMM), 2010, pp. 31–40.

[81] Y. Younan, W. Joosen, and F. Piessens, “Runtime countermeasures for code injection attacks

against c and C++ programs,” ACM Computing Surveys (CSUR), vol. 44, no. 3, pp. 1–28, 2012.

[82] Common Weakness Enumeration, “CWE-123: Write-what-where condition.” [Online].

Available: https://cwe.mitre.org/data/definitions/123.html

[83] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi, “Just-in-

time code reuse: On the effectiveness of fine-grained address space layout randomization,”

in IEEE Symposium on Security and Privacy (S&P), 2013, pp. 574–588.

[84] B. Spengler, “PaX: The guaranteed end of arbitrary code execution,” in G-Con2, 2003.

[85] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated software diversity,”

in IEEE Symposium on Security and Privacy (S&P), 2014, pp. 276–291.

[86] Oracle Solaris, Linker and Libraries Guide, “Position-independent code.” [Online].

Available: https://docs.oracle.com/cd/E26505_01/html/E26506/glmqp.html

[87] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos, “An in-depth analysis

of disassembly on full-scale x86/x64 binaries,” in USENIX Security Symposium (SEC), 2016,

pp. 583–600.

https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://cwe.mitre.org/data/definitions/123.html
https://docs.oracle.com/cd/E26505_01/html/E26506/glmqp.html

BIBLIOGRAPHY 93

[88] J. Alves-Foss and J. Song, “Function boundary detection in stripped binaries,” in Annual

Computer Security Applications Conference (ACSAC), 2019, pp. 84–96.

[89] G. Corona, “The ELF file format.” [Online]. Available: https://www.gabriel.urdhr.fr/2015/

09/28/elf-file-format/

[90] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson, F. Spano, Y. J. Wu, J. Yang,

and V. P. Kemerlis, “Egalito: Layout-agnostic binary recompilation,” in ACM SIGPLAN In-

ternational Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), 2020, pp. 133–147.

[91] S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically instrumenting COTS

binaries for fuzzing and sanitization,” in IEEE Symposium on Security and Privacy (S&P),

2020, pp. 128–142.

[92] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh, “Hacking blind,” in IEEE

Symposium on Security and Privacy (S&P), 2014, pp. 227–242.

[93] Generic Part Linux Standard Base Core Specification, “Exception frames.” [Online]. Avail-

able: https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/

ehframechpt.html

[94] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer, “Control-flow

integrity: Precision, security, and performance,” ACM Computing Surveys (CSUR), vol. 50,

no. 1, pp. 1–33, 2017.

[95] X. Xu, M. Ghaffarinia, W. Wang, K. W. Hamlen, and Z. Lin, “CONFIRM: Evaluating compat-

ibility and relevance of control-flow integrity protections for modern software,” in USENIX

Security Symposium (SEC), 2019, pp. 1805–1821.

[96] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-pointer in-

tegrity,” in USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2014,

pp. 147–163.

[97] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI: Cryptographically enforced

control flow integrity,” in ACM SIGSAC Conference on Computer and Communications Security

(CCS), 2015, pp. 941–951.

https://www.gabriel.urdhr.fr/2015/09/28/elf-file-format/
https://www.gabriel.urdhr.fr/2015/09/28/elf-file-format/
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html

BIBLIOGRAPHY 94

[98] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis, “Compiler-assisted code ran-

domization,” in IEEE Symposium on Security and Privacy (S&P), 2018, pp. 461–477.

[99] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Polychronakis, “xMP: Se-

lective memory protection for kernel and user space,” in IEEE Symposium on Security and

Privacy (S&P), 2020, pp. 584–598.

[100] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraisingham, “Differentiating

code from data in x86 binaries,” in European Conference on Machine Learning and Knowledge

Discovery in Databases (ECML-PKDD), 2011, pp. 522–536.

[101] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT: Learning to recognize

functions in binary code,” in USENIX Security Symposium (SEC), 2014, pp. 845–860.

[102] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function detection in binaries,”

in IEEE European Symposium on Security and Privacy (EuroS&P), 2017, pp. 177–189.

