
Abstract of “Encoding Reusable Knowledge in State Representations” by Lucas Lehnert, Ph.D.,

Brown University, May 2021.

Reusing knowledge allows intelligent systems to learn solutions to complex tasks more quicker by

avoiding re-learning the components of the solution from scratch. Recent advances in reinforcement-

learning research have demonstrated that deep learning algorithms can solve complex tasks. How-

ever, achieving knowledge reuse characteristic of human behaviour has been elusive. Humans are

adept at flexibly transferring knowledge between different tasks, whereas established reinforcement-

learning algorithms are much more limited. Reusing knowledge in reinforcement-learning algorithms

is a central, yet not well understood challenge. This dissertation addresses the question of which

models allow an intelligent system to reuse knowledge and provides a partial solution. Viewing

knowledge representations through the lens of representation learning, we show that models that

are predictive of future reward outcomes implicitly encode reusable knowledge. Through a sequence

of theoretical and empirical results, this dissertation discusses different state representations and

presents connections to model-based reinforcement learning, model-free reinforcement learning, and

successor features. Furthermore, different transfer-learning experiments are presented, demonstrat-

ing that representations that are predictive of future reward outcomes generalize across different

tasks. Lastly, we introduce a clustering algorithm to learn representations that are predictive of

future reward sequences for tasks with continuous state spaces. We demonstrate under which as-

sumptions this clustering algorithm converges to an accurate model. Furthermore, on a visual control

task, we demonstrate that this learned model generalizes across different tasks and can be used to

accelerate learning. These results suggest that learning a model detailed enough to predict future

reward outcomes prevents overfitting to one task and allows an agent to accelerate learning across

previously unseen tasks.

Encoding Reusable Knowledge in State Representations

by

Lucas Lehnert

B. Sc., McGill University, 2015

M. Sc., McGill University, 2017

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2021

© Copyright 2021 by Lucas Lehnert

This dissertation by Lucas Lehnert is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Michael L. Littman, Director

Recommended to the Graduate Council

Date
Michael J. Frank, Reader

(Department of Cognitive, Linguistic &
Psychological Sciences)

Date
Ellie Pavlick, Reader

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii

Vita

Lucas Lehnert spent most of his childhood in Neustadt an der Weinstraße, Germany and moved to

Montreal, Canada as a teenager. He completed his B.Sc. in computer science and M.Sc. at McGill

University in 2015 and 2017 respectively. After his Masters, he joined Brown University and is

currently completing his Ph.D. in computer science. He is also affiliated with the Carney Institute

for Brain Science and his research focusses on reinforcement learning and its applications to compu-

tational cognitive neuroscience. His work on Successor Feature transfer, which also appears in this

dissertation, was recognized by a Best Student Paper Award (Lifelong Learning: A Reinforcement

Learning Approach workshop at ICML 2017).

i

Acknowledgements

First, I would like to thank my advisor and mentor, Michael L. Littman, for his guidance and advice

in becoming a researcher. I am grateful for his support in developing my own research directions

and fostering creating thinking. I would also like to thank my mentor and advisor Michael J. Frank

for his guidance, support, and encouragement in conducting interdisciplinary research. I am grateful

to him for showing me how to build bridges to research questions across disciplines and showing

me how to communicate my ideas to a broad interdisciplinary audience. I am grateful to both for

providing me with an open and supportive environment to launch my career as a researcher.

I am also grateful for being a part of the ICON training grant program. Here, I would also

like to thank Professors Chris Moore and David Badre for their input on how to present my ideas

to a broad interdisciplinary audience. Through the training grant and the neuropracticum I have

learned much of what I know about neuroscience and cognitive science. Furthermore, I would like

to thank Professor Stefanie Tellex for her advice in developing some of the early parts of the work

presented in this dissertation. I am also grateful to Professors Doina Precup, Thomas Serre, Irina

Rish, George Konidaris, and James Tompkin for discussions that further strengthened my work. I

would also like to thank Professors Ellie Pavlick and Stephen Bach for serving on my dissertation

committee and for their thoughtful questions that have contributed to this dissertation.

Moreover, I would like to thank Alana Jaskir, Rex Liu, Aneri Soni, Abdullah P. Rashed Ahmed,

and Olga Lositsky. Through our discussions I have learned much about cognitive science and neu-

roscience and was able to strengthen my research in many ways. I would also like to thank Scott

Daniel, Christopher Black, Zhiyan Wang, Sinda Fekir, Aarit Ahuja, Jason Leng, and Jovan Kemp for

many valuable discussions that have helped me communicate my ideas to a neuroscience audience. I

would also like to thank Yagnesh Revar, Dilip Arumugam, Nakul Gopalan, Jun Ki Lee, Christopher

Grimm, Sam Saarinen, Arvind Yalavarti, and all members of the RLab and for many discussions

that have contributed to my research.

ii

Most importantly, I am grateful to my parents, Irina and Bernd, and my two brothers, Linus

and Jonas, for their constant loving support.

Funding Support This dissertation was supported in part by NIMH T32MH115895 Training pro-

gram for Interactionist Cognitive Neuroscience (ICON) and the ONR MURI PERISCOPE project.

iii

Contents

List of Tables vii

List of Figures ix

1 State Representations in Reinforcement Learning 1

1.1 Reinforcement Learning . 4

1.1.1 Temporal Difference Learning . 6

1.2 Predictive State Representations . 8

2 Successor Features as a Model-Free Mechanism 12

2.1 Connection to Linear Temporal Difference Learning 15

2.2 Transferring Learned Solutions Between Tasks . 17

2.3 Policy Dependence Limits Transfer Across Tasks . 21

3 Reward-Predictive State Representations 24

3.1 Encoding Bisimulation Relations . 27

3.2 Approximate Reward-Predictive Representations . 31

3.3 Learning Reward-Predictive Representations . 34

3.4 Connection to Model-based Reinforcement Learning 42

3.5 Generalization Across Transition and Reward Functions 42

3.5.1 Reward-Predictive Representations Encode Task Relevant State Information 46

3.6 Discussion . 50

3.7 Conclusions . 53

4 Reward-Predictive Representations Generalize Across Tasks 54

4.1 Generalization Across States . 55

iv

4.2 Generalization Across Tasks . 59

4.2.1 Transfer With Single State Abstractions . 59

4.2.2 Transfer With Multiple State Abstractions 63

4.2.3 Learning to Transfer Multiple State Abstractions 68

4.2.4 Comparison to Transferring Successor Features 75

4.3 Discussion . 78

4.3.1 Limitations and Future Directions . 82

4.4 Conclusion . 82

5 Scaling Reward-Predictive Representations 83

5.1 Reward-Predictive Clustering . 85

5.1.1 Representation Learning With Partition Refinement 87

5.1.2 Function Approximation . 92

5.1.3 Iterative Reward-Predictive Representation Learning Algorithm 94

5.1.4 Convergence to Maximally Compressed Representations 95

5.2 Generalization With Neural Networks . 100

5.2.1 Latent State Coverage Determines Predictive Performance 100

5.2.2 Generalization Across Tasks With Neural Networks 105

5.3 Discussion . 112

5.4 Conclusion . 116

6 Conclusions and Future Directions 117

6.1 Future Directions . 118

A Proofs of Theoretical Results 120

A.1 SF-learning and Q-Learning Connection (Chapter 2) 120

A.2 LSFM Theorems (Chapter 3) . 121

A.2.1 Approximate Reward-Predictive State Representations 127

A.2.2 Bound on Error Term ∆ . 134

A.3 Convergence Proofs of Clustering Algorithm . 135

A.3.1 Norm Identities . 135

A.3.2 Sub-Cluster Properties . 138

v

A.3.3 Convergence Proof . 143

B Simulation Implementation and Hyper-Parameters 147

B.1 Learning Rates Used In Chapter 2 Simulations . 147

B.2 Implementation Details of Chapter 3 Simulations . 147

B.2.1 Matrix Optimization in Column World . 148

B.2.2 Puddle-World Experiment . 148

B.2.3 Transfer Experiments . 149

B.2.4 Combination Lock Experiment . 151

B.3 Implementation Details for Chapter 4 Simulations 152

B.3.1 State Abstractions in Tabular Tasks . 152

B.3.2 Hyper-Parameters Used for Learning Experiments 153

B.4 Implementation Details of Chapter 5 Simulations . 155

B.4.1 Computing LSFMs . 155

B.4.2 Hyper-Parameter for Simulation Experiments 155

C Supplemental Files 159

vi

List of Tables

B.1 Learning rates used for Q-learning in Figures 2.2 and 2.3. 147

B.2 Learning rates used for SF-learning in Figures 2.2 and 2.3. 147

B.6 Learning rates used for Q-learning (Algorithm 1) and SF-learning (Algorithm 2) in

Section 4.2.3. Both algorithms are initialized optimistically, because this leads to

faster convergence as described in Section 2.2. 153

B.7 Hyper-parameters tested for mixture model in Section 4.2.3. 153

B.8 Hyper-Parameter used in guitar example in Section 4.2.4. For each agent the SF-

learning algorithm (Algorithm 2) was used and initialized optimistically as described

in Section 2.2. 154

B.9 Hyper-parameters used in the image puddle world example (Section 5.2.1). The first

layer receives the gray-scale image as input. The last layer does not have an activation

function when the network is used to approximate one-step rewards, SFs, or Q-values

(in case one of the DQN agent are used). When learning a state representation, then

the last layer uses a soft-max activation function. In this case, the loss objective

to train the representation network (Algorithm 3, line 11) is replaced using a cross-

entropy loss. The ERM routine trains the network using the Adam optimizer [56] 5

epochs to approximate one-step rewards or SFs. The final representation network is

trained for 10 epochs. The presented simulations use εr = 0.5 and εψ = 0.15. The

cluster operation is implemented using K-Means clustering implementation in SciKit

learn [83] for k = 500. The found centroids are then merged using agglomerative

clustering (UPGMC algorithm) with the L1 norm [114, 77]. 156

vii

B.10 Hyper-parameters used in the MNIST combination lock example (Section 5.2.2). The

first layer receives the gray-scale image as input. The last layer does not have an

activation function when the network is used to approximate one-step rewards, SFs,

or Q-values (in case one of the DQN agent are used). When learning a state represen-

tation, then the last layer uses a soft-max activation function. In this case, the loss

objective to train the representation network (Algorithm 3, line 11) is replaced using

a cross-entropy loss. For the MNIST combination lock task the Adam optimizer [56]

was used using tensorflow default parameters [1]. The ERM routine always trained the

network for 80 epochs. For one-step reward and SF prediction a separate network was

trained for each action. The presented simulations use εr = 0.5 and εψ = 0.15. The

cluster operation is implemented using K-Means clustering implementation in SciKit

learn [83] for k = 110. The found centroids are then merged using agglomerative

clustering (UPGMC algorithm) [114, 77] with the L1 norm. 157

B.11 Hyper-parameters used for the online learning simulations presented in Figure 5.9.

Each combination of test values was tested and the combination with the shortest

average episode length (the best parameter setting) is used in Figure 5.9. In all

experiments, the neural networks were trained using the Adam optimizer [56] and

only the learning rates are optimized leaving the other parameters to Tensorflow’s [1]

defaults. An ε-greedy policy is used to select actions and the ε parameter is decreased

linearly from 1 to 0 for the first n exploration episodes. 158

B.12 SF-learning hyper-parameter used in the MNIST combination lock transfer example

(Section 5.2.2). For each agent the SF-learning algorithm (Algorithm 2) and all

weights are initialized to zero (unless SF weights are transferred). 158

viii

List of Figures

1.1 State Representations Construct Lower Dimensional Latent State Spaces. 1.1(a): The

column world example is a 3× 3 grid world where an agent can move up (action ↑),

down (action ↓), left (action←), or right (action→) to adjacent grid cells and entering

the right column is rewarded. Rewards are indicated by the numbers in the individual

grid cells. 1.1(b): A reward-predictive state representation, generalizes across columns

(but not rows) and compresses the 3× 3 grid world into a 3× 1 grid world with three

latent states labelled with φφφ1, φφφ2, and φφφ3. In this compressed task, only the transition

moving from the centre orange state φφφ2 to the right green state φφφ3 is rewarded. 1.1(c):

The lower panel presents a matrix plot of the state values V π for a policy that selects

actions uniformly at random. Grid cells of the same column have equal distance to the

rewarding column and thus equal state values. Because this state representation only

generalizes across states of the same column, the constructed latent state space can be

used to predict the value function V π as well. In this example, there is no difference

across which states a value-predictive and a reward-predictive state representation

generalizes. In Chapter 2 we will present examples illustrating how value-predictive

state representations compress the state space further than reward-maximizing state

representations. 1.1(d): A reward-maximizing state representation compresses all

states into one latent state. Because the optimal action is to move right in every grid

cell, a reward-maximizing state representation compresses the entire grid into one

latent state. An optimal policy can still be found in this case, because only the move

right action receives positives reinforcement while all other actions are not reinforced.

This representation maps any path in the 3× 3 grid to a sequence of self-loops in the

latent state space where different actions are chosen. 9

ix

2.1 Transfer grid world sequences on which the SF-learning and Q-learning agents were

tested. At each grid cell, the agent can move up, down, left, or right to move to an

adjacent grid cell. Transitions are non-deterministic because with 5% chance selecting

an action does not result in a move to the desired direction. 2.1(a): This task sequence

simulates significant reward function changes where the goal location moves between

two opposing corners of the grid. 2.1(b): This task sequence simulates slight reward

function changes where the goal location moves between two diagonally adjacent grid

cells. 19

2.2 Average episode length on the first tasks of the two tested grid world sequences (Map

A and Map C in Figure 2.1). Each algorithm was simulated for 200 episodes and the

average episode length is plotted for 20 simulation repeats. On both tasks optimistic

initialization significantly outperforms ε-greedy exploration. A Welch’s t-test between

the different exploration strategies in each panel results in p-values that lie below

10−14. A goodness of fit test (Kolmogorov–Smirnov test) of the collected data with a

normal distribution resulted in p-values of at least 52% and does not suggest that the

data does not follow a normal distribution. Consequently, using the Welch’s t-test is

appropriate. Tables B.1 and B.2 list the tested and best performing learning. 20

x

2.3 Performance comparison of the tested agents on the significant and slight reward

change sequences. 2.3(a): Each curve plots the average episode length across 20

repeats in each task or the significant reward change sequence. The shaded area in-

dicates the standard error of measure. 2.3(b): The bottom panel plots the average

episode length for each simulated episode across 20 simulation repeats. The shaded

area indicates the standard error of measure. After 200 episodes the reward func-

tion was changed (as indicated by the grey lines) and the agent was placed into the

next grid world map. When SFs were transferred, the SF-learning algorithms reward-

weight vector www was reset to its initialization after each task change. The top panel

plots the SF error averaged for each episode. 2.3(c): Average episode length on the

transfer tasks two through three for the significant (left panel) and slight (right panel)

reward change sequence. A Welch’s t-test between the different agent configurations

in each panel results in p-values that lie below 1%. Consequently, the performance

improvement obtained by transferring SFs is significant. A goodness of fit test (Kol-

mogorov–Smirnov test) of the collected data with a normal distribution resulted in

p-values of at least 50% and does not suggest that the data does not follow a normal

distribution. Therefore, using the Welch’s t-test is appropriate. In the slight reward

change sequence, the Q-learning agent with Q-value transfer outperformed the other

agent configurations. Tables B.1 and B.2 list the tested and best performing learning. 22

2.4 Successor Feature Transfer Counter Example. The change in optimal action at state

φφφ2 causes the SF at state φφφ1 to change. 23

3.1 Three-State MDP Example. The centre schematic shows a single action three-state

MDP with deterministic transitions (black arrows). Only the self-looping transition

at state s3 is rewarded. The two state representations φ and φ̃ map the three states to

different feature vectors, resulting in different empirical feature-transition probabili-

ties. These probabilities are computed from observed trajectories that start at state

s1. 25

xi

3.2 Empirical Latent Transition Probabilities Depend on State-Visitation Frequencies.

This example illustrates how empirical latent transition probabilities depend on state-

visitation frequencies. In this example, the state space S is a bounded interval in R

that is clustered into one of four latent states: φφφ1,φφφ2,φφφ3, or φφφ4. State-visitation

frequencies are modelled for each partition independently using the density function

ω. The schematic plots the density function p over states of selecting action a at state

s (blue area) and the density function ω over the state partition φφφ1 (orange area).

The probability Pr{s a→ φφφ3} of transitioning into the partition φφφ3 is the blue shaded

area. The probability Pr{φφφ1
a→ φφφ3|ω} of a transition from φφφ1 to φφφ3 occurring is the

marginal of Pr{s a→ φφφ3} over all states s mapping to φφφ1, weighted by ω. 26

3.3 Real-valued reward-predictive state representations may not encode bisimulations,

but support predictions of future expected reward outcomes. 3.3(a): In this five-

state, example no states are bisimilar. Each edge is labelled with the reward given to

the agent for a particular transition. The transition departing state B is probabilistic

and leads to state D or E with equal probability. All other transitions are determin-

istic. Two different state representations are considered. One representation maps

states to one-hot bit vectors and the other representation maps states to real-valued

vectors. 3.3(b): Prediction targets for both LAM and LSFM depend on what state

representation is used. For a one-hot state representation, the LAM and LSFM have

different prediction targets for states A and B, because a one-hot bit-vector state rep-

resentation can be used to detect that transition probabilities are different between

A and B. In contrast, real valued state representations may lead to equal prediction

targets for both LAM and LSFM, because the state features φφφC , φφφD, and φφφE can hide

different transition probabilities. The state representation φ is reward predictive and

εr = εp = εψ = 0. 35

xii

3.4 Value-predictive state representations may prohibit an agent from learning an optimal

policy. In this MDP, the agent can choose between action a and action b. All transi-

tions are deterministic and each edge is labelled with the reward given to the agent.

If a uniform-random action-selection policy is used to construct a value-predictive

state representation, then both states A and B will have equal Q-values. A reward-

predictive state representation would always distinguish between A and B, because at

state A the action sequence b, a, a... leads to a reward sequence of 0, 0.5, 0.5, ... while

at state B the action sequence b, a, a, ... leads to a reward sequence of 0, 1, 1, An

LSFM detects that states A and B should not be merged into the same latent state,

because the states have different SFs. The optimal policy is to select action a at state

A, and action b at state B and then collect a reward of one at state D by repeating

action a. If an agent uses a reward-predictive state representation, then the optimal

policy could be recovered. If an agent uses a value-predictive state representation, the

agent would be constrained to not distinguish between states A and B and cannot

recover an optimal policy. 36

3.5 In the column world task, learning reward-predictive state representations leads to

clustering grid cells by each column. The top row illustrates a map of the column

world task and a colouring of each column. The middle row presents an experiment

that optimizes across different state representations to find a LAM that can be used

for accurate one-step reward and one-step expected transition predictions. Each la-

tent state is plotted as a dot in 3D-space and dots are coloured by the column they

correspond to. At the end of the optimization process, three clusters of the same

colour are formed showing that approximately the same latent state is assigned to

states of the same column. The third row repeats the same experiment using an

LSFM, which assesses whether the constructed latent state space can be used for

accurate one-step reward predictions and SF predictions. Appendix B.2.1 describes

this experiment in detail. 37

xiii

3.6 Puddle-World Experiment. 3.6(a): Map of the puddle-world task in which the agent

can move up, down, left, or right to transition to adjacent grid cells. The agent always

starts at the blue start cell and once the green reward cell is reached a reward of +1

is given and the interaction sequence is terminated. For each transition that enters

the orange puddle, a reward of −1 is received. 3.6(b), 3.6(c): Partitioning obtained

by merging latent states into clusters by Euclidean distance. 3.6(d), 3.6(e), 3.6(f):

Expected reward and predictions for a randomly chosen 200-step action sequence us-

ing a randomly chosen representation, a representation learned with a LAM, and a

representation learned with an LSFM. 3.6(g): Average expected reward-prediction

errors with standard error for each representation. 3.6(h), 3.6(i): Optimizing the

loss objective results in a sequence of state representations suitable for finding lin-

ear approximations of the value functions for a range of different ε-greedy policies.

Appendix B.2.2 presents more details. 40

3.7 Reward-predictive representations generalize across variations in transitions and re-

wards. 3.7(b): The left panels plot state partitions obtained by clustering connected

states or states with equal optimal Q-values in Task A (3.7(a)). The right panels plot

the number of times steps a policy, which uses each representation, needs to complete

Task B (3.7(a)). 3.7(c): The left panels plot partitions obtained by clustering latent

states of a reward-predictive and value-predictive representation. The right panel

plots how often one out of 20 transition data sets can be used to find an optimal

policy as a function of the data set size. By reusing the learned reward-predictive

representation, an agent can generalize across states and compute an optimal policy

using less data than a tabular model-based RL agent. Reusing a value-predictive rep-

resentation leads to poor performance, because this representation is only predictive

of Task A’s optimal policy. 43

xiv

3.8 Combination Lock Transfer Experiment. 3.8(a): In the combination lock tasks, the

agent decides between three different actions to rotate each dial by one digit. Each dial

has five sides labelled with the digits zero through four. The dark gray dial is “broken”

and spins at random at every time step. In the training task, any combination setting

the left and middle dial to four are rewarding. In Test Lock 1, setting the left dial to

two and the middle dial to three is rewarding and simulations were started by setting

the left dial to two and the middle dial to four. In Test Lock 2, setting the left dial to

two and the right dial to three is rewarding and simulations were started by setting the

left dial to two and the right dial to four. 3.8(b): Each panel plots the episode length

of the Q-learning algorithm on Lock Task 1 and Lock Task 2 averaged over 20 repeats.

Note that Q-learning with the ignore-wheel abstraction uses a different abstraction in

Test Lock 1 and Test Lock 2. In Test Lock 1, the ignore-wheel abstraction ignores the

right dial. In Test Lock 2, the ignore-wheel abstraction ignores the middle dial. Please

refer to Appendix B.2.4 for a detailed description of the experiment implementation. 47

3.9 Comparison of Presented State-Representation Models. 50

xv

4.1 State Abstraction Transfer. 4.1(a): Variations of the column world tasks presented

in Figure 1.1(a). Both Task A and Task B differ in their rewards and transitions,

because a different column is rewarded and the barrier (thick black line) is placed at

different locations. 4.1(b): A reward-predictive state representation generalizes across

different columns, similar to Figure 1.1. 4.1(d): Each row in the shown matrix plots

visualizes the entries of a three dimensional SF vector. These matrix plots illustrate

that SFs, which are computed for each task’s optimal policy, are different in each

task and cannot be immediately reused in this example. Yet, states that belong to

the same column have equal SF weights (as indicated by the coloured boxes). LSFMs

construct a reward-predictive state representation by merging states with equal SFs

into the same state partition. 4.1(c): One possible reward-maximizing state abstrac-

tion generalizes across all states. Although this abstraction can be used to learn an

optimal policy in Task A (i.e., always go right), this abstraction cannot be used to

learn the optimal policy in Task B in which the column position is needed to deter-

mine whether to go left or right. While reward-maximizing abstractions may compress

a task further than reward-predictive abstractions, reward-maximizing abstractions

may also simplify a task to an extend that renders them proprietary to a single task.

