Abstract

Interactive Reinforcement Learning from Human Language and Evaluative Feedback

Through Task Decomposition
by Guan ‘Royal” WANG, Ph.D., Brown University, August 2020

In this work, I present an implemented model that can learn interactively from natural
language, enabling non-expert human trainers to convey complex tasks to machines using task
decomposition and a combination of evaluative feedback and natural language.

Over a series of experiments and associated algorithms, I show:

1.

Contrary to the assumptions of methods that learn behavior interactively, feedback from
people is policy dependent.

The method of COnvergent Actor-Critic by Humans (COACH) can interpret and learn
from this kind of feedback.

. Complex tasks can be hard to learn directly from feedback, but non-expert human

trainers can decompose complex tasks into simpler units.

Geometric Linear Temporal Logic (GLTL) can be used as a logical form that can capture
decomposed task descriptions and serve as the basis of an effective learning algorithm
for building up complex tasks.

. People can use natural language feedback to convey evaluative feedback effectively.

A deep sequence-to-sequence (Seq2Seq) approach can be used to interpret natural
language feedback while discovering how to convert spontaneous natural language
input to GLTL for machine execution.

These elements are demonstrated in an implemented system that learns online from
interaction with an end user to interpret and execute the user’s tasks.

Interactive Reinforcement Learning from
Human Language and Evaluative Feedback
Through Task Decomposition

Guan "Royal" Wang
B. E., Shanghai Jiao Tong University, 2011
Sc. M., Brown University, 2015

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

August 2020

ii

©Copyright 2020 by Guan Wang

DocuSign Envelope ID: 11221055-8B09-4936-8805-9473D643663F
iii

This dissertation by Guan Wang is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

3/31/2021 4‘/1 1%
Date

Michael L. Littman, Advisor

Recommended to the Graduate Council

DocuSigned by:
3/26/2021 @/,W 7,,%4
D31243E8557A447 ...

Date
Stefanie A Tellex, Reader
3/26/21 \7“”0 @b
Date
/ Daniel C Ritchie, Reader
DocuSigned by:
e Prntice
3/26/2021
5BAB23154DF345D...
Date
Ellie Pavlick, Reader
Approved by the Graduate Council
Date

Andrew G. Campbell, Dean of the Graduate School

v

VITA

Guan "Royal" Wang was born in Liaoning, China. He began his story working with
computers at the age around ten when he received his first Windows-98 desktop and has not
stopped since. After graduating from Dalian No. 24 High School, Royal went to Shanghai Jiao
Tong University in 2007. He received his B.E. from the Department of Automation, the School
of Electronic Information and Electrical Engineering in 2011. During the undergraduate study,
Royal spent time as a research intern at the machine-learning group at Microsoft Research,
where he worked on web-user-behavior analytics and intent prediction. He then went to Uni-
versity of Washington in Seattle, WA as a visiting scientist to do research in human computer
interaction. Royal started to work with Prof. Michael L. Littman as a Ph.D student at Brown
University in Providence, RI in 2015 after receiving his Sc. M. degree of Computer Science
from Brown. He focused on interactive reinforcement learning with humans in the loop. He
co-founded Learnable.ai, an artificial intelligence startup company, to apply state-of-the-art
and innovative machine-learning techniques to develop effective Al solutions that can help
people live better lives.

“To my family. To the people I love.”

vii

Acknowledgements

My Ph.D. journey has been filled with challenges and surprise, a lot of which are beyond
imagination. It may be possible for some other people to achieve the goals alone, but I’m not
one of them. I would like to acknowledge people who have supported me, helped me, taught
me, sponsored me, encouraged me, inspired me, pushed me, and worked with me together to
make what I believe come true. I extend my deepest gratitude to:

* My family. My parents, Lijun Qi and Fuxin Wang, give me the freedom I need to spend
as much time as possible to focus on the things that I love. They never stopped worrying
about me for both my life and study, making me feel that learning from experienced
human teachers is not only necessary but also useful. That feeling is very interesting,
and may have had influence on some of the research ideas in this work. My parents
provided me with an environment in which almost all the noise of life is filtered out,
and I can do whatever I want as long as it’s a good thing in a socially correct way. They
never pushed me to work as a way to make money, the only thing they cared is whether
what I do makes me a good person. As the only child of a family, I am so lucky to have
my parents respect and believe in knowledge and truth, even though they could not
understand my work.

* My advisor. Prof. Michael Lederman Littman, has given me both positive and negative
feedback during the five years that we worked together. Some of his feedback were
policy independent, for example, he taught me to always focus on the detailed experi-
mental data and figures regardless of how complex the work is. Michael also insisted
on understanding the entire pipeline instead of only looking at the results. In a word,
"What", "How", and "Why" all matter. Some of his feedback was policy dependent,
in that he encouraged me to try more of my own ideas over time, more exploration
over exploitation as I dove deeper in the research area. I think I’ve got a lot of negative
feedback as well, especially on how to organize a research team, how to write things
out and submit in time. I was at a crossroad in my life when Michael met me, he made
my days at Brown colourful again. He showed me how curiosity, passion, hard working,
communication, and teamwork could make a person outstanding. I feel so happy to
work with him and receive his advice, and, if I'm lucky, his influence will stay with me
in my work for a very long time.

* My labmates during my time at Brown. I could always get help and support from: Mark
Ho, Carl J Trimbach, Jun Ki Lee, David Abel, Sam Saarinen, Lucas Lehnert, Stephen
Brawner, James MacGlashan, Evan Cater, Kavosh Asadi. People outside RLAB were
also very helpful: Nakul Gopalan, Ifrah Idrees, Roma Patel.

* My teammates at Brown. I'm very proud and happy to have worked with a wonderful
group of talented young researchers who joined my team and contributed to different
parts of my research: Yiheng Xie, Andrew Yun Ho Kim, Troy Prebenda, Sahdiah Cox,
Jordan Hartzell (interactive teaching robot), Jared Cohen, Jiyun Lee, Philip Strauss,
Tushar Bhargava (internet of things), Nate Bowditch, Ben Most (interactive math tutor).

* My extended collection of research associates. Scientists that made direct contribu-
tions to my research: Robert Loftin, Bei Peng, David L. Roberts, Matthew E. Taylor
(interactive reinforcement learning), Jeff Huang, Alexandra Papoutsaki, Hua Guo, Con-
nor Gramazio, Jeff Rasley, Danae Metaxa-Kakavouli, Wenting Xie (human computer
interaction), Blase Ur, Tim Nelson, Enrique A Areyan Viqueira (internet of things),
Musik Kwon, Alex Hills, Robert C Zeleznik, Rosemary Simpson (interactive math

viii

tutor), Stefanie A Tellex, Ellie Pavlick, Daniel C Ritchie, Leslie Kaelbling (interactive
reinforcement learning with natural language). I also want to thank Andries van Dam,
who was the reason I chose to come to Brown. Andy and I may have different opinions,
but I always respect and appreciate his advice and help.

* The Brown staff. The professionals kept things organized so that my research could go
well: Peter Haas made it possible for the experiments with the interactive teaching robot
to happen by offering devices and managing spaces. Lori Agresti helped manage the
research costs, Suzanne M Alden, Kathy Kirman Billings, Lisa J] Manekofsky helped
me with the other financial support. The technical staff (T-staff) John Bazik, Benjamin
E Nacar, Phirum Peang maintained the cluster and my devices. Frank Pari helped me
design and build my servers, saved my workstations several times, and offered a lot
more personal help. Cynthia Ellis and Carol Cohen helped me mentally when I was
down. Lauren K Clarke was the person that I would always talk to if there were still
problems that could not be solved by the other people.

* My friends. I often turn to my friends for their knowledge, skills, and suggestions:
Geng Ji, Yan Li, Li Sun, Jing Qian, Yin (Frank) Yu, Junyang Chen, Yuhang Song,
Chris Tanner, Qi Xin, Cheng Xie, Zhile Ren, Da Yu, Zhigiang Sui, Guangyao Zhou,
Takehiro Oyakawa, Do Kook Choe (D. K.), Nedi Daskalova, Xinyi Zhang, Xuan Zhang,
Dongkun Zhang, Xu Zhang, Ziying Liu, Xiaotong Wang.

* My Learnable team. The people who make amazing things happen: Lan, Jack, Lionel,
Meng, Haotian, Matt, Eugene, Steve, Aaron, John, Richard, Clara, Mr. Jin, Mr. Yi, Dr.
Zhao, Xin, Xuesong, Evan, Fang, Hua, Prof. Yu, Prof. Yang, Prof. Chu, Tiangqi, Elenor,
Ran, Hongwu, Ziheng, Jesse, Claire, Chi, Victor, Ziyi, Tianyang, Rahul, Prem, Mason,
Xiaoling, Qijia, Bao, and many more.

* My sponsors. My research has been supported by DARPA XAI, DARPA L2M, DARPA
LwLL programs, Samsung, National Science Foundation, grants from the Department of
Computer Science, grants from Brown University, prizes from Massachusetts Institute
of Technology, awards from Harvard University, and a few more generous sponsors.

* My dog McQueen. We met each other at the beginning of both my Ph.D. journey and
his life, and we’ve stayed together ever since. McQueen inspired me to think about how
a dog learns and behaves, which is one of the key ideas that this thesis is built on.

There are many more people that have not been listed. I sincerely thank all the people
who has helped me. I love you all.

Contents

Abstract
Acknowledgements
1 Introduction
1.1 Reinforcement-Learning Approaches
1.2 Natural Language Processing,
1.3 Dog-Inspired Learning
1.4 Contributions e e e
2 Task Representation
2.1 Introduction
2.2 Markov Decision Processes oo
2.3 Linear Temporal Logic,
2.4 "Short-Circuit" Geometric Linear Temporal Logic
25 Samples e
2.6 Conclusion
3 Interactive Learning through Evaluative Human Feedback
3.1 Human-Centered Reinforcement Learning
3.2 Human Feedback is Policy-Dependent
32.1 EmpiricalResults oL o
3.3 Convergent Actor-Criticby Humans
33.1 Real-time COACH
3.4 Comparison of COACH, Q Learning, and TAMER in Simulated Grid World .
3.4.1 Learning Algorithms and Feedback Strategies
342 Results
35 RobotCaseStudy
351 Results
3.6 Conclusion
4 Teaching Complex Tasks through Decomposition
4.1 Training AgentlikeaDog L Lo,
42 GLTL algorithm e
43 Experimentsandresults Lo

4.3.1 Mission Decomposition Study L.
4.3.2 Mission Decomposition Study results
4.3.3 Recomposition Study oL
4.3.4 Recomposition Study results,
435 Simulationstudy Lo
4.3.6 User Study: Learning Basic Tasks from Non-expert Human Trainers .
4.3.7 User study Results: Learning Basic Tasks from Non-expert Human
Trainers

X

vii

12
15
17

19
19
19
20
22
25
27

29
29
30
32
34
36
37
38
39
43
53
54

55
55
56
61
61
62
63
64
65
67

4.3.8 User study: Learning Complex Missions via Decomposition 70

4.3.9 Results of User study: Learning Complex Missions via Decomposition 71

44 Conclusion e e 72
5 Interactive Learning from Human Feedback and Natural Language 75
5.1 Why Natural Language? 75
5.2 Background e 75
5.3 Sequenceto Sequence Model L L. 76
5.3.1 Recurrent Neural Networks 77

5.3.2 Long Short-Term Memory 78

5.4 Learning Interactively from Natural Guidance (LING) 79
5.4.1 Attention Mechanism oL 80

542 BeamSearch o 82

543 Algorithms e 83

5.5 Experiment e e e e 86
6 Conclusions and Future Directions 95
6.1 Humans e 95
6.2 Tasks 96
6.3 Learning from interaction 96
6.3.1 COACH. e 96

6.3.2 GLTL-based algorithm 97

6.3.3 Similarity score Lo 97

6.34 LING e 97

6.4 Natural Guidance L 98
6.5 Future Directions e 98

Bibliography 101

X1

List of Figures

1.1
1.2

1.3

1.4

1.5

1.6
1.7

2.1
2.2

2.3

3.1

32
33
3.4

3.5

3.6

3.7

3.8

3.9

3.10

Protocol droid C-3PO, and astromech droids BB-8, and R2-D2.. 1
Al AlphaGo from DeepMind beat Ke Jie, a Go world champion, in a three-
game match in May 2017. oL 2
The robots are making a Tesla Model 3 and Model Y at their factory in
Fremont, California. e 3
Autonomous driving from Level O to Level 5 according to the Code of the
District Columbia. Pictures from www.steinlaw.com. 4
The high-level structure of the interaction in reinforcement learning. 5
The high-level structure of the Learning from Demonstration pipeline. 7
McQueen. A yorkie who accompanied the author during his entire Ph.D.

period. McQueen contributed to this dissertation as an inspiration. The picture
shows McQueen before (upper half) and after (bottom half) training. "Yay! I

gotatreat!" L L 16
The simple 1 by3gridworld. 25
The change of status of the formula eventually (A and eventually B) at position
Owhere A=True,B=False. 26
The transitions between states of the formula eventually (A and eventually B)
inthesimple 1 by3 gridworld. 27

The goal of the task is to teach the robot to move to the red flag at the bottom
left corner. The human trainer gives big positive reward when the robot moves
closer to the flag, and small negative reward when it moves away, which leads

toapositiverewardcycle.o o oL 31
The training interface that was shown to the participants during the online study. 32
The three conditions of the dog in three consecutive episodes. 33

The feedback distribution for first step of the final episode for each condition.
Feedback tended to be positive for improving behavior, but negative otherwise. 34
The simulated 8 x 5 grid in which the agent starts in 0, 0 and must get to 7, 0,
which yields +5 reward. However, from 1,0 to 6,0 are cells the agent needs
to avoid, which yield —1reward. 37
Task feedback. COACH is without eligibility traces. Steps to goal for Q
learning (blue), TAMER (red), and COACH (yellow) in the grid world. The
y-axis is on a logarithmic scale. 39
Task feedback. COACH is with eligibility traces. Steps to goal for Q learning
(blue), TAMER (red), and COACH (yellow) in the grid world. The y-axis is

on alogarithmic scale. 40
Action feedback. Steps to goal for Q learning (blue), TAMER (red), and
COACH (yellow) in the grid world. The y-axis is on a logarithmic scale. . . . 41

Improvement feedback. Steps to goal for Q learning (blue), TAMER (red),
and COACH (yellow) in the grid world. The y-axis is on a logarithmic scale. . 42
The TurtleBot experiment in the Rlab of Brown University. The human trainer
is about to train the TurtleBot to learn to "hide” when it sees the pink ball. . . 43

xii

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

4.1
4.2

43
4.4
45

4.6

4.7

4.8

5.1
5.2
53

54
5.5

5.6

In the training period of the "hide” task, the agent received a punishment
signal, which was a negative feedback when it went near the pink ball. The
red circle at the upper left shows the reward signal. 44
In the "hide” task training, the agent received a reward signal, which was a
positive feedback when it went away from the pink ball. The blue square at
the upper left shows the reward signal. 45
In the verification test of the “hide” task, the agent captured the pink ball and
was about to behave according to the policy it had learned. No feedback was
given by the human trainer during verification. 46
In the verification test of the "hide” task, the agent saw the pink ball and went
away from it, which was what it had been trained by the human trainer to do to
"hide". No feedback would be given by the human trainer during verification. 47
In the "ball following” task, the human trainer gave a positive feedback when

the TurtleBot went to the pink ball. 48
In the “alternate” task, the TurtleBot was trained to go back and force between
the pink balland acylinder. 49
In the “cylinder navigation” task, the human trainer used the pink ball as a
lure to teach the agentto goto the cylinder. 50
In the “cylinder navigation” task, the TurtleBot followed the pink ball as the
lure and went towards the cylinder. 51
In the verification test of the “cylinder navigation” task, the TurtleBot could
only see the cylinder. The pink ball lure did not appear in its scene. 52
In the verification test of the “cylinder navigation™ task, the TurtleBot navi-
gated to the cylinder without seeing the pink ball lure. 53
Templates used in constructing temporal formulas. 59

The training procedure for task [J{>(table A {fridge). Steps 1) and 2) use
template 1 from Figure 4.1. Step 3) uses template 13. The final step, 4) uses

template 2. e e e e e e e 60
Floor plan images to help ground the questions. 62
Experimental domain for teaching temporal tasks. 65
The number of training feedback needed for our algorithm, TAMER, and
COACH across tasks: [J—chair; {table; —table {/charger; and [fridge. . . . 66
Task success rate in user study: Learning Basic Tasks from Non-expert Human
Trainers. 69
Mission success rate in user study: Learning Complex Missions via Decom-
POSILION. o o e e e e e e 71

Task success rate in user study: Learning Complex Missions via Decomposition. 71

Sequence to Sequence Model. L L L oL 76
Recurrent Neural Networks have internal loops. 77
The structure of LSTM unit. The cell state C;_1 is the memory from last

LSTM unit. The hidden state /i; 1 is the output of the last LSTM unit. 78

The high-level structure of encoder, decoder, and the connection between them. 79
Detailed visualisation of how encoder-decoder works. Each time step an input
unit is taken by the BiLSTM, it updates its hidden state based on its inputs
and previous inputs it has seen. The last hidden state of the encoder is the
context passed along to the decoder., 80
Structure of the attention mechanism. Attention scores are computed by all
the hidden vectors of the encoder and the current hidden vector. 81

5.7 Encoder-decoder structure with attention. The encoder passes all the hidden
states to the decoder. An attention decoder calculates the attention score based
on the all the hidden vectors of the encoder and the current hidden vector.

5.8 Given the input sentence, with Beam width set to 3, the model finds the
top 3 words with the highest probability. In this example, the outputs are:
"eventually", "always", "and".o o oL

5.9 Given the input sentence, with Beam width set to 3, the model will then
find the three best pairs for the first and second words based on conditional
probability. e

5.10 Learning Interactively from Natural Language Model (LING).

5.11 The experiment space for non-expert user study. The corners of the virtual
grids are marked with small white paper cards on the floor.

5.12 The experiment space for non-expert user study. The 4 by 5 grid world
is marked in green virtual lines. There are five atomic propositions in the
environment that are known by both the human trainer and the agent: The
charger, the fridge, the oven, the window, and the table” which is actually a
kitchenisland. L.

5.13 The photo of Kuri, a robot developed by Mayfield Robotics.

Xiii

81

86

List of Tables

2.1 Transition (s,a,s’) in MDPy, 4, constructed from a transition (s1,a1,5}) in
T(s,a,s")
Ti(s1,a1,5)) "

My,. As above, p(s'|s]) =

XV

Chapter 1

Introduction

“You're just a droid. You don’t know about real duty, about what it’s like to have a brother.”
“I am sorry. I always wanted to have human feelings, but I do not.”

- Clone trooper Fives and AZI-3
Star Wars: The Clone Wars

Robots, less commonly known as droids, automatons, are mechanical beings that possessed
Artificial Intelligence (Al). They are used in a variety of environments to play multiple
different roles, which are often considered menial, repetitive, or risky for other species like
human beings. Robots are often designed to work in fields that require extensive specialization
and knowledge.

FIGURE 1.1: Protocol droid C-
3PO, and astromech droids BB-
8, and R2-D2.

2 Chapter 1. Introduction

In the movies in the "Star Wars" series, which were well known and popular during the
period the author was preparing this dissertation, three robots, C-3PO, BB-8, and R2-D2 1.1
contributed a lot to the stories. In the movie, these robots could understand human natural
language very well and execute the commands that they received, some of which were high-
level, vague, and lacking details. Most of the time, they could even go beyond the given tasks
to achieve self-generated goals. In reality, however, it is still very challenging for a robot to
interpret open-ended commands from human beings and execute the commands correctly.

Machine Learning (ML) techniques have achieved great success in lots of robotics appli-
cations. Nowadays, robots driven by state-of-the-art Al can play the game of Go better than
top-level professional human players (Figure 1.2), build (Figure 1.3) and drive (Figure 1.4) our
cars autonomously (happening soon from the author’s point of view), and vacuum floors by
themselves. The algorithms that drive them, however, can handle only very limited complexity
in the real world. It is so far impossible to find a robot that you can buy, bring home, and ask
to clean the kitchen, feed the dog in a proper way, and not cause more troubles while getting
the jobs done. These daily tasks, though seemingly simple and straightforward, are actually
ambiguous and possess uncertainties and complexities that ML systems today cannot handle.

THE ULTIMATE GO CHALLENGE
GAME 3 OF 3

27 MAY 2017

®.@e

Y AlphaGo Ke Jie

Winner of Match 3

RESULT B + Res

FIGURE 1.2: Al AlphaGo from DeepMind beat Ke Jie, a Go world champion,
in a three-game match in May 2017.

Chapter 1. Introduction 3

FIGURE 1.3: The robots are making a Tesla Model 3 and Model Y at their
factory in Fremont, California.

4 Chapter 1. Introduction

:]
For on-road vehicles ’ . Human driver E Automated system ‘

Steeringand Monitoring Fallback when Automated
acceleration/ ofdriving automation systemisin

deceleration environment fails control
NO N/A
AUTOMATION
R
g O
)
-E £ DRIVER D%?VTIEG
0]
g § ASSISTANCE MODES
S =
TS
g
PARTIAL DRIVING
AUTOMATION MODES
- CONDITIONAL D?a?vhfﬁe
% - AUTOMATION MODES
> 3
by =
E -q:" HIGH SOME
',g ‘;; AUTOMATION DRIVING
S 8 MODES
L)
£
3
S
o FULL
53 AUTOMATION

FIGURE 1.4: Autonomous driving from Level 0 to Level 5 according to the
Code of the District Columbia. Pictures from www.steinlaw.com.

Moreover, different people may have their own preferred ways to control their robots. "Go
to the kitchen", for example, could mean "coming to the kitchen immediately!" to the dad,
could mean "Follow me to the kitchen without interrupting the others" to the mom, and "Stop
touching my legos on the floor and get back to the charger in the kitchen quietly" to the son.
The meaning of a command may easily have multiple translations in different environments,
and vary according to the person who gives the command.

Last but not least, a robot is useless if the cost of training it is too high. Programming
the robot may solve many problems, but it’s too difficult for almost all non-experts. Using
a remote control seems okay to most people, however, it requires the controller to be able
to watch the environment of the robot in real time regardless of the level of complexity of
the tasks. Teaching the robot like teaching a dog, if possible, sounds much better, in that it
enables the robot to understand and execute tasks by itself, and the cost of training a dog,
which could be as simple as providing treats when it performs well and giving alarm signals
if it does something wrong, is affordable. Speaking to the robot is much more useful and
preferred if the desired behavior is learnable by the robot. In a word, a "smart" robot that
is able to understand and learn from human trainers fast will be welcomed by most people
easily, a silly one won’t be. Therefore, making it possible for non-experts to teach the robot to
understand their own communication preferences in an easy, affordable, and reasonably fast
way could produce significant value. It’s also a fascinating scientific challenge.

1.1. Reinforcement-Learning Approaches 5

1.1 Reinforcement-Learning Approaches

Some robots run pre-programmed code to perform the same tasks over and over. Such
robots are not “smart” in the way addressed in this dissertation. Some robots rely on rule-
based systems and decision trees to finish more complicated tasks. These techniques can
be considered Al (artificial intelligence), but such a machine is not capable of learning, and
would also not be considered smart. The key to making a robot smart is machine learning. An
ML-based robot is able to learn new knowledge through training, and adapt to serve up the
most appropriate behavior.

v

State Reward Action
St Rt At

Rt+1

A

Environment g3

A

St+1

FIGURE 1.5: The high-level structure of the interaction in reinforcement
learning.

Reinforcement learning (RL), one of the most important area and the core of machine
learning, is a feasible solution to learning in a smart way. The high-level structure (Sutton
and Barto, 1998a) of the interaction in RL is shown in Figure 1.5. An RL problem normally
consists of:

* Agent.
The learner and decision maker. In robotics, it’s the robot and its software. In real-world
dog training scenarios, the dog (depicted by Unicorn McQueen in Figure 1.5) can be
considered to be the agent though human beings have an incomplete understanding of
their internal learning infrastructure.

* Environment.
The environment contains all information related to the problem so that the agent can
learn and decide what actions to perform in what circumstances. In some cases, the
trainers know all the information in the environment, in other cases they do not.

* Action.
The set of actions that the agent can choose to perform in the environment. For the robot
in Figure 1.5, the actions include the set {stay, move forward, move backward, rotate}.

* State.
The state, or status of the agent in the environment.

6 Chapter 1. Introduction

* Reward.
It’s usually a scalar value in traditional RL formulations. The environment produces a
reward for each action selected and performed by the agent.

* Policy.
The control strategy, the decision-making function of the agent. In most of cases it is a
mapping function from situations or states to actions.

In this thesis, we’ll also talk about a few other important parts of reinforcement learning:

e Markov Decision Process (MDP).
The Markov Decision Process is a probabilistic model of a sequential decision making
problem, where state information can be perceived exactly, and the current state and
action selected determines a probability distribution on future states. Essentially, only
the current action and state information decide the outcome of applying an action to a
state, not the preceding actions or states.

* Value Function.
The value function maps from states to real numbers. The number (value) of a state
represents the long-term reward achieved starting from the state, and executing a
particular policy.

* Model.
The model maps state-action pairs to probability distributions over states. A (transition)
model is the agent’s view of the dynamics of the environment. In reinforcement learning,
not every problem requires the agent to use a model of its environment explicitly.