[103] M. Prasad and T.-c. Chiueh, “A binary rewriting defense against stack based buffer overflow

attacks,” in USENIX Annual Technical Conference (ATC), 2003, pp. 211–224.

[104] Linux Programmer’s Manual, “Ld.so, ld-linux.so—dynamic linker/loader.” [Online].

Available: http://man7.org/linux/man-pages/man8/ld.so.8.html

[105] G. L. Steele Jr., “Debunking the “Expensive procedure call” myth or, procedure call im-

plementations considered harmful or, LAMBDA: The ultimate GOTO,” in ACM National

Conference, 1977, pp. 153–162.

[106] E. Bendersky, “Position independent code (PIC) in shared li-

braries.” [Online]. Available: https://eli.thegreenplace.net/2011/11/03/

position-independent-code-pic-in-shared-libraries/

[107] G. Corona, “ELF loading and dynamic linking.” [Online]. Available: https://www.gabriel.

urdhr.fr/2015/01/22/elf-linking/#library-resolution

[108] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athanasopoulos, “VTPin: Practical

VTable hijacking protection for binaries,” in Annual Computer Security Applications Confer-

ence (ACSAC), 2016, pp. 448–459.

http://man7.org/linux/man-pages/man8/ld.so.8.html
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
https://www.gabriel.urdhr.fr/2015/01/22/elf-linking/#library-resolution
https://www.gabriel.urdhr.fr/2015/01/22/elf-linking/#library-resolution

BIBLIOGRAPHY 95

[109] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 16, no. 5, pp. 1467–1471, 1994.

[110] P. Liang and M. Naik, “Scaling abstraction refinement via pruning,” in ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), 2011, pp. 590–601.

[111] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis, “Sysfilter:

Automated System Call Filtering for Commodity Software,” in 23rd International Symposium

on Research in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp. 459–474. [Online].

Available: https://www.usenix.org/conference/raid2020/presentation/demarinis

[112] B. Dawson, “Symbols on linux update: Fedora fixes.” [Online]. Available: https:

//randomascii.wordpress.com/2013/03/05/symbols-on-linux-update-fedora-fixes/

[113] D. Wiki, “Using symbols files.” [Online]. Available: https://wiki.debian.org/

UsingSymbolsFiles

[114] U. Wiki, “Debug symbol packages.” [Online]. Available: https://wiki.ubuntu.com/

Debug%20Symbol%20Packages

[115] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,” ACM SIGARCH

Computer Architecture News, vol. 33, no. 5, pp. 63–68, 2005.

[116] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson, F. Spano, Y. J. Wu, J. Yang,

and V. P. Kemerlis, “Egalito: Layout-Agnostic Binary Recompilation,” in Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming Languages and

Operating Systems, 2020, pp. 133–147.

[117] Intel, “System v application binary interface,” 2013. [Online]. Available: https:

//software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

[118] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,

2nd ed. Pearson Education, 2006.

[119] Linux Programmer’s Manual, “Bpf – perform a command on an extended BPF map or

program.” [Online]. Available: http://man7.org/linux/man-pages/man2/bpf.2.html

[120] NixOS, “Patchelf – A small utility to modify the dynamic linker and RPATH of ELF

executables.” [Online]. Available: https://github.com/NixOS/patchelf

https://www.usenix.org/conference/raid2020/presentation/demarinis
https://randomascii.wordpress.com/2013/03/05/symbols-on-linux-update-fedora-fixes/
https://randomascii.wordpress.com/2013/03/05/symbols-on-linux-update-fedora-fixes/
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
http://man7.org/linux/man-pages/man2/bpf.2.html
https://github.com/NixOS/patchelf

BIBLIOGRAPHY 96

[121] T. Garfinkel, “Traps and pitfalls: Practical problems in system call interposition based secu-

rity tools,” in Network and Distributed System Security Symposium (NDSS), 2003, pp. 163–176.

[122] R. N. M. Watson, “Exploiting concurrency vulnerabilities in system call wrappers,” in

USENIX Workshop on Offensive Technologies (WOOT), 2007.

