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End-to-end encrypted relational database management systems are the “holy grail” of database

security and have been studied by the research community for the last 20 years. During this time,

several systems that handle some subset of SQL over encrypted data have been proposed,

including CryptDB, Monomi, ESPADA, Blind Seer and Stealth. CryptDB and Monomi are based on

property-preserving encryption (PPE) and have been shown to leak a considerable amount of

information even in the snapshot model, which is the weakest adversarial model in this setting.

While ESPADA, Blind Seer and Stealth achieve much better leakage profiles, they suffer from

two main limitations: (1) they cannot handle SQL queries that include join or project operations;

and (2) they are not legacy-friendly which means that, unlike CryptDB and Monomi, they require a

custom database system.

We design and build an encrypted database management system called KafeDB that addresses all

these limitations. At the core of KafeDB are two new cryptographic schemes based on structured

encryption (STE) called OPX and PKFK. In these schemes we propose STE-based techniques for

optimal join, query optimization, leakage reduction and locality improvement over encrypted

relational data. Overall KafeDB achieves a leakage profile comparable to the ESPADA, Blind Seer

and Stealth systems. However KafeDB handles a non-trivial subset of SQL which includes

queries with joins, selections and projections. In addition, KafeDB is legacy-friendly, meaning that

it can be deployed on top of any relational database system. The TPC-H benchmark showed that

KafeDB had 4.2× query overhead and 3.6× storage overhead over plaintext PostgreSQL.
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Chapter 1

Introduction

Data is being produced, collected and analyzed at unprecedented speed, volume and variety [69].

Individuals and enterprises have increasingly relied on outsourcing the storage and computation of

their data to remote servers maintained by a third-party service provider. This usage pattern has

been identified as “cloud computing” [75].

Cloud computing offers several advantages over the traditional approach of active management

computation resources by the user. First, cloud-based solutions alleviate the burden for maintaining

infrastructure from the user, and provide increasingly more reliable uptime and scalable computing

and storage resources on demand. The user in turn can just focus on the data and the task. For

developers, cloud-native applications have drastically reduced the gap between development and

deployment, shortened engineering cycles, and enabled faster feature delivery to the end users.

The cloud service providers invest heavily into research and development of better infrastructure,

resulting in lower price and better quality of service.

In the past two decades, cloud computing is rapidly expanding to cover many aspects of daily

life and business activities, ranging from emails and messaging, social media, file backups, data

sharing, collaborative document editing, to voice assitance, machine translation and navigation.

Not only individuals but organizations in goverments, e-commerce, healthcare, education and fi-

nancial services increasingly rely on cloud services to provide digital access. The total market for

cloud service revenue is forcasted to reach a total of 278.3 billion U.S. Dollars [39]. 58% of manu-
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factoring industry rely on the cloud service to analyze their activities; the ratio remains as high as

50% for financial services and 40% for the education sector [89].

Meanwhile, the constant occurrences of data breaches have raised serious concerns about the

privacy and security of all the data that is being collected and managed, especially when data is

sensitive like electronic health record or financial records. For example, in 2014 private data for

over 7 million users on Dropbox was stolen for extortion [86]. In 2016, the Democratic National

Committee was hacked, and the documents leaked from the hack affected the 2016 U.S. presiden-

tial election [88]. New regulations such as the General Data Protection Regulation [95] and the

California Consumer Privacy Act [70] have been put forth to prevent any discosure or access, either

accidental, unlawful, unethical or unauthorized, to sensitive data. Under these regulations, the or-

ganizations that collect user data are required to implement data protection such as cryptographic

access control.

On the other hand, surveillance programs have grown more pervasive and global, as revealed

by Edward Snowden’s leakage of classified information from National Security Agency in 2013 [53].

The cloud service providers should not be trusted with encrypting data alone, because they can be

forced to turn over encryption keys under the pressure of the law enforcement.

End-to-end encryption. One way to address the privacy and security challenges of remote

computation is to deploy encryption. While systems sometimes encrypt data in transit and at rest,

data is decrypted and remains unencrypted when it is in use. An alternative way of deploying

cryptography is end-to-end encryption. In this approach, the data is encrypted by the user before

it even leaves its device. End-to-end encrypted systems and services provide much stronger security

and privacy guarantees than the current generation of systems. The main challenge in building such

systems, however, is that end-to-end encryption breaks many of the applications and services we

rely on, including cloud computing, analytics, spam filtering, database queries and search. The area

of encrypted systems aims to address the challenges posed by end-to-end encryption by producing

practical systems that can operate on end-to-end encrypted data.
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Encrypted databases. A key problem in this area is the problem of designing end-to-end en-

crypted databases (EDB), which are practical database management systems (DBMS) that operate

on end-to-end encrypted databases. Roughly speaking, there are two kinds of databases: relational,

which store data as tables and are queried using SQL; and non-relational (i.e., NoSQL), which do

not store data as tables and are usually queried with lower-level query operations. Relational

DBMSs are the most widely used and are a $40 billion industry which includes products from

major companies like Oracle, IBM, SAP and Microsoft.

PPE-based EDBs. The problem of relational EDBs is one of the “holy grails” of database

security. It was first explicitly considered by Hacigümüs, Iyer, Li and Mehrotra [56] who described

a quantization-based approach which leaks the range within which an item falls. In [84], Popa,

Redfield, Zeldovich and Balakrishnan described a system called CryptDB that supports a non-trivial

subset of SQL without quantization. CryptDB achieves this in part by making use of property-

preserving encryption (PPE) schemes like deterministic and order-revealing (ORE) encryption [5,

20, 23], which reveal equality and order, respectively. Because CryptDB’s PPE-based approach

was efficient and legacy-friendly, it was quickly adopted by academic systems like Cipherbase [12]

and commercial systems like SEEED [87] and Microsoft’s SQL Server Always Encrypted [40].

While the security of PPE primitives had been formally studied by the cryptography community

[7, 20, 25, 23, 24], their application to database systems was never formally analyzed or subject

to any cryptanalytic evaluation (e.g., the first leakage analysis of the CryptDB system appeared

in 2018 [63]). As a result, in 2015, Naveed, Kamara and Wright described practical data-recovery

attacks against PPE-based EDBs in the snapshot model—which is the weakest possible adversarial

model in this setting. In the setting of electronic medical records, for example, sensitive attributes

of up to 99% of patients could be recovered with a snapshot attack (i.e., without even seeing any

queries). Since then, several follow-up works have improved on the original NKW attacks [55, 43].

EDBs on Trusted Hardware. An approach to designing relational EDBs is to use trusted

hardware such as custom FPGAs or secure coprocessors like Intel SGX. Several systems, most

notably Cipherbase [12], TrustedDB [16] and StealthDB [96] take this direction. However, the
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security offered by systems relying on trusted hardware is weaker than end-to-end encryption. The

effciency of the systems is also limited by the hardware, such as the memory size of SGX. Therefore

Cipherbase and StealthDB are efficient mostly on a transactional workload, which typically is less

memory intensive than an analytic workload. Lastly these systems also require intrusive software

changes that may present challenges to adoption.

General-purpose approaches. For end-to-end encryption, there are several ways to design

relational EDBs but each solution achieves some tradeoff between efficiency, query expressiveness

and leakage. General-purpose primitives like fully-homomorphic encryption [49] (FHE) and secure

multi-party computation [99, 100, 72] (MPC) can be used to support all of SQL without any leakage

but at the cost of exceedingly slow query execution due to linear-time asymptotic complexity and

large constants. Oblivious RAM (ORAM) could also be used to handle all of SQL with little leakage

(i.e., mostly volume leakage) but at the cost of a poly-logarithmic multiplicative overhead in the

size of the database.

Given the high level of interest in EDBs from Academia, Industry and Government and

the weaknesses of the quantization- and PPE-based solutions, the design of practical and

cryptographically-analyzed relational EDBs remained an important open problem.

STE-based approaches. More practical solutions can be achieved using structured encryption

(STE) [36] which is a generalization of searchable symmetric encryption (SSE) [91, 42]. STE

schemes encrypt data structures in such a way that they can only be queried using a token that is

derived from a query and the secret key. One way to use STE/SSE to design relational EDBs is to

index each database column using an encrypted multi-map (EMM) [42]. This is, roughly speaking,

the approach taken by systems such as ESPADA [31, 30, 59, 45], Blind Seer [81, 47] and Stealth

[57].1 We refer to this as column indexing and this leads to systems that can handle SQL queries

of the form

SELECT * FROM table WHERE att = a,

1These systems are more complex than described here. They work in a multi-user setting and provide additional
security properties that we do not consider in this work.
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where a is a constant. When columns are indexed with more complex EMMs (e.g., that can also

handle range queries) then column indexing yields systems that can handle queries of the form

SELECT * FROM T

WHERE att1 = a AND att2 ≤ b,

While column indexing results in fast query execution (i.e., sub-linear running time), systems based

on this approach cannot handle SQL queries with project or join operations. This is a non-trivial

limitation since joins are extremely common (e.g., [60] reports that 62.1% of Uber queries include

joins). This was addressed by Kamara and Moataz who proposed the first STE-based solution to

handle a non-trivial fraction of SQL [63]; more specifically, queries of the form

SELECT attributes FROM tables

WHERE att1 = a AND att2 = att3,

which include projects and joins but not ranges. This scheme, called SPX, is asymptotically optimal

for a subset of the queries above and (provably) leaks significantly less than known PPE-based

solutions such as CryptDB.

In this work we take the STE-based approach to design encrypted relational database systems.

During the course of our research, we needed to address the following challenges:

Query optimization. Relational query optimization has been extensively studied in the rela-

tional database literature [1]. Typical query optimization relies on relational-algebraic rules in

combination with heuristics and cost estimation from the data distribution [52, 1, 15, 74]. The

existing STE-based approach such as SPX [63] is not able to support query optimization because

it only executes the operators in a fixed order. Even if we modify SPX to support the input query

with reordered operators, it still could not reduce the overall query complexity. Without the sup-

port of query optimization, an STE-based scheme such as SPX often become suboptimal up to

a potentially large constant in practice. In order to make a more practical STE-based relational

database, we studied STE-based approach that not only admits query operators in various orders

but also produces the effect of reduced query complexity (Ch. 3).
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Complexity improvement. The query and storage complexity of relational data has been stud-

ied and improved continuously in the database literature for decades [1]. Prior STE-based con-

structions for encrypted relational data still cannot match the plaintext asymptotic complexity. For

example, SPX [63] incurs worst-case quadratic overhead for both join queries and storage. This high

overhead would hinder the scalability of the encrypted database system. To reduce the complexity

gap, we designed the first STE-based join algorithm that matches the plaintext join (Ch. 4).

Leakage reduction. Existing STE-based schemes also come with nontrivial query leakage for

complex relational queries that consists of multiple operators. For example, SPX leaks the patterns

about the full join between two attributes, even if only a few rows between the two attributes are

filtered for the query result. We investigated in how to reduce such leakage for queries of multiple

operators (Ch. 4) while keeping the same asymptotic storage complexity.

Legacy-friendliness. The main advantages of PPE-based EDBs compared to STE-based EDBs

are that the former are: (1) much easier to implement; and (2) legacy-friendly in the sense that

the encrypted tables can be stored and queried by existing DMBSs without any modifications. In

fact, the belief that STE-based solutions can only work on custom servers is a widespread and

established belief in cryptography community and a large part of why PPE-based solutions are

used in practice regardless of their leakage profiles. In this work we developed a new technique

called emulation (Ch. 5) to transform STE-based schemes such that they can be implemented on

standard relational systems without compromising security and efficiency.

Locality improvement. Relational data contains much information about data locality, such as

values that are colocated in the same rows, columns or tables based on logical relationship. This

locality informs database systems how to improve query efficiency, such as (1) prefetching colocated

values from slower storage to faster cache, or (2) storing colocated values in nearby storage blocks.

However, this locality is lost in STE-based schemes such as SPX [63] mainly due to encryption. As a

result the STE-based encrypted databases may have limited scalability. We study how to augment

such an STE-based scheme in order to recover data locality and the security trade-off (Ch. 5).

6



Open-source Implementation. Finally, we combine the solutions to these challenges into two

STE-based constructions called OPX and PKFK. Based on these schemes, we build the first STE-

based relational database system called KafeDB. KafeDB achieves a leakage profile comparable to the

ESPADA, Blind Seer and Stealth systems. KafeDB, however, handles a non-trivial subset of SQL

which includes queries with joins and projections. In addition, KafeDB is legacy-friendly, meaning

that it can be deployed on top of any relational database management system. As a prototype, we

built KafeDB on top of an unmodified instance of PostgreSQL. The TPC-H Benchmark [41] showed

that KafeDB had 4.2× query overhead and 3.63× storage overhead.

1.1 Related Work

Encrypted search. Encrypted search was first considered explicitly by Song, Wagner and Perrig

in [91] which introduced the notion of searchable symmetric encryption (SSE). Goh [50] provided the

first security definition for SSE and a solution based on Bloom filters with linear search complexity.

Chang and Mitzenmacher [35] proposed an alternative security definition and construction, also

with linear search complexity. Curtmola et al. [42] introduced and formulated the notion of adaptive

semantic security for SSE together with the first sub-linear and optimal-time constructions. Chase

and Kamara [36] introduced the notion of structured encryption (STE) which generalizes SSE to

arbitrary data structures. Kamara, Papamanthou and Roeder [67] gave the first optimal-time

dynamic SSE scheme.

Cash et al. [31] proposed the first optimal-time scheme that handles conjunctive keyword search

and Faber et al. show how to extend it to rich queries (e.g., range, substring and wildcard queries)

[46] . Naveed et al. [79] propose an optimal-time dynamic SSE scheme based on blind storage.

Cash et al. [30] show how to construct optimal-time SSE schemes with low I/O complexity and

Cash and Tessaro [32] gave lower bounds on the locality of adaptively-secure SSE schemes. Asharov

et al. build SSE schemes with optimal locality, optimal space overhead and nearly-optimal read

efficiency [14]. Miers and Mohassel [76] presented an optimal time I/O efficient SSE construction.

Garg et al. [48] presented a new SSE construction with reduced leakage leveraging oblivious RAM

and garbled RAM techniques. Bost [27] proposed an efficient forward-secure SSE construction
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based on trapdoor permutations. Kamara and Moataz [61] proposed non-interactive SSE schemes

that handle boolean queries with arbitrary disjunctions and conjunctions with sub-linear search

complexity. Bost and Fouque [28] described padding techniques that are more efficient than naive

padding (adding dummy values to ensure all query responses are of the same volume) to protect

against volume-based attacks. Kamara and Moataz [62] proposed the first volume-hiding encrypted

multi-maps that do not rely on naive padding. Kamara et al. [65] described a general framework

to design STE schemes that do not leak the query/search pattern.

SSE has also been considered in the multi-user setting [42, 59]. Pappas et al. [82] proposed a

multi-user SSE construction based on garbled circuits and Bloom filters that can support Boolean

formulas, ranges and stemming.

Other approaches for encrypted search include oblivious RAMs (ORAM) [51], secure multi-

party computation [21], functional encryption [26] and fully-homomorphic encryption [49] as well

as solutions based on deterministic encryption [20] and order-preserving encryption (OPE) [5, 23].

Attacks on SSE. While we do not consider the problem of designing an SSE scheme in this

work, we do use SSE building blocks. Several works have proposed attacks that try to exploit the

leakage of SSE. This includes the query-recovery attacks of Islam et al. [58], of Cash et al. [29],

of Zhang et al. [102], and of Blackstone et al. [22]. Recently, Abdelraheem et al. [78], presented

attacks on encrypted relational databases. We briefly mention here that although the attacks in

[78] are ostensibly on relational EDBs, they are not related to or applicable to our constructions.

Locality in SSE. Locality has also been studied in SSE [36, 32]. To have optimal locality is to

achieve minimum random access in each keyword search, i.e. for DB(w) values associated with a

keyword or label w, no more than constant amount of random access per search (O(1)). Chase and

Kamara [36] presented a construction that achieves optimal locality but at the cost of suboptimal

storage size: O(K ·N) with K unique keywords and N keyword-value pairs. Cash and Tessaro [32]

presented a lower bound for a SSE scheme that has constant locality and constant read efficiency

(in |DB(w)|) has to incur storage size superlinear in N .
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Distributed EDBs. Agarwal and Kamara studied the STE-based encrypted distributed hash

tables [3] and key-value stores [4]. Adkins et al. [2] studied the design of end-to-end encrypted

blockchain databases.

Federated EDBs. Federated EDBs are systems that are composed of multiple autonomous

encrypted databases. Most federated EDBs use secure multi-party computation (MPC) to query

the constituent EDBs securely. In this model, multiple parties hold a piece of the database (either

tables or rows) and a public query is executed in such a way that no information about the database

is revealed beyond what can be inferred from the result and some additional leakage. Examples

include SMCQL [19] and Conclave [97], which store the databases as secret shares and encryptions,

respectively, and use MPC to execute the sensitive parts of a SQL query on the shared/encrypted

data. We note that standard EDBs like KafeDB can be combined with MPC to yield a federated

EDB.

Other EDBs. Other encrypted databases include ARX by Poddar, Boelter and Popa [83] and

Jana by Galois [13]. While ARX is SSE-based, it is not a relational EDB since it is built on

top of MongoDB. The authors choose to describe their queries using SQL for convenience but

ARX does not store relational data or handle SQL/relational queries. Note that simply translating

SQL queries to MongoDB queries using a SQL translator is not appropriate as this would alter the

security/leakage guarantees claimed by ARX. The Jana system stores data either as MPC shares or

encrypted using deterministic and order-preserving encryption depending on the efficiency/leakage

tradeoff that is desired. Queries are then either handled using MPC or directly on the PPE-

encrypted data. Jana currently has no formal leakage analysis or experimental results so it is not

clear what its leakage profile or performance is in either mode of operation.

1.2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite

binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}. The output x of an algorithm A is
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denoted by x← A. Given a sequence r of n elements, we refer to its ith element as ri or r[i]. If S

is a set then #S refers to its cardinality. Throughout, k will denote the security parameter.

Abstract data types. An abstract data type specifies the functionality of a data structure. It

is a collection of data objects together with a set of operations defined on those objects. Examples

include sets, dictionaries (also known as key-value stores or associative arrays) and graphs. The

operations associated with an abstract data type fall into one of two categories: query operations,

which return information about the objects; and update operations, which modify the objects. If

the abstract data type supports only query operations it is static, otherwise it is dynamic. For

simplicity we define data types as having a single operation and note that the definitions can be

extended to capture multiple operations in the natural way. We model a dynamic data type T as

a collection of four spaces D = {Dk}k∈N, Q = {Qk}k∈N, R = {Rk}k∈N and U = {Uk}k∈N and two

maps qu : D × Q → R and up : D × U → D, where D, Q, R and U are, respectively, T’s object,

query, response and update spaces. A data type T is often described by its maps (qu, up) from

which the object, query, response and update spaces can be deduced. The spaces are ensembles of

finite sets of finite strings indexed by the security parameter. We assume that R includes a special

element ⊥ and that D includes an empty object d0 such that for all q ∈ Q, qu(d0, q) = ⊥.

Data structures. A type-T data structure is a representation of data objects in D in some

computational model (as mentioned, here it is the word RAM). Typically, the representation is

optimized to support qu as efficiently as possible; that is, such that there exists an efficient al-

gorithm Query that computes the function qu. For data types that support multiple queries, the

representation is often optimized to efficiently support as many queries as possible. As a concrete

example, the dictionary type can be represented using various data structures depending on which

queries one wants to support efficiently. Hash tables support Get and Put in expected O(1) time

whereas balanced binary search trees support both operations in worst-case log(n) time.

Definition 1.2.1 (Structuring scheme). Let T = (qu : D×Q→ R, up : D×U→ D) be a dynamic

type. A type-T structuring scheme SS = (Setup,Query,Update) is composed of three polynomial-

time algorithms that work as follows:
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• DS ← Setup(d): is a possibly probabilistic algorithm that takes as input a data object d ∈ D

and outputs a data structure DS. Note that d can be represented in any arbitrary manner as

long as its bit length is polynomial in k. Unlike DS, its representation does not need to be

optimized for any particular query.

• r ← Query(DS, q): is an algorithm that takes as input a data structure DS and a query q ∈ Q

and outputs a response r ∈ R.

• DS← Update(DS, u): is a possibly probabilistic algorithm that takes as input a data structure

DS and an update u ∈ U and outputs a new data structure DS.

Here, we allow Setup and Update to be probabilistic but not Query. This captures most data

structures but the definition can be extended to include structuring schemes with probabilistic

query algorithms. We say that a data structure DS instantiates a data object d ∈ D if for all

q ∈ Q, Query(DS, q) = qu(d, q). We denote this by DS ≡ d. We denote the set of queries supported

by a structure DS as QDS; that is,

QDS
def=

{
q ∈ Q : Query(DS, q) 6= ⊥

}
.

Similarly, the set of responses supported by a structure DS is denoted RDS.

Definition 1.2.2 (Correctness). Let T = (qu : D × Q → R, up : D × U → D) be a dynamic

type. A type-T structuring scheme SS = (Setup,Query,Update) is perfectly correct if it satisfies the

following properties:

1. (static correctness) for all d ∈ D,

Pr [ DS ≡ d : DS← Setup(d) ] = 1,

where the probability is over the coins of Setup.

2. (dynamic correctness) for all d ∈ D and u ∈ U, for all DS ≡ d,

Pr [ Update(DS, u) ≡ up(d, u) ] = 1,
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where the probability is over the coins of Update.

Note that the second condition guarantees the correctness of an updated structure whether the

original structure was generated by a setup operation or a previous update operation. Weaker

notions of correctness (e.g., for data structures like Bloom filters) can be derived from Definition

1.2.2.

Basic data structures. We use structures for several basic data types including dictionaries

and multi-maps which we recall here. A dictionary structure DX of capacity n holds a collection

of n label/value pairs {(labeli, vi)}i≤n and supports get and put operations. We write vi :=

DX[labeli] to denote getting the value associated with label labeli and DX[labeli] := vi to

denote the operation of associating the value vi in DX with label labeli. A multi-map structure

MM with capacity n is a collection of n label/tuple pairs {(labeli,vi)i}i≤n that supports get

and put operations. Similarly to dictionaries, we write vi := MM[`i] to denote getting the tuple

associated with label `i and MM[`i] := vi to denote operation of associating the tuple vi to label `i.

Multi-maps are the abstract data type instantiated by an inverted index. In the encrypted search

literature multi-maps are sometimes referred to as indexes, databases or tuple-sets (T-sets).

Dictionaries and multi-maps. A dictionary DX with capacity n is a collection of n label/value

pairs {(`i, vi)}i≤n and supports get and put operations. We write vi := DX[`i] to denote getting

the value associated with label `i and DX[`i] := vi to denote the operation of associating the value

vi in DX with label `i. A multi-map MM with capacity n is a collection of n label/tuple pairs

{(`i,vi)i}i≤n that supports Get and Put operations. We write vi = MM[`i] to denote getting the

tuple associated with label `i and MM[`i] = vi to denote operation of associating the tuple vi to

label `i. Multi-maps are the abstract data type instantiated by an inverted index. In the encrypted

search literature multi-maps are sometimes referred to as indexes, databases or tuple-sets (T-sets)

[31, 30].

Relational databases. We denote a relational database DB = (T1, . . . ,Tn), where each Ti is a

two-dimensional array with rows corresponding to an entity (e.g., a customer or an employee) and
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columns corresponding to attributes (e.g., age, height, salary). For any given attribute, we refer

to the set of all possible values that it can take as its space (e.g., integers, booleans, strings). We

define the schema of a table T to be its set of attributes and denote it S(T). For a row r ∈ Ti,

its table identifier tbl(r) is i and its row rank rrk(r) is its position in Ti when viewed as a list of

rows. Similarly, for a column c ∈ Tᵀ
i , its table identifier tbl(c) is i and its column rank crk(c) is its

position in Ti when viewed as a list of columns. For any row r ∈ T and any column c ∈ T, we refer

to the pairs χ(r) def= (tbl(r), rrk(r)) and χ(c) def= (tbl(c), crk(c)), respectively, as their coordinates in

DB. We also use χr to denote the coordinate for row r. For any attribute att ∈ S(DB) and constant

a belonging to the attribute’s domain, DBatt=a is the set of rows
{
r ∈ DB : r[att] = a

}
.

SQL and relational queries. In this work, we focus on the class of conjunctive SQL queries or

the SPC algebra [1], which have the form,

SELECT attributes FROM tables

WHERE att1 = X1 AND att2 = X2,

where Xi is either an attribute or a constant value. If Xi is a constant, then the predicate

atti = Xi is referred to as a select predicate or filter predicate or constant predicate, whereas if Xi

is an attribute, then the predicate atti = Xi is called a join predicate. We use standard relational

algebra notation and denote the select operator or filter operator by σ, the project operator by π,

the rename operator by ρ, the θ-join operator by on
θ

with the join predicate θ, the cross-join operator

by ×, and the (left) semi-join operator by n. We follow the semantics of all the above operators

as defined in [1]. We also use fixed-point operators, which is an extension over relational algebra to

express recursion [6]. For example, ⋃∞i Qi specifies a union of a sequence of queries {Qi}i which

stops at maximum i for which Qi results in an empty set.

1.3 Definitions

In this Section, we define the syntax and security of STE schemes.
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1.3.1 Basic Cryptographic Primitives

We make use of standard private-key encryption schemes, pseudo-random functions and hash func-

tions.

A private-key encryption scheme is a set of three polynomial-time algorithms SKE =

(Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a security parameter k and

returns a secret key K; Enc is a probabilistic algorithm that takes a key K and a message m and

returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and a ciphertext c and

returns m if K was the key under which c was produced.

Informally, a private-key encryption scheme is secure against chosen-plaintext attacks (CPA)

if the ciphertexts it outputs do not reveal any partial information about the plaintext even to an

adversary that can adaptively query an encryption oracle.

We say a scheme is random-ciphertext-secure against chosen-plaintext attacks (RCPA) if the

ciphertexts it outputs are computationally indistinguishable from random even to an adversary

that can adaptively query an encryption oracle.2

In addition to encryption schemes, we also make use of pseudo-random functions (PRF), which

are polynomial-time computable functions that cannot be distinguished from random functions by

any probabilistic polynomial-time adversary.

1.3.2 Structured Encryption

A STE scheme encrypts data structures in such a way that they can be privately queried. There are

several natural forms of structured encryption. The original definition of [36] considered schemes

that encrypt both a structure and a set of associated data items (e.g., documents, emails, user pro-

files etc.). In [37], the authors also describe structure-only schemes which only encrypt structures.

Another distinction can be made between interactive and non-interactive schemes. Interactive

schemes produce encrypted structures that are queried through an interactive two-party proto-

col, whereas non-interactive schemes produce structures that can be queried by sending a single

message, i.e, the token. One can also distinguish between response-hiding and response-revealing
2RCPA-secure encryption can be instantiated practically using either the standard PRF-based private-key encryp-

tion scheme or, e.g., AES in counter mode.
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schemes: the latter reveal the query response to the server whereas the former do not.

In this work, we focus on non-interactive structure-only schemes. Our main construction, PKFK,

is response-hiding but makes use of response-revealing schemes as building blocks. As such, we

define both forms below. At a high-level, non-interactive STE works as follows. During a setup

phase, the client constructs an encrypted structure EDS under a key K from a plaintext structure

DS. The client then sends EDS to the server. During the query phase, the client constructs and

sends a token tk generated from its query q and secret key K. The server then uses the token tk

to query EDS and recover either a response r or an encryption ct of r depending on whether the

scheme is response-revealing or response-hiding.

Definition 1.3.1 (Response-revealing structured encryption [36]). A response-revealing structured

encryption scheme Σ = (Setup,Token,Query) consists of three polynomial-time algorithms that work

as follows:

• (K,EDS)← Setup(1k,DS): is a probabilistic algorithm that takes as input a security parameter

1k and a structure DS and outputs a secret key K and an encrypted structure EDS.

• tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a secret key K

and a query q and returns a token tk.

•
{
⊥, r

}
← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted struc-

ture EDS and a token tk and outputs either ⊥ or a response.

We say that a response-revealing structured encryption scheme Σ is correct if for all k ∈ N, for all

poly(k)-size structures DS : Q→ R, for all (K,EDS) output by Setup(1k,DS) and all sequences of

m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi), Query(EDS, tki) returns

DS(qi) with all but negligible probability.

Definition 1.3.2 (Response-hiding structured encryption [36]). A response-hiding structured en-

cryption scheme Σ = (Setup,Token,Query,Dec) consists of four polynomial-time algorithms such

that Setup and Token are as in Definition 1.3.1 and Query and Dec are defined as follows:

• {⊥, ct} ← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted

structured EDS and a token tk and outputs either ⊥ or a ciphertext ct.
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• r ← Dec(K, ct): is a deterministic algorithm that takes as input a secret key K and a cipher-

text ct and outputs a response r.

We say that a response-hiding structured encryption scheme Σ is correct if for all k ∈ N, for all

poly(k)-size structures DS : Q→ R, for all (K,EDS) output by Setup(1k,DS) and all sequences of

m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi), DecK
(

Query
(

EDS, tki
))

returns DS(qi) with all but negligible probability.