* Function Approximator.
Function approximation refers to the problem of inducing a function from training
examples. Standard function approximators include decision trees, neural networks,
nearest-neighbor methods, and a few other approaches.

* Discount Factor.
The discount factor essentially determines how much the RL agent cares about rewards
in the distant future relative to those in the immediate future. If the discount factor
is equal to O, the agent will be completely myopic and only learn about actions that
produce an immediate reward. On the other hand, when the discount factor is set to 1,
the immediate feedback and the long-term reward have same weight to the agent.

* Temporal Difference (TD).
Temporal Difference methods compare temporally successive predictions, and are
fundamental to many RL approaches.

In reinforcement learning, an agent, in this problem it is usually the robot, interacts with
the environment running a policy. At each state of the environment, it takes an action suggested
by the policy, receives a reward, which could be a neutral zero value, and transitions to a new
state. For most of the RL approaches, the goal is to learn an optimal policy that maximizes
the long-term cumulative reward. For the problem of enabling non-expert human trainers
to teach robots, RL agents can learn complex behaviors from signals given by people. Dog
training in the real world, for example, is an existence proof that it is possible for people to
teach complex tasks using simple positive and negative feedback, like giving the dog a treat
when it performs well, or punishment otherwise. We have seen animals successfully trained to
provide professional services and solve complex, multi-stage puzzles.

In reinforcement learning, the topics of interactive learning with human in the loop are
discussed broadly in the area of Learning from Demonstration (LfD) (Chernova and Thomaz,

1.1. Reinforcement-Learning Approaches 7

Human

Teacher

l

Demonstration Representation Policy Derivation Planning

and Recording Generation and Learning Execution

FIGURE 1.6: The high-level structure of the Learning from Demonstration
pipeline.

2014), which studies the scenarios where a machine learns the task policy from examples
given by a human teacher. The field of LfD has developed extensively over the past three
decades; it is also known as Robot Programming by Demonstration (PbD) (Billard et al.,
2008), Imitation Learning (Hussein et al., 2017), and Apprenticeship Learning (Abbeel and
Ng, 2005). A simplified illustration of the Learning from Demonstration is presented in
Figure 1.6. The assumption is that there exists a human teacher who demonstrates execution
of an expected behavior. The learner receives the demonstrations and learns to derive a policy
from them.

Existing works in the domain structure the learning problem to have the following modules:

1. Data collection.

Data collection is the key and probably most challenging part to a functional super-
vised learning process. Data collected from multiple sources are usually available in
unorganized formats, which means the useful information may be partially observable
to ML algorithms as well as being interwined with random noise. In an RL problem,
labeling data in an appropriate way requires the labels to capture the key information
of states and actions, and maybe also rewards that the agent needs for future decision
making. The diversity, quantity, and quality of the data will determine the training speed,
learning curve, performance of the algorithm, and accuracy of the output. In most of
cases, manually labeling data for RL problems is very expensive and time consuming.
In some cases where human behavior is in the loop, labeling can be impossible.

2. Feature engineering.

In a lot of scenarios, the raw data cannot be used directly by the learning model.
It is significant for ML algorithms to decide what input features should be, what
similarity metrics look like; in another word, they need to reduce the dimension of
the data (Fard, Hamzeh, and Hashemi, 2013). The meanings of the features remain
intact while the feature space is optimally reduced according to a certain assessment
criterion. Information-rich, discriminatory input features should be included so that
the algorithm can learn faster. Less important, information-poor, redundant or non-
discriminatory features should be excluded so that the algorithm is not misled by useless
data. For the majority of machine-learning projects in both academia and industry,
feature engineering takes more time than all the other processes.

3. Reward function definition.
The reward function plays a key role in reinforcement learning. Reward engineering
defines the objective of a learning algorithm. A lot of traditional RL environments,
handled by algorithms such as Q-Learning (Watkins, 1989), include goal reward—the
only reward that the agent receives is when the task is finished. In some problems
like the game of Go, there is only one reward for all the actions, and it is delivered

8 Chapter 1. Introduction

when the game is over. In other scenarios like some Atari games, some reward (points)
are provided on each step. Human feedback as reward, on the other hand, is more
complicated. Human feedback is often ambiguous, and may be wrong for the goal of the
task. It is hard to consider people as ideal trainers. Dog training courses, for example,
are usually designed to teach not the dogs but the dog owners, who will teach their
dogs during daily training, the proper way of giving feedback. A learning algorithm
needs to be able to learn from such feedback. Algorithms such as TAMER (Knox
and Stone, 2009a) were designed for such problems. The other main problem about
learning with human-in-the-loop is the learning speed. Traditional RL algorithms often
requires many repetitions for the agent to explore with trial and error before mastering
their task. Therefore, they are usually very slow. When the rewards come from real
human trainer, such a procedure can easily be too long and boring. Therefore, reward-
function engineering, or reward shaping, was developed to improve the agent’s learning
performance in complex tasks. Reward shaping works by adding a supplemental reward,
often in the form of a potential function, to the environmental reward. The potential
function is usually predefined by the agent designer, though it also can be learned. In
this thesis, we examine human feedback in Chapter 3 and introduce algorithms and
experiments to solve the problem.

4. Task design.

Teaching a dog complicated missions, for example, to fetch a frisbee, bring it back, then
sit down and wait for the next command, is hard for most of new dog owners. However,
most dogs can learn a part of it, sit down, when there’s positive reward or treats. If the
mission can be decomposed into several less complicated sub-tasks, and the sub-tasks
can be finished in parallel, the learning procedure will speed up. On the other hand, a
mission may be too complicated to learn by the RL algorithm directly, but if it can be
split into a set of simple sub-tasks, learning may be possible. How to design the task is
an important part of RL and LfD. Chapter 2 presents additional details.

Human-centered reinforcement learning has been developed and proven to be a powerful
method for facilitating ordinary people to teach agents in a more natural way. Similar to
standard reinforcement learning, the core problem of human-centered RL is designed to solve
the challenge of human-delivered feedback. Most interactive RL algorithms are distinguished
by interpretations of human feedback (Amershi et al., 2014). Based on existing interpretations,
there are three major types of human-centered RL algorithms developed that facilitate agents
to learn from them (Li et al., 2019):

* Interactive shaping, also known as "Learning from human reward".
Similar to traditional reinforcement learning, in interactive shaping, agents learn from
human feedback in a representation of numeric reward values.

* Learning from categorical feedback.
Where the agents interpret human feedback as categorical feedback strategies that
depend on not only the desired behavior that the teacher is trying to teach, but also the
teacher’s training strategy.

* Learning from policy feedback.
For learning from policy feedback, the agents formalize the meaning of human feedback
as a comment on the agent’s behavior based on the expected agent policy or the policy
the agent is following, and use it directly as policy feedback.

In interactive shaping, a human observer provides shaping rewards to train an agent to
perform a task. Isbell et al. (2006) used both reward and punishment to train an artificial agent,

1.1. Reinforcement-Learning Approaches 9

Cobot, where they applied reinforcement learning in an online text-based virtual chatting
scenario. Since then, a set of similar animal-training methods have been applied, including
clicker training.

Value-function methods use temporal difference (TD) to estimate the expected return.
The value function reports the expected utility of taking a given action in a given state. The
policy can be derived from the learned value function straightforwardly. The value function is
equivalent to the reward function when the learning is set to be myopic.

Algorithms for learning from human reward can be briefly categorized based on whether
the effect of an agent’s action on future states is taken into consideration or not (Li et al.,
2019):

* Learning from myopic human reward with value functions.
The existing works that inspired this thesis include: Knox and Stone (2009a).

* Learning from myopic human reward with actor-critic methods.
The existing works that inspired this thesis include: Ngo Anh Vien and Ertel (2012).

* Learning from nonmyopic human reward with value functions.
The existing works that inspired this thesis include: Thomaz and Breazeal (2008),
Tenorio-Gonzalez, Morales, and Villasefior-Pineda (2010), Thomaz and Breazeal (2006),
Isbell et al. (2006), Suay and Chernova (2011), Leén et al. (2011).

* Learning from nonmyopic human reward with actor-critic methods.
The existing works that inspired this thesis include: Pilarski et al. (2011).

A common class of RL algorithms is actor-critic algorithms. Bhatnagar et al. (2009)
provide a general template for these algorithms. Actor-critic algorithms are named for the two
main components of the algorithms:

* The actor.
A parameterized policy that dictates how the agent selects actions.

* The critic.
The critic estimates the value function for the actor and provides critiques at each time
step that are used to update the policy parameters.

Typically, the critique is the TD error:
O =ri+9V(st) = V(st-1),

which describes how much better or worse a transition went than expected. Actor-critic
approaches inspired the work in this dissertation, and are discussed further in Chapter 3.

In the work of Training an Agent Manually via Evaluative Reinforcement (TAMER) (Knox
and Stone, 2009a), a framework that learns myopically by directly modeling human reward
was produced. TAMER considers an agent learning in the framework of MDP without a
reward function. TAMER was the state-of-the-art in the domain when the work in Chapter 3
was conducted, and inspired some of the key ideas in this dissertation. In TAMER, a human
teacher observes the agent’s behavior and gives rewards based on the evaluation of its quality.
The agent learns a function,

Ry(s,a) = we(s,a),

a parameterized function that approximates the expectation of experienced human rewards,

Ry :SxA—=R,

10 Chapter 1. Introduction

where
w = (wp, w1, ..., wm_l)T

is a column parameter vector, and

¢(x) = (po(x), p1(x), s P (%))

with ¢;(x) as the basis function, i = 0,1, ...,m — 1, and m is the total number of parameters.
Given a state s, the action with the largest estimated expected reward is picked.
TAMER includes three key components:

1. Credit assignment.
2. A predictive model of reward from the human trainer.

3. An action-selection function with the learned model of reward from human trainer, for
example, greedy, greedy epsilon.

In reality, human trainers watch the agent’s behavior, think for a short while, and send
the feedback. The duration of such thinking varies. As a result, the agent is uncertain which
time step the reward is associated with. TAMER uses a credit-assignment method to deal
with this delay. A probability density function for estimating the probability of the teacher’s
feedback delay is introduced, which provides the probability that the feedback is given within
any specific time interval. The agent uses the function to compute the probability that a single
reward signal should be assigned to the target time step.

For example, a probability density function f () is used to define the delay of the reward
generated by the trainer. At time step ¢, the credit for each previous time step ¢ — k is:

t—k
Cr—k = t,k,lf(x)dx'

If there are multiple rewards within one time step, / is used to sum all the rewards. The
TAMER agent takes /1 and the state—action pair as a supervised-learning sample to learn the
reward function Ry (s, a). At time step ¢, the TD error J; is

O =h—Ry(s,a),

where
Ry(s,a) = we(st, ar).

Based on the gradient of the squared error, the parameter of Ry (s, a) is updated with incre-
mental gradient descent as

1
W1 = Wy — szWE{h - RH(st,at)}Z = wy + adiP(st, ar),

where « is the learning rate.

The original TAMER framework only works in domains with discrete action space, but
Vien, Ertel, and Chung (2013) extended the TAMER framework to continuous state and action
spaces by proposing actor-critic TAMER. Actor-critic TAMER considers the policy as the
actor, and the function of reward from human trainer as the critic. The reward function,

Rp(s) = w'¢r(s),
depends on state information. The policy is represented explicitly as

7i(s,a) = 0 (s, a).

1.1. Reinforcement-Learning Approaches 11

The actor chooses actions at given states and the critic is used to evaluate the performance of
the actor. The critic’s evaluation provides a TD error J; as the gradient estimate of a specific
performance measure to improve the actor by updating its parameters. The difference is that
the policy 77(s, a) is updated by

011 = 0: + BorPr (st ar),

where S is the learning rate for the policy.

Knox and Stone (2009a) introduced VI-TAMER, a model-based RL method, which
supports the agent when learning from nonmyopic human reward. In VI-TAMER, an agent
learns from discounted human reward and models the human reward at the same time. Pilarski
etal. (2011) introduced a continuous model-free RL algorithm that learns an optimal control
policy using only human reward via actor-critic. The algorithm learns from discounted human
reward, and works in continuous state and action spaces. Unlike VI-TAMER, their algorithm
does not model human reward signals explicitly. Instead, they treat human rewards in the
same way as environmental rewards in traditional RL.

Warnell et al. (2017) extended the TAMER framework with Deep Neural Networks
(DNNSs) to learn complex tasks. It was able to work in high-dimensional state spaces. They
evaluated Deep TAMER on the challenging Atari game of BOWLING with pixel-level state
features, and it turned out that agents trained by humans using Deep TAMER significantly
outperformed agents trained by humans using TAMER. Moreover, Deep TAMER agents were
able to achieve higher scores than agents trained using state-of-the-art deep reinforcement-
learning techniques.

TAMER was also tried with the agent learning solely from facial expressions (Li et al.,
2020). The results showed that bi-directional feedback and competition could improve the
accuracy of estimated feedback and with appropriate prediction models, facial expression
would significantly improve the performance of agents.

Closely related to this thesis, Loftin et al. (2016) assume that human teachers provide
feedback with different strategies, and for strategy-aware learners, neutral feedback also
contains information from the trainer. Human feedback is grouped into four categories:
positive reward, negative reward, positive punishment, and negative punishment. Reward
is considered as a stimulus to increase the frequency of an associated behavior, punishment
moves things in the other direction. Positive reward enhances the stimulus, and negative reward
weakens the stimulus. Such a scheme makes it possible for different human trainers to employ
a different feedback strategy to the same behavior of the learner. The authors introduced
Strategy-Aware Bayesian Learning (SABL) and Inferring Strategy-Aware Bayesian Learning
(I-SABL) to learn with less discrete feedback than existing techniques, while taking as few
exploratory actions as possible.

Other works in related domains also inspired this thesis besides TAMER and SABL:

Christiano et al. (2017) proposed an approach which explored goals defined in terms of
human preferences between pairs of trajectory segments. They claimed that their method can
effectively solve complex RL tasks without access to the reward function and therefore reduce
the cost of human oversight.

As identified in Chapter 3, inconsistent human feedback is a bottleneck to achieving the
best performance, Ramesh et al. (2020) experimentally verified that human trainers subjected to
perceptual contrast effects underrate or overrate an agent’s actions when previously exposed to
an agent with higher or lower competence on the same task. Furthermore, they showed that not
accounting for these effects when incorporating human feedback in on-policy reinforcement-
learning methods leads to deleterious outcomes in agent-training procedures. Ghadirzadeh et al.
(2020) presented a reinforcement-learning-based framework for human-centered collaborative

12 Chapter 1. Introduction

systems. The framework can not only effectively deal with the uncertainties in perception, but
also find an optimal balance between timely actions and the risk of making mistakes.

Kim et al. (2017) proposed an Intrinsic Interactive Reinforcement Learning (IIRL) method
that is an effective way to communicate with the learner. They regarded an error-related
potential (ErrP) and an event-related activity in the human electroencephalogram (EEG) as an
inherent implicit feedback for RL. The robot learns the meaning of the gesture by learning
the assignment of human gestures to the corresponding actions. At the same time, the robot
learns the mapping between human gestures and robot actions via a contextual bandit method.
The results showed that the higher the performance of online ErrP detection, the smaller the
number of errors of the robot for most subjects.

Because of the rapidly increasing solution space, it is hard for a robot to learn an assembly
sequence. De Winter et al. (2019) proposed an idea that uses human knowledge to reduce
the solution space. The method combined Interactive Reinforcement Learning (IRL) to learn
from human advice and Potential-Based Reward Shaping (PBRS) to focus on a smaller part
of solution space. Experiments showed that the communication model based on advice
constraints, translated from natural language, is more efficient, as it requires the fewest
interactions while still converging more quickly than other communication models.

Similarly, the work of Ayala, Henriquez, and Cruz (2019) used IRL to train the agents
and tackled the problem of continuous representations along in the interactive approach. It
turned out that using continuous states and interactive feedback converges faster compared to
discrete and autonomous reinforcement learning respectively.

Tabrez and Hayes (2019) proposed a framework for estimating and improving a collab-
orator’s task comprehension and execution. By characterizing the problem of sub-optimal
performance as evidence of a malformed reward function, they introduced mechanisms to
both detect the root cause of the sub-optimal behaviour and provide feedback to the human
collaborator to repair their decision-making process.

Yu et al. (2020) proposed a general approach that utilized online human demonstrations to
directly instruct an agent’s behaviors. The method could alleviate the uncertainties caused
by human assessments and eliminate the offline pre-training used in most existing learning-
from-demonstration approaches. Using the approach, the authors investigated the interplay
among different shaping methods between humans and agents. The proposed adaptive shaping
algorithm, due to the interplay between different methods, could take the benefits of each
method to achieve a more robust and efficient learning performance.

Unlike most IRL approaches that require advice from experts, Celemin et al. (2019)
proposed to use human corrective advice in the actions domain for learning motor trajectories.
In policy search, they combined human feedback with reward functions. Compared with
standard reinforcement learning without human advice, the results showed that the proposed
method not only converges to higher rewards when learning movement primitives, but also
that the learning is sped up by a factor of 4 to 40 times, depending on the task.

1.2 Natural Language Processing

Another main topic of this thesis is Natural Language Understanding (NLU). Interactive
robot teaching with evaluative feedback makes it possible for non-expert human trainers
to communicate with a robot, but that is still less natural than what human beings would
prefer, which is "speaking". NLU techniques enable the natural language that people use to be
translated to executable formal language that can be interpreted by machines accurately.
Natural Language Interfaces (NUI) have long been a topic of Human-Robot Interaction
(HRI). SHRDLU (Winograd, 1980), for example, was an early natural language understanding
program, which allowed human users to carry on a conversation with the computer, naming

1.2. Natural Language Processing 13

collections and querying the state of a simplified "blocks world". The area has grown fast
in recent years. Existing work typically view the problem as a single step process, in which
a human operator gives an instruction and an automated agent is evaluated on its ability to
execute it (MacMahon, Stankiewicz, and Kuipers, 2006; Branavan et al., 2009).

A common way of understanding the meaning of a natural language command is to map
the utterance into a formal representation through semantic parsing (Zelle and Mooney, 1996).
Due to the complexity of natural language and the space of goals of the command, the size of
the logical forms produced may be open ended, therefore, structured prediction of the logical
form, for example, tree structures, is widely adopted.

Supervised learning of structured prediction models have been proposed and well discussed
during the past two decades (Zettlemoyer and Collins, 2012). Fully annotated logical forms
to be used as training samples are often hard to collect due their expense. If the structure
is simple, its ability of representing rich information is limited. If the logical forms are
complicated, which is common in many cases, only well trained people who are familiar
enough with both the natural language and the logical language can manually produce useful
language pairs. The tasks become labor-intensive and time-consuming, which limits the
expansion of the datasets.

Among most of the work in the area, NLP systems built by ML techniques can be
amazingly effective when plentiful labeled training data exists for the task. Unfortunately, for
broad coverage (both in task and domain and language) language understanding, it is rarely
the case where there is sufficient labeled data, and the system designer must find some other
ways for the Al system to learn, either through unsupervised learning over unlabeled data, or
through interaction with people (Daumé III, 2009). The current state of the art in different
areas of NLP is still very far from allowing fully automatic high quality results, therefore
human intervention is required to correct the output of the NLP engines.

Remarkable work has been done trying to solve the problem (Clarke et al., 2010; Liang
et al., 2016). Logical-form denotations as supervision enables part of the labeling work to be
acceptable by non-expert human labelers via weaker forms of language pairs (Krishnamurthy,
Dasigi, and Gardner, 2017; Pasupat and Liang, 2015).

In a dialog or question-answering problem, data labels can be answers to the question
posed instead of a logical language translation of the query; this type of labeling can be carried
out by a bigger group of non-expert human lablers (Wang, Berant, and Liang, 2015). Zheng et
al. (2019) proposed a systematic framework for answering natural language questions through
interaction. They let the end users verify the candidate mappings to cope with the ambiguities
and presented a query pre-fetching technique. The experiments over three benchmarks showed
that their interactive method for answering natural language questions through knowledge
graphs is promising and effective.

Branavan et al. (2009) presented an RL approach for mapping natural language instructions
to sequences of executable actions. During training, the learner repeatedly constructed action
sequences for a set of documents, executed those actions, and observed the resulting reward,
which required few or no annotated training examples. Their approach is built on the premise
that the reward function that defines the quality of the executed actions should be known.

Thomason et al. (2019) leveraged conversations with humans to expand small, hand-crafted
language understanding resources both for translating natural language commands to abstract
semantic forms and for grounding those abstractions to physical object properties. They made
several key assumptions, and the actions performed by the robot could be decomposed into
discrete semantic roles such as patient and source. Their research provides some inspirations
for further study.

Another important direction focused on bridging the gap between natural language com-
mands and the physical world used a set of pre-defined templates characterized by a small
vocabulary and grammar (Thompson et al., 1993; Mavridis, 2015; Klingspor, Demiris, and

14 Chapter 1. Introduction

Kaiser, 1997). Scientists have focused on grounding visual attributes and on learning spatial
relations and actions for small vocabularies with hard-coded abstract concepts (Roy, 2002;
Steels and Vogt, 1997; Matuszek et al., 2014; Kollar, Krishnamurthy, and Strimel, 2013).

In the last decade, Deep Learning (DL) methods for grounding spatial language is getting
attention as well (Bisk, Yuret, and Marcu, 2016; Tan and Bansal, 2017; Patel, Pavlick, and
Tellex, 2020). Here, human instruction is provided and an outcome is observed. Mehta and
Goldwasser (2019) considered the problem as an interactive process, in which the human
operator can observe the agent’s response to their instruction and adjust it by providing advice
consisting of a short sentence as online feedback.

As ground-breaking achievements in applying deep neural networks in other domains
occurred, such as computer vision and image processing, we have seen a clear trend in using
deep learning to solve classical natural language problems. Mudgal et al. (2018) explored the
combination of different choices for deep learning approaches for entity matching with three
different problem types and compared the effect of performance improvement with Magellan
as a baseline. It was shown that the deep learning solutions outperformed Magellan on textual
and dirty data. Overall, they provided comprehensive experiments that paved the path for
further investigations.

On the other hand, Bender and Koller (2020) argued that language modeling does not
learn meaning, instead, it only learns the form of the data. A clear understanding of the
distinction between form and meaning was of great help to select the right hill to climb
towards human-analogous natural language understanding. Kassner and Schiitze (2020) found
that pre-trained language models were extremely poor at handling negated sentences and
sentences that included distracting material. When facing question—answer pairs in open
domains, these models treated tasks more like shallow pattern matching.

In the specific domain of interactively learning tasks through natural language processing,
many classical studies investigated only learning of actions or grounding of words, but not both.
Additionally, they often used only a small set of tasks as well as very short and unnaturally
simplified utterances. Roesler and Nowé (2019) introduced a framework that used RL to learn
actions for several tasks and cross-situational learning to ground actions, object shapes and
colors, and prepositions by integrating the above-mentioned two components. The proposed
framework was evaluated through a simulated interaction experiment between a human tutor
and a robot. The results showed that the employed framework can be used for both action
learning and grounding.

Roesler et al. (2019) introduced a probabilistic model for grounding unknown synonymous
objects and actions and evaluated it through an interaction experiment between a human
tutor and Human Support Robot (HSR). The results showed that both semantic and syntactic
information enable grounding of unknown synonyms and that the combination of two achieved
the best grounding.

Patki et al. (2019) proposed a model that utilized encoded environmental information
within instructions for accurate and efficient natural language understanding. Experimental
results on two robots operating in different environments verified that compact environment
representations were learned through the content and structure of instructions.

By avoiding loss function construction and increasing the probability of zero-shot obedi-
ence to previously unheard commands, scalable human-robot interaction would make progress.
Experiments by Matthews and Bongard (2020) showed that a crowd of non-experts can not
only discover robots responsive to natural language commands, but also robots that obey
similar commands in similar ways.

Ni et al. (2020) proposed two structures: RCNN-BiGRU-CRF and BiGRU-Att-CapsuleNet-
BiGRU-CREF, which were used for an Internet Detection and Slot Filling joint task for Internet-
of-Things (IoT) Speech Understanding system, which they transferred to the medical field to
solve NLU issues in the construction of clinical voice assistants. The hybrid model structures

1.3. Dog-Inspired Learning 15

in this work can also help the semantic understanding module in 10T to realize key functions
of NLU in multiple scenarios well.

These approaches reduce the overall data-collection cost, but still require dedicated
annotation work to be done before the actual interaction between the final end users and the
models, which is not ideal. Resolving this concern inspired the work in this dissertation, and
is further discussed in Chapter 6.

1.3 Dog-Inspired Learning

This work introduces an implemented cross-domain approach that allows a non-technical,
non-expert, potentially-biased person to teach a robot agent to execute a complicated task with
natural human interventions. Specifically, it assumes the trainer:

1. is a general lay person that does not necessarily have a programming background.
2. is a non-expert that will not produce flawless expert demonstrations.
3. cannot give formulated or normalized commands according to some rubrics.

4. oftentimes provides ambiguous interactions that do not reflect his/her actual cognitive
state.

5. is impatient, meaning that his/her time is costly.

16 Chapter 1. Introduction

FIGURE 1.7: McQueen. A yorkie who accompanied the author during his

entire Ph.D. period. McQueen contributed to this dissertation as an inspiration.

The picture shows McQueen before (upper half) and after (bottom half)
training. "Yay! I got a treat!"