[123] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C. Mitchell, and A. Russo, “Hails:

Protecting data privacy in untrusted web applications,” in USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2012, pp. 47–60.

[124] S. Moore, C. Dimoulas, D. King, and S. Chong, “SHILL: A secure shell scripting language,”

in USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2014, pp. 183–

199.

[125] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to vibrate: A cost-benefit

approach to improving browser security,” in ACM SIGSAC Conference on Computer and Com-

munications Security (CCS), 2017, pp. 179–194.

[126] Debian, “The unstable distribution (“sid”).” [Online]. Available: https://www.debian.org/

releases/sid/

[127] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-

gard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative exe-

cution,” in IEEE Symposium on Security and Privacy (S&P), 2019, pp. 1–19.

[128] Google Project Zero, “Speculative execution, variant 4: Speculative store bypass.” [Online].

Available: https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

[129] “Wrk – a HTTP benchmarking tool.” [Online]. Available: https://github.com/wg/wrk

[130] Redis Labs, “NoSQL Redis and Memcache traffic generation and benchmarking tool.”

[Online]. Available: https://github.com/RedisLabs/memtier_benchmark

[131] C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter, “A study of modern Linux API usage

and compatibility: What to support when you’re supporting,” in Proceedings of the Eleventh

European Conference on Computer Systems. ACM, 2016, p. 16.

https://www.debian.org/releases/sid/
https://www.debian.org/releases/sid/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://github.com/wg/wrk
https://github.com/RedisLabs/memtier_benchmark

BIBLIOGRAPHY 97

[132] A. Quach, R. Erinfolami, D. Demicco, and A. Prakash, “A multi-OS cross-layer study of

bloating in user programs, kernel and managed execution environments,” in Proceedings of

the 2017 Workshop on Forming an Ecosystem Around Software Transformation, 2017, pp. 65–70.

[133] Debian Manpages, “Debootstrap.” [Online]. Available: https://manpages.debian.org/

stretch/debootstrap/debootstrap.8.en.html

[134] “Python APT Library.” [Online]. Available: https://apt-team.pages.debian.net/

python-apt/library/index.html

[135] gRPC Authors, “gRPC.” [Online]. Available: https://grpc.io/

[136] Docker, “Docker hub.” [Online]. Available: https://hub.docker.com

[137] Linux Programmer’s Manual, “Dlopen - open and close a shared object.” [Online].

Available: https://man7.org/linux/man-pages/man3/dlopen.3.html

[138] “For plugin module developers — MIT Kerberos Documentation.” [Online]. Available:

https://web.mit.edu/kerberos/www/krb5-latest/doc/plugindev/index.html

[139] “Libglvnd: The GL Vendor-Neutral Dispatch library,” NVIDIA Corporation, Sep. 2021.

[Online]. Available: https://github.com/NVIDIA/libglvnd

[140] The GNU C Library, “System databases and name service switch.” [Online]. Available:

https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html

[141] “Linux x86 Program Start Up.” [Online]. Available: http://dbp-consulting.com/tutorials/

debugging/linuxProgramStartup.html

[142] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in Proceedings of the 2001

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,

2001, pp. 54–61.

[143] L. O. Andersen, “Program analysis and specialization for the C programming language,”

PhD Thesis, Citeseer, 1994.

[144] J. T. Giffin, S. Jha, and B. P. Miller, “Efficient Context-Sensitive Intrusion Detection.” in

NDSS, 2004.

https://manpages.debian.org/stretch/debootstrap/debootstrap.8.en.html
https://manpages.debian.org/stretch/debootstrap/debootstrap.8.en.html
https://apt-team.pages.debian.net/python-apt/library/index.html
https://apt-team.pages.debian.net/python-apt/library/index.html
https://grpc.io/
https://hub.docker.com
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://web.mit.edu/kerberos/www/krb5-latest/doc/plugindev/index.html
https://github.com/NVIDIA/libglvnd
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html

BIBLIOGRAPHY 98

[145] M. Ghaffarinia and K. W. Hamlen, “Binary Control-Flow Trimming,” in Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS

’19. London, United Kingdom: Association for Computing Machinery, Nov. 2019, pp.