Security. The standard notion of security for structured encryption guarantees that an encrypted

structure reveals no information about its underlying structure beyond the setup leakage LS and

that the query algorithm reveals no information about the structure and the queries beyond the

query leakage LQ. If this holds for non-adaptively chosen operations then this is referred to as

non-adaptive semantic security. If, on the other hand, the operations are chosen adaptively, this

leads to the stronger notion of adaptive semantic security. This notion of security was introduced

by Curtmola et al. in the context of SSE [42] and later generalized to structured encryption in [36].

The security of STE is formalized using “leakage-parameterized” definitions following [42, 36]. In

this framework, a design is proven secure with respect to a security definition that is parameterized

with a specific leakage profile. Leakage-parameterized definitions for persistent adversaries were

given in [42, 36] and for snapshot adversaries in [9].3

The leakage profile of a scheme captures the information an adversary learns about the data

and/or the queries. Depending on the type of the adversary, the leakage can simply be the in-

formation the adversary learns by storing the encrypted database such as its size in the case of

a snapshot adversary; or more sophisticated such as the size of the result tables or frequencies of

SQL queries in the case of a persistent adversary. Each operation on the encrypted data structure

is associated with a set of leakage patterns and this collections of sets forms the scheme’s leakage

profile.

We recall the informal security definition for STE and refer the reader to [42, 36, 9] for more

details.
3Even though parameterized definitions were introduced in the context of SSE and STE, they can be (and have

been) applied to other primitives, including to FHE-, PPE-, ORAM- and FE-based solutions.
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Definition 1.3.3 (Adaptive semantic security [42, 36]). Let Σ = (Setup,Token,Query) be a

response-revealing structured encryption scheme and consider the following probabilistic experi-

ments where A is a stateful adversary, S is a stateful simulator, LS and LQ are leakage profiles

and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS. It receives EDS from the challenger,

where (K,EDS)← Setup(1k,DS). The adversary then adaptively chooses a polynomial num-

ber of queries q1, . . . , qm. For all i ∈ [m], the adversary receives tk ← Token(K, qi). Finally,

A outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to the challenger.

Given z and leakage LS(DS) from the challenger, the simulator S returns an encrypted data

structure EDS to A. The adversary then adaptively chooses a polynomial number of operations

q1, . . . , qm. For all i ∈ [m], the simulator receives a tuple
(
DS(qi),LQ(DS, qi)

)
and returns a

token tki to A. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-semantically secure if there exists a ppt simulator S such

that for all ppt adversaries A, for all z ∈ {0, 1}∗, the following expression is negligible in k:

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]|

The security definition for response-hiding schemes can be derived from Definition 1.3.3 by

giving the simulator
(
⊥,LQ(DS, qi)

)
instead of

(
DS(qi),LQ(DS, qi)

)
.

Modeling leakage. Every STE scheme is associated with leakage which itself can be composed

of multiple leakage patterns. The collection of all these leakage patterns forms the scheme’s leakage

profile. Leakage patterns are (families of) functions over the various spaces associated with the

underlying data structure. For concreteness, we borrow the nomenclature introduced in [65] and

recall some well-known leakage patterns that we make use of in this work. Here D and Q refer to

the space of all possible data objects and the space of all possible queries for a given data type. In

this work, we consider the following leakage patterns:
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• the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with qeqk,t : Dk ×Qt
k →

{0, 1}t×t such that qeqk,t(DS, q1, . . . , qt) = M , where M is a binary t × t matrix such that

M [i, j] = 1 if qi = qj and M [i, j] = 0 if qi 6= qj . The query equality pattern is referred to as

the search pattern in the SSE literature;

• the response identity pattern is the function family rid = {ridk,t}k,t∈N with ridk,t : Dk ×Qt
k →

[2[n]]t such that ridk,t
(
DS, q1, . . . , qt

)
= (DS[q1], . . . ,DS[qt]). The response identity pattern is

referred to as the access pattern in the SSE literature;

• the response length pattern is the function family rlen = {rlenk,t}k,t∈N with rlenk,t : Dk×Qt
k →

Nt such that rlenk,t(DS, q1, . . . , qt) =
(
|DS[q1]|, . . . , |DS[qt]|

)
;

Encrypted dictionaries and multi-maps. An encrypted dictionary EDX is an encryption of a

dictionary DX that supports encrypted get and put operations. Similarly, an encrypted multi-map

EMM is an encryption of a multi-map MM that supports encrypted get and put operations. Multi-

map encryption schemes are structured encryption (STE) schemes for multi-maps and have been

extensively investigated. Many practical constructions are known that achieve different tradeoffs

between query and storage complexity, leakage and locality [42, 67, 30, 30, 32, 92, 27, 65]. Encrypted

dictionaries can be obtained from any encrypted multi-map since the former is just an encrypted

multi-map with single-item tuples.
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Chapter 2

KafeDB: System Architecture

2.1 Introduction

In this work, we tackle the key challenges that impede the development and deployment of encrypted

databases. Our contributions can be summarized as follows:

• (design principles) we identify and discuss five key principles for the design of practical and

secure relational EDBs. These include a reasonable leakage profile, efficiency, legacy friend-

liness, optimization friendliness and expressiveness. Achieving any strict subset of these four

requirements is insufficient.

• (construction) we describe the first encrypted database scheme that follows all the design

principles outlined above. To achieve this we make two important technical contributions:

(1) we show, for the first time, how to design optimization-friendly STE schemes; and (2) we

introduce a new technique called emulation that makes STE-based solutions legacy-friendly.

This new scheme is called OPX and is an extension of the SPX construction of Kamara and

Moataz [63].

• (architecture) we propose an architecture for encrypted database management systems that

integrates the needed cryptographic components into a traditional DBMS architecture. This

is, in part, done by introducing a crypto engine that is responsible for providing end-to-end
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encryption and an emulation engine that is responsible for making the encrypted databases

and queries “comprehensible” to a standard and unmodified DBMS.

• (prototype) we describe the implementation and evaluation of a new system called KafeDB

based on our architecture, our OPX construction and our emulators. KafeDB runs on top of an

unmodified PostgreSQL server. Our initial prototype demonstrates the feasibility of our archi-

tecture and approach. We evaluate its performance empirically using the TPC-H benchmark

and report promising initial results: about an order of magnitude query and storage over-

head over standard PostgreSQL, but offering considerably stronger security guarantees than

CryptDB and much more expressiveness than ESPADA, Blind Seer and Stealth. To improve

upon the initial results, we will need more sophisticated techniques in both cryptography and

database systems.

2.2 Design Principles

Designing a relational EDB is, arguably, the most challenging problem in encrypted search. Ex-

isting RDBMs are the result of over 40 years of research and development so competing with the

performance of commercial DBMSs over encrypted data is a tall order. To achieve this level of

performance, it stands to reason that EDBs need to inherit as many of these advances as possible.

With this in mind, we outline five principles that are necessary for the design of practical EDBs.

Adversarial models & leakage. There are two main adversarial models considered in encrypted

search: (1) persistent adversaries which have access to the encrypted database and can view all the

query operations that are executed on it; and snapshot adversaries which only have access to the

encrypted database. Persistent adversaries model attackers that corrupt the server and stay long

enough to view some number of queries. Snapshot adversaries model attackers that corrupt the

server and exfiltrate a snapshot of its memory and disk. All cryptographic solutions that support

search on encrypted data in sub-linear time leak information against persistent adversaries. This is

true of PPE-based, STE-based and ORAM-based solutions. However, it is known that both STE

and ORAM can lead to solutions with no leakage against snapshot adversaries [9].
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The security of an encrypted search solution is characterized by its leakage profile which is a

formal description of the information an adversary learns from observing and interacting with the

scheme. More precisely, in the the persistent model, a leakage profile consists of: (1) setup leakage

which describes the information the adversary learns by just observing the encrypted database; and

(2) query leakage which describes the information the adversary learns by observing the execution

of queries. For dynamic schemes, which support the addition and deletion of data, the leakage

profile also includes add leakage and delete leakage. This approach to characterizing leakage was

introduced in [42, 36] and we refer to [65] for additional details.

Principal #1: minimal leakage. An important design goal for any encrypted database is to

minimize the information a persistent adversary is able to recover. At a minimum, this means that

there should be no known practical attack against the scheme. Furthermore, the scheme’s leakage

profile should have the following characteristics:

• (minimal setup leakage) the setup leakage of the scheme should include at most the “shape”

of the database; i.e., the number of columns and rows of each table.

• (output-dependent query leakage) when a query is executed, the adversary should, at most,

learn information related to result of the query and not to the entire database or column.

Furthermore, the information that is leaked should, at most, be statistical information about

the query or result like whether a query has been queried in the past, or the number of rows

that contain a similar value.

To be clear, leakage profiles with these characteristics are not provably immune to attacks. But,

given our current understanding and the state-of-the-art results in cryptanalysis [22], these leakage

profiles seem difficult to attack in practice. For more discussion about leakage attacks we refer the

reader to [22] and the discussions and references therein. 1

Principle #2: low asymptotic overhead. The system should be competitive with a standard

plaintext DBMS with respect to query execution and storage. High performance imposes efficiency
1Since our current design and system does not yet handle range queries, we do not consider cryptanalytic work

focused on encrypted range schemes.
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requirements on the system’s database encryption scheme. Specifically, it should achieve the same

asymptotic complexity as a plaintext database and preferably with small constants. As an example,

schemes that add a linear or even polylogarithmic multiplicative overhead over a plaintext query

are unacceptable in practice. The same applies for the scheme’s round and storage complexities.

Principle #3: optimization friendliness. In addition to low asymptotic overhead, the un-

derlying database encryption scheme should be optimization-friendly in the sense that it should

support the execution of optimized query plans and, in particular, of plans that are optimized by

commercial query optimizers.

Principle #4: rich query expressiveness. The system should support a non-trivial subset of

SQL and, at a minimum, the class of conjunctive SQL queries (or the SPC algebra) which have the

form:

SELECT attributes FROM tables

WHERE att1 = a AND ... AND att2 = att3 AND ...

This requires being able to handle select, project and join operators.

Principle #5: legacy friendliness. While building an entirely new encrypted DBMS from

the ground up is an interesting technical question, designing a scheme that can work on top of

an existing, unmodified DBMSs is more appealing from a practical standpoint. If the resulting

system is competitive with plaintext systems, achieves the required security and provides rich query

expressiveness, there is almost no reason to build a new DBMS from scratch and lose over 40 years

of advances in database research and engineering. Ideally, the design should be database-agnostic

in the sense that it should not depend on a particular DBMS.

2.3 System Architecture

KafeDB has a three-tier architecture composed of the application, the client and the server, as shown

in Figure 2.1. Both the application and the client are assumed to operate in a trusted environment,
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Figure 2.1: The KafeDB system architecture.

whereas the server is untrusted. The client encrypts the application’s database and queries and

sends them to the server who executes them. The key material is stored by the client so the server

never sees the data or queries in plaintext. Note that the client is stateless and only stores the

schema of the plaintext database and the cryptographic keys.

The client is central to the KafeDB architecture, and most of its modules have to be carefully

designed such that any given standard relational database can be used on the server. The most

important modules are the crypto engine and the emulation engine, which are used throughout the

data management cycle for data setup, query optimization and execution.

Crypto engine. In KafeDB, end-to-end encryption is handled by a crypto engine that implements

the database encryption scheme. It is responsible for encrypting the database and queries and

for decrypting the results. Currently, KafeDB’s crypto engine implements two of our STE-based

constructions, OPX and PKFK, but future versions could be based on new and improved schemes.

Emulation engine. Once a database or query is encrypted it is handed to the emulation engine

which is responsible for transforming them into relational tables and SQL queries to be processed

by the server. Note that the tables and SQL queries output by the emulation engine are not

the same as the tables and SQL queries produced by the application. In fact they are completely

different since the latter are representations of the STE tables and queries of the application. Again,

KafeDB’s emulation engine currently implements a specific emulator designed for this work but it
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could be replaced in the future with a different emulator.

Setup. Our current focus is on analytical workloads, therefore we design KafeDB to bulk load

new data through the setup module at the client2. The setup module invokes the crypto engine to

encrypt the data into encrypted structures, and then it uses the emulation engine to reshape them

into tables and indexes.

Query optimizer. Due to encryption, the KafeDB server cannot maintain statistics over the

tables and is, therefore, limited in how much it can optimize queries. In fact, since its underlying

database encryption scheme achieves minimal setup leakage, the only information the server learns

at setup time is the size of the database. Because of this, KafeDB does most of its query optimization

at the client. One of the main technical contributions of OPX is its ability to support any SPC

query plan. More precisely, the encrypted structures and query protocols used by OPX are carefully

designed so that the supported operations (i.e., joins, filters, projections) can be queried in any

order. This flexibility results in KafeDB being optimization-friendly since it can process query plans

that are produced by standard query optimizers. Besides filter pushdown, we also identified two

additional optimizations that are particularly effective in reducing some of the costs introduced

by OPX. These include: many-to-many join factorization and multi-way join flattening. The

former transforms each many-to-many join into two many-to-one joins (this requires an additional

encrypted table at setup) and the latter transforms a sequence of multiple joins (i.e. a left deep

tree) into separate pairs of joins (i.e. a bushy tree).

Split execution. KafeDB’s STE-based crypto engine currently handles conjunctive SQL queries

on encrypted data. For more complex queries, we use split execution as introduced in [94]. Given

a query, the client splits it into two kinds of subqueries: conjunctive subqueries, which are sup-

ported by the OPX crypto engine, and other subqueries which are not. The conjunctive subqueries

are processed by the crypto engine and the others are executed locally using the results of the

conjunctive subqueries.
2We defer the extension on secure fine-grained updates that are ACID-compliant to follow-up work.
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2.3.1 The STE-based Crypto Engine

The Crypto Engine in our architecture is designed to be a generic component that can plug in any

STE-based database encryption scheme. The main challenge for this generic design is to have a

sophisticated Emulation Engine that can renders any given STE-scheme legacy friendly without

changing security and efficiency.

By relegating much complication of legacy compatibility to emulation, we can therefore concen-

trate on improving the STE-based scheme on three aspects: security, expressivity and functionality,

while having the confidence that these cryptographic improvement can be translated directly into

the practical improvement of the whole KafeDB system. This is possible because the security of

KafeDB has to rely on that of the specific STE-based scheme in the Crypto Engine. Second, the

functionality such as language expressivity of KafeDB also depends on what the underlying STE-

based scheme offers. Lastly the efficiency of KafeDB may also vary given which STE-based scheme

is used.

In this section, we give an intuitive description of our Crypto Engine based on two STE-based

schemes OPX (Ch. 3) and PKFK (Ch. 4) and of our emulation techniques (Sec. 5.1), and refer to

for the formal treatment and analysis. First, however, we provide some technical background that

is necessary to understand our construction.

2.3.2 Overview of OPX and PKFK

Both OPX and PKFK schemes can be divided into two parts: (1) a setup phase during which the

client outputs the encrypted database; and (2) a query phase during which the client sends an

encrypted query. Here, we only focus on the important ideas behind the scheme.

Setup. The setup takes as input the plaintext database DB and a security parameter (i.e., the

length of the cryptographic keys), and constructs various representations of DB that are amendable

to structured encryption. The details of representations vary between OPX and PKFK. For example,

OPX creates six data structures that capture different representations of the database:

• (row representation) MMR is a multi-map that maps each row identifier to a tuple composed
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of the cells of the row;

• (column representation) MMC is a multi-map that maps each column identifier to a tuple

composed of the cells of the the column;

• (filter representation) MMV is a multi-map that maps the unique values in every column to

the rows that contain that value;

• (partial join representation) {MMc,c′}c,c′ is a set of multi-maps that correspond to a pair of

joinable columns in the database. Each multi-map maps row identifiers in one column to the

row identifiers in the other column that have equal cell value;

• (full join representation) {MMc}c is a set of multi-maps, each of which corresponds to a

column c of the database. Each multi-map maps a column identifier c′ to the pairs of row

identifiers that have the same value in both c and c′;

• (partial filter representation) SET is a set-membership structure that checks whether a cell in

a specific row contains a specific value.

All the multi-maps are encrypted using a multi-map encryption scheme. The set structure is

encrypted using a custom encrypted set scheme that we detail in the full version of this work.

An important aspect of OPX and PKFK is the ability to make use of any combination of these

structures to answer any conjunctive query. To do so, both schemes leverage a key design technique

in structured encryption called structural chaining. In its simplest form, it works as follows: the

client sends an encrypted query that can only be used with one of the encrypted structure. Once

the server executes this encrypted query, it reveals an intermediary response which is composed

of other precomputed encrypted queries that were stored in the encrypted structure during setup.

The server can then use these encrypted queries to query other encrypted structures. As a concrete

example, in OPX, the client sends an encrypted SQL query to retrieve all rows that are equal

to some specific value. The server will take this encrypted query and run it against EMMV , the

encrypted multi-map of MMV , which outputs all the necessary encrypted queries to run against

EMMR.
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Query. The query phase takes as input an optimized SQL query tree whose nodes are relational

operators. Then it proceeds to replace each node with a corresponding token for a specific encrypted

structure. The emulation engine then emulates the token tree as an encrypted SQL query and

sends it to the server. The server executes the encrypted query leveraging the structural chaining

discussed above.

Efficiency. One advancement of OPX and PKFK over prior works is on efficiency. OPX is the

first STE-based scheme that can support query optimization such that its encrypted query can

incur lower complexity at execution. Its storage overhead over plaintext comes from the creation

of multiple (encrypted) database representations. While most of these representations do not

significantly increase the asymptotic storage overhead, the partial and full join representations

can incur a worst-case quadratic blowup in database size. We use an idea of query rewrite called

many-to-many join factorization to circumvent this blowup. At a high level, this new query rewrite

rule factors a many-to-many join (e.g. foreign key to foreign key) into two many-to-one joins (e.g.

foreign key to primary key) such that each only incurs linear complexity.

It turns out that if the complexity measure is changed to the database size as in the database

literature( [101, 73]), then both OPX and SPX are suboptimal: quadratic time and space in input

database size. To improve, the PKFK scheme finally bridges the complexity gap using the latter,

more typical complexity measure. The key improvement comes from the discovery of STE-based

optimal join algorithm (Sec. 4.3.1). Furthermore through PKFK we study how to increase locality

in STE-based schemes, in particular through an STE-based colocation technique (Ch. 5).

Security. Because both OPX and PKFK use encrypted multi-maps extensively, their leakage

depend on the leakage of their underlying encrypted multi-map constructions. In our current

instantiation, OPX and PKFK leak a combination of query equality and response identity patterns.

At a high level, the quality equality reveals frequency information on how the client accesses the

database such as if and when the client sends the same query. The server can also learn which

query touches which rows, as well as the rows touched rows that are common between different

encrypted queries through the response identity patterns. However OPX and PKFK—and therefore
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KafeDB— provably leak significantly less than PPE-based schemes and systems like CryptDB [84]

and Monomi [94]. Furthermore, their leakage profile is not prone to any known practical attack. We

refer the formal security proofs to their respective chapters.

2.3.3 Overview of Emulation

While STE-based solutions are efficient and more secure than PPE-based solutions they have an

important limitation: they require a custom server and, therefore, are not legacy-friendly. To

address this, we introduce a new technique called emulation that can make STE-based schemes

like OPX legacy-friendly. While the notion of emulation is generally applicable, in this project

we focused on designing SQL emulators; that is emulators to make OPX run on any unmodified

relational RDBMS. The main advantages of our emulator are: (1) it does not impact OPX or

PKFK’s efficiency; (2) it preserves its security; and (3) it is agnostic to the underlying relational

DBMS. An emulator consists of two algorithms: a reshape algorithm and a reform algorithm. We

will provide details in Ch. 5.

Reshape. This algorithm transforms the encrypted database, which consists of a set of EMMs,

into a set of relational tables. It relies on sub-emulators that transform the individual EMMs into

tables. In our current KafeDB implementation, we use the Pibase EMM from [30] so our sub-

emulator is designed for that particular construction. At a high level, the sub-emulators parse each

EMM into a set of label/tuple pairs which it then inserts as a row into a table. It then creates a

plaintext index on the (encrypted) label column. For example in Figure 2.1, we summarize all the

generated tables for OPX.

Reform. This algorithm transforms the (encrypted) query tree into a normal SQL query. Here,

we use Common Table Expressions (CTEs) to capture the recursive nature of Pibase EMM queries.

The main challenges in the reform algorithm is (1) relational algebra does not have certain language

constructs that are used to describe pre-emulated query algorithms, such as the counter-based loop;

(2) the efficiency of the reformed query may not be as efficient as the pre-emulated query algorithm.

We address these challenges in more details in Ch. 5.
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2.3.4 Overview of Colocation

Relational data contains much information about data locality, such as values that are colocated

in the same rows, columns or tables based on logical relationship. This locality informs database

systems how to improve query efficiency, such as (1) by prefetching colocated values from slower

storage to faster cache, or (2) by storing colocated values in nearby storage blocks. However, this

locality is lost in STE-based schemes such as SPX [63] and PKFK mainly due to encryption. As

a result the STE-based databases may have limited scalability. For example in Figure 2.1, the

encrypted structures emulated as tables used in OPX and stored on the KafeDB server do not

convey any colocation of rows or columns as in the plaintext data model. Therefore in Chapter 5

we study the STE-based technique to increase locality by colocaiton and its security trade-off.
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Chapter 3

OPX: Query Optimization

3.1 Introduction

Though SPX [63] supports SPC algebra, it is not efficient enough to yield a system that is compet-

itive with commercial plaintext database management systems (DBMS). This stems from several

reasons which we now discuss.

Query processing and optimization. Database systems process SQL queries in a series of

steps. First, a SQL query is converted into a logical query tree which is a tree-based representation

of the query where each node is a relational algebra operator. Query trees are evaluated bottom

up by evaluating the operators at the leaves on the appropriate database tables. The intermediate

table that results from an operation is then passed on to its parent node until the final result table

is output by the root. The initial query tree is then converted by a query optimizer to an equivalent

but optimized query tree using various optimization techniques.

Query optimizers are one of the most important components of a DBMS and a large part of

why commercial systems are so efficient. It follows then that for encrypted database systems to

be competitive with commercial systems, they must support some form of query optimization.

However, the SPX construction does not allow for query optimization because it only handles

queries in heuristic normal form (HNF) which is a very specific form of query tree.
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An overview of SPX. We briefly recall how SPX works at a high-level. First, note that any

conjunctive SQL query can be represented as an SPC query [34] which, in turn, can be represented

as a query tree with select/filter, projection and cross product operations. SPX makes use of two

kinds of encrypted data structures: encrypted multi-maps (EMM) which map encrypted labels to

encrypted tuples and encrypted dictionaries which map encrypted labels to encrypted values. A

database DB = (T1, . . . ,Tn) is encrypted as EDB = (EMMR,EMMC ,EMMV ,EDX) where EMMR

and EMMC store encryptions of the rows and columns in the database, respectively; where EMMV

is used to process filter operations and where EDX is an encrypted dictionary that stores a set

of encrypted multi-maps {EMMc,c′}c,c′∈DB that are used to process joins between columns c and

c′. Given a query tree, SPX evaluates leaf operations by querying one of its EMMs directly and

then uses various algorithms to process the internal operations on intermediate results. While the

leaf operations are handled optimally thanks to the EMMs, internal operations are not necessarily

handled in optimal or even sub-linear time.

Sub-optimality of correlated queries. Another source of SPX’s sub-optimality is comes from

how it handles correlated queries. Roughly speaking, a conjunctive SQL query is uncorrelated if

the terms of its WHERE clause include attributes/columns that are in different tables. The query

trees of uncorrelated queries are relatively simple: they have height 1 with leaves that are either

join or filter operations and a root that is a Cartesian product. From the discussion above, one can

see that only leaf filters in SPX are evaluated optimally by directly querying the EMMs. Correlated

queries, on the other hand, have query trees of height 2 or more which means they have internal

operations which, as discussed above, are not necessarily handled optimally.

Our contributions. In this work, we describe an extension of the SPX construction, called

OPX, that supports query optimization. It does this by using additional encrypted structures

that are designed to optimally handle internal operations by taking inputs from outputs of other

operations. These additional structures include an encrypted set structure to handle internal filters

and an additional set of encrypted multi-maps to handle internal joins. These additional structures

increase the storage overhead but only concretely; asymptotically-speaking OPX has the same
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storage overhead as SPX. The leakage profile of OPX is also similar to that of SPX. In addition to

executing internal operations more efficiently, OPX has the advantage that it can handle any query

tree; not just HNF trees. This is an important feature because it means that OPX can be used to

query trees that have been optimized by standard query optimizers.

3.2 The OPX Construction

We now describe our main construction, OPX, which is a response-hiding STE scheme for relational

databases that supports conjunctive SQL queries. It uses a response-revealing multi-map encryption

scheme ΣMM, the adaptively-secure encrypted multi-map scheme Σπ
MM by Cash et al. [30], a

symmetric encryption scheme SKE, a pseudo-random function F , and a random oracle H. We

describe the scheme in detail in Figures (3.1), (3.2), (3.3), and (3.4), and provide a high level

description below.

Remark on notation. We note that the syntax of OPX matches Definition 1.3.2 but its queries

q are query trees and its tokens tk are token trees; that is, trees where each node is a sub-token.

We make this explicit here by referring to query trees as QT and to token trees as TT. Throughout,

while processing a query tree, we denote by Rin the set of inputs to an operation/node and by

Rout the set of outputs of that operation/node.

Setup. The Setup algorithm takes as input a database DB = (T1, · · · ,Tn) and a security param-

eter k. It first samples a key K1
$← {0, 1}k, and then initializes a multi-map MMR such that for all

rows r ∈ DB, it sets

MMR

[
χ(r)

]
:=
(

EncK1(r1), · · · ,EncK1(r#r), χ(r)
)
,

It then computes

(KR,EMMR)← ΣMM.Setup
(

1k,MMR

)
.
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Let ΣMM = (Setup,Token,Get) be a response-revealing multi-map encryption scheme, ΣπMM =
(Setup,Token,Get) be the response-revealing multi-map encryption scheme in [30], SKE =
(Gen,Enc,Dec) be a symmetric encryption scheme, F : {0, 1}k × {0, 1}? → {0, 1}m be a pseudo-
random function, and H : {0, 1}? → {0, 1}m be a random oracle. Consider the DB encryption scheme
opx = (Setup,Token,Query,Dec) defined as follows a:

• Setup(1k,DB):

1. initialize a set SET;
2. initialize multi-maps MMR, MMC and MMV ;
3. initialize multi-maps (MMatt)att∈DBᵀ ;
4. initialize multi-maps (MMatt,att′)att,att′∈DBᵀ such that dom(att) = dom(att′);

5. sample two keys K1,KF
$← {0, 1}k;

6. for all r ∈ DB set
MMR

[
χ(r)

]
:=
(

EncK1(r1), . . .EncK1(r#r), χ(r)
)

;

7. compute (KR,EMMR)← ΣMM.Setup
(
1k,MMR

)
;

8. for all c ∈ DBᵀ, set
MMC

[
χ(c)

]
:=
(

EncK1(c1), . . .EncK1(c#c), χ(c)
)

;

9. compute (KC ,EMMC)← ΣMM.Setup
(
1k,MMC

)
;

10. for all c ∈ DBᵀ,
a. for all v ∈ c and r ∈ DBc=v,

i. compute rtkr ← ΣMM.Token
(
KR, χ(r)

)
,

b. set
MMV

[〈
v, χ(c)

〉]
:=
(

rtkr

)
r∈DBc=v

;

11. compute (KV ,EMMV )← ΣMM.Setup
(
1k,MMV

)
;

12. for all c ∈ DBᵀ,
a. for all c′ ∈ DBᵀ such that dom(att(c′)) = dom(att(c)),

i. initialize an empty tuple t;
ii. for all rows ri and rj in c and c′, such that c[i] = c′[j],

1. compute rtki ← ΣMM.Token
(
KR, χ(ri)

)
;

2. compute rtkj ← ΣMM.Token
(
KR, χ(rj)

)
;

3. add (rtki, rtkj) to t;
iii. set

MMc

[〈
χ(c), χ(c′)

〉]
:= t;

b. compute (Kc,EMMc)← ΣMM.Setup
(
1k,MMc

)
;

aNote that we omit the description of Dec since it simply decrypts every cell of R.