In accurately capturing the problem and developing an adaptive solution, the author takes
inspiration from teaching a dog, specifically one whose name is McQueen (Figure 1.7), to
perform desired behaviors following different human language commands. McQueen is a
Yorkshire terrier who met the author at the beginning of his Ph.D. journey, and has chosen to
stay with him ever since (maybe partially because he kept receiving positive rewards along the
way). He has inspired the author to think deeply about how a dog learns and behaves, and what

1.4. Contributions 17

a trainer should do to teach him in an effective way. Those ideas and experiences contribute
to Chapter 2 and Chapter 3 of the dissertation. The approach, though still quite far from the
unattainable intelligence of a puppy’s brain, seeks to mimic the process of understanding
human natural languages from scratch through interaction and decomposition, without relying
on pre-labeled data.

1.4 Contributions

This dissertation focuses on the problem of enabling non-expert human trainers to teach
complicated tasks to machines through natural modes of interaction.

Chapter 2 introduces Geometric Linear Temporal Logic (GLTL) as a way of representing
tasks of arbitrary complexity. It presents detailed instructions of how a GLTL formula can
be converted to a Markov Decision Process (MDP), and how to generate its policy through
value iteration. A key advantage of the GLTL representation is that a GLTL formula of high
complexity can be decomposed into simpler GLTL formulas, and a group of simple GLTL
formulas can build up complicated tasks efficiently.

Chapter 3 demonstrates that human feedback is policy-dependent, which means the
feedback that a human trainer gives to the agent is determined by the level of improvement of
the current action from the learned policy, not the quality of the current action independently.
A set of user studies support the claim.

COnvergent Actor-Critic by Humans (COACH) is proposed to learn from such policy-
dependent evaluative human feedback. Experiments in simulation environment compare
the performance of COACH, Q Learning, and TAMER, where each algorithm was tested
with three different types of feedback: sparse goal reward, stationary action reward, and
improvement reward, which is close to evaluative human feedback. The results suggest that
COACH with eligibility traces learns robustly with all three kinds of feedback, while Q
Learning and TAMER could only work with limited feedback types.

A qualitative experiment with a physical robot, TurtleBot, which runs real-time COACH,
a special version of COACH, was conducted. The experiment suggests that COACH can scale
to a complex domain involving multiple challenges, including fast decision cycle, noisy non-
Markov observations from a camera, and hidden agent perception from the trainer. COACH
successfully learned all of the five tasks while TAMER failed to learn the compositional
behaviors.

Chapter 4 presents a GLTL-based approach to learning tasks of arbitrary complexity
through decomposition. It describes the algorithm in detail, and experimental results in
a simulation environment. The results show that the GLTL-based algorithm outperforms
COACH and TAMER significantly. The feedback it takes for the GLTL-based algorithm
to finish four simple tasks is much less than that required by the other two algorithms. For
another five complicated tasks that possess compositional structure, GLTL-based algorithm
can handle all of them well while both TAMER and COACH failed to learn.

Furthermore, a series of user studies suggest that:

1. Non-expert people can decompose complex tasks into simpler units effectively.

2. The GLTL-based algorithm enables non-expert human trainers to teach simple tasks
through evaluative feedback given by the trainers.

3. Complex missions can be taught by non-expert human trainers through decomposing
them into simpler sub-tasks, and training the sub-tasks to build up the missions.

In Chapter 5, a deep sequence-to-sequence (Seq2Seq) approach is used to interpret natural
language commands and natural language feedback. The Seq2Seq algorithm can learn to

18 Chapter 1. Introduction

convert natural language to formal language—GLTL formulas—with minimal training data
provided incrementally.

Based on the insight of COACH, GLTL, and the Seq2Seq model, I introduce the approach
of Learning Interactively from Natural Guidance (LING), which enables the agent to learn
tasks of arbitrary complexity through decomposition and a combination of evaluative feedback
and natural language.

A qualitative user study suggests that a non-expert human trainer can teach a physical
robot running LING to learn complex tasks in a realistic scene, a living room, by giving
commands and feedback in natural language.

19

Chapter 2

Task Representation

2.1 Introduction

This chapter is about the representation of tasks in reinforcement learning. I introduce the
pros and cons of Markov decision processes (MDPs) with reward functions, the traditional
way of describing a task in reinforcement learning, then present Linear Temporal Logic
(LTL), a task-specification language that has been used for temporal goals, which are not
well handled by reward functions. I further explain the limitations of LTL in the scenario of
learning a real-world problem, and propose "Short-Circuit" Geometric Linear Temporal Logic,
a semantics for LTL that combines the advantages of both LTL and reward functions.

2.2 Markov Decision Processes

A variety of scenarios in the area of artificial intelligence (Al) can be formulated as agents
making sequential decisions in a discrete or continuous state space. Usually, the goal of an
agent is to make decisions optimally, meaning in a way that the long-term cumulative reward
that the agent receives in the whole process is maximized. MDPs have been widely used as a
standard mathematical framework for modeling such settings.

An MDP consists of five key elements:

<S/ A/ T/ R/ ’Y>/
where
» S is the set of possible states of the environment.

* A is the set of actions available to the agent.

T(s'|s,a) is the transition function, which defines the probability of the environment
transitioning to state s’ when the agent takes action a in environment state s.

* R(s,a,s’) is the reward function specifying the numeric reward the agent receives for
taking action 4 in state s and transitioning to state s’.

e v € [0,1] is a discount factor specifying the degree to which distant rewards are
preferred to more immediate rewards.

A stochastic policy 7t for an MDP is a per-state action probability distribution that defines
an agent’s behavior:
m:SxA—[0,1],

where

Y n(s,a) =1,Vs € 8.
acA

20 Chapter 2. Task Representation

In the MDP setting, the goal is to find the optimal policy 7%, which maximizes the
expected future discounted reward when the agent selects actions in each state according to

7.[*.

m* = argmaxE[) _ y'ri| 7],
n t=0

where 7; is the reward received at time t. Two important concepts in MDPs are:

* the value function (V)

* the action—value function (Q7).

The value function defines the expected future discounted reward from each state when

following some policy
o0

7 V(s) = E[)_7'r|so = s, 7]
t=0
and the action—value function defines the expected future discounted reward when an agent
takes some action in some state and then follows some policy 7t thereafter:

o)

Q" (s,a) = E[Y_v'r|so = s,a0 = a, 7).
=0

These equations can be recursively defined via the Bellman equation (Bellman, 1957):
V7(s) =Y m(s,a)Q"(s,a)
a

and
Q" (s,a) = ZT(S’]S,LI) [R(s,a,s") +yV7(s")] .

For shorthand, the value functions for the optimal policies are usually denoted V* and Q*.

In reinforcement learning, an agent interacts with an environment modeled as an MDP,
but does not have direct access to the transition function or reward function and instead must
learn a policy from environment observations.

MDPs serve as good models in most problems where a Markov assumption is true: At each
step, the agent could encode all the information relevant to predicting the effects of actions in
its internal representation. However, there are problems, some of which are important, that
cannot be formulated as an MDP. Such non-Markovian tasks are also named hidden-state
tasks, because some important state information is hidden from the agent’s representation of
the current state.

Consider a simple task where the state information consists of the current location of the
agent and the environmental information, ‘Please only go to the table if you’ve reached the
window’, the conditional probability of the agent to decide the actions of the current step
depends on, not only the current state, but also historical information. Therefore, it’s very
hard for many traditional RL models to work well with these kinds of tasks.

2.3 Linear Temporal Logic

Linear temporal logic (LTL) has been widely used as a specification language for complicated
missions (Manna and Pnueli, 1992; Baier and Katoen, 2008). The purpose of temporal logic is
the analysis of arguments about events and process in time. LTL’s expressiveness is enriched
by a set of atomic propositions and a group of logical operators, for example:

* negation (—),

2.3. Linear Temporal Logic 21

¢ disjunction (V),

* conjunction (A),

* material implication (—),
* next (O),

* always (L),

* eventually (),

e until (U),

¢ release (R).

Using these operators, there are a list of fundamental LTL representation formulas:

e —ga: "a has to be true at the current state",

e aV b: "Either a or b, one of them has to be true at the current state",

e a A b: "Both a and b have to be true at the current state",

e a — b: "If a is true, then b is true at the current state",

e (Oa: "a has to be true at the next state",

e [Ja: "a has to be true from the current state and stay true in all states forever",
» $a: "a has to be true at least one time in the future",

e aldb: "a has to stay true at least until b is true, if b is true then a does not have to be
true any more",

* aRb: "b has to stay true until and including the point where a becomes true for the first
time, if 4 never becomes true, b has to be true forever".

The task ‘Please only go to the table if you’ve reached the window’ can be expressed as
(—table) Uwindow.

More complicated missions can be formed through composition of these fundamental
LTL operators (Baier and Katoen, 2008). Once an LTL formula is chosen for a given RL
environment, the goal of the agent is to choose behavior that can maximize the probability
that the LTL formula expression is satisfied. The main advantage of using LTL is that it can
represent missions that are hard for simple reward functions, for example, non-Markov tasks.
Most standard MDP tasks (Barto, Sutton, and Anderson, 1983b; Russell and Norvig, 1994)
can be specified by LTL formulas.

LTL has been used well in the domains of robotics and control systems (Wongpiromsarn,
Topcu, and Murray, 2012; Kress-Gazit, Fainekos, and Pappas, 2009; Wolff, Topcu, and
Murray, 2012; Lahijanian, Andersson, and Belta, 2011).

On the other hand, there are limitations when applying LTL in RL problems. The
Simulation Lemma (Kearns and Singh, 1998), for example, says that, for any MDP and any
€ > 0, there exists an €’ > 0 such that finding optimal policies in an €’-close model of the
real environment results in behavior that is e-close to optimal in the real environment. This
property does not hold in the context of LTL tasks. In particular, there is an MDP and an
€ > 0 such that no €’-close approximation for €’ > 0 is sufficient to produce a policy with
e-close satisfaction probability (Littman et al., 2017).

22 Chapter 2. Task Representation

2.4 '"'Short-Circuit" Geometric Linear Temporal Logic

To solve the problems of combining LTL and reward functions in RL settings, I present
"Short-Circuit" Geometric Linear Temporal Logic, a special version of LTL. The brief idea of
"Short-Circuit" Geometric Linear Temporal Logic (GLTL) is to add discounting factors to
restrict the period of validity of the temporal operators. Similar ideas have been proved to be
effective in prior work (Almagor, Boker, and Kupferman, 2014; De Alfaro, Henzinger, and
Majumdar, 2003).

GLTL temporal operators expire after a geometrically distributed amount of time. An
analogous version of the LTL formula []A is specified as [, A in GLTL. It means that ”A has
to stay true for k time steps where k is a random variable following a geometric distribution
with parameter 3.”

Similarly, the LTL formula <) A becomes <), A, which means ” A becomes true in the next
k steps where k is a random variable following a geometric distribution with parameter y.” An
LTL formula like AU B is expressed in GLTL as AU, B, where A has to stay true at least
until B becomes true, and B needs to become true in the next k steps, where k is a random
variable following a geometric distribution with parameter y.

The geometric decay of GLTL settings can be considered as a generalization of discounted
reward as commonly used in MDP-based decision making. The advantage of GLTL over LTL
is very straightforward: It allows infinite tasks to be executable within a finite observation
bounding window.

This difference is significant in a real-world problem where the speed at which a task is
accomplished is important.

For example, when a housekeeper gives the command ‘go back to the charger’ to the
vacuum, the task might be interpreted as <{)charger. In an LTL setting, such formula does
not necessarily require the agent to find the shortest path to the charger since it’s true as
long as any time in the infinite future the state “agent is currently at the charger” becomes
true. Therefore, the agent can perform whatever actions it chooses and will not be considered
as violating the goal of the task. From a human perspective, it is weird to see the vacuum
running everywhere randomly, but its behavior cannot be considered as wrong in LTL since it
is possible that it may come to its charger sometime in the future.

In the GLTL setting, however, ‘go back to the charger’ is translated as <) charger. That
means the state “agent is currently at the charger” has to become true in the next k steps, where
k ~ G1(p). The vacuum will then find the optimal path to the charger to satisfy the GLTL
specification.

‘Stay at the charger, don’t walk around’ is another reasonable command a person might
give. In the LTL setting, it could be expressed as [lcharger, which will never be true in the
real world due to its requirement of needing to be true in the infinite future. This kind of tasks
leads to other problems. For example, in the training process, it is impossible for the agent to
learn such task a, since it can never be finished. When the trainer is a person, giving endless
feedback to the robot to teach a simple task is not acceptable. In the GLTL setting, where the
goal is specified as [J,,charger, the same task can be trained within k steps, k ~ G1(p).

A GLTL formula can be converted to an MDP-compatible formula recursively (Littman
etal., 2017). We review the basic construction from GLTL formulas to specification MDPs
here. Given a group of GLTL formulas ¢, ¢, ¢, and set of propositions P that can be
evaluated on S, we have:

* Forp € P, M, = (s,acc,rej, A, T, R) can be constructed that
if pistrue ats, T(s,a,acc) =1;
if pis false at s, T(s,a,rej) = 1;

* For —¢, M-y = My with acc and rej swapped;

2.4. "Short-Circuit" Geometric Linear Temporal Logic 23

* For ¢ A ¢2, My can be constructed from My, = (S1, Ay, T1,Ry) and My, =
<Sz, Az, Tz, R2> where
S =(S1\{r1}) x (S2\{r2}) U{r}, acc = (accy,accy),
A=Ay X Ay,
if s7 = rejy for (51,a1{5'1) € My, or sy = rejp for (s3,a2,55) € My,,
T((51152>/ <ﬂ1,ﬂ2),1’€]) = Tl(Sl,ﬂ],S&)TZ(SZ,HZ, 5/2)7
otherwise T((s1,52), (a1,a2), (s},55)) = Ta(s1,a1,57) Ta(s2, a2, 8%);

* $1Vr=((=¢1) A (=¢2));

* For {1, M<>#¢1 can be constructed from My, = (S1, A1, T1, Ry) where
S = 51,58 = s1, acc = accy, rej = rejy,
A=Ay,
and the transitions of M, 4, can be constructed from the transitions of My, shown in
Table 2.1;

* Ut = ~(Oul=¢1));

51 s" | p(s'lsy)
accy acc 1

e rejp | 1—u
51 H
rej7 | 1—u

TABLE 2.1: Transition (s,4,s’) in MDPy, 4, constructed from a transition
T(s,a,s)
Ty (s1,81,5])

s1\{accy, rej1 }

(s1,a1,s}) in My, . As above, p(s'[s]) =

More details such as MDP,, Uy g, CaN be found in (Littman et al., 2017).

The GLTL definitions above, although is already a reasonably significant improvement
from the classical LTL settings, still could not handle real-world problems in some cases. A
useful example is

O(a A Ob)

Under the GLTL semantics, for a sequence to satisfy the formula, it would need to include
states where a is consistently true and b is true at least sporadically.

Therefore I introduce the "Short - Circuit" GLTL semantics: This semantics matches
the GLTL semantics for simple formula like {>a. However, they differ for nested temporal
operators. For the formula

O(a A D)

24 Chapter 2. Task Representation

Under the short-curcuit semantics, the value of a is only checked in the beginning and then
each time b is checked. Thus, a need not always be true, but can be sporadically true if it is
synchronized with b.

The meaning of an expression ¢ in the context of a sequence position ¢ is a pair, consisting
of its truth value (first component) and the sequence position once that truth value is determined
(second component).

The first component of such a pair V(¢, t) is denoted with V(¢, t).1 and the second
component is denoted with V (¢, t).2. These values are random variables, so we take the
expectation of the truth value to be the overall value of the expression: E[V (¢,0).1].

Here is how V is defined:

V(tt,t) = (1,1 2.1)
oot
Via,b) _ (1,t) ifw (O) maps a to tt, 22)
(0,t) otherwise.
V(—¢,t) =(1-1v9,s) (2.3)
(0,min(sy,s7)) ifvy =0Av =0,
<O,51> ifoy =0A1v =1,
A\ ANy, t = 2.4
(91 ¢211) (0,55) ifo; =1A0vy =0, 9
(1, max(s1,s2)) ifvy =1A0vy =1
V(g1 Vg t) =V(a(=g1 A~¢),t) (2.5)
(0, k) ifk<s,
V(v t) =< (1,s) ifk>sAv=1, (2.6)
V($y¢,s+1) otherwise.
V(Ovy¢,t) =V(=(0—¢),t) (2.7)
(0, k) ifk <s; <sy,
<1,k> ifk=3s1=sAvp =1,
<0,k> ifk251252/\01:0/\0220,
V(piUypp, k+1) ifk=s1 =55 Av1 =1Av =0,
W(¢1u7q>2,k+l) ifs) <k<syANvy =1,
(0,s1) ifsg <k<syANvy =0,
V(1 Uy, t = 2.8
((Pl 'Y(PZ) <1,52> ifSl<52§k/\7)1:1/\02:1, ()
V(p1Uypp, k+1) ifs; <sp <kAvy=1Avy =0,
(0,s1) ifs1 <sp <kAvy =0,
<O,k> ifk<52§51,
<1,52> iszSk/\Sz<Sl/\02:1,
(0,s2) otherwise.
V(g1 — ¢2,t) =V((—¢1) V¢, t) (2.9)
V(O t) =V(pt+1) (2.10)
Here,
v=V(¢p,1).1,

2.5. Samples 25

01 = V((Pl/ t).l,
81 = V((Pl, t).2,
Uy = V((Pz, t).l,

Sy = W(gbz, t).2,
k, k1, and ky are chosen geometrically with parameter .

2.5 Samples

Here are a few samples to demonstrate how the "Short - Circuit" GLTL semantics apply to
real-world problems:

Position O Position 1 Position 2
A = True A = False A = False
B = False B = False B = True

FIGURE 2.1: The simple 1 by 3 grid world.

Figure 2.1 illustrates a 1 by 3 simple grid world environment that contains two elements
‘A’ and ‘B’. Here the two elements are the atomic propositions of this environment.

* At the very left cell, which is position 0, A is true and B is false.
At the center cell, which is position 1, both A and B are false.
* At the very right cell, which is position 2, B is true and A is false.

Consider the following formula:

Q(ANOB)

It requires the agent to reach to the cell where A is true, then go to the cell where B is true,
wherever it starts.

26 Chapter 2. Task Representation

State (p=1,f=°(AA©B))

at position 0, A =True

State (p=0,f=<¢(T A ©°B))

State (p=0, f=©(°B))

State (p=0, f=°B)

FIGURE 2.2: The change of status of the formula eventually (A and eventually
B) at position 0 where A = True, B = False.

Figure 2.2 shows the change of the "status" of the formula assuming the agent is at position
1, the center cell initially:

» At the very first state, sg, where the agent is at position 1, the state information can be
represented as

p =1, formula = (AN $B)
where p stands for position;

* The agent follows the policy of the MDP which is converted from the formula and goes
left to position 0. Now the state information becomes

p =0, formula = {(True A $B)

* According to the rule of GLTL,
p =0, formula = {(True A $B)

is equivalent to

p =0, formula = $(OB)

p =0, formula = {($B)

is equivalent to
p =0, formula = B

2.6. Conclusion 27

similarly

* The agent will then move right to position 1 at the next step, and then go on to position
2 following the expected behavior of the remaining status of the formula: <{»B.

* When the agent arrives at position 2 finally, the whole task

Q(ANEB)

is finished.

State (rejected) State (p =1, f=°(A A ©B))

- Action = stay, prob = u
Action = stay,[prob = u

Action = left,
prob =1 — p | Action = stay,
rob =1 —
Action = right, P -

b=
State (p=1, f= (A A ©B)) prob=u State (p=2, f= ©(A A ©B))

State (p =2, f= (A A ©B))

Action = right,
prob=1—pu

Action = stay,
prob =1 —

Action = left,
prob = p

Action = left,
prob=1—u

Action = left, prob = u
Action =right, prob=1 — pu

Action =stay, prob =1 — p Action = left, prob =1 — pu

Action =stay, prob =1 — u

Action =right, prob = 1

Action = right,

State (p =0, f=©B) prob=u State (p=1,f=©B) State (p=2,f=T)
Action = left,
prob = p
Action = stay, prob = pu Action = stay| prob = u

State (p =0, f=©B) State (p=1,f=°B) State (accepted)

FIGURE 2.3: The transitions between states of the formula eventually (A and
eventually B) in the simple 1 by 3 grid world.

The detailed overall transition map of this environment is presented by Figure 2.3. In
any given environment, there is an extended space which creates a virtual state of "accepted"”
(marked in green at the bottom right of the graph) that represents the S, in the GLTL definition.
In the real-world problem, the state of "accepted" means that the entire GLTL formula is
considered to be finished correctly.

There is also a virtual state of "rejected" (marked in red at the top left of the graph) that
represents the S, in the definition, which means the GLTL formula can not be satisfied from
the current state. For every possible transition between two states, we use a function of y
to denote the probability of the state becoming terminated as "accepted" or "rejected”. In
Figure 2.3, the red arrows and captions represent the transitions to the state of "rejected", and
the green arrow represents the transition to the "accepted" state.

2.6 Conclusion

In contrast to standard MDP reward functions, we have provided a “Short-Circuit” Geometric
Linear Temporal Logic (GLTL) semantics, an environment-independent specification for tasks.
We have shown that this specification language can capture standard tasks used in the MDP

28 Chapter 2. Task Representation

community and that it can be automatically incorporated into an environment MDP to create a
fixed MDP to solve. Maximizing reward in this resulting MDP maximizes the probability of
satisfying the task specification.

29

Chapter 3

Interactive Learning through
Evaluative Human Feedback

This chapter investigates the problem of interactively machine learning from evaluative human
feedback. The fundamental idea comes from the way that dogs get trained — human trainers
use treats and alert tools during training, give the dog treat for performing well, and alert
the dog when the it does something wrong. Most existing work in this domain are based on
the assumption that the feedback that human trainers give depends on the desired behavior
of the goal of the task, and has nothing to do with the current policy of the learner. In this
chapter, I 1l show empirical results that lead to the opposite opinion, that human feedback is
policy-dependent.

Based on the insight discovery, I present Convergent Actor-Critic by Humans (COACH),
an algorithm that could learn such policy-dependent feedback. COACH assumes that the
advantage function (a value roughly corresponding to how much better or worse an action
is compared to the current policy) provides a better model of human feedback, capturing
human-feedback properties like diminishing returns, rewarding improvement, and giving
0-valued feedback a semantic meaning that combats forgetting (MacGlashan et al., 2017).

A series of comparative experiments in simulated environments were conducted to further
show that COACH could perform well on goal feedback and stationary feedback, while
classical algorithms, i.e., Q-Learning, TAMER can only learn from one or two types of
feedback. To test whether COACH can learn from a real human trainer who gives evaluative
numerical feedback, an experiment with a physical robot was done at last.

3.1 Human-Centered Reinforcement Learning

Traditionally, feedback in reinforcement learning usually comes from a hand-designed or
automatically-constructed (Singh, Lewis, and Barto, 2009) reward function. Reward functions
are the most common representations for tasks, mapping state features to scalar values (Sutton
and Barto, 1998b; Littman, 2015). They can be learned from expert demonstration via inverse
reinforcement learning (IRL) (Ng and Russell, 2000; Abbeel and Ng, 2004; Ziebart et al.,
2008; Babes et al., 2011).

Human-Centered Reinforcement-Learning (HCRL) aims at solving problems of which the
environment can be specified as an MDP while the rewards are not defined by the environment
or the goal —it comes from a real human trainer.

Most existing RL approaches pale when the signals of reward come from humans and have
largely failed to benefit from the sophisticated training strategies that expert animal trainers
use with animals.

This failure has led to the development of new RL algorithms that are designed to learn
from human-generated rewards and investigations into how people give interactive feed-
back (Knox and Stone, 2009a; Thomaz and Breazeal, 2006; Thomaz and Breazeal, 2007;
Thomaz and Breazeal, 2008; Griffith et al., 2013; Loftin et al., 2015).

30 Chapter 3. Interactive Learning through Evaluative Human Feedback

(Cruz et al., 2016) employed an IRL approach for the domestic task of cleaning a table.
They compared three different methods and learned that the level of consistency of feedback
was important. Training robotic agents with interactive feedback and contextual affordances
presented an advantage over classic RL in terms of number of performed actions and collected
reward. They claimed that the agent was able to learn the proposed cleaning task even when
receiving wrong or inconsistent feedback in some time steps during the learning process.

(Krening and Feigh, 2019) proposed to investigate how the design of the interaction
method for a Bayesian Q-Learning algorithm impacts human’s experience of teaching the
agent. They conducted a human-in-the-loop experiment in which people trained two agents
with different teaching methods (critique and action advice) but the same underlying RL
algorithm. Their results showed that an agent that learned from action advice created a better
user experience compared to an agent that learns from critique. According to the results,
they determined nine main characteristics of an algorithm’s design that impact the human’s
experience with the agent, including using human instructions about the future, compliance
with input, empowerment, transparency, immediacy, a deterministic interaction, the complexity
of the instructions, accuracy of the speech recognition software, and the robust and flexible
nature of the interaction algorithm.

The majority of these algorithms are designed based on the assumption that human
feedback only depends on the desired behavior of the task regardless of the actual performance
or policy of the learner.

In an abstractly formalized situation, trainers use positive numeric feedback as reward and
negative numeric feedback as punishment to teach target policies. If feedback is stationary and
intended to be maximized, it can be treated as a reward function that standard RL algorithms
could use. Experiment in this chapter, on the other side, finds different results. A few
approaches have also found similar phenomenon (Ho et al., 2015; Knox et al., 2012; Isbell
et al., 2001). I’ll demonstrate why most previous algorithms suffer in this situation through
empirical results.