In contrast, reward-predictive representations are suitable for re-use across tasks that

vary in rewards and transitions. 58

xvi

4.2 Minimizing reward-sequence prediction errors identifies state abstractions amenable

for “deep transfer”. In each grid-world task (4.2(a), 4.2(c)) the agent can transition

up, down, left, or right to move to an adjacent grid cell. If the agent attempts to tran-

sition of the grid or across one of the black barriers in 4.2(c), then the agent remains

at its current grid position. The total reward score was computed by running the com-

puted policy 20 times for 10 time steps in the MDP from a randomly selected start

state. The reward-sequence error was computed by selecting 20 random start states

and then performing a random walk for 10 time steps. 4.2(d), 4.2(e), 4.2(f): The his-

tograms report averages over all repeats and transfer MDPs for all state abstractions

that are possible in a nine state MDP. 4.2(g), 4.2(h), 4.2(i): The histograms report

averages over all repeats and transfer MDPs for all state abstractions that compress

nine states into three latent states. The p-values show that the mean difference in

total reward is significant in each histogram. 61

4.3 Transfer with Multiple State Abstractions Curriculum. 4.3(a): A curriculum of trans-

fer tasks is generated by first constructing the three-state MDP. At each state, only

one action causes a transition to a different state. Only one state-to-state transition

is rewarded; the optimal policy is to select the correct action needed to cycle between

the node states. 4.3(b) To generate a sequence of abstract MDPs Mabs
1 , ...,Mabs

20 , the

action labels are randomly permuted as well as the transitions generating positive re-

ward (similar to the Diabolical Rooms Problem [40]). Two hidden state abstractions

φA and φB were randomly selected to “inflate” each abstract MDP to a nine-state

problem. One state abstraction was used with a frequency of 75% and the other with

a frequency of 25%. The resulting MDP sequence M1, ...,M20 was presented to the

agent, without any information about which state abstraction was used to construct

the task sequence. 65

xvii

4.4 Results for transfer with multiple state abstractions experiment. 4.4(a), 4.4(d): Plot

of how different α and β model parameters influence the average size of Bt after

training. 4.4(b), 4.4(e): Performance of each model (average total reward per MDP)

for different α and β model parameters. After observing the transition and reward

tables of a task Mt in the task sequence, the average total reward was obtained by first

computing a compressed abstract MDP for each abstraction and then solving each

compressed MDP using value iteration, as described in Appendix B.3.1. The resulting

mixture policy was then tested in the task Mt for 10 time steps while logging the sum

of all obtained reward. If β = ∞ the agent obtains an optimal total reward level

when using either loss function for ten time steps in each MDP. 4.4(c), 4.4(f): Plot

of the average count for the most frequently used state abstraction. As described

in Figure 4.3, one of two possible “hidden” state abstractions, φA and φB , were

embedded into each MDP. Each task sequence consists of 20 MDPs and on average

15 out of these 20 MDPs had the state abstraction φA embedded and the remaining

MDPs had the state abstraction φB embedded. The white bar labelled “Ground

Truth” plots the ground-truth frequency of the “hidden” state abstraction φA. If the

non-parametric Bayesian model correctly detects which state abstraction to use in

which task, then the average highest count will not be significantly different from the

white ground truth bar. In total, 100 different task sequences, each consisting of 20

MDPs, were tested and all plots show averages across these 100 repeats (the standard

error of measure is indicated by the shaded area and variations are very low if not

visible). 67

xviii

4.5 Maze curriculum. Maze A and Maze B are augmented with an irrelevant state variable

to construct a five-task curriculum. In each maze, the agent starts at the blue grid

cell and can move up, down, left, or right to collect a reward at the green goal cell.

The black lines indicate barriers the agent cannot pass. Once the green goal cell is

reached, the episode finishes and another episode is started. (These rewarding goal

cells are absorbing states.) Transitions are probabilistic and succeed in the desired

direction with probability 0.95; otherwise the agent remains at its current grid cell

and cannot transition off the grid map or through a barrier.. A five-task curriculum

is constructed by augmenting the state space either with a “light” or “dark” colour

bit (first, third, and fourth task), or the right half of the maze is augmented with the

colour red, green, or blue (second and fifth task). 71

4.6 Transferring state representations influences learning speed on the maze curriculum.

4.6(a): Performance comparison of each learning algorithm that uses Q-learning to ob-

tain an optimal policy. The reward-predictive model identifies two state abstractions

and re-used them in tasks 3 through 5, resulting in faster learning than the reward-

maximizing model. 4.6(b): Performance comparison of each learning algorithm that

uses SF-learning to obtain an optimal policy. Similar to (A), the reward predic-

tive model identifies two state abstractions and re-used them in tasks 3 through 5.

Re-using previously learned SFs across tasks (orange curve) degrades performance.

4.6(a), 4.6(b): Each experiment was repeated ten times and the average across all

repeats was plotted. The shaded areas indicate the standard errors of measure. For

each experiment, different learning rates and hyper-parameter settings were tested

and the settings resulting in the lowest average episode length are plotted. In Ap-

pendix B.3.2, Tables B.6 and B.7 lists the used hyper-parameters in detail. Figure B.1

also illustrates how the Bayesian model parameters α and β influence the number of

learned abstractions and their performance. 4.6(c), 4.6(d): Plot of the posterior dis-

tribution as a function of training episode. The orange rectangle indicates tasks in

which the agent used the identity abstraction to learn a new state representation that

was added into the belief set after 200 episodes of learning. 74

xix

4.7 Guitar-Playing example. 4.7(a): Guitar-Scale task for scale C-D-E-F-G-A-B. The

bottom schematic illustrates how the guitar-scale MDP is constructed for one octave:

Starting at the start state (black dot), the agent progresses through different fret-

board configurations by selecting which note to play next. For each correct transition,

a reward of zero is given, and for each incorrect transition a reward of −1 is given.

4.7(b): Total reward for each algorithm after first learning an optimal policy for Scale

1 (C-D-E-F-G-A-B) and then learning an optimal policy for Scale 2 (A-B-C-D-E-

F-G). 4.7(c): Reward per episode plot of one repeat for both the SF transfer and

reward-predictive model. For the first 100 episodes, which are spent in scale task 1,

both algorithms converge to an optimal reward level equally fast and learn to play the

scale correctly. A recording of the optimal scale sequence is provided in Audio File S1.

On scale task 2 (episodes 101 and onward), the reward-predictive model can re-use a

previously learned state abstraction and converge to an optimal policy faster than the

SF transfer algorithm. After only ten episodes in scale task 2, the reward-predictive

model has learned how to play the scale correctly (please refer to Audio File S2) while

the SF transfer algorithm has not yet converged to an optimal policy and does not

play the scale correctly (please refer to Audio File S3). 76

5.1 Partition Refinement on the Column-World MDP. 5.1(a): A 4 × 4 version of the

Column-World MDP where reward is given in the right column and the agent can move

either up, down, left, or right to transition to adjacent grid cells. 5.1(b): Partition

sequence c1, c2, c3 computed with partition refinement. Grid cells of the same colour

belong to the same partitions. Each partition grid map illustrates the partitions

obtained at different refinement steps. 88

xx

5.2 Function approximation is needed to predict r and ψψψ for state-action combinations

not observed in the transition data set. In this example, the state space consists of

points in R2 and the action space consists of actions a and b. We assume that a

maximally compressed reward-predictive representation merges all points in the grey

square into one latent state. Selecting the action a from within the grey square results

in a transition to the right and generates a reward of 0. Selecting the action b from

within the grey square results in a transition to the top and generates a reward of 1.

If the data set only contains the two transitions indicated by the blue arrows and the

transitions indicated by the orange arrows are missing, then function approximation

is used to predict r and ψψψ for the missing state and action combinations (p, b) and

(q, a). These function approximators need to be constrained such that they output

the same one-step rewards and SF vectors for points that fall within the shaded square. 93

5.3 The cluster-function sequence computed by the iterative reward-predictive represen-

tation learning algorithm encodes a hierarchical clustering of states. 5.3(a): The

4× 4 version of the Column-World MDP repeated from Figure 5.1(a) for illustration.

5.3(b): For εψ = εr = 0, a maximally-compressed reward-predictive state representa-

tion generalizes across different columns, as indicated by the colouring. 5.3(c): The

sequence of cluster functions computed by Algorithm 3 for the 4 × 4 Column-World

MDP encodes a tree structure. 96

5.4 A set of points can be clustered in polynomial time if the inter-cluster distance of an

optimal clustering is larger than the used cluster threshold ε. 97

5.5 Approximate reward-predictive representations found in the puddle-world task.

5.5(a): Map of the puddle-world MDP previously presented in Figure 3.6 and

repeated here for illustration. The agent can move up, down, left, or right to adjacent

grid cells and either receive a reward of +1 for entering the goal cell or a reward of

−1 for entering the puddle. Transitions are non-deterministic because choosing an

action leads to not moving to another grid cell with 5% chance. 5.5(c): The number

of found latent states decreases as the feature cluster threshold εψ is increased. Map

1, Map 2, and Map 3 illustrate the found state partitions for different threshold

settings. 99

xxi

5.6 Low embedded state coverage decreases predictive performance in the image puddle-

world task. 5.6(a): The image puddle-world task extends the puddle-world task

(Figure 3.6(a)) by rendering grid positions as images. Grid positions are rendered by

first mapping each grid cell to a square area. Then, an (x, y) position is sampled from

this area and rendered as a white dot. Because the image rendering pipeline is non-

deterministic, transitions appear non-deterministic. 5.6(b): Partition plot illustrating

how different dot positions are associated with latent states by the learned reward-

predictive representation network. 5.6(c): Reward-sequence prediction errors for each

learned model and training data size. Prediction errors are averaged over 200 time-

step reward sequences. 5.6(e): Using each learned model, the policy optimal with

respect to this model is evaluated 20 times and the average reward per time step

is recorded. 5.6(c), 5.6(e): The colouring plots if the embedded state-action space

was covered by the used training data set. The dots and error bars plot averages

and standard error of measure across 20 evaluation repeats. 5.6(d), 5.6(f): Reward-

sequence prediction errors and policy performance plotted as a function of embedded

state-action space coverage for two different data set sizes. 102

5.7 MNIST Combination-Lock Task. In both the training and transfer task, the agent

can choose from one of three actions to rotate one of the three dials by one number.

Each dial has ten sides and any number combination is rendered using the MNIST

image data set [62], as illustrated by the image on the left. In the training task,

the right dial (dark grey dial) spins at random at every time step and has no effect

on obtaining reward. Here, to obtain reward, the agent has to use actions 1 and 2

to rotate the left and centre dials so both show the digit nine. While the right dial

(dark grey dial) also spins at random in the transfer task, the transition and reward

functions are different to the training task. Here, the rotation direction of the centre

dial is inverted and the agent has to rotate the dial into any combination that starts

with eight and two. 105

xxii

5.8 Reward-predictive representation learned for the MNIST combination-lock training

task. 5.8(a): Matrix plot where each row shows which number combinations are

classified into which latent state. For this plot, the state observations of the training

data set were used. The combination (8, 7, ∗) corresponds to any number combination

where the left and centre dials are set to eight and seven, respectively. Each row of

this matrix plot sums to 100%. An optimal clustering would assign each combination

a separate latent state, resulting in a diagonal matrix. However, approximation errors

lead to spurious latent states that are visualized as additional columns. 5.8(b): Bar-

plot comparing the performance of the learned reward-predictive representation with

a network trained to predict the 100 embedded states and a one-latent-state model

for reference. Reward-sequence prediction errors and the average reward per step (of

the policy optimal with respect to the learned model) are computed as described in

Section 5.2.1. 107

xxiii

5.9 Reward-predictive representation networks can be re-used in the MNIST combination-

lock transfer task without modifications. 5.9(a): The used Q-network is a deep con-

volutional neural network mapping each image to a vector of Q-values. For each

simulation, the used network architecture is identical to the network architecture

used by the clustering algorithm. The reward-predictive agent initializes this network

with the learned reward-predictive representation network and does not update the

weights of the representation network during learning. 5.9(b): Average episode length

comparison between the reward-predictive agent, the DQN agent, and the hard-coded

representation agent. Each simulation is repeated 20 times and the shaded area in-

dicates the standard error of measure. 5.9(c): Box-plot of the average episode length

of each evaluated agent averaged over 20 simulation repeats. 5.9(d): Welch’s t-test

p-values testing for a significant difference in the average episode length of each agent.

A low p-value indicates a significant difference in average episode length. A goodness

of fit test (Kolmogorov–Smirnov test) of the collected data with a normal distribution

resulted in p-values of at least 68% and does not suggest that the data does not follow a

normal distribution. Consequently, using the Welch’s t-test, which assumes normally

distributed data, is appropriate. This plot indicates that there is a significant differ-

ence in performance between using a hard-coded representation, a previously learned

reward-predictive representation network, and training the Q-network from scratch

using the DQN algorithm. Re-using a Q-network learned for the training task does

not lead to a significant performance improvement. 109

5.10 Re-using reward-predictive representations leads to faster convergence than re-using

SFs. 5.10(a): Box-plot of the average episode length for each agent across 20 repeats.

Table B.12 lists the hyper-parameters used for this experiment. 5.10(b): P-values of

a Welch’s t-test testing for significant differences in average performance. A goodness

of fit test (Kolmogorov–Smirnov test) of the collected data with a normal distribution

resulted in p-values of at least 61% and does not suggest that the data does not follow

a normal distribution. Consequently, using the Welch’s t-test is appropriate. 111

xxiv

B.1 Model parameters α and β control the belief space size of the non-parametric Bayesian

model presented in Section 4.2.3. (a): Avg. episode length of the reward-maximizing

model. (b) Avg. belief space size of the reward-maximizing model. (c) Avg. episode

length of the reward-predictive model. (d) Avg. belief space size of the reward-

predictive model. 154

xxv

Chapter 1

State Representations in Reinforcement

Learning

Knowledge re-use enables intelligent systems to perform complex tasks quicker and avoids repeatedly

learning the same solution from scratch. Recent advances in reinforcement learning (RL) [107]

research have demonstrated that deep learning algorithms can learn how to maximize rewards in

complex tasks [96, 73]. Still, how to achieve flexible knowledge transfer characteristic of human

behaviour in artificially intelligent systems has been elusive. Understanding how to apply knowledge

re-use to RL algorithms is an important step towards further scaling artificial intelligence. In this

dissertation, we partially address the question of which models allow RL systems to re-use knowledge

and present research to support the following thesis statement:

Learning an internal representation detailed enough to predict reward sequences prevents

overfitting to one task and allows accelerated learning across previously unseen tasks.

By viewing knowledge representations through the lens of state representation learning, this

dissertation presents an approach to address the question of which models allow an agent to re-

use knowledge. State representations [67, 85, 40] compress high dimensional state inputs into a

smaller simplified latent state space. Using such a state representation, a reinforcement-learning

system can re-use what it has learned for one input across all inputs that correspond to the same

latent state. Consequently a reinforcement-learning system can learn faster because the system does

not consider each high-dimensional state input separately [26, 3]. State representations provide a

framework to mitigate this “curse of dimensionality” [18] in reinforcement learning. Because state

representations determine how an RL system generalizes across inputs, a state representation needs

1

2

to be carefully constructed to facilitate faster learning instead of constraining an RL system’s ability

to obtain an optimal solution. This dissertation studies different representation types and discusses

in which cases state representations can be re-used across different tasks. Specifically, we find that

state representations which are detailed enough to predict reward sequences implicitly encode task

knowledge. Furthermore, we demonstrate that these reward-predictive representations are suitable

for re-use across different tasks while other state representation types are much more constrained and

overfit to a specific task solution. Because reward-predictive representations encode task knowledge,

transferring reward-predictive representations is a form of knowledge re-use.

As a lay example, consider shifting gears in a manual transmission car. In a right-hand-drive

country, the steering wheel is on the left side of the car and the right arm is used for shifting, whereas

the opposite is the case in a left-hand-drive country. A person who has learned in one scenario can

quickly generalize to the other, despite the fact that both tasks require different coordination of

motor skills. Both tasks are the same in an abstract sense: In each case, there is a progression from

1st to 2nd gear and so on, which should be coordinated with the clutch pedal and steering. This

structure can be generalized from a left-hand-drive car to a right-hand-drive car [40, 26] and a driver

does not have to learn how to drive and how to generalize across different situations from scratch.

Prior work presents algorithms that reuse state representations to initialize learning across differ-

ent reward specifications [11, 12, 123, 61] or constructs state representations using different clustering

criteria [67, 2, 3]. The presented research follows a different methodology: By analyzing which prop-

erties different latent state spaces are predictive of, different models of generalization are compared

leading to new connections between state representation learning, Successor Features [11], model-

free RL, and model-based RL [108]. In addition, the conducted transfer experiments suggest that

reward predictive state representations, which are predictive of future reward outcomes, generalize

across tasks that vary in both their transitions and rewards.

This dissertation is organized into four chapters. Chapter 2 provides an introduction to Successor

Features [11] and presents connections between learning Successor Features and temporal difference

(TD) learning [107, Chapter 6]. In addition, transfer experiments conducted on finite state tasks

suggest that learning Successor Features is akin to model-free RL, a trial-and-error approach to

learning how to behave optimally. While re-using previously learned successor features speeds up

learning, the re-used successor features are re-learned and adjusted for each individual task. Then,

Chapter 3 introduces Linear Successor Feature Models, a model which ties learning successor features

3

to learning reward-predictive representations. Reward-predictive representations construct a latent

state space detailed enough for an RL system to predict reward sequences for arbitrary decision

sequences. This property of reward-predictive representations ties them to model-based RL, an

approach where RL systems use predictions of reward sequences to plan their future decisions.

Because LSFMs learn reward-predictive representations through TD-learning, these models provide

a novel link between model-based RL and TD-learning. Reward-predictive representations only

provide information about how to generalize across inputs and do not contain any specifics about

transitions or rewards. Consequently, reward-predictive representations are robust to transfer across

tasks where these specifics in transitions and rewards change. This property stands in contrast to

prior work on successor features, which only considers generalization across tasks that vary in rewards

but share common transitions [11, 12, 123, 61, 75, 89, 100]. Using these models, Chapter 4 supports

the stated thesis with a sequence of transfer simulations and compares reward predictive state

representations with other representation models. These results suggest that reward predictive state

representations are suitable for transfer, while other representation models, for example models that

only predict the optimal policy in one task, do not generalize across different tasks. Consequently,

learning a model detailed enough to predict future reward outcomes prevents overfitting to one

specific task and allows one to accelerate learning across previously unseen tasks. Chapter 5 presents

an algorithm to learn reward-predictive representations for tasks with arbitrary state spaces. The

theoretical analysis presented in Chapter 3 already provides a foundation for this case, yet the

representation learning algorithms presented in the previous chapters are designed for finite state

tasks. We demonstrate how to combine this representation learning algorithm with deep learning

techniques [48] to extract reward-predictive representations from two control tasks where the state is

described by an image. Furthermore, we establish under which assumptions this algorithm converges

to a reward-predictive representations that constructs as few latent states as possible. Lastly, we

study empirically different transition datasets and find that a reward-predictive representation can

only be found if the provided transition dataset outlines all aspects of the control task at hand.

The content presented in Chapter 2 previously appeared in [64]. The content of Chapter 3 and

partially Chapter 2 is published in [63]. Chapter 4 is published in [65]. The results presented in

Chapter 5 appear in this dissertation for the first time.

4

1.1 Reinforcement Learning

Before introducing state representations, this section provides a brief introduction to RL that will

serve as a foundation for the remaining chapters. The interaction between a RL system, also called

agent, is formalized as a Markov Decision Process (MDP). For example, consider a self-driving car

which makes decisions based on its sensory data. We refer to all sensor inputs at a particular point

in time as the state of the self-driving car. This state s lies in the state space S, which is the set of

all possible states. At every time point, the self-driving car makes a decision, for example to apply

the brakes or to steer at a particular angle. We refer to such decisions as actions and assume that

the space of all actions, called the action space A, is finite. Once a decision is made and an action

is chosen, the self-driving car will observe the effect of its action and receive a state update. This

change is referred to as a state transition and each transition is evaluated with a reward, a single

scalar number.

This framework makes two fundamental assumptions:

1. Time is a discrete entity and changes in states are counted in steps.

2. The outcome of a transition can be conditioned on the previous state and the selected action.

The second assumption is commonly referred to as the Markov assumption and implies that observing

the full state is sufficient to make an optimal decision. An intelligent agent would not have to reason

about past experiences and does not have to take into consideration how the agent arrived at the

current state [53]. This dissertation also assumes a finite action space A and leaves extensions to

arbitrary action spaces to future work. However, the state space S is assumed to be an arbitrary

set, including finite sets or uncountably infinite sets. Formally, an MDP is defined as follows.

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP) is a five-tuple M =

〈S,A, p, r, γ〉 where

1. the state space S is an arbitrary set of states,

2. the action space A is a (finite) set of decisions an agent can select from,

3. the transition function p(s′|s, a) describes the probability or density with which a transition

from state s to state s′ occurs when action a is selected,

4. the reward function r describes the reward for each transition with r(s, a, s′), and

5

5. the discount factor γ ∈ [0, 1) is a single scalar number describing a trade-off between short-term

and long-term rewards. If γ is close to zero, then an agent should only consider short-term

rewards and if γ is close to one, then an agent should consider long-term rewards that lie

further into the systems future.

A policy π describes an agent’s decision-making strategy and specifies a probability π(s, a) of

selecting an action a ∈ A at state s ∈ S. A policy’s performance is described by the value function

V π(s) = Ep,π

[∞∑
t=1

γtr(st, at, st+1)

∣∣∣∣∣s1 = s

]
, (1.1)

which predicts the expected discounted return generated by selecting actions according to π when

trajectories are started at the state s. The expectation1 in Equation (1.1) is computed over all

infinite length trajectories that select actions according to π and start at state s. Similarly, the

Q-value function is defined as

Qπ(s, a) = Ep,π

[∞∑
t=1

γtr(st, at, st+1)

∣∣∣∣∣s1 = s, a1 = a

]
. (1.2)

The expectation of the Q-value function in Equation (1.2) is computed over all infinite length

trajectories that start at state s with action a and then follow the policy π.

Because transitions between states are assumed to be markovian, value functions can be re-

written in a recursive form:

V π(s) = Ep,π

[∞∑
t=1

γtr(st, at, st+1)

∣∣∣∣∣s1 = s

]
(1.3)

= Ep,π

[
r(s1, a1, s2) + γ

∞∑
t=2

γtr(st, at, st+1)

∣∣∣∣∣s1 = s

]
(1.4)

= Ep,π

[
r(s1, a1, s2) + γEp,π

[∞∑
t=2

γtr(st, at, st+1)

∣∣∣∣∣s2
]∣∣∣∣∣s1 = s

]
(1.5)

= Ep,π [r(s1, a1, s2) + γV π(s2)|s1 = s] (1.6)

where Equation (1.5) follows by linearity of the expectation operator and Equation (1.6) follows by

substitution with Equation (1.1). Equation (1.6) is called the Bellman fix point equation [20] and

1The subscript of the expectation operator E denotes the probability distributions or densities over which the
expectation is computed.