Figure 3.1: The OPX scheme (Part 1).
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• Setup(1k,QT):

13. for all c ∈ DBᵀ,
a. for all v ∈ c,

i. compute Kv ← FKF
(χ(c)‖v);

ii. set for all r ∈ DBc=v,
SET := SET

⋃{
H
(
Kv‖rtk

)}
,

where rtk← ΣMM.Token(KR, χ(r));
14. for all c ∈ DBᵀ,

a. for all c′ ∈ DBᵀ such that dom(att(c′)) = dom(att(c)),
i. initialize an empty tuple t;
ii. for all ri, rj ∈ [m] such that c[i] = c′[j],

1. add
(
rtki, rtkj

)
to t where

rtki ← ΣMM.Token(KR, χ(ri)) and rtkj ← ΣMM.Token(KR, χ(rij).

iii. for all rtk s.t. (rtk, ·) ∈ t, set

MMc,c′

[
rtk
]

:=
(

rtk′
)

(rtk,rtk′)∈t

b. compute (Kc,c′ ,EMMc,c′)← ΣπMM.Setup
(
1k,MMc,c′

)
;

15. output K = (K1,KR,KC ,KV , {Kc}c∈DBᵀ ,KF , {Kc,c′}c,c′∈DBᵀ) and EDB =
(EMMR,EMMC ,EMMV , (EMMc,c′)c,c′∈DBᵀ , SET, (EMMc)c∈DBᵀ).

Figure 3.2: The OPX scheme (Part 2).
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• Token(K,QT):

1. initialize a token tree TT with empty nodes and with the same structure as QT;
2. for every node N accessed in a post-traversal order in QT ,

a. if N ≡ σatt=a(T) then set TTN to

stk← ΣMM.Token
(
KV , 〈a, χ(att)

)
;

b. if N ≡ σatt=a(Rin) then set TTN to (rtk, pos) where

rtk← FKF

(
χ(att)‖a

)
and pos denotes the position of att in Rin.

c. if N ≡ T1 ./att1=att2 T2 then set TTN to (jtk, pos) where

jtk← ΣMM.Token
(
Katt1 ,

〈
χ(att1), χ(att2)

〉)
,

and pos is the position of attribute att1 in Rin.
d. if N ≡ T ./att1=att2 Rin then set the corresponding node in TT to (etk, pos1, pos2)

where
etk := Katt1,att2 ;

and pos1, pos2 are the positions of the attributes att1, att2 in Rin, respectively.
e. if N ≡ R(l)

in ./att1=att2 R(r)
in then set TTN to (pos1, pos2) where pos1 and pos2 are the

column positions of att1 and att2 in R(l)
in and R(r)

in , respectively.
f. if N ≡ πatt(T) then set TTN to ptk where

ptk← ΣMM.Token
(
KC , χ(atti)

)
.

g. if N ≡ πatt1,··· ,attz (Rin) then set TTN to(
pos1, · · · , posz

)
,

where posi is the column position of atti in Rin.
h. if N ≡ [a] then set TTN to [EncK1(a)].
i. if N ≡ × then set TTN to ×.

3. output TT.

Figure 3.3: The OPX scheme (Part 3).
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• Query(EDB, tk):

1. parse EDB as (EMMR,EMMC ,EMMV , (EMMc,c′)c,c′∈DBᵀ , SET, (EMMc)c∈DBᵀ).
2. for every node N accessed in a post-traversal order in TT,

– if N ≡ stk, it computes

(rtk1, · · · , rtks)← ΣMM.Query
(

stk,EMMV

)
,

and sets Rout := (rtk1, · · · , rtks);
– if N ≡ (rtk, pos), then for all rtk in Rin in the column at position pos, if

H(rtk‖rtk) /∈ SET

then it removes the row from Rin. Finally, it sets Rout := Rin;
– if N ≡ (jtk, pos), then it computes(

(rtk1, rtk′1), . . . , (rtks, rtk′s)
)
← ΣMM.Query(jtk,EMMpos),

and sets
Rout :=

(
(rtki, rtk′i)

)
i∈[s]

;

– if N ≡ (etk, pos1, pos2), then for each row r in Rin, it computes ltk ←
ΣπMM.Token(etk, rtk), and

(rtk1, · · · , rtks)← ΣπMM.Query(ltk,EMMpos1,pos2
),

where rtk = r[attpos2
], and appends the new rows

(
rtki
)
i∈[s]
× r to Rout;

– if N ≡ (pos1, pos2), then it sets

Rout := R(l)
in ./pos1=pos2

R(r)
in ,

where R(l)
in and R(r)

in are the left and right input respectively;
– if N ≡ ptk then it computes

(ct1, · · · , cts)← ΣMM.Query
(

ptk,EMMC

)
and sets Rout := (ct1, · · · , cts);

– if N ≡ (pos1, · · · , posz), then it computes Rout := πpos1,··· ,posz
(Rin);

– if N ≡ × then it computes
Rout := R(l)

in ×R(r)
in ;

3. it replaces each cell rtk in Rroot
out by ct← ΣMM.Query(rtk,EMMR);

4. output Rroot
out.

Figure 3.4: The OPX scheme (Part 4).
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It initializes a multi-map MMC such that for all columns c ∈ DBᵀ, it sets

MMC

[
χ(c)

]
:=
(

EncK1(c1), · · · ,EncK1(c#c), χ(c)
)
,

It then computes

(KC ,EMMC)← ΣMM.Setup
(

1k,MMC

)
.

It initializes a multi-map MMV , and for each c ∈ DBᵀ, all v ∈ c and r ∈ DBc=v, it computes

rtkr ← ΣMM.Token
(
KR, χ(r)

)
,

and sets

MMV

[〈
v, χ(c)

〉]
:=
(

rtkr

)
r∈DBc=v

.

It then computes

(KV ,EMMV )← ΣMM.Setup(1k,MMV ).

It initializes a set of multi-maps {MMc}c∈DBᵀ . For all columns c, c′ ∈ DBᵀ that have the same

domain such that dom(att(c)) = dom(att(c′)), it initiates an empty tuple t that it populates as

follows. For all rows ri and rj in column c and c′, respectively, that verify

c[i] = c′[j],

it inserts (rtki, rtkj) in t where

rtki ← ΣMM.Token(KR, χ(ri))

and

rtkj ← ΣMM.Token(KR, χ(rij)),

and sets

MMc

[
〈χ(c), χ(c′)〉

]
:= t.
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It then computes, for all c ∈ DBᵀ,

(Kc,EMMc)← ΣMM.Setup
(

1k,MMc

)
.

It initializes a set SET and computes for each column c ∈ DBᵀ, and for all v ∈ c, a key Kv such

that

Kv ← FKF (χ(c)‖v),

where KF
$← {0, 1}k. Then for all rows r in DBc=v, it sets

SET := SET
⋃{

H(Kv‖rtk)
}
,

where rtk← ΣMM.Token(KR, χ(r)). It then initializes a set of multi-maps {MMatt,att′} for att, att′ ∈

S(DB) and dom(att) = dom(att′). For all columns c, c′ ∈ DBᵀ that have the same domain, it initiates

an empty tuple t that it populates as follows. For all rows ri and rj in column c and c′, respectively,

that verify

c[i] = c′[j],

it inserts (rtki, rtkj) in t where

rtki ← ΣMM.Token(KR, χ(ri))

and

rtkj ← ΣMM.Token(KR, χ(rij)).

Then for all rtk such that (rtk, ·) ∈ t, it sets

MMc,c′

[
rtk
]

:=
(

rtk′
)

(rtk,rtk′)∈t

then computes

(Kc,c′ ,EMMc,c′)← Σπ
MM.Setup

(
1k,MMc,c′

)
.
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Finally, it outputs a key K = (K1,KR,KC ,KV , {Kc}c∈DBᵀ ,KF , {Kc,c′}c,c′∈DBᵀ) and EDB =

(EMMR,EMMC ,EMMV , (EMMc,c′)c,c′∈DBᵀ ,SET, (EMMc)c∈DBᵀ).

Token. The Token algorithm takes as input a key K and a query tree QT and outputs a token

tree TT. The token tree is a copy of QT and first initialized with empty nodes. The algorithm

performs a post-order traversal of the query tree and, for every visited node N , does the following:

• (leaf select) if N is a leaf node of form σatt=a(T) then set the corresponding node in TT to

stk← ΣMM.Token
(
KV , 〈a, χ(att)

)
;

• (internal constant select): if N is an internal node of form σatt=a(Rin) then set the

corresponding node in TT to (rtk, pos) where

rtk← FKF

(
χ(att)‖a

)

and pos denotes the position of att in Rin.

• (leaf join): if N is a leaf node of form T1 ./att1=att2 T2 then set the corresponding node in

TT to (jtk, pos) where

jtk← ΣMM.Token
(
Katt1 ,

〈
χ(att1), χ(att2)

〉)
,

and pos denotes the positions of att1 in Rin.

• (internal join): if N is an internal node of form T ./att1=att2 Rin, then set the corresponding

node in TT to (etk, pos1, pos2) where

etk := Katt1,att2 ;

and pos1, pos2 denote the positions of att1 and att2 in Rin, respectively.

• (intermediate internal join): if N is an internal node of form R(l)
in ./att1=att2 R(r)

in then set
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the corresponding node in TT to (pos1, pos2) where pos1 and pos2 are the column positions

of att1 and att2 in R(l)
in and R(r)

in , respectively.

• (leaf projection): if N is a leaf node of form πatt(T) then set the corresponding node to

ptk where

ptk← ΣMM.Token
(
KC , χ(atti)

)

• (internal projection): if N is an internal node of form πatt1,··· ,attz(Rin) then set the corre-

sponding node to (
pos1, · · · , posz

)
,

where posi is the column position of atti in Rin.

• (leaf scalars): if N is a node of form [a] then set the corresponding node to [EncK1(a)].

• (cross product): if N is a node of form × then keep it with no changes.

Query. The algorithm takes as input the encrypted database EDB and the token tree TT. It

performs a post-order traversal of tk and, for each visited node N , does the following:

• (leaf select): if N has form stk, it computes

(rtk1, · · · , rtks)← ΣMM.Query
(

stk,EMMV

)

and sets Rout := (rtk1, · · · , rtks).

• (internal constant select): if N has form (rtk, pos), then for all rtk in Rin in the column

at position pos, if

H(rtk‖rtk) /∈ SET

then it removes the row from Rin. Finally, it sets Rout := Rin.

• (leaf join): if N has form (jtk, pos), then it computes

(
(rtk1, rtk′1), . . . , (rtks, rtk′s)

)
← ΣMM.Query(jtk,EMMpos),
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and sets

Rout :=
(

(rtki, rtk′i)
)
i∈[s]

• (internal join): if N has form (etk, pos1, pos2), then for each row r in Rin, it computes

ltk← Σπ
MM.Token(etk, rtk), and

(rtk1, · · · , rtks)← Σπ
MM.Query(ltk,EMMpos1,pos2),

where rtk = r[attpos2 ], and appends the new rows

(
rtki

)
i∈[s]
× r

to Rout

• (intermediate internal join): if N has form (pos1, pos2), then it sets

Rout := R(l)
in ./pos1=pos2 R(r)

in

• (leaf projection): if N is a leaf node of form ptk then it computes

(ct1, · · · , cts)← ΣMM.Query
(

ptk,EMMC

)

and sets Rout := (ct1, · · · , cts).

• (internal projection): if N is an internal node of form (pos1, · · · , posz), then it computes

Rout := πpos1,··· ,posz(Rin)

• (cross product): if N is a node of form × then it computes

Rout := R(l)
in ×R(r)

in ,
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where R(l)
in and R(r)

in are the left and right input respectively.

Now, it replaces each cell rtk in Rroot
out by

ct← ΣMM.Query(rtk,EMMR).

3.2.1 Efficiency

We now turn to analyzing the search and storage efficiency of our construction.

Query complexity. Given a potentially optimized query tree QT of an SPC query, we show that

the search complexity of opx is asymptotically optimal.

Theorem 3.2.1. If Σmm is optimal, then the time and space complexity of the Query algorithm

presented in Section (3.2) is optimal.

The proof of the theorem is in Section 3.4.

Storage complexity. The storage complexity of OPX is similar to that of SPX asymptotically,

but is larger concretely. This is because OPX needs two additional encrypted structures: a collection

of encrypted multi-maps (EMMc,c′)c,c′∈DBᵀ) and an encrypted set SET.

For a database DB = (T1, . . . ,Tn), opx produces three encrypted multi-maps EMMR, EMMC ,

EMMV , two collections of encrypted multi-maps (EMMc,c′)c,c′∈DBᵀ and (EMMc)c∈DBᵀ , and a set

structure SET. For ease of exposition, we assume that each table is composed of m rows. Also,

note that standard multi-map encryption schemes [42, 36, 67, 31, 30] produce encrypted structures

with storage overhead that is linear in the sum of the tuple sizes. Using such a scheme as the

underlying multi-map encryption scheme, we have that EMMR and EMMC are O(∑r∈DB #r) and

O
(∑

c∈DBᵀ #c
)
, respectively, since the former maps the coordinates of each row in DB to their

(encrypted) row and the latter maps the coordinates of very column to their (encrypted) columns.

Since EMMV maps each cell in DB to tokens for the rows that contain the same value, it requires

O
(∑

c∈DBᵀ
∑
v∈c #DBatt(c)=v

)
storage. Similarly, SET contains the pseudo- random evaluation of

the coordinate of all rows in the database and therefore requires O
(∑

c∈DBᵀ
∑
v∈c #DBatt(c)=v

)
. For
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each c ∈ DBᵀ, an encrypted multi-map EMMc maps each pair of form (c, c′) such that dom(att(c)) =

dom(att(c′)) to a tuple of tokens for rows in DBatt(c)=att(c′). As such, the collection (EMMc)c∈DBᵀ

has size

O

( ∑
c∈DBᵀ

∑
c′:dom(att(c′))=dom(att(c))

#DBatt(c)=att(c′)

)
.

Similarly, for all c, c′ ∈ DBᵀ, an encrypted multi-map EMMatt,att′ maps the coordinate of each row

r in the column att to all the coordinates of rows r′ in att′ that have the same value such that

r[att] = r′[att′]. The size of (EMMc,c′)c,c′∈DBᵀ is exactly the same as the earlier collection.

Note that the expression above will vary greatly depending on the number of columns in DB

that have the same domain. In the worst case, all columns will have a common domain and the

expression will be a sum of O
((∑

i ‖Ti‖c
)2) terms of the form #DBatt(c)=att(c′). In the best case,

none of the columns will share a domain and both collections will be empty. In practice, however,

we expect there to be some relatively small number of columns with common domains. In Sec. (3.6),

we provide a concrete example of the storage overhead of an encrypted database.

3.3 Security and Leakage of OPX

We show that OPX is adaptively-semantically secure with respect to a well-specified leakage profile.

Similar to the leakage profile SPX [63], the profile of OPX is composed of a “black-box component”

in the sense that it comes from the underlying STE schemes, and a “non-black-box component” that

comes from OPX directly. In this section, we will first describe and prove this leakage profile in a

black-box manner, i.e., without assuming any specific instantiation of the underlying STE schemes

except for Σπ
MM which is a concrete response-revealing multi-map encryption scheme by Cash et al.

[30]. Then, as a second step, we consider two instantiations with different concrete leakage profiles

that illustrate the impact on the overall leakage profile of OPX. In particular, depending on the

chosen concrete instantiation, we will show that the resulting leakage profile can be significantly

different.
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3.3.1 Black-Box Leakage Profile

In the following, we describe the setup and query leakage of OPX without any assumption on how

the underlying data structure encryption schemes work.

Setup leakage. The setup leakage captures what a persistent adversary learns by only observing

the encrypted structure and before observing any query execution. The setup leakage of OPX is

equal to the setup leakage of SPX along with the setup leakage of ΣDX and the number of cells of

all tables in the database such that1

Lopx
S
(
DB
)

=
(

(Lmm
S (MMc))c∈DBᵀ ,Lmm

S (MMR) ,Lmm
S (MMC) ,

Lmm
S (MMV ) ,

(
LπS(MMc,c′)

)
c,c′∈DBᵀ , n ·

n∑
i=1
‖Ti‖c

)
,

where Lmm
S , LπS , n and ‖Ti‖ are the setup leakage of ΣMM, the setup leakage of Σπ

MM which is equal

to the sum of all tuple sizes in a given multi-map, the number of tables, and the number of columns

in the ith table, respectively.

Query leakage. The query leakage captures what a persistent adversary learns when it observes

the token and query execution. The query leakage of OPX is represented as a leakage tree LT that

has the same form as of the query tree QT. In particular, the query leakage, denoted here Λ,

starts empty and is then populated in a recursive manner as the query execution goes through in

a post-order traversal of the nodes of QT. In particular, for every node N visited in QT, the query

leakage is constructed as follows.

Cross product. If the node N ≡ xnode, then this is is a cross product pattern which is defined

as

X (xnode) =


(
scalar, |a|

)
if xnode ≡ [a];(

cross,⊥
)

if xnode ≡ ×;

1Note that this information will be revealed to the adversary through the size of the set structure SET
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This pattern captures what the server learns when it executes a scalar node or a cross product

node. The query leakage is now equal to

Λ := Λ
⋃{
X (xnode)

}
.

Projection. If N ≡ pnode, then this is a projection pattern which is defined as

P(pnode) =


(

leaf,Lmm
Q

(
MMC , χ(att)

))
if pnode ≡ πatt(T);(

in, f(att1), · · · , f(attz)
)

if pnode ≡ πatt1,··· ,attz(Rin);

where f $←
{
{0, 1}∗ → {0, 1}log(ρ)

}
is a uniformly sampled function and ρ is the total number of

attributes in DB. The projection pattern captures the leakage produced when the server executes

a projection node, whether it is a leaf or an internal node. If the node pnode in QT is a leaf

projection, then P(pnode) captures the leakage produced when the server queries EMMC to retrieve

the encrypted content of the column att. More precisely, P(pnode) reveals the ΣMM query leakage

on the coordinates of the projected attribute. Otherwise, if the node pnode is an internal projection

in QT, then P(pnode) reveals the position of the attributes, att1, · · · , attz, in Rin – the intermediary

result table given as input to pnode. The query leakage is now equal to

Λ := Λ
⋃{
P(pnode)

}
.

Selection. If N ≡ snode, then this is a selection pattern which is defined as

S(snode) =



(
leaf,Lmm

Q

(
MMV ,

〈
a, χ(att)

〉)
,

(
Lmm

Q (MMR, χ(r)
)

r∈DBatt=a

)
if snode ≡ σatt=a(T);(

in, f(att), g(a‖att),
(
Lmm

Q (MMR, χ(r)
)
χ(r)∈Rin∧r[att]=a

)
if snode ≡ σatt=a(Rin);

where g $←
{
{0, 1}∗ → {0, 1}log(γ)

}
is a uniformly sampled function, and γ is the sum of distinct

values in every column in the entire database. The selection pattern captures the leakage produced

when the server executes a selection node, whether it is a leaf or an internal node. If the node
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snode is a leaf selection node, then S(snode) captures the leakage produced when the server queries

EMMV to retrieve some row tokens. More precisely, S(snode) reveals the ΣMM query leakage on the

coordinates of the attribute att and the constant a. It also reveals the ΣMM query leakage on all

coordinates of rows whose cell values at attribute att match the constant a. Otherwise, if the node

snode is an internal selection node, then S(snode) captures the leakage produced when the server

removes all row tokens in the intermediate result set Rin that do not belong to the set structure

SET. In particular, S(snode) reveals the ΣMM query leakage on all coordinates of rows r in Rin

that match the constant a at the attribute att. The query leakage is now equal to

Λ := Λ
⋃{
S(snode)

}
.

Join. If N ≡ jnode, then this is a join pattern which is defined as follows. If jnode has form

T1 ./att1=att2 T2 then,

J (jnode) =
(

leaf, f(att1),Lmm
Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉)
,{

Lmm
Q (MMR, χ(r1),Lmm

Q (MMR, χ(r2)
}

(r1,r2)∈DBatt1=att2

)
,

In this case, J (jnode) captures the leakage produced when the server retrieves some EMMatt1 which

it in turn queries to retrieve row tokens. More precisely, it reveals if and when EMMatt1 has been

accessed in the past. In addition, it reveals the query leakage of ΣMM on the coordinates of att1

and att2 and, for every pair of rows (r1, r2) in DBatti,1=atti,2 , it reveals the ΣMM query leakage on

their coordinates. If jnode has form T ./att1=att2 Rin then,

J (jnode) =
(

in, 〈f(att1), f(att2)〉,
(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)∈Rin[att2]
,

{
Lmm

Q (MMR, χ(r1)
}

(r1,r2)∈DBatt1=att2
∧χ(r2)∈Rin[att2]

)
,

where Rin[att] denotes the cell values in Rin at attribute att. In this case, J (jnode) captures

the leakage produced when the server retrieves EMMatt1,att2 which it in turn queries to retrieve

row tokens. More precisely, it reveals if and when EMMatt1,att2 has been accessed in the past. In

addition, it reveals the query leakage of Σπ
MM on the coordinates of rows r that belong to Rin[att]
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and, for every pair of rows (r1, r2) in DBatti,1=atti,2 such that χ(r2) ∈ Rin[att2], it reveals the ΣMM

query leakage on their row coordinates. In particular, the concrete query leakage of Σπ
MM reveals

if and when the same query is evaluated (search pattern) as well as the response identifiers (access

pattern). If jnode has form R(l)
in ./att1=att2 R(r)

in then,

J (jnode) =
(

inter, f(att1), f(att2)
)
,

In this case, J (jnode) captures the leakage produced when the server removes all the rows in

R(l)
in ×R(r)

in to only keep those which have the same cell value at both attributes att1 and att2. The

query leakage is now equal to

Λ := Λ
⋃{
J (jnode)

}
.

Finally, it sets

Lopx
Q (DB,QT) := Λ.

3.3.2 Security of OPX

We now prove that OPX is adaptively semantically-secure with respect to the leakage profile de-

scribed in the previous sub-section.

Theorem 3.3.1. If F is a pseudo-random function, SKE is RCPA secure, Σπ
MM is adaptively(

LπS ,LπQ
)
-secure, and ΣMM is adaptively

(
Lmm

S ,Lmm
Q
)
-secure, then OPX is adaptively (Lopx

S ,Lopx
Q )-

secure in the random oracle model.

The proof of Theorem 3.3.1 is in Section 3.5.

3.3.3 Concrete Leakage Profile

In this section, we are interested in the leakage profile of OPX when the underlying data structure

encryption schemes are instantiated with specific constructions and a well-specified concrete leakage

profile. Note that in this section, we make the additional assumption that Σπ
MM from [30] is replaced

with an almost leakage free multi-map encryption scheme. However, this scheme needs to verify

some key-equivocation property which is the case for the volume hiding schemes like PBS [65],
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VLH or AVLH [64] if built using the adaptively-secure Σπ
MM scheme as the underlying multi-map

encryption scheme.

(Almost) Leakage-free data structure encryption schemes. We make the assumption that

the underlying response-revealing multi-map encryption scheme Σmm is almost-leakage free in that

it leaks the response length pattern, known as the volume pattern, and the response identity pattern

such that

Lmm
Q (MM, q) =

(
rlen, rid

)
.

To instantiate such a scheme, one can use oblivious RAM (ORAM) simulation techniques [51] in

a black-box fashion, or more customized/advanced schemes such as the oblivious tree structures

(OTS) [98] or the TWORAM construction [48] with a careful parametrization of the block-sizes, or

the AZL construction based on the piggy-backing scheme PBS [65]. These constructions however

incur an additional overhead, and some of them, work under new trade-offs. Note that if a con-

struction is response-hiding, then it may require one round of interaction to reveal the response.

Note that the leakage profile of OPX can be further improved by using completely leakage-free data

structures that can also hide the volume pattern, but we defer the details to the full version of this

work.

In the following, we describe the concrete leakage profile of OPX when instantiated with a (al-

most) leakage-free data structure encryption. Specifically, when the node is an xnode, the revealed

cross-product pattern remains the same. If the node is a pnode, then the projection pattern added

to Λ is now equal to

P(pnode) =


(

leaf,
(
|cj |
)
j∈[#c[att]],AccP

(
att
))

if pnodei ≡ πatt(T);(
in, f(att1), · · · , f(attz)

)
if pnodei ≡ πatt1,··· ,attz(Rin).

where AccP(att) denotes if and when the attribute att has been accessed before.
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If the node is an snode, then the revealed selection pattern added to Λ is now equal to

S(snode) =



(
leaf,

{
|r|,AccP

(
r
)}

r∈DBatt=a

)
if snode ≡ σatt=a(T);(

in, g(a‖att),
{
|r|,AccP

(
r
)}

χ(r)∈Rin∧r[att]=a

)
if snode ≡ σatt=a(Rin);

If the node is a jnode, then the revealed join pattern added to Λ is now equal to

J (jnode) =
(

leaf, f(att1),
{
|r1|,AccP(r1), |r2|,AccP(r2)

}
(r1,r2)∈DBatt1=att2

)
,

if jnode has form T1 ./att1=att2 T2 and,

J (jnode) =
(

in, 〈f(att1), f(att2)〉,
{
|r1|,AccP(r1)

}
(r1,r2)∈DBatt1=att2
∧χ(r2)∈Rin[att2]

)
,

if jnode has form T ./att1=att2 Rin and,

J (jnode) =
(

inter, f(att1), f(att2)
)
,

if jnode has form R(l)
in ./att1=att2 R(r)

in .

Variant. Note that the leakage profile of OPX can be further improved with some slight modifi-

cations to the main opx construction. In particular, if the underlying response-revealing multi-map

is replaced with a response-hiding scheme, then the access pattern, AccP(r), of an accessed row, r,

can be completely hidden. Note that even the response length of the intermediary results will not

be disclosed as the underlying scheme is leakage-free as per our assumption. For example, in the

case of a leaf select node, the output will now be a set of row coordinates, instead of row tokens.

And in order to proceed to the next node, the client and server need to interact to first decrypt

the row coordinate and execute the next operation. Note that this approach will not incur any

additional query overhead to what is added by using leakage-free schemes; however it will add ad-

ditional interaction between the client and the server. The concrete leakage profile of this modified

scheme will be the type of nodes composing the query plan, i.e., whether the node is a join, select,
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or a cross-product node. We defer the details of this variant to the full version of this work.

Efficiency. We have shown in Theorem 3.2.1 that both the OPX query algorithm and the equiv-

alent plaintext execution on the same query tree QT have exactly the same query complexity if

the underlying multi-map and dictionary encryption schemes are instantiated using standard tech-

niques [42, 36, 67, 31, 30]. However, in the (almost) leakage-free setting, the query complexity of

opx is higher for the simple reason that the cost of querying a leakage-free data structure encryption

scheme is higher than the one of querying a standard (optimal) scheme. More precisely, at any

step where the client and server execute a Σmm query protocol, then the query complexity will be

higher depending on the executed node. We describe below this impact in more details.

• (case 1): If the node is a leaf selection node of the form σatt=a(T), then the overhead is equal

to

O

(
#DBatt=a · log

(
m ·

n∑
i=1
‖Ti‖c

))
.

where m is the maximum number of cells in a table; instead of O(m) – the query complexity

of a plaintext execution on the same node.

• (case 2): If the node is a leaf join node of the form T1 ./att1=att2 (T2), then the overhead is

equal to

O

(
#DBatt1=att2 · log

( ∑
att∈S(DB)

∑
att′∈S(DB)

dom(att)=dom(att′)

#DBatt=att′

))
,

where DBatt1=att2 is the tuple composed of all joined pairs between columns att1 and att2;

instead of O(#DBatt1=att2) – the query complexity of a plaintext execution on the same node.

• (case 3): If the node is an internal join node of the form T ./att1=att2 (Rin), then the

overhead is equal to

O

( ∑
χ(r)∈Rin[att2]

(
#DBatt1=valueatt2 (r) · log

( ∑
att∈S(DB)

∑
att′∈S(DB)

dom(att)=dom(att′)

#DBatt=att′

)))
,
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where valueatt2(r) is the cell value of row r at attribute att2; instead of

O(∑χ(r)∈Rin[att2](#DBatt1=valueatt2 (r)))– the query complexity of a plaintext execution on the

same node.

• (case 5): If the node is a leaf projection node of the form πatt(T), then the overhead is equal

to

O

(
m · log

(
m ·

n∑
i=1
‖Ti‖c

))
,

where m is the maximum number of cells in the table.

• (case 5): if the node is a scalar node, a cross-product node, an intermediate internal join, an

internal projection node, or an internal selection node, then the query complexity is similar

to a plaintext execution as no multi-map or dictionary query executions are required in the

process.

Note that using (almost) leakage-free data structures to instantiate OPX does not incur any

asymptotical storage overhead.

Standard data structure encryption schemes. In this section, we describe the leakage profile

of OPX if instantiated with standard data structure encryption schemes [42, 36, 67, 31, 30]. By

standard, we refer to a class of well-studied data structure encryption schemes that reveal the

response identity pattern (rid), and the query equality pattern (qeq), known as the access pattern

and the search pattern in the SSE literature, respectively. The search pattern reveals if and when

a query is repeated while the access pattern reveals the identities of the responses. The concrete

leakage profile of opx when instantiated with these standard data structures is the same as the one

detailed in the abstract section except that we replace the black box notation Lmm
Q with rid and

qeq on the same inputs. Below, we give a high level intuition on what each pattern will disclose.

Select pattern. Independently of the type of the selection node, then an adversary can learn

the number of rows containing the same value as well as the frequency with which a particular row

has been accessed, and also the size of that row. If many queries have been performed on the same

table and the same column, then the adversary can build a frequency histogram of that specific
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column’s contents. Now depending on the composition of the query tree, an adversary can build a

more detailed histogram if more internal selection are performed on the same attribute.