3.2 Human Feedback is Policy-Dependent

Previous approaches commonly assume that human trainer normally gives stationary feedback
depending on only the quality of an agent’s selection of its actions, thus the human feedback
can be considered as a reward function. They proposed that standard reinforcement learning
algorithms can be used in the way that the agent could find an optimal policy to maximize the
rewards it could receive in the process (Pilarski et al., 2011; Isbell et al., 2001).

3.2. Human Feedback is Policy-Dependent 31

D&

Positive Reward Cycle

>

FIGURE 3.1: The goal of the task is to teach the robot to move to the red flag

at the bottom left corner. The human trainer gives big positive reward when

the robot moves closer to the flag, and small negative reward when it moves
away, which leads to a positive reward cycle.

On the other hand, if general human feedback is policy-dependent, algorithms that rely on
the wrong assumption may result in unexpected learning performance. In some cases where
non-expert human trainers tend to be “over friendly”, some of the feedback could form a
positive reward cycles as shown in Figure 3.1.

A positive reward cycle is a special feedback pattern that is maximized by a looping
behavior that endlessly accrues a net positive return. When a positive reward circle occur in
the training process, the agent will likely converge to local optimal result instead of global
optimal policy. It can cause the agent to perform unintended behaviors due to unanticipated
exploits (Knox, 2012; Ho et al., 2015).

One possible reason to the problem is that people tend to give more reward to the agent for
improving its performance than maintaining the previous status. Moreover, if the agent main-
tains the same level of performance for a long time without showing evidence of improvement,
the human trainer may become disappointed and give O reward or even negative reward to the
same behavior over time. It’s common in the dog training scenario where a young puppy can
easily get huge treat for learning how to ’sit’, but a well trained adult dog may get nothing for
doing the same thing.

Another example can be observed in k-12 education, that if a student whose past GPA was
C may feel very happy to get a B, but a student with A+ GPA may feel bad with a B. The
same behavior, getting a B, could receive different feedback in the same environment. Such
type of feedback is considered as policy dependent. A policy-dependent feedback is decided
by the current policy of the learner, that how better or worse the learner’s current action is
compared to his previous performance.

In general, human feedback can be considered to have three properties (MacGlashan et al.,
2017):

* Diminishing returns.
As the learner performs better over time, the positive feedback from human trainers

32 Chapter 3. Interactive Learning through Evaluative Human Feedback

decrease because they think "it’s already been learned".

* Differential feedback.
The strength of feedback varies with improvement and deterioration.

* Policy shaping.
It reinforces sub-optimal actions, then punishes them and raises the bar.

3.2.1 Empirical Results

Click 'Go' to start today's training.

Punish

Bad Dog
” BT porotiing
I I

s

FIGURE 3.2: The training interface that was shown to the participants during
the online study.

We conducted an online experiment on Amazon Mechanical Turk (AMT). Participants were
recruited through AMT, and signed the research consent before the official experiment (Mac-
Glashan et al., 2017).

Participants were shown an user interface as displayed in Figure 3.2, which was a 2 by 5
grid world. For each episode, a dog always started from the cell on the right of the bottom left
corner, and went to the destination. There were two green cells representing grass, which the
dog should avoid touching. The destination is at the bottom right corner colored in yellow.

Participants were asked to train the dog to find a way to go to the yellow destination as
fast as possible. They were also told that the dog should never touch the green cells. In the
orientation, they were informed that as a result of prior training, their dog had already learned
one of the three behaviors, which were “bad”, “alright”, and “good”.

In all cases, the dog would start from the same location shown in Figure 3.2:

* “Bad” dogs went right and walked straight through the green cells to the yellow cell.

* “Alright” dogs first moved left, then up, and then to the goal, avoiding green but not
taking the shortest route.

3.2. Human Feedback is Policy-Dependent 33

* “Good” dogs took the shortest path to yellow without touching the green cells.

All participants were randomly assigned to three groups. Before the training got started,
participants watched the behaviors that their dogs had learned, which was one of the three
conditions depending on which group the participant belonged to.

During training, participants saw the dog take an action, and then gave feedback after
every action using a continuous labeled slider as shown. The slider always started in the
middle of the scale on each trial, and several points were labeled with different levels of
reward (praise and treats) and punishment (scolding and a mild electric shock). Participants
went through a brief tutorial using this interface. Responses were coded as a numeric value
from —50 to 50, with “Do Nothing” as the zero-point (MacGlashan et al., 2017).

During the training phase, participants trained a dog for three episodes. The first two
episodes were same as the learned behavior that had been told to the participants. The last
episode, regardless of which group the participants belonged to, were all an *Alright’ track.

Improving Condition: bad - bad —»|

Steady Condition: — e d alright

Degrading Condition: good —» good —» =

FIGURE 3.3: The three conditions of the dog in three consecutive episodes.

Therefore, each user could see one of three different conditions as shown in Figure 3.3:

e “Improving”:
The dog performed “Bad” behavior in the first two episodes, and then behaved “Alright”
in the third episode, which formed an “improving” condition.

» “Steady”:
The dog performed “Alright” behavior in all three episodes.

* “Degrading”:
The dog performed “Good” behavior in the first two episodes, then behaved in an
“Alright” way in the third episode.

Because the behavior is identical in the final episode for all conditions, if human feedback
is independent from the learner’s policy, the expectation of feedback of all three groups would
be the same since the behavior that the participants gave feedback to were exactly the same.

34 Chapter 3. Interactive Learning through Evaluative Human Feedback

However, if feedback is policy dependent, we would expect more positive feedback for the
improving condition.

7

25

Final Episode First Respon

Improving Steady Degrading
Condition

FIGURE 3.4: The feedback distribution for first step of the final episode for
each condition. Feedback tended to be positive for improving behavior, but
negative otherwise.

The boxplots results are displayed in Figure 3.4. The "Improving condition” group are
shown in the blue area, the ”Steady condition” group are in green area, and the "Degrading
condition” group are in red area. The vertical axis represents the first response that the
participants gave to the last episode they watched.

We can see that even though the behaviors of the dogs in the last episode were exactly the
same to all participants of all three groups, the “Improving condition” received significantly
more positive feedback than the other two conditions. The results clearly supported our
hypothesis that human feedback is policy-dependent.

3.3 Convergent Actor-Critic by Humans

Based on the discovery that human feedback is policy dependent, we used the Advantage
Function (Baird, 1995) to simulate human feedback.
The advantage function A™ is defined as

A" (s,a) = Q™ (s,a) — V7 (s). (3.1)

The advantage function measures how much better or worse an action selection is compared
to the agent’s performance under its current policy 7t.
According to the policy gradient algorithm introduced by (Sutton et al., 1999), we have:

AO = aVop =a) d"(s))_ Ver(s,a)Q"(s,a),

3.3. Convergent Actor-Critic by Humans 35

where

s represents the state information;

a represents the action selection at s;

0 is the parameters that decide the agent’s behavior;

w is the step size, also known as the learning rate;

o is the discounted expected reward from a fixed start state distribution;

d™(s) is the component of the stationary distribution at s;

Therefore, the update of the policy 7t at time f can be denoted as:

Aet = thQﬂ(St,ﬂt)%, (32)

Here, f;,1 is the feedback from the trainer, which is real people in this problem.

If

and

the human feedback is policy dependent, we have

ft = Qn(stzﬂt)/

E(fi+1] = Q" (st,a¢) —v(s),

we get a convergent learning algorithm.
Consider feedback

ft = Qn(st/at) - Vﬂ(st) = Aﬂ(St,at),

It will also converge since the trainer needs to ’guess” the current policy 7t of the learner
through evaluating the actions that the agent take from each state.

Comparing real human feedback to the advantage function, we can see that the advantage
function is consistent with the three properties of human feedback;

Diminishing returns.

As the policy 7t of the learner gradually optimizes over time, the potential space for
further improvement decreases, therefore the simulated feedback from the advantage
function will diminish. If the policy becomes optimal, which means there is no room
for improvement any more, then the simulated feedback generated by the advantage
function becomes zero or negative.

Differential feedback.

The advantage function demonstrates the magnitude of improvement of an action over
the current policy of the learner, therefore the feedback will be differential similar to
human feedback.

Policy shaping.
If the current action shows improvement over the current policy of the learner, then the
simulated feedback is positive, otherwise it’ll be negative.

Therefore it’s reasonable to use the advantage function to simulate the policy-dependent
human feedback. In reality, human feedback is richer and sometimes unpredictable, which can
not be perfectly represented by the advantage function. I'm sure there can be other approaches

36 Chapter 3. Interactive Learning through Evaluative Human Feedback

to simulate human feedback better, but it is not the main purpose of this chapter. The research
of stronger simulation of real human feedback may be a promising topic for further research.

Moreover, real human feedback, if allowed by the learning algorithm, is normally not
numerical. Most common people use much more natural language than positive or negative
evaluative feedback to train their pets, this part is discussed in Chapter 5.

3.3.1 Real-time COACH

Applying Equation 3.2 to stationary environment is demonstrated in the comparison experi-
ment, which will be presented in the next section. In real-world experiment with a physical
robot, however, the robot moves in a continuous setting, which requires the problem of credit
assignment to be well resolved (Knox and Stone, 2009a).

Due to reaction time, human feedback is typically delayed by about 0.2 to 0.8 seconds
from the moment an action happens to the moment the agent (robot) receives feedback to that
action (Knox, 2012). First of all, it takes time for people to observe an “action” due to the
time cost of the robot finishing the desired behavior; Secondly, it’s hard to tell when an action
ends if the robot keeps moving without a stop break; Thirdly, sometime it takes a short while
for the human trainer to decide what feedback should be given to the robot’s behavior; Lastly,
signal transmission takes time, too.

To handle this delay, feedback in Real-time COACH is associated with events from d
steps ago to cover the gap.

Another important challenges in a continuous real-world problem is sparse feedback. It’s
quite often when the human trainer could not tell the beginning and end of an action. When
the robot keeps moving, a human trainer may give feedback when he thinks the robot has
finished doing something and is waiting for his command. On the other hand, according to
the diminishing return property of human feedback, many people tend to give feedback less
frequently over time.

In order to handle the challenges, we introduce Real-time COACH 1:

Algorithm 1 Real-time COACH
Require: policy 7tg,, trace set A, delay d, learning rate a
Initialize traces ey < O VA € A
observe initial state sg
fort =0tocodo
select and execute action a; ~ 77, (s, *)
observe next state s;1, sum feedback f;1, and A
for A’ € A do

! 1
ey < AMey + mvef 7o, (St—d, A1)

end for
0i11 < 0 +afiiiey
end for

We choose reward aggregation for variable magnitude reward (Knox and Stone, 2009a),
where a trainer selects from a discrete set of feedback values and further raises or lowers the nu-
meric value by giving multiple feedbacks in succession that are summed together (MacGlashan
etal., 2017).

eligibility traces (Barto, Sutton, and Anderson, 1983a) are used to assign credits to their
target states and actions. An eligibility trace is a vector that keeps track of the policy gradient
and decays exponentially with a parameter A. Policy parameters are then updated in the
direction of the trace, allowing feedback to affect earlier decisions.

3.4. Comparison of COACH, Q Learning, and TAMER in Simulated Grid World 37

Sparse feedback for real-time models means that the feedback to some states are zero,
or neutral. According to the diminishing return property and differential feedback property
of human feedback, neutral feedback does not mean there’s no useful information for the
algorithm to update its policy. When a human trainer gives no feedback, it could imply that
he’s okay with the current action selection of the agent comparing to the policy of the learner,
meanwhile he has not seen improvement from previous performance.

For Real-time COACH, the Advantage Function suggests that neutral feedback may be a
good signal that the learner is not doing worse than before.

In the pilot study, we observed that some trainers were very passionate to give feedback,
that their feedbacks were too frequent for the algorithm, it can destabilize learning. Actually
if feedback is equal to the sign of the advantage function:

e +1,if A™(s,a) > 0;

e -1,if A™(s,a) < 0;
then using eligibility traces can cause this destabilization.

For this reason, it can be useful to give the trainer two or more feedback channels that are
associated with different eligibility trace A values; one that is near zero for more frequent local

feedback, and one with a larger A for critiquing longer histories. This discovery contributes to
later research presented in Chapter 5.

3.4 Comparison of COACH, Q Learning, and TAMER in Simu-
lated Grid World

Goal

Start 45

FIGURE 3.5: The simulated 8 x 5 grid in which the agent starts in 0, 0 and
must get to 7, 0, which yields +5 reward. However, from 1,0 to 6, 0 are cells
the agent needs to avoid, which yield —1 reward.

38 Chapter 3. Interactive Learning through Evaluative Human Feedback

To understand the behavior of COACH with different types of trainer feedback strategies, we
carried out a controlled comparison in a simple grid world as is shown in Figure 3.5. The
domain is essentially an expanded version of the dog domain used in our human-subject
experiment. It is a 8 x 5 grid in which the agent starts in 0,0 and must get to 7,0, which
yields +5 reward. However, from 1,0 to 6,0 are cells the agent needs to avoid, which yield
—1 reward.

3.4.1 Learning Algorithms and Feedback Strategies

Three types of learning algorithms were tested. Each maintains an internal data structure:
It updates with feedback of the form (s, a, f,s"), where s is a state, a is an action taken in
that state, f is the feedback received from the trainer, and s’ is the resulting next state. The
algorithm also must produce an action for each state encountered.

The first algorithm, Q learning (Watkins and Dayan, 1992), represents a standard value-
function-based RL algorithm designed for reward maximization under delayed feedback. It
maintains a data structure Q(s, a), initially 0. Its update rule has the form:

AQ(s,a) = aff + 7y max Q(s',a") — Q(s,a)). (3.3)

Actions are chosen using the rule: arg max, Q(s,), where ties are broken randomly. We
tested a handful of parameters and used the best values: discount factor y = 0.99 and learning
rate « = 0.2.

In TAMER (Knox and Stone, 2009b), a trainer provides interactive numeric feedback that
is interpreted as an exemplar of the reward function for the demonstrated state—action pair as
the learner takes actions. We assumed that each feedback applies to the last action, and thus
used a simplified version of the algorithm that did not attempt to spread updates over multiple
transitions. TAMER maintains a data structure Ry (s, a) for the predicted reward in each state,
initially 0. It is updated by: ARy(s,a) = af. We used &« = 0.2. Actions are chosen via an
e-greedy rule on Ry (s,a) with e = 0.2.

Lastly, we examined COACH, which is also designed to work well with human-generated
feedback. We used a softmax policy with a single A = 0 trace. The parameters were a matrix
of values 0(s, a), initially zero. The stochastic policy defined by these parameters was

7T(S, a) = eﬁe(s,ﬂ)/ Zeﬂe(s,g),

with B = 1. Parameters were updated via

AB = aVyri(s,a) f , (3.4)
7(s,a)
where « is a learning rate. We used o« = 0.05.

In effect, each of these learning rules makes an assumption about the kind of feedback it
expects trainers to use. We wanted to see how they would behave with feedback strategies
that matched these assumptions and those that did not.

The first feedback strategy we studied is the classical task-based reward function (“task’)
where the feedback is sparse: +5 reward when the agent reaches the goal state, —1 for
avoidance cells, and O for all other transitions. Q-learning is known to converge to optimal
behavior with this type of feedback.

The second strategy provides policy-independent feedback for each state—action pair
(“action”): +5 when the agent reaches termination, +1 reward when the selected action

3.4. Comparison of COACH, Q Learning, and TAMER in Simulated Grid World 39

matches an optimal policy, —1 for reaching an avoidance cell, and 0 otherwise. This type of
feedback serves TAMER well.

The third strategy (“improvement”) used feedback defined by the advantage function of
the learner’s current policy 71, A™(s,a) = Q™(s,a) — V™ (s), where the value functions are
defined based on the task rewards.

Instead of providing this feedback signal on every state transition, we included a parameter
p that determined the probability of delivering feedback. This parameter was meant to capture
the idea that real human trainers are unlikely to provide feedback on every single step due to
fatigue. We set p = 0.5. This type of feedback is very well suited to COACH.

3.4.2 Results

Each combination of algorithm and feedback strategy was run 99 times with the median
value of the number of steps needed to reach the goal reported. Episodes were ended after
1,000 steps if the goal was not reached. The results are presented in Figure 3.6, Figure 3.7,
Figure 3.8, and Figure 3.9, which show the steps to goal for Q learning (blue), TAMER (red),
and COACH (yellow) in the grid world. The y-axis are on a logarithmic scale.

= (J Leaming —— TAMER COACH

8

<]
el
(3 "JW"’A"A . "\f\,h J‘_W\m\h i, Y ;“V J./-.M""_.
o
n 4
&
L)
] - s —

2

0

20 40 60 B0 100
Episodes

FIGURE 3.6: Task feedback. COACH is without eligibility traces. Steps to
goal for Q learning (blue), TAMER (red), and COACH (yellow) in the grid
world. The y-axis is on a logarithmic scale.

40 Chapter 3. Interactive Learning through Evaluative Human Feedback

= QLearning = TAMER COACH

In(Steps to Goal)

FIGURE 3.7: Task feedback. COACH is with eligibility traces. Steps to goal
for Q learning (blue), TAMER (red), and COACH (yellow) in the grid world.
The y-axis is on a logarithmic scale.

Figure 3.6 shows the steps needed to reach the goal for the three algorithms trained with
task feedback. The figure shows that TAMER can fail to learn in this setting. COACH also
performs poorly with A = 0, which prevents feedback from influencing earlier decisions. We
did a subsequent experiment (shown in Figure 3.7) with A = 0.9 and found that COACH
converged to reasonable behavior, although not as quickly as Q learning. This result helps
justify using traces to combat the challenges of delayed feedback.

3.4. Comparison of COACH, Q Learning, and TAMER in Simulated Grid World 41

—— Q Leaming —— TAMER COACH

8

B
T
o
[}
B
w0 4
g
C‘«E e e T s
=

2

0

20 40 G0 80 100
Episodes

FIGURE 3.8: Action feedback. Steps to goal for Q learning (blue), TAMER
(red), and COACH (yellow) in the grid world. The y-axis is on a logarithmic
scale.

Figure 3.8 shows results with action feedback. This time, Q learning fails to perform
well, a consequence of this feedback strategy inducing positive behavior cycles as it tries to
avoid ending the trial, the same kind of problem that HCRL algorithms have been designed to
avoid. Both TAMER and COACH perform well with this feedback strategy. TAMER performs
slightly better than COACH, as this is precisely the kind of feedback TAMER was designed to
handle.

42 Chapter 3. Interactive Learning through Evaluative Human Feedback

— O Leaming —— TAMER COACH

8

B
T
5]
Ll
k=
@ 4
&
@ = —tm
£

.

0

20 40 B0 80 100
Episodes

FIGURE 3.9: Improvement feedback. Steps to goal for Q learning (blue),
TAMER (red), and COACH (yellow) in the grid world. The y-axis is on a
logarithmic scale.

Figure 3.9 shows the results of the three algorithms with improvement feedback, which
is generated via the advantage function defined on the learner’s current policy. These results
tells a different story. Here, COACH performs the best. Q-learning largely flounders for most
of the time, but with enough training sometimes start to converge. (Although, 14% of the
time, Q learning fails to do well even after 100 training episodes). TAMER, on the other hand,
performs very badly at first. While the median score in the plot shows TAMER suddenly
performing more comparably to COACH after about 10 episodes, 29% of our training trials
completely failed to improve and timed-out across all 100 episodes.

In the real world, human trainers are unlikely to always give feedback at each step. In
many cases people give feedback at a much lower density. In an comparison between the
performance of Q Learning, TAMER and COACH with "improvement" feedback strategy at
different level of feedback density. We find out that TAMER is not robust when the feedback
density changes, it does not converge when the feedback density is less than 60%, which is
because TAMER relies on sufficient feedback. Q learning is robust, and it runs well when
the feedback is sparse, while the performance decreases when more feedback is given by the
trainer. COACH, on the other side, achieves a robust and good consistently good performance,
it has maintained similar score (the number of steps to goal) since the feedback density reaches
30%.

3.5. Robot Case Study 43

3.5 Robot Case Study

Hide Task

Training

FIGURE 3.10: The TurtleBot experiment in the Rlab of Brown University.
The human trainer is about to train the TurtleBot to learn to ’hide” when it
sees the pink ball.

We applied Real-time COACH on a physical TurtleBot robot (Amsters and Slaets, 2019) to
further study whether COACH can scale to complex domain and enable real human trainer to
teach a real robot tasks through evaluative feedback as shown in Figure 3.10.

The TurtleBot is a mobile base with two degrees of freedom that senses the world from
a Kinect camera. We used the RGB image changels on the Kinect so that the target objects
in the study: a pick ball, and a fixed cylinder with an orange top, can be recognized by the
TurtleBot.

The action space of the TurtleBot is:

¢ move forward,

move backward,

rotate clockwise,
¢ rotate counterclockwise,
* stay (do nothing).

The agent decides an action to take every 33ms. A Nintendo Wii controller was used to
give +1, +4, or —1 numeric feedback, pause, and continue training.

The features were constructed by first transforming the image into two color channels
associated with the colors of the ball and cylinder. Sum pooling to form a lower-dimensional

44 Chapter 3. Interactive Learning through Evaluative Human Feedback

8 x 8 grid was applied to each color channel. Each sum-pooling unit was then passed through
three different normalized threshold units defined by

Ty(x) = min(>, 1),
bi
where ¢; specifies the saturation point. Using multiple saturation parameters differentiates
the distance of objects, resulting in three “depth” scales per color channel. We selected the
threshold values to detect our objects on 3 different relevant scales. Finally, we passed these
results through a 2 X 8 max-pooling layer with stride 1. (MacGlashan et al., 2017)
Five different tasks were designed and conducted:

* push - pull:

For the task ”push - pull”, the TurtleBot was trained to navigate to the ball when it is
far, and back away from it when it is near.

 hide:

FIGURE 3.11: In the training period of the “hide” task, the agent received a
punishment signal, which was a negative feedback when it went near the pink
ball. The red circle at the upper left shows the reward signal.

For the task "hide”, the goal is to teach the agent to move away from the ball. If the
agent is distant from the ball, then the trainer needs to teach it to turn away from facing
the ball.

The agent receives a negative feedback as punishment from the human trainer as is
presented in Figure 3.11, where the red circle at the upper left of the screen shows the
negative reward.

3.5. Robot Case Study 45

FIGURE 3.12: In the "hide” task training, the agent received a reward signal,
which was a positive feedback when it went away from the pink ball. The
blue square at the upper left shows the reward signal.

Figure 3.12 shows the agent receives a positive feedback when it goes away from the
pink ball. The blue square at the upper left corner of the image shows the real-time
reward signal given by the human trainer.

46

Chapter 3. Interactive Learning through Evaluative Human Feedback

Hi

Verification

FIGURE 3.13: In the verification test of the "hide” task, the agent captured
the pink ball and was about to behave according to the policy it had learned.
No feedback was given by the human trainer during verification.

When the human trainer thought the agent had learned the task, he stopped training, and
the agent was ready for the verification test. In the verification test, the agent received
no feedback. Figure 3.13 and Figure 3.14 demonstrate the behavior of the agent, that it
went backwards to get away from the pink ball.

3.5. Robot Case Study 47

FIGURE 3.14: In the verification test of the "hide” task, the agent saw the

pink ball and went away from it, which was what it had been trained by the

human trainer to do to "hide". No feedback would be given by the human
trainer during verification.

* ball following:

48 Chapter 3. Interactive Learning through Evaluative Human Feedback

FIGURE 3.15: In the ball following” task, the human trainer gave a positive
feedback when the TurtleBot went to the pink ball.

For the “ball following” task, the goal is to teach the TurtleBot to move to the ball and
follow it. Figure 3.15 shows that the human trainer gave a positive feedback to the agent
when it went closer to the pink ball.

e alternate:

3.5. Robot Case Study 49

INICIQEICHER

Verification

FIGURE 3.16: In the “alternate” task, the TurtleBot was trained to go back
and force between the pink ball and a cylinder.

For the “alternate” task, the agent was first trained to navigate to the ball when it saw
the ball, and then turn away when it’s near. Then the trainer replaced the ball with the
cylinder and repeated the training process 3.16.

After the two rounds of training, the agent successfully learned to move to the ball when
it appeared in its scene, then turned away when the ball’s near. The agent learned the
same behavior with the cylinder as well.

The trainer then placed both the ball and the cylinder in the environment, finding that
the agent could move back and forth between the two objects.

* cylinder navigation:

50

Chapter 3. Interactive Learning through Evaluative Human Feedback

Cylinder Navigation Task

Training with a lure

FIGURE 3.17: In the “cylinder navigation” task, the human trainer used the
pink ball as a lure to teach the agent to go to the cylinder.

For “cylinder navigation” task, we tried an animal-training method called lure training.
In lure training, an animal is first taught to follow a lure object. Then the trainer uses
the lure to guide the animal through the correct behavior and then give reward when the
final goal is achieved. In this case, the goal is to teach the TurtleBot to learn to reach to
the cylinder. The human trainer placed the cylinder and the pink ball together as shown
in Figure 3.17, and tried to teach the agent to navigate to the cylinder with the help of
the lure.

3.5. Robot Case Study 51

FIGURE 3.18: In the “cylinder navigation” task, the TurtleBot followed the
pink ball as the lure and went towards the cylinder.

The pink ball was used as the lure in Figure 3.18. A 44 reward would be given to
supportive actions along the way.