6

any solution to this equation is a value function that predicts the expected discounted return.

The Bellman fix point equation can also be used to test if the value function of a policy maximizes

the discounted return at every state and to determine if a policy π∗ is optimal. If a policy π∗ is

optimal, then this policy deterministically selects the action that generates the highest discounted

return and

π∗(s, a∗) = 1 if a∗ = arg max
a

Qπ
∗
(s, a), (1.7)

where Qπ
∗

is the Q-value function of the policy π∗. If the policy π∗ would select another action that

does not generate the highest possible return, then this policy does not maximize the discounted

return at every state and be sub-optimal. By this argument, an optimal policy is always greedy with

respect to its own Q-value function. Further, the value of an optimal policy π∗ at any state s is

V π
∗
(s) = max

a
Qπ
∗
(s, a). (1.8)

Repeating the derivation in Equation (1.6) for Qπ
∗

leads to the Bellman optimality condition:

Qπ
∗
(s, a) = Ep,π∗

[∞∑
t=1

γtr(st, at, st+1)

∣∣∣∣∣s1 = s, a1 = a

]
(1.9)

= Ep,π∗
[
r(s1, a1, s2) + γ

∞∑
t=2

γtr(st, at, st+1)

∣∣∣∣∣s1 = s, a1 = a

]
(1.10)

= Ep

[
r(s1, a1, s2) + γEp,π∗

[∞∑
t=2

γtr(st, at, st+1)

∣∣∣∣∣s2
]∣∣∣∣∣s1 = s, a1 = a

]
(1.11)

= Ep
[
r(s1, a1, s2) + γV π

∗
(s2)

∣∣∣s1 = s, a1 = a
]

(1.12)

= Ep
[
r(s, a, s′) + γ max

a′∈A
Qπ
∗
(s′, a′)

∣∣∣∣s, a] , (1.13)

where line (1.13) was obtained by substitution with Equation 1.8. The expectation in Equation (1.13)

only depends on the transition function p and ranges over all possible states s′ that can be reached

from state s by selecting action a. If the Q-value function of a policy π∗ satisfies Equation (1.13),

then the policy π∗ is optimal and maximizes the discounted return at every state [20, Chapter 2].

1.1.1 Temporal Difference Learning

Temporal Difference (TD) learning [102] is a method commonly used to design algorithms that

either learn the value function of particular policy or find the value function of the optimal policy.

7

Most TD-learning algorithms are incremental and observe a stream to iteratively improve their value

predictions. For example, the TD(0) algorithm [102] samples a sequence of transition quadruples

(s, a, r, s′) using a fixed policy π and moves its value predictions towards a solution that satisfies the

Bellman fix point. Using moving average updates, a particular value estimate vt(s) at a state s at

update iteration t is updated with

vt+1(s) = (1− α)vt(s) + α(r + γvt(s
′)), (1.14)

where α ∈ (0, 1] is a learning rate parameter. Assuming that the state space of an MDP is a finite

set, the value estimates vt(s) can be stored in a table. If vt+1(s) = V π(s) for all states s, then the

update iterate in Equation (1.14) does not change the value estimate and the TD(0) has converged.

The update iterate in Equation (1.14) can be re-written as

vt+1(s) = vt(s) + α (r + γvt(s
′)− vt(s))︸ ︷︷ ︸

=δ

, (1.15)

where the term δ is called the TD-error. Intuitively, this TD-error describes the magnitude and

direction by which value predictions have to be corrected.

TD(0) is a value prediction algorithm that learns to predict the discounted return for one fixed

policy π. Q-learning [115] re-uses these ideas and implements an algorithm to search for an optimal

policy. Similar to TD(0), Q-learning [115] samples a sequence of transition quadruples (s, a, r, s′)

using some control policy η. This control policy η need not be fixed and is allowed to change over

time. The Q-learning algorithm then iteratively improves its Q-value estimates of the optimal policy

over time using the iterate

qt+1(s, a) = (1− α)qt(s, a) + α(r + γmax
a′

qt(s
′, a′)), (1.16)

where α ∈ (0, 1] is a learning rate parameter. The iterate in Equation (1.16) differs from TD(0)

only in that it maintains estimates for Q-values rather than state values and that the update target

r + γmaxa′ qt(s
′, a′) is constructed using the action with the highest value prediction. If qt(s, a) =

Qπ
∗
(s, a) for all states s and action a, then the iterate in Equation (1.16) will not change the value

estimates and Q-learning has found a solution to the Bellman optimality condition (1.13). Because

8

the optimal policy is greedy with respects to its own value function, Q-learning is an algorithm

which computes the optimal policy given the observed transition data.

1.2 Predictive State Representations

Consider a self-driving car that collects and combines input data from cameras, radar sensors, and

GPS, for example. While this sensor data describes the state of a self-driving car in great detail,

deciding on a sequence of control commands such as “steer left” or “apply brakes” becomes very

difficult, because many different states would have to be taken into consideration to make a decision.

This “curse of dimensionality” can be overcome by compressing high dimensional sensor data into a

lower dimensional latent state space. In the self-driving car example, if the car is following another

vehicle that is slowing down, detecting brake lights is sufficient to make the decision to slow down

and avoid an accident. Other information such as the colour of the car in-front can be ignored.

This ability of generalizing across different states can be modelled using state representations, which

compress the state space of an MDP into a lower-dimensional, more tractable latent state space.

A latent state space Sφ is constructed using a state representation function φ : S → Sφ. A state

representation can be understood as a compression of the state space, because two different states

s and s̃ can be assigned to the same latent state φ(s) = φ(s̃). In this case, the state representation

φ aliases s and s̃. Figure 1.1 provides an overview of the state representation types studied in this

dissertation.

Reward-Predictive State Representations A reward-predictive state representation con-

structs a latent state space that is predictive of any future expected reward sequence r1, ..., rt that

is observed after executing any abitrary decision sequence a1, ..., at starting at a specific state s. If

the random variable Rt describes the reward that is observed after following the action sequence

a1, ..., at starting at state s, then this expected reward sequence

(r1, ..., rt) = E[(R1, ..., Rt)|s, a1, ..., at]. (1.17)

The expectation in Equation (1.17) is conditioned on the start state s and is computed over all

possible trajectories in an MDP that follow the action sequence a1, ..., at. A reward-predictive state

9

���������������������
�
�
����������
�
�
�

	�
�
���

���������
+1
+1
+10

0
0

0

0
0

�����
������
��������

�
��������������

���
�
�
������

�����������������
���
�
�
����������
�
�
�

φ1 φ3φ2

����������������
���
�
�
����������
�
�
�

0 6
State Value Vπ

φ1 φ3φ2

Figure 1.1: State Representations Construct Lower Dimensional Latent State Spaces. 1.1(a): The
column world example is a 3×3 grid world where an agent can move up (action ↑), down (action ↓),
left (action←), or right (action→) to adjacent grid cells and entering the right column is rewarded.
Rewards are indicated by the numbers in the individual grid cells. 1.1(b): A reward-predictive state
representation, generalizes across columns (but not rows) and compresses the 3× 3 grid world into
a 3 × 1 grid world with three latent states labelled with φφφ1, φφφ2, and φφφ3. In this compressed task,
only the transition moving from the centre orange state φφφ2 to the right green state φφφ3 is rewarded.
1.1(c): The lower panel presents a matrix plot of the state values V π for a policy that selects actions
uniformly at random. Grid cells of the same column have equal distance to the rewarding column
and thus equal state values. Because this state representation only generalizes across states of the
same column, the constructed latent state space can be used to predict the value function V π as
well. In this example, there is no difference across which states a value-predictive and a reward-
predictive state representation generalizes. In Chapter 2 we will present examples illustrating how
value-predictive state representations compress the state space further than reward-maximizing state
representations. 1.1(d): A reward-maximizing state representation compresses all states into one
latent state. Because the optimal action is to move right in every grid cell, a reward-maximizing
state representation compresses the entire grid into one latent state. An optimal policy can still
be found in this case, because only the move right action receives positives reinforcement while all
other actions are not reinforced. This representation maps any path in the 3× 3 grid to a sequence
of self-loops in the latent state space where different actions are chosen.

10

abstraction needs to satisfy for any start state s and action sequence a1, ..., an that

E[(R1, ..., Rt)|s, a1, ..., at] = E[(R1, ..., Rt)|φ(s), a1, ..., at]. (1.18)

Equation 1.18, the expectation on the right-hand side is conditioned on the latent state φ(s) and is

computed over all possible trajectories in the latent space Sφ constructed by the representation φ. In

contrast, the expectation on the left-hand side is computed over all possible trajectories that follow

the action sequence a1, ..., at and start at state s. A reward-predictive state representation constructs

a latent space such that for any start state and any arbitrary action sequence, both the compressed

task and original task produce the same expected reward sequence. Figure 1.1(a) presents a grid

world example where a 3×3 grid is compressed into three latent states {φφφ1,φφφ2,φφφ3}. These three latent

states effectively construct a smaller 3×1 grid world. The schematic also illustrates a trajectory that

starts in the left (blue) column and follows the action sequence “move right”, “move up”, “move

right” and generates a reward sequence of 0, 0, 1. One can observe that the state representation

is constructed such that mapping this trajectory into the compressed task preserves the reward

sequence of 0, 0, 1. In the compressed task, only the transition from φφφ2 to φφφ3 is rewarded and the

trajectory is mapped to the latent state sequence φφφ1,φφφ2,φφφ2,φφφ3 (the “move up” action is realized as

a self-loop).

Value-Predictive State Representations A value-predictive state representation constructs a

latent state space that is predictive of Q-values. Figure 1.1(c) presents such a state representation

on the 3× 1 grid example. Suppose each latent state is represented as a one-hot bit vector2 in three

dimensions and Sφ = {eee1, eee2, eee3}. Because each grid cell is mapped to a one-hot bit vector, φ(s) = eeei

for some index i. If the state representation φ is value-predictive, then

Qπ(s, a) = (φ(s))>qqqa = eee>i qqqa, (1.19)

where qqqa is a real-valued vector in R3 that is associated with the action a. Because the state repre-

sentation φ outputs one-hot bit vectors, each entry of the vector qqqa contains the Q-value associated

with one of the three columns. Note that prior work [104, 59] provides heuristics for constructing

2A one-hot bit vector eeei is a column vector of zeros but with the ith entry set to one. Vectors are denoted with
bold lower-case letters. Matrices are denoted with bold capitalized letters.

11

such value-predictive state representations. Because value-predictive state representations are only

required to be predictive of a particular policy π, they implicitly depend on the policy π.

Reward-Maximizing State Representations A reward-maximizing state representation pre-

serves an agent’s ability to maximize reward in one MDP. For example, in Figure 1.1(d) a reward-

maximizing state representation compresses the entire state space of the 3×3 grid into a single state.

Because only the move-right action is rewarded in this example, compressing the 3× 3 grid into one

latent state still provides the agent with the ability to learn that only the move-right action should

be used. Nevertheless, the compressed task cannot be used to make accurate predictions of future

reward outcomes, because this state representation simplifies the task into only one latent state

(the agent does not know which column it is in: it is as if moving right simply produces stochastic

rewards). Because this state abstraction allows an agent to recover the optimal policy, this state

abstraction is reward maximizing in this example.

Learning State Representations Figure 1.1 presents examples of the studied state representa-

tions. In the following chapters, we will present learning algorithms that will search the space of all

possible state representations to identify approximations of reward-predictive, value-predictive, and

reward-maximizing state representations.

Chapter 2

Successor Features as a Model-Free

Mechanism

Successor features (SF) are representations used for factoring Q-values into a SF vector and a reward

weight vector that models the reward function of an MDP. Because the same SFs can be combined

with different reward weight vectors, SFs are used for fast Q-value computation for different reward

functions. Consequently, SFs are a suitable for transfer across tasks with different rewards but

common transitions. In this chapter we provide an introduction to SFs, outline how learning SFs

is a form of TD-learning, and discuss how learning SFs is a model-free RL mechanism. Lastly, we

present a set of simulations on finite MDPs to illustrate the benefits of re-using SFs across tasks that

vary in their rewards but have the same transitions. This chapter serves as a baseline to contrast

reward-predictive representations with the SF framework and model-free RL.

SFs are a generalization of the Successor Representation (SR) [29], a state representation that

predicts the frequency with which states are visited under a specific policy. For finite state and

action spaces, the transition probabilities while selecting actions according to a policy π can be

written as a stochastic transition matrix PPPπ where all rows sum to one. If the start state with index

s is represented as a one-hot bit vector eees, the probability distribution of reaching a state after

one time step of executing policy π can be written as a row vector eee>s PPP
π. After t time steps, the

probability distribution over states can be written as the vector eee>s (PPPπ)t. Suppose the path across

the state space has a random length that follows the Geometric distribution with parameter γ: At

each time step, a biased coin is flipped and the path continues with probability γ. In this model,

the probability vector of reaching different states in t time steps is (1 − γ)γt−1eee>s (PPPπ)t. Omitting

12

13

the factor (1− γ), the SR recursively computes the marginal probabilities over all time steps:

ΨΨΨπ =

∞∑
t=1

γt−1(PPPπ)t−1 = III + γPPPπΨΨΨπ. (2.1)

Each entry (i, j) of the matrix (1 − γ)ΨΨΨπ contains the marginal probability across all possible

durations of transitioning from state i to state j. Intuitively, the entry (i, j) of the matrix ΨΨΨπ can be

understood as the frequency of encountering state j when starting a path at state i and following the

policy π. An action conditioned SR describes the marginal probability across all possible durations

of transitioning from state i to state j, but first a particular action a is selected, and then the policy

π is followed:

ΨΨΨπ
a

def.
=

∞∑
t=1

γt−1PPP a(PPPπ)t−2 = III + γPPP aΨΨΨ
π, (2.2)

where PPP a is the stochastic transition matrix describing all transition probabilities when action a

is selected. Because PPP a is a stochastic matrix, it can be shown that ΨΨΨπ is invertible and that

there exists a one-to-one correspondence between each transition matrix and action-conditional SR

matrix.1

SFs generalize this idea to arbitrary representations. Given a state representation function φ

that maps each state s to a real-valued vector φφφs, the SF is a column vector defined for each state

and action pair [61, 123] and

ψψψπ(s, a) = Ep,π

[∞∑
t=1

γt−1φφφst

∣∣∣∣∣s1 = s, a1 = a

]
, (2.3)

where the expectation in Equation (2.3) is computed over all infinite length trajectories that follow

the policy π and start in state s with action a. If following the policy π leads to encountering

a particular state vector φφφs′ many times, then this state vector will occur in the summation in

Equation (2.3) many times.2 Depending on the state representation φ, the vector ψψψπ(s, a) will be

similar to the state vector φφφs′ if the state s′ is visited often and ψψψπ(s, a) will be dis-similar to a state

vector φφφs̃ if the s̃ is visited infrequently. A SF vector ψψψπ can be understood as a statistic measuring

how frequent different latent states are encountered.

The following two sections draw connections between SFs, reward-predictive, and value-predictive

1By Equation (2.1), ΨΨΨπ = III + γPPPπΨΨΨπ ⇐⇒ III = (III − γPPPπ)ΨΨΨπ ⇐⇒ (ΨΨΨπ)−1 = III − γPPPπ . Equation (2.2)
outlines how to construct ΨΨΨπa from PPPa for all actions. The reverse direction follows from ΨΨΨπa = III + γPPPaΨΨΨπ ⇐⇒
(ΨΨΨπa − III)(ΨΨΨπ)−1/γ = PPPa.

2To simplify notation, the vector φφφs always denotes the output of φ at state s.

14

state representations and outline under what assumptions learning SFs is equivalent to learning

reward- or value-predictive state representations.

Barreto et al. present SFs as a factorization of the Q-value function for an arbitrary fixed policy

π. This factorization assumes a state-action representation function ξ : S ×A → Rm that serves as

a basis function for one-step reward predictions and

∀s ∈ S, ∀a ∈ A, ξξξ>s,awww = Ep [r(s, a, s′)|s, a] , (2.4)

where ξξξs,a = ξ(s, a). Using the state-action representation function, the Q-value function can be

factored:

Qπ(s, a) = Ep,π

[∞∑
t=1

γt−1r(st, at, st+1)

∣∣∣∣∣s1 = s, a1 = a

]
(2.5)

= Ep,π

[∞∑
t=1

γt−1ξξξ>st,atwww

∣∣∣∣∣s1 = s, a1 = a

]
(by (2.4)) (2.6)

= Ep,π

[∞∑
t=1

γt−1ξξξ>st,at

∣∣∣∣∣s1 = s, a1 = a

]
︸ ︷︷ ︸

=(ψψψπSA(s1,a1))
>

www (2.7)

= (ψψψπSA(s1, a1))
>
www. (where s1 = s, a1 = a) (2.8)

In Equation (2.8), the SF vector ψψψπSA is defined as

ψψψπSA(s, a)
def.
= Ep,π

[∞∑
t=1

γt−1ξξξst,at

∣∣∣∣∣s1 = s, a1 = a

]
. (2.9)

This SF definition is different from the definition presented in Equation (2.3) in that a state-action

representation function ξ is used instead of a state representation function φ. By line (2.8), the

state-action SF ψψψπSA is a basis function that allows accurate predictions of the Q-value function Qπ.

Consequently, the representation ψψψπSA is a value-predictive state representation because it is designed

to construct a latent feature space that supports accurate predictions of the Q-value function Qπ.

15

2.1 Connection to Linear Temporal Difference Learning

Algorithms that learn SFs can be derived similarly to linear TD-learning [105, Chapter 8.4]. In

linear TD-learning, for example linear Q-learning or SARSA, Q-values are represented with

Qπ(s, a;θθθ) = ξξξ>s,aθθθ, (2.10)

where θθθ is a real-valued weight vector that does not depend on a state s or action a. Linear TD-

learning obtains the parameter vector θθθ by minimizing the mean squared value error

VE(θθθ) =
∑

s,a,r,s′

µ(s, a, r, s′) (Qπθθθ (s, a;θθθ)− ys,a,r,s′)2 . (2.11)

Equation (2.11) averages prediction errors with respect to some distribution µ with which transitions

(s, a, r, s′) are sampled. The prediction target

ys,a,r,s′ = r + γ
∑
a′

b(s′, a′)Qπ(s′, a′;θθθ) (2.12)

varies by which real-valued function b is used. For example, to find the Q-values for the optimal

policy linear Q-learning uses an indicator function b(s, a) = 111[a = arg maxaQ
π(s, a;θθθ)] so that

ys,a,r,s′ = r + γmaxa′ Q
π(s′, a′;θθθ) [115]. For Expected SARSA [107, Chapter 6.6], which evaluates

a fixed policy π, the target can be constructed using b(s, a) = π(s, a), where π(s, a) specifies the

probability with which a is selected at state s. When computing a gradient of VE(θθθ) the prediction

target ys,a,r,s′ is considered a constant. For an observed transition (s, a, r, s′), the parameter vector

is updated using the rule

θθθt+1 = θθθt + α (Qπ(s, a;θθθt)− ys,a,r,s′)ξξξs,a, (2.13)

where α is a learning rate and the subscript t tracks the update iteration. Algorithm 1 outlines the

linear Q-learning algorithm.

Similarly, a SF-learning algorithm can be derived by defining the mean squared SF error [64]

SFE(ψψψπSA) =
∑

s,a,r,s′

µ(s, a, r, s′)||ψψψπSA(s, a)− ~yyys,a,r,s′ ||2. (2.14)

16

Algorithm 1 Linear Q-Learning [105, Chapter 8.4]

Input: A state representation function ξ, a control policy π, and a learning rate α ∈ (0, 1].
Initialize θθθ.
loop

Receive current state s from MDP.
Select action a using the control policy π.
Observe transition (s, a, r, s′).
ys,a,r,s′ ← r + γmaxa′ Q(s′, a′;θθθ)
θθθ ← θθθ + α (Q(s, a;θθθ)− ys,a,r,s′)ξξξs,a

Because the SF ψψψπSA(s, a) is a vector of dimension m, the target

~yyys,a,r,s′ = ξξξs,a + γ
∑
a′

b(s′, a′)ψψψπSA(s′, a′) (2.15)

is also a vector but can be constructed similarly to the usual value-prediction target ys,a,r,s′ . As-

suming that SFs are approximated linearly using the basis function ξ,

ψψψπSA(s, a;GGG) = GGGξξξs,a, (2.16)

where GGG is a square matrix. Computing the gradient of SFE(ψψψπSA) with respect to GGG results in an

update rule similar to linear TD-learning:

GGGt+1 = GGGt + α
(
ψψψπSA(s, a;GGGt)− ~yyys,a,r,s′

)
ξξξ>s,a. (2.17)

Assuming the reward condition in Equation (2.4) holds, both linear TD-learning and SF-learning

produce the same value-function sequence.

Proposition 1 (Linear TD-learning and SF-learning Equivalence). Consider an MDP M and a

basis function ξ such that r(s, a) = ξξξ>s,awww for all states s and actions a. Suppose both iterates in

Equation (2.13) and in Equation (2.17) use the same function b to construct prediction targets and

are applied for the same trajectory (s1, a1, r1, s2, a2, ...). If θθθ0 = GGG0www, then

∀t > 0, θθθt = GGGtwww. (2.18)

Proposition 1 proves that both linear TD-learning and linear SF-learning generate identical

17

value-function estimates on the same trajectory. A formal proof of Proposition 1 is listed in Ap-

pendix A.1. Because linear TD-learning need not converge to an optimal solution, the SF iterate in

Equation (2.17) also need not converge to an optimal solution. The tabular case, in which conver-

gence can be guaranteed, is a sub-case of the presented analysis: For finite state and action spaces, a

basis function ξ can be constructed that outputs a one-hot bit vector of dimension n, where n is the

number of all state and action pairs. In this light, learning SFs is akin to learning a value function

in model-free RL.

A linear SF-Learning algorithm can be implemented similar to Linear Q-learning but using the

SF update rule stated in Eq. (2.17) together with an update rule to approximate the weight vector

www. Algorithm 2 outlines the linear SF-learning algorithm.

Algorithm 2 Linear SF-Learning [10]

Input: A state representation function ξ, a control policy π, and a learning rate αSF, αr ∈ (0, 1].
Initialize matrix GGG and vector www.
loop

Receive current state s from MDP.
Select action a using the control policy π.
Observe transition (s, a, r, s′).
a∗ ← arg maxa′(ψψψSA(s′, a′;GGG))>www (because Q(s, a) ≈ ψψψSA(s′, a′;GGG))>www)
~yyys,a,r,s′ ← ξξξs,a + γψψψSA(s′, a∗;GGG)

GGG←GGG+ αSF

(
ψψψπSA(s, a;GGG)− ~yyys,a,r,s′

)
ξξξ>s,a

www ← www + αr

(
ξξξ>s,awww − r

)
ξξξs,a

Note that Algorithm 2 need not exactly track Algorithm 1, because the linear SF-Learning

algorithm has to also learn the reward weight vector www from transition samples using a particular

learning rate. Consequently, the reward condition of Proposition 1 is violated and the result may not

apply in this case. However, if linear SF-learning is initialized with a correctwww weight vector and both

linear Q-Learning and linear SF-learning observe the same transition sequence, then Proposition 1

does apply and both algorithms generate the same value function sequence.