Join pattern. Among all patterns, the join pattern leaks the most. The adversary learns the

number of rows that have equal values in a given pair of attributes. In addition, it learns the

frequency with which these rows have been accessed in the past, eventually following the execution

of a different type of nodes such as a projection or a selection. Similar to the selection pattern,

the adversary can build therefore a histogram summarizing the frequency of apparition of rows

that it gets richer with more operations down the query tree. If the join node is internal, then the

adversary learns a bit more information as for every row, it knows exactly the rows in a different

attribute that have the same value. The adversary can help the adversary for example to trace

back to the leaf join leakage information it collected to identify the exact rows that have the same

values. This is also true in general for all the information the adversary collects from different nodes

as long as the operations are correlated. Finally, if the node is an intermediate internal node, then

the execution of such a node leads to the propagation of the frequency information cross different

attributes.

Projection pattern. This pattern simply discloses the number of rows in a specific attributes

(size of the column) along with the frequency with which these rows have been accessed.

Note that we dismissed a discussion on the cross-product pattern as it is self-explanatory and

does not involve querying any data structure encryption scheme.

Efficiency. With respect to efficiency, we have shown in Theorem 3.2.1 that the execution of the

OPX query algorithm and its plaintext counterpart have exactly the same asymptotics.

3.4 Proof of Theorem 3.2.1

Theorem 3.2.1. If the query algorithm of Σmm is optimal, then the time and space complexity

of the Query algorithm presented in Section (3.2) is optimal.
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Proof. A query tree QT can be composed of four different types of nodes: (1) a cross-product

node xnode, (2) a projection node pnode, (3) a selection node snode, and a (4) a join node jnode.

We will show that for each type of nodes, the search and space complexity on plaintext text

relational database is asymptotically equal to the search and space complexity required by the

Query algorithm of OPX. We assume in this proof that the plaintext database has indices to

speed-up lookup operations on every attribute.

• (case 1): if the node is a cross-product node, then the output of the node, xnode, in a

plaintext database given a left and a right input R(l)
in and R(r)

in , respectively, is equal to

Rout = R(l)
in ×R(r)

in ,

which is the exact same operation performed by the Query algorithm of OPX when the node

is a cross-product node.

• (case 2): if the node is a projection node, then there are two possible cases. If the node

pnode has form πatt(T), a leaf projection node, then a plaintext database will require a work

linear in O(m) to fetch all the cells of the attribute att and where m is the number of cell

in the column. On the other hand, OPX performs a Query operation on EMMC to fetch the

corresponding encrypted cells. Assuming that ΣMM has an optimal search complexity, the

amount of work is also linear in O(m).2

The second case is when the projection node has form πatt(Rin), an interior projection node.

In this case, a plaintext database will simply select the corresponding columns from the input

Rin which has search complexity equal to O(#Rin[att]) which is the number of cells of the

attribute att in Rin. In the Query algorithm of OPX, the exact same operation is performed

and therefore, the same complexity is required.

• (case 3): if the node is a selection node, there there are three possible cases. If the node

snode has form σatt=a(T), a leaf selection node, then a plaintext database will require a work
2Note that we are not accounting for the security parameter in our computation and only focusing on the number

of cells.
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linear in O(#DBatt=a) which is the number of cells in the attribute att equal to a. On the

other hand, OPX performs a Query operation on EMMC to fetch the corresponding cells in

DBatt=a. Assuming that ΣMM has an optimal search complexity, then the amount of work is

equal to O(#DBatt=a).

The second case is when the selection node has form σatt=a(Rin), an interior selection node.

In this case, a plaintext database has to go linearly over the entire column att in Rin to only

output the rows in Rin with the cell at the attribute att equal to the constant a. That is,

the search complexity is equal to O(Rin[att]). On the other hand, OPX tests for each row in

Rin[att] whether it exists in SET. Assuming that test membership in SET is optimal, then

the search complexity is equal to O(Rin[att])

The third case is when the selection node has form σatt1=att2(Rin), an interior variable select

node. In this case, a plaintext will simply remove any row in Rin such that the cell values

are not equal. This has search complexity equal to O(#Rin[att1]). On the other hand, OPX

similarly removes all rows that have equal equal cell value at both columns att1 and att2.

Clearly, the plaintext and encrypted operations have the same search and space complexity.

• (case 4): if the node is a join node, then there are two possible cases. If the node jnode

has form T1 ./att1=att2 T2, then a plaintext database would at least require O(#DBatt1=att2)

which is the result of the join operation on the columns att1 and att2. On the other hand,

OPX queries EMMatt1 to fetch the join result. Assuming that ΣMM has an optimal search

complexity, then the search complexity is equal to O#(DBatt1=att2).

The second case occurs when the join node has form T ./att1=att2 Rin, an interior join node.

In this case, a plaintext database has to go over every cell at the attribute att2 and checks if

there are any rows in table T at attribute att1 that are equal to the value in the selected cell.

The search complexity is equal to

O

(
max(#Rin[att2],#Rout[att2])

)
,

which is itself equal to the maximum value of either (1) the number of cells in Rin[att] or
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(2) the size of joinable rows which is equal to #Rout[att2] (or equivalently to #Rout[att1]).

On the other hand, OPX queries EMMatt1,att2 to fetch the joinable result. Similar to the

plaintext scenario, OPX will for each row token in Rin[att2] fetch the joinable rows, if any,

from EMMatt1,att2 . Since Σπ
MM has an optimal search complexity, then the search complexity

is equal to O(max(#Rin[att2],#Rout[att2])) as the same operation is performed.

Finally, OPX will query EMMR to retrieve all the encrypted rows corresponding to the rows tokens in

Rroot
in . Assuming that Σmm has an optimal search complexity, then this step will require O(#Rroot

in ).

Note that this operation would add exactly the same complexity as the sum of the output size of

the child nodes, and therefore would not have an impact on the final asymptotic result.

To sum up, we have shown that whatever the type of the node, both the plaintext and OPX

query algorithm executions require the same space and search complexities.

3.5 Proof of Theorem 3.3.1

Theorem 3.3.1. If F is a pseudo-random function, SKE is RCPA secure, Σπ
MM is adaptively(

LπS ,LπQ
)
-secure, and ΣMM is adaptively

(
Lmm

S ,Lmm
Q
)
-secure, then OPX is adaptively (Lopx

S ,Lopx
Q )-

secure in the random oracle model.

Proof. Let SMM and SπMM be the simulators guaranteed to exist by the adaptive security of

ΣMM and Σπ
MM and consider the OPX simulator S that works as follows. Given Lopx

S (DB),

S simulates EDB by computing EMMR ← SMM
(
Lmm

S (MMR)
)
, EMMC ← SMM

(
Lmm

S (MMC)
)
,

EMMV ← SMM
(
Lmm

S (MMV )
)
, for all c ∈ DBᵀ, EMMc ← SMM

(
Lmm

S (MMc)
)
, and for all c, c′ ∈ DBᵀ,

EMMc,c′ ← SπMM
(
LπS(MMc,c′)

)
. Given (n, ρ), it instantiates an empty set SET, and inserts

ri,j
$← {0, 1}k in SET for i ∈ [n] and j ∈ [ρ]. S outputs

EDB = (EMMR,EMMC ,EMMV , (EMMc)c∈DBᵀ , SET, (EMMc,c′)c,c′∈DBᵀ).

Recall that OPX is response-hiding so S receives
(
⊥,Lopx

Q (DB,QT)
)

as input in the IdealSPX,A,S(k)
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experiment. Given this input, S parses Lopx
Q (DB,QT) as a leakage tree. It then instantiates a token

tree TT with the same structure. It samples uniformly at random a key K1
$← {0, 1}k, and creates

s set SET? such that SET? := SET. For each node N , retrieved in a post-order traversal from the

leakage tree, it simulates the corresponding node in the token tree TT as follows.

• (Cross product). If N has form
(
scalar, |a|

)
then it sets TTN to [EncK1(0|a|)]. Otherwise

if N has form
(
cross,⊥

)
, then it sets TTN to ×.

• (Projection). If N has form
(

leaf,Lmm
Q

(
MMC , χ(att)

))
then it sets

TTN ← SMM

(
Lmm

Q

(
MMC , χ(att)

))
,

If N has form
(
in, f(att1), · · · , f(attz)

)
, then it sets TTN to

(
f(att1), · · · , f(attz)

)
.

• (Selection case-1). If N has form

(
leaf,Lmm

Q

(
MMV ,

〈
a, χ(att)

〉)
,

(
Lmm

Q (MMR, χ(r)
)

r∈DBatt=a

)

then it first sets for all r ∈ DBatt=a,

rtkr ← SMM

(
Lmm

Q (MMR, χ(r))
)
,

then it sets,

TTN ← SMM

((
rtkr

)
r∈DBatt=a

,Lmm
Q

(
MMV ,

〈
a, χ(att)

〉))
.

• (Selection case-2). If N has form

(
in, f(att), g(a‖att),

(
Lmm

Q (MMR, χ(r)
)
χ(r)∈Rin∧r[att]=a

)

then if g(a‖att) has never been revealed before,
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– for all r ∈ DB such that χ(r) ∈ Rin and r[att] = a, it sets

rtkr ← SMM

(
Lmm

Q (MMR, χ(r))
)

– it samples a key Kg(a‖att)
$← {0, 1}k;

– for each r ∈ DB such that χ(r) ∈ Rin and r[att] = a, it picks and removes uniformly at

random a value r in SET? and sets

H(Kg(a‖att)‖rtkr) := r;

– it sets

TTN ← (Kg(a‖att), f(att)).

Otherwise, if g(a‖att) has been revealed before then,

– for all r ∈ DB such that χ(r) ∈ Rin and r[att] = a, it sets

rtkr ← SMM

(
Lmm

Q (MMR, χ(r))
)

– for all r ∈ DB such that χ(r) ∈ Rin and r[att] = a, if H(Kg(a‖att)‖rtkr) has not been set

yet, then it picks and removes uniformly at random a value r ∈ SET? and sets

H(Kg(a‖att)‖rtkr) := r;

– it sets

TTN ← (Kg(a‖att), f(att)).
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• (Join case-1). If N has form

(
leaf, f(att1),Lmm

Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉)
,{

Lmm
Q (MMR, χ(r1),Lmm

Q (MMR, χ(r2)
}

(r1,r2)∈DBatt1=att2

)
,

then it sets for all (r1, r2) ∈ DBatt1=att2 ,

rtk1 ← SMM

(
LMM

Q

(
MMR, χ(r1)

))

and

rtk2 ← SMM

(
LMM

Q

(
MMR, χ(r2)

))
,

it then sets

TTN ←
(
SMM

({
rtkr1 , rtkr2

}
(r1,r2)∈DBatt1=att2

,Lmm
Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉))
, f(att1)

)

• (Join case-2). If N has form

(
in, 〈f(att1), f(att2)〉,

(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)∈Rin[att2]
,

{
Lmm

Q (MMR, χ(r1)
}

(r1,r2)∈DBatt1=att2
∧χ(r2)∈Rin[att2]

)
,

then it first computes for all (r1, r2) ∈ DBatt1=att2 and χ(r2) ∈ Rin[att2],

rtk1 ← SMM

(
LMM

Q

(
MMR, χ(r1)

))

then if 〈f(att1), f(att2)〉 has never been queried before, and by leveraging the key-equivocation

of Σπ
MM, it generates a key such that3

Kf(att1),f(att2) ← SπMM

(
{rtkr}r,

(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)

)
3Note that the key will be generated based on all previously simulated row tokens on that particular column; and

this is why we omit the indices from the notation in order to capture this aspect.
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otherwise if 〈f(att1), f(att2)〉 has been queried before, it uses the previously generated key

and sets

TTN ←
(
Kf(att1),f(att2), f(att1), f(att2)

)

• (Join case-3). If N has form
(

inter, f(att1), f(att2)
)

, then it sets

TTN ← (f(att1), f(att2))

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that

RealOPX,A(k) outputs 1 is negligibly-close to the probability that IdealOPX,A,S(k) outputs 1. We

do this using the following sequence of games:

Game0 : is the same as a RealOPX,A(k) experiment.

Game1 : is the same as Game0, except that EMMC is replaced with the output of SMM
(
Lmm

S (MMC)
)

and every leaf projection node of form πatt(T) is replaced with the output of

SMM

(
Lmm

Q

(
MMC , χ(att)

))
,

Game2 : is the same as Game1, except that EMMV is replaced with the output of SMM
(
Lmm

S (MMV )
)

and, every leaf select node of form σatt=a(T) is replaced with the output of

SMM

((
rtkr

)
r∈DBatt=a

,Lmm
Q

(
MMV ,

〈
a, χ(att)

〉))
.

Game2+i for i ∈ [#DBᵀ]: is the same as Game1+i, except that EMMci is replaced with the output

of SMM
(
Lmm

S (MMci)
)

and, every leaf join node of form T1 ./att1=att2 T2 is replaced with the

output of

(
SMM

({
rtkr1 , rtkr2

}
(r1,r2)∈DBatt1=att2

,Lmm
Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉))
, f(att1)

)

Game3+#DBᵀ : is the same as Game2+#DBᵀ , except that SET is replaced by a set composed of
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values generated uniformly at random, and every internal select node of the form σatt=a(Rin)

is replaced with (Kg(a‖att), f(att)), where Kg(a‖att) is generated as detailed above.

Game3+#DBᵀ+i for i ∈ [(#DBᵀ)2]: is the same as Game2+#DBᵀ+i, except that EMMci,c′
i

is replaced

with the output of SMM
(
Lmm

S (MMci,c′
i
)
)
, and every internal join node of form T ./att1=att2 Rin

is replaced with the output of

(
SπMM

(
{rtkr}r,

(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)

)
, f(att1), f(att2)

)

Game4+#DBᵀ+(#DBᵀ)2 : is the same as Game3+#DBᵀ+(#DBᵀ)2 except that EMMR is replaced with

the output of SMM
(
Lmm

S (MMR)
)

and every row token rtkr for a row r is replaced with the

output of4 of

SMM

(
Lmm

Q

(
MMR,

〈
tbl(r), rrk(r)

〉))

where ctj ← EncK1(rj).

Game5+#DBᵀ+(#DBᵀ)2 : is the same as Game4+#DBᵀ+(#DBᵀ)2 , except that every SKE encryption ct

of a message m is replaced with ct← EncK1(0|m|).

Note that Game5+#DBᵀ+(#DBᵀ)2 is identical to IdealOPX,A,S(k).

3.6 A Concrete Example of Indexed HNF

Similar to [63], our examples also rely on a small database DB composed of two tables T1 and T2

that have three and two rows, respectively. The schema of T1 is S(T1) = (ID, Name, Course) and

that of T2 is S(T2) = (Course, Department). The tables are described in Figure (3.5).

Figure (3.6) shows the result of applying our method to index the database DB = (T1,T2),

as detailed in Section (3.2). There are five multi-maps MMR, MMC , MMV , MMCourse,

MMT2.Course,T1.Course, and a set SET. e detail below how the indexing works for this example.
4Note that we are making the assumption that all attributes have the same domain, otherwise, there would be a

number of games smaller than (#DBᵀ)2.
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Course Department
16 CS
18 Math

<latexit sha1_base64="lS7rPMowVeiWRA/USYMV93/WbbU=">AAACbnicbVFNT9tAEF0b2kL6FUDiUFR11agVp8gGBBwR4dALEqgNIMVRtN6MkxXrtbU7RkTGx/7B3vgNXPgJjENAfHRWlp7ezOx7+xznWjkMgmvPn5t/8/bdwmLj/YePnz43l5ZPXFZYCV2Z6cyexcKBVga6qFDDWW5BpLGG0/i8U/dPL8A6lZk/OMmhn4qRUYmSAokaNP9GMYyUKVHEhRa2Kq80naoRjesbGzxCuMQ4KTsk6KDiP/kjdQC5sJiCwYpHEX/YCLdpqPP7GbVL1KHA8RMyAjN8VB00W0E7mBZ/DcIZaLFZHQ2a/6JhJotaXGrhXC8McuyX5EdJDWS/cOROnosR9AgakYLrl9O4Kv6DmCFPMkufQT5ln26UInVuksY0mZJp97JXk//r9QpMdvulMnmBYOS9UFJojhmvs+dDZUGinhAQ0iryyuVYWCGR/lCDQghfPvk1ONloh5vtjeOt1t7+LI4Ftsa+s3UWsh22x36xI9Zlkt14S94Xb8279Vf9r/63+1Hfm+2ssGflr98BcEa5mQ==</latexit>

ID Name Course
A05 Alice 16
A12 Bob 18
A03 Eve 18

<latexit sha1_base64="06NVr2eY/DFZL9F3e4eVef5cQrc="></latexit>

Figure 3.5: Plaintext database DB.

The first multi-map, MMR, maps every row in each table to its encrypted content. As an

instance, the first row of T1 is composed of three values (A05,Alice, 16) that will get encrypted

and stored in MMR. Since DB has five rows, MMR has five pairs. The second multi-map, MMC ,

maps each column of every table to its encrypted content. Similarly, as DB is composed of five

columns in total, MMC has five pairs. The third multi-map, MMV , maps every unique value in

every table to its coordinates in the plaintext table. For example, the value 18 in T1 exists in

two positions, in particular, in the second and third row. The join multi-map, MMCourse, maps the

columns’ coordinates to the pair of rows that have the same value. In our example, as the first row

of both tables contains 16, and the second and third rows of T1 and the second row of T2 contain

18, the label/tuple pair

(
T1‖c3‖T2‖c1,

(
(T1‖r1,T2‖r1), (T1‖r2,T2‖r2)

)
, (T1‖r3,T2‖r2)

))

is added to MMCourse. The correlated join multi-map, MMT2.Course,T1.Course, maps every row in each

table to all rows that contain the same value. In our example, for the attribute Course, the first

row in T2 maps to the first row in T1 while the second row in T2 maps to second and third rows

in T1. Finally, the set structure SET stores all values in every row and every attribute.

A concrete query. Let us consider the following simple SQL query

SELECT T1.ID FROM T1,T2 WHERE T2.Department = Math AND T2.Course = T1.Course.
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MMC

T1kc1 EncK(A05), EncK(A12), EncK(A03)
T1kc2 EncK(Alice), EncK(Bob), EncK(Eve)
T1kc3 EncK(16), EncK(18), EncK(18)
T2kc1 EncK(16), EncK(18)
T2kc2 EncK(CS), EncK(Math)

<latexit sha1_base64="DQMXHCe4uQ1GLau47HGuYVtskcA="></latexit>

SET
T1kr1kc1kA05
T1kr2kc1kA12
T1kr3kc1kA03
T1kr1kc2kAlice
T1kr2kc2kBob
T1kr3kc2kEve
T1kr1kc3k16
T1kr2kc3k18
T1kr3kc3k18
T2kr1kc1k16
T2kr2kc1k18
T2kr1kc2kCS
T2kr2kc2kMath

<latexit sha1_base64="tu+v4gKBgo71bicox8BCM2J95VY="></latexit>

MMV

T1kc1kA05 T1, r1

T1kc1kA12 T1, r2

T1kc1kA03 T1, r3

T1kc2kAlice T1, r1

T1kc2kBob T1, r2

T1kc2kEve T1, r3

T1kc3k16 T1, r1

T1kc3k18 (T1, r2), (T1, r3)
T2kc1k16 T2, r1

T2kc1k18 T2, r2

T2kc2kCS T2, r1

T2kc2kMath T2, r2
<latexit sha1_base64="LK0h1HF04xqddcOB9MT2ZG9DJpc="></latexit>

MMR

T1kr1 EncK(A05), EncK(Alice), EncK(16)
T1kr2 EncK(A12), EncK(Bob), EncK(18)
T1kr3 EncK(A03), EncK(Eve), EncK(18)
T2kr1 EncK(16), EncK(CS)
T2kr2 EncK(18), EncK(Math)

<latexit sha1_base64="SV+h55+fTNK6G8cb7xTcciwPrJ8="></latexit>

MMT2.Course,T1.Course

T2kr1 (T1, r1)
T2kr2 (T1, r2), (T1, r3)

<latexit sha1_base64="kPxqh/9kvNvGP1LAhQviuTfHMEw="></latexit>

MMCourse

T1kc3kT2kc1 (T1kr1, T2kr1), (T1kr2, T2kr2), (T1kr3, T2kr2)
<latexit sha1_base64="FnX6bXTNsMf2JATmcmbrCmSSp/k="></latexit>

Figure 3.6: Indexed database.

This SQL query can be rewritten as a query tree, see Figure (3.7c), and then translated, based on

opx protocol into a token tree as depicted in Figure (3.7b).5

We detail in Figure (3.7c) the intermediary results of the token tree execution using the indexed

database and provide below a high level description of how it works.

The server starts by fetching from MMV the tuple corresponding to T2‖c2‖18, which is equal to

{(T2, r2)}. This represents the first intermediary output Rstk
out which is also the input for the next

node. For each element in Rstk
out, the server fetches the corresponding tuple in MMT2.Course,T1.Course,

which is equal to {(T1, r2), (T1, r3)}. Now, the second intermediary output Rjtk
out is composed of all

5For sake of clarity, this example of token tree generation does not accurately reflect the token protocol of opx,
but only gives a high level idea of its algorithmic generation.
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πID

./
T1.Course=T2.Course

σT2.Department=Math

T2

T1

(a) Query tree

ptkT1.c1

jtkT1.Course,T2.Course

stkT2.Department,Math

(b) Token tree

Rstk
out : (T2, r2)

Rjtk
out : (T1, r2) (T2, r2)

(T1, r3) (T2, r2)

Rptk
out : (T1, r2)1

(T1, r3)1

R(root)
out : EncK(A12)

EncK(A03)

(c) Intermediate results of token
tree

Figure 3.7: A query tree translated to a token tree which is then executed using the indexed
database.

row coordinates from T1 that match T2. For the internal projection node, given (1, in), the server

will simply output the row tokens in the first attribute as Rptk
out.

Finally, the server fetches tuples from the MMR that correspond to the remaining row tokens,

as the final result of Rroot
out , which is equal to

Rroot
out = (EncK(A12),EncK(A03)).

Concrete storage overhead. The plaintext database DB is composed of thirteen cells excluding

the tables attributes.6 The indexed structure consists of fifty eight pairs. Assuming that a pair

and a cell have the same bit length, our indexed representation of the database has a multiplicative

storage overhead of 4.46. In particular, each of the multi-maps MMR, MMC , MMV and the set
6Note that our calculation does not take into account the security parameter and consider every (encrypted) cell

as a one unit of storage.
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SET have the same size as the plaintext database (i.e., 13 pairs). This explains the 4× factor. It is

worth emphasizing that even if one considers a larger database, the 4× factor remains unchanged.

The additive component of the multiplicative factor, i.e., the 0.46, will vary, however, from one

database to another depending on the number of columns with the same domain and the number

of equal rows in these columns.

3.7 Limitations of OPX

Although OPX represents the first STE-based scheme that implements relational query optimiza-

tion, it however still leaves several other important problems open. We briefly overview these

problems below and will address them in the subsequent work (Ch. 4, 5).

Suboptimality. Although SPX and OPX are analyzed to be asymptotically linear in query output

size, they however have higher asymptotic complexity than the plaintext query algorithms, because

the plaintext complexity is measured using a different notion: asymptotically linear in query input

size in the database literature (e.g. [101, 73]). For example, a hash join can run in time linear in

the table size, and takes up storage space linear in the table size. But an SPX or OPX join can take

time and space quadratic in table size, because a join may have worst-case quadratic output size.

In other words, linearity in output size does not yield a query algorithm that has quadratic output

size. Therefore here we momentarily leave this problem unaddressed here as to how to design STE-

based join algorithm that matches the plaintext join complexity in terms of query input size rather

than the output size. Instead, we will present in Ch. 4 a solution to optimal join and matching

overall query/storage complexity to plaintext in the same notion as the database literature, while

here for OPX we focus on solving a different efficiency problem: how to support query optimization

for queries with multiple operators. In the later chapter we will change to use the query input

size as complexity measure as in the database literature, and construct an optimal STE-based join

algorithm and conjunctive query algorithm (Ch. 4).
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Query leakage. Conjunctive queries that contain multiple selections and joins in both SPX and

OPX may leak information about each full join, which roughly is about which rows in the entire

tables have equal attribute values, even if only a subset of such rows are filtered for. This leakage

may lead to discovery of entire joint frequency between two tables, therefore it is important to

reduce its disclosure. This problem is formally addressed in a different scheme (Ch. 4).

Locality. A higher-level encrypted database scheme such as OPX (and also SPX) represents

plaintext database in a way that loses much locality information in the plaintext data model, such

which values correspond to the same row (i.e. same record), the same column (i.e. same attribute)

or the same table (i.e. same concept). It therefore presents a challenge to scalability. The key is

recover such locality through STE structures, and we study this problem more in-depth in Ch. 5.
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Chapter 4

PKFK: Improved Efficiency and

Security

4.1 Introduction

In [11] (Ch. 2), we outlined key design principles for encrypted database systems and a system

architecture to achieve them. We also described our preliminary efforts to build a system called

KafeDB that embodies these principles. In this chapter, we present the new STE-based scheme

called PKFK that has most improved efficiency and security over prior schemes such as SPX [64]

and OPX [66] (Ch. 3).

The PKFK construction. The original version of KafeDB is based on the STE-based database

encryption scheme OPX [66] (Ch. 3) which is itself an extension of the SPX scheme [63]. While

SPX/OPX handle a non-trivial fraction of SQL, they come with several limitations including

quadratic complexity, lack of support for query optimization and relatively large leakage for conjunc-

tive queries. The PKFK scheme successfully addresses the limitations of SPX/OPX. In particular,

the PKFK scheme achieves (1) linear storage and query complexity in database size, (2) support

for both standard and custom query optimization, and (3) reduced leakage for conjunctive queries.

Morever, the PKFK scheme allows flexibility for its encrypted structures to be reshaped in order to

gain more access locality. We developed SQL emulators to specifically leverage this property. Our
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benchmark (Ch. 6) showed that PKFK had only 4.2× query overhead and 3.6× storage overhead,

representing two orders of magnitude improvement over SPX/OPX and similar performance to the

PPE-based CryptDB.

4.2 Limitations of SPX

The SPX scheme [63] is the first STE-based construction that handles a nontrivial subset of SQL

queries, namely the class of conjunctive queries, which consists of selection (or filter), join and

projection operators. However SPX has several limitations that hinder the development of practical

and scalable systems. In this chapter we investigate new techniques and constructions to overcome

these limitations. We first illustrate these limitations using an example of SPX in Figure 4.1. Note

that the limitations except for query optimization apply also to the OPX scheme [66] (Ch. 3).

T
RowID attP att

1 Q A
2 R A
3 Q B

T′

RowID att′

1 A
2 B
3 A

χ1 Q,A

χ2 R,A

χ3 Q,B

χ′1 A

χ′2 B

χ′3 A

MM(R)

att,A χ1, χ2

att,B χ3

attP ,Q χ1, χ3

attP ,R χ2

att′,A χ′1, χ
′
3

att′,B χ′2

MM(S)

att, att′

(
χ1, χ

′
1
)
,(

χ1, χ
′
3
)
,(

χ2, χ
′
1
)
,(

χ2, χ
′
3
)
,(

χ3, χ
′
2
)
,

MM(J)

Figure 4.1: An example of SPX [63] construction for plaintext tables T and T′ for the selection
attribute attP and join attributes att and att′. The notation MM(S) corresponds to MMV , MM(R)

to MMR, and MM(J) to MMatt in [63]. Each row coordinate for T is denoted as χi and for T′ as χ′i.

Example of SPX. First we represent rows in two tables T,T′ as a multimap MM(R). We denote

the row coordinates to the corresponding encrypted multimap for the ith row in T as χi and for T′
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as χ′i. To represent a join between these two tables, say between columns att, att′ as in the query

T ./att=att′ T′,

we first need to find the pairs of all rows that constitute the join result. This step effectively requires

to compute the join query. Then we compute the pair of row coordinates (χi, χ′j) for each pair of

joined rows, and store all such pairs as a tuple inside another multimap for join as

MM(J)[(att, att′)
]

=
((
χi, χ

′
j

))
∀i,j:att[i]=att′[j]

SPX then encrypts these structures using black-box encrypted multi-maps

EMM(R),EMM(S),EMM(J), which can be instantiated using standard constructions such

as [42, 36, 67, 31, 30].

Quadratic setup and storage complexity. SPX for the join representation will take time and

storage proportional to the join size, which is worst-case quadratic in table size T: O(|T| · |T′|).

This can be seen by counting the length of the tuple in MM(J) associated with the join attributes

(att, att′). This cost is significantly higher than the plaintext which is worst-case linear in table

size O(T). Moreover, it is also less desirable to “precompute” the join during setup in order to

compute its encrypted representation. Ideally the encryption should take time and space linear in

the plaintext database to set up.