52 Chapter 3. Interactive Learning through Evaluative Human Feedback

Cylinder Navigation Task

Verification

FIGURE 3.19: In the verification test of the “cylinder navigation” task, the
TurtleBot could only see the cylinder. The pink ball lure did not appear in its
scene.

Once the agent had learned to reach to the cylinder following the guidance of the lure,
the pink ball, the trainer removed the pink ball from the scene of the TurtleBot’s vision
as shown in Figure 3.19, the TurtleBot could still find the way to the cylinder without
the lure in Figure 3.20.

3.5. Robot Case Study 53

FIGURE 3.20: In the verification test of the “cylinder navigation” task, the
TurtleBot navigated to the cylinder without seeing the pink ball lure.

We further classified training methods for each of these behaviors as:

* flat:
the ”push—pull”, ”hide”, and "ball following” behaviors.

* compositional:
the “alternate” and “cylinder navigation” behaviors.

We also applied TAMER to the TurtleBot for comparison purposes. To our knowledge
when the experiment was conducted, it was the only HCRL algorithm without requiring
feedback from non-human sources that could success on a similar platform (Knox, Stone, and
Breazeal, 2013).

SABL (Loftin et al., 2014) and Policy Shaping were not used since those approaches have
thus far only be demonstrated in tabular learning settings, whereas we make use of function
approximation with the TurtleBot.

3.5.1 Results

A video about the experiment is available online at ht tps://youtu.be/_gt 9InpROVKQ.
COACH succeeded in learning all the five tasks. The total training and testing time cost for
each task was less than two minutes. The COACH agent could learn complicated mission
through learning its sub-parts separately and successfully learn the full mission through
composition. Both the "alternate” mission and the “cylindar navigation” mission showed the
advantages of the COACH model with eligibility traces.

TAMER, on the other hand, forgot some of the learned behaviors in all five tasks. The
trainer had to provide feedback to teach the TAMER agent again after it learned a new mission.

https://youtu.be/_gt9npROvKQ

54 Chapter 3. Interactive Learning through Evaluative Human Feedback

We found that TAMER could only deal with "flat” tasks, and would fail to learn any
complicated ”compositional” task. During the training of the “alternate” task, for example,
the TAMER agent could learn to navigate to the ball, but when it was trained to move to the
cylinder, it forgot the learned policy about the ball and did not know what to do when seeing
the ball after training.

Same problem happened in the task of “cylinder navigation”, that TAMER could not learn
from lure training. This is mainly because the history that TAMER could memorize is short,
and could be covered by new feedback. TAMER does not support differential feedback or
diminishing returns well, its model considers feedback as reward-function exemplars in which
new feedback in similar contexts can change the target.

Specifically, because TAMER interprets feedback as exemplars for a reward function,
different feedback in new contexts may quickly override the estimated reward-function target
in similar contexts, even if the feedback was the same sign.

3.6 Conclusion

In this work, we presented empirical results showing that the numeric feedback people give
agents in an interactive training paradigm is influenced by the agent’s current policy and argued
why such policy-dependent feedback enables useful training strategies. We then introduced
COACH, an algorithm that, unlike existing human-centered reinforcement-learning algorithms,
converges to a local optimum when trained with policy-dependent feedback. We showed that
COACH learns robustly in the face of multiple feedback strategies. A comparison experiment
in simulated grid world suggested that COACH could perform well (with eligibility traces)
with different types of feedback when Q - Learning and TAMER could only function with
limited feedback types. Finally we showed that COACH can be used in the context of robotics
with advanced training methods.

55

Chapter 4

Teaching Complex Tasks through
Decomposition

This chapter addresses the problem of training a robot to carry out temporal tasks of arbitrary
complexity via evaluative human feedback that can be inaccurate. A key idea explored in
our work is a kind of curriculum learning—training the robot to master simple tasks and then
building up to more complex tasks. We show how a training procedure, using knowledge of
the formal task representation, can decompose and train any task efficiently in the size of its
representation.

We further provide a set of experiments that support the claim that non-expert human
trainers can decompose tasks in a way that is consistent with our theoretical results, and
successfully training complex missions. We compared our algorithm with existing approaches.
The results suggest that our method outperforms alternatives, especially when feedback
contains mistakes.

4.1 Training Agent like a Dog

Interactive reinforcement learning employs human trainers as a source of feedback (Isbell
et al., 2006; Thomaz and Breazeal, 2008; Knox and Stone, 2009b; Akrour, Schoenauer, and
Sebag, 2011; Knox and Stone, 2013; Wirth and Fiirnkranz, 2013; MacGlashan et al., 2017;
Christiano et al., 2017). In one view, training can be viewed as a form of communication (Ho
et al., 2015; Ho et al., 2017) in which the trainer wishes to convey a target task to the learning
agent and the agent wishes to infer this task and behave accordingly (Hadfield-Menell et al.,
2016). The work on SABL (Loftin et al., 2014) makes this perspective explicit and we adopt
it in the current work.

Classical reward functions are history-independent, but representations for temporal tasks
have been proposed, often using variants of temporal logic (Bacchus, Boutilier, and Grove,
1996; Kasenberg and Scheutz, 2017). Temporal-logic representations of tasks are powerful
because they can compositionally express tasks of unlimited complexity. Whereas Markov
reward functions are limited to being able to express m" distinct behaviors in an n-state,
m-action environment, the number of distinct temporal tasks is countably infinite. '

In creating learning systems that can carry out a variety of behaviors for people, we
can take inspiration from dog training, where a trainer can convey a seemingly unbounded
collection of tasks to a dog using essentially only evaluative feedback. One significant tool
in the trainer’s collection is expanding on learned tasks later in training. The site “Doggy
Buddy?, provides instructions for training 52 tricks using this kind of curricular training.

'One could argue that every possible reward function from the uncountably infinite set of reward functions
does indeed represent a distinct task in that, for any pair of distinct reward functions, there exists an environment
in which they induce different behaviors (Amin, Jiang, and Singh, 2017). We do not undertake a formal analysis
of the relative expressibility of rewards and temporal logic in the current work.

2www.doggiebuddy.com/topics/Trainingtopics/traintopic3.html

56 Chapter 4. Teaching Complex Tasks through Decomposition

Learning to fetch a drink from the fridge, for example, builds upon first training the dog to
complete a set of 8 other tricks.

Existing work for learning compositional, or logical, representations requires either an
optimization procedure that can posit and recombine substructures (Koza, 1992) or a training
procedure that applies feedback to separate subtasks (Rivest and Sloan, 1994). It is the latter
path we follow here. We build on recent work showing that human trainers can decompose
complex training tasks into more tractable curriculum structures (Peng et al., 2017; Wang
et al., 2020) and examine the problem of learning a complex task specification through a series
of self-contained lessons. Our approach also handles trainer error, which is prone to make
traditional methods unstable (Celemin and Solar, 2019).

4.2 GLTL algorithm

We represent an agent’s environment as a Markov decision process (MDP). In place of
standard reward functions, objectives or fasks are represented by Geometric linear temporal
logic (GLTL) formulas (Wang et al., 2020).

That is, a task & has a corresponding optimal policy 7tg, possibly non-Markovian, that
results in the agent moving through the state space in a way that maximizes the probability of
satisfying ®. A mission is a special task ®* whose execution is the overall goal of the training
process.

The problem we study is that of constructing an agent that is able to learn the desired
behavior 7te+ efficiently via evaluative feedback from the trainer. We write fo; = 1 if
a; € 1t (st), 0 otherwise to capture the feedback expected from a trainer of task & if action
a; is taken by the agent in the state s; visited at time f.

To separate the problem of learning the MDP M from the problem of learning the desired
behavior, we assume M is known to both the agent and the trainer. We measure inefficiency
in learning by counting the number of times the agent takes an action that is inconsistent with
TTH+ .

To help the agent learn the correct task, a trainer gives either positive or negative feedback
for each agent action. (We disallow neutral feedback or non-feedback at the first part of this
work, then allow any feedback in later study.)

The trainer should respond with positive feedback if the agent’s actions are consistent
with the desired behavior and with negative feedback otherwise. Interactions take place in
rounds, signaled by the trainer to the agent, in which the task being taught changes from round
to round.

We make two key assumptions of trainers:

* The majority of the evaluative feedback from the human trainers are accurate;

* They can select tasks to teach at each round such that tasks are either one of a relatively
small set of basic tasks or a relatively simple transformation of previously learned tasks
where the final round’s task is the mission ®*.

We show that these assumptions are sufficient to learn arbitrarily complex missions in
theory and also that users can carry out this curriculum-style training process successfully
with an implemented agent and minimal prior instruction.

4.2. GLTL algorithm 57

Algorithm 2 GLTL algorithm

Input: basic propositions Kg, templates T
Initialize Hy < T(Kp), i - 0
while trainer has not finished mission do
L; + LEARNTASK(Hy)
Kiy1 < KiUL;
Hiy1 < t(Kiy1)
i+—i+1
end while
return L;_; as learned mission

function LEARNTASK(X)
t<0
restarts < 0
L+ X
for ¢ € X do
ry < 0, initialize formula strike counter
end for
choose starting state s;
while task has not ended do
observe current state s;
foralla € Ado
¢, = # formula in L with a optimal in s;
end for
execute a4; = argmin, [¢, — |L|/2]
if trainer gives feedback f; then
for all p € X do
if ft }é f‘l’rt then
Ty <1y +1
end if
L= {¢ € X|ry = mingex i}
end for
else if trainer attempts to end task then
if |[L| = 1 or restarts > 10 then
break
else
restarts <— restarts + 1
choose starting state s;1
end if
end if
t—t+1
end while
return L (at most 2, selected at random)
end function

We propose an iterative algorithm (Algorithm 2) that learns missions effectively and
efficiently over a series of rounds, i = 0,1,...,k.

Before the start of the first round, the agent is given Ky, a set of logical propositions in the
domain. The set of initial hypotheses Hy is generated by applying the transformations T to Kj.

58 Chapter 4. Teaching Complex Tasks through Decomposition

After the training for round 7, the agent identifies a set L; C H; of learned tasks and sets
Kiy1 = K; U L;. In each subsequent round i + 1, the agent takes the set K; 1 and templates T
and generates H; ;1 = T(Kj; 1) from them to form new hypotheses for learning. This process
continues until the trainer successfully conveys the mission ®*.

At round i, the trainer guides the agent to learn ®; by giving positive feedback when the
agent’s actions align with ®; and negative feedback otherwise. During training (LEARNTASK),
the agent takes actions that elicit the most discriminative feedback possible from the trainer.
Specifically, the agent takes an action such that it can rule out as close as possible to 50% of
the policies currently under consideration.

Given perfect feedback, whenever the agent sees feedback inconsistent with a given
hypothesis, it can eliminate that hypothesis from consideration for the rest of the round. To be
robust to occasional trainer errors, however, we instead have the agent allocate “strikes” to
hypotheses that disagree with the feedback. When a round is ended, the agent is left with L,
the set of hypotheses that had the fewest strikes against them.

In our experiments, we direct the trainer to continue training if more than one hypothesis
is in L. However, after 10 restarts, the algorithm simply returns two hypotheses selected at
random from L.

Theorem 1. Consider a set of tasks X, where every x € X has a formula of length at most d
and can be distinguished from the rest of the tasks in X using a trajectory of length m. Given
that | X| is polynomial in d and provided with evaluative feedback with at most n errors, a
learning agent can successfully identify the target task with a number of interactions that is
polynomial in m, n, and d.

Theorem 1 shows us that, if we know a trainer will make only at most n mistakes, we
can ensure that we find the single correct hypothesis. It would be difficult, if even possible,
to know the maximum number of mistakes a particular human trainer might make, so this
assumption is a strong one.

We can calculate a bound on the error rate of the trainer that the naive algorithm in the
proof will tolerate. Since we can err up to n times safely on each of the tests with (n + 1)m
possible feedback signals, our acceptable error rate p is bounded by

. n 1
p= (2n+1)m < om

Further, Algorithm 2 follows the same logic as the algorithm used to prove Theorem 1,
except it more efficiently tests hypotheses by using feedback to gain information about multiple
hypotheses at once. Requiring fewer feedback signals allows for the algorithm to be tolerant
of higher rates of trainer error, in practice.

Similar to standard Boolean logic, GLTL formulas can be represented as syntax trees with
nodes for the additional LTL operators. We partition the space of all GLTL formulas into two
classes, temporal and atemporal.

We define a temporal GLTL formula to be one in which, on every root-to-leaf path in
the tree representation, there exists at least one temporal operator (<>, [, ¢/). Conversely, an
atemporal GLTL formula is one in which there exists at least one root-to-node path in the
syntax tree that does not contain a temporal operator. Any task that is defined by a temporal
formula is referred to as a temporal task and any task defined by an atemporal formula is
referred to as an atemporal task.

4.2. GLTL algorithm 59

Known Formula Derived Formula

Atemporal transformations

(X and Y are not necessarily temporal formulas)

1. X OX
2. X 00X
3. X, Y XUy

Temporal transformations
(X, Y, are temporal formulas,
x and y are not necessarily temporal formulas)

4. X =3x $—x
5. X = $x, Y =3y | O(xVy)
5b. O(x Ay)

6. X =~[0 [—x
7a. X =[x, Y=0y | OxVy)
7b. O(x Ay)

8. X = Uy, Y =3y | xUy

9. X - X
10. X, Y XNY
11. X, Y XVY
12. X [1-X
13. X = {x, Y O(xANY)

Specialized transformations
(X, Y, Z, x, y need not be temporal)

14. Z, XUY XUYNZ)
15. X =<x SOx
16. X =[x OSx
17. O(X A Qy) O(X A SLy)

FIGURE 4.1: Templates used in constructing temporal formulas.

Table 4.1 lists the templates we use in our algorithm. The templates were chosen by
inferring what kinds of transformations participants seemed to be expecting in the context of a
pilot study, but they were then significantly modified to both ensure all temporal tasks could
be constructed and strike a balance between coverage and complexity.

The significance of temporal tasks is that they cannot be shown to be unsatisfied without
at least a single temporal step, meaning that a trainer will have an opportunity to provide

feedback.

60 Chapter 4. Teaching Complex Tasks through Decomposition

Therefore, to show that a mission can be trained by our multi-round curricular algorithm,
it must be a temporal task and it must be able to be constructed via the templates we define
where every task en route to the mission is formulated as a temporal task.

Lemma 2. Any temporal formula can be built up via application of these transformations
starting from basic tasks that include simple temporal formulas of the domain’s propositions.
All of the intermediate formulas in the construction are themselves temporal.

1) 2) 3) 4)
” °
fridge °
fridge
Otable ¢ fridge O(tableAOfridge) OO (tableAOfridge)

FIGURE 4.2: The training procedure for task (1< (table A {fridge). Steps 1)
and 2) use template 1 from Figure 4.1. Step 3) uses template 13. The final
step, 4) uses template 2.

An intuitive description of the proof sketch for Lemma 2 is the following. Whenever we’re
training at a node that is an atemporal operator, we know, by definition, that both children
must be temporal. So, we could have trained (bottom up) to this point without any issues via
induction. When the current node is temporal, it is possible that one or both of its subtrees is
atemporal. In that case, we can show that we can propagate the temporal operator down to
the subtrees. If we train according to this new tree structure, the atemporal subtrees become
temporal and therefore trainable. This training strategy is illustrated in Figure 4.2.

Theorem 3. If a trainer can decompose a mission into tasks satisfying the lemma and can
provide evaluative feedback with low error rate, they can train the algorithm to learn the
temporal LTL task in time polynomial in the size of the formula with high probability.

Theorem 3 follows from a combined application of Theorem 1 and Lemma 2. We show
that the training procedure remains feasible with respect to the size of the formula for the
overall mission.

In short, Theorem 1 shows that any temporal task we consider can be correctly learned
via imperfect feedback. Lemma 2 explains that any temporal mission can be successfully
decomposed and trained as a series of these smaller tasks discussed in Lemma 2.

Finally, Theorem 3 proves that if a trainer is able to decompose tasks according to Lemma 2
and can provide feedback with low error as in Theorem 1, then Algorithm 2 can efficiently
learn GLTL missions.

4.3. Experiments and results 61

Having shown theoretically that our learning algorithm can be efficiently taught any
temporal mission formula by an idealized, low-error trainer, we follow up by showing that
real world users can approximate the idealized trainer sufficiently closely to convey complex
tasks to the agent.

4.3 Experiments and results

We carried out a set of five experiments with the goal of determining whether people could
reason about the skills needed to train an agent to carry out complex missions.
4.3.1 Mission Decomposition Study

In the first study, participants were asked to imagine training a hypothetical home robot.
Specifically, the instructions said: To teach “go get a glass of water from the kitchen without
going through the living room,” would you teach the expert task directly or teach beginner
and intermediate tasks first? What beginner/intermediate tasks would you teach and in what
order?

The five given missions were:

* Go to your charger without colliding with either the couch or the chairs.

* Go to the spill someone left on the floor and then go to the cabinet and stay there.

* Go back and forth patrolling between the bedroom door and bedroom window.

* Go to the water dispenser and back to the couch without getting in the way of the TV.

* Go from the kitchen to the bedroom. It is okay to go through the living room, but only
after muting any beeping sounds.

62 Chapter 4. Teaching Complex Tasks through Decomposition

®

.l[[
C‘
K

.

=m » =
F; i — — —

/ N X

R

L

'
\[\—
B

FIGURE 4.3: Floor plan images to help ground the questions.

Some pilot participants found our mission scenarios too abstract, so we included accom-
panying floor plan images (Figure 4.3) to help ground the questions. Some participants made
reference to the details of these diagrams, but we interpreted their instructions in as generic
terms as we could. The order in which the missions were presented to the participant was
randomized.

Participants were recruited from Amazon Mechanical Turk (AMT) and were filtered based
upon their Human Intelligence Test Approval Rate (greater than 95%) and Number of Human
Intelligence Tests Approved (greater than 1000). The study awarded $0.80 to participants.

4.3.2 Mission Decomposition Study results

The mission decomposition study included 20 participants, each of whom provided skills
for each of the five target missions. For a total of 75 proposed training sequences. Training
sequences averaged 3.4 skills in length.

Two well trained researchers from our team served as coders, translating each skill
description into GLTL independently, then conferred with a third coder to reach consensus on
the translations. Descriptions that did not appear to describe a trainable skill for the situation
were tagged as “uninterpretable”. On average, participants listed 1.2 uninterpretable skills per
target mission. As an example, one participant broke down Mission 3 into:

1. go to the bedroom door;
2. go to the bedroom window;
3. go to the door, then go to the window, then repeat.

We translated the skills into:

4.3. Experiments and results 63

1. {>door;
2. {window;

3. O (door A $window).

In contrast, another participant broke down the same mission into:
1. learn the geography of the home;

2. navigate a clear pat;

3. return and repeat.

which we classified as uninterpretable.

4.3.3 Recomposition Study

A useful aspect of the first study was that participants had the freedom to decompose missions
however they felt was appropriate. A shortcoming, though, is that they received no feedback
as to whether the decomposition they proposed was viable.

Based upon the training patterns observed in the mission decomposition study, the second
study presented participants with the same basic problem of decomposing a complex mission
into skills, and we had them select the skills from a list of common responses that participants
generated in Study 1. Between 5 and 8 skills were listed for each mission.

We wanted to get a sense of whether they could modulate their design when they were
headed down a problematic path. Each time participants in the recomposition study selected
a skill, they were given feedback as to whether the previously selected skills provided the
necessary foundation for the agent to learn the selected mission based upon our established
curricular learning templates 4.1 and the GLTL translations from the previous study.

The missions and their GLTL interpretations were:

1. Go to your charger without colliding with either the couch or the chairs.
The GLTL formula is: —(couch V chair) Ucharger.

2. Go from the kitchen to the bedroom. It is okay to go through the living room, but only
after muting any beeping sounds.
The GLTL formula is: kitchen A {bedroom A L(livingroom = muted).

3. Go back and forth patrolling between the bedroom door and bedroom window.
The GLTL formula is: (1< (door A {$window).

4. Go to the spill someone left on the floor and then go to the cabinet and stay there.
The GLTL formula is: {spill A {Clcabinet.

5. Go to the water dispenser and back to the couch without getting in the way of the TV.
The GLTL formula is: (—TV) U (dispenser A {)couch).

Missions were given in a random order in this study as well.

64 Chapter 4. Teaching Complex Tasks through Decomposition

4.3.4 Recomposition Study results

20 participants were recruited using the same procedure as the mission decomposition study.
Participants averaged 7.6 skill attempts to train each of the missions, where 3.0 of these skills
were extra steps that were either erroneous or unnecessary to train the target mission.

We analyzed how many extra steps participants took as a function of the mission ordering.
Comparing the 5 mission they solved to the first mission they solved, the number of extra
steps decreased by an average of 1.55. This value is statistically significantly different from 0
(p < .05) by an unpaired t test, suggesting that participants experienced improvement in their
ability to select appropriate skills, even over this short experience.

Note that the number of skills participants attempted per target mission was 7.6, which is
longer than the average list of skills (6.6) and could therefore be interpreted as the participants
randomly hunting and pecking to create a valid training ordering. As a baseline, we computed
the average training ordering required by truly random selection, which was 21.3. Thus,
participants were very effective at skill selection compared to a random approach.

We define a decomposition as sufficient if the temporal formula for the mission can be
built up via application of temporal transformations starting from the set of basic tasks. In
the experiment, we determined the sufficiency based upon our templates (Table 4.1) and our
GLTL translations of the participants’ tasks.

An unnecessary task in a sufficient decomposition is one that can be removed and the
decomposition remains sufficient.

A sufficient decomposition is minimal if none of its tasks are unnecessary.

4.3. Experiments and results 65

4.3.5 Simulation study

The mission is: Go back and forth patrolling between the table and the fridge.
The robot has learned:
go to the table

Your goal this time is to teach the robot:

NICE MOVE :)

=

T

e

go to the fridge
e
@ ; BAD MOVE :(

. . . p—
. T

Chair: Table: Charger: Fridge:
o (i
s/ L i
f J) G
(WA W/]

FIGURE 4.4: Experimental domain for teaching temporal tasks.

_<

=2 (=
="~
=

We then conducted a simulation study to compare the performance of our algorithm with
TAMER and COACH. we evaluated how well each algorithm performed in a simulated 5 X 5
grid world (Figure 4.4). In the grid world, there were four objects, each associated with its
own atomic proposition: a table, a chair, a charger, and a fridge. Four tasks were tested:

1. (1A) Move all around, but don’t bump into the chair:.
The GLTL formula is: C—chair.

2. (1B) Go directly to the table:.
The GLTL formula is: {>table.

3. (1C) Don’t touch the table on your way to reaching the charger:.
The GLTL formula is: —table {/charger.

4. (1D) Start at the fridge and stay there.
The GLTL formula is: [Ifridge.

The tasks were all in the initial set of hypotheses of the GLTL algorithm set and thus could
be learned directly without a curriculum strategy according to Table 4.1, Algorithm 2.
There were two types of trainers we simulated in this experiment:

66 Chapter 4. Teaching Complex Tasks through Decomposition

1. an ideal trainer who only gives correct feedback;
2. asimulated non-expert trainer who gives feedback with an error rate of 6.

For each type of trainer, we ran 10 rounds of training for each algorithm. During each
round, the agent started from a random grid and learned from feedback given by the trainer
until the task was complete, then chose another random position to start the next episode.

We measured how well the learner performed by the percentage of positive feedback its
trajectory received from an ideal trainer. A perfect episode is one with a value of 100%, which
means that all the actions that the agent has taken matched the optimal policy of the target
task. Once the agent gets three perfect episodes in a row, the round is finished.

We counted the median number of episodes the agent had taken before the first perfect
episode, the median number of feedback per episode, and the median number of the total
feedback per round. For task 1D, the agent always started from the fridge because the task
cannot be completed successfully otherwise.

Since the experimental tasks was temporal rather than state-based in nature, we augmented
the state space for TAMER and COACH so that they could learn the target behavior. The state
consisted of the current position of the robot along with the order that the landmark object
were visited up to that point. So, if the robot had visited the charger and the table, in that order,
the state space would be augmented with “1: charger, 2: table”.

Our algorithm took a very small number of episodes to learn the tasks.

P

W

Feedback per Round (log)
U =, U1 N : w U b U1 N

- I l
0.
0
Our Our TAMER TAMER with COACH COACH with
Algorithm Algorithm Trainer Trainer
with Trainer Errors Errors
Errors

FIGURE 4.5: The number of training feedback needed for our algorithm,
TAMER, and COACH across tasks: (J—chair; {ptable; —table I/charger; and
[fridge.

Figure 4.5 presents the results of the average number in log scale of feedback it took for
each of the algorithm to learn the tasks in two scenarios—error-free feedback and feedback

4.3. Experiments and results 67

with 8 = 0.327 errors. This value was chosen to align the simulation with our observation
that 32.7% of feedback signals were observed to be in error in one of our user studies. For
each algorithm, we show the range of training times over the four tasks.

The results show that our algorithm needs significantly fewer episodes to learn the tasks—
the simulated trainer gave much more feedback per round to TAMER and COACH than to
our algorithm. The performance difference between our algorithm and the other two became
larger when the trainer made mistakes. (Note the log scale on the plot.)

We further tested the algorithms with a group of complicated missions:

1. (2A) Go to the table and then go to the charger and stay there.
The GLTL formula is: {>(table A {Clcharger).

2. (2B) Go to your charger without colliding with either the chair or the table.
The GLTL formula is: —(chair V table) U charger.

3. (2C) Go to the table and then go to the fridge.
The GLTL formula is: <»(table A {fridge).