2.2 Transferring Learned Solutions Between Tasks

The previous discussion demonstrates how SFs provide a framework for factorizing the Q-function

into a reward weight vector www and a SF vector ψψψπSA. This property leads to the question if the SF-

learning algorithm is suitable for generalization across tasks where only the reward weights www are

changed. A change in the reward weight vectorwww models a change in a task’s reward function. While

18

a change in the reward function may lead to a change in optimal policy and thus re-learning of the

SFs, re-using previously learned SFs may still speed-up learning [11, 64]. To test this hypothesis, the

SF-learning algorithm was tested on a sequence of grid world navigation tasks shown in Figure 2.1.

We consider two scenarios: In Figure 2.1(a) the rewarding goal cell is moved between opposing

corners of the grid, resulting in significant reward function change because the optimal action changes

at all grid cells. In Figure 2.1(b) the rewarding goal cell is moved diagonally between neighbouring

grid cells, resulting in slight reward function change because the optimal action is preserved at most

grid cells. SF-learning algorithm was also compared against Q-learning to test if transferring SFs

results in faster learning than transferring Q-values. In each experiment, the agent learns how to

navigate from the start state to the goal state through repeated trial and error interactions. Once

the agent reaches the goal state, the trial, called episode, is completed. Each algorithm is allowed to

interact with each task for 100 episodes and if a goal state was not reached within 2000 time steps

during an episode, the episode was aborted and no reward is given to the agent. In each test case,

both algorithms used a state representation ξ which maps each state and action pair to a unique

one-hot bit vector. Using such a state representation reduces the linear Q-learning (Algorithm 1) to

the usual tabular Q-learning algorithm [115].

Because the conducted experiments test if re-using a previously learned solution can help with

initializing learning in another task, two different initialization strategies were tested.

To simulate Q-learning or SF-learning on an MDP, each agent needs to explore the grid to build

approximations of Q-values or SFs. We test two different exploration and initialization techniques

to determine which technique leads to faster convergence.

One exploration technique is to mix uniform random action selection with greedy action selection.

Here, greedy action selection means selecting the action with the highest estimated Q-value. This

exploration technique is called ε-greedy, where the probability parameter ε determines that with

probability ε actions are chosen greedily and with probability 1− ε actions are chosen uniformly at

random. This ε-greedy exploration strategy is combined with initializing all weight parameters, the

Q-values, SF matrix GGG, and reward weights www, to zero.

Another exploration technique is to always select actions greedily but initialize all values such that

Q-value predictions always over-estimate the expected return. This ”optimistic“ initialization [53]

encourages the agent to seek reward at all states resulting in exploration of all states. As exploration

progresses, the agent receives no or negative reward and will in the limit only focus on rewarding

19

(b) Slight Reward Change Transfer Tasks

(a) Signficant Reward Change Transfer Tasks

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

Map C Map CMap D Map D

: Start Cell
: Goal Cell

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

Map A Map AMap B Map B

Figure 2.1: Transfer grid world sequences on which the SF-learning and Q-learning agents were
tested. At each grid cell, the agent can move up, down, left, or right to move to an adjacent grid
cell. Transitions are non-deterministic because with 5% chance selecting an action does not result
in a move to the desired direction. 2.1(a): This task sequence simulates significant reward function
changes where the goal location moves between two opposing corners of the grid. 2.1(b): This
task sequence simulates slight reward function changes where the goal location moves between two
diagonally adjacent grid cells.

20

20 40 60 80
Average Episode Length

On Map A

Q-Learning
Optimistic Initialization

Q-Learning
ε-Greedy Exploration

SF-Learning
Optimistic Initialization

SF-Learning
ε-Greedy Explor ation

40 60 80
Average Episode Length

On Map C

Figure 2.2: Average episode length on the first tasks of the two tested grid world sequences (Map A
and Map C in Figure 2.1). Each algorithm was simulated for 200 episodes and the average episode
length is plotted for 20 simulation repeats. On both tasks optimistic initialization significantly
outperforms ε-greedy exploration. A Welch’s t-test between the different exploration strategies in
each panel results in p-values that lie below 10−14. A goodness of fit test (Kolmogorov–Smirnov
test) of the collected data with a normal distribution resulted in p-values of at least 52% and does
not suggest that the data does not follow a normal distribution. Consequently, using the Welch’s
t-test is appropriate. Tables B.1 and B.2 list the tested and best performing learning.

states and converge to an optimal policy. This exploration strategy can be implemented in SF-

learning by setting the matrix GGG to the identity matrix. If the maximum Q-value in a task is one,

for example, setting each entry of the weight vector www to one then results in initializing all Q-values

to one, because

Q(s, a) = (ψψψSA(s, a;GGG))>www = ξξξ>s,aGGG
>www = ξξξs,aIIIwww = ξξξ>s,awww = eee>i www = 1, (2.19)

assuming that ξξξs,a = eeei where eeei is a one-hot bit vector.3

Figure 2.2 compares the two exploration strategies on the first MDPs of the two tested grid world

sequences (Map A and Map C in Figure 2.1). These plots illustrate that optimistic initialization

leads to improved exploration in both tasks. The ε-greedy exploration technique explores by selecting

actions uniformly at random. Optimistic initialization is more systematic, because after the first

time a non-rewarding state is visited, its value is decreased and is then (often) lower than the value of

other less explored states. Consequently, non-rewarding states are less likely to be visited multiple

times. This property gives optimistic exploration an advantage over ε-greedy exploration in the

tested grid world tasks.

Figure 2.3 illustrates transferring SFs across tasks leads to faster learning on the two grid world

task sequences. Not transferring SFs or Q-values and re-learning an optimal policy using only the

3A one-hot bit vector is a vector where the ith entry is set to one and all other entries are zero.

21

provided initialization leads to constant performance throughout the task curriculum (blue and green

curves in Figure 2.3(a)). Transferring previously learned SFs leads to a performance improvement

and results in accelerated learning and shorter episode lengths in sub-sequent tasks (magenta curve

in Figure 2.3(a)). Yet, the benefit of transferring previously learned Q-values is less significant

(orange curve in Figure 2.3(a)). Figure 2.3(b) plots the episode length for each simulated episode.

Each agent is simulated for 200 episodes in each task, resulting in a change in reward function every

200 episodes, as indicated by the grey vertical lines. The SF-learning algorithm converges faster

than Q-learning to optimal policy, as illustrated in the bottom panel of Figure 2.3(b). Because the

changes in rewards leads to a change in optimal policy, SFs, which depend on this optimal policy,

have to be re-learned and adjusted to each task. This re-learning is illustrated in the top panel

of Figure 2.3(b), where the SF-error spikes up with each reward function change. Nevertheless,

transferring SFs leads to a clear performance improvement over not transferring SFs, despite the

need of adjusting SFs to each task to obtain an optimal policy. These performance differences are

illustrated in Figure 2.3(c), where re-using a previously learned solution leads to significantly faster

learning at transfer. The right panel in Figure 2.3(c) suggests a greater performance benefit in the

slight reward change tasks sequence. This difference can be attributed to the fact that in the slight

reward change tasks sequence the optimal policy changes only in a small number of states when the

rewards are changed. Consequently, a previously learned solution can be adapted faster.

2.3 Policy Dependence Limits Transfer Across Tasks

The goal of re-using SFs across tasks is to capture a feature set common to a set of MDPs and this

idea seems to perform well for transfer between these MDPs. Interestingly, the results presented in

Figure 2.3 indicate that SFs, like Q-values, have to be re-learned when they are re-used across tasks.

Figure 2.4 presents a counter example illustrating when SFs have to be re-learned to find the

optimal policy on a different task. In this example, the two MDPs have two actions and deterministic

transitions indicated by arrows. Rewards are indicated by the arrow labels and the two MDPs only

differ in rewards for two specific transitions. This difference in reward causes the optimal policy for

each MDP to be different: The policy πaa, which only selects action a, is optimal in the first MDP;

the policy πab, which selects action b at state s2 and action a elsewhere, is optimal in the second

MDP. The left side of Figure 2.4 shows the SFs for both optimal policies, which is different for

22

Task 1
(Map A)

Task 2
(Map B)

Task 3
(Map A)

Task 4
(Map B)

10

15

20

25

30

A
vg

. E
pi

so
de

 L
en

gt
h

Q-learning
Q-learning
with transfer

SF-Learning
SF-Learning
with transfer

(a) Task Performance in Signficiant Reward
Change Sequence

0.0

0.5

1.0

SF
 E

rr
or

0 200 400 600 800
Episode

10

20

30

Ep
is

od
e

Le
ng

th

Q-learning
SF-Learning
with transfer

(b) Convergence Comparison Between Q-Learning and SF
Transfer in Significant Reward Change Sequence

10 15 20 25
Avg. Episode Length

At Transfer
Significant Reward Change

Q-Learning

Q-Learning
with transfer

SF-Learning

SF-Learning
with transfer

15 20 25 30 35
Avg. Episode Length

At Transfer
Slight Reward Change

(c) Performance at Transfer

Figure 2.3: Performance comparison of the tested agents on the significant and slight reward change
sequences. 2.3(a): Each curve plots the average episode length across 20 repeats in each task or
the significant reward change sequence. The shaded area indicates the standard error of measure.
2.3(b): The bottom panel plots the average episode length for each simulated episode across 20
simulation repeats. The shaded area indicates the standard error of measure. After 200 episodes
the reward function was changed (as indicated by the grey lines) and the agent was placed into the
next grid world map. When SFs were transferred, the SF-learning algorithms reward-weight vector
www was reset to its initialization after each task change. The top panel plots the SF error averaged
for each episode. 2.3(c): Average episode length on the transfer tasks two through three for the
significant (left panel) and slight (right panel) reward change sequence. A Welch’s t-test between
the different agent configurations in each panel results in p-values that lie below 1%. Consequently,
the performance improvement obtained by transferring SFs is significant. A goodness of fit test
(Kolmogorov–Smirnov test) of the collected data with a normal distribution resulted in p-values of
at least 50% and does not suggest that the data does not follow a normal distribution. Therefore,
using the Welch’s t-test is appropriate. In the slight reward change sequence, the Q-learning agent
with Q-value transfer outperformed the other agent configurations. Tables B.1 and B.2 list the
tested and best performing learning.

23

φφφ1 φφφ2

φφφ3

φφφ4

a, r = 0

a, r = 1

b, r = 0

a, r = 0

a, r = 0

ψψψπaa1a = φφφ1a + γφφφ2a + γ2ψψψπa3a

φφφ1 φφφ2

φφφ3

φφφ4

a, r = 0
a, r = 0

b, r = 1

a, r = 0

a, r = 0

ψψψπab1a = φφφ1a + γφφφ2b + γ2ψψψπa4a

Figure 2.4: Successor Feature Transfer Counter Example. The change in optimal action at state φφφ2
causes the SF at state φφφ1 to change.

the two MDPs. This difference is caused because SFs are constrained to be similar to features the

agent sees in the future. However, which features are seen is governed by the (optimal) policy. This

highlights a key limitation of using SFs for transfer: the learned representation is not transferrable

between optimal policies. When solving a previously unseen MDP, a learned SF representation can

only be used to initialize the search for an optimal policy and the agent still has to adjust the SF

representation to the policy that is only optimal in the current MDP.

The presented results demonstrate advantages and dis-advantages of transferring SFs between

MDPs that only differ in reward function. We argued that learning SFs is a form of TD-learning

and under what conditions the SF-learning algorithm generates the same Q-value estimate sequence

as Q-learning. While we were able to show a significant performance boost by using this approach,

we also highlighted that the learned feature representation is dependent on the policy they are

learned for. Hence, SF representations are an unsuitable choice in this context because one is

typically interested in transferring knowledge between tasks with different optimal policies. The

following chapters present a different SF model that removes these restrictions and learns a state

representation that can be preserved across changes in rewards, transitions, and optimal policy.

Chapter 3

Reward-Predictive State Representations

In this chapter, we introduce Linear Successor Feature Models, a model that ties learning successor

features to learning reward-predictive representations. Reward-predictive representations construct

a latent state space detailed enough for an RL system to predict reward sequences for arbitrary

decision sequences. This property of reward-predictive representations ties them to model-based RL,

an approach where RL systems use predictions of reward sequences to plan their future decisions.

Because LSFMs learn reward-predictive representations through TD-learning, these models provide

a novel link between model-based RL and TD-learning. Reward-predictive representations only

provide information about how to generalize across inputs and do not contain any specifics about

transitions or rewards. Consequently, reward-predictive representations are robust to transfer across

tasks where these specifics in transitions and rewards change.

Reward-predictive representations are constructed such that the empirical transition probabilities

between latent states mimic transitions in the original task. Figure 3.1 presents a reward-prediction

example where only one action is available to the agent. In this task, the goal is to predict that a

positive reward is obtained in three time steps if the agent starts at state s1. This example compares

two different state representations, the representation φ, which does not compress the state space,

and φ̃, which merges the first two states into one latent state. These two state representations lead

to different empirical latent transition probabilities. While the first representation preserves the

deterministic transitions of the task, the second representation does not. If states s1 and s2 are

mapped to the same latent state φ̃φφ1, then a transition from state s1 to s2 appears as a self-loop

from latent state φ̃φφ1 to itself and a transition from s2 to s3 appears as a transition from φ̃φφ1 to φ̃φφ2.

Because the state representation φ constructs a latent state space with empirical latent transition

24

25

H
HHHHfrom

to
φφφ1 φφφ2 φφφ3

φφφ1 0 1 0
φφφ2 0 0 1
φφφ3 0 0 1

s1

s2

s3

r = 0

r = 0

r = 1

φ
φφφ1

φφφ2

φφφ3

φ̃
φ̃φφ1

φ̃φφ1

φ̃φφ2

HH
HHHfrom

to
φ̃φφ1 φ̃φφ2

φ̃φφ1 0.5 0.5

φ̃φφ2 0 1

Empirical Latent

Transition Distribution with φ. Three-State MDP.

Empirical Latent

Transition Distribution with φ̃.

Figure 3.1: Three-State MDP Example. The centre schematic shows a single action three-state
MDP with deterministic transitions (black arrows). Only the self-looping transition at state s3 is
rewarded. The two state representations φ and φ̃ map the three states to different feature vectors,
resulting in different empirical feature-transition probabilities. These probabilities are computed
from observed trajectories that start at state s1.

probabilities that match the transition probabilities of the original task, this state representation is

reward predictive.

A reward-predictive state representation can be used in conjunction with a Linear Action

Model [108, 121] to compute expected future reward outcomes.

Definition 2 (Linear Action Model (LAM)). Given an MDP M and a state representation φ : S →

Rn, a LAM consists of a set of matrices and vectors {MMMa,wwwa}a∈A, where MMMa is of size n× n and

the column vector wwwa is of dimension n.

Given a fixed state representation, the transition matrices of a LAM {MMMa}a∈A model the empir-

ical latent transition probabilities and the vectors {wwwa}a∈A model a linear map from latent states

to expected one-step reward outcomes. The expected reward outcome after following the action

sequence a1, ..., at starting at state s can then be approximated with

Ep [Rt|s, a1, ..., at] ≈ φφφ>sMMMa1 · · ·MMMat−1
wwwat . (3.1)

The following sections will address how a state representation φ and a LAM can be found to predict

expected future reward outcomes as accurately as possible. Because this chapter’s goal is to establish

different connections between learning successor features and model-based RL and to demonstrate

that the learned reward-predictive state representations are suitable for transfer across variations

in transitions and rewards, an extension of these model to non-linear latent transition and reward

26

Pr{s a→ φφφ3}

Pr{φφφ1
a→ φφφ3|ω}

S

Probability

Density

Feature

Space

s

φφφ1 φφφ2 φφφ3 φφφ4

p(s, a, ·)ω(·)

Pr{s a→ φφφ3}: The probability of

transitioning from s to any state

mapped to φφφ3 by selecting action

a.

Pr{φφφ1
a→ φφφ3|ω}: Empirical proba-

bility of transitioning from latent

state φφφ1 to latent state φφφ3 by se-

lecting action a.

Figure 3.2: Empirical Latent Transition Probabilities Depend on State-Visitation Frequencies. This
example illustrates how empirical latent transition probabilities depend on state-visitation frequen-
cies. In this example, the state space S is a bounded interval in R that is clustered into one of
four latent states: φφφ1,φφφ2,φφφ3, or φφφ4. State-visitation frequencies are modelled for each partition
independently using the density function ω. The schematic plots the density function p over states
of selecting action a at state s (blue area) and the density function ω over the state partition φφφ1
(orange area). The probability Pr{s a→ φφφ3} of transitioning into the partition φφφ3 is the blue shaded

area. The probability Pr{φφφ1
a→ φφφ3|ω} of a transition from φφφ1 to φφφ3 occurring is the marginal of

Pr{s a→ φφφ3} over all states s mapping to φφφ1, weighted by ω.

functions is left to future work.

To tie SFs to reward-predictive state representations, we first introduce a set of square real-valued

matrices {FFF a}a∈A such that, for every state s and action a,

φφφ>s FFF a ≈ ψψψπ(s, a) (3.2)

= Ep,π

[∞∑
t=1

γt−1φφφst

∣∣∣∣∣s1 = s, a1 = a

]
(3.3)

where the policy π is defined on the latent state space. A Linear Successor Feature Model (LSFM)

is then defined using the matrices {FFF a}a∈A:

Definition 3 (Linear Successor Feature Model (LSFM)). Given an MDP, a policy π, and a state

representation φ : S → Rn, an LSFM consists of a set of matrices and vectors {FFF a,wwwa}a∈A, where

FFF a is of size n× n and the column vector wwwa is of dimension n. The matrices {FFF a}a∈A are used to

model a linear map from latent state features to SFs as described in Equation (3.2).

LSFMs require the state representation φ to (linearly) approximate the SF ψψψπ(s, a) using the

matrices {FFF a}a∈A (Equation (3.2)). Previously presented SF frameworks [11, 12] do not use the

state representation φ to approximate SF vectors ψψψπ as described in Equation (3.2) and construct

the state-representation function φ differently, for example, by setting the output of φ to be one-step

27

rewards [11]. In contrast, LSFMs are used to learn the state-representation function φ that satisfies

Equation (3.2). Because LSFMs distinctly incorporate this approximative property, SFs can be

connected to model-based RL.

An intelligent agent that uses a state representation φ operates directly on the constructed latent

state space and is constrained to only search the space of policies that are defined on its latent state

space. These policies are called abstract policies.

Definition 4 (Abstract Policies). An abstract policy πφ is a function mapping latent state and

action pairs to probability values:

∀s ∈ S, a ∈ A, πφ(φφφs, a) ∈ [0, 1] and
∑
a

πφ(φφφs, a) = 1.

For a fixed state representation φ, the set of all abstract policies is denoted with Πφ.

The following sections first tie learning LAMs to reward-predictive state representations. We

then show that learning LSFMs is equivalent to learning LAMs tying LSFMs to reward-predictive

state representations.

3.1 Encoding Bisimulation Relations

To ensure accurate predictions of future reward outcomes, the previous discussion suggests that the

empirical latent transition probabilities have to match the transition probabilities in the original

task. Figure 3.2 presents a schematic explaining these dependencies further. In this example, the

state space is a bounded interval in R that is mapped to four different latent states, φφφ1, φφφ2, φφφ3, or

φφφ4. The probability of transitioning from the state s to any state that is mapped to φφφ3 is denoted

with Pr{s a→ φφφ3}. This probability Pr{s a→ φφφ3} is the marginal over all states s′ that are mapped

to the latent state φφφ3. Assume that ω is a density function over all states that are mapped to the

latent state φφφ1. This density function could model the visitation frequencies of different states as

an intelligent agent interacts with the MDP. The empirical probability of transitioning from latent

state φφφ1 to φφφ3 is then the marginal over all states mapping to φφφ1 and

Pr
{
φφφ1

a→ φφφ3

∣∣∣ω} =

∫
s:φ(s)=φφφ1

ω(s)Pr{s a→ φφφ3}ds = Eω
[
Pr{s a→ φφφ3}

∣∣∣φ(s) = φφφ1

]
. (3.4)

28

The expectation in Equation (3.4) is computed with respect to ω over all states s that map to the

latent state φφφ1. As Equation (3.4) outlines, the empirical transition probability Pr{φφφ1
a→ φφφ3|ω}

depends on the visitation frequencies ω. The probability Pr{s a→ φφφ3} of transitioning from a state

s into a partition only depends on the transition function p itself.

Consider two different states s and s̃ that map to the same latent state and φ(s) = φ(s̃). If the

state representation is constructed such that

∀a,∀φφφi, Pr{s a→ φφφi} = Pr{s̃ a→ φφφi} and Ep [r(s, a, s′)|s, a] = Ep [r(s̃, a, s′)|s̃, a] , (3.5)

then the empirical latent state transition probabilities would become independent of ω because the

integrand in Equation (3.4) is constant and

Pr
{
φφφ1

a→ φφφ3

∣∣∣ω} =

∫
s:φ(s)=φφφ1

ω(s) Pr{s a→ φφφ3}︸ ︷︷ ︸
constant

ds = Pr{s a→ φφφ3}. (3.6)

Equation (3.6) follows directly from the transition condition in line (3.5), because the probability

Pr{s a→ φφφ3} is constant for all states s that are mapped to the latent state vector φφφ1. If the

two identities in line (3.5) hold, then the resulting latent state space constructs latent transition

probabilities that correspond to the transition probabilities in the original task. Equation (3.5)

describes an informal definition of bisimulation [46]. Definition 5 listed in Appendix A.2 presents

a formal measure theoretic definition of bisimulation on arbitrary (measurable) state spaces. This

definition is used to prove the theorems stated in this section. To prove that LAMs encode state

representations that generalize only across bisimilar states, two assumptions are made.

Assumption 1. The state space S of an MDP can be partitioned into at most n different partitions

of bisimilar states, where n is a natural number.

Assumption 2. A state representation φ : S → {eee1, ..., eeen} is assumed to have a range that consists

of all n one-hot bit vectors. For each i, there exists a state s such that φ(s) = eeei.

Assumption 1 is not particularly restrictive in a learning context: If an agent has observed n

distinct states during training, then a state representation assigning each state to one of n different

one-hot bit vectors can always be constructed. While doing so may not be useful to generalize across

different states, this argument suggests that Assumption 1 is not restrictive in practice. Assumption 2

is relaxed in the following sections.