Quadratic join complexity. To compute the encrypted join, the server needs to query the

corresponding EMM(J) for the entire tuple associated with this join, whose length is proportional

to the join size. This means the encrypted join algorithm is worst-case quadratic O(|T| · |T′|),

which is higher than the linear complexity in plaintext join (such as [17]). This complexity gap

is problematic for a conjunctive query because its complexity is typically dominated by joins. In

this work we construct the first STE-based join that matches the plaintext asymptotic complexity

using the same notions in the relational database literature.
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Unoptimized conjunctive query. Suppose the query is a filtered join, say the same join be-

tween columns att, att′ but also filtered by attP = R,

σattP=R
(
T ./att=att′ T′

)

In plaintext, this query will be optimized by the selection pushdown rule such that the filter would

precede the join (
σattP=RT

)
./att=att′ T′

Doing so will ensure that the intermediate input to the join is effectively reduced by the filter, and

in this case to of size one for only one matched row, Row 2 in T with attP = R. Therefore such

optimized query would only incur one access for the filtered join. However, SPX does not support

such query optimization, therefore it will still retrieve the entire tuple of row coordinates for the

whole join from EMM(J), in this case 5 pairs of row coordinates that constitute the total unfiltered

join size. Therefore SPX may still incur the full join cost for a partially-filtered join. In order to

have practical solution, we need to investigate how to support relational query optimization in an

STE-based scheme.

Large conjunctive query leakage. In the above filtered join example, because the server in

SPX still retrieves the entire tuple of the row coordinate pairs even though only one such pair is

filtered, it leaks the equality pattern for the entire join regardless of the filter. This equality pattern

means which row in column att is equal to those in column att′. But this leakage can also be used

to infer the number of unique values in the entire domain of columns att, att′, and their frequency

distributions. This leakage for the entire domain seems undesirable especially since this example

query only concerns one row from each table. For example if the table stores information about

individuals as rows, we do not want to leak information about other individuals when the query

filters down to just one individual. In this work we address how to reduce this leakage.

Lack of leagcy compatibility. The data structures EMM(R),EMM(J) and the query algorithms

are not tables and relational algebra or SQL, therefore these schemes are believed to require custom

69



changes to the relational database systems. We propose a general framework called emulation, to

turn an STE-based scheme into one that uses different data structures and query languages, such

that the STE-scheme can be implemented on legacy systems with no custom modification.

Lack of locality. Exploiting data and access locality is crucial for database efficiency for large

data. Such locality information is typically represented in the plaintext table. For example, values

on the same row can be accessed together by multiple select and join operators. If the same

values are stored in contiguous locations then multiple operators of the same row will only need

O(1) sequential read to the secondary storage. However SPX dose not preserve such locality. N

operators on the same row will not only incur O(N) reads, but these reads are no longer sequential.

For example in Figure 4.1, because the select and join operators are represented in two separate

encryptd multimaps EMM(S),EMM(J), the same query above with a filter and a join will require two

separate accesses to EMM(S) EMM(J) for the same row, say (T, 3), and another access to EMM(R)

to retrieve said row. We study techniques to increase locality in an STE-based scheme in order to

further enhance its efficiency with security trade-off.

4.3 Techniques

To overcome the limitations outlined above, we examine the sources of these limitations and pro-

pose new techniques to address them. Our optimal join algorithm (Sec. 4.3.1) uses new graph

structures to reduce the join complexity to match the plaintext join. Our query optimization tech-

nique (Sec. 4.3.2) implements standard database optimization in an encrypted setting. Our leakage

reduction technique (Sec. 4.3.3) reduces the new leakage introduced in query optimization while

managing the storage blowup. Beyond these techniques, in Chapter 5 we also introduce Emula-

tion to render STE-based schemes legacy-friendly, and Colocation to increase locality. Finally we

combine these techniques in a new construction called PKFK 1 (Sec. 4.4 and 4.4.4).
1The name is associated with the relational database concept Primary Key and Foreign Key. It serves as a tribute

to the inspiration we draw from the relational database literature.
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4.3.1 Optimal Join

The join operator is one of the most expensive operators in relational databases. Its query com-

plexity typically dominates the execution of conjunctive relational queries. Therefore, designing

efficient join algorithms for different computational models and hardware settings has long been

studied and remains an active area of research in relational databases (e.g. [101, 73, 18, 68]). For

example, the hash join algorithm achieves linear storage and time complexity in the input table

size [101, 73], which is optimal.

Optimal encrypted joins. The key for an encrypted relational database to be scalable is to

achieve efficient encrypted joins. Informally, we say that an encrypted join operation is optimal if

it only adds a constant overhead to the optimal plaintext join, which is asymptotically linear in

input size for both time and space. Formal definition is presented in Section 4.6.

PPE-based joins. PPE-based joins such as the adjustable join in CryptDB [84, 85] and

Monomi [94] can be shown to match the query and storage complexity of plaintext joins. For ex-

ample, the adjustable join can be implemented using the hash join algorithm, because the equality

between elements in two columns is revealed at query time, which allows the hash join to proceed.

The followup work [77] strengthens the security of the adjustable join by reducing the leakage of

transitive joins, however its construction is about four times more expensive in storage and query

time. In general, PPE-based joins leak the equality within all columns and their correlations with

the join columns.

STE-based joins. STE-based joins are a more secure alternative to the PPE-based joins. How-

ever, known constructions such as the one provided in SPX [63] and OPX [66] have higher asymptotic

complexity than plaintext joins. More precisely in SPX [63] a join between two tables T and T′

actually incurs worst-case quadratic complexity O(|T| · |T′|) for both query and storage. By con-

trast, an optimal plaintext join such as the hash join [101, 73] runs in expected O(|T|+ |T′|) time

and has O(|T| + |T′|) size. Therefore, our goal in this work is to design the first STE-based join

that matches the complexity of the plaintext join in the same notion used in the database literature
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(e.g. [101, 73]).

Surrogate Join Graph

The key to our construction for an optimal STE-based join is a nonstandard representation of

the join. We first examine the underlying reason for the quadratic blowup for the currently-known

STE-based joins using join graphs, and then introduce our solution based on a graph transformation

called the surrogate join graph.

Join graphs. To gain some intuition behind the quadratic blowup in SPX’s join, we first use a

graph to represent the join, called the join graph [71]. A node in the join graph is a row (or an

identifier or pointer to a row), whereas an edge between two nodes means the two corresponding

rows satisfy the join predicate and are paired up in the join result. Overall the join graph is a

bipartie graph, where the nodes split naturally into two sets for the two tables. An example of a

join graph is shown in Figure 4.2.

The SPX structures can be seen as storing all the edges of the join graph inside an encrypted

multi-map EMM, which stores only one tuple of the form ((att, att′), E) for the entire edge set

E =
(
(ui, vj) : ui ∈ U, vj ∈ V

)
. But in general the edge set can be much larger than each node set,

such as worst-case quadratic size. Even if the EMMconstruction is optimal in space and time, this

means (1) the EMMfor join would still incur quadratic storage blowup, and (2) just by reading this

EMMfor the join would require quadratic amount of read operations.

u1 v1

u2 v2

u3 v3

Join graph

u1 g1 v1

u2 g2 v2

u3 v3

Surrogate join graph

u1 g1 g1 v1

u2 g2 g2 v2

u3 v3

Split surrogate join subgraphs

Figure 4.2: A join graph, its surrogate join graph and split surrogate join subgraphs for the join
example in Figure 4.1. Each node ui corresponds to χi and node vi to χ′i. Each surrogate node is
denoted as gi.
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Surrogate join graphs. To avoid the quadratic blowup, we need to avoid directly materializing

the entire edge set of the join graph in an encrypted multi-map. Instead, what we seek here is to

first reduce the edge set such that its size goes from being quadratic to linear. This is possible

because a join graph may have redundancy within its edges. For example, multiple nodes may be

connected to the same set of nodes, which reflects the basic property of a join, where multiple rows

from T may be joined with the same set of rows from T′. To reduce such redundancy, we morph

the join graph into a new graph called the surrogate join graph, by first adding a set of special

nodes and then rearranging the overall connectivity, while keeping the join semantics intact.

More precisely, let the join graph be a bipartie graph G = (U, V,E) where both U and V are

node sets and E is an edge set. U is a set of row coordinates for T and V for T′. For example, each

element ui in U is a row coordinate χi for the encrypted multi-map EMM(R) which can be used to

retrieved a unique encrypted row in T. The edge set E consists of pairs (u, v) where u = χ for T

and v = χ′ for T ′.

We then create a new graph GS = (U, V, S,ES), by first adding a set of nodes S, called surro-

gates, such that each surrogate node corresponds to a unique subset of nodes in V that some node

in U connects to in the original join graph G. Then we define the new edge set ES by connecting

the node sets U and V through the surrogates S in the following way:

(1) Let Ru be the subset of nodes in V that u in U connects to in the original join graph G;

(2) For each unique Ru over all u ∈ U , add a surrogate with a label s = id(Ru) that uniquely

identifies Ru in V ;

(3) For each (u, v) in E, we add a length-two path (u, g, v) (i.e. two edges) to the set ES with

the surrogate node g = id(Ru)

x Figure 4.2 shows an example of a surrogate join graph, for the join example in Figure 4.1.

First, the above definition of ES is correct in that it preserves the join semantics in E, because

for each edge (u, v) in E there exists a unique length-two path in ES with the same endpoints

(u, ·, v).

ES also removes the redundancy in E, because for all m = |Ru| edges that share the same first
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node u, say (u, v1), · · · , (u, vm) in E, there is only one corresponding edge (u, g) in ES as part of the

path (u, g, ·). Vice versa, for all n edges that share the same second node, say (u1, v), · · · , (un, v)

in E, there is also just one corresponding edge (g, v) in ES as part of the path (·, g, v). Overall, ES

is linear in the node set size O(|U |+ |V |), and the node size increase by surrogates S is also linear

in O(|V |).

Examples. In the worst case where the join is a cartesion product, each node from U is matched

with every node in V , that means there will only be one surrogate in S = {g}, and every node in

U is connected with a surrogate g once, and similarly for V . So the worst-case size for ES is still

linear O(|U |+ |V |).

Another example is when the join is one-to-one. This means that each node in U is matched

with a unique node V . This will result in the largest possible surrogate set S, which still equals to

|V | at maximum.

An Optimal STE-based Join

Because the edge complexity of the surrogate join graph is reduced to linear in the node size, we

can construct an STE-based join with linear query and storage complexity based on this edge set.

Split surrogate join subgraphs. We first construct the surrogate join graph GS = (U, S, V,ES)

for the join T1 ./ T2 where U and V are row coordinates of T1 and T2, S is the surrogates, and

ES is the edge set. Then we split GS into two subgraphs by duplicating the surrogates S, denoted

as G1 = (U, S,E1) and G2 = (S, V,E2), for example as shown in Figure 4.2. We then store the

edge set of each subgraph as a multi-map. There are however two ways to encode the edge sets.

With interaction. One straightforward way is to let MM(J)
1 map a join attribute pair (att, att′)

to all the edges in the left subgraph E1, and let MM(J)
2 map each surrogate to a tuple of nodes that

are connected to it by some edges in E2 in the right subgraph. However this idea would introduce

an additional round of O(U)-size interaction, because the server would need to first return all the

encrypted surrogates from G1 in EMM(J)
1 to the client, and then wait for the client to decrypt the
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surrogates, compute and send back search tokens for the EMM(J)
2 .

Without interaction. To eliminate this extra interaction, we can precompute and store a search

token gtk (called a “surrogate token”) for each surrogate g for EMM(J)
2 in the first multi-map MM(J)

1

as a tuple ((att, att′), (u, gtk)). An example is shown in Figure 4.3. Then the join computation goes

as follows:

(1) The client sends over a join token based on the column ids for attributes att and att′.

(2) Then the server first search EMM(J)
1 and decrypt the surrogate token gtk for each u.

(3) For each surrogate token gtk that corresponds to a u in (2), the server then queries the EMM(J)
2

for the set of v’s, called Ru, that join with u, and outputs (u,Ru).

Notice that the algorithm has nested loops in step (2) and (3), which might suggest it is still a

quadratic algorithm. However there is redundancy in the search of EMM(J)
2 of step (3) because the

surrogate tokens for different nodes u from step (2) may be the same. So after we add standard

memoization for the duplicate surrogate tokens gtk in between step (2) and step (3), we effectively

achieve worst-case (in join size) expected (in memoization) linear in both time and space O(T ) for

table size T . This matches the plaintext hash join complexity, and improves significantly from the

worst-case quadratic O(T 2) in SPX join.

att, att′

(
χ1, gtk1

)
,(

χ2, gtk1
)
,(

χ3, gtk2
)

MM(J)
1

g1 χ′1, χ
′
3

g2 χ′2

MM(J)
2

Figure 4.3: Multi-maps based on the split surrogate join subgraphs in Figure 4.2. Each node ui
corresponds to row coordinate χi for the table T and each node vi corresponds to row coordinate
χ′i for the table T′. Each surrogate gi corresponds to the search token gtki for EMM(J)

2 . These
multi-maps replace the quadratic multi-map MM(J) in Figure 4.1 to achieve optimal STE-based
join.
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Storage complexity. Although the optimal encrypted join between each pair of attributes only

requires linear space complexity in table size as O(T ), the total number of joins in a database may

still be large. We define the join set to be the set of attributes in a database that can be joined under

an equality predicate. The overall storage complexity for the join set using STE-based optimal join

then becomes O(T ·#JoinSet) for the whole database.

Although in the worst case the size of the join set may be quadratic in the total number of

attributes, in practice the join set size tends to be a small constant. For example, the TPC-

H benchmark which models a data warehouse has only 20 attributes in 8 tables. Moreover, a

relational database with normalization tends to further reduce the join set size to be on the order

of the number of tables, because all joins tend to be among primary or foreign keys. On the other

hand, the number of rows T in a table can be very large, for example on the order of 106 in TPC-H.

Therefore, under the assumption that the relational database is dominated by the number of rows

T , we can drop the join set size as a relatively insignificant constant and view the asymptotic

storage complexity to be O(T ). This is an improvement over SPX where though under the same

assumption the complexity is nonetheless quadratic O(T 2).

We establish formally that the STE-based join as outlined above matches the plaintext join

complexity for not only one join but also conjunctive joins (i.e. multi-way joins).

Theorem 4.3.1. If the encrypted multi-map scheme Σmm is optimal, then the STE-based join

outlined above has the optimal asymptotic complexity: (1) the query time complexity is linear in

input table size; and (2) the storage complexity is also linear in table size.

The proof is provided in Sec. 4.6.

4.3.2 Query Optimization

Relational queries consist of a diverse set of operators, where the operators within a query can be

reordered or rewritten into other operators to lower the overall query complexity. For a simple

example, a filtered-join query can choose to apply filter first on the tables before doing the join,

thereby potentially saving a large fraction of computation. This problem, called query optimization,

has been extensively studied in the relational database literature [1]. Typical query optimization

76



relies on relational-algebraic rules in combination with heuristics and cost estimation from the data

distribution [52, 1, 15, 74]. This work focuses on an important class of relational queries, called

the conjunctive relational query, which consists of joins, selections (filters) and projections, all in

conjunction with each other[1].

The SPX construction [63] is not able to support query optimization because it only executes

the operators in a fixed order which can lead to suboptimal performance in practice.

In order to make a more practical STE-based relational database, we study how design schemes

that can execute query operators in various orders and introduce several new optimizations.

Filtered Joins

The filter join is one of the most common constituents in conjunctive queries. It is a join not only

between two tables, but also in conjunction to a selection on either table, or two selections on both

tables. One example is shown in Figure 4.4. For simplicity, we use a single filtered join to illustrate

the details of the construction, but the technique applies to generally to arbitrary composition of

multiple filtered joins in a query.

SELECT *
FROM T JOIN

T′ ON att =
att′

WHERE attP = R

(a) SQL.

σattP=R

onatt=att′

T T′

(b) A query tree.

onatt=att′

σattP=R

T

T′

(c) Selection pushdown.

jtkatt,att′

stkattP ,R

posT

posT′

(d) A token tree.

Figure 4.4: An example of a filtered join query.

Query trees as input. Different from prior STE works for keyword search or boolean queries [31,

61], relational queries have more complex structures due to different types of relational operators [1].

A relational query is typically represented as a query tree, which encodes information of execution

ordering. For example in Figure 4.4, the nodes in a query tree represent operators, such as join

(on), select (σ), project (π) and table scan. If we view each edge as a directed edge pointing from
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the child to the parent, then the execution order corresponds to a topological order.

Plaintext optimization. The filtered join is typically optimized using selection pushdown or

push-select-over-join [1]. For example in Figure 4.4 the optimized query tree has both selections

pushed below the join. This rule is based on the observation that if the selection is evaluated, then

the filtered table(s) would make a smaller input to the join. Suppose in Figure 4.4 the fraction

of VISA-paying customers and that of the vegetable suppliers are α. Then the input to the join

after the selection would be O(α(C + S)) for total C customers and S suppliers. If the optimal

STE-based join is used then the overall filtered join complexity is reduced by the factor of α as in

O(2α(C + S)).

Suboptimal approach. The existing STE-based approach such as SPX cannot support selection

pushdown, as it executes the join and the filter independently and intersects the results. Therefore

regardless of the ordering of the selections and join, the same query above for example would incur

the full join complexity J plus the selection complexity as O(J + α(C + S)).

Even if we modified SPX with an optimal join (such as Sec 4.3.1) with complexity J = O(C+S),

here the total complexity would still be suboptimal as O((1 + α)(C + S)), which would always be

larger than the plaintext complexity as O(2α(C + S)) unless trivially the select operator selected

the entire table such that α = 1.

Selection pushdown on STE-based join. To support selection pushdown over the optimal

STE-based join, the server needs to avoid computing the entire surrogate join graph when only a

subset of the row coordinate nodes are selected.

But such constrained computation of the join is impossible with the definition of EMM(J)
1

(Sec. 4.3.1), because its labels are based on the join attributes only. Therefore we need to change

its definition to incorporate the selected row coordinates.

Concretely, we define a new EMM(XJ) for the join between att and att′ to play the role of EMM(J)
1

(Sec. 4.3.1). We show an example in Figure 4.5. This encrypted multi-map EMM(XJ) encrypts a

set of label-value pairs, each of the form (χ, gtk) for a row coordinate χ and a surrogate token
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gtk. To compute a filtered join, the client sends the join token jtk = K(XJ) which is the key for

EMM(XJ), and the select token stk for EMM(S). First the server queries EMM(S) by stk to obtain

the filtered row coordinates. Then for each such selected row coordinate χ, the server computes

the token tk = ΣMM.Token(jtk, χ) for EMM(XJ), and queries it for only the corresponding surrogate

tokens under the selection. Then the rest of the STE-based optimal join algorithm will be carried

out only on this set of surrogate tokens on EMM(J)
2 (Sec. 4.3.1). Note that here the server computes

the token algorithm, which is different from the typical STE setting.

For example in Figure 4.5, if push-down selection results in χ3 only, then the server only uncovers

one surrogate token gtk2 from EMM(XJ), and finally it computes only χ′2 that joins with χ3 from

EMM(J)
2 . The unselected part of the join for χ1, χ2 and χ′1, χ

′
3 is not involved.

χ1 gtk1

χ2 gtk1

χ3 gtk2

MM(XJ)

g1 χ′1, χ
′
3

g2 χ′2

MM(J)
2

Figure 4.5: The multi-map MM(XJ) for selection pushdown on the STE-based filtered join, based
on the example in Figure 4.3 with the difference being that MM(XJ) replaces MM(J)

1 .

Leakage. The selection pushdown is susceptible to an active attack where the persistent at-

tacker uses the revealed row coordinates from other queries to search the encrypted data structure

EMM(XJ) for part of the join that was not selected. We addressed the reduction of such leakage in

Section 4.3.3.

Token trees. To represent the execution order of the tokens associated with a query, we introduce

the token tree, an analog to the query tree. The client converts a query tree into a token tree that

may consist of join nodes of join tokens (jtk), select nodes of select tokens (stk), and relative

positions of tables (pos) present in the query tree.

A node’s type and subtree give information about the execution strategy. For example in

Figure 4.4, the leaf select node stkatt,R with the child table position posT tells where the result of

79



the search for stkatt,R in EMM(S) should be placed in the result table.

An edge indicates the output of the child is used as input to the parent. For example in

Figure 4.4, the result of the leaf select node (i.e. search result using select token stk), which is a

set of row coordinates for table T corresponding to the selection att = R, will become input to the

parent join node jtkatt,att′ .

Extension to conjunctive relational queries. When the relational query becomes more com-

plicated such as involving multiple filtered joins, another query optimization rule is typically applied

to reorder them, called the join reordering [1]. The reason why such optimization makes sense is

because a filtered join tends to have smaller result size than the full join, so for multiple filtered

joins, it is often beneficial to “chain” them together in an order that reduces intermediate data size.

A common heuristic is to order the operators by the estimated selectivity [1].

To support join reordering, we reuse the encrypted multi-maps for filtered joins (Sec. 4.3.2), with

the generalization that we allow the row identifiers to come from arbitrary token subtrees. Figure 4.6

shows the query of two joins and two filters, its optimized query tree and the corresponding token

tree. The select nodes and join nodes not only follow the same optimized order as the plaintext

selections and joins, but the overall query complexity is also reduced because the token tree nodes

only compute based on the output from the subtree.

SELECT *
FROM T

JOIN T′ ON
att = att′

JOIN T′′ ON
att = att′′

WHERE attP = R
AND att′′P = Q

(a) The SQL query.

onatt′=att

σatt′′
P=Q

T′′

onatt=att′

σattP=R

T

T′

(b)

(c) An optimized query tree.

jtkatt′′,att

stkattP ′′,Q

posT′′

jtkatt,att′

stkatt,R

posT

posT′

(d) The token tree.

Figure 4.6: An example of conjunctive relational query.
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Conjunctive Selections

Within a conjunctive relational query, selections on the same table are all conjunctive, and the

semantics is to find all rows that satisfy all of the selection predicates simultaneously. In this work

we focus on one form of selection predicate which is an attribute equal to a constant value, att = v.

Overall a conjunctive selection is T.att1 = v1 ∧ · · · ∧T.attm = vm over the same table T.

Baseline solution. One straightforward approach is to use an encrypted multi-map to query for

each selection predicate, and then take the intersection over all resulting row sets. SPX [63] for

example can be seen as taking this approach for conjunctive selection.

Baseline leakage. The baseline approach above is unable to support the reordering of selec-

tion predicates, because different ordering would still result in the same execution time. Be-

cause the execution essentially queries for each predicate independently, the total complexity is

O(∑m
i=1 DB(T.atti = vi)).

On the other hand, this approach also incurs additional leakage for the conjunction, which

includes the entire set of row ids for each predicate. Next, we first discuss how to improve the

efficiency through enabling selection reordering, then in the next subsection we will turn our focus

to leakage reduction.

Selection reordering. In applications, selection predicates typically have varying selectivity i.e.

the ratio of result size versus total size. An often more efficient execution strategy is to order the

selection predicates P1, · · · , Pm based on increasing selectivity P(1), · · · , P(m) such that

(1) The predicate with lowest selectivity (i.e., with smallest result set) P(1) is computed first;

(2) To compute P(1) ∧ · · · ∧P(j+1), for each row coordinate χ in the result set of P(1) ∧P(j), check

if it satisfies the next predicate P(j+1), and repeat for all j < m for m selection predicates.

This above algorithm essentially ties the computation of the subsequent selection predicates to the

first one, which is chosen typically by the query optimizer for its lowest selectivity. Each subsequent

predicate usually further reduces this result set by retaining only the intersection. In the worst
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case no such reduction occurs for any of the subsequent selection predicates, so each predicate will

take O(|P(1)|) steps to check, and overall O(|P(1)| ·m) for predicate result size |P | and m selection

predicates. Therefore as long as the first predicate is chosen for lower selectivity, then the algorithm

is almost always better the baseline approach (only equal when chosen as largest selectivity or all

selection predicates share the same selectivity).

To support selection reordering in STE-based conjunctive selections, we use a technique from

Cash et al. [31] to construct an additional SET which supports a membership check that whether

a row referenced by the row coordinate χ contains a selected value v(j) in predicate P(j) without

revealing to the server P(j). This functionality can be useful when the row coordinates are the result

set of the part of the conjunction, because then the server can evaluate the next term att(j) = v(j)

in the conjunction by testing SET.

More abstractly this functionality can be seen as evaluation of a function f(Kj , χ) with inputs

Kj = F (K, id(T ) ‖ att(j) ‖ v(j)) and row coordinate χ. Here we define the function f as a PRF or

a random oracle H(Kj ‖ χ), and during setup the client precomputes f over all inputs and save

the results in the SET to store on the server.

For querying with conjunction P1, · · · , Pm, the server takes (stk1,K2, · · · ,Km) as an input,

which corresponds to reordered selection predicates P(1), P(2), · · · , P(m) such as based on expected

selectivity. The server first queries EMM(S) using stk1 for P(1). Then for each χ decrypted in the

result, the server checks the SET for the existence of value f(K2, id(T ) ‖ att2 ‖ v2) for P(2), and so

on until P(m), while each step retains only χ for which the check on SET succeeds.

Selection reordering leakage. The extension outlined above allows the scheme to support

selection reordering, but the attacker can still infer information about each predicate in the con-

junction. For example, the attacker can store the input Kj to the function f for the predicate Pj ,

and evaluate f on different row coordinates that are revealed at a different time by other queries.

In the worst case where the attacker collects all such row coordinates for table T, the attacker can

infer the complete result set for each predicate Pj , in which case the overall leakage becomes equal

to the baseline approach.
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4.3.3 Leakage Reduction

Compared to SPX [63], the techniques for filtered join (Sec. 4.3.2) and selection reordering

(Sec. 4.3.2) improve efficiency significantly, but can still incur the same leakage. For example,

a filtered join query by itself only leaks on the filtered portion of the join, which is an improvement

over SPX (which leaks in the full join). But in the worst case when all the row identifiers for the

filtered column are known, the leakage is the same as SPX. Because filtered joins are one of the

most common building blocks for relational queries, we focus on leakage reduction for filtered joins

in this work, and leave the extension to selection reordering in the followup work.

Filtered Join Leakage Reduction

When viewed abstractly, the STE-based filtered join (Sec. 4.3.2) essentially introduces an out-

sourced token computation g(J, χ) for EMM(XJ), where g(J, χ) = ΣMM.T oken(J, χ) with key

J = K(XJ), where the client provides the key J and the server iterates over each row coordinate

χ from a pushdown selection to compute g. However, the client input J is too “generous” in the

sense that it allows the server to compute the function g also on other unselected row coordinates

that are revealed by other queries. Therefore the key idea to reduce this leakage is to constrain the

domain of row coordinates in the function g by only those that are selected by pushdown selection

P .

With interaction. The simplest approach is to let only the client compute g. This however

introduces additional interaction, where for each pushdown selection P the server needs to send

back all the selected row coordinates. The client then computes a token g(J, χ) = ΣMM.Token(J, χ)

for EMM(XJ) for each row coordinate χ received, and sends all such tokens to the server. The server

then queries EMM(XJ) using these tokens to uncover the surrogate tokens for the rest of the join.

Overall this approach can incur O(T ) bandwidth for each pushdown selection.

Constrained computation To eliminate the interaction, we constrain the computation of g

by the pushdown selection predicate P , denoted as g(CP ; J, χ) for the constraint CP . The server
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should only be able to compute the constrained g for the key J on the subset of row coordinates

that are selected under P .

One way to realize such constrained function g is to build additional encrypted data structure to

limit the server’s access to the tokens to EMM(XJ). We redefine the encrypted multi-map EMM(XJ) to

be over the plaintext set of tuples, each of the form ((CP , χ), gtk) for a value CP , a row coordinate

χ and a surrogate token gtk. The function g corresponds to the outsourced computation of a

token for the tuple ((CP , χ), gtk) in EMM(XJ) given the client input CP and key K(XJ). Here for

leakage reduction CP needs to not only depend on the join attributes but also the selection P , for

example CP being the result of a pseudorandom function F (KC , attP ‖ x ‖ att ‖ att′) for a secret

key KC and selection on attP = x. Now when given such CP as client input, the server’s token

computation of g is limited to only for each row coordinate χ under the pushdown selection P ,

namely ΣMM.Token(K(XJ), (Cp, χ)). This means only the surrogate tokens associated with the rows

under the pushdown selection P may be uncovered from EMM(XJ) for the rest of the join.

An example. Figure 4.7 shows such an example for the filtered join σattP=RT onatt=att′ T′.

The client sends the tokens: stkR = ΣMM.Token(K(S), attP ‖ R) for selection, and K(XJ) and

CR = F (KC , attP ‖ R ‖ att ‖ att′). The server first uses stkR to query EMM(S) for the only row

coordinate χ2, then it computes a token tk = ΣMM.Token(K(XJ), (CR, χ2)) and queries EMM(XJ) for

surrogate token gtk1, then it uses gtk1 to query EMM(J)
2 for the row coordinates (χ′1, χ′2) to join

with χ1. The server finally uses the row coordinates to query the EMM(R) for the encrypted rows

and return the filtered join result back to the client.

Query complexity. This leakage reduction approach does not add to the query complexity for

filtered join (Sec. 4.3.2), because only the filtered portion of the join will be queried.