4. (2D) Go to the charger and then go to the chair without running into the table along the
way.
The GLTL formula is: (—table) U (charger A {chair).

5. (2E) Go back and forth patrolling between the table and the fridge.
The GLTL formula is: (I (table A {fridge).

Neither TAMER nor COACH could learn any of them. Our algorithm, in contrast,
successfully learned the missions from decomposition.

4.3.6 User Study: Learning Basic Tasks from Non-expert Human Trainers

We then carried out two user studies to determine whether non-expert human trainers could

1. train a learning agent running our algorithm to execute basic tasks;

2. train a learning agent end to end on complex missions by decomposing it into smaller
tasks and providing evaluative feedback.

Participants for each study were recruited via Amazon Mechanical Turk (AMT) as previous
online user studies.

In the user study where the agent learns basic tasks from non-expert human trainers,
participants were presented with a simulated robot (the learning agent) in a 5 X 5 grid
world (Figure 4.4). A brief introduction of the user study environment can be found here:
https://youtu.be/40ulLW10UFzk.

During each round, participants were given a basic task that they needed to train the robot
to execute via positive and negative feedback. Each participant was asked to complete four
rounds, each with a different and independent task. The tasks were same as the four basic tasks
in the simulated environment, and were given one by one in a random order to the participants.

At the beginning of each round, the participant was asked to place the robot by clicking on
one grid cell in the map. The robot would then choose an action (moving up, right, down, left,
or stay) based on our scheme. After taking an action, the agent would wait for the participant
to give feedback. The participant could choose to give positive feedback by clicking on “NICE
MOVE :)”, or negative feedback by clicking on “BAD MOVE :(”. Our algorithm would then
learn from the feedback, ruling out formulas that did not match the feedback and choosing
from the remaining formulas to make its next action selection.

https://youtu.be/40uLW10UFzk

68 Chapter 4. Teaching Complex Tasks through Decomposition

During training, the participant could change the agent’s location by clicking “PICK UP
AND REPLACE ROBOT” and choose another grid cell to continue. Once the participant was
satisfied with the performance of the agent, he or she could click “GOOD JOB! YOU’VE
LEARNED THE MISSION” to end the training. At the end of training, the remaining set of
formulas, as derived by the algorithm, was considered to be the learned formula set.

We instructed participants:

1. to give positive feedback if he or she believed that the most recent action was consistent
with the target task, and provide negative feedback otherwise;

2. to end the training when he or she believed that the agent had learned the task.

4.3.7 User study Results: Learning Basic Tasks from Non-expert Human Train-
ers

To measure task success, we evaluated whether the learned formula matched the target formula
using a similarity score defined over the range [0, 1]. Consider a ground truth formula A of
which the induced policy is 714, and a learned formula B with policy 7tg. For 715, we create a
set of trajectories Jp by starting the agent from each of the twenty-five positions on the grid
and executing twenty random trajectories of 7tg. Thus, [g contains five hundred trajectories in
total.

The similarity of B to A is calculated by counting the percentage of positive feedback of
all trajectories in [p from an ideal trainer trying to teach A:

similarity (B, A) = Z fpositive
s f

where fpysitive 18 the total number of positive feedback of each trajectory, f is the total
number of feedback of each trajectory. It can be thought of as telling us how happy someone
would be when they were wanting to train formula A and the robot exhibits behavior from
formula B.

If the agent learns more than one formula, then we conservatively report the minimum
similarity for all learned formulas to the target formula.

In the 5 x 5 grid world, the similarity between two randomly generated formulas is 0.16
on average. To get a sense of the meaning of the scores, here are some examples, suppose
there are four formulas:

» formula A is [fridge.
e formula B is {>charger.
* formula C is {fridge.
e formula D is (—table) Ucharger.
We get:
* The similarity of formula A to B is 0—they send the agent in very different directions.

* The similarity of formula B to C is 0.35, because both draw the agent to the right side
of the grid.

* The similarity of formula D to B is 0.98 because they produce nearly the same action
in all states.

4.3. Experiments and results 69

A training round was considered to be successful if the learned formulas were above a
specific similarity threshold to the mission. The success rate is the percentage of rounds that
were successful.

——Task 1A Task 1B Task 1C Task 1D
100% o

90%
80%
70%
60%
50%

40%
70% 75% 80% 85% 90% 95% 100%

Similarity between
Learned Formula and Goal

Percentage of Participants

FIGURE 4.6: Task success rate in user study: Learning Basic Tasks from
Non-expert Human Trainers.

In this study, there were 80 training rounds (20 participants and 4 rounds each). Figure 4.6
shows the success rate for different similarity thresholds for each target task. The horizontal
axis shows the similarity between the learned and target tasks. The vertical axis shows how
many of the participants reached the similarity score in each task.

A higher similarity, e.g., 0.9 or greater, means that in 90% or more of the situations the
two formulas expect the same feedback for the same action. If the similarity between two
formulas is 1, then they can be treated as the same formula. As Figure 4.6 suggests, that 63
out of 80 missions (78.75%) were finished with a similarity of at least 0.9.

The results support our hypothesis that the majority of people can teach simple temporal
tasks, with the exception of task [Jfridge. An examination of the logs suggested that partici-
pants were unsure what feedback to give for this task when the robot did not start at the fridge.
Some gave positive feedback to the robot for approaching the fridge, causing the learning
algorithm to fail.

We found that the success rate for a participant was strongly correlated with the number
of replacements used in training. At a similarity threshold of 0.9, trainers who successfully
trained 3 or more rounds (among all 4 rounds) clicked “PICK UP AND REPLACE ROBOT”
21 times on average; in comparison, trainers who successfully trained only 2 or fewer rounds
used replacement 9 times on average.

This finding was likely a result of the fact that replacements expanded the size of the
effective training set for the learning agent. Moreover, a good replacement (one that can
efficiently help the agent distinguish between the remaining formulas) can speed up the
training and improved performance.

Based on this finding, we added functionality to our interface so that, whenever multiple
formulas remained when the participant requested to end training, the agent would automati-
cally move itself to a new start position to help disambiguate the remaining formulas. Note

70 Chapter 4. Teaching Complex Tasks through Decomposition

that the learning agent was not aware of the actual target of training, just that there was residual
ambiguity in what it had learned. This form of active learning greatly simplified the training
process for participants.

4.3.8 User study: Learning Complex Missions via Decomposition

In this user study, we had participants train an agent to carry out complex missions by
decomposing each mission into a curriculum of simpler tasks and training the tasks one by
one.

As in the previous user study where the non-expert participants were asked to train basic
tasks, we recruited 20 participants from AMT. The participants were presented with the
same 5 x 5 grid world and the simulated robot (Figure 4.4). Participants received the same
instruction as in the previous study regarding how to give feedback and when to end a training
round. The robot chose actions and waited for feedback.

Based on the result of the previous user study, an update was made to the interface and
the learning algorithm: at the end of each round, if there were more than two formulas in the
learned formula set, the robot would automatically move to a new start position. A training
round could only be finished if the number of remaining potential formulas in H was one or
two.

Unlike the previous user study, we presented each participant with three independent
complex missions chosen randomly from the group of five complicated missions in the
simulated environment. After showing them a tutorial, we asked them to first decompose each
mission into a sequence of simple tasks, the last task being the mission itself, then train one
task each time until the final mission was learned.

The tasks were trained consecutively in rounds. Within each round, the training process
is executed as in previous study. The participants can revise the sequence of tasks after each
round. The English description of each decomposed task was recorded and later translated by
the authors into GLTL.

The learned formula was derived in the same way as in the previous study. For the last
task in each mission, the target task is the mission itself and the learned formula represents the
learned formula for the entire mission.

4.3. Experiments and results 71

4.3.9 Results of User study: Learning Complex Missions via Decomposition

——Mlission 2A ——Mlission 2B ——Mission 2C Mission 2D ——Mlission 2E

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
70% 75% 80% 85% 90% 95% 100%

Similarity between
Learned Formula and Goal

Percentage of Participants

FIGURE 4.7: Mission success rate in user study: Learning Complex Missions
via Decomposition.

Figure 4.7 shows the success rate for different similarity thresholds for each mission. Figure 4.8
shows the success rate for different similarity thresholds for the decomposed tasks of each
mission. The two figures were generated in the same way as Figure 4.6.

——Tasks of 2A ——Tasks of 2B —Tasks of 2C Tasks of 2D ——Tasks of 2E
100%

\

80%
70% a
60%
50%
40%
30% =
20%
10%

0%

70% 75% 80% 85% 90% 95% 100%
Similarity between

Learned Formula and Goal

Percentage of Participants

FIGURE 4.8: Task success rate in user study: Learning Complex Missions
via Decomposition.

72 Chapter 4. Teaching Complex Tasks through Decomposition

The study result supported our hypothesis that the majority of human trainers can teach
complex temporal missions via our algorithm. For all five missions, more than 60% of
participants successfully taught the agent the formulas (similarity threshold 0.9), which means
that for any trajectory of the learned formulas, 90% or more behavior are exactly the same as
the target formula.

Using a slightly weaker criterion, we see that 90% training sessions resulted in a similarity
of 0.7 or higher. Note that similarity dropped as the complexity level of goal mission (measured
in terms of the number of operators) increased.

Figure 4.2 shows the most common sequence of formulas trained by participants for
Formula 2E. All missions required a multi-step decomposition, and participants produced a
formula with similarity over 0.8 with the target formula in more than half of all attempts.

Among all the decompositions, 63.4% were sufficient and 50.1% were minimal. When
the decomposition was insufficient or included unnecessary tasks, the mission could still be
learned successfully with reasonably high probability as shown in Figure 4.7 and Figure 4.8.

In 25 of the 59 runs, the similarity of the learned mission to the target mission was higher
than the similarity of at least one of the learned intermediate tasks to the user’s attempted
intermediate task. For Missions 2D and 2E, the agent was able to learn the mission even when
at least one of the decomposed tasks failed.

Among the five formulas, participants achieved the best performance on Mission 2C. All
but one (11 of 12) participants divided the mission into

1. go to the table;
2. go to the fridge;
3. go to the table and then go to the fridge.

and succeeded. The participant who failed neglected to train the second skill, which left
the agent without the target mission in its hypothesis set.

For Mission 2D, the median number of skills created was 2.5 and 7 out of 8 (87.5%)
participants achieved a similarity of 0.8 or higher. The one who failed proposed the sequence:

1. go to the table;
2. go to the charger;
3. go to the charger and then go to the chair without running into the table along the way.

There was too big of a jump from skill 2 to skill 3. Two participants realized the agent was
not able to learn a skill they proposed, and so revised the skill and completed the mission
successfully.

We examined how often trainer feedback is in error given our LTL translations of the tasks.
Across all training sessions, 4739 of 14505 (32.7%) feedback signals were in error. While
this error rate was higher than expected, it yields a promising success rate (at a similarity
threshold of 0.9), which was at least 60% across all the five missions. The multi-round training
procedure allows participants to successfully train tasks even in the face of high error rates for
the individual feedback signals.

4.4 Conclusion

In this chapter, we addressed the problem of learning complex tasks via evaluative feedback
through a sequence of self-contained lessons. We provided theoretical results showing the
effectiveness of our approach, then followed up with experiments in simulation.

4.4. Conclusion 73

The results show that our algorithm outperformed existing approaches—TAMER and
COACH—by taking significantly fewer training episodes and feedback signals to finish
training. In a series of user studies, we invited non-expert participants to decompose complex
missions, recompose tasks, train simple tasks, and asked them to train complex missions. The
results suggest that, in spite of people making mistakes in feedback and decomposition, they
were very often able to convey a formula very similar to the target mission.

75

Chapter 5

Interactive Learning from Human
Feedback and Natural Language

This chapter introduces a novel approach that enables non-expert human trainers to teach a
robot complex missions through giving natural language command and feedback.

5.1 Why Natural Language?

In Chapter 4, I'’ve made it possible for non-expert people to teach their robots by giving
positive and negative feedback. A natural next step is to bring the interaction to a deeper level:
speaking. Most people give rich natural language commands to their dogs instead of simply
saying just good!” or ’bad!’. If dogs can "understand" the meaning of complex language
commands and perform the desired behavior, e.g., "go get the leash and send it to Mom", it
may be possible to teach robots in a similar way.

The capability of learning from human natural language through interaction opens the
door to adaptive personalized Al, which could adapt to the behavior and habit of any human
trainer without large amount of labeled data. Such interactions are not limited to specific
languages, English, Mandarin, Korean, Spanish, can work in the same way.

5.2 Background

Natural Language Processing (NLP) is an important research area of machine learning and
human-computer interaction. Semantic parsing, as the core of Natural Language Understand-
ing (NLU), focuses on the problem of mapping from natural language utterances to other
representations (Kamath and Das, 2018), which involves prediction of inherently tree-ish
structured objects.

In early stage, researchers used rule-based systems in narrow domains where statistical
models on input-output mappings could work. Such mapping usually relies on labeled data,
which has always been expensive. SAVVY (Johnson, 1984), for example, is built on pattern
matching. LUNAR (Woods, 1973) is a syntax-based system that generates rule-based tree
structure mapping to an underlying database query language. (Zelle and Mooney, 1996)
trained their CHILL model on a corpus of sentence-database query pairs on the basis of
inductive logic programming. In Zettlemoyer and Collins’ work (Zettlemoyer and Collins,
2012), they introduced lambda-calculus expressions, which contributed to many later works
like GeoQuery (Davis and Meltzer, 2007).

Supervised learning approaches have been very popular in the past few decades. (Krish-
namurthy and Mitchell, 2012) used syntactic and semantic information to train a versatile
semantic parser with dependency parsed sentences from a web corpus, and achieved 56%
recall of target form. (Berant et al., 2013) trained a semantic parser on Freebase. They
used a coarse grained solution using a large question-answer knowledge base. (Pasupat and

76 Chapter 5. Interactive Learning from Human Feedback and Natural Language

Liang, 2015) came up with a model to answer complicated questions on semi-structured tables
through supervision of question-answer pairs.

The first attempt to use unsupervised approach is done by (Poon and Domingos, 2009).
They cluster tokens by types and recursively combine sub-expressions by cluster. Although
their model that can map passive and active voices to the same form is robust, they can not
deal with complicated questions without extra ontology matching. (Artzi and Zettlemoyer,
2011) use conversational feedback from unannotated logs to learn representation for user
utterances.

Statistical machine translation techniques are introduced by (Wong and Mooney, 2006)
to achieve a robust model with good performance on word ordering. They treated the parsing
model as a syntax-based translation model.

Learning directly from user feedback gets more attention in the past few years. (Iyer
et al., 2017) adapt neural sequence models to map utterances directly to Structured Query
Language (SQL) with its full expressiveness, bypassing intermediate meaning representations.
The model is then deployed online to collect user feedback for incorrect predictions. Their
experiments suggest that their approach can quickly learn a semantic parser from scratch for
any new target domain.

By combining context words from the ground truth with the information from predicted
sequence, (Zhang et al., 2019) successfully reduced over-correction in neural machine
translation. They compared generations of the predicted words in the manner of word-level
and sentence-level. The empirical results showed that sentence-level predicted words had
the ability of over-correction recovery and their method achieved significant improvement on
several experimental datasets.

5.3 Sequence to Sequence Model

Natural Language k GLTL

selels
usppIH

Command Formulas

>

Seq2Seq Model

FIGURE 5.1: Sequence to Sequence Model.

Recently, a trend rises in NLP taking greater emphasis on deep neural networks (DNNs) with
sequence-to-sequence (Seq2Seq) model (Sutskever, Vinyals, and Le, 2014). It has pushed
the state-of-the-art performance of multiple sequential-task areas to a higher level, such as
machine translation, speech recognition, syntactic parsing, image captioning, conversation,
summarization, and question and answering (Sutskever, Vinyals, and Le, 2014; Kalchbrenner
and Blunsom, 2013; Bahdanau, Cho, and Bengio, 2014; Cho et al., 2014b; Vaswani et al.,
2017).

The shared advantages of these models is to use the encoder-decoder frameworks for
end-to-end approaches. A sequence-to-sequence model is often composed of an encoder,
a decoder, and an intermediate step. The structure of the Seq2Seq model is displayed in
Figure 5.1.

5.3. Sequence to Sequence Model 77

5.3.1 Recurrent Neural Networks

FIGURE 5.2: Recurrent Neural Networks have
internal loops.

Recurrent Neural Networks (RNN), introduced by (Rumelhart, Hinton, and Williams, 1986),
are considered as early foundations of the domain. RNN represent a class of neural networks
where connections between nodes from a directed graph along a temporal sequence, which
allows it to exhibit temporal dynamic behavior. RNN use a looping mechanism that makes
them a good choice for processing sequential data of variable length. As is shown in Figure 5.2,
which is a chunk of RNN. Given the input X;, A generates output of /i, allowing information
to be passed from one step of the network to the next one. RNN-based encoder-decoder frames
have shown success in several NLP tasks like syntactic parsing (Vinyals et al., 2015).

On the other hand, simple RNN model has a major drawback, known as the vanishing
gradient problem, which causes RNN to perform badly in certain scenarios. In short, at each
time step during training, same weights are used to calculate the predicted next item, which
is usually the predicted next words for NLP problems. The multiplication also happens in
back-propagation. The further it move backwards, the bigger or smaller the error signal will
become, which caused the problem of loosing information. RNN has difficulty in memorising
words from far away in the sequence and therefore could only rely on the recent words for
prediction.

78 Chapter 5. Interactive Learning from Human Feedback and Natural Language

RNN also don’t see hierarchy in sequence. The models alter the hidden state information
every time when a new input is processed regardless of the level of significance. Moreover,
because parts of the input are being computed one at a time, RNN is usually very slow, which
is an important disadvantage especially when the application is used with humans. In a word,
people do not want to wait for the Al to finish upgrading itself if it learns from interaction.

To solve this problem, several solutions have been proposed, among which the Long
Short-Term Memory (LSTM) is considered to be the most popular model.

5.3.2 Long Short-Term Memory

LSTM is fundamentally a special version of RNN architecture firstly introduced by (Hochreiter
and Schmidhuber, 1997). The feedback connections make it be able to not only process single
data points but also a sequence of inputs. LSTM is explicitly designed to solve the long-term
dependency problem. A standard LSTM unit consists of a cell, an input gate, an output gate,
and a forget gate as shown in Figure 5.3. All of which use the sigmoid function that limits
the output value between 0 and 1. The gate is considered open if the output stays closer to 1,
otherwise it’s "closed" if the output is closer to 0. The cell remembers values over arbitrary
time intervals and the three gates regulate the flow of information into and out of the cell:

Output

| »@

Cell state T Next Cell

p r’L

T _‘>°

Hidden state Next Hidden
state

Current input

FIGURE 5.3: The structure of LSTM unit. The cell state C;_1 is the memory

from last LSTM unit. The hidden state };_q is the output of the last LSTM
unit.

* The input gate decides the input information that can be sent into the cell state.
* The output gate determines what information should be sent to the hidden state.

» The forget gate is responsible for whether the information should be removed from the
previous time step.

The limitation of LSTM is that single LSTM cell could only deal with previous context,
not utilize the future context. To solve this problem, Bidirectional Recurrent Neural Networks
(BRNN) was introduced by (Schuster and Paliwal, 1997). BRNN combines two separate
hidden LSTM layers of two directions, For NLP problem, usually left to right, and right to

5.4. Learning Interactively from Natural Guidance (LING) 79

left for a given sentence, to the same output. Thus the model could utilize related information
from both the previous and future context.

5.4 Learning Interactively from Natural Guidance (LING)

Our goal is to learn a model that maps the input, which is natural language command and
natural language feedback given by non-expert human trainers, to the logical representation of
output, that is ”Short-Circuit” Geometric Linear Temporal Logic (GLTL) formula. Seq2Seq
model is the state of the art solution.

v

Decoder

Decoder

¥

NIl Go to the table SVEIUEUNVAEI I OUTPUT

FIGURE 5.4: The high-level structure of encoder, decoder, and the connection
between them.

Figure 5.4 demonstrates the high-level structure of encoder, decoder, and the connection
between them. The encoder is for input representation which is often a list of vectors. Based on
such features matrix, the decoder predicts one symbol at a time until there is an end-of-sentence
(EOS) symbol.

The intermediate step, involving attention mechanism, allows the decoder to focus on
certain parts of the feature matrix rather than the whole of it. (Dong and Lapata, 2016) use
an encoder-decoder model with attention to build a general model for sequence transduction.
They encode input utterances into vector representations, and generate their logical forms by
conditioning the output sequences to trees on the encoding vectors.

80 Chapter 5. Interactive Learning from Human Feedback and Natural Language

Encoding Decoding

000D &I

FIGURE 5.5: Detailed visualisation of how encoder-decoder works. Each

time step an input unit is taken by the BiLSTM, it updates its hidden state

based on its inputs and previous inputs it has seen. The last hidden state of
the encoder is the context passed along to the decoder.

A more detailed instruction of how the natural language input "Go to the table" is converted
to "{table" is shown as Figure 5.5. The encoder processes each word in the input sequence, it
compiles the information it captures into hidden state, which can be represented as a vector.
After processing the entire input sequence, the encoder sends the context over to the decoder,
which generates the output sequence word by word.

After all the input tokens of the sequence are encoded into vectors, they initialize the
hidden vector of the first step of the decoder. To convert a word token into a vector, I make
use of word embedding method (Bengio et al., 2003). The semantic meaning and related
information of the words, e.g., Paris - France + China = Beijing. The first RNN step takes
in the first input vector and initialize the hidden state, and pass on to the second RNN step,
which will then process the second input token to update the hidden state. The last hidden
state of the encoding component is sent to the decoder.

There is a hidden state that the decoding component uses, that it passes from one time
step to the next. Notice that the LSTM of the decoder outputs the top one result greedily by
default.

54.1 Attention Mechanism

The encoder-decoder structure has shown great power. However, when the input sentence
is long, a single vector usually can not bring useful information from the encoder to the
decoder without causing problems like losing focus or noise. The attention mechanism makes
it possible to avoid attempting to learn a single vector for the entire sentence, it focus on a few
key input vectors of the sequence based on the attention weights (Bahdanau, Cho, and Bengio,
2014).

5.4. Learning Interactively from Natural Guidance (LING) 81

S
rd

FIGURE 5.6: Structure of the attention mechanism. Attention scores are
computed by all the hidden vectors of the encoder and the current hidden
vector.

The brief structure of the attention mechanism is given as Figure 5.6. With its help, the
decoder will know how much "attention" it needs to pay to the input tokens by the attention
weights.

Encoding Decoding

|
v

0D Coo

FIGURE 5.7: Encoder-decoder structure with attention. The encoder passes

all the hidden states to the decoder. An attention decoder calculates the

attention score based on the all the hidden vectors of the encoder and the
current hidden vector.

(Bahdanau, Cho, and Bengio, 2014) suggested that:

» All hidden states of the encoder and the decoder help generate the context vector
as shown in Figure 5.7, instead of using only the last hidden vector of the encoder
otherwise;

* The attention aligns the input and output with an "attention score" which is parameter-
ized by a feed-forward network. The score contributes to showing the most relevant
information in the sequence source;

82 Chapter 5. Interactive Learning from Human Feedback and Natural Language

» Every output token is generated based on the context vectors associated with the source
position and the previously generated tokens.

Here comes another question: should we pick only the top one greedy output?

5.4.2 Beam Search

always

y ... Py | x) = [eventually, always, and]

Go to the table Bl U0 E LY @ B g Decoder

And

FIGURE 5.8: Given the input sentence, with Beam width set to 3, the model
finds the top 3 words with the highest probability. In this example, the outputs

non non

are: "eventually", "always", "and".

P(y|x,Always)=[Table, chair, And]

always
A
Table @9 Decoder
chair A A
hGo t8| ~> eventuall
the table And And P(y|x, eventually)=[Table, And, Not]

A
Not A
@ 9
A A

FIGURE 5.9: Given the input sentence, with Beam width set to 3, the model
will then find the three best pairs for the first and second words based on
conditional probability.

Greedy search selects the best candidate, which is good, but sub-optimal if multiple outputs
can be accepted. The beam search algorithm produces multiple candidates alternatively based
on conditional probability. The number of the outputs is defined as Beam Width. A detailed
introduction is introduced in Figure 5.8 and Figure 5.9:

5.4. Learning Interactively from Natural Guidance (LING) 83

In this case, let’s use one natural language command from the experiment, "Go to the
table" as an input example. The target GLTL output of which is {table. The beam width is
set to 3.

1. The encoder converts the input sequence to hidden states, and passes that information
to the decoder, which then applies softmax function to the whole vocabulary;

2. The three words with the highest probability are selected since the beam width is 3. In

Figure 5.8, the top three candidates are "eventually”, "always", "and". If the beam width
is set to 1, then it’s the same as greedy search;

3. As shown in Figure 5.9, the algorithm will then find the three best pairs for the first
and second words based on conditional probability. The top three words selected at
previous step, "eventually”, "always", "and" are taken as input, each of which will
generate a small list pair of the first and second words. For example, we get "always
Table", "always chair", and "always And" from the first word "always", and "eventually
Table", "eventually chair", and "eventually Not" by the first word "eventually". After
the softmax function, the top three pairs of all candidates will be produced based on

conditional probability: "always And", "eventually Table", and "eventually And";

4. Sending "always And", "eventually Table", and "eventually And" as input to the next
round to find the best three output candidates for the first , second, and third word in the
same way;

5. Repeat the process until the signal of "End Of Sentence" (EOS) appears.

With the power of beam search algorithm, now it’s possible to generate multiple best
candidates from the input sequence, which will contribute a lot to the GLTL-based algorithm
introduced in Chapter 4.