29

If action a is selected at state s, the expected next feature vector is

Ep [φ(s′)|s, a] =

n∑
j=1

Pr{s a→ eeej}eeej =
[
· · · ,Pr{s a→ eeej}, · · ·

]>
. (3.7)

The expected value in Equation (3.7) is computed over all possible next states s′ that can be reached

from state s by selecting action a. In Equation (3.7), the next state s′ is a random variable whose

probability distribution or density function is described the by the MDP’s transition function p.

By Assumption 2, each state is mapped to some one-hot bit vector eeej . Because there are only n

different one-hot bit vectors of dimension n, the summation in Equation (3.7) is finite. Each entry

of the resulting vector in Equation (3.7) stores the probability Pr{s a→ eeej} of observing the feature

vector eeej after selecting action a at state s.

Because the expected next feature vector Ep [φ(s′)|s, a] is a probability vector, the transition ma-

trices {MMMa}a∈A of a LAM are stochastic: If φ(s) = eeei and eee>i MMMa = Ep [eeej |s, a], then the ith row of the

matrix MMMa is equal to the probability vector shown in Equation (3.7). If eee>i wwwa = Ep [r(s, a, s′)|s, a],

then the weight vectors of a LAM {wwwa}a∈A encode a reward table. These observations lead to the

first theorem.1

Theorem 1. For an MDP 〈S,A, p, r, γ〉, let φ : S → {eee1, ..., eeen} be a state representation and

{MMMa,wwwa}a∈A a LAM. Assume that S can be partitioned into at most n partitions of bisimilar states.

If the state representation φ satisfies

∀s ∈ S,∀a ∈ A, φφφ>s wwwa = Ep [r(s, a, s′)|s, a] and φφφ>sMMMa = Ep [φφφs′ |s, a] , (3.8)

then φ generalizes across bisimilar states and any two states s and s̃ are bisimilar if φφφs = φφφs̃.

The proof of Theorem 1 uses the fact that the expected value of one-hot bit vectors encode

exact probability values. A similar observation can be made about the SFs for a one-hot bit-vector

state representation. In this case, the (1− γ) rescaled SF contains the marginal of reaching a state

partition across time steps:

(1− γ)Ep,π

[∞∑
t=1

γt−1eeet

∣∣∣∣∣s, a1
]

=

[
...,

∞∑
t=1

(1− γ)γt−1Ep,π
[
Pr
{
s
a1···at−→ eeei

}∣∣∣s, a1] , ...]> , (3.9)

1Appendix A.2 presents formal proofs for all presented theorems.

30

where the expectation in Equation (3.9) is computed over infinite length trajectories starting at

state s with action a. This observation leads to the following theorem stating that LSFMs can be

used to identify a one-hot state representation that generalizes across bisimilar states.

Theorem 2. For an MDP 〈S,A, p, r, γ〉, let φ : S → {eee1, ..., eeen} be a state representation and

{FFF a,wwwa}a∈A an LSFM. If, for one policy π ∈ Πφ, the representation φ satisfies

∀s ∈ S,∀a ∈ A, φφφ>s wwwa = Ep [r(s, a, s′)|s, a] and φφφ>s FFF a = φφφ>s + γEp,π [φφφs′FFF a′ |s, a] , (3.10)

then φ generalizes across bisimilar states and any two states s and s̃ are bisimilar if φφφs = φφφs̃. If

Equation (3.10) holds for one policy π ∈ Πφ, then Equation (3.10) also holds every other policy

π̃ ∈ Πφ as well.

Equation (3.10) describes a fixed-point equation similar to the Bellman fixed-point equation:

eee>s FFF a = (ψψψπ(s, a))> (3.11)

= Ep,π

[∞∑
t=1

γt−1eee>st

∣∣∣∣∣s, a
]

(3.12)

= eee>s + γEp

[
Ep,π

[∞∑
t=1

γt−1eee>st

∣∣∣∣∣s′, a′
]∣∣∣∣∣s, a

]
(3.13)

= eee>s + γEp
[
eee>s′FFF a′

∣∣s, a] . (3.14)

Finding a policy π ∈ Πφ to test if Equation (3.10) holds for a state representation φ is trivial,

because it is sufficient to test the state representation for any single policy. Theorems 1 and 2 show

that LAMs and LSFMs can be used to identify one-hot reward-predictive state representations. To

arrive at an algorithm that can learn reward-predictive state representations, the following sections

convert the conditions outlined in Theorems 1 and 2 into learning objectives. The next section

presents an analysis showing how violating these conditions by some margin results in increased

reward-sequence prediction errors. We refer to state representations that can only approximately

predict expected reward sequences as an approximate reward-predictive state representation.

31

3.2 Approximate Reward-Predictive Representations

In this section, we analyze to what extent a state representation is reward predictive if it only ap-

proximately satisfies the conditions outlined in Theorems 1 and 2. In addition, we will also generalize

beyond one-hot representations and relax Assumption 2 by considering state representations that

map the state space into Rn. The latent feature’s dimension n is considered a fixed hyper-parameter.

Because LAMs only model one-step transitions but are used to predict entire reward sequences,

the scale and expansion properties of the constructed latent state space influences how prediction

errors scale and compound [110, 6]. Define the following variables:2

W = max
a∈A
||wwwa||, M = max

a∈A
||MMMa||, N = sup

s∈S
||φφφs||. (3.15)

To identify approximate reward-predictive state representations, a state representation φ is analyzed

by its one-step reward-prediction error and one-step expected transition error. These quantities are

computed using a LAM {MMMa,wwwa}a∈A and are defined as

εr = sup
s,a

∣∣r(s, a)−φφφ>s wwwa
∣∣ and (3.16)

εp = sup
s,a

∣∣∣∣Ep [φφφ>s′ ∣∣s, a]−φφφ>sMMMa

∣∣∣∣ . (3.17)

Equivalently, a state representation is also analyzed using an LSFM that predicts the SF for a policy

that selects actions uniformly at random. For an LSFM {FFF a,wwwa}a∈A, define

FFF =
1

|A|
∑
a∈A

FFF a. (3.18)

For such an LSFM, the linear SF prediction error is defined as

εψ = sup
s,a

∣∣∣∣φφφ>s + γEp
[
φφφ>s′FFF

∣∣s, a]−φφφ>s FFF a∣∣∣∣ . (3.19)

Because the matrix FFF averages across all actions, the LSFM computes SFs for a policy that selects

actions uniformly at random. Here, we focus on uniform random action selection to simplify the

analysis. While the matrix FFF could be constructed differently, the proofs of the theoretical results

2All norms are assumed to be L2. The Euclidean norm is used for vectors. The norm of a matrix MMM is computed

with ||MMM || =
√∑

i,jMMM(i, j)2, where the summation ranges over all matrix entries MMM(i, j).

32

presented in this section assume that FFF can only depend on the matrices {FFF a}a∈A and is not a

function of the state s.

Similar to the previous discussion, LSFMs are closely related to LAMs and the one-step transition

error εp can be upper bounded by the linear SF error εψ. We define the quantities εr, εt, and

εψ to upper bound the magnitude with which the identities provided in Theorems 1 and 2 are

violated. The following analysis generalizes the previously presented results by showing that, if a

state representation approximately satisfies the requirements of Theorems 1 and 2, then this state

representation is approximately reward predictive.

Lemma 1. For an MDP, a state representation φ, an LSFM and a LAM,

εp ≤ εψ
1 + γM

γ
+ Cγ,M,N∆, (3.20)

where Cγ,M,N = (1 + γ)(1 + γM)N/(γ(1− γM)) and ∆ = maxa ||III + γMMMaFFF −FFF a||.

Lemma 1 presents a bound stating that if an LSFM has low linear SF prediction errors, then

a corresponding LAM can be constructed with low one-step transition error εp, assuming that

∆ is close to zero. In Chapter 2, Equation (2.2), the action-conditional SR matrix is defined as

ΨΨΨπ
a = III + γPPP aΨΨΨ

π, where PPP a is a stochastic transition matrix for a finite MDP. If ∆ = 0, then the

matrices {FFF a}a∈A can be thought of as action-conditional SR matrices for the transition matrices

{MMMa}a∈A and

FFF a = III + γMMMaFFF . (3.21)

In Chapter 2 we shows that there exists a bijection between the transition matrices {PPP a}a∈A and

the action-conditional SR matrices {ΨΨΨπ
a}a∈A. The proof of Lemma 1 repeats the same argument

for Equation (3.21) and shows that there exists a bijection between the matrices {FFF a}a∈A and

{MMMa}a∈A. For arbitrary state representations and LSFMs, Equation (3.21) may not hold if ∆ > 0.

The following theorem presents a bound stating that low one-step reward and one-step transition

errors lead to state representations that support accurate predictions of future expected reward

outcomes. By Lemma 1, the following results also apply to LSFMs because low linear SF prediction

errors lead to low one-step expected transition errors.

33

Theorem 3. For an MDP, state representation φ→ Rn, and for all T ≥ 1, s, a1, ..., aT ,

∣∣φφφ>sMMMa1 · · ·MMMaT−1
wwwaT − Ep [rT |s, a1, ..., aT]

∣∣ ≤ εp T−1∑
t=1

M tW + εr. (3.22)

Theorem 3 shows that prediction errors of expected rollouts are bounded linearly in εr and εp

and prediction errors tend to zero as εr and εp tend to zero. Because LAMs are one-step models,

prediction errors increase linearly with T if M ≤ 1 as the model is used to generalize over multiple

time steps. Prediction errors may increase exponentially if the transition matrices are expansions

and M > 1, similar to previously presented bounds [6].

The following theorem bounds the prediction error of finding a linear approximation of the Q-

function Qπ(s, a) ≈ φφφ>s qqqa using a state representation φ and a real valued vector qqqa.

Theorem 4. For an MDP, state representation φ : S → Rn, any arbitrary abstract policy π ∈ Πφ,

and LAM {MMMa,wwwa}a∈A, there exists vectors vvvπ and {qqqa = wwwa+γMMMavvv
π}a∈A such that, for all states

s and actions a,

∣∣V π(s)−φφφ>s vvvπ
∣∣ ≤ εr + γεp ||vvvπ||

1− γ
and

∣∣Qπ(s, a)−φφφ>s qqqa
∣∣ ≤ εr + γεp ||vvvπ||

1− γ
. (3.23)

By Theorem 4, an (approximate) reward-predictive state representation (approximately) gener-

alizes across all abstract policies, because the same state representation can be used to predict the

value of every possible abstract policy π ∈ Πφ. Prediction errors tend to zero as εr and εp tend

to zero. The value prediction error bounds stated in Theorem 4 are similar to bounds presented

by [19] on approximate (linear) policy iteration, because the presented results also approximate value

functions using a function that is linear in some basis function φ. Conforming to these previously

presented results on linear value function approximation, prediction errors scale linearly in one-step

prediction errors εψ and εp. Theorems 4 and 3 show that, by learning a state representation that

predicts SFs for policies that select actions uniformly at random, an approximate reward-predictive

state representation is obtained. This state representation generalizes across the entire space of ab-

stract policies, because accurate predictions of each policy’s value function are possible if prediction

errors are low enough. Appendix A.2.1 presents formal proofs of Theorems 3 and 4.

Figure 3.3 presents an example highlighting that reward-predictive state representations do not

necessarily encode bisimulation relations. In this example, states A and B are not bisimilar, because

34

the probabilities with which they transition to C, D, or E are different. The state representation

φ generalizes across these two states and εr = εp = εψ = 0. The expected reward sequence for

transitioning out of A or B is always 0, 0.5, 0.5, ..., so both states have equal expected future reward

outcomes and the state representation φ is reward predictive. However, the state representation is

not predictive of the probability with which a particular reward sequence is observed. For example,

the latent state space constructed by φ would have to make a distinction between state A and B to

support predictions stating that a reward sequence of 0, 1, 1, ... can be obtained from state B with

probability 0.5. The example in Figure 3.3 highlights the difference between the analysis presented

in this section and the previous section: By relaxing Assumption 2, one may still obtain a reward-

predictive state representation, but this representation may not necessarily encode a bisimulation

relation.

Figure 3.4 illustrates on an example that reward-predictive representation generalize across dif-

ferent states differently than the value-predictive state representations discussed in Chapter 2. In

this example it is not always possible to construct an optimal policy using a value-predictive state

representation. If a sub-optimal policy is used, value-predictive state representations may alias states

that have different optimal actions prohibiting an intelligent agent from finding an optimal policy

if such a value-predictive state representation is used. In contrast, reward-predictive state represen-

tations generalize across the entire policy space (Theorem 4) and allow an agent to find either an

optimal policy or close to optimal policy in the presence of approximation errors.

Note that an (approximate) reward-predictive state representation φ : S → Rn could in principle

map each state to a distinct latent state vector. As demonstrated by the following simulations,

the idea behind generalizing across states is that the dimension n of the constructed latent space

is sufficiently small to constrain the LSFM learning algorithm and assign approximately the same

latent state vector to different states. The following section illustrates how (approximate) reward-

predictive state representations model generalization across different states.

3.3 Learning Reward-Predictive Representations

Using the previously presented theoretical results, this section designs a loss objective to learn

approximate reward-predictive state representations. By optimizing a loss function, a randomly

chosen state-representation function φ : S → Rn is iteratively improved until the function φ can be

35

φ(A) = φφφAB

φ(B) = φφφAB

eeeA = [1, 0, 0, 0, 0]>

eeeB = [0, 1, 0, 0, 0]>

A

B

C

D

E

r = 0
r = 0.5

r = 0
p = 1

2

p = 1
2

r = 1

r = 0

One-hot

Vectors

Arbitrary

Vectors

eeeC = [0, 0, 1, 0, 0]>

eeeD = [0, 0, 0, 1, 0]>

eeeE = [0, 0, 0, 0, 1]>

φφφC = [0, 0.5, 0.5]>

φφφD = [0, 1, 0]>

φφφE = [0, 0, 1]>

(a) Reward-predictive representations can be encoded using different state features.

Model Prediction Target with one-hot with arbitrary

LAM
Ep[φφφ|A] = [0, 0, 1, 0, 0]> = [0, 0.5, 0.5]>

Ep[φφφ|B] = [0, 0, 0, 0.5, 0.5]> = [0, 0.5, 0.5]>

LSFM
Ep[

∑∞
t=1 γ

t−1φφφt|A] = [1, 0, 9, 0, 0]> = φφφAB + [0, 3.5, 3.5]>

Ep[
∑∞
t=1 γ

t−1φφφt|B] = [0, 1, 0, 3.5, 3.5]> = φφφAB + [0, 3.5, 3.5]>

(b) Prediction targets of a LAM and LSFM for both state representations.

Figure 3.3: Real-valued reward-predictive state representations may not encode bisimulations, but
support predictions of future expected reward outcomes. 3.3(a): In this five-state, example no states
are bisimilar. Each edge is labelled with the reward given to the agent for a particular transition.
The transition departing state B is probabilistic and leads to state D or E with equal probability. All
other transitions are deterministic. Two different state representations are considered. One repre-
sentation maps states to one-hot bit vectors and the other representation maps states to real-valued
vectors. 3.3(b): Prediction targets for both LAM and LSFM depend on what state representation
is used. For a one-hot state representation, the LAM and LSFM have different prediction targets
for states A and B, because a one-hot bit-vector state representation can be used to detect that
transition probabilities are different between A and B. In contrast, real valued state representations
may lead to equal prediction targets for both LAM and LSFM, because the state features φφφC , φφφD,
and φφφE can hide different transition probabilities. The state representation φ is reward predictive
and εr = εp = εψ = 0.

36

A

B

C

D

a, b, r = 0.5

a, r = 1

b, r = 0

b, r = 0

a, r = 0

b, r = 0

a, r = 0

Value predictive:

Qπ(A, a) = γ
1−γ 0.5

Qπ(A, b) = γ
1−γ 0.5

Qπ(B, a) = γ
1−γ 0.5

Qπ(B, b) = γ
1−γ 0.5

Reward predictive:

ψψψπ(A, a) = φφφA + 1
1−γφφφD

ψψψπ(A, b) = φφφA + 1
1−γφφφC

ψψψπ(B, a) = φφφB + 1
1−γφφφC

ψψψπ(B, b) = φφφB + 1
1−γφφφD

Figure 3.4: Value-predictive state representations may prohibit an agent from learning an optimal
policy. In this MDP, the agent can choose between action a and action b. All transitions are
deterministic and each edge is labelled with the reward given to the agent. If a uniform-random
action-selection policy is used to construct a value-predictive state representation, then both states
A and B will have equal Q-values. A reward-predictive state representation would always distinguish
between A and B, because at state A the action sequence b, a, a... leads to a reward sequence of
0, 0.5, 0.5, ... while at state B the action sequence b, a, a, ... leads to a reward sequence of 0, 1, 1,
An LSFM detects that states A and B should not be merged into the same latent state, because
the states have different SFs. The optimal policy is to select action a at state A, and action b
at state B and then collect a reward of one at state D by repeating action a. If an agent uses a
reward-predictive state representation, then the optimal policy could be recovered. If an agent uses
a value-predictive state representation, the agent would be constrained to not distinguish between
states A and B and cannot recover an optimal policy.

used to accurately predict reward sequences. The cluster plots in Figure 3.5 illustrate this process:

Starting with a random assignment of feature vectors to different grid states, a state representation

is iteratively improved until all states of the same column are clustered approximately into the

same latent state. These latent state vectors were only clustered because the loss function assesses

whether a state representation is reward predictive. The fact that states of the same column are

assigned approximately to the same latent state is an artifact of this optimization process. The

hyper-parameter n can be understood as the size of the constructed latent space and a bound on the

degree of compression of the state space. For example, if the state space consists of nine different

states, setting n = 9 could result in not compressing the state space and mapping nine states onto

nine distinct one-hot bit vectors. The following experiments explore how choosing a low enough

feature dimension leads to compression and generalization across states.

The previous sections present bounds on prediction errors that are parameterized in the worst-

case one-step reward-prediction error εr and worst-case linear SF prediction error εψ. Given only

a finite data set of transitions D = {(si, ai, ri, s′i)}
D
i=1, it may not be possible to compute estimates

for εr and εψ without making further assumptions on the MDP at hand, such as a finite state

37

��
��
���

�
�

�

�
�����

��������

����

0 50 100
Gradient Update

10 1

10 3

10 5Lo
ss

V
al

ue

���
��������
�	
�������������������
���������

�������������� ���	��� ���	�����

0 50 100
Gradient Update

100

10 1

10 2Lo
ss

V
al

ue

�����

���
��������
�	
�������������������
����������

�������������� ���	��� ���	�����

Figure 3.5: In the column world task, learning reward-predictive state representations leads to
clustering grid cells by each column. The top row illustrates a map of the column world task and
a colouring of each column. The middle row presents an experiment that optimizes across different
state representations to find a LAM that can be used for accurate one-step reward and one-step
expected transition predictions. Each latent state is plotted as a dot in 3D-space and dots are
coloured by the column they correspond to. At the end of the optimization process, three clusters of
the same colour are formed showing that approximately the same latent state is assigned to states
of the same column. The third row repeats the same experiment using an LSFM, which assesses
whether the constructed latent state space can be used for accurate one-step reward predictions and
SF predictions. Appendix B.2.1 describes this experiment in detail.

38

space or a bounded Rademacher complexity of the transition and reward functions to obtain robust

performance on a test data set [74]. Because the goal of this project is to study the connections

between SFs and different models of generalization across different states, an analysis of how to

find provably correct predictions of εr and εψ given a finite data set D is beyond the scope of

this dissertation. Instead, the conducted experiments collect a data set D by sampling trajectories

using a policy that selects actions uniformly at random. The data set D is generated to be large

enough to cover all state and action pairs, ensuring that all possible transitions and rewards are

implicitly represented in this data set. If the data set does not cover all states and actions, then

the resulting reward-predictive state representation may only produce accurate predictions for some

reward sequences because the data set does not communicate all aspects of the MDP at hand. A

study of this interaction between a possibly limited training data set and the resulting model’s ability

to make accurate predictions is left for future work.

We design a loss objective LLSFM that is the sum of three different terms: The first term Lr

computes the one-step reward prediction error and is designed to minimize the reward error εr. The

second term Lψ computes the SF prediction error and is designed to minimize the SF error εψ. The

last term LN is a regularizer constraining the gradient optimizer to find a state representation that

outputs unit norm vectors. Empirically, we found that this regularizer encourages the optimizer to

find a model withM ≈ 1 andW ≈ 1. (Reward-sequence prediction errors are lower for these values of

M and W , as stated in Theorem 3.22.) Given a finite data set of transitions D = {(si, ai, ri, s′i)}
D
i=1,

the formal loss objective is

LLSFM =

D∑
i=1

(
φφφ>siwwwai − ri

)2
︸ ︷︷ ︸

=Lr

+αψ

D∑
i=1

∣∣∣∣∣∣φφφ>siFFF a − ~yyysi,ai,ri,s′i∣∣∣∣∣∣22︸ ︷︷ ︸
=Lψ

+αN

D∑
i=1

(∣∣∣∣∣∣φφφsi ∣∣∣∣∣∣2
2
− 1
)2

︸ ︷︷ ︸
=LN

, (3.24)

for a finite data set of transitions D = {(si, ai, ri, s′i)}
D
i=1. In Equation (3.24), the prediction target

~yyys,a,r,s′ = φφφ>s + γφφφ>s′FFF

and αψ, αN > 0 are hyper-parameters. These hyper-parameters weigh the contribution of each

error term to the overall loss objective. If αψ is set to too small a value, then the resulting state

representation may only produce accurate one-step reward predictions, but not accurate predictions

39

of longer reward sequences. This chapter presents simulations on finite state spaces and represents

a state representation as a function s 7→ eee>s ΦΦΦ where ΦΦΦ is a weight matrix of size |S| × n. An

approximation of a reward-predictive state representation is obtained by performing gradient descent

on the loss objective LLSFM with respect to the free parameters {FFF a,wwwa}a∈A and ΦΦΦ. For each

gradient update, the target ~yyys,a,r,s′ is considered a constant. The previously presented bounds show

that prediction errors also increase with ∆ = maxa ||III + γMMMaFFF − FFF a||. Minimizing Lψ for a fixed

state representation φ minimizes ∆, because

∆ ≤ cφLψ, (3.25)

where cφ is a non-negative constant. Appendix A.2.2 presents a formal proof for Equation (3.25).

To assess whether minimizing the loss LLSFM leads to approximating reward-predictive state

representations, a transition data set was collected from the puddle-world task [22]. Conforming to

the previous analysis, the LSFM is compared to a LAM that is trained using a similar loss function,

described in Appendix B.2.2.

Figure 3.6 presents the puddle-world experiments and the results. In puddle-world (Fig-

ure 3.6(a)), the agent has to navigate from a start state to a goal to obtain a reward of one while

avoiding a puddle. Entering the puddle is penalized with a reward of minus one. To predict future

reward outcomes accurately, a state representation has to preserve the grid position as accurately

as possible to predict the location of the different reward cells.