Storage requirement. This improvement in leakage approach results in an increase of storage,

but overall the overhead is still constant in table size under common assumptions. The increase

comes from the fact that a join can correlate with different filtered attributes in a table T, where

the total number of such correlation goes up to table width L. Since each tuple encrypted in
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T
RowID attP att

1 Q A
2 R A
3 Q B

T′

RowID att′

1 A
2 B
3 A

χ1 Q,A

χ2 R,A

χ3 Q,B

χ′1 A

χ′2 B

χ′3 A

MM(R)

att,A χ1, χ2

att,B χ3

attP ,Q χ1, χ3

attP ,R χ2

att′,A χ′1, χ
′
3

att′,B χ′2

MM(S)

(CQ, χ1) gtk1

(CR, χ2) gtk1

(CQ, χ3) gtk2

MM(XJ)

g1 χ′1, χ
′
3

g2 χ′2

MM(J)
2

Figure 4.7: The modified multi-map MM(XJ) for leakage reduction on the STE-based filtered join
of σattP=xT onatt=att′ T′, based on the example in Figure 4.1 and 4.3.

EMM(XJ) for this join is specific to a filtered attribute and a row in the customer table, there will

be O(L · T ) tuples for each row in table T for this join between att and att′. Additionally there

will be O(T ) tuples for EMM(J)
2 in table T for the same join but in reverse order. So overall the

complexity becomes O((L · T + T ) ·#JoinSet).

However, as argued in Section 4.3.1, the join set size is a small constant dominated by the

table length T . Similarly, the table width L is also a small constant dominated by T . Therefore

asymptotically the storage complexity is still O(T ).

Join filtered by conjunctive selection. In a more general setting a join can be filtered by a

conjunction of selections on the same table. To minimize the query complexity it is beneficial to

push the conjunctive selections down the tree so that they are evaluated ahead of the join, which

reduces the input size to the join. The leakage reduction approach here ties the leakage of the join

to the first selection in the conjunction, which is typically chosen by the query optimizer to be the

selection with the smallest output.

Join without any filters. A join without any filter on either table can also be handled by having

a constraint value C that correspond to a selection predicate that always return true. We defer the
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full details to the next section.

Join filtered on both sides. In general a filtered join may have selection on both sides of input,

such as (σPT) on (σP ′T′). The extension is to exploit the symmetry by treating this both-sided

filtered join as two one-sided filtered joins. With this symmetry for two-sided filtered joins also

extended to unfiltered joins, we no longer need MM(J) (such as in Figure 4.7), and can just use

MM(XJ) for joins in general. We defer the full details to the next section.

4.4 The PKFK Scheme

In this section, we describe our new PKFK construction. The scheme’s performance is comparable

to PPE-based schemes like CryptDB [94] but provides stronger security guarantees. It also provides

efficiency and leakage improvements over the SPX construction of [63] and the OPX scheme of

[11]—both of which are STE-based. We first provide a high level intuition before diving into the

scheme’s details.

4.4.1 Overview

Roughly speaking, the scheme represents the database using various multi-map structures that are

then encrypted using a multi-map encryption scheme. Compared to SPX and OPX, PKFK uses

a new compact and highly efficient design that: (1) lowers the query and space complexity from

quadratic to linear in table size; (2) does not require the pre-computation of the joins; and (3)

reduces the leakage of conjunctive queries. Moreover, unlike SPX which only supports queries in

their normal form (i.e., with no support for query optimization), PKFK supports not only standard

query optimizationbut also custom optimization rules we introduce. We found that PKFK has only

4.2× median query overhead and 3.6× storage overhead over a plaintext query, representing about

two orders of magnitude improvement over SPX and OPX and similar performance to CryptDB.

The full details of evaluation is presented in Chapter 6.

In the following, we divide our overview in two: (1) a setup phase during which the client

generates the encrypted database; and (2) a query phase during which the client generates an
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encrypted query for execution.

4.4.2 Setup

Given a plaintext database DB, the setup phase creates five collections of structures that capture

different representations of the database:

• (row representation): MM(R) is a multi-map that maps each row identifier to a tuple composed

of the content of the row;

• (filter representation): MM(S) is a multi-map that maps the unique values in every column

that supports selection;

• (partial filter representation): SET is a set structure that checks whether a column in a specific

row (i.e. a table cell) contains a particular value.

• (join representation): MM(XJ) is a multi-map that maps a row under a constraint to a surro-

gate in the surrogate join graph (Sec. 4.3.1).

Every multi-map is encrypted using a multi-map encryption scheme, whereas the set structure

is encrypted using a custom encrypted set scheme that we detail in the next section. As mentioned

above, a key feature of PKFK is its ability to support optimized conjunctive queries which it

answers by making use of a combination of the encrypted structures. In order to do so, PKFK

uses a structured encryption design technique called structural chaining. In a nutshell it works as

follows: the client generates an encrypted query that it sends to the server. Depending on the type

of the query, the server executes a query algorithm using a specific encrypted structure. The result

of this execution is a set of intermediary results that the server uses to query another structure and

so on. As a concrete example, in PKFK, the client sends a SQL query to retrieve all rows in table T

whose attribute equal to a particular value. The server then takes the encrypted form of this query,

first searches the encrypted filter representation EMM(S) which outputs the intermediary results

that it then uses to search the row representation EMM(R) to uncover the encrypted query result.

87



Linear setup time. Another improvement made in PKFK is that it does not require precompu-

tation of all joins. Such requirement is inherent in SPX [64] and OPX [66] (Ch. 3), so they take

prohibitive time to set up (i.e. quadratic in database size). By getting rid of this requirement,

PKFK only takes linear time to set up.

Row representation. The row representation in MM(R) supports the lookup of an encrypted

row given its coordinate. Each row r in the plaintext database is associated with a pointer or

coordinate χ(r) = (tbl(r), rrk(r)), which is defined to be the unique pair of table identifier and the

row rank. Each plaintext row is encrypted element-wise by a symmetric key encryption scheme

ske.

Filter representation. The filter representation in MM(S) supports the lookup of row coordi-

nates given a selection predicate att = a, which is encoded as a pair (χ(att), a). The resulting row

coordinates point to the rows that satisfy the selection predicate, and can be used to look up the

encrypted rows in MM(R). One detail to note for encryption is that to make an non-interactive

scheme, each row coordinate resulting from the lookup is in the form of a row token rtk for the

encrypted row representation EMM(R).

Partial filter representation. The partial filter representation in SET supports conjunctive

selection, such as the selection Pi in conjunction P1 ∧ P2 ∧ · · · ∧ Pm for any i > 1. The way

to use SET is to first search MM(S) to obtain the row coordinates, then check if each resulting

row coordinate r satisfy the predicate Pi ≡ atti = ai. To support this check, the SET stores the

ciphertext for each row coordinate r and the filter attribute value at r: r[atti].

Join representation. The join representation in MM(XJ) is not as straightforward as other rep-

resentations, because it is not a direct representation of the join, but rather builds on top of the

surrogate join graph (Sec. 4.3.1). Another complication comes from the need to support several

types of operations: (1) unfiltered joins, (2) one-sided filtered joins and (3) both-sided filtered

joins. The unfiltered join needs to look up all pairs of row coordinates and their surrogates under

both join attributes. This intuitively supports the join computation by matching the rows between
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two attributes by the same surrogate. To add support for filtered joins, we need to condition the

resulting pairs additionally on the selection. This is achieved by adding the encoding for selection

(attp, a) and the join attributes (att, att′) into the labels of MM(XJ).

4.4.3 Query

The query phase is divided into two parts. The client first gives the plaintext query to the Token

algorithm to obtain a collection of tokens. These tokens are structured as a token tree (Sec. 4.3.2)

to reflect the operator ordering in the plaintext query tree, such as selections first and then followed

by joins and so on. Such ordering is typically decided by a query optimizer based on algebraic rules

and heuristics (more details in [1]). The capability of work with query trees as output from query

optimizers was first proposed in OPX [66] (Ch. 3).

Token generation. The Token algorithm takes as input an a-priori optimized SQL query tree

whose nodes are relational operators. It then replaces every node in the query tree with a corre-

sponding token. Each token is generated in such a way that it is going to be used against a specific

encrypted structure that represents a relational operator (Sec.4.4.2). One detail to note here is in

order for the Query algorithm to assemble the query results in a table, the token tree needs to store

information about where the search result of each token belong in the query result table. This

positional information is stored in the pos constant along with each token in the token tree.

Query execution. The token tree is then sent to the server to execute as input to the Query

algorithm. The Query algorithm traverses the token tree, and for each token it searches correspond-

ing the encrypted structure, and puts the search results in a recursively built result table at the

correct position. Often the subsequent tokens require input from the results of the previous tokens,

and such dependency is captured by the token tree structure and followed in the Query algorithm.

The final result is a table of encrypted rows that correspond to the plaintext query result.
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4.4.4 Pseudo-Code of PKFK

PKFK uses as building blocks a response-revealing multi-map encryption scheme ΣMM, a symmetric

encryption scheme SKE, a random oracle H, and a pseudo-random function F . We listed the

pseudo-code of PKFK in three parts:

1. Setup: Fig. 4.8 and 4.9;

2. Token: Fig. 4.10 and 4.11;

3. Query: Fig. 4.12 and 4.13.

4.5 Security and Leakage

Similar to SPX [64] and OPX (Ch. 3), PKFK is a black-box construction and therefore its concrete

leakage profile depends on which underlying data structure encryption scheme it uses. We already

analyzed the concrete leakage profile of OPX in Section 3.3 based on additional assumption that

Σπ
MM from [30] is replaced with an almost leakage free multi-map encryption scheme. For PKFK,

we follow the same assumption to analyze its concrete leakage profile. In particular, we describe

the leakage profile of PKFK when instantiated with standard multi-map encryption schemes [42,

36, 67, 31, 30]. By standard, we refer to a class of well-studied data structure encryption schemes

that reveal the response identity pattern (rid), and the query equality pattern (qeq), also known as

the access pattern and the search pattern in the SSE literature, respectively. The query equality

reveals if and when a query is repeated while the response identity reveals the identities of the

responses. In the following we will give a high level intuition on what each pattern will disclose.

Improvement over SPX and OPX. The main improvement of PKFK is for joins. In particular

for a filtered join query, SPX leaks the join pattern for the full tables with respect to the join

attributes, regardless of the filter; OPX leaks the join pattern for any row seen in this filter and in

all other queries on the same table. By contrast, PKFK only leaks the join patterns for the filtered

rows in this query alone.
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Let ΣMM = (Setup,Token,Get) be a response-revealing multi-map encryption scheme, SKE =
(Gen,Enc,Dec) be a symmetric encryption scheme, F : {0, 1}k × {0, 1}? → {0, 1}m be a pseudo-
random function, and H : {0, 1}? → {0, 1}m be a random oracle. Consider the DB encryption scheme
PKFK = (Setup,Token,Query,Dec) defined as follows a:

• Setup(1k,DB):

1. initialize a SET
2. initialize a collection of multi-maps

MM(R),MM(S),MM(XJ)

3. sample keys KE ,KF ,KS ,KC ,KG
$← {0, 1}k;

4. (Row rep.)
a. for each table T ∈ DB, for each row r = (r1, · · · , r#r) ∈ T,

MM(R)[χ(r)
]

:=
(
SKE.EncKE

(r1)‖ · · · ‖SKE.EncKE
(r#r)

)
b. compute (

K(R),EMM(R))← ΣMM.Setup
(
1k,MM(R))

5. (Filter rep.) for each table T ∈ DB,for each column c ∈ FilterSet(T),
a. for each unique value v ∈ c,

i. for each row r ∈ Tc=v, compute the row token

rtkr ← ΣMM.Token
(
K(R), χ(r)

)
ii. set

MM(S)[χ(c)‖v
]

:=
(
rtkr

)
r∈Tc=v

b. compute (
K(S),EMM(S))← ΣMM.Setup

(
1k,MM(S))

6. (Partial filter rep.) for each table T ∈ DB, for each column c ∈ T,
a. for each unique value v ∈ c,

i. compute Kv ← F (KS , χ(c)‖v)
ii. set for each r ∈ Tc=v,

SET := SET
⋃{

H(Kv‖rtk)
}

where rtk← ΣMM.Token(K(R), χ(r))

(Continued in Fig. 4.9)
aNote that we omit the description of Dec since it simply decrypts every cell of R.

Figure 4.8: The PKFK scheme.
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(Continued from Fig. 4.8)

• Setup(1k,DB):

6. (Join rep.)
a. for each table T ∈ DB, for each column pairs (c, c′) ∈ JoinSet(DB) where tbl(c) = T,

i. for each row r in table T,
1. compute the row token

rtkr ← ΣMM.Token
(
K(R), χ(r)

)
2. compute the surrogate for cell v = r[c]

gv ← F
(
KG, χ(c)‖χ(c′)‖v

)
3. (filtered join) for each correlated filter column c̄ ∈ FilterSet(T) where T =

tbl(c),
a. compute the constraint for the filter value w = r[c̄]

Cw ← F
(
KC , χ(c)‖χ(c′)‖χ(c̄)‖w

)
b. set

MM(XJ)[(Cw, rtkr)
]

:=
(
(rtkr, gv)

)
ii. (unfiltered join) compute the null constraint for the unfiltered join

C⊥ = F
(
KC , χ(c)‖χ(c′)‖χ(c)‖⊥)

iii. set
MM(XJ)[C⊥] :=

(
rtkr, gv

)
r∈T,v=r[c]

b. compute (
K(XJ),EMM(XJ))← ΣMM.Setup

(
1k,MM(XJ))

7. output
K =

(
KE ,KF ,KS ,KC ,KG,K

(R),K(S),K(XJ))
and

EDB =
(
SET,EMM(R),EMM(S),EMM(XJ))

Figure 4.9: The PKFK scheme.
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• Token(K,QT):

1. parse K as
(
KE ,KF ,KS ,KC ,KG,K

(R),K(S),K(XJ));
2. initialize a token tree TT as a tree with the same structure as the query tree QT;
3. initialize a multi-map P for table positions in the query tree QT;
4. Recursively visit each query tree node N ∈ QT in post-order traversal, where its subtree(s)

are QTin (and QT′in),
a. set the table positions for the query subtree rooted at node N

P
[
N
]

:=
{(

T
)

if N ≡ T
P
[
Qin

]⋃
P
[
Q′in

]
else

b. (leaf filter) if N ≡ σatt=v
(
T
)
,

i. compute the select token

stk← ΣMM.Token
(
K(S), χ(att)‖v

)
ii. set the token tree node with table position pos = index(T, P [N ])

NTT ←
(
stk, pos

)
c. (internal filter) else if N ≡ σatt=v

(
QTin

)
,

i. compute the partial filter key

Kv ← F
(
KS , χ(att)‖v

)
ii. set the token tree node with table position pos = index(T, P [N ])

NTT ←
(
Kv, pos

)
d. (project) else if N ≡ πatt1,··· ,attz

(
QTin

)
i. let Ti = tbl(atti); compute the table position for i = 1, · · · , z

posi := index(Ti, P [N ])

and the attribute index
ci := index(atti,S(Ti))

ii. set the token tree node

NTT ←
(
(pos1, c1), · · · , (posz, cz)

)
e. (constant) else if N ≡ [a], set NTT =

[
SKE.Enc(KE , a)

]
f. (cross product) else if N ≡ QTin × QT′in, set NTT := TTin × TT′in;

(Continued in Fig. 4.11)

Figure 4.10: The PKFK scheme.

93



(Continued from Fig. 4.10)

• Token(K,QT):

4. g. (join) else if N ≡ QTin onatt=att′ QT′in,
i. (left side, filtered) if left subtree QTin has selection attP = v on table tbl(att),

then compute the left select constraint

C ← F
(
KC , χ(att)‖χ(att′)‖χ(attP )‖v

)
ii. (left side, unfiltered) else compute the left null constraint

C ← F
(
KC , χ(att)‖χ(att′)‖χ(att)‖⊥

)
iii. (right side, filtered) if right subtree QT′in has selection attP ′ = v′ on table

tbl(att′), then compute the right select constraint

C ′ ← F
(
KC , χ(att)‖χ(att′)‖χ(attP ′)‖v′

)
iv. (left side, unfiltered) else compute the right null constraint

C ′ ← F
(
KC , χ(att)‖χ(att′)‖χ(att′)‖⊥

)
v. set the token tree node with table positions pos = index(T, P [N ]) and pos′ =

index(T′, P [N ])
NTT ←

(
C,C ′,K(XJ), pos, pos′

)
5. output the token tree TT.

Figure 4.11: The PKFK scheme.
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• Query
(
EDB,TT

)
:

1. parse EDB as
(
SET,EMM(R),EMM(S),EMM(XJ));

2. for every node N in post-order traversal in the token tree TT with its input table(s) from
its subtree(s) TTin (and TT′in) as Rin (and R′in) and its output table as Rout,
a. (leaf filter) if N ≡ (stk, pos),

i. compute (
rtk1 · · · , rtks

)
← ΣMM.Query(EMM(S), stk)

ii. set its output
Rout ← Rout

⋃(
rtk1, · · · , rtks

)ᵀ
b. (internal filter) else if N ≡ (K, pos),

i. for each row r ∈ Rin,
1. if H(K‖r[pos]) ∈ SET, then set

Rout ← Rout
⋃
{r}

c. (project) else if N ≡
(
(pos1, c1), · · · , (posz, cz)

)
,

i. for each row r ∈ Rin,
1. for all j = 1, · · · z,
a. look up the encrypted row

rj ← ΣMM.Query(EMM(R), r[posj ])

b. update the cell
r[posj ]← r[posj ]‖rj [cj ]

ii. set Rout ← Rin;
d. (constant) else if N ≡ [ct], set NTT =

[
ct
]

e. (cross product) else if N ≡ TTin × TT′in, set output Rout ← Rin ×R′in;

(Continued in Fig. 4.13)

Figure 4.12: The PKFK scheme.
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(Continued from Fig. 4.12)

• Query
(
EDB,TT

)
:

3. f. (join) else if N ≡ (C,C ′,K, pos, pos′),
i. (left side, unfiltered) if TTin does not have any leaf filter node at pos,

1. compute the token
tk← ΣMM.Token(K,C)

2. compute the pairs of row tokens and surrogates E = (rtki, gi)i on left-side table
as

E ← ΣMM.Query
(
EMM(XJ), tk

)
ii. (left side, filtered) else, for each row r ∈ Rin and the row token rtk = r[pos],

1. compute token
tk← ΣMM.Token(K,C‖rtk)

2. compute the pairs of row tokens and surrogates E = (rtki, gi)i on left-side table
as

E ← E
⋃

ΣMM.Query
(
EMM(XJ), tk

)
iii. (right side, unfiltered) if TTin does not have any leaf filter node at pos′,

1. compute the token
tk′ ← ΣMM.Token

(
K,C ′)

)
2. compute the pairs of row tokens and surrogates E′ = (rtk′j , g′j)j on right-side

table as
E′ ← ΣMM.Query

(
EMM(XJ), tk′

)
iv. (right side, filtered) else, for each row r′ ∈ R′in and the row token rtk′ = r′[pos′]

1. compute the token
tk′ ← ΣMM.Token

(
K,C ′‖rtk′

)
2. compute the pairs of row tokens and surrogates E′ = (rtk′j , g′j)j on right-side

table as
E′ ← E′

⋃
ΣMM.Query

(
EMM(XJ), tk′

)
v. compute the joined result table using relational joina

Rout ← Rin on
pos=rtk·

E on
g·=g′·

E′ on
rtk′·=pos′

R′in

4. for each row token rtki,j at the i-th row and j-th column in table Rout, replace it with the
encrypted row

Rout[i, j]← ΣMM.Query
(
EMM(R), rtki,j

)
5. output the result table Rout.

aConcretely to achieve optimal time complexity any linear-time plaintext join algorithm will do, for example
the Surrogate Join (Fig. 4.14, Sec. 4.6) proposed as part of this work.

Figure 4.13: The PKFK scheme.
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Join pattern. For a filtered join between two tables T and T′ on join predicate att = att′

with a filter attP = a on T and a filter att′P = a′ on T′, an adversary learns how many times

the unique combinations of filter and join attributes (att, att′, attP ) and (att, att′, att′P ) have been

queried before, the number of rows in the filtered join result, how many times each row has joined

with another row in the join result, and how many times each row in the join result has been

accessed in the past. Note that this filtered join pattern is restricted to the result of this filtered

join rather than the full join. Even if an adversary observes other rows independently, say from

other queries, it would not be able to uncover more join patterns beyond this filtered join. For

one-sided filtered join, say a filter attP = a on T but none on T′, the join pattern is also restricted

to one-sided filtered join result. Lastly, for unfiltered joins, an adversary learns the join pattern as

described above for all rows in T and T′ with respect to the join attributes.

Select pattern. For the selection pattern, the leaf filter for att = a reveals to an adversary how

many times this attribute and value pair (att, a) has appeared in past queries, how many rows

match this filter, and how many times each row has been accessed in past queries. Each internal

filter also reveals how many rows (1) were previously observed from the result of this query subtree

or past queries, and (2) match this internal filter; and how frequently each row in the result has

been accessed in the past.

Project pattern. The project pattern reveals to an adversary the number of columns being

projected on, how frequent each column has been accessed in the past, and the ciphertext length

of each projected cell.

Row pattern. The row pattern includes the number of rows that match the query tree, the size

of each row (i.e. the number of columns in a table), and how frequently each row in the result has

been accessed in the past.

Cross-product and constant patterns. The cross-product and constant do not involve query-

ing any data structure encryption scheme, so their leakage only includes the input and output

size.
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Variant. Note that the leakage profile of PKFK can be further improved with slight modifications

to the construction. In particular, if the underlying response-revealing multi-map is replaced with a

response-hiding scheme, then the access pattern, AccP(r), of an accessed row, r, can be completely

hidden. Note that even the response length of the intermediary results will not be disclosed as the

underlying scheme is leakage-free as per our assumption. For example, in the case of a leaf select

node, the output will now be a set of row coordinates, instead of row tokens. And in order to proceed

to the next node, the client and server need to interact to first decrypt the row coordinate and

execute the next operation. Note that this approach will not incur any additional query overhead

to what is added by using leakage-free schemes; however it will add additional interaction between

the client and the server. The concrete leakage profile of this modified scheme will be the type of

nodes composing the query plan, i.e., whether the node is a join, select, or a project node. We

defer the details of this variant to the full version of this work.

4.6 Efficiency

We now turn to analyzing the query and storage efficiency of PKFK.

Asymptotic improvement. PKFK’s query and storage complexity remain linear in database

size under natural assumptions. This complexity is lower than the worst-case quadratic blowup

in SPX [63] and OPX [66] (Ch. 3). The main complexity improvement in PKFK over prior works

comes from its optimal join algorithm, which matches the plaintext complexity in the sense that it is

asymptotically linear in query input size (or database size) [101, 73]. Note that this is different from

the analysis of SPX and OPX which used a different optimality notion for joins that is asymptotically

linear in query output size. PKFK also improves the storage complexity from quadratic to linear,

and does not require precomputing all possible joins, therefore it requires one pass over the plaintext

database to set up the encryption.

Concrete efficiency. Though PKFK asymptotically matches the plaintext complexity, it is still

important to understand the hidden constants in its concrete efficiency. We implemented PKFK
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in KafeDB (Ch. 2), and evaluates performance against OPX, SPX and PPE-based systems such

as CryptDB. The TPC-H benchmark showed that KafeDB had 4.2× query overhead and 3.63×

storage overhead over plaintext PostgreSQL. The overhead achieved by using PKFK was two to

three orders of magnitude over OPX and SPX on the same scale factor in the benchmark. More

details are presented in Chapter 6.

4.6.1 Optimal Join

We first analyze the efficiency of the join in PKFK for both a single join and conjunctive joins.

The key idea here is that we construct an optimal plaintext join algorithm called GJoin using the

join representation MM(XJ) (Sec. 4.4) in PKFK, and then by optimality of the encrypted multi-map

scheme used to encrypt the join representation, we derive the PKFK join with the same complexity.

Computation vs output. First we introduce the optimality notion. The output complexity of a

join is worst-case quadratic in table size T , so merely outputing the join result may incur quadratic

time. However computing the join does not necessarily need more than O(T ) time. Indeed, there

exist plaintext join algorithms that require only one pass over the tables and requires only linear

time to compute (e.g. [101, 73]). The main reason why computing the join can run in time O(T )

is because it can use more efficient data structure to represent the join result table.

Achieving linear-time and space computation for joins is important, because for a complicated

query of multiple joins, the output step does not necessarily need to happen at each single join, but

rather only takes place if the query reaches the end and needs to materialize results physically as

a table. So it is often possible to delay the output for all the joins until the very end of the query.

Therefore we define optimality to be mainly on the complexity of join computation. Note

however that the output step in an optimal join algorithm should still not exceed the join result

size, because this is the minimum cost to physically write each row in the joined result.2

2This requirement to tie the output step’s complexity to the output size rules out the hypothetical join algorithm
that does not perform any computation but simply returning the two input tables, and uses the output step to
compute the actual join.
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The Surrogate Join Algorithm

The Surrogate Join or GJoin algorithm (Fig. 4.14) used in our proof can be seen as the PKFK

join but (1) without encryption, i.e. with only the MM(XJ) 3 and (2) instantiated with a concrete

underlying join algorithm such as for Step (3.f.v) in the Query algorithm (Fig. 4.13). So the overall

complexity of GJoin is equal to the PKFK join assuming an optimal multi-map encryption scheme.

To better analyze the efficiency improvement of GJoin, note that it separates the computation

of the join(s) versus the output of the final result of the join(s). At a high level, it recursively

defines two algorithms, one on the leaf join (i.e., join with tables as input) and the other on the

internal join (i.e. join with other joins as input). Both are called GJoin(·) with only difference in

the algorithm’s signature. The internal join algorithm recursively calls itself on its two subtrees,

until it reaches the leaf, in which case it calls the leaf join algorithm.

Pointer sets. GJoin makes use of PSETT, which is a set of pointers to the rows of a table T,

PSETT = ⋃
r∈T χ(r). Here we use the same χ(r) to denote both coordinate and pointer of r due to

the equivalence. We assume “dereferencing” each pointer, or getting the row r given its coordinate

χ(r) takes O(1) time.

Single join. The algorithm first constructs two pointer sets to input tables T and T′, and then

populates two E sets called ET and ET′ with tuples of the same form as MM(XJ), which are pairs

of row pointers and surrogates. Note that here for simplicity we only consider equi-join of the form

att = att′, where the surrogates are simple join attribute values. In general the surrogates can be

defined over a more complex join predicate θ in a θ-join. The computation of the join is then done

through the intersection of ET and ET′ based on each tuple’s second element i.e. the surrogate. If

there is a match then the whole tuple is retained in each E set. This step essentially retains only

row pointers that can be later used to construct this join’s output.

Multiple joins. The recursive case in GJoin(QJ) for muli-way joins QJ first picks one of join

in QJ , say Q onT.att=T′.att′ Q′, which divides the conjunctive join clauses into two subtrees Q,Q′.
3For simplicity we do not consider filters, which is a simple extension to GJoin.
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Then it recursively calls GJoin(·) on the two subtrees, which after reaching the base case (i.e. leaf

join), will each return a list of (Ei)i sets, each corresponding to a table Ti in a join clause in each

subtree. Let the two lists be EQ and EQ′ . On the other hand, it also calls the leaf join algorithm

GJoin on the join T.att = T′.att′ to obtain two E sets ET, ET′ . It then uses these two E sets to

update the E sets for the same tables T,T′ found in EQ and EQ′ . This is done through intersection

on the row pointers. Each of this step takes at most O(T ) time, and does not increase the total

storage size. Finally, if there are M − 1 joins between M tables, then there will be M total E sets

returned to represent results of Q.

Output. The output step first constructs two indexes (say hash tables) for each E set from GJoin.

Then it uses depth-first search to enumerate combinations of row pointers in all m E sets.

Proof of Theorem 4.3.1

Theorem 4.3.1 (STE-based join in PKFK is optimal). If the multi-map encryption scheme

Σmm is optimal, then the join in PKFK has optimal asymptotic complexity.

Proof. Time complexity. For simplicity, assumes all tables in the database have the same number

of rows T and number of attributes L. For the base case: one join between two tables, computing

the pointer sets PSET and the E sets takes O(T ) steps. The intersection of E sets takes at most

O(T ) steps, and the updated E sets can never increase beyond size O(T ) (or a better bound is

O(min(|Q|, T ))). Finally the algorithm returns just the two updated E sets as an intermediate

representation of the computation of the join. It is thus clear that the leaf GJoin algorithm always

takes time O(T ) and space O(min(|Q|, T )) for leaf join query output size O(T 2).

For the recursive case for m-way joins Q = T1 on1 · · · onm−1 Tm, it splits the m − 1 joins

into two parts over the k-th join onk. Its recursive calls to GJoin on these two parts return a list

of L = (Ei)i sets, each corresponds to a table Ti. The real computation happens in taking the

pointer sets, calls the leaf join GJoin on onk, then updates the corresponding E sets via the same

intersection except by the second element in each tuple, namely the row pointers. This step takes

at most O(T ) time, and does not increase the total storage size beyond O(T ). Finally, for m total
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E sets produced in GJoin recursively, assuming m is a small constant dominated by T , we obtain

O(T ) time and space for recursive GJoin.