5.4.3 Algorithms

With the advantages of the GLTL-based framework, Seq2Seq model, and the ideas from
COACH, I introduce the Learning Interactively from Natural Guidance (LING) method shown
as algorithm 7. LING takes in the environment information (atomic propositions), voice
command from the human trainer as input, and learns from reinforcement, which is generated
by the voice feedback provided by human trainers during training.

I choose a Seq2Seq model with Bahdanau attention mechanism (Bahdanau, Cho, and
Bengio, 2014), taking Bidirectional Long Short-Term Memory (BiLSTM) (Schuster and
Paliwal, 1997) as encoder (Cho et al., 2014a), LSTM as decoder, and apply Beam Search
Mechanism to generate the top k outputs.

The main reasons that I use this set up are:

* The training speed is acceptable comparing to other approaches like transformer-based
models (Vaswani et al., 2017). The parameter space of the chosen model is much
smaller, which makes it significantly faster.

* The inference speed is also acceptable to humans.

* The performance is acceptable. Other approaches like transformer-based models may
have better accuracy, but that is not prioritized in this problem.

The model considers the input and output both as a sequence of information. The encoding
component is a stack of encoders. The decoding component is a stack of decoders of the same
number.

84

Chapter 5. Interactive Learning from Human Feedback and Natural Language

Algorithm 3 represents the case when the trainer only gives evaluative feedback instead of

natural language feedback.

Natural
Language
Feedback

Natural
Language
Command

Human Trainer q GLTL
Formulas

;

—
Seq2Seq Model

Seq2Seq|Model W

p GLTL
Formulas
kLearned GLTL YR w

Formulas

GLTL Formula | Candidates

@ g Natural T Final

- <+ gl Language Formula < Formula
il Command :

Learned Knowledge .

FIGURE 5.10: Learning Interactively from Natural Language Model (LING).

. Before the start of the training process, both the trainer and the learner know about the

environment, which include the names and positions of the atomic propositions, and
also the action space of the agent in the environment;

. During the very first time of training, the trainer needs to give an example of his

preferred positive reward, like saying ’good job!” in English, and another example of
his preferred negative reward, for example, saying “no!” in English to the agent. The
voice commands will be converted to natural language text commands through Speech-
to-Text model (Graves and Jaitly, 2014). In this work, I use Google’s API (Schalkwyk
et al., 2010). Other languages like Chinese, Spanish are also acceptable as long as the
speech-to-text converter can support them;

. When the trainer wants to teach the agent a mission, he can tell the mission to the agent,

the Seq2Seq model will then generate the top p candidate GLTL formulas;

. If the trainer considers the mission to be too complicated or challenging to the agent, he

can decompose the mission to a set of simpler sub-tasks, tell the agent the first sub-task
and train the agent to learn it, then the second sub-task. The trainer can keep teaching
the sub-tasks until the agent learns and finishes the entire mission;

. The Learned Knowledge of the agent, which is a list of pairs of natural language

command and the learned corresponding GLTL formula, keeps the record of all the
tasks that have ever been learned by the agent. Thus the agent has a lifelong memory
that could be transferred to future tasks. The default formulas are determined by the
environment and the template 4.1;

. When a command is given by the trainer, the Learned Knowledge will generate k

candidate formulas, adding up to the final candidate pool of p 4+ k GLTL formulas. All

5.4. Learning Interactively from Natural Guidance (LING) 85

10.

11.

12.

the valid sub-formulas of the candidate formulas of the p + k pool build up a Sub-Tree
Filter to help the agent understand the natural language feedback during the training
process;

The agent follows the GLTL-based algorithm, letting the p + k candidate formulas vote
for an action to take;

At anytime during training, the human trainer can give feedback by speaking to the
agent, the natural language feedback that is converted by the Speech-to-Text model
will be sent to the Seq2Seq model, which generates top g candidate GLTL formulas
accordingly;

The shared formulas between the g feedback formulas and the Sub-Tree Filter will then
be used to update the dynamic Vote Power List as shown in Figure 5.10 and explained
in Algorithm 7;

When the trainer is satisfied with the behavior of the agent, or considers the mission to
be finished, he can stop the agent with a finishing signal;

After the training process is finished, the agent forms a new pair of the original natural
language command and the final learned GLTL formula, adding the pair to the Learned
Knowledge and update the Seq2Seq model;

Now the agent has learned a new command from the human trainer, and it will perform
better when a similar command appears in the future, since the Seq2Seq model and the
Learned Knowledge are both updated. In a word, it becomes a bit smarter.

The Learned Knowledge enables the agent to learn in a lifelong way:

* If allowed by the human trainer, his own agent can share the Learned Knowledge

with other agents, so that every training effort of every trainer could benefit the entire
community. The agent becomes smarter overtime, that most tasks may have been
learned in other scenarios;

* The Learned Knowledge enables the agent to adapt to the behavioral model of the human

trainer. It could understand the expected performance of a personal-style command.

86 Chapter 5. Interactive Learning from Human Feedback and Natural Language

5.5 Experiment

FIGURE 5.11: The experiment space for non-expert user study. The corners
of the virtual grids are marked with small white paper cards on the floor.

An user study with non-expert human trainer was conducted to study the performance of LING.
Due to COVID-19, the campus was closed, which stopped the participants from coming to
the 1ab to finish the experiment. Therefore, I built an experiment space in an apartment living
room as shown in Figure 5.11.

5.5. Experiment 87

FIGURE 5.12: The experiment space for non-expert user study. The 4 by 5

grid world is marked in green virtual lines. There are five atomic propositions

in the environment that are known by both the human trainer and the agent:

The charger, the fridge, the oven, the window, and the table” which is actually
a kitchen island.

The floor was set up to a 4 by 5 grid world. Each grid was 44 cm by 61 cm, with four
corners marked by small white paper cards on the floor. The virtual grids are marked using
green lines in Figure 5.12. Since it’s a real studio, it’s actually very similar to the scene where
an intelligent robot is trained by its owner to finish daily tasks. There are a few common
objects in the space, five of which are considered as atomic propositions:

* The charger, which is at the bottom-right corner next to the couch, hidden in Figure 5.12
next to the wall. The location of the chargeris x = 3,y = 0;

The oven, which is at the left side of the space. The location of the ovenis x = 0,y €
[3,4]:

The window, which is at the top side of the space. The location of the window is
xe[l1,2,y=4

The fridge, which is at the bottom-left of corner of the space. The location of which is
x=0,y=0;

* The "table", which is actually a kitchen island in the space. The locationis x = 1,y = 3.

All other objects are considered as background by both the agent and the trainer.

88 Chapter 5. Interactive Learning from Human Feedback and Natural Language

FIGURE 5.13: The photo of Kuri, a robot developed by Mayfield Robotics.

I deployed LING algorithm to a robot called Kuri (“Kuri Robot Website™). Kuri 5.13,
according to the company Mayfield that developed it, is "an intelligent robot for the home". It
is about half a meter tall, weights over 6 kilograms, and is equipped with a camera sensor to
collect visual information from its front, a microphone array to collect voice, speakers, and
touch sensors. Kuri uses a mixed solution of "laser-based sensor array" to detect obstacles,
localize itself, memorize the environment as a map, and navigate.

The robot uses a vacuum-like drive system to move on the floor. Three types of actions
are supported:

* move forward.

* move backward.

* rotate.

For the implementation of LING, the action space was converted to
* move up.

* move right.

* move down.

* move left.

* stay.

At each step, the robot can only move to the grid cell next to its current position in the
same row or column, or choose to stay. After each action, it will wait for the computation of

5.5. Experiment 89

the dynamic Vote Power List to be done so that it knows the next action to take. The trainer
can say anything during training, including saying nothing. When the trainer thinks that the
agent has learned or has successfully finished the mission, she can say "Finish!" to end the
training round.

Kuri was controlled through the Robot Operating System (ROS). Based on the functional-
ities of Kuri and the design of the algorithm LING, I used the mapping function of Kuri to
locate the agent, and did not make use of other sensors. The Learned Knowledge space of
the agent was set to empty before the first task. The command that it has learned during each
task will be added to the Learned Knowledge space. The Learned Knowledge will be kept and
carried on to all future tasks.

Before the start of the experiment, the participant was given a research consent, and was
asked to read it carefully before signing it. The experiment environment was sanitized to
protect people from COVID-19. Both the researcher and the participant were well prepared
and protected following the regulations provided by Brown University.

A video tutorial was displayed for the participant, which introduced the goal of the
experiment, and showed an example of the entire process of training a complex mission
through decomposition. The participate was then asked to provide an example of her preferred
way of giving positive feedback orally, which is "Good job!", and another example of negative
feedback, "No!" to the agent after watching the tutorial.

The missions that the participant need to teach the agent were:

* Train the robot to go to the window then go to the fridge. & (window A < fridge);
* Go to the window without touching the oven. —oven Uwindow;
* Go between the window and the fridge. < (window A <) fridge);

 Never touch the window until you arrive at the oven. —window Uoven.

After the participant felt confident about what to do, she was given the first mission. The
participant was asked to decide the task that she would like to train at each round, and she
made it:

1. Go to the window.
2. Go to the fridge.
3. Go to the window then go to the fridge.

The feedbacks that she gave to the agent during the first mission include: "Good job!",
"Keep going!", "This is wrong", "No!", "Go back!", "Yes!", "No, it’s the wrong way.", "Great!"
which are similar to the natural language feedback from the tutorial video. Commands like
"Turn right!", "Turn to your right!", "One more step!", "Turn left, two more steps!" were also
given to the robot.

Considering the fact "Turn left" contains information that relies on not only the policy, but
also the current status of the agent, it brings external information to the agent. When the agent
has learned more tasks, such natural language feedback may become useful to help the agent
converge to the target policy faster.

The trainer successfully trained the agent to learn all of the four missions within thirty-five
minutes. There’s a clear trend that the training time for each task became less as the agent
learned more things. On the other hand, the trainer was very passionate and gave feedback very
frequently at the beginning, and became more quiet giving less feedback as the experiment
went on. The agent successfully learned from both the rich type and sparse type of feedback
with the help of the two eligibility traces inherited from COACH in Chapter 3.

90 Chapter 5. Interactive Learning from Human Feedback and Natural Language

During training, sometimes the trainer gave wrong feedback without noticing what hap-
pened. During the third mission, however, she realized that she had asked the robot to do
wrong things, and gave very long and complicated feedback to the agent trying to fix it. The
wrong and long feedback slowed the upgrade of the Vote Power List a little bit. However,
since the Seq2Seq model did not convert them into correct GLTL formulas, only very limited
noises were added.

After all four missions were finished, the trainer was asked to fill in a post-experiment
survey.

5.5. Experiment 91

Algorithm 3 LING with Evaluative Feedback

function LEARNTASK(X, SHARPENING &, TRACE_RIGHT A1, TRACE_WRONG AF,
DELAY D, FINISH DELAY FD)
restarts < 0, L +— X
for ¢ € X do
ry < 0, initialize reward vector
vy 1/ | X|, initialize vote vector
finishy <= —1, number of steps after goal achieved. If not achieved, get -1
eTpo 0, trace vector for positive rewards, time added
erpo < 0, trace vector for negative rewards, time added
end for
t < 0, choose starting state Sg
while task has not ended do observe current state S;_1
for alla € A doc, = sum(vy) for ¢ s.t. a is the optimal policy in X,
end for
execute a; = argming|c, — 0.5/, state becomes S;
finish <— UpdateFinishState(finish, S;, X)
foralla € Ado
if a; is the optimal policy in X, then
eTpt < At *erp_1) +1
epgt <= Ap*epp(r-1) T 1
else
eTgr <= At *erp(p-q) — 1
CFpt < Afp * €F¢(t,1) -1
end if
end for
if trainer attempts to end the task then r <— RewardFinish(r, finish, X, d, fd)
if |[L| = 1 or restarts > 10 then break
else
restarts <— restarts + 1
for ¢ € X do
finishy <= —1, number of steps after goal achieved. If not, get -1
ergo < 0, trace vector for positive rewards
ergo < 0, trace vector for negative rewards
end for
t < 0, choose starting state Sp s.t. most distinctive in |L|
end if
else if Trainer gives feedback f; then r <— PenalizeFinish(r, finish, X, d, fd)
if f; > O then
forallp € X dory < 1y + fi *erp(i—a)
end for
end if
else if f; < 0 then
forallp € X dory < ryp+ fi % epp(i_a)
end for
end if
v = softmax(a * r), update vote
L = {¢ € X|ry = minjcxr;}, policy with maximum cumulative reward
end while
return L (at most 2))
end function

92 Chapter 5. Interactive Learning from Human Feedback and Natural Language

Algorithm 4 LING Supplemental Function Update Finish State

function UPDATEFINISHSTATE(finish, S, X)
for all ¢ € X do
if finishy > —1 then
else
if policy ¢ ends at S then
finishy <0
end if
end if
end for
return r
end function

Algorithm 5 LING Supplemental Function Reward Finish State

function REWARDFINISHSTATE(R, finish, POLICIES X, DELAY D, FINISH_DELAY FD)
for p € X do
if d <= finishy <=d + fd then
1’¢ — T +1
finishy < —1
end if
end for
return r
end function

Algorithm 6 LING Supplemental Function Penalize Finish State

function PENALIZEFINISHSTATE(R, finish, POLICIES X, DELAY D, FINISH_DELAY FD)
for ¢ € X do
if d <= finishy <= d + fd then
¢ — Ty — 1
finishy < +1
end if
end for
return r
end function

5.5. Experiment 93

Algorithm 7 LING with Natural Language Feedback

function LEARNTASK(X, SHARPENING &, TRACE_RIGHT A, TRACE_WRONG AF,
DELAY D, FINISH DELAY FD, DISCOUNT FACTOR 0)
restarts <~ 0, L < X
for ¢ € X do
ry < 0, initialize reward vector
vy < 1/|X|, initialize vote vector
finishy < —1, number of steps after goal achieved. If not achieved, get -1
eTpo 0, trace vector for positive rewards, time added
eFp0 < 0, trace vector for negative rewards, time added
Fp < 0, initialize natural language feedback vector
end for
t < 0, choose starting state Sg
while task has not ended do observe current state S;_1
for alla € A doc, = sum(vy) for ¢ s.t. a is the optimal policy in X,
end for
execute a; = argming|c, — 0.5, state becomes S;
finish < UpdateFinishState(finish, S;, X)
foralla € Ado
if a; is the optimal policy in X, then
eTpt < At *erp_1) +1
epgt <= Ap*epp(r—1) T 1
else

eTgr <= At *erp(r_1) — 1
CFpt — Af % €F¢(t,1) -1
end if
end for
if trainer attempts to end the task then r <— RewardFinish(r, finish, X, d, fd)
if |L| = 1 or restarts > 10 then break
else restarts < restarts +1
for p € X do
finishy <= —1, number of steps after goal achieved. If not, get -1
ergo < 0, trace vector for positive rewards
erpo < 0, trace vector for negative rewards
end for
t < 0, choose starting state Sy s.t. most distinctive in |L|
end if
else if Trainer gives feedback f; then r <— PenalizeFinish(r, finish, X, d, fd)
if f; > 0 then
forallp € X dory < 7+ fi xerp1—a)
end for
end if
else if f; < 0 then
for all 4) € X do Ty < Tg +ft * €F¢(t—d)
end for
end if
forall¢p € (LNF)dory = (146) x1y
end for
forall¢ € (F— (LNF))dory, =6,L=LUF
end for
v = softmax(a * r), update vote
L = {¢ € X|ry = minjcxr;}, policy with maximum cumulative reward
end while
return L (at most 2))
end function

95

Chapter 6

Conclusions and Future Directions

The core of this thesis are:

* Humans.
Specifically, non-expert people who may not have any background of math, computer
science, programming, robotics, or machine learning.

* Tasks.
From simple to complex, tasks of arbitrary complexity.

* Learning from interaction.
The agent learns from interacting with the environment and receives feedback from
human trainer directly.

* Natural guidance.
A combination of evaluative feedback, natural language command, and natural language
feedback given by humans.

6.1 Humans

Humans are the problem. We make mistakes all the time.

In Chapter 3, I demonstrate that human feedback is policy-dependent. Unlike sparse goal
feedback and stationary action feedback, the feedback that non-expert human trainer gives to
the agent possesses properties of:

* Diminishing returns.
As the learner’s performance improves, trainer feedback decreased—an alternative
explanation is simply trainer fatigue.

* Differential feedback.
The strength of feedback varies with improvement and deterioration.

* Policy shaping.
It reinforces sub-optimal actions, then punishes them and raises the bar.

The Advantage Function is introduced to simulate the properties of policy-dependent
human feedback. The Advantage Function describes how much better or worse an action
selection is compared to the agent’s performance under policy 7t.

Experiments in Chapter 4 showed that human trainers make mistakes quite often. About
one third of all the feedback were wrong. The algorithms proposed in this thesis are designed
to learn from such noisy human feedback.

96 Chapter 6. Conclusions and Future Directions

6.2 Tasks

Task representation is one of the most important parts of reinforcement learning. Unlike
traditional RL methods that try to maximize the reward function, Chapter 2 introduces “Short-
Circuit” Geometric Linear Temporal Logic (GLTL) as a way of representing tasks of arbitrary
complexity.

GLTL can represent temporal information. A GLTL formula, which can be shown as a
tree structure, can be decomposed to smaller pieces. Simpler tasks can build up to complex
tasks in an efficient and effective way.

6.3 Learning from interaction

Three algorithms are proposed in the thesis:
* COnvergent Actor-Critic by Humans (COACH)
* ”Short-Circuit” GLTL-based algorithm

* Learning Interactively from Natural Guidance (LING)

6.3.1 COACH

In Chapter 3, COACH is introduced to learn from policy-dependent evaluative human feedback.
COACH is based on the insight that the Advantage Function (a value roughly corresponding to
how much better or worse an action is compared to the current policy) provides a better model
of human feedback, capturing human-feedback properties like diminishing returns, rewarding
improvement, and giving 0-valued feedback a semantic meaning that combats forgetting.

Experiments in simulation environment compared the performance of COACH, Q Learn-
ing, and TAMER, where each algorithm is tested with three different types of feedback: sparse
goal reward, stationary action reward, and improvement reward which is close to evaluative
human feedback. The results suggest that COACH with eligibility traces learns robustly with
all three kinds of feedback, while Q Learning and TAMER could only work with limited
feedback type.

A qualitative experiment with a physical robot, TurtleBot, which runs Real-time COACH,
a special version of COACH, is conducted. The experiment suggests that COACH can scale
to a complex domain involving multiple challenges. Coach successfully learned all of the five
tasks while TAMER fail to learn the compositional behaviors:

1. push-pull.
To teach the agent to navigate to the ball when it is far, and back away from it when it’s
near.

2. hide.
To teach the agent to go away from the ball and turn away when it moves far.

3. ball following.
To teach the agent to come to the ball.

4. alternate.
To teach the agent to go back and forth between the ball and the cylinder.

5. cylinder navigation.
To teach the agent to navigate to the cylinder with the help of the ball as a lure.

6.3. Learning from interaction 97

6.3.2 GLTL-based algorithm

Chapter 4 presents a GLTL-based algorithm to learn tasks of arbitrary complexity through
decomposition. The results of simulation experiments show that the feedback it takes for the
GLTL-based algorithm to finish four simple tasks is much fewer than the other two algorithms.

In another simulation experiment, GLTL-based algorithm can handle all of the five
complex tasks well while both TAMER and COACH fail in learning:

1. Go to the table and then go to the charger and stay there: {>(table A {)Ccharger).

2. Go to your charger without colliding with either the chair or the table: —(chair V
table) Ucharger.

3. Go to the table and then go to the fridge: {>(table A {fridge).

4. Go to the charger and then go to the chair without running into the table along the way:
(—table) U (charger A {chair).

5. Go back and forth patrolling between the table and the fridge: (1< (table A {fridge).

6.3.3 Similarity score

To measure the acceptance level of the learned formula, I introduce Similarity Score as evalua-
tion metric. The Similarity Score of two formulas is calculated by counting the percentage of
positive feedback of all trajectories of one formula from an ideal trainer trying to teach the
other formula. It can be thought of as telling us how happy someone would be when they
were wanting to train a formula and the robot exhibits behavior from the other formula.

If the Similarity Score of an output learned formula and its original target formula is close
to 1, it means that the actual behavior of the agent is close to the desired behavior, therefore
the acceptance level can be considered high.

A series of user studies with real participants suggest that:

1. Non-expert people can decompose complex tasks to simpler sub-tasks effectively.

2. Complex missions can be taught by non-expert human trainers through decomposing
them to simpler sub-tasks, and training the GLTL-based agent sub-tasks to build up the
missions via evaluative feedback.

6.3.4 LING

In Chapter 5, a deep sequence-to-sequence (Seq2Seq) approach is used to interpret natural
language command and feedback. The Seq2Seq algorithm is applied to convert natural
language to formal language, which is GLTL formula. The key factors in deciding the
structure of the Seq2Seq model are:

* Training cost.
The model needs to learn fast over small training set, so that it’s possible for human
teacher to train a new model from scratch.

* Training speed.
The model needs to be trained fast so that the human trainer does not need to wait for
the agent to update its model.

98 Chapter 6. Conclusions and Future Directions

As aresult, a Seq2Seq model with attention mechanism is selected, taking Bidirectional
Long Short-Term Memory (Bi-LSTM) as encoder, LSTM as decoder, applying beam search
to generate multiple top outputs.

Based on the idea of COACH, GLTL, and Seq2Seq model, I introduce an approach of
Learning Interactively from Natural Guidance (LING) that enables the agent to learn tasks of
arbitrary complexity through decomposition and a combination of evaluative feedback and
natural language feedback.

LING can learn from both evaluative numerical feedback and natural language feedback.
It could parse the natural language command as a group of possible GLTL formula candidates,
and combine the group with the Learned Knowledge to form the potential candidates list. All
the sub-formulas of the potential candidates list produce an extended list, which will be used
as a filter. The agent will then take actions generated by the dynamic voting function of the list.
Each natural language feedback that the human trainer gives along the way are translated to
several GLTL formulas picked by the filter, and then get assigned to the list through multiple
eligibility traces.

At the end of the task, the learned formula and the original natural language command
will be applied to update the Seq2Seq model and the Learned Knowledge base.

A qualitative user study suggests that non-expert human trainer can teach physical robot
running LING to complex tasks in a real living room by giving natural language commands
and natural language feedback.

6.4 Natural Guidance

The natural ways that human trainers use to guide the robots are considered to contain three
properties in this thesis:

* Evaluative feedback.
Positive feedback like a "treat" to a puppy, and negative feedback like a beam alarm.

* Natural language command.
The human trainer could speak to the robot asking it to finish a goal in natural language.

* Natural language feedback.
The human trainer could speak to the robot to adjust its behavior during the training
process.

Apparently such natural guidance can easily be noisy, containing a lot of wrong feedback
and unrelated information. However, it’s human nature. In general, making the experience
of teaching a robot as easy and straightforward as that of teaching a dog requires the ML
approach to be able to learn from such natural guidance.

6.5 Future Directions

The methods proposed in this thesis have great potentials yet to be explored.

First of all, the infrastructure of LING does not make use of pre-trained embedding
techniques. The language models pre-trained on huge data sets, e.g., GPT-3, have shown
exciting power in many areas. Combining such models to the pipeline could be promising in
the way that the agent can expand its knowledge space bigger, richer, and faster.

Secondly, LING is a general model that supports multiple languages. If individual agent
of LING can share their knowledge base through cloud services, then the level of intelligence
of the agents will improve very quickly. Every natural language command that has ever been
taught by any human trainer speaking whatever language will be learned by all agents.

6.5. Future Directions 99

Furthermore, there are a lot of robotics functions remaining to be discovered and added to
the current system. Perception, for example, will enable the robot to watch the environment
through visual sensors. The spatial information of the new objects detected and recognized
by vision methods can be appended to the atomic proposition list, which will make the user
experience much better.

Moreover, LING is designed based on the assumption that both the human trainer and
the learner, which is the robot agent, know about the environment, which means there’s clear
limitation of what a robot can do in a given domain. Expanding the limited space, for example,
teaching the robot to do tasks of arbitrary complexity in an open environment where the
environmental information is partially known by the agent is worth exploring.

Last but not least, LING can be applied to not only human-robot interaction, but also other
scenarios. As long as the problem can be formed in a way that the agent interacts with a
consistent representation of human behavior, LING and its customized version might fit in.

Automatic grading the handwritten solutions to K-12 mathematical or physical questions,
for example, can be considered as the agent interacts with each step of the image segments of
the student’s handwritten solution, trying to understand the student’s behavior, and generating
judgement results of whether each step of the answer is correct. Solving such a problem and
producing a solution to the general public will create great social impact, e.g., protecting
education fairness.

“For an agent that can interactively learn from human guidance, the history is meaningful,
and the future is learnable.”

101

Bibliography

Abbeel, Pieter and Andrew Y Ng (2004). “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the Twenty-First International Conference on Machine
Learning.

— (2005). “Exploration and apprenticeship learning in reinforcement learning”. In: Proceed-
ings of the 22nd international conference on Machine learning, pp. 1-8.

Akrour, Riad, Marc Schoenauer, and Michele Sebag (2011). “Preference-based policy learn-
ing”. In: Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML-PKDD), pp. 12-27.