By constraining the latent state space to 80 dimensions, the optimization process is forced to find

a compression of all 100 grid cells. To analyze across which states the learned reward-predictive state

representation generalizes, all feature vectors were clustered using agglomerative clustering. Two

different states that are associated with feature vectors φφφs and φφφs̃ are merged into the same cluster

if their Euclidean distance ||φφφs−φφφs̃||2 is low. For example, a randomly chosen representation would

randomly assign states to different latent states and the partition map could assign the grid cell at

(0, 0) and (9, 9) to the same latent state. Figures 3.6(b) and 3.6(c) plot the obtained clustering as a

partition map. Grid cells are labelled with the same partition index if they belong to the same cluster

and colours correspond to the partition index. To predict reward outcomes accurately, the position

in the grid needs to be roughly retained in the constructed latent state space. The partition maps in

Figures 3.6(b) and 3.6(c) suggest that the learned state representation extracts this property from

40

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9 +1

-1

Start State

(a) Puddle-world task map

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0

9

15

24

31

41

48

58

64

74

0

9

15

25

32

42

49

59

65

75

1

10

16

26

33

43

50

60

66

76

2

11

17

27

34

44

51

61

67

76

3

12

18

28

35

45

52

62

68

77

4

13

19

29

36

46

53

63

69

78

5

14

20

30

37

47

54

54

70

79

6

6

21

21

38

38

55

55

71

71

7

7

22

22

39

39

56

56

72

72

8

8

23

23

40

40

57

57

73

73

(b) LAM generalization map

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0

10

20

26

35

40

47

54

62

70

1

11

21

27

27

41

48

55

63

71

2

12

21

28

28

41

48

55

64

72

3

13

22

22

36

36

49

56

65

73

4

14

14

29

29

42

50

57

66

74

5

15

15

30

37

43

50

58

58

75

6

16

16

31

37

43

51

51

67

76

7

17

23

32

32

44

44

59

59

77

8

18

24

33

38

45

52

60

68

78

9

19

25

34

39

46

53

61

69

79

(c) LSFM generalization map

0 100 200

Rollout Step

− 1

0

1

E
x
p
ec
te
d
R
ew

ar
d

Exp. Reward

Prediction

(d) Example Rollout, Random

0 100 200

Rollout Step

− 1

0

1

E
x
p
ec
te
d
R
ew

ar
d

Exp. Reward

Prediction

(e) Example Rollout, LAM

0 100 200

Rollout Step

− 1

0

1

E
x
p
ec
te
d
R
ew

ar
d

Exp. Reward

Prediction

(f) Example Rollout, LSFM

0 100 200
Rollout Step

0.00

0.25

0.50

0.75

1.00

A
v
g
.
E
x
p
.
R
ew
ar
d

P
re
d
ic
ti
o
n
E
rr
o
r Init.

LSFM

LAM

(g) Reward-Prediction Error

0 25000 50000
Iteration

0.0

0.5

1.0

V
al
u
e
E
rr
o
r

0.0

0.5

1.0

E
x
p
lo
ra
ti
o
n
E
p
si
lo
n

(h) LAM Value-Prediction Error

0 25000 50000
Iteration

0.0

0.5

1.0
V
al
u
e
E
rr
o
r

0.0

0.5

1.0

E
x
p
lo
ra
ti
o
n
E
p
si
lo
n

(i) LSFM Value-Prediction Error

Figure 3.6: Puddle-World Experiment. 3.6(a): Map of the puddle-world task in which the agent
can move up, down, left, or right to transition to adjacent grid cells. The agent always starts
at the blue start cell and once the green reward cell is reached a reward of +1 is given and the
interaction sequence is terminated. For each transition that enters the orange puddle, a reward
of −1 is received. 3.6(b), 3.6(c): Partitioning obtained by merging latent states into clusters by
Euclidean distance. 3.6(d), 3.6(e), 3.6(f): Expected reward and predictions for a randomly chosen
200-step action sequence using a randomly chosen representation, a representation learned with a
LAM, and a representation learned with an LSFM. 3.6(g): Average expected reward-prediction
errors with standard error for each representation. 3.6(h), 3.6(i): Optimizing the loss objective
results in a sequence of state representations suitable for finding linear approximations of the value
functions for a range of different ε-greedy policies. Appendix B.2.2 presents more details.

41

a transition data set, by generalizing only across neighbouring grid cells and tiling the grid space.

Only a transition data set D was given as input to the optimization algorithm and the algorithm

was not informed about the grid-world topology of the task in any other way.

Figures 3.6(d), 3.6(e), 3.6(f) plot an expected reward rollout and the predictions presented

by a random initialization (3.6(d)), the learned representation using a LAM (3.6(e)), and the

learned representation using a LSFM (3.6(f)). The blue curve plots the expected reward outcome

Ep[rt|s, a1, ..., at] as a function of t for a randomly selected action sequence. Because transitions are

probabilistic, the (blue) expected reward curve is smoothed and does not assume exact values of −1

or +1. While a randomly initialized state representation produces poor predictions of future reward

outcomes (Figures 3.6(d)), the learned representations produce relatively accurate predictions and

follow the expected reward curve (Figures 3.6(e) and 3.6(f)). Because the optimization process was

forced to compress 100 grid cells into a 80-dimensional latent state space, the latent state space

cannot preserve the exact grid cell position and thus approximation errors occur.

Figure 3.6(g) averages the expected reward-prediction errors across 100 randomly selected action

sequences. While a randomly chosen initialization produces high prediction errors, the learned state

representations produce relatively low prediction errors of future reward outcomes. If expected

reward-prediction errors are random after 200 time steps, then the γ-discounted return can be off by

at most 0.9200 ·1/(1−0.9) ≈ 1.4 ·10−9 after 200 time steps for γ = 0.9 and a reward range of [−1, 1].

Hence, planning over a horizon of more than 200 time steps will impact a policy’s value estimate

insignificantly. Reward-prediction errors decrease for a randomly chosen state representation (blue

curve in Figure 3.6(g)) because the stochasticity of the task’s transitions smooths future expected

reward outcomes as the number of steps increases.

While the plots in Figure 3.6 suggest that both LSFMs and LAMs can be used to learn ap-

proximate reward-predictive state representations, the LSFM produces lower prediction errors for

expected reward outcomes than the LAM and the LAM produces lower value-prediction errors.

Because both models optimize different non-linear and non-convex loss functions, the optimization

process leads to different local optima, leading to different performance on the puddle-world task.

While prediction errors are present, Figure 3.6 suggests that both LSFM and LAM learn an approx-

imate reward-predictive state representation and empirically the differences between each model are

not significant.

42

3.4 Connection to Model-based Reinforcement Learning

The key characteristic of a model-based RL agent is to build an internal model of a task that supports

predictions of future reward outcomes for any arbitrary decision sequence. Because reward-predictive

state representations construct a latent state space suitable for predicting reward sequences for any

arbitrary decision sequence, learning reward-predictive state representations can be understood as

form of model-based RL. LSFMs tie SFs to reward-predictive state representations, which support

predictions of future reward outcomes for any arbitrary decision sequence. The presented analysis

describes how learning SFs is akin to learning a transition and reward model in model-based RL.

3.5 Generalization Across Transition and Reward Functions

One key distinction between value- and reward-predictive state representations is their ability to

generalize across different transition and reward functions. While prior work on SFs [10] and ad-

versarial IRL [42] separately model the reward function from the transition function and observed

policy, reward-predictive state representations only model equivalence relations between states sepa-

rately from the transition and reward model. Consequently, reward-predictive state representations

extract equivalences between different state’s transitions and one-step rewards, reward-predictive

state representations can be reused across tasks that vary in their transition and reward func-

tions [65]. Figure 3.7 presents a transfer experiment highlighting that reusing a previously learned

reward-predictive state representation allows an intelligent agent to learn an optimal policy using

less data.

This experiment uses two grid-world tasks (Figure 3.7(a)): For Task A, a transition data set DA is

collected. A reward-predictive state representation is learned using an LSFM and a value-predictive

state representation is learned using a form of Fitted Q-iteration [87]. These state representations

are then reused without modification to learn an optimal policy for Task B given a data set DB

collected from Task B. Both data sets are generated by performing a random walk from a uniformly

sampled start state to one of the rewarding goal states. In both tasks, the agent can transition

between adjacent grid cells by moving up, down, left, or right, but cannot transition across a barrier.

Transitions are probabilistic, because, with a 5% chance, the agent does not move after selecting

any action.

Figure 3.7(b) presents two heuristics for clustering all 100 states into 50 latent states. The first

43

Task A:

0 3 6 9

0

3

6

9

Task B:

0 3 6 9

0

3

6

9

: Start state

: Goal state (+1 reward)

: Barrier

(a) Maps of Transfer Grid Worlds

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0

0

10

16

16

27

31

35

41

41

1

1

10

17

22

27

31

35

42

42

2

8

8

17

23

28

28

36

43

47

2

8

11

18

23

24

32

36

43

47

3

9

11

18

24

24

32

37

44

44

3

9

12

19

19

29

33

38

38

44

4

4

13

13

25

29

33

39

45

48

5

5

14

20

25

30

30

40

45

48

6

6

14

21

21

30

30

40

46

49

7

7

15

15

26

26

34

34

46

49

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0

1

13

19

19

19

19

13

43

0

1

2

14

20

20

20

20

14

44

43

2

3

15

21

21

21

21

36

45

44

3

4

10

22

22

22

22

37

46

45

4

10

16

23

23

23

23

38

37

46

5

11

17

24

29

29

33

39

47

49

6

12

18

25

30

30

34

40

35

41

7

6

12

26

31

31

31

35

41

42

8

7

6

27

27

27

35

41

42

48

9

8

7

28

32

32

32

42

48

9

O
p
ti
m
al

C
o
n
n
ec
te
d

S
ta
te
s

E
q
u
al

Q
-v
al
u
es

10 Steps

20 Steps

Timeout
(5000 Steps)

O
p
ti
m
al

C
o
n
n
ec
te
d

S
ta
te
s

E
q
u
al

Q
-v
al
u
es

Reward Predictive

(Connected States)

Value Predictive (App.

Equal Qπ
∗
)

Performance

in Task A

Performance

in Task B

Simulations are repeated 20 times.

(b) State representations obtained using a clustering heuristic or optimal Q-values of Task A

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0

7

7

18

18

18

18

35

40

44

1

8

8

19

19

28

28

35

41

45

1

9

9

20

20

29

29

36

41

45

2

2

13

21

23

23

31

36

42

46

3

10

13

21

24

24

31

37

42

46

3

10

14

22

24

24

32

38

38

47

4

11

15

15

25

30

30

39

39

47

5

11

15

15

25

30

30

39

39

48

5

12

16

16

26

26

33

33

43

48

6

12

17

17

27

27

34

34

43

49

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0

8

1

14

21

28

35

39

2

39

1

9

1

15

22

29

16

39

44

39

2

9

1

16

23

29

36

40

44

8

3

3

9

17

24

30

36

40

40

40

3

3

1

18

25

31

30

41

41

2

4

3

4

19

25

32

37

42

45

49

5

10

5

18

26

32

37

43

46

46

6

11

10

20

18

33

38

43

47

13

7

12

5

12

27

34

34

33

47

48

7

7

13

0

27

6

34

33

48

7

1000 4000 7000 10000

Data Set Size

0.0

0.5

1.0

F
ra
ct
io
n
o
f

C
lo
se
to
O
p
ti
m
al

Po
si
tiv
e

Tr
an
sf
er

N
eg
at
iv
e

Tr
an
sf
er

Tabular Model

Reward Predictive

Value Predictive

Reward Predictive (LSFM) Value Predictive (Fitted Q) Data Set Size Needed to Solve Task B

(c) State partitions obtained through learning on a transition data set D.

Figure 3.7: Reward-predictive representations generalize across variations in transitions and rewards.
3.7(b): The left panels plot state partitions obtained by clustering connected states or states with
equal optimal Q-values in Task A (3.7(a)). The right panels plot the number of times steps a policy,
which uses each representation, needs to complete Task B (3.7(a)). 3.7(c): The left panels plot parti-
tions obtained by clustering latent states of a reward-predictive and value-predictive representation.
The right panel plots how often one out of 20 transition data sets can be used to find an optimal
policy as a function of the data set size. By reusing the learned reward-predictive representation,
an agent can generalize across states and compute an optimal policy using less data than a tab-
ular model-based RL agent. Reusing a value-predictive representation leads to poor performance,
because this representation is only predictive of Task A’s optimal policy.

44

heuristic constructs a reward-predictive state representation by joining states into the same latent

state partition if they are directly connected to another. Because both tasks are navigation tasks,

partitioning the state space in this way leads to approximately preserving the agent’s location in the

grid. The second heuristic constructs a value-predictive state representation by joining states that

have approximately the same optimal Q-values. Because Q-values are discounted sums of rewards,

Q-values decay as one moves further away from a goal cell. This situation leads to different corners

being merged into the same state partition (for example grid cell (0, 0) is merged with (0, 9)) and

an overall more fragmented partitioning that does not preserve the agent’s location. Because both

state representations are computed for Task A, both state representations can be used to compute

an optimal policy for Task A. For Task B, an optimal policy cannot be obtained using the value-

predictive state representation. For example, both grid cells at (0, 0) and (0, 9) have different optimal

actions in Task B but are mapped to the same latent state. Consequently, an optimal action cannot

be computed using the previously learned value-predictive state representation. Because each grid

cell has a different optimal action, an optimal abstract policy mapping each latent state to an

optimal action cannot be found and the navigation Task B cannot be completed within 5000 time

steps if the value-predictive state representation is used (Figure 3.7(b), right panel). In contrast, the

reward-predictive state representation can be used, because it approximately models the grid-world

topology. For Task B, each latent state has to be associated with different one-step rewards and

latent transitions, but it is still possible to obtain an optimal policy using this state representation

and complete the navigation task quickly.

Figure 3.7(c) repeats a similar experiment, but learns a state representation using either an LSFM

to find a reward-predictive state representation or a modification of Fitted Q-iteration to find a value-

predictive state representation. The two left panels in Figure 3.7(c) plot a partitioning of the state

space that was obtained by clustering all latent state feature vectors using agglomerative clustering.

In this experiment, the latent feature space was set to have 50 dimensions. One can observe that

the state representation learned using an LSFM qualitatively corresponds to clustering connected

grid cells. The learned value-predictive state representation qualitatively resembles a clustering of

states by their optimal Q-values, because Fitted Q-iteration optimizes this state representation to

predict the optimal value function as accurately as possible. Both state representations are tested

on Task B using the following procedure: First, a data set DB was collected of a fixed size. Then,

Fitted Q-iteration was used to compute the optimal policy for Task B using the previously learned

45

state representation as a basis function such that Qπ
∗
(s, a) ≈ φφφ>s qqqa where qqqa is a weight vector and

φ(s) = φφφs. The state representation φ trained on Task A is not modified to obtain an optimal policy

in Task B. If the training data set DB obtained from Task B is too small, then the data set may not

provide enough information to find an optimal policy. In this case, Fitted Q-iteration converged to a

sub-optimal policy. Because the data sets DB are generated at random, one may find that sampling

a data set of 2000 transitions may lead to an optimal solution often, but not all the time.

The right panel in Figure 3.7(c) plots the dependency of being able to find an optimal policy

as a function of the transition data set. For each data set size, twenty different data sets were

sampled and the y-axis plots the fraction (with standard error of measure) of how often using this

data set leads to a close-to-optimal policy. A close-to-optimal policy solves the navigation task in

at most 22 time steps. The orange curve is computed using a tabular model-based agent, which

constructs a transition and reward table using the sampled data set and solves for an optimal policy

using value iteration. Reusing a reward-predictive state representation in Task B often leads to

finding an optimal policy for small data set sizes (the blue curve in Figure 3.7(c), right panel).

Because the training data set DB is only used to inform different latent transitions and rewards, this

agent can generalize across different states and reuse what it has learned without having to observe

every possible transition. This behavior leads to better performance than the tabular model-based

baseline algorithm, which does not generalize across different states and constructs a transition table

for Task B and computes an optimal policy using value iteration [107, Chapter 4.4]. Reusing the

learned value-predictive state representation leads to finding a sub-optimal policy in almost all cases

(green curve in Figure 3.7(c), right panel). The value-predictive state representation is optimized

to predict the Q-value function of the optimal policy in Task A. Because Task B has a different

optimal policy, reusing this representation does not lead to an optimal policy in Task B, because

the previously learned representation is explicitly tied to Task A’s optimal policy. Note that any

trial that did not find a close-to-optimal policy that completes the task in 22 time steps did also not

finish the task and hit the timeout threshold of 5000 time steps. Appendix B.2.3 presents additional

details on the experiments conducted in Figure 3.7.

46

3.5.1 Reward-Predictive Representations Encode Task Relevant State In-

formation

Lastly, we present a simulation result illustrating which aspect of an MDP reward-predictive state

representations encode. Figure 3.8(a) illustrates the combination lock task, where an agent rotates

three different numerical dials to obtain a rewarding number combination. In this task, the state

is defined as a number triple and each dial has five different positions labelled with the digits zero

through four. For example, if Action 1 is chosen at state (0, 1, 4), then the left dial rotates by one

step and the state changes to (1, 1, 4). A dial that is set to four will rotate to zero. For example,

selecting Action 2 at state (0, 4, 4) will result in a transition to state (0, 0, 4).

In the Training Lock task (Figure 3.8(a), left schematic), the right dial is “broken” and spins

randomly after each time step. Consequently, Action 3 (red arrow) only causes a random change

in the right dial and the agent can only use Action 1 (blue arrow) or Action 2 (green arrow) to

manipulate the state of the lock. When the agent enters a combination where the left and middle

dials are set to four, a reward of +1 is given, otherwise the agent receives no reward.3 While the

combination lock task has 5 · 5 · 5 = 125 different states, the state space of the Training Lock can be

compressed to 5 · 5 = 25 latent states by ignoring the position of the randomly changing right dial,

because the right dial is neither relevant for maximizing reward nor predicting reward sequences.

The Test Lock 1 and Test Lock 2 tasks (Figure 3.8(a), center and right schematics) differ from

the training task in that the rewarding combination is changed and the rotation direction of the left

dial is reversed (Action 1, blue arrow), resembling a change in both transition and reward functions.

While in Test Lock 1, the right dial still spins at random, in Test Lock 2 the middle dial rotates at

random instead and the right dial becomes relevant for maximizing reward. Both test tasks can also

be compressed into 25 latent states by ignoring the position of the randomly rotating dial, but in

Test Lock 2 this compression would be constructed differently than in Test Task 1 or in the Training

Lock.

To determine if a reward- or value-predictive state representation can be re-used to accelerate

learning in a previously unseen task, we compute a reward- and a value-predictive state represen-

tation for the Training Lock MDP. Subsequently, both representations are used to compress the

state space of a Q-learning agent [115] to learn an optimal policy in Test Lock 1 and Test Lock 2.

3Specifically, in the Training Lock task, the rewarding states are (4, 4, 0), (4, 4, 1), . . . (4, 4, 4).

47

Action 1:

Action 2:

Action 3:

Training

Lock:

Test

Lock 1:

Test

Lock 2:

(a) Combination Lock Tasks

0 35 70 105 140

Episode

4

8

12

16

20

24

E
p
is
o
d
e
L
en
g
th

Lock Task 1

0 35 70 105 140

Episode

Lock Task 2

Q-learning

Q-learning with the
ignore-wheel abstraction

Q-learning with
value-predictive abstraction

Q-learning with
reward-predictive abstraction

(b) Performance of Each Model at Transfer

Figure 3.8: Combination Lock Transfer Experiment. 3.8(a): In the combination lock tasks, the
agent decides between three different actions to rotate each dial by one digit. Each dial has five
sides labelled with the digits zero through four. The dark gray dial is “broken” and spins at random
at every time step. In the training task, any combination setting the left and middle dial to four
are rewarding. In Test Lock 1, setting the left dial to two and the middle dial to three is rewarding
and simulations were started by setting the left dial to two and the middle dial to four. In Test
Lock 2, setting the left dial to two and the right dial to three is rewarding and simulations were
started by setting the left dial to two and the right dial to four. 3.8(b): Each panel plots the episode
length of the Q-learning algorithm on Lock Task 1 and Lock Task 2 averaged over 20 repeats. Note
that Q-learning with the ignore-wheel abstraction uses a different abstraction in Test Lock 1 and
Test Lock 2. In Test Lock 1, the ignore-wheel abstraction ignores the right dial. In Test Lock 2,
the ignore-wheel abstraction ignores the middle dial. Please refer to Appendix B.2.4 for a detailed
description of the experiment implementation.

48

Any resulting performance changes are then indicative of the state abstraction’s ability to generalize

from the Training Lock task to Test Lock 1 and Test Lock 2. If a state representation can general-

ize information from the training to the test task, then Q-learning with a state abstraction should

converge to an optimal policy faster than Q-learning without a state abstraction. To combine the

tabular Q-learning algorithm with a state abstraction, we assume in this simulation that a state ab-

straction function maps each state to a set of discrete latent states. Specifically, before updating the

Q-learning agent with a transition (s, a, r, s′), this transition is mapped to a latent space transition

(φ(s), a, r′, φ(s)) using the respective state abstraction function φ. Because the latent state space is

smaller than the task’s original state space, one would expect that using a state abstraction function

results in faster convergence, because any Q-value update is generalized across all states that are

mapped to the same latent state.

The reward-predictive state representation is computed using the training task’s transition and

reward table with the same procedure used for the column-world task presented in Figure 3.5. (Please

also refer to Appendix B.2.4 for implementation details.) To obtain a state-representation function

mapping states to discrete latent states, the real-valued state representation function φreal-valued :

S → Rn is then further refined by clustering the set of feature vectors {φreal-valued(s)|s ∈ S} into

discrete clusters using agglomerative clustering. Each cluster then becomes a separate latent state

in the resulting latent state space.

The value-predictive state representation is computed by associating two states with the same

latent state if the optimal policy has equal Q-values at both states and for each action. This type of

state abstraction has been previously introduced by [67] as a Q∗-irrelevance state abstraction and is

predictive of Q-values because each latent state is associated with a different set of Q-values.

Figure 3.8(b) plots the episode length of four different Q-learning agent configurations. The first

configuration (blue curves in Figure 3.8(b)) forms a baseline and simulates the Q-learning algorithm

on both test tasks, without using any state abstraction. The second configuration, called “Q-learning

with ignore dial abstraction” (black curves in Figure 3.8(b)) simulates the Q-learning algorithm with

a manually coded state abstraction that ignores the right dial in Test Lock 1 and the middle dial

in Test Lock 2. Because this state abstraction compresses the 125 task states into 25 latent states

by removing the digit from the state triplet not relevant for maximizing reward, this variation

converges significantly faster than the baseline algorithm. The third variation, called “Q-learning

with value-predictive abstraction” (orange curves in Figure 3.8(b)) simulates Q-learning with the

49

value-predictive state abstraction. In both Test Lock 1 and Test Lock 2, this variation converges

more slowly than using Q-learning without any state abstraction. As discussed in Section 1.2, a

value-predictive state abstraction is constructed using the Q-values of the policy that is optimal in

the Training Lock. Because each combination lock MDP has a different optimal policy, a value-

predictive state abstraction cannot be transferred across any of the two tasks. Consequently, the

“Q-learning with a value-predictive abstraction” agent does not converge more quickly than the

baseline agent. In these simulations, the Q-learning algorithm is not capable of finding an optimal

policy, as outlined previously in Figure 3.4. The green curves in Figure 3.8(b) plot the average

episode length when Q-learning is combined with a reward-predictive state abstraction. In Lock

Task 1, this agent converges almost as fast as the agent using the manually coded state abstraction

(black curve, left panel). Only the position of the left and middle dials are relevant for predicting

reward sequences r1, ..., rt that are generated by following an arbitrary action sequence a1, ..., at from

an arbitrary start state s in the Training Lock MDP and in the Test Lock 1 MDP. Consequently, a

reward-predictive state abstraction can compress the 125 task states into 25 different latent states

by ignoring the right dial, resulting in a significant performance improvement in Test Lock 1. Note

that LSFMs only approximate reward-predictive state representations resulting in slightly slower

convergence in comparison to the black curve in the left panel of Figure 3.8(b).