For the output step, building the indexes (say hash tables) on m total E sets takes O(m ·

min(|Q|, T )) time by passing over each E set once where each E set has size O(min(|Q|, T )). For

enumeration of joined rows, because row pointers in each E set are certain to be in the final result,

it takes asymptotically as many steps as the join result size O(|Q|). Again assuming m is dominated

by T , the output step takes O(|Q|) time but O(T ) space.

The final step is to note the equivalence of the E sets with the MM(XJ).

Storage complexity. First consider the case of unfiltered joins. For a single join, for each row

r in table T, there is only one tuple (χ(r), r[att]) in MM(XJ). Similar is the case for T′. So there

are in total 2T tuples in MM(XJ). Instantiated by ΣMM, the storage complexity is therefore O(T ).

This matches the plaintext storage complexity for the two attributes.

For filtered joins, the filter attributes are in either T or T′. For each such filter attribute attP ,

we need to add one tuple (Cwχ(r), r[att]) where the constraint Cw is unique per combination of

join attributes (att, att′), filter attribute attP and filter value r[attP ] = w. Therefore at most we

only add L tuples per row r for this join in MM(XJ). So the total size of MM(XJ) is (L · T ).

For total M possible joins in the database, MM(XJ) has (M ·L ·T ) entries for the entire database.

Here we follow the natural assumption that T dominates M and L which are typically a small

constant. So the total storage for EMM(XJ) is O(T ).

4.6.2 Optimal Query and Storage

We extend the proof to STE-based Queryalgorithm in PKFK by adding in other representations

such as the filter representation (Sec. 4.4), and argue that these do not increase the asymptotic

complexity of the plaintext query algorithm. Then using the same strategy, by assuming opti-

mal encrypted multi-map construction we then derive the same complexity for the PKFK Query

algorithm.
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1. GJoin(T onT.att=T.att′ T′,PSETT,PSETT′):

a. given a join T onT.att=T.att′ T′ and two pointer sets PSETT,PSETT′ for table T and T′:
b. initialize two empty sets ET, ET′ ;
c. for each element χ(r) ∈ PSETT, add a pair (χ(r), g) to ET for surrogate g = r[att]a;
d. for each element χ(r′) ∈ PSETT′ , add a pair (χ(r′), g′) to ET′ for surrogate g′ = r′[att′];
e. update ET by intersecting it with ET′ based on the surrogates as ET ← ET

⋂
|2ET′ ;

similarly update ET′ ;
f. Return (ET, ET′).

2. GJoin(Q onT.att=T′.att′ Q′):

a. given a join Q onT.att=T′.att′ Q′

b. run GJoin(Q) to get a list of EQ ≡ (ET )T∈Q; similarly run GJoin(Q′) to get EQ′ ≡ (ET )T∈Q′ ;
c. let pointer sets PSETT be ET|1 ∈ EQ and PSETT′ be ET′ |1 ∈ EQ′ ;
d. run GJoin(T onT.att=T′.att′ T′,PSETT,PSETT′) with pointer sets to get a pair of (EJT, EJT′);
e. update ET in EQ by intersecting it with EJT on the row pointers as ET ← ET

⋂
|1EJT; and

similarly update ET′ ← ET′
⋂
|1EJT′ in EQ′ ;

f. return the updated EQ ∪ EQ′ .

3. ExecJoin(Q):

a. (Computation) given query Q = T1 on1 · · · onm−1 Tm, run GJoin(Q) to get a list of
EQ ≡ (Ei)i∈[m];

b. (Output) for each Ei ∈ Q:

i. create a dictionary MM(1)
i that maps each r ∈ Ei|1 to some g ∈ Ei|2 such that (r, g) ∈

Ei;
ii. create a inverse lookup index MM(2)

i that maps each g ∈ Ei|2 to some subset Ri ⊆ Ei|1
such that for all r ∈ Ri we have (r, g) ∈ Ei;

iii. define a recursion OutputJoinRow(i, r,X):
1. if i ≥ m: output X;
2. for each g ∈ MM(1)

i [r],
a. for each r′ ∈ MM(2)

i+1[g]: run OutputJoinRow(i+ 1,m, r′, X ∪ {r′})
iv. for each r1 ∈ E1|1: run OutputJoinRow(1, r1, (r1));

aThis surrogate is defined for θ-join predicate θ ≡ att = att′ for example, though the surrogate definition
can be extended to more complex θ.

Figure 4.14: The Surrogate Join GJoin algorithm.
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Theorem 4.6.1 (PKFK Query algorithm is optimal). If the encrypted multi-map scheme Σmm is

optimal, then the Query algorithm in PKFK has the optimal asymptotic complexity: (1) the query

time complexity is linear in input table size; and (2) the storage complexity is also linear in table

size.

Proof. We present a sketch here due to the simplicity. The proof leverages Theorem 4.3.1 by

extending it with filters. We extend the GJoin algorithm (Fig. 4.14) with a multi-map MMS that

maps filter attribute values to row pointers, and a set SETS for all filter attribute values. Then we

check that this multi-map is equivalent to MM(S), and this set is equivalent to SET. To check the

time complexity, we just need to verify that the only operation added are intersections between

MMS , SETS and E sets, therefore only require O(T ) time. MMS and SETS require O(L · T ) for L

filter attributes, but since L is typically a small constant dominated by T , so the storage complexity

is also O(T ) when instantiated with an optimal multi-map encryption scheme.
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Chapter 5

Emulation and Colocation

5.1 Emulation

The main limitation of STE is its use of non-standard query algorithms which limits its applicability

since it requires re-architecting existing storage systems. In fact, this lack of “legacy-friendliness”

is widely considered to be the main reason practical encrypted search deployments use PPE-based

designs. Legacy-friendliness is an important property in practice, especially in the context of

database systems which have been optimized over the last 40 years. In this section, we show that

the common belief that STE is not legacy-friendly is not true. We introduce a new technique called

emulation that makes STE schemes legacy-friendly.

At a high level, emulation takes an encrypted data structure (e.g., an encrypted multi-map) and

finds a way to represent it as another data structure (e.g., a table) without significant storage or

query overhead. Intuitively, emulation is a more sophisticated version of the classic data structure

problem of simulating a stack with two queues. Designing storage- and query-efficient emulators

can be challenging depending on the encrypted structure being emulated and the target structure

(i.e., the structure we wish to emulate on top of). The benefits of emulation are twofold: (1) low-

overhead emulator essentially makes an STE scheme legacy-friendly; and (2) it preserves the STE

scheme’s security. However challenges still remain particularly in how to bridge the semantics and

complexity gaps between the STE-based query algorithm and its relational emulation.
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Emulation of STE-based schemes. STE-based schemes such as SPX [64] and PKFK make

black-box usage of multiple STE structures, therefore the emulation is naturally divided into two

levels. First at the lower level we emulate each of the concrete STE structures (and their query

algorithms) as tables and SQL subqueries. Then at the higher level we recursively transform token

trees by composing these lower-level emulated queries into relational queries.

Concretely, given an STE-based scheme, emulation should define two algorithms, one that maps

the output of STE-based Setup to tables called emulated tables, and the other that maps outputs of

the STE-based Token to relational queries called emulated queries, which also specify the semantics

of the STE-based Query. As a result, the emulated queries can be readily executed on any standard

relational database while preserving the security of the original STE-based scheme.

Definition 5.1.1. [SQL emulator] Let STE = (Setup,Token,Query,Resolve) be a response-hiding

structured encryption scheme and SQL = (Setup,Exec) be a relational DBMS. An SQL emulator

Emu = (Reshape,Reform) for STE is a set of two polynomial-time algorithms that work as follows:

• DB ← Reshape(EDS): is a possibly probabilistic algorithm that takes as input an encrypted

structure EDS generated using STE.Setup and outputs a database DB = (T1, . . . ,Tn).

• Q← Reform(S(DB), tk) is a possibly probabilistic algorithm that takes as input the schema of

the emulated structure S(DB) and an STE token tk and outputs a SQL query Q.

We say that Emu is correct if for all k ∈ N, for all DS, for all (K, st,EDS) output by

STE.Setup(1k,DS), for all DB output by Reshape(EDS), for all queries q ∈ Q, for all tokens tk

output by Token(K, q), SQL.Exec(DB,Q) = STE.Query(EDS, tk). We extend the same syntax also

to a collection of tokens such that the Reform works on a collection or column of tks

Semantics gaps. STE schemes such as Pibase [30] often rely on loop-based iterations, which

presents a challenge to emulation because relational algebra does not have a loop-based construct [1].

Furthermore in black-box constructions such as SPX [64] and PKFK, a single relational query

consists of multiple tokens for querying multiple STE structures. Therefore we developed two

general techniques to render STE structures amenable to relational emulation: (1) restructure
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loop-based iteration as recursion, and (2) extend query specification to multiple tokens. We will

show that solving (1) enables emulation to use relational operators beyond relational algebra; and

for (2) how to leverage the relational semantics of relational algebra to extend the Reform algorithm

in Def. 5.1.1 to a collection or column of tokens.

Security. Since emulators operate strictly on the encrypted structures and the tokens produced

by their underlying STE schemes, it follows trivially that an emulated/reshaped structure, DB,

reveals nothing beyond the setup leakage of the original encrypted structure. Similarly, the em-

ulated/reshaped structure, DB, and the emulated/reformed token, Q, reveal nothing beyond the

query leakage of EDS and tk.

Efficiency gaps. While emulators preserve the security of their underlying STE scheme, they do

not necessarily preserve their efficiency. In fact, the restructuring step could lead to an emulated

structure that is: (1) larger than the original structure EDS; and (2) less query-efficient. In this

work we aim for emulators that do not affect the efficiency of the pre-emulated structure.

5.1.1 Emulation for Encrypted Multi-Maps

STE structures like encrypted multi-maps can be instantiated with different constructions, each of

which may need to be emulated differently. In PKFK we make use of the Pibase construction by

Cash et al. [30] and our colocation-friendly variant (Sec. 5.2). Here we show how to emulate Pibase,

and defer the details for colocation-friendly variant later in Section 5.2.

Overview of Pibase. We recall the Pibase = (Setup,Token,Query) scheme from [30]. The Setup

algorithm of Pibase samples a key K and instantiates a history-independent dictionary DX. For

each label ` ∈ L, it generates two label keys K`,1 and K`,2 by evaluating a pseudo-random function

FK on on `‖1 and `‖2, respectively. Then, for each value vi in the tuple t` = (v1, · · · , vm) associated

with `, it creates an encrypted label `′i := FK`,1(i) which is the evaluation of FK`,1 on a counter.

It then inserts an encrypted label/value pair (`′i,EncK`,2(vi)) in the dictionary DX. The encrypted

multi-map EMM consists of the dictionary DX. EMM = DX is sent to the server.
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To Query the value associated with a label `, the client sends the label key K`,1 to the server

who does the following. It evaluates the pseudo-random function FK`,1 on counter value i and uses

the result to query DX. More precisely, it computes cti := DX[FK`,1(i)] and if cti 6= ⊥ it sends it

back to the client and increments i and continues otherwise it stops.

Emulation for Pibase. The Pibase EMM is stored as a dictionary, which can be viewed as a

relation of label and value pairs, so it can be readily stored as a table of two columns. However as

mentioned previously, some challenges still remain for Pibase emulation. First, relational algebra

does not have a direct counterpart to loop-based iteration, which is needed by Pibase’s Query

algorithm when iterates over a counter. For relational queries, the same algorithm is also repetitively

invoked, for example when PKFK’s Queryalgorithm iterates over multiple row tokens from the

pushdown selection, or iterates over multiple surrogates from the left-hand side of the join to

compute for the right-hand side of the join.

To address these issues, we used two techniques for Pibase query emulation:

1. we restructure the iteration-based Pibase Query as recursion;

2. we extend the same emulation for a collection of tokens.

Recursion in (1) allows us to use the fixed-point operator [6] or equivalently the common table

expression in SQL [44]. The relational semantics of the resulting relational query is used to address

(2).

The SQL emulator for Pibase is detailed in Figure 5.1 and works as follows. Given an encrypted

multi-map EMM, the Reshape algorithm creates a table T and schema S(T) = (label, value) by

executing

CREATE TABLE T (label, value).

It then parses EMM as a dictionary DX and, for each label/value pair (`, e) in DX, inserts the row

r =
(
`, e
)

in T by executing

INSERT INTO T VALUES
(
`1, e1

)
. . . ,

(
`m, em

)
.

The table T thus contains two columns, one for encrypted labels and one for encrypted values.
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To query T for a set of plaintext labels L, given a collection or column of tokens under the

column name KL located in a table also denoted as KL, the Reform algorithm outputs the following

relational query using the fixed-point operator [6]

∞⋃
i=1

T on
label=UdfF (KL,i)

KL

This query is recursively defined as a union over all i-th nonempty joins, until the last join returns

an empty set. This corresponds to invoking the Pibase Query algorithm on multiple tokens in KL,

and for each such token it iterates over a counter i to compute the i-th encrypted label until none is

found, which happens when i = max`∈L #MM[`]. Note that for each token the number of encrypted

labels may differ. Also, UdfF , the built-in user-defined function [1] for a PRF, accepts a collection

or column of values as argument. This emulation strategy leverages the relational semantics to

circumvent the lack of loop-based iteration in relational algebra.

Reducing overhead. Although the above emulated query is semantically correct, its specifica-

tion is not tight in the sense that it allows for unnecessary computation. Each join in the union

is invariably between the same two tables, the emulated EMMtable T and the table of tokens KL

(where the counter i is incremented in the join predicate for encrypted labels). This means that

at each counter i the query still needs to check for all tokens in KL for matching encrypted labels

in T, even for the subset of tokens that produce no labels at previous counter i − 1. This means

even in case of varying response lengths, all tokens in KL result in the same amount of compu-

tation which is the maximum response length over all token in KL. Assuming each recursive join

is linear-time in input size, each i-th join in this emulated query takes O(|T| + #KL) time, for

total of max`∈L #mm[`] joins. So the total time is O
(
max`∈L #MM[`] · (|T|+ #KL)

)
. For uneven

response lengths for each token, the redundant computation can be significant.

To improve this, we leverage a simple observation that Pibase assigns contiguous integers to

the counters, so we only need to check for the subset of tokens that had encrypted labels at the

previous counter. So we restructure the recursion by introducing an intermediate view Gi for each
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counter i, such that the overall query becomes

∞⋃
i=1

Gi : Gi = T on
label=UdfF (KL,i)


KL if i = 1

Gi−1 else

Because the intermediate view Gi only contains the subset of tokens in KL that has at least i

labels, the next view Gi+1 will only compute on this subset of tokens. Overall this modified query

only takes time O
(
max`∈L #MM[`] · |T|+∑

`∈L #MM[`])
)
.

To do away with the max`∈L #MM[`] · |T| additive factor inherent in each recursive join, we

can pre-build an index (e.g. hash index) on T’s label column to help reducing the cost of each

recursive join, by the SQL statement

CREATE INDEX ON T (label).

With this modification, the emulated query takes only time O
(∑

`∈L #MM[`]
)
, which matches the

pre-emulation scheme for #L tokens.

Storage complexity. The storage overhead of the emulated encrypted multi-map is equal to the

size of the encrypted table, |T| = O(∑`∈L #MM[`]) where L denotes the set of plaintext labels

stored in MM, plus the size of the plaintext index created over T.label column, which is also

O(|T|). So the overall size of the emulated encrypted multi-map is equal to O(∑`∈L #MM[`]).

SQL syntax. The tightened emulated query can be written in SQL syntax using the common

table expression [44, 90],

WITH RECURSIVE G
(
i,S(T),S(KL)

)
AS {

SELECT 1 AS i, S(T), S(KL) FROM T JOIN KL ON T.label = UdfF
(
KL, i

)
UNION ALL

SELECT i+ 1 AS i, S(T), S(KL) FROM T JOIN G ON T.label = G.label

WHERE T.label = UdfF
(
KL, i+ 1)

)
}

SELECT S(T),S(KL) FROM G.
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• Reshape(EMM):

1. create a table T with columns label and value by executing

CREATE TABLE T(label, value)

2. parse EMM as a dictionary DX;
3. for each label/value pair (`, e) in DX, inserts the row r =

(
`, e
)

in T by executing

INSERT INTO T VALUES
(
`1, e1

)
. . . ,

(
`m, em

)
4. create a hash index on T’s label column by executing

CREATE INDEX ON T(label)

5. output T.

• Reform(S(T),KL):

1. output a relational query

∞⋃
i=1

Gi : Gi = T on
label=UdfF (KL,i)

{
KL if i = 1
Gi−1 else

or equivalently a SQL query

WITH RECURSIVE G
(
i,S(T),S(KL)

)
AS {

SELECT 1 AS i,S(T),S(KL) FROM T JOIN KL ON T.label = UdfF
(
KL, i

)
UNION ALL
SELECT i+ 1 AS i,S(T),S(KL) FROM T JOIN G ON T.label = G.label

WHERE T.label = UdfF
(
KL, i+ 1)

)
}
SELECT S(T),S(KL) FROM G

Figure 5.1: The Pibase emulator.

5.1.2 Emulation for Sets

PKFK makes use of a set structure SET for the partial filter representation to handle conjunctive

selections (Sec. 4.4). We first recall abstractly how this set structure is built and queried. We then

proceed to describe its emulation.

Overview of SET Given a set of n pairs S = {(a1, b1), · · · , (an, bn)}, the client and the server

jointly compute a membership function f(S, (a, b)) for the client input a and the server input b,

and the server to learn the output of f without knowing a beyond its repetition. To construct this
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function f , the client computes for each (a, b) ∈ S an element y = H(Ka‖b) where Ka = F (K, a)

for a secret key K, a random oracle H and a pseudo-random function F , and adds y to SET. The

client finally stores SET on the server.

To test for membership for (a, b) in S, the client sends Ka = FKS (a), the server inputs b,

computes e = H(Ka‖b) and outputs true if e exists in SET.

Emulation of SET For emulation, we need to extend the input and output of the set membership

function to a collection of inputs in the form of tables because of the relational semantics of relational

algebra. We show the details in Figure 5.2. In particular, we extend the server input to be a column

of b’s as B, and the output of the set membership to be a column of SET elements y’s as Y such

that the yi ∈ Y if and only if the corresponding input (ai, bi) is in S. For example in PKFK, the

client input a is a token representing a selection predicate P , and the server input B contains row

tokens from other conjunctive selections, then the output Y contains row tokens in B that also

satisfy P .

Concretely, given SET as constructed above, the Reshape algorithm creates a table T and schema

S(T) = (label) by executing

CREATE TABLE T(label).

For efficiency, an index is created over the database DB = (T) by executing

CREATE INDEX ON T(label).

For every element yi in SET, it inserts a row (yi) into T by executing

INSERT INTO T VALUES (y1), . . . , (y#SET).

It then outputs the table T. To query T, given the client input Ka = F (K, a) and the server input

of a column B in table tbl(B), the Reform algorithm outputs the relational query

tbl(B) n
UdfF (KS ,Ka‖B)=label

T

This query makes use of the semi join [1] to filter tbl(B) based on a join predicate

(UdfF (KS ,Ka‖B) = label) for each element in the column label of emulated set T. This is
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• Reshape(EDB):

1. create a table T and schema S(T) = (label) by executing

CREATE TABLE T(label)

2. create an index over T by executing

CREATE INDEX ON T(label)

3. for every element yi in SET, it inserts a row (yi) into T by executing

INSERT INTO T VALUES (y1), . . . , (y#SET)

• Reform(S(EDB), B):

1. output the relational query

tbl(B) n
UdfF (KS ,Ka‖B)=label

T

or equivalently the SQL query

SELECT S(tbl(B)) FROM tbl(B) LEFT SEMI JOIN T ON UdfF (KS , a‖B) = label

Figure 5.2: The SET emulator.

equivalent to querying SET multiple times, for each server input b ∈ B and the fixed the client

input a. Equivalently the SQL query is

SELECT S(tbl(B)) FROM tbl(B)

LEFT SEMI JOIN T ON UdfF (KS , a‖B) = label

Efficiency. Each check of the join predicate in the semi-join-based emulated query would have

required a scan of each element of the emulated set T. But with a hash index created on the label

column in T, the join predicate takes only O(1) time. For the total of #B server inputs per one

client input a, the query takes O(#B) time. The size of T equals the total number of pairs in the

set S plus the size of the hash index which is also linear in the size of S, so in total O(#S).

5.1.3 Emulation for STE-based Relational Databases

STE-based relational database schemes such as SPX and PKFK make use of black-box STE struc-

tures like encrypted multi-maps and sets. Here for emulation of the STE-based scheme, we also
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make black-box use of the emulation of the constructions of STE structures. We show the technique

by focusing on the PKFK scheme. At a high level, for Setup, the Reshape algorithm takes as input

the EDB, and emulates each encrypted structure by calling the associated emulator. For the Query

algorithm with the token tree TT as input, the Reform algorithm recursively walks TT and depend-

ing on the node type, emulates each token into a relational subquery. Finally all such subqueries

are incorporated into a single relational query. For more details we refer to the pseudo-code in

1. Reshape: Figure 5.4;

2. Reform: Figure 5.5 and 5.6.

Example. An example of emulation using Pibase [30] as the EMM construction is shown in

Figure 5.3.

T(S)

label value

F
(
K(att,A),1, 1

)
E
(
K(att,A),2, rtk1

)
F
(
K(att,A),1, 2

)
E
(
K(att,A),2, rtk2

)
F
(
K(att,B),1, 1

)
E
(
K(att,B),2, rtk3

)
F
(
K(attP ,Q),1, 1

)
E
(
K(attP ,Q),2, rtk1

)
F
(
K(attP ,Q),1, 2

)
E
(
K(attP ,Q),2, rtk3

)
F
(
K(attP ,R),1, 1

)
E
(
K(attP ,R),2, rtk2

)
F
(
K(att′,A),1, 1

)
E
(
K(att′,1),2, rtk′1

)
F
(
K(att′,A),1, 2

)
E
(
K(att′,2),2, rtk′3

)
F
(
K(att′,B),1, 1

)
E
(
K(att′,3),2, rtk′2

)
Figure 5.3: An example of emulation for the Pibase construction [30] for EMM(S) in Figure 4.7. In
general the rows should have been permuted due to history-indepence requirement.

5.2 Colocation

Relational data contains much information about data locality, such as values that are colocated

in the same rows, columns or tables based on logical relationship. This locality informs database

systems on how to improve query efficiency, by (1) prefetching colocated values from slower storage

to faster cache, or (2) storing colocated values in nearby storage blocks. However, this locality
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• Reshape(EDB):

1. parse EDB as SET,EMM(R),EMM(S),EMM(XJ)

2. emulate each structure as

DBSET ← EmuSET.Reshape(SET), DB(R)
EMM ← EmuEMM.Reshape(EMM(R)),

DB(S)
EMM ← EmuEMM.Reshape(EMM(S)), DB(XJ)

EMM ← EmuEMM.Reshape(EMM(XJ)),

3. output EDB = (DBSET,DB(R)
EMM,DB(S)

EMM,DB(XJ)
EMM).

Figure 5.4: The PKFK emulator Reshape algorithm.

• Reform(S(EDB),TT):

1. parse S(EDB) as (S(DBSET),S(DB(R)
EMM),S(DB(S)

EMM),S(DB(XJ)
EMM))

2. for each node N in token tree TT recursively visited in post-order traversal,
a. let the result of visiting subtree(s) be Qin (and Q′in);
b. (leaf filter) if N ≡ (stk, pos), update the output query

Qout ← π
value

EmuMM.Reform(S(DB(S)
EMM), stk)

with schema S(Qout) = (value)
c. (internal filter) else if N ≡ (Kv, pos), update the output query

i. get the emulated query

QSET ← EmuSET.Reform(S(DBSET),Qin.pos)

with schema S(QSET) = (Qin)
ii. update the output query

Qout ← QSET

with schema S(Qout) = S(Qin)
d. (project) else if N ≡

(
(pos1, c1), · · · , (posz, cz)

)
,

i. set Qout ← Qin
ii. for all j = 1, · · · , z,

1. get the emulated query

Qj ← πlabel,value.cj EmuEMM.Reform(S(DB(R)
EMM),Qout.posj)

with schema S(QJn) = (label, value.cj)
2. update the output query

Qout ← Qout on
posj=label

Qj

e. (constant) else if N ≡ [ct], update the output query Qout ← [ct];
f. (cross product) else if N ≡ TTin×TT′in, update the output query Qout ← Qin×Q′in;

(Continued in Fig. 5.6)

Figure 5.5: The PKFK emulator Reform algorithm.
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(Continued from Fig. 5.5)

• Reform(S(EDB),TT):

2. g. (join) else if N ≡ (C,C ′,K, pos, pos′)
i. (left side, unfiltered) if TTin does not have any leaf filter node at pos,

1. compute the token
tk← ΣMM.Token(K,C)

2. get the emulated query

QE ← π
value

Reform(S(DB(XJ)
EMM), tk)

with schema S(QE) = (value) = ((rtk, g))
ii. (left side, filtered)

1. get the token query

Qtk ← π
ΣMM.Token(K,UdfF (C,pos))

Qin

with schema Qtk = (atttk)
2. get the emulated query

QE ← π
value

EmuEMM.Reform(SDB(XJ)
EMM,Qtk.atttk)

with schema S(QE) = (value) = ((rtk, g)) i.e. a column called value of pairs
where the first element is called rtk and second element called g;

iii. (right side, unfiltered) if TT′in does not have any leaf filter node at pos′,
1. compute the token

tk′ ← ΣMM.Token(K,C ′)

2. get the emulated query

Q′E ← π
value′

Reform(S(DB(XJ)
EMM), tk′)

with schema S(Q′E) = (value′) = ((rtk′, g′))
iv. (right side, filtered)

1. get the token query

Qtk′ ← π
ΣMM.Token(K,F (C′,pos′))

Q′in

with schema Qtk′ = (atttk′)
2. get the emulated query

Q′E ← π
value′

EmuEMM.Reform(SDB(XJ)
EMM,Qtk′ .atttk′)

with schema S(Q′E) = (value′) = ((rtk′, g′))
v. update the output query

Qout ← Qin on
pos=value.rtk

QE on
value.g=value′.g′

Q′E on
value′.rtk′=pos′

Q′in

with schema S(Qout) = S(Qin) ∪ S(QE) ∪ S(Q′E) ∪ S(Q′in)
3. output query Qout.

Figure 5.6: The PKFK emulator Reform algorithm.
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is lost in STE-based schemes such as SPX [63] and PKFK mainly due to encryption. As a result

STE-based databases may have limited scalability. In this section, we study how to augment an

STE-based scheme to recover such data locality and what is the security trade-off.

Locality in relational databases. The relational model organizes data logically into the same

columns, rows or tables according to relational semantics, such as attributes associated with the

same entity (e.g. Name,Age and Address), and entities associated with the same concept (e.g.

Customers) [1]. We call this logical notion of data locality as colocation, roughly speaking, to mean

the knowledge of logically-related data likely to be accessed together. For instance, data colocated

per row, column or table may be more likely accessed together in the presence of a projection,

selection or join.

Colocation does not only imply one solution, i.e., to physically store the data sequentially

together, though this way the random accesses may be reduced. Another way is to have the

database system prefetch colocated values even if they are physically apart in order to hide slower

random accesses with computation. These two designs can also be combined to achieve the best

query performance. Reducing or hiding random accesses by exploiting colocation has become a

central theme in the database research literature [101, 1, 73, 17, 68].

Locality in the STE literature. Locality has also been studied in SSE and STE [36, 32], how-

ever for a rather different data model and more stringent notion than colocation. The data model in

consideration is mainly about keyword search, or key-value stores in the NoSQL literature [93, 33].

Locality here is to achieve minimum random access in each keyword search. We contend that the

locality notion used in relational databases is more complex than what is considered in the STE

literature, because the relational model is more complicated in two ways: (1) values may be colo-

cated on the same row, column or table, and (2) queries may be composed of multiple operators

that access values spanning across multiple such logical locations. Even on plaintext, the problem

remains challenging to achieve minimum O(1) random access for all queries on all tables simultane-

ously while maintaining optimal query complexity. Instead, we aim at a different goal: to preserve

the colocation through the STE structures for the server to reduce or hide overall random accesses.
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5.2.1 Colocation in STE-based Schemes

Colocation in STE-based schemes means to disclose to the server which parts of the STE structure(s)

belong logically to the same row, column or table, such that the server can use such knowledge

to optimize either storage or query execution. Therefore colocation enhances the locality of an

STE-based scheme at the cost of adding a new set of patterns in the leakage profile, called the

colocation patterns. Our approach for STE-based colocation introduces small modification to the

pre-emulation scheme. At a high level, we insert a set of values called the colocation tags to the

structures during pre-emulation. When PKFK is instantiated with a specific EMM scheme based on

a Pibase variant, these tags are revealed also during setup, and thus adding precisely the colocation

patterns to the setup leakage. Then we leverage the property of emulation that preserves leakage

to make colocation also legacy-friendly.