Almagor, Shaull, Udi Boker, and Orna Kupferman (2014). “Discounting in LTL”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Springer, pp. 424-439.
Amershi, Saleema et al. (2014). “Power to the people: The role of humans in interactive

machine learning”. In: A Magazine 35.4, pp. 105-120.

Amin, Kareem, Nan Jiang, and Satinder Singh (2017). “Repeated Inverse Reinforcement
Learning”. arXiv preprint arXiv:1705.05427.

Amsters, Robin and Peter Slaets (2019). “Turtlebot 3 as a robotics education platform”. In:
International Conference on Robotics in Education (RiE). Springer, pp. 170-181.

Artzi, Yoav and Luke Zettlemoyer (2011). “Bootstrapping semantic parsers from conversa-
tions”. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pp. 421-432.

Ayala, Angel, Claudio Henriquez, and Francisco Cruz (2019). “Reinforcement learning using
continuous states and interactive feedback™. In: Proceedings of the 2nd International
Conference on Applications of Intelligent Systems, pp. 1-5.

Babes, Monica et al. (2011). “Apprenticeship Learning About Multiple Intentions”. In: Pro-
ceedings of the International Conference on Machine Learning, pp. 897-904.

Bacchus, Fahiem, Craig Boutilier, and Adam Grove (1996). “Rewarding Behaviors”. In:
Proceedings of the Thirteenth National Conference on Artificial Intelligence. AAAI
Press/The MIT Press, pp. 1160-1167.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine translation
by jointly learning to align and translate”. In: arXiv preprint arXiv: 1409.0473.

Baier, Christel and Joost-Pieter Katoen (2008). Principles of Model Checking. MIT Press.

Baird, Leemon (1995). “Residual algorithms: Reinforcement learning with function approx-
imation”. In: Proceedings of the twelfth international conference on machine learning,
pp- 30-37.

Barto, A.G., R.S. Sutton, and C.W. Anderson (1983a). “Neuronlike adaptive elements that
can solve difficult learning control problems”. In: Systems, Man and Cybernetics, IEEE
Transactions on SMC-13.5, pp. 834 —846.

Barto, Andrew G., Richard S. Sutton, and Charles W. Anderson (1983b). “Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems”. In: IEEE Transactions on
Systems, Man, and Cybernetics SMC-13.5, pp. 834-846.

Bellman, Richard (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

Bender, Emily M and Alexander Koller (2020). “Climbing towards NLU: On meaning, form,
and understanding in the age of data”. In: Proc. of ACL.

102 Bibliography

Bengio, Yoshua et al. (2003). “A neural probabilistic language model”. In: Journal of machine
learning research 3.Feb, pp. 1137-1155.

Berant, Jonathan et al. (2013). “Semantic parsing on freebase from question-answer pairs”. In:
Proceedings of the 2013 conference on empirical methods in natural language processing,
pp. 1533-1544.

Bhatnagar, Shalabh et al. (2009). “Natural actor—critic algorithms”. In: Automatica 45.11,
pp. 2471-2482.

Billard, Aude et al. (2008). Survey: Robot programming by demonstration. Tech. rep. Springrer.

Bisk, Yonatan, Deniz Yuret, and Daniel Marcu (2016). “Natural language communication with
robots”. In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 751-761.

Branavan, S.R.K. et al. (Aug. 2009). “Reinforcement Learning for Mapping Instructions to
Actions”. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP. Suntec, Singapore: Association for Computational Linguistics, pp. 82-90. URL:
https://www.aclweb.org/anthology/P09-1010.

Celemin, Carlos and Javier Ruiz-del Solar (2019). “An interactive framework for learning
continuous actions policies based on corrective feedback™. In: Journal of Intelligent &
Robotic Systems 95.1, pp. 77-97.

Celemin, Carlos et al. (2019). “Reinforcement learning of motor skills using Policy Search
and human corrective advice”. In: The International Journal of Robotics Research 38.14,
pp. 1560-1580.

Chernova, Sonia and Andrea L Thomaz (2014). “Robot learning from human teachers”. In:
Synthesis Lectures on Artificial Intelligence and Machine Learning 8.3, pp. 1-121.

Cho, Kyunghyun et al. (2014a). “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: arXiv preprint arXiv: 1406.1078.

Cho, Kyunghyun et al. (2014b). “On the properties of neural machine translation: Encoder-
decoder approaches”. In: arXiv preprint arXiv:1409.1259.

Christiano, Paul et al. (2017). “Deep reinforcement learning from human preferences”. In:
Advances in Neural Information Processing Systems, pp. 4302—4310.

Clarke, James et al. (2010). “Driving semantic parsing from the world’s response”. In: Pro-
ceedings of the fourteenth conference on computational natural language learning, pp. 18—
27.

Cruz, Francisco et al. (2016). “Training agents with interactive reinforcement learning and
contextual affordances”. In: IEEE Transactions on Cognitive and Developmental Systems
8.4, pp. 271-284.

Daumé 111, Hal (2009). “Frustratingly easy domain adaptation”. In: arXiv preprint arXiv:0907.1815.

Davis, Sean and Paul S Meltzer (2007). “GEOquery: a bridge between the Gene Expression
Omnibus (GEO) and BioConductor”. In: Bioinformatics 23.14, pp. 1846-1847.

De Alfaro, Luca, Thomas A Henzinger, and Rupak Majumdar (2003). “Discounting the future
in systems theory”. In: Automata, Languages and Programming. Springer, pp. 1022-1037.

De Winter, Joris et al. (2019). “Accelerating Interactive Reinforcement Learning by Human
Advice for an Assembly Task by a Cobot”. In: Robotics 8.4, p. 104.

Dong, Li and Mirella Lapata (2016). “Language to logical form with neural attention”. In:
arXiv preprint arXiv:1601.01280.

Fard, Seyed Mehdi Hazrati, Ali Hamzeh, and Sattar Hashemi (2013). “Using reinforcement
learning to find an optimal set of features”. In: Computers & Mathematics with Applica-
tions 66.10, pp. 1892-1904.

Ghadirzadeh, Ali et al. (2020). “Human-centered collaborative robots with deep reinforcement
learning”. In: arXiv preprint arXiv:2007.01009.

https://www.aclweb.org/anthology/P09-1010

Bibliography 103

Graves, Alex and Navdeep Jaitly (2014). “Towards end-to-end speech recognition with
recurrent neural networks”. In: International conference on machine learning, pp. 1764—
1772.

Griffith, Shane et al. (2013). “Policy shaping: Integrating human feedback with reinforcement
learning”. In: Advances in Neural Information Processing Systems, pp. 2625-2633.

Hadfield-Menell, Dylan et al. (2016). “Cooperative inverse reinforcement learning”. In: Ad-
vances in Neural Information Processing Systems, pp. 3909-3917.

Ho, Mark K et al. (2015). “Teaching with rewards and punishments: Reinforcement or
communication?” In: Proceedings of the 37th Annual Meeting of the Cognitive Science
Society.

Ho, Mark K. et al. (2017). “Social is special: A normative framework for teaching with and
learning from evaluative feedback”. In: Cognition 167, pp. 91-106.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735-1780.

Hussein, Ahmed et al. (2017). “Imitation learning: A survey of learning methods”. In: ACM
Computing Surveys (CSUR) 50.2, pp. 1-35.

Isbell, Charles et al. (2001). “A social reinforcement learning agent”. In: Proceedings of the
fifth international conference on Autonomous agents. ACM, pp. 377-384.

Isbell, Charles Lee et al. (2006). “Cobot in LambdaMOQ: An adaptive social statistics agent”.
In: Autonomous Agents and Multi-Agent Systems 13.3, pp. 327-354.

Iyer, Srinivasan et al. (2017). “Learning a neural semantic parser from user feedback”. In:
arXiv preprint arXiv:1704.08760.

Johnson, Tim (1984). “Natural language computing: the commercial applications”. In: The
Knowledge Engineering Review 1.3, pp. 11-23.

Kalchbrenner, Nal and Phil Blunsom (2013). “Recurrent continuous translation models”.
In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1700-1709.

Kamath, Aishwarya and Rajarshi Das (2018). “A survey on semantic parsing”. In: arXiv
preprint arXiv:1812.00978.

Kasenberg, Daniel and Matthias Scheutz (2017). “Interpretable Apprenticeship Learning with
Temporal Logic Specifications”. In: Proceedings of the 56th IEEE Conference on Decision
and Control.

Kassner, Nora and Hinrich Schiitze (2020). “Negated and Misprimed Probes for Pretrained
Language Models: Birds Can Talk, But Cannot Fly”. In: Association for Computational
Linguistics.

Kearns, Michael and Satinder Singh (1998). “Near-optimal reinforcement learning in polyno-
mial time”. In: Proceedings of the 15th International Conference on Machine Learning,
pp. 260-268. URL: citeseer.nj.nec.com/kearns98nearoptimal . html.

Kim, Su Kyoung et al. (2017). “Intrinsic interactive reinforcement learning—Using error-related
potentials for real world human-robot interaction”. In: Scientific reports 7.1, pp. 1-16.

Klingspor, Volker, John Demiris, and Michael Kaiser (1997). “Human-robot communication
and machine learning”. In: Applied Artificial Intelligence 11.7, pp. 719-746.

Knox, W Bradley and Peter Stone (2009a). “Interactively shaping agents via human reinforce-
ment: The TAMER framework™. In: Proceedings of the fifth international conference on
Knowledge capture. ACM, pp. 9-16.

— (2009b). “Interactively shaping agents via human reinforcement: The TAMER framework”.
In: Proceedings of the Fifth International Conference on Knowledge Capture, pp. 9-16.

— (2013). “Learning non-myopically from human-generated reward”. In: Proceedings of the
2013 International Conference on Intelligent User Interfaces, pp. 191-202.

Knox, W Bradley, Peter Stone, and Cynthia Breazeal (2013). “Training a robot via human
feedback: A case study”. In: Social Robotics. Springer, pp. 460—470.

citeseer.nj.nec.com/kearns98nearoptimal.html

104 Bibliography

Knox, W Bradley et al. (2012). “How humans teach agents”. In: International Journal of
Social Robotics 4.4, pp. 409-421.

Knox, William Bradley (2012). “Learning from human-generated reward”. PhD thesis. Uni-
versity of Texas at Austin.

Kollar, Thomas, Jayant Krishnamurthy, and Grant P Strimel (2013). “Toward Interactive
Grounded Language Acqusition.” In: Robotics: Science and systems. Vol. 1, pp. 721-732.

Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press.

Krening, Samantha and Karen M Feigh (2019). “Effect of interaction design on the human
experience with interactive reinforcement learning”. In: Proceedings of the 2019 on
Designing Interactive Systems Conference, pp. 1089—1100.

Kress-Gazit, H., G.E. Fainekos, and G.J. Pappas (2009). “Temporal-Logic-Based Reactive
Mission and Motion Planning”. In: IEEE Tans. on Robotics 25, pp. 1370-1381.

Krishnamurthy, Jayant, Pradeep Dasigi, and Matt Gardner (2017). “Neural semantic parsing
with type constraints for semi-structured tables”. In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 1516-1526.

Krishnamurthy, Jayant and Tom Mitchell (2012). “Weakly supervised training of semantic
parsers”. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pp. 754-765.

“Kuri Robot Website”. In: (). URL: https://www.heykuri.com/explore-kuri/
#feature-cap-touch-sensors.

Lahijanian, M., S. B. Andersson, and C. Belta (2011). “Control of Markov decision processes
from PCTL specifications”. In: Proc. of the American Control Conference, pp. 311-316.

Le6n, Adridn et al. (2011). “Teaching a Robot to Perform Task through Imitation and On-line
Feedback”. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications. Ed. by César San Martin and Sang-Woon Kim. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 549-556. ISBN: 978-3-642-25085-9.

Li, G. et al. (2019). “Human-Centered Reinforcement Learning: A Survey”. In: IEEE Trans-
actions on Human-Machine Systems 49.4, pp. 337-349.

Li, Guangliang et al. (2020). “Facial feedback for reinforcement learning: a case study and
offline analysis using the TAMER framework™. In: Autonomous Agents and Multi-Agent
Systems 34.1, pp. 1-29.

Liang, Chen et al. (2016). “Neural symbolic machines: Learning semantic parsers on freebase
with weak supervision”. In: arXiv preprint arXiv:1611.00020.

Littman, Michael L. (2015). “Reinforcement learning improves behaviour from evaluative
feedback”. In: Nature 521.7553, pp. 394-556.

Littman, Michael L. et al. (2017). “Environment-Independent Task Specifications via GLTL”.
arXiv preprint arXiv:1704.04341.

Loftin, Robert et al. (2014). “A Strategy-Aware Technique for Learning Behaviors from
Discrete Human Feedback™. In: Proceedings of the Twenty-Eighth Association for the
Advancement of Artificial Intelligence Conference.

Loftin, Robert et al. (2015). “Learning behaviors via human-delivered discrete feedback:
modeling implicit feedback strategies to speed up learning”. In: Autonomous Agents and
Multi-Agent Systems 30.1, pp. 30-59.

Loftin, Robert T. et al. (2016). “Learning behaviors via human-delivered discrete feedback:
Modeling implicit feedback strategies to speed up learning”. In: Autonomous Agents and
Multi-Agent Systems 30.1, pp. 30-59.

MacGlashan, James et al. (2017). “Interactive Learning from Policy-Dependent Human
Feedback™. In: Proceedings of the Thirty-Fourth International Conference on Machine
Learning.

https://www.heykuri.com/explore-kuri/#feature-cap-touch-sensors
https://www.heykuri.com/explore-kuri/#feature-cap-touch-sensors

Bibliography 105

MacMahon, Matt, Brian Stankiewicz, and Benjamin Kuipers (2006). “Walk the talk: Connect-
ing language, knowledge, and action in route instructions”. In: Def 2.6, p. 4.

Manna, Zohar and Amir Pnueli (1992). The Temporal Logic of Reactive & Concurrent Sys.
Springer.

Matthews, David and Josh Bongard (2020). “Crowd grounding: finding semantic and behav-
ioral alignment through human robot interaction.” In: Artificial Life Conference Proceed-
ings. MIT Press, pp. 148-156.

Matuszek, Cynthia et al. (2014). “Learning from unscripted deictic gesture and language for
human-robot interactions”. In: UMBC Faculty Collection.

Mavridis, Nikolaos (2015). “A review of verbal and non-verbal human—-robot interactive
communication”. In: Robotics and Autonomous Systems 63, pp. 22-35.

Mehta, Nikhil and Dan Goldwasser (2019). “Improving Natural Language Interaction with
Robots Using Advice”. In: arXiv preprint arXiv:1905.04655.

Mudgal, Sidharth et al. (2018). “Deep learning for entity matching: A design space explo-
ration”. In: Proceedings of the 2018 International Conference on Management of Data,
pp. 19-34.

Ng, Andrew Y. and Stuart Russell (2000). “Algorithms for inverse reinforcement learning”.
In: International Conference on Machine Learning, pp. 663-670.

Ngo Anh Vien and W. Ertel (2012). “Reinforcement learning combined with human feed-
back in continuous state and action spaces”. In: 2012 IEEE International Conference on
Development and Learning and Epigenetic Robotics (ICDL), pp. 1-6.

Ni, Pin et al. (2020). “Natural language understanding approaches based on joint task of
intent detection and slot filling for IoT voice interaction”. In: Neural Computing and
Applications, pp. 1-18.

Pasupat, Panupong and Percy Liang (2015). “Compositional semantic parsing on semi-
structured tables”. In: arXiv preprint arXiv:1508.00305.

Patel, R., Ellie Pavlick, and Stefanie Tellex (2020). “Grounding Language to Non-Markovian
Tasks with No Supervision of Task Specifications”. In:

Patki, Siddharth et al. (2019). “Inferring compact representations for efficient natural language
understanding of robot instructions”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE, pp. 6926-6933.

Peng, Bei et al. (2017). “Curriculum Design for Machine Learners in Sequential Decision
Tasks”. In: Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems.

Pilarski, Patrick M et al. (2011). “Online human training of a myoelectric prosthesis controller
via actor-critic reinforcement learning”. In: 2011 IEEE International Conference on
Rehabilitation Robotics. IEEE, pp. 1-7.

Poon, Hoifung and Pedro Domingos (2009). “Unsupervised semantic parsing”. In: Proceedings
of the 2009 conference on empirical methods in natural language processing, pp. 1-10.

Ramesh, Divya et al. (2020). “Yesterday’s Reward is Today’s Punishment: Contrast Effects
in Human Feedback to Reinforcement Learning Agents”. In: Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. AAMAS ’20.
Auckland, New Zealand: International Foundation for Autonomous Agents and Multiagent
Systems, 1090-1097. 1SBN: 9781450375184.

Rivest, Ronald L and Robert Sloan (1994). “A formal model of hierarchical concept-learning”.
In: Information and Computation 114.1, pp. 88-114.

Roesler, Oliver and Ann Nowé (2019). “Action learning and grounding in simulated human—
robot interactions”. In: The Knowledge Engineering Review 34.

Roesler, Oliver et al. (2019). “Evaluation of word representations in grounding natural
language instructions through computational human-robot interaction”. In: 2019 14th

106 Bibliography

ACM/IEEFE International Conference on Human-Robot Interaction (HRI). IEEE, pp. 307-
316.

Roy, Deb K (2002). “Learning visually grounded words and syntax for a scene description
task”. In: Computer speech & language 16.3-4, pp. 353-385.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning representa-
tions by back-propagating errors”. In: nature 323.6088, pp. 533-536.

Russell, Stuart J. and Peter Norvig (1994). Artificial Intelligence: A Modern Approach. Engle-
wood Cliffs, NJ: Prentice-Hall. ISBN: 0-13-103805-2.

Schalkwyk, Johan et al. (2010). ““your word is my command”: Google search by voice: A
case study”. In: Advances in speech recognition. Springer, pp. 61-90.

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural networks”. In:
IEEFE transactions on Signal Processing 45.11, pp. 2673-2681.

Singh, S, R L Lewis, and A G Barto (2009). “Where do rewards come from?” In: Proceedings
of the Annual Conference of the Cognitive Science Society.

Steels, Luc and Paul Vogt (1997). “Grounding adaptive language games in robotic agents”. In:
Proceedings of the fourth european conference on artificial life. Vol. 97.

Suay, H. B. and S. Chernova (2011). “Effect of human guidance and state space size on
Interactive Reinforcement Learning”. In: 2011 RO-MAN, pp. 1-6.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence learning with
neural networks”. In: Advances in neural information processing systems, pp. 3104-3112.

Sutton, Richard S. and Andrew G. Barto (1998b). Reinforcement Learning: An Introduction.
The MIT Press.

Sutton, Richard S and Andrew G Barto (1998a). Reinforcement learning: An introduction.
Vol. 1. 1. MIT press Cambridge.

Sutton, Richard S et al. (1999). “Policy Gradient Methods for Reinforcement Learning with
Function Approximation.” In: NIPS. Vol. 99, pp. 1057-1063.

Tabrez, Aaquib and Bradley Hayes (2019). “Improving human-robot interaction through
explainable reinforcement learning”. In: 20719 14th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). IEEE, pp. 751-753.

Tan, Hao and Mohit Bansal (2017). “Source-target inference models for spatial instruction
understanding”. In: arXiv preprint arXiv:1707.03804.

Tenorio-Gonzalez, Ana C, Eduardo F Morales, and Luis Villasefior-Pineda (2010). “Dy-
namic reward shaping: training a robot by voice”. In: Advances in Artificial Intelligence—
IBERAMIA 2010. Springer, pp. 483-492.

Thomason, Jesse et al. (2019). “Improving grounded natural language understanding through
human-robot dialog”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE, pp. 6934-6941.

Thomaz, Andrea L. and Cynthia Breazeal (2007). “Robot learning via socially guided ex-
ploration”. In: Development and Learning, 2007. ICDL 2007. IEEE 6th International
Conference on. IEEE, pp. 82-87.

— (2008). “Teachable robots: Understanding human teaching behavior to build more effective
robot learners”. In: Artificial Intelligence 172, pp. 716-737.

Thomaz, Andrea Lockerd and Cynthia Breazeal (2006). “Reinforcement learning with human
teachers: Evidence of feedback and guidance with implications for learning performance”.
In: AAAL Vol. 6, pp. 1000-1005.

Thompson, Henry S et al. (1993). “The HCRC map task corpus: natural dialogue for speech
recognition”. In: HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held
at Plainsboro, New Jersey, March 21-24, 1993.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural information
processing systems, pp. 5998-6008.

Bibliography 107

Vien, Ngo Anh, Wolfgang Ertel, and Tae Choong Chung (2013). “Learning via human
feedback in continuous state and action spaces”. In: Applied intelligence 39.2, pp. 267—
278.

Vinyals, Oriol et al. (2015). “Grammar as a foreign language”. In: Advances in neural
information processing systems, pp. 2773-2781.

Wang, Guan et al. (2020). “Teaching a Robot Tasks of Arbitrary Complexity via Human
Feedback”. In: Proceedings of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction, pp. 649-657.

Wang, Yushi, Jonathan Berant, and Percy Liang (2015). “Building a semantic parser overnight”.
In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 1332-1342.

Warnell, Garrett et al. (2017). “Deep tamer: Interactive agent shaping in high-dimensional
state spaces”. In: arXiv preprint arXiv:1709.10163.

Watkins, Christopher J. C. H. (1989). “Learning from Delayed Rewards”. PhD thesis. Cam-
bridge, UK: King’s College.

Watkins, Christopher J. C. H. and Peter Dayan (1992). “Q-Learning”. In: Machine Learning
8.3, pp. 279-292.

Winograd, Terry (1980). “What does it mean to understand language?” In: Cognitive science
4.3, pp. 209-241.

Wirth, Christian and Johannes Fiirnkranz (2013). “Preference-based reinforcement learning: A
preliminary survey”. In: Proceedings of the ECML/PKDD-13 Workshop on Reinforcement
Learning from Generalized Feedback: Beyond Numeric Rewards.

Wollff, Eric M., Ufuk Topcu, and Richard M. Murray (2012). “Robust Control of Uncertain
Markov Decision Processes with Temporal Logic Specifications”. In: Proc. of the IEEE
Conference on Decision and Control.

Wong, Yuk Wah and Raymond Mooney (2006). “Learning for semantic parsing with statistical
machine translation”. In: Proceedings of the Human Language Technology Conference of
the NAACL, Main Conference, pp. 439-446.

Wongpiromsarn, T., U. Topcu, and R.M. Murray (2012). “Receding Horizon Temporal Logic
Planning”. In: IEEE T. on Automatic Control 57, pp. 2817-2830.

Woods, William A (1973). “Progress in natural language understanding: an application to
lunar geology”. In: Proceedings of the June 4-8, 1973, national computer conference and
exposition, pp. 441-450.

Yu, Chao et al. (2020). “Interactive RL via Online Human Demonstrations”. In: Proceedings
of the 19th International Conference on Autonomous Agents and MultiAgent Systems,
pp- 2065-2067.

Zelle, John M and Raymond J Mooney (1996). “Learning to parse database queries using
inductive logic programming”. In: Proceedings of the national conference on artificial
intelligence, pp. 1050-1055.

Zettlemoyer, Luke S and Michael Collins (2012). “Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars”. In: arXiv preprint
arXiv:1207.1420.

Zhang, Wen et al. (2019). “Bridging the gap between training and inference for neural machine
translation”. In: arXiv preprint arXiv:1906.02448.

Zheng, Weiguo et al. (2019). “Interactive natural language question answering over knowledge
graphs”. In: Information Sciences 481, pp. 141-159.

Ziebart, Brian D et al. (2008). “Maximum Entropy Inverse Reinforcement Learning”. In:
AAAI Vol. 8, pp. 1433-1438.

	Abstract
	Acknowledgements
	Introduction
	Reinforcement-Learning Approaches
	Natural Language Processing
	Dog-Inspired Learning
	Contributions

	Task Representation
	Introduction
	Markov Decision Processes
	Linear Temporal Logic
	"Short-Circuit" Geometric Linear Temporal Logic
	Samples
	Conclusion

	Interactive Learning through Evaluative Human Feedback
	Human-Centered Reinforcement Learning
	Human Feedback is Policy-Dependent
	Empirical Results

	Convergent Actor-Critic by Humans
	Real-time COACH

	Comparison of COACH, Q Learning, and TAMER in Simulated Grid World
	Learning Algorithms and Feedback Strategies
	Results

	Robot Case Study
	Results

	Conclusion

	Teaching Complex Tasks through Decomposition
	Training Agent like a Dog
	GLTL algorithm
	Experiments and results
	Mission Decomposition Study
	Mission Decomposition Study results
	Recomposition Study
	Recomposition Study results
	Simulation study
	User Study: Learning Basic Tasks from Non-expert Human Trainers
	User study Results: Learning Basic Tasks from Non-expert Human Trainers
	User study: Learning Complex Missions via Decomposition
	Results of User study: Learning Complex Missions via Decomposition

	Conclusion

	Interactive Learning from Human Feedback and Natural Language
	Why Natural Language?
	Background
	Sequence to Sequence Model
	Recurrent Neural Networks
	Long Short-Term Memory

	Learning Interactively from Natural Guidance (LING)
	Attention Mechanism
	Beam Search
	Algorithms

	Experiment

	Conclusions and Future Directions
	Humans
	Tasks
	Learning from interaction
	COACH
	GLTL-based algorithm
	Similarity score
	LING

	Natural Guidance
	Future Directions

	Bibliography
	signature page (1).pdf
	Blank Page