This behaviour changes in Test Lock 2, because in Test Lock 2 a different dial moves at random,

changing how the state space should be compressed. Because the right dial is relevant for predicting

expected reward sequences in Test Lock 2, the reward-predictive state representation learned in the

Training Lock task is no longer reward-predictive in Test Lock 2 and cannot be re-used without

modifications. Consequently, the “Q-learning with reward-predictive abstraction” agent exhibits

worse performance (Figure 3.8(b), right panel, green curve) than using Q-learning without any state

abstraction (Figure 3.8(b), right panel, blue curve).

The results presented in Figure 3.8 demonstrate that reward-predictive state representations

encode which state information is relevant for predicting reward sequences and maximizing reward

in a task. Because reward-predictive state representations only model this aspect of an MDP,

this type of state representation generalizes across tasks that preserve these state equivalences but

differ in their transitions and rewards otherwise. In contrast, value-predictive state representations

“overfit” to a specific MDP and the MDP’s optimal policy, resulting in negative transfer and possibly

prohibiting an agent from finding an optimal policy at transfer.

50

LAM

[108]

s, a

φφφs

Ep[φφφ′|s, a] r(s, a)

E [r1, r2, ...|s, a1, a2, ...]

φ

MMMa wwwa

LSFM

s, a

φφφs

ψψψπ(s, a) r(s, a)

E [r1, r2, ...|s, a1, a2, ...]

φ

FFF a wwwa

SF

[11]

s, a

ξξξs,a

ψψψπ(s, a) r(s, a)

Qπ

ξ

ψ

www

www

Fitted Q-Iteration

[87]

s, a

φφφs

Qπ

φ

qqqa

Reward-Predictive Models (model-based RL) Value-Predictive Models (model-free RL)

Temporal Difference Learning

: Representation Map (arbitrary function)

: Prediction (linear if annotated with a matrix or vector)

Figure 3.9: Comparison of Presented State-Representation Models.

3.6 Discussion

This chapter presents a study of how successor features are tied to reward-predictive representation

learning and model-based RL. Connections are drawn by analyzing which properties different latent

state spaces are predictive of. The schematic in Figure 3.9 illustrates the differences between the

presented models. By introducing LSFMs, SFs are tied to learning state representations that are

predictive of future expected reward outcomes. This model ties successor features to model-based

reinforcement learning, because an agent that has learned an LSFM can predict expected future

reward outcomes for any arbitrary action sequence. Because SFs obey a fixed-point equation similar

to the Bellman fixed-point equation, SFs can also be linked to temporal-difference learning. Similar

to LAMs, LSFMs are a “strict” model-based architecture and are distinct from model-based and

model-free hybrid architectures that iteratively search for an optimal policy and adjust their internal

representation [80, 116, 38, 44]. LSFMs only evaluate SFs for a fixed target policy that selects

actions uniformly at random. The learned model can then be used to predict the value function

of any arbitrary policy, including the optimal policy. In contrast to model-based and model-free

hybrid architectures, the learned state representation does not have to be adopted to predict an

optimal policy and generalizes across all latent policies. How to learn neural networks mapping

inputs to latent feature spaces that are predictive of future reward outcomes is beyond the scope of

51

this dissertation and is left for future work.

Similar to reward-predictive state representations, the Predictron architecture [97] and the

MuZero algorithm [92] use or construct a state representation to predict reward sequences. In

contrast to reward-predictive state representations, these other architectures predict reward

sequences for k time steps and then use the value function for one (or multiple) policies to predict

the return obtained after k time steps. This distinction is key in learning reward-predictive

state representations with LSFMs, which do not include a value prediction module, because if a

state representation is designed to predict the value function of a policy, then the resulting state

representation would be (to some extent) value predictive. As outlined in Section 3.5, this change

would compromise the resulting state abstraction’s ability to generalize across different transition

and reward functions.

In contrast to the SF framework introduced by [11], the connection between LSFMs and model-

based RL is possible because the same state representation φ is used to predict its own SF (Figure 3.9

center column). While the deep learning models presented by [61] and [123] also use one state

representation to predict SFs and one-step rewards, these models are also constrained to predict

image frames. LSFMs do not use the state representation to reconstruct actual states. Instead, the

state space is explicitly compressed, allowing the agent to generalize across distinct states.

Table 3.1 summarizes different properties of the presented state representations. Bisimulation

relations [46] preserve most structure of the original MDP and latent transition probabilities match

with transition probabilities in the original MDP (Section 3.1). Reward-predictive state represen-

tations do not preserve the transition probabilities of the original task (Figure 3.3) but construct

a latent state space that is predictive of expected future reward outcomes. These two representa-

tions generalize across all abstract policies, because they can predict reward outcomes for arbitrary

action sequences. Successor features are equivalent to value-predictive state representations, which

construct a latent state space that is predictive of a policy’s value function (Chapter 2). Because

the value function can be factored into SFs and a reward model (Equation (2.8)), SFs are robust to

variations in reward functions. Reward-predictive state representations remove previous limitations

of SFs and generalize across variations in transition functions. This property stands in contrast

to previous work on SFs, which demonstrate robustness against changes in the reward function

only [11, 12, 61, 123, 100, 75, 89]. In all cases, including reward-predictive state representations, the

learned models can only generalize to changes that approximately preserve the latent state space

52

Model
Predicts
Trained
Policy

Generalizes
to Variations
in Rewards

Generalizes
to Variations
in Transitions

Generalizes
Across All
Policies

Predicts
Transition
Probabilities

Bisimulation [46] yes yes yes yes yes

Reward-Predictive (LSFM or LAM) yes yes yes yes no

Successor Features [11] yes yes no no no

Value-Predictive (Fitted Q-iteration) yes no no no no

Table 3.1: Summary of Generalization Properties of Presented State Representations

structure. For example, in Figure 3.7 positive transfer is possible because both tasks are grid worlds

and only the locations of rewards and barriers is changed. If the same representation is used on

a completely different randomly generated finite MDP, then positive transfer may not be possible

because both tasks do not have a latent state structure in common.

In comparison to previous work on state abstractions [33, 67, 2, 3, 4], this chapter does not

consider state representations that compress the state space as much as possible. Instead, the

degree of compression is set through the hyper-parameter that controls the dimension of the con-

structed latent state space. The presented experiments demonstrate that these state representations

compress the state space and implicitly convey information useful for transfer. This formulation

of state representations connects ideas from state abstractions to models that analyze linear basis

functions [82, 104, 59] or learn linear representations of the transition and reward functions [98]. Re-

cently, [88] presented algorithms to cluster approximately bisimilar states. Their method relies on

bisimulation metrics [34], which use the Wasserstein metric to assess if two state transitions have the

same distribution over next state clusters. In contrast to their approach, we phrase learning reward-

predictive state representations as an energy-minimization problem and remove the requirement of

computing the Wasserstein metric.

The presented experiments learn state representations by generating a transition data set covering

all states of an MDP. Complete coverage is obtained on the grid world tasks by generating a large

enough transition data set. Because this article focuses on drawing connections between different

models of generalization across states, combining the presented algorithms with efficient exploration

algorithms [52] or obtaining sample complexity or regret bounds similar to prior work [51, 8, 81] is

left to future studies.

53

3.7 Conclusions

This chapter presents an analysis of which latent representations an intelligent agent can construct to

support different predictions, leading to new connections between model-based and model-free RL.

By introducing LSFMs, the presented analysis links learning successor features to model-based RL

and demonstrates that the learned reward-predictive state representations are suitable for transfer

across variations in transitions and rewards. The presented results outline how different models of

generalization are related to another and proposes a model for phrasing model-based learning as a

representation-learning problem. These results motivate the design and further investigation of new

approximate model-based RL algorithms that learn state representations instead of one-step reward

and transition models.

Chapter 4

Reward-Predictive Representations

Generalize Across Tasks

In this chapter, we support the thesis stated in Chapter 1 and present a sequence of transfer sim-

ulations suggesting that reward-predictive representations are robust to transfer across tasks with

different rewards and transitions. As discussed in the previous chapters, state abstractions can be

constructed in different ways, for example by merging states with the same optimal action or Q-

values into the same latent or abstract state. In this chapter we discuss the dichotomy between two

types of state abstractions:

1. reward-maximizing state abstractions, which allow an agent to maximize total reward, and

2. reward-predictive state abstractions, which allow an agent to predict future reward sequences.

While different RL transfer algorithms have been proposed (see [111] for a survey), we demonstrate

that, while reward-maximizing state abstractions are useful for compressing states within a given

task, they fail to generalize across tasks that differ in reward and transition functions. In contrast,

reward-predictive state abstractions can be leveraged to improve generalization even when both

transition and reward functions change across tasks. The presented analysis and simulations moti-

vate the design of new RL algorithms that can discover such state abstractions as well as further

experiments to investigate whether neural mechanisms in biological agents facilitate learning of such

representations.

Previous work [63] shows that reward-predictive state abstractions can be extracted from the

successor representation (SR) [29], which predicts the discounted expected frequency of visiting

54

55

future states given the current state. While re-using a previously learned SR has been shown to

speed up learning when reward functions change [75, 11, 12], these methods are only suitable if

transition functions are shared (e.g., if one is in the same maze but only the location of the goal

changes). Further, if the optimal decision-making strategy differs between two tasks, the SR has to

be re-learned, as discussed in Chapter 2. In contrast, in this chapter we show that reward-predictive

state abstractions afford “zero-shot” transfer across tasks with variations in transition functions,

reward functions, and optimal policies and do not have to be adjusted or re-learned for each task.

Such “deep transfer” across environments, even in the absence of prior experience with specific

transition or reward functions, is predicted by behavioural and neural signatures of human structure

learning [26, 9, 41] but not afforded by alternative algorithms that compress the transition function

itself directly [100, 89].

To unpack the relative advantages of distinct state abstraction algorithms for generalization,

we proceed as follows. In the following section, we begin with a simple illustration of the state-

abstraction framework and then present the conceptual utility of reward-predictive state abstrac-

tions. Next, we present our first result by examining this advantage quantitatively when a single

abstraction is possible for re-use across a range of task settings and assumptions about the number

of latent states (Section 4.2.1). Subsequently, we consider a curriculum-learning situation where

multiple state abstractions might apply to different MDPs and the agent has to select amongst them

when learning a new MDP (Section 4.2.2). Extending our simulations to an online learning setting,

we show that this advantage is preserved even when the agent has to simultaneously learn the tran-

sitions and rewards of the new MDP and perform inference (Section 4.2.3). Finally, we demonstrate

how this advantage can be leveraged in a guitar playing task, whereby an agent can reapply learned

structure about the fret-board while learning a musical scale to quickly learn to play other scales

that differ in transitions, rewards, and policy (Section 4.2.4).

4.1 Generalization Across States

In model-free RL, for example Q-learning [115], the optimal decision-making strategy, called a policy,

is learned through trial and error interactions in an MDP. Throughout these interactions, a policy

is incrementally improved. During learning, only the policy π and some form of cached values of the

policy π are stored at any point in time. In other words, the agent only learns and represents the

56

net predicted reward value of an action in a given state, without needing to represent the specific

outcomes of each action in terms of the subsequent states that will be encountered. In model-based

RL [103, 23] an agent attempts to build a model of the task’s transition and reward function and

uses this model to predict sequences of future reward outcomes (r1, r2, ...) given a start state s and

a particular sequence of actions (a1, a2, ...). While more computationally intensive, this approach

is orthogonal to model-free learning, because using this model an RL agent can predict the value

of any arbitrary policy, and it can flexibly adjust its policy if the reward changes. In this case, the

agent’s “knowledge” is sufficient to generalize across the space of all possible policies [103].

While several approaches exist for constructing a useful state abstraction φ for complex MDPs,

this chapter investigates which state abstractions facilitate re-use across different tasks. Specifically,

we consider the question of which algorithm should be used to learn a state abstraction φ from

a hypothesis space of all possible state abstractions H to maximize the agent’s ability to reuse

knowledge in future tasks. A state abstraction is a function mapping states to a smaller latent

abstract state space Sφ. The state-abstraction hypothesis space is then

H = {φ : S → Sφ} (4.1)

and a representation learning algorithm searches this space to identify a state abstraction φ. An

agent that uses a state abstraction φ operates directly on the latent space Sφ rather than the

underlying state space S. Depending on how φ constructs the latent state space Sφ, the agent may

or may not be able to distinguish between a rewarding and a non-rewarding state.

In this chapter, state abstractions are generated in one of two ways:

1. Enumerate all possible state abstractions using Algorithm U [58]. This method is used in

Figures 4.2 and 4.5.

2. Learning a state-abstraction function from transition data. This method is used in Figures 4.6

and 4.7 .

Reward-predictive state abstractions can be learned using Linear Successor Feature Models (LSFMs)

(see Chapter 3) as a means to learn reward-predictive state abstractions. Successor Features [10]

are a generalization of the SR [29], and predict the expected visitation frequencies in some latent

57

feature space:

ψψψπ(s, a) = E
[
φ(s1) + γφ(s2) + γ2φ(s3) + · · ·

∣∣s = s1, a = a1, π
]
, (4.2)

where the expectation is computed over all infinite length trajectories that start in state s with action

a and then follow the policy π. The discount factor γ ∈ [0, 1) is used such that states in the more

distant future are weighted to a lesser degree in the summation in Equation (4.2). Intuitively, SFs

incorporate information about which latent state features are observed along a trajectory, including

their relative temporal positions, because for each time step t a different weight γt is associated with

the latent state feature vector φ(st) (Equation (4.2)) (allowing the state abstraction to distinguish

between a reward sequence “+1,−1” vs. “−1,+1”, for example). LSFMs extract this temporal

property from SFs and construct a state abstraction φ that is predictive of the order with which

particular latent state features are observed. Critically, the LSFM latent space is constructed so as

to most efficiently predict reward sequences without being tied to the specific transitions or rewards,

and thus permit a “deeper” form of transfer loosely akin to analogical reasoning.

As discussed in Chapter 3, this LSFM approach contrasts with the typical application of SFs

in which Q-values are expressed as a dot-product between the SF vectors ψψψπ(s, a) and a reward-

model vector. While that approach allows an agent to re-use SFs when rewards and the associated

reward-model vector change, it does not afford analogical transfer when transitions change. In fact,

because SFs depend on the transition function and a particular policy, a transferred SF has to be

relearned and adjusted to a specific task. In contrast to SFs, reward-predictive state abstractions are

independent of a specific policy and can be used to generalize across all policies that are defined in

terms of the latent states. More concretely, by Theorem 4 presented in Chapter 3 a reward-predictive

state abstraction can be used to predict the value of any arbitrary abstract policy by first predicting

which reward sequence a specific policy generates and then computing the discounted sum over this

reward sequence. Figure 4.1 presents an intuitive transfer example and plots different SFs for each

task. Consequently, an agent would have to adjust a previously learned SF.

An alternative to using LSFMs are Linear Action Models (LAM), which predict the expected

next state instead of SFs. Because we found that LSFMs are easier to use than LAMs in practice,

this article focuses on LSFMs.

58

1 32

Feature
Weight

0 100 10
Feature
Weight

1 32

((3,3),)
((3,2),)
((3,1),)
((2,3),)
((2,2),)
((2,1),)
((1,3),)
((1,2),)
((1,1),)

Task A Task B

SFs for action →:

SF of column φ1 (blue)

SF of column φ2(orange)

SF of column φ3 (green)

(d) Reward-predictive state representations merge states with equal successore features into the same latent state.

(a) Column World Transfer Tasks

Actions:

Original Task:

Compressed Task:

Reward Column

+1
+1
+10

0
0

0

0
0

0
0
0+1

+1
+1

0

0
0

Task A Task B

Reward Column

(b) Reward Predictive

1
2
3

1 2 3 1 2 3

φ1 φ3φ2 φ1 φ3φ2

(c) Reward Maximizing

Reward Column

Figure 4.1: State Abstraction Transfer. 4.1(a): Variations of the column world tasks presented in
Figure 1.1(a). Both Task A and Task B differ in their rewards and transitions, because a different
column is rewarded and the barrier (thick black line) is placed at different locations. 4.1(b): A
reward-predictive state representation generalizes across different columns, similar to Figure 1.1.
4.1(d): Each row in the shown matrix plots visualizes the entries of a three dimensional SF vector.
These matrix plots illustrate that SFs, which are computed for each task’s optimal policy, are
different in each task and cannot be immediately reused in this example. Yet, states that belong to
the same column have equal SF weights (as indicated by the coloured boxes). LSFMs construct a
reward-predictive state representation by merging states with equal SFs into the same state partition.
4.1(c): One possible reward-maximizing state abstraction generalizes across all states. Although this
abstraction can be used to learn an optimal policy in Task A (i.e., always go right), this abstraction
cannot be used to learn the optimal policy in Task B in which the column position is needed to
determine whether to go left or right. While reward-maximizing abstractions may compress a task
further than reward-predictive abstractions, reward-maximizing abstractions may also simplify a
task to an extend that renders them proprietary to a single task. In contrast, reward-predictive
representations are suitable for re-use across tasks that vary in rewards and transitions.

59

4.2 Generalization Across Tasks

To generalize knowledge across different tasks, a compressed state abstraction is needed that pre-

serves key aspects of the tasks even if the details of transitions or rewards change. Consider the

transfer example in Figure 4.1, where an agent is first presented Task A, and then transfers a state

abstraction to Task B. The key similarity between the tasks is evident in that they both have colum-

nar structure, but transitions, rewards, and the optimal policy can all differ. In this example, the

reward-predictive state abstraction (Figure 4.1(b)) can be re-used to plan a different policy in Task

B, while the reward-maximizing state abstraction (Figure 4.1(c)) cannot be re-used in Task B. Of

course, such a benefit is only possible if the two tasks share an abstract relation: This columnar state

abstraction would not be useful in subsequent MDPs that arranged in rows. Below, we consider how

multiple state abstractions can be learned and where generalization involves an inference process to

select which one of them is most applicable [40].

In principle, there always exists one state abstraction that is both reward-maximizing and reward-

predictive in a model-based agent: Trivially, if the identity map is used to map nine distinct states

into a latent space of nine distinct latent states, then such a state representation is always reward

maximizing and reward predictive. However, such a state representation is not “abstract” in that

it does not inform an agent across which states information can be generalized. But, for the same

reason, this representation preserves information that might be needed in other tasks. We will

further discuss this trade-off in the context of our online learning simulations in the following section

(Section 4.2.3).

4.2.1 Transfer With Single State Abstractions

The above example was illustrative for a single MDP designed to show the potential utility of reward-

predictive state abstractions. We next systematically assess the generalization potential of reward-

maximizing or reward-predictive state abstractions across a range of different tasks. The goal of this

experiment is to be algorithm agnostic: Rather than focusing on how a particular algorithm performs

at transfer with a single learned state abstraction, we enumerated the entire hypothesis spaceH for all

possible partitions of the state space and evaluated them in all transfer tasks. (Out of a set of tasks,

one task was randomly chosen for evaluation of a single state abstraction φ. Subsequently, this state

abstraction φ is evaluated in all other remaining transfer tasks. In all simulations, the evaluation

60

and transfer tasks are distinct.) For each state abstraction in H, we computed a compressed abstract

MDP [85] for every tested MDP and solved it using value iteration [106, Chapter 4.4] (please also

refer to Appendix B.3.1). A reward-maximizing state abstraction is then identified by testing the

computed policy in a single randomly selected task for N trials over T time steps and computing

the total reward

Rtotal =
1

N

N∑
n=1

T∑
t=1

rn,t, (4.3)

where rn,t is the reward incurred in trial n at time step t. A reward-predictive state abstraction is

identified by sampling N random state-and-action sequence pairs (sn, an,1, ..., an,T) and predicting

the reward sequence r̂n,1, ..., r̂n,T using the abstract MDP. The reward-sequence prediction error is

RSerror =
1

N

N∑
n=1

T∑
t=1

|rn,t − r̂n,t|. (4.4)

We considered three types of tasks: column-worlds (like those in the motivating example), 100

randomly generated MDPs, and grid worlds (Figures 4.2(a), 4.2(b), and 4.2(c)). For each trans-

fer experiment, all possible state abstractions are enumerated using Algorithm U [58] to obtain

a ground truth distribution over the hypothesis space H. The top 5% scoring state abstractions

were re-evaluated on the remaining transfer MDPs and the total rewards generated by these state

abstractions are plotted as histograms in Figure 4.2. In all cases, state abstractions with low reward-

sequence prediction errors RSerror generate a higher total reward at transfer than state abstractions

that were selected based on their ability to construct a well performing policy (produce a high

Rtotal score) on the original MDP. Note that restricting the hypothesis space H to abstractions that

construct three latent states (second row of histograms in Figure 4.2) does not change the overall

result. This result indicates that reward-predictive state abstractions encode information about an

MDP that can be generalized across different MDPs that share the same abstract structure. In the

following two sections, we will present an extension to environments in which multiple structures

are possible and have to be inferred.

Figures 4.2(d) and 4.2(g) present the results for the transfer experiment discussed in Figure 4.1.

Both histograms indicate that state abstractions with low reward-sequence prediction errors outper-

form on average state representations that only maximize total reward in one of the tasks. Because

all three MDPs can be compressed into three latent states, constraining the hypothesis space H

61

+1
+1
+1

+1
+1
+1

+1
+1
+1

: Randomly selected start location

3 Different Reward Functions

Welch’s t-test p-value: 3.05•10-32

Welch’s t-test p-value: 1.41•10-3

(d) Distribution of all abstractions for
Column World Transfer

(g) Distribution for abstractions with three
latent states for Column World Transfer

(a) Column World Transfer

4 6 8 10
Total Reward at Transfer

0

25

50

N
um

be
r

of
A

bs
tra

ct
io

ns

Reward Maximizing
Reward Predictive

4 6 8 10
Total Reward at Transfer

0

200

400

N
um

be
r

of
A

bs
tra

ct
io

ns

Reward Maximizing
Reward Predictive

(f) Distribution of all abstractions for
Grid-World Navigation Transfer

(i) Distribution for abstractions with three
latent states for Grid-World Transfer

(c) Grid-World Navigation Transfer

+1
+1

+1
+1

: Randomly selected start location

144 different tasks combining
36 different reward placements (green cells)

with four wall placements (black lines).