1009–1022. [Online]. Available: https://doi.org/10.1145/3319535.3345665

[146] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürnberger, and A.-R.

Sadeghi, “MoCFI: A Framework to Mitigate Control-Flow Attacks on Smartphones.” in

NDSS, vol. 26, 2012, pp. 27–40.

[147] T. Fraser, L. Badger, and M. Feldman, “Hardening COTS software with generic software

wrappers,” in DARPA Information Survivability Conference and Exposition (DISCEX), 2000, pp.

323–337.

[148] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou, “Prac-

tical Control Flow Integrity and Randomization for Binary Executables,” in 2013 IEEE Sym-

posium on Security and Privacy, May 2013, pp. 559–573.

[149] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with multi-layer type

analysis,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security, 2019, pp. 1867–1881.

[150] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and W. Lee, “Enforc-

ing unique code target property for control-flow integrity,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, 2018, pp. 1470–1486.

[151] C. Porter, G. Mururu, P. Barua, and S. Pande, “BlankIt library debloating: Getting what you

want instead of cutting what you don’t,” in Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation, ser. PLDI 2020. New York, NY,

USA: Association for Computing Machinery, Jun. 2020, pp. 164–180. [Online]. Available:

https://doi.org/10.1145/3385412.3386017

[152] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos, T. Holz,

E. Athanasopoulos, and C. Giuffrida, “A tough call: Mitigating advanced code-reuse attacks

at the binary level,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp.

934–953.

https://doi.org/10.1145/3319535.3345665
https://doi.org/10.1145/3385412.3386017

BIBLIOGRAPHY 99

[153] Free Software Foundation, “Libunistring.” [Online]. Available: https://www.gnu.org/

software/libunistring/

[154] Debian, “Package: Cdebconf.” [Online]. Available: https://packages.debian.org/sid/

cdebconf

[155] Linux Programmer’s Manual, “Capabilities—overview of Linux capabilities.” [Online].

Available: http://man7.org/linux/man-pages/man7/capabilities.7.html

[156] ——, “Netlink - netlink macros.” [Online]. Available: https://man7.org/linux/man-pages/

man7/netlink.7.html

https://www.gnu.org/software/libunistring/
https://www.gnu.org/software/libunistring/
https://packages.debian.org/sid/cdebconf
https://packages.debian.org/sid/cdebconf
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/netlink.7.html
https://man7.org/linux/man-pages/man7/netlink.7.html

	Introduction
	Defining overprivilege
	The need for tools to reduce overprivilege
	Thesis goals and contributions

	Characterizing overprivilege
	What is overprivilege?
	Overprivilege in system calls
	Overprivilege from code bloat

	Efforts to reduce application privileges
	Reducing system call API usage
	Reducing code bloat

	The need for scalable tools to reduce overprivilege

	sysfilter: Automated system call filtering
	Overview
	Background and threat model

	sysfilter design
	Analysis scope
	Function-call graph construction
	System call set construction
	System call set enforcement

	Prototype implementation
	Evaluation: correctness and performance
	Correctness
	Performance

	Reducing syscall overprivilege at scale
	Measuring overprilege at scale
	autopkg design
	Identifying package candidates
	Package installation and analysis

	System call usage in the wild
	Syscall set size per binary
	System call invocation sites
	Effectiveness of FCG approximation
	Effectiveness of syscall restrictions
	Analysis performance and scalability

	Inferring policies for container images

	Improvements to callgraph precision
	Handling dynamically-loaded code
	Background
	Resolving symbol names automatically
	dlsym usage in the wild
	Case study: handling GNU NSS
	Resolver Implementation

	Partitioning the callgraph
	Fixed partitions: before and after main
	Partitioning effectiveness in Debian sid

	Generic tools for reducing overprivilege
	libfcg framework
	libfilter: Debloating binary shared libraries
	Library bloat in the wild
	Container set debloating

	Conclusions and future work
	Future work
	Refining indirect call targets
	Extending the scope of privilege reductions
	Flexible system call policy enforcement
	Continued libfcg development