In the following, we introduce steps to turn an STE-based scheme such as PKFK into one with

colocation. We then analyze the security trade-off in Sec. 5.2.3.

Colocation tags. First, we augment the PKFK scheme’s Setup algorithm by inserting a set

of values called the colocation tags inside each structure for each operator representation (e.g.

inside each tuple of each multi-map). Details of the modification are in Figure 5.9 and 5.10. Each

colocation tag reveals which parts within and across the structures correspond to some unique table,

column or row, such as a tuple of pseudorandom values
(
FK1(tbl(T)), FK2(χ(r)), FK3(χ(att)))

)
for

coordinates of the row r and the column att in a table T (except for MM(R) that omits component on

the column coordinate). Then the rest of the PKFK scheme and the emulation follows the existing

definition. This step alone will increase the query leakage by an additional component called the

colocation pattern. This is because searching a structure for each operator in the query in addition

reveals the colocation tags in the response, which indicates in the response which ciphertexts from

different encrypted structures correspond to a unique plaintext row, column or table.

Pibase Variant. In the second step, we increase the setup leakage by revealing these colocation

tags, so that the server can exploit this colocation information to either store parts of the encrypted

structures under the same colocation tag in nearby storage, or prefetch them into a faster cache at
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query time using a custom prefetching algorithm. Here we propose an encrypted multi-map variant

based on Pibase [30] (Sec. 5.2.2) which reveals the colocation tags for each tuple in the multi-map.

Legacy-friendly colocation. One way to leverage the colocation tags revealed by our Pibase

variant is to implement a custom prefetching algorithm in the encrypted database system to pre-

load parts of the encrypted structures under the same colocation tag into faster cache during

the Query algorithm. However this customization breaks legacy-friendliness. So we also consider

how to achieve legacy-friendliness for colocation, by additionally requiring the colocation to work

with emulation. Instead of engineering custom prefetching algorithms, we rely on the relational

model alone to convey the colocation information of the emulated structures to the underlying

database. This means colocation takes emulated structures, examines the revealed colocation tags,

and reorganizes the parts of the emulated structures based on the same colocation tag into the same

row, column or table. As such, the underlying relational database can view the colocated encrypted

structures as tables whose rows and columns reflect the colocation of the plaintext relational model.

One key step towards legacy-friendly colocation is the emulation of the Pibase variant (Sec. 5.2.2).

Security. Colocation requires us to increase the leakage of PKFK with a new set of patterns called

the colocation patterns. This set of patterns is similar to access patterns (e.g. which row, column

or table is accessed by the query). However, although the server may learn which ciphertexts in the

encrypted structures are likely to be accessed together, such information can only help the server

to infer the dimension of each plaintext table. This is because every value in a plaintext table

always colocates with the same number of values row-wise or column-wise due to the structural

constraint of a table. Therefore revealing such colocation patterns through STE at most leaks the

table dimensions. One subtlety arises is that the table dimensions leaked can be combined with

other leakage to deduce more information. For example in PKFK, the table dimensions can be used

to calculate the per-table JoinSet size (i.e. the total number of attribute pairs that can be joined),

and the per-table FilterSet size (i.e. the total number of attributes that can be filtered). More

details are discussed in Sec. 5.2.3.

119



Examples. An example of Pibase variant after emulation for the row representation EMM(R)

and the filter representation EMM(S) is shown in Figure 5.7. The colocation tags are highlighted

in boxed texts. Note that the rows should have been permuted per the requirement of history

independence [30]. The server can instrument a custom prefetching algorithm, for example when

processing the select token stk for T.att = Q, the server can predict the row token accesses for the

same table under the colocation tag for T, thereby caching the relevant rows in T(R) (i.e. the first

three) into faster cache.

However the custom prefetching algorithm requires changes to the database systems. In order to

achieve legacy friendliness with colocation, the server can instead store the parts of the encrypted

structures according to the colocation tags into the same table. This way the relational model

conveys the locality information to the server, thereby leveraging the existing locality optimization

in the database system. Figure 5.8 shows such an example. The emulated structures for EMM(R) and

EMM(S) are reorganized into two tables Tco and T′co, corresponding to the two distinct colocation

tags for T and T′. The parts in EMM(R) and EMM(S) under the same tags for rows and columns

are also stored as rows and columns.

5.2.2 Variant of the Pibase Encrypted Multi-Map

In the following, we detail our new variant of Pibase [30]. This variant is an encryption scheme for

multi-map structures that have the following structure: every label/tuple pair (`,v) can be written

as (
`,
(
(v1,1, vv1,2), · · · , (v#v,1, vv#v,2)

))
.

That is, every tuple is composed of multiple pairs. This variant works similarly to Pibase except

that instead of encrypting every value in the tuple, it only encrypts the second value of every pair

composing the tuple. We detail this construction in Figure 5.11.

Efficiency and security analysis. This variant of Pibase has the same storage overhead and

query complexity of Pibase. The main difference is the setup leakage. In particular, Pibase only

reveals the number of pairs N composing the multi-map while this variant reveals the first value of
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T(R) = EmuPibase(EMM(R))
label value

F
(
Kχ1,1, 1

)
(FKco(T), FKco(χ1)), E

(
K(χ1),2, EKE (Q)‖EKE (A)

)
F
(
Kχ2,1, 1

)
(FKco(T), FKco(χ2)), E

(
K(χ2),2, EKE (R)‖EKE (A)

)
F
(
Kχ3,1, 1

)
(FKco(T), FKco(χ3)), E

(
K(χ3),2, EKE (Q)‖EKE (B)

)
F
(
Kχ′

1,1, 1
)

(FKco(T′), FKco(χ′1)), E
(
Kχ′

1,2, EKE (A)
)

F
(
Kχ′

2,1, 1
)

(FKco(T′), FKco(χ′2)), E
(
Kχ′

2,2, EKE (B)
)

F
(
Kχ′

3,1, 1
)

(FKco(T′), FKco(χ′3)), E
(
Kχ′

3,2, EKE (A)
)

T(S) = EmuPibase(EMM(S))
label value

F
(
K(att,A),1, 1

)
(FKco(T), FKco(χ1), F

K
(S)
co

(χ2)), E
(
K(att,A),2,KT,1

)
F
(
K(att,A),1, 2

)
(FKco(T), FKco(χ2), F

K
(S)
co

(χ2)), E
(
K(att,A),2,KT,2

)
F
(
K(att,B),1, 1

)
(FKco(T), FKco(χ3), F

K
(S)
co

(χ2)), E
(
K(att,B),2,KT,3

)
F
(
K(attP ,Q),1, 1

)
(FKco(T), FKco(χ1), F

K
(S)
co

(χ1)), E
(
K(attP ,Q),2,KT,1

)
F
(
K(attP ,Q),1, 2

)
(FKco(T), FKco(χ2), F

K
(S)
co

(χ1)), E
(
K(attP ,Q),2,KT,3

)
F
(
K(attP ,R),1, 1

)
(FKco(T), FKco(χ3), F

K
(S)
co

(χ1)), E
(
K(attP ,R),2,KT,2

)
F
(
K(att′,A),1, 1

)
(FKco(T′), FKco(χ′1), F

K
(S)
co

(χ′1)), E
(
K(att′,1),2,KT′,1

)
F
(
K(att′,A),1, 2

)
(FKco(T′), FKco(χ′2), F

K
(S)
co

(χ′1)), E
(
K(att′,2),2,KT′,3

)
F
(
K(att′,B),1, 1

)
(FKco(T′), FKco(χ′3), F

K
(S)
co

(χ′1)), E
(
K(att′,3),2,KT′,2

)
Figure 5.7: An example of emulation for the Pibase variant construction (Sec. 5.2.2) for EMM(R)

and EMM(S) in Figure 4.7. The boxed texts are the colocation tags. In general the rows should
have been permuted due to history-indepence requirement.

every pair composing all tuples of the multi-map. More precisely, the setup leakage is equal to

LS(MM) =
{
v : ∃` ∈ LMM s.t. (v, ·) ∈ MM[`]

}
.

Observe that if the first values of all pairs are values generated uniformly at random from {0, 1}k,

then the setup leakage of the Pibase variant will be equal to N which is then equivalent to the

standard Pibase.
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Tco

label(S)
att value(S)

att label(S)
attP

value(S)
attP

label(R) value(R)

F
(
K(att,A),1, 1

)
E
(
K(att,A),2,KT,1

)
F
(
K(attP ,Q),1, 1

)
E
(
K(attP ,Q),2,KT,2

)
F
(
Kχ1,1, 1

)
E
(
Kχ1,2, EKE (Q)‖EKE (A)

)
F
(
K(att,A),1, 2

)
E
(
K(att,A),2,KT,2

)
F
(
K(attP ,Q),1, 2

)
E
(
K(attP ,Q),2,KT,3

)
F
(
Kχ2,1, 1

)
E
(
Kχ2,2, EKE (R)‖EKE (A)

)
F
(
K(att,B),1, 1

)
E
(
K(att,B),2,KT,3

)
F
(
K(attP ,R),1, 1

)
E
(
K(attP ,R),2,KT,2

)
F
(
Kχ3,1, 1

)
E
(
Kχ3,2, EKE (Q)‖EKE (B)

)

T′co

label(S)
att′ value(S)

att′ label(R) value(R)

F
(
K(att′,A),1, 1

)
E
(
K(att′,1),2,KT′,1

)
F
(
Kχ′

1,1, 1
)

E
(
Kχ′

1,2, EKE (A)
)

F
(
K(att′,A),1, 2

)
E
(
K(att′,2),2,KT′,3

)
F
(
Kχ′

2,1, 1
)

E
(
Kχ′

2,2, EKE (B)
)

F
(
K(att′,B),1, 1

)
E
(
K(att′,3),2,KT′,2

)
F
(
Kχ′

3,1, 1
)

E
(
Kχ′

3,2, EKE (A)
)

Figure 5.8: An example of the server leveraging colocation tags in Figure 5.7 to increase locality
by reorganizing storage format. Each row coordinates for T is denoted as χi and for T′ as χ′i. The
parts of emulated structures are stored together corresponding to the same row, column or table
as revealed by the colocation tags.

Emulation

A SQL emulator. The emulator for the Pibase variant is similar to the emulator of Pibase

(Sec. 5.1.1, Fig. 5.1). In particular, Reform is exactly the same, while Reshape differs only on the

number of columns. In particular, instead of having a table composed only of two columns, we

have a table composed of three. The additional column holds the value in clear in every entry of

the dictionary. Recall that an entry in the Pibase variant has the form (`, (v, ct)) where v is a value

in clear.

Efficiency. The efficiency of this emulator is exactly the same as the one of the Pibase SQL

emulator.

5.2.3 Security Trade-off

Our STE-based colocation approach introduces new leakage, the colocation pattern, so that the

server can increase locality by (1) reorganizing storage and/or (2) implementing prefetching. Colo-

cation therefore comes with a price: it weakens the security of PKFK. So it is important to
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• Setup(1k,DB):

1. initialize a SET
2. initialize a collection of multi-maps

MM(R),MM(S),MM(XJ)

3. sample keys KE ,KF ,KS ,KC ,KG, Kco,K
S
co,K

(S)
co ,K

(XJ)
co

$← {0, 1}k;
4. (Row rep.)

a. for each table T ∈ DB, for each row r = (r1, · · · , r#r) ∈ T,

MM(R)[χ(r)
]

:=
( (
FKco(tbl(T)), FKco(χ(r))

)
, SKE.EncKE

(r1)‖ · · · ‖SKE.EncKE
(r#r)

)
b. compute (

K(R),EMM(R))← ΣMM.Setup
(
1k,MM(R))

5. (Filter rep.) for each table T ∈ DB,for each column c ∈ FilterSet(T),
a. for each unique value v ∈ c,

i. for each row r ∈ Tc=v, compute the row token

rtkr ← ΣMM.Token
(
K(R), χ(r)

)
ii. set

MM(S)[χ(c)‖v
]

:=
( (
FKco(tbl(T)), FKco(χ(r)), F

K
(S)
co

(χ(c))
)
, rtkr

)
r∈Tc=v

b. compute (
K(S),EMM(S))← ΣMM.Setup

(
1k,MM(S))

6. (Partial filter rep.) for each table T ∈ DB, for each column c ∈ T,
a. for each unique value v ∈ c,

i. compute Kv ← F (KS , χ(c)‖v)
ii. set for each r ∈ Tc=v,

SET := SET
⋃{(

FKco(tbl(T)), FKco(χ(r)), FKS
co

(χ(c))
)
, H(Kv‖rtk)

}
where rtk← ΣMM.Token(K(R), χ(r))

(Continued in Fig. 5.10)

Figure 5.9: Colocation in PKFK by modifying Setup with the colocation tags shown as boxed texts.
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(Continued from Fig. 5.9)

• Setup(1k,DB):

6. (Join rep.)
a. for each table T ∈ DB, for each column pairs (c, c′) ∈ JoinSet(DB) where tbl(c) = T,

i. for each row r in table T,
1. compute the row token

rtkr ← ΣMM.Token
(
K(R), χ(r)

)
2. compute the surrogate for cell v = r[c]

gv ← F
(
KG, χ(c)‖χ(c′)‖v

)
3. (filtered join) for each correlated filter column c̄ ∈ FilterSet(T) where T =

tbl(c),
a. compute the constraint for the filter value w = r[c̄]

Cw ← F
(
KC , χ(c)‖χ(c′)‖χ(c̄)‖w

)
b. set

MM(XJ)[F (Cw, rtkr)
]

:=
( (
FKco(tbl(T)), FKco(χ(r)), F

K
(XJ)
co

(χ(c))
)
, (rtkr, gv)

)
ii. (unfiltered join) compute the null constraint for the unfiltered join

C⊥ = F
(
KC , χ(c)‖χ(c′)‖χ(c)‖⊥)

iii. set

MM(XJ)[F (C⊥, 0)
]

:=
( (
FKco(tbl(T)), FKco(χ(r)), F

K
(XJ)
co

(χ(c))
)
, rtkr, gv

)
r∈T,v=r[c]

b. compute (
K(XJ),EMM(XJ))← ΣMM.Setup

(
1k,MM(XJ))

7. output

K =
(
KE ,KF ,KS ,KC ,KG, Kco,K

S
co,K

(S)
co ,K

(XJ)
co ,K(R),K(S),K(XJ))

and
EDB =

(
SET,EMM(R),EMM(S),EMM(XJ))

Figure 5.10: Colocation in PKFK by modifying Setup with the colocation tags shown as boxed
texts.
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Let SKE = (Gen,Enc,Dec) be a symmetric encryption scheme, F : {0, 1}k × {0, 1}? → {0, 1}m be a
pseudo-random function. Consider the MM encryption scheme Pibase = (Setup,Token,Query) defined
as follows:

• Setup(1k,MM):

1. initialize an empty dictionary DX and sample a key K $← {0, 1}k;
2. for every label ` ∈ LMM,

a. compute K1‖K2 ← FK(`);
b. initialize a counter count;
c. for every pair (v1, v2) in MM[`],

– compute e = FK1(count) and ct = SKE.Enc(K2, v2);
– set DX[e] = (v1, ct);
– increment count;

3. output the key K and EMM = DX.

• Token(K, `):

1. compute K1‖K2 = FK(`);
2. output tk = (K1,K2).

• Query(EMM, tk):

1. parse EMM as DX and tk as (K1,K2);
2. initialize an empty set Result and counter count;
3. while out 6= ⊥,

a. compute e = FK1(count);
b. compute out← DX[e];
c. if out = (v, ct), then add v,SKE.Dec(K2, ct) to Result;
d. increment counter count;

4. output Result.

Figure 5.11: Pibase variant.
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understand its impact.

Setup leakage. There are two cases. Without legacy-friendliness i.e., not using the Pibase vari-

ant, the colocated PKFK scheme (Fig. 5.9 and 5.10) with a standard encrypted multi-map instan-

tiation such as [42, 36, 67, 31, 30] does not change the setup leakage of the non-colocated PKFK

scheme: it leaks the total number of rows in the database (|DB|), the total number of filter-able

attributes in the database (#FilterSet(DB)), and the total number of join-able attributes in the

database (#JoinSet(DB)),

LS(DB) =
(
|DB|,#FilterSet(DB),#JoinSet(DB)

)

However to achieve legacy-friendly colocation, we instantiate the colocated the PKFK scheme

with the Pibase variant. The setup leakage of the colocated PKFK scheme increases, which amounts

to per-table statistics as

LS(EDBco) =
(

#{T ∈ DB},
(
|T|,#FilterSet(T),#JoinSet(T)

)
T∈DB

)

This can be seen as the union of per-structure setup leakage:

• MM(R) leaks the total number of tables (#T) and the total number of rows per table (|T|);

• additionally MM(S) leaks the number of filter-able attributes per table (#FilterSet(T));

• additionally MM(XJ) leaks the number of join-able attributes that involve a table

(#JoinSet(T));

• finally SET leaks as much as MM(S).

Therefore for setup the colocation patterns entail refining the per-database dimensional statistics

to be per-table in the leakage profile.

Query leakage. The query leakage of the colocated PKFK scheme is increased by the coloca-

tion patterns. Intuitively speaking, the colocation patterns inform the server whether two query
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responses on the same or different encrypted structures belong to the same plaintext row, column

or table. This means that the server learns the access pattern of each plaintext row, column and

table. Next we describe the concrete leakage profile of PKFK when instantiated with a (almost)

leakage-free data structure encryption [65]. The leakage profile of the colocated PKFK can be

viewed as a modification based on the leakage profile of the non-colocated PKFK (Sec. 4.5), where

the additional component is mainly the access pattern of rows, columns and tables.

Selection pattern. The leaf filter leaks the following additional information in the selection

pattern: how frequently the filtered table, the attribute, and the pair of attribute value has been

accessed in past queries. We do not consider colocation of the SET structure in this work, so the

internal filter does not leak more.

Join pattern. The filtered join leaks the following additional information in the join pattern:

how frequently the triplet of filter attribute and join attributes has been accessed in past queries,

how frequently each joined table has been accessed in past queries. For unfiltered join, instead of

the aforementioned triplet it is the access frequency on the pair of join attributes.

Project pattern. The projection leaks the following additional information in the project pat-

tern: how frequently each projected table has been accessed in past queries.

Constant and cross product pattern. These patterns stay the same, because constant and

cross product do not involve encrypted structures.
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Chapter 6

Evaluation

In this section, we evaluate how OPX (Ch. 3) and PKFK (Ch. 4) performs in practice. To do this, we

implemented OPX and PKFK and integrated it into an encrypted relational database system KafeDB

(Ch. 2). Its code and a design are publicly available [10, 11]. We also implemented SPX [63] and

similarly integrated them into KafeDB. In summary, we compared OPX and PKFK with: SPX [63]

(STE-based), CryptDB [84] and Monomi [94] (PPE-based). In particular, we assessed the following

efficiency metrics: (1) setup time, (2) query efficiency, and (3) storage efficiency. Our evaluation

demonstrates that

1. PKFK achieves similar query and storage overhead compared to the PPE-based scheme in

CryptDB;

2. PKFK improves one to two orders of magnitude over the STE-based schemes SPX and OPX.

Implementation. We implemented PKFK, SPX and OPX in the KafeDB system. Specifically,

the client uses and extends Spark SQL’s algebraic core for query translation and optimization, its

parser to parse plaintext SQL queries into a query plan, and its executor to facilitate split execution.

The PKFK server can be any DBMS but in this evaluation we use PostgreSQL 9.6.2 [54]. The

source code is anonymized and can be downloaded at [10]. For the cryptographic building blocks,

we use AES in CBC mode with PKCS7 padding for symmetric encryption, and HMAC-SHA-256 for

pseudo-random functions. Both primitives are provided by Bouncy Castle 1.64 [80] in the PKFK
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client and by the pgcrypto module in PostgreSQL 9.6.2.1

Testing environment. We conducted our experiments on Amazon Elastic Compute Cloud

(EC2) [8]. Following the typical hardware setting in the research literature [38], we chose to keep

the memory higher than the database size to accommodate more complex queries. We used EC2

instance of type t2.2xlarge with 32GB of RAM and 1.2TB of Elastic Block Store for disk

storage.

TPC-H Benchmark. For data generation, we use the standard DBMS benchmark Transaction

Processing Performance Council H (TPC-H), which models data-driven decision support for business

environments centered around a data warehouse scenario. We used the TPC-H benchmark of scale

factor 1, which leads to about 8.6 million rows and 4.4GB of data. Each attribute value was sampled

uniformly at random from its domain. All queries were run in a uniformly randomized order. The

benchmark was first warmed up by executing all the TPC-H queries and discarding the results. The

statistics were summarized over 10 runs.

The schema consists of 8 tables that represent real-world entities and relationships such as

suppliers and customers, parts and orders. Figure 6.1a illustrates the schema as a directed graph

where the nodes are tables, and each arrow represents a many-to-one relationship. In Table 6.1b,

we provide a more detailed description of each table, including the number of attributes and the

number of rows.

Data generation. We use the TPC-H benchmark of scale factor 1, which leads to about 8.6

million rows and about 4.4GB of data. Each attribute value is sampled uniformly at random from

its domain.

Comparisons. For the purpose of this evaluation, we also compare our efficiency numbers to

those of CryptDB and Monomi from [94]. We note that the original CryptDB’s system [84] only

supports 4 out of the 22 TPC-H queries, so the results we recall here are from a modified version

of CryptDB in [94] that supports the full TPC-H. We also note that the hardware setup differs
1We were limited to using AES in CBC mode because that is the only mode supported by PostgreSQL 9.6.
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Part

Supplier

Part-Supp

Customer

Nation Region

Lineitem

Orders

(a) The boxes represent tables. A directed edge
represent a many-to-one relationship.

Table Number of attributes Cardinality
Part 9 2× 105

Supplier 7 10× 103

Part-Supp 7 8× 105

Customer 8 1.5× 105

Nation 4 25
Region 3 5
Lineitem 17 6× 106

Orders 9 1.5× 106

(b) The cardinality is for scale factor 1.

Figure 6.1: Description of the TPC-H database schema [41].

slightly in [94] where most noticeably the authors used a machine with slightly smaller RAM of

24GB compared to the 32GB of RAM we use in our setting.2 Since the code of [94] is not open-

source, and in order to draw fair comparisons, we only report the query and storage multiplicative

overheads incurred by these systems over a plaintext PostgreSQL. We also implemented the STE

schemes SPX [63] and its optimized variant OPX [66] in KafeDB as another baseline to demonstrate

the improvement in our new scheme PKFK.

6.1 Query Efficiency

We compared all schemes on TPC-H queries q1-q22. The relative slowdown reflects the multiplicative

overhead incurred by each system over the query efficiency of plaintext PostgreSQL. We summa-

rized all results in Figure 6.2. Our benchmark demonstrated that PKFK achieved comparable query

efficiency to DTE-based approach such as in CryptDB and Monomi [94]. On the other hand, PKFK

outperformed the STE-based precursor SPX [63] and its optimized variant OPX (Ch: 3) for one

to two orders of magnitude, due to (1) reduced asymtotic complexity for joins and (2) increased

access locality via new techniques such as colocation and join direction optimization.

PKFK vs. DTE-based approaches. Compared to CryptDB, PKFK achieves comparable per-

formance, while providing better security guarantees. The median slowdown for PKFK is only 4.2×
2The authors in [94], however, stated that their evaluation numbers were similar across different hardware setups.
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CryptDB[94] Monomi[94] SPX [63] OPX (Ch: 3) PKFK (Ch: 4)
Median 3.92× 1.24× 1610.5× 45.6× 4.2×

Min 1.04× 1.03× 3.7× 3.2× 1.09×
Max 55.9× 2.33× 1701.9× 1407.9× 147.9×

(a) Summary of slowdown relative to plaintext.

Colocation Selection
Pushdown

Join
Ordering

2.92× 19.8× 12.6×

(b) Average improvement in
PKFK.
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(c) TPC-H query time.

Figure 6.2: TPC-H query efficiency comparison for DTE-based and STE-based schemes.

over a plaintext PostgreSQL, comparable to the 3.92× in CryptDB and 1.24× in Monomi. In terms

of the distribution, we noticed that more than half of the queries, 13 out of 22, in PKFK finished

shorter than the median query time of CryptDB.

PKFK vs. STE-based approaches. PKFK improves over SPX/OPX on average by over one to

two orders of magnitude. The majority of the queries, 16 out of 22, in PKFK incur less than 10×

slowdown compared to plaintext PostgreSQL. The slowest query q19 finished a little over 100×.

We attribute this improvement to the three novel techniques used in PKFK, namely the reduced

complexity for joins, the colocation and the query optimizations.
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Optimizations. In order to better assess the efficiency impact of each of the PKFK techniques,

we created an evaluation setup in which our techniques are individually enabled. Figure 6.2b

summarizes our results. In particular, PKFK with colocation improved 2.92× on average for query

time. The effectiveness of colocation is mainly due to the increased locality where a query now

operates on common indexes and table rows. Note that SPX and OPX, in order to process a single

query, require operating on different indexes and tables which lead to poor locality. The selection

pushdown or push-select-through-join rule brought 19.8 average speedup by reducing intermediate

data size. Join direction optimization showed 12.6× average speedup by increasing access locality

by following the more efficient join ordering recommended by the query optimizer.

6.2 Storage Overhead

System Size Setup time
Plaintext 4.442GB 5.99min
CryptDB[94] 4.21× -
Monomi[94] 1.72× -
SPX [63] 252.22× 60.17×
OPX 13.17× 10.37×
PKFK 3.63× 8.26×

(a) TPC-H storage and setup time relative to
plaintext.
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(b) Breakdown of TPC-H storage in percentage.

System total enc-index table enc-index index content index content table

OPX 58506.9 37367.0 15994.0 260.0 4886.0
PKFK 16131.1 2986.8 7998.4 260.0 4886.0
Plaintext 4442.7 n/a n/a 3112.9 1329.8

(c) TPC-H storage breakdown in MB.

Figure 6.3: TPC-H storage size and setup time.

We compare the storage overhead across different systems in Figure 6.3. Our results show that:

(1) PKFK achieves comparable if not better storage overhead than DTE-based approaches, and (2)

PKFK greatly reduces the storage overhead when compared to SPX/OPX. We provide below more

details about our comparison.
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PKFK vs. DTE-based approaches. Figure 6.3a shows that PKFK incurs a storage overhead

of 3.64×, which is slightly lower than CryptDB’s 4.21× overhead. Monomi achieves better stor-

age overhead with only 1.72× blowup, mainly because Monomi partially uses format-preserving

encryption scheme (FFX) that has weaker security.

PKFK vs. STE-based approaches. PKFK is about two orders of magnitute smaller in foot-

print than SPX and about 4× smaller than its optimized variant OPX. This reduction is mainly

because PKFK achieves storage complexity linear in table size, whereas both SPX and OPX re-

quires quadratic complexity3. Another contributing factor is the new emulation technique that

colocate the encrypted indexes in the same table as the encrypted contents to eliminate redundant

information.

Storage breakdown. To better understand the storage overhead of PKFK, we provide in Fig-

ure 6.3c a more granular depiction of how storage overhead is distributed cross different components.

In particular, we break the storage overhead down into four different components:

• (enc-index table): the emulated table for encrypted indexes or structures;

• (enc-index index): the plaintext indexes created on top of the encrypted index table;

• (content table): the tables containing the content of the database;

• (content index): the indexes created on top of the content tables.

Note that, conceptually, the encrypted indexing in PKFK plays a similar role to the content indexing

in plaintext PostgreSQL in that it facilitates efficient search. Compared to OPX, the significant

storage reduction of the first two components, namely, the enc-index table and enc-index index

components, is mainly due to the quadratic-to-linear storage improvement made possible by our

new structured encryption scheme design. In particular, our results show that PKFK has over

an order of magnitude reduction in enc-index table size. Such reduction can be attributed to

the fact that colocated encrypted indexes do not need to store duplicate cell values such as the
3OPX can rely on database technique such as third normal form to trade off this quadratic blowup for additional

query overhead.
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row token identifier. Moreover, with the colocation, sharing indexes becomes possible. Note that

some indexes become redundant and with PKFK, we can afford removing them without hurting the

system functionalities or efficiency.

Remarks. In Figure 6.3b, we observe that PKFK achieves a balanced storage profile of indexing

and contents, similar to that of the plaintext PostgreSQL. In particular, our results show that

the relative ratio between indexing and contents in PKFK, namely the sum of all encrypted and

plaintext indexes over the content is about the same as that of PostgreSQL - around 70%. On

the other hand, the ratio for OPX, around 90%, is much more skewed towards encrypted indexes,

which signifies a more index-intensive payload.

6.3 Setup Time

Figure 6.3a summarizes that the setup time of PKFK improves about 20% over OPX, from 10.3× to

8.2× over the plaintext setup time. The improvement can also be attributed to the new structured

encryption design involving only a linear pre-processing of joins, instead of quadratic, as well as the

colocation of encrypted data indexes with the table contents, which reduces the amount of data to

stored and therefore written on disk.
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