...

Welch’s t-test p-value: 3.00•10-91

Welch’s t-test p-value: 6.19•10-3

4 6 8 10
Total Reward at Transfer

0

25

50

N
um

be
r

of
A

bs
tra

ct
io

ns
Reward Maximizing
Reward Predictive

4 6 8 10
Total Reward at Transfer

0

100

200

N
um

be
r

of
A

bs
tra

ct
io

ns

Reward Maximizing
Reward Predictive

100 variations of
latent transitions
and rewards

Common
state
abstraction

Welch’s t-test p-value: 1.30•10-122

Welch’s t-test p-value: 5.02•10-10

(e) Distribution of all abstractions for
Random MDP Transfer

(h) Distribution for abstractions with three
latent states for Random MDP Transfer

(b) Random MDP Transfer

1.8 2.0 2.2 2.4
Total Reward at Transfer

0

10

20

N
um

be
r

of
A

bs
tra

ct
io

ns

Reward Maximizing
Reward Predictive

1.8 2.0 2.2 2.4
Total Reward at Transfer

0

200

N
um

be
r

of
A

bs
tra

ct
io

ns
Reward Maximizing
Reward Predictive

Figure 4.2: Minimizing reward-sequence prediction errors identifies state abstractions amenable for
“deep transfer”. In each grid-world task (4.2(a), 4.2(c)) the agent can transition up, down, left,
or right to move to an adjacent grid cell. If the agent attempts to transition of the grid or across
one of the black barriers in 4.2(c), then the agent remains at its current grid position. The total
reward score was computed by running the computed policy 20 times for 10 time steps in the MDP
from a randomly selected start state. The reward-sequence error was computed by selecting 20
random start states and then performing a random walk for 10 time steps. 4.2(d), 4.2(e), 4.2(f):
The histograms report averages over all repeats and transfer MDPs for all state abstractions that are
possible in a nine state MDP. 4.2(g), 4.2(h), 4.2(i): The histograms report averages over all repeats
and transfer MDPs for all state abstractions that compress nine states into three latent states. The
p-values show that the mean difference in total reward is significant in each histogram.

62

to only contain state abstractions that create three latent states does not impact the total reward

generated at transfer time significantly. In this case, both histograms have equal support.

To further control for a potential dependency between the constructed MDPs and a particu-

lar state-representation type, the experiment in Figure 4.2(b) randomly generates transition and

rewards. This experiment is similar to the previous test case in that all 100 randomly generated

MDPs can be compressed with the same state representation. These MDPs are constructed by gen-

erating random three-state MDPs and then “inflating” the state space size based on this common but

randomly generated state abstraction. Aside from this common “hidden” state representation, these

100 MDPs differ in both transition and reward functions. The histograms confirm the claim that

abstractions yielding low reward-sequence prediction errors perform best in generalization across

different MDPs (Figures 4.2(e) and 4.2(h)). In contrast, state representations that result in high

total reward in any of the original MDPs generate on average less reward in any of the remaining

MDPs. Again, constraining the hypothesis space H to only include abstractions that construct three

latent states does not change the support of the histogram in Figure 4.2(h), but the shape changes

and the median shifts. This shift can be explained by the fact that incorrectly compressing a task

and incurring approximation errors can quickly degrade an agent’s ability to perform optimally. If

a state abstraction does not maximally compress a task, for example from nine to eight states, then

performance may not degrade as quickly.

The above simulation assumed lossless compression (given that an abstraction was selected and

then inflated to generate larger state spaces). To test which state abstractions generalize across

tasks when no “hidden” state abstraction is embedded in the tasks, we next considered situations in

which state spaces could not be compressed without some information loss. Figure 4.2(c) presents

a transfer experiment where two reward locations and four different wall placements are permuted

in a grid world. These changes in reward and wall locations resemble changes in the transition

and reward functions. In this experiment, the MDPs cannot be compressed without incurring some

loss, because the grid location is important for predicting where the goal locations are and what

action is optimal at each location. However, both histograms in Figures 4.2(f) and 4.2(i) indicate

that state abstractions that minimize the reward-sequence prediction error criterion still perform

better than those that maximize total reward. By nature, grid worlds have a specific topology of the

state space and state representations that cluster only neighbouring states approximately preserve

the grid location information and would be expected to perform relatively well across all MDPs. If

63

the hypothesis space H is constrained to abstractions that compress nine states into three latent

states, then the advantage shrinks. This difference can be explained by the fact that for arbitrary

navigation tasks grid worlds should ideally not be compressed (for efficient navigation an agent needs

to be aware of its position), and hence neither abstraction yields an optimal policy. However, the

histogram in Figure 4.2(f) suggests that there exist several state abstractions that compress nine

states into six or seven latent states that can still lead to (close to) optimal performance.

Note that the identity map, which does not compress the state space and can always be used to

construct an optimal policy, is also included in this histogram and occurs in the bin with highest total

reward. The identity map is included exactly once into each histogram that plots the distribution for

all abstractions, because this experiment tests each possible state abstraction once. This experiment

highlights a trade-off between the ability to obtain an optimal policy in a task and re-use of a

particular state abstraction that compresses a task.

4.2.2 Transfer With Multiple State Abstractions

The previous experiment assumes that all tasks share a common “hidden” state abstraction that

can be learned and re-used by an agent. In this section, we consider the situation in which different

MDPs might correspond to different abstractions. A non-parametric Bayesian model maintains a

belief space of possible state abstractions [26, 40], which it can use for inference. Figure 4.3 illustrates

how the curriculum of tasks is randomly generated. This task curriculum is observed in sequence by

the non-parametric Bayesian model and the model is signalled when a switch between tasks occurs.

Each task can be compressed in one of two different ways (this approach can be expanded to larger

numbers without loss of generality; two is used here for clarity of exposition). Critically, this state

abstraction is hidden from the learning agent. After observing an MDP sequence M1, ...,Mt, the

agent updates its belief space Bt using a posterior over which state abstraction is most suitable to

solve a given task Mt:

Pr(φ|Mt,Bt, ct) ∝ Pr(φ|Mt)Pr(φ|Bt, ct), (4.5)

where ct(φ) is the count of how often an abstraction φ was used in the previous t− 1 tasks. These

counts are used to construct a Chinese Restaurant Process (CRP) [45, 112] prior for an intensity

64

α ≥ 0:

Pr(φ|Bt, ct) =


ct(φ)
t−1+α if φ ∈ Bt

α
t−1+α otherwise.

(4.6)

The posterior is also conditioned on the MDP Mt through the factor Pr(φ|Mt). Using a loss function

l (we consider both reward-maximizing and reward-predictive losses), each state abstraction φ can

be scored and for β ≥ 0, the probability of this state abstraction being suitable to solve Mt is the

soft-max probability

Pr(φ|Mt) ∝ e−βl(φ). (4.7)

To determine which state abstraction should be added into the abstraction belief set Bt, the non-

parametric Bayesian agent has access to the best scoring state abstraction φnext-best not included

into Bt. The posterior Pr(φ|Mt,Bt, ct) is computed over the set of state abstractions Bt∪{φnext-best}.

(The goal is not to design an algorithm that can solve a sequence of tasks efficiently, but to analyze

which state abstractions generalize across different tasks. Thus, for the moment, we assume that

the agent has access to an oracle that knows the transition function of each new MDP and can score

the loss for each compression. Using an oracle that tabulates all possible state abstractions φ ∈ H

gives insight into which state abstractions generalize across different tasks, while being algorithm

agnostic; below we relax the need for an oracle.) In contrast to the previously presented simulation,

this non-parametric Bayesian agent is constrained to only use state abstractions that compress nine-

state MDPs to three-state MDPs. Consequently, the model is forced to generalize across different

states and cannot default to only using the identity state abstraction, which does not compress an

MDP and is both reward-predictive and reward-maximizing. If α increases, the resulting prior and

posterior assign a higher probability to adding the next-best state abstraction φnext-best into Bt. In

this case, the CRP prior influences the posterior more strongly. If β increases, then more emphasis

is given on using the loss function l to determine which state abstraction should be used from the

set Bt ∪ {φnext-best} and the CRP prior is effectively ignored.

Rather than using the empirical scores Rtotal or RSerror, the agent is allowed to observe a tabu-

lation of all possible transitions and rewards to obtain a ground truth score for each abstraction. In

these experiments, reward-maximizing state abstractions are identified by assessing how much using

a state abstraction impacts the value of the policy πφ relative to that of the optimal policy in the

65

1 3

2

a, c, r = 0

a, b, r = 0b, c, r = 0

c, r = 1

a, r = 0 b, r = 0

(a) Abstract MDP Mφ,i

M1 M3M2 M20...

(b) Sequence of 20 MDPs

M1
abs M3

absM2
abs M20

abs...

φA φB

Figure 4.3: Transfer with Multiple State Abstractions Curriculum. 4.3(a): A curriculum of transfer
tasks is generated by first constructing the three-state MDP. At each state, only one action causes
a transition to a different state. Only one state-to-state transition is rewarded; the optimal policy
is to select the correct action needed to cycle between the node states. 4.3(b) To generate a se-
quence of abstract MDPs Mabs

1 , ...,Mabs
20 , the action labels are randomly permuted as well as the

transitions generating positive reward (similar to the Diabolical Rooms Problem [40]). Two hidden
state abstractions φA and φB were randomly selected to “inflate” each abstract MDP to a nine-state
problem. One state abstraction was used with a frequency of 75% and the other with a frequency of
25%. The resulting MDP sequence M1, ...,M20 was presented to the agent, without any information
about which state abstraction was used to construct the task sequence.

66

abstract MDP:

lmaximizing(φ) = max
s∈S

(
V π
∗
(s)− V πφ(s)

)
, (4.8)

where V π
∗

is the optimal discounted value function [106], π∗ is the optimal policy, and V πφ is the

discounted value function of the policy πφ evaluated in the task itself. Reward-predictive state

abstractions are scored by the loss function lpredictive bounding the reward-sequence prediction error

∀i,∀a1, ..., at, lpredictive(φ)Cγ,t ≥ |E[rt|i, a1, ..., at]− r̂t| , (4.9)

where Cγ,t is a constant that depends on the action-sequence length t and discount factor γ. The

loss function lpredictive is computed using the LSFM using Equation (B.2).1. If any of the two loss

functions evaluates to zero for a state abstraction φ, then φ is either a globally optimal reward-

maximizing or reward-predictive state abstraction. For reward-predictive state abstractions, this

property holds because each tested task in Figure 4.3 can be compressed (by construction) and the

LSFM Bisimulation condition (Theorem 2 in Chapter 3) applies. In this case, if lpredictive = 0, then

the state abstraction φ can be used to predict reward-sequences accurately. (Alternatively, one could

also use RSerror as defined in Equation (4.4).)

Figure 4.4 plots the results from testing the agent with each loss function for various α and β

settings. The agent selects its policy by using the posterior to mix the policies that would be optimal

in the respective abstract MDPs (as described in the previous section, policies are computed using

value iteration on the abstract MDP). Setting β = ∞ means that the probability Pr(φ|Mt) is

deterministic: The highest scoring state abstraction is assigned a probability of one and all other

state abstractions are assigned a probability of zero. This case is equivalent to only using the loss

function to select a state abstraction while ignoring the CRP prior Pr(φ|Bt, ct), because the factor

Pr(φ|Mt) is either zero or one in Equation (4.5). For low β settings, the prior is used to determine

which state abstraction is used. If α is high, then up to 20 state abstractions are added into the belief

set Bt. Because the prior influences the posterior heavily, the total reward of the resulting agent

is comparably low, because the agent is not well informed about which state abstraction should be

used on a given task. For β =∞, the loss function influences the posterior strongly.

The key difference between the two loss functions becomes apparent when analyzing how the

1Here we use the same procedure described in Appendix B.2.1

67

(b) Total Reward of
Reward-Maximizing
Model

(a) Belief Space Size of
Reward-Maximizing
Model

(c) Most Frequently Used Abstraction Count of
Reward-Maximizing Model

R
ew

ar
d-

M
ax

im
iz

in
g

M
od

el

Lorem ipsum

10 3 100 103
Value

2

3

A
vg

.
To

ta
lR

ew
ar

d

10 3 100 103
Value

0
2
4
6
8

10
12
14
16
18
20

A
vg

.
be

lie
f

sp
ac

e
si

ze =0
=1
=

G
.T

.
0.

00
1

0.
01 0.
1

1.
0

10
.0

10
0.

0
10

00
.0

0.
00

1
0.

01 0.
1

1.
0

10
.0

10
0.

0
10

00
.0

0.
00

1
0.

01 0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Value

0

5

10

15

20
A

ve
ra

ge
H

ig
he

st
C

ou
nt Ground Truth

(G.T.) =0 =1 =

(e) Total Reward of
Reward-Predictive
Model

(d) Belief Space Size of
Reward-Predictive
Model

(f) Most Frequently Used Abstraction Count of
Reward-Predictive Model

R
ew

ar
d-

Pr
ed

ic
tiv

e
M

od
el

10 3 100 103
Value

2

3

A
vg

.
To

ta
lR

ew
ar

d
10 3 100 103

Value

0
2
4
6
8

10
12
14
16
18
20

A
vg

.
be

lie
f

sp
ac

e
si

ze =0
=1
=

G
.T

.
0.

00
1

0.
01 0.
1

1.
0

10
.0

10
0.

0
10

00
.0

0.
00

1
0.

01 0.
1

1.
0

10
.0

10
0.

0
10

00
.0

0.
00

1
0.

01 0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Value

0

5

10

15

20

A
ve

ra
ge

H
ig

he
st

C
ou

nt Ground Truth
(G.T.) =0 =1 =

Figure 4.4: Results for transfer with multiple state abstractions experiment. 4.4(a), 4.4(d): Plot of
how different α and β model parameters influence the average size of Bt after training. 4.4(b), 4.4(e):
Performance of each model (average total reward per MDP) for different α and β model parameters.
After observing the transition and reward tables of a task Mt in the task sequence, the average
total reward was obtained by first computing a compressed abstract MDP for each abstraction and
then solving each compressed MDP using value iteration, as described in Appendix B.3.1. The
resulting mixture policy was then tested in the task Mt for 10 time steps while logging the sum of
all obtained reward. If β = ∞ the agent obtains an optimal total reward level when using either
loss function for ten time steps in each MDP. 4.4(c), 4.4(f): Plot of the average count for the most
frequently used state abstraction. As described in Figure 4.3, one of two possible “hidden” state
abstractions, φA and φB , were embedded into each MDP. Each task sequence consists of 20 MDPs
and on average 15 out of these 20 MDPs had the state abstraction φA embedded and the remaining
MDPs had the state abstraction φB embedded. The white bar labelled “Ground Truth” plots the
ground-truth frequency of the “hidden” state abstraction φA. If the non-parametric Bayesian model
correctly detects which state abstraction to use in which task, then the average highest count will
not be significantly different from the white ground truth bar. In total, 100 different task sequences,
each consisting of 20 MDPs, were tested and all plots show averages across these 100 repeats (the
standard error of measure is indicated by the shaded area and variations are very low if not visible).

68

agent maintains the belief space Bt. Using the loss function lpredictive, which identifies reward-

predictive state abstractions, the agent identifies the correct ground truth state abstractions that

were used to generate the task sequences. Figure 4.4(f) shows that the agent correctly learns that

one state abstraction occurs with a frequency of 75%. Because the agent only maintains two belief

abstractions, the agent correctly estimates that the other abstraction occurs with a frequency of

25%.

In contrast, when the loss function lmaximizing is used, Figures 4.4(a) and 4.4(b) demonstrate

that the agent can only achieve optimal reward by isolating a significantly higher number of state

abstractions than the reward-predictive model. At best, using lmaximizing and a small α value the

agent is capable of isolating between four and five state abstractions. For high α settings, the agent

effectively memorizes a solution for almost every task by increasing the size of its belief set Bt, because

a previously used state abstraction does not generalize to the next task. The model is thus able to

achieve optimal reward only if it constructs a new reward-maximizing abstraction for each MDP.

Note that this experiment does not account for any cost associated with learning or constructing a

state abstraction for each task from scratch. In the following section, this assumption is removed

and the presented results illustrate how constructing a reward-maximizing state abstraction results

in slower learning. When using the loss function lpredictive, the agent can correctly identify which

state abstraction to use for which MDP and obtain an optimal reward level while only using two

different state abstractions (green curves in Figures 4.4(d) and 4.4(e)). This confirms the claim

that reward-predictive state abstractions generalize across different tasks.

4.2.3 Learning to Transfer Multiple State Abstractions

While the previous transfer experiment presents evidence that reward-predictive state abstractions

generalize across different tasks, for exposition these previously presented simulations assumed that a

full tabulation of all transitions and reward is accessible for the agent to score the loss. In addition, it

was possible to configure both reward-predictive and reward-maximizing models such that an optimal

reward level is always obtained given the agent can always construct a new reward-maximizing

abstraction. This section presents an experiment where an intelligent system has to learn through

trial-and-error interactions with a novel sequential decision-making task thereby simultaneously

learning the transitions and making inferences about which abstraction is appropriate to reuse, in

a Bayesian mixture of experts scheme [39] that is updated after interacting for a certain number of

69

episodes in a particular task. If an intelligent agent is capable of extracting a particular structure

from one task to accelerate learning in another task, then this agent will generate more reward in

certain tasks than an agent that does not transfer any latent structure.

In the following simulation experiments, an agent is allowed to interact with a task for a certain

number of trials, called episodes. The interaction data itself is a data set of transition quadruples of

the form (s, a, r, s′) that describe a transition from state s to state s′ that occurs by selecting action

a and is rewarded with a scalar reward r.

The generalized non-parametric Bayesian model maintains a belief space of state abstractions

Bt that is updated after interacting for 200 episodes in a task. (We found that 200 episodes allow

each tested algorithm to converge to an optimal policy.) Subsequently, the collected data is used

to learn a new state abstraction. A reward-predictive state abstraction is obtained using the LSFM

discussed in Section 4.1. A reward-maximizing state abstraction is obtained by clustering states

with approximately equal Q-values into latent states. After interacting with a task and learning a

new state abstraction, the belief set Bt is updated using the posterior probabilities Pr(φ|Mt,Bt, ct).

During learning in the next task, the state abstractions stored in the belief set Bt are used to

generalize Q-values across different states during learning in a task. While the agent observes

transition data in a task Mt, a separate Q-learning agent is maintained for each state abstraction

φ ∈ Bt and another for the identity state abstraction φidentity : s 7→ s. (The motivation here

is that the agent should consider not only the Q-values of actions that pertain to previously seen

abstractions but that it should also have potential to learn Q-values in the full observable state space.

We consider biological implications of this assumption in the discussion). Using a state abstraction

φ, a state s ∈ S is mapped to a latent state φ(s) and this latent state φ(s) is given as input to the

Q-learning algorithm. (If Q-learning would normally observe a transition (s, a, r, s′), the algorithm

now observes a transition (φ(s), a, r, φ(s′)). Because Q-learning caches Q-values for latent states

and multiple states map to the same latent state, the agent now generalizes Q-values across multiple

states and can thus converge faster.) The Q-learning algorithm thus generalizes Q-values to multiple

states that map to the same latent state. As in the Bayesian mixture of experts scheme[39, 40], the

agent selects its overall policy by mixing the policies of each Q-learning agent using the posterior

70

probabilities Pr(φ|Mt,Bt, ct). Specifically, the probability of selecting action a at state s is

π(s, a) =
∑

φ∈Bt∪{φidentity}

Pr(φ|Mt,Bt, ct)πφ(s, a), (4.10)

where πφ are the action-selection probabilities of the Q-learning algorithm corresponding to the

state abstraction φ. For example, if the posterior probabilities place a high weight on a previously

learned state abstraction φ ∈ Bt, then the agent will effectively select actions similar to a Q-learning

algorithm that is run on the latent state space constructed by the state abstraction φ. In this case,

an optimal policy should be obtained more quickly in comparison to not using any state abstraction,

assuming the state abstraction φ is constructed properly for the given task. If the posterior places a

high weight on the identity state abstraction φidentity, then the model will effectively select actions

similarly to the usual Q-learning algorithm.

While training, the non-parametric Bayesian model also uses all observed transitions (s, a, r, s′) to

construct a transition and reward table. After 200 training episodes on a particular task, these tran-

sition and reward tables are used to construct either a reward-maximizing or reward-predictive state

abstraction φnext-best. Then, the posterior probabilities Pr(φ|Mt,Bt, ct) are computed as described

in Equation 4.5 and a state abstraction is sampled using this posterior distribution. Depending on

the parameter settings for α and β, the newly learned state abstraction φnext-best may be added into

the belief set Bt+1 for the next task or previously learned state abstraction φ ∈ Bt is re-used and

its count ct(φ) is increased. When training on the first task, the belief set B1 is initialized to the

empty set.

This model is tested on the task sequence illustrated in Figure 4.5. The top row depicts two

different maze maps that are used to construct a curriculum of five tasks. Each map is a 10×10 grid

world where the agent has to navigate from the blue start state to the green goal location. Once

the green goal location is entered, the agent receives a reward of +1 and the episode is ended. The

transition dynamics are the same in each task with the difference that the agent cannot cross the

black barrier. These two mazes are mirror images of another and the optimal action is different at

each grid cell. Consequently, transitions, rewards, and the optimal policy of Maze A and Maze B

are different at every state and cannot be immediately transferred from one maze to another.

Using these two mazes, a task sequence is constructed by adding a “light/dark” variable or a

“red/green/blue” colour variable into the state that is irrelevant for navigation. This task sequence

71

Start Cell
Goal Cell
Barrier

Maze A
Coloured

Maze B
Light-Dark

Maze A
Light-Dark

Maze B
Coloured

Maze A
Light-Dark

Maze BMaze A

Figure 4.5: Maze curriculum. Maze A and Maze B are augmented with an irrelevant state variable
to construct a five-task curriculum. In each maze, the agent starts at the blue grid cell and can move
up, down, left, or right to collect a reward at the green goal cell. The black lines indicate barriers the
agent cannot pass. Once the green goal cell is reached, the episode finishes and another episode is
started. (These rewarding goal cells are absorbing states.) Transitions are probabilistic and succeed
in the desired direction with probability 0.95; otherwise the agent remains at its current grid cell
and cannot transition off the grid map or through a barrier.. A five-task curriculum is constructed
by augmenting the state space either with a “light” or “dark” colour bit (first, third, and fourth
task), or the right half of the maze is augmented with the colour red, green, or blue (second and
fifth task).

72

is designed to demonstrate that if an algorithm learns to correctly generalize across different states,

then the algorithm can learn to solve the maze navigation task faster than an algorithm that does

not generalize correctly.

The schematic in Figure 4.5 illustrates how the task sequence is constructed and how additional

state variables are introduced. In the bottom left of Figure 4.5, the task “Maze A Light-Dark”

is constructed by augmenting each state of the Maze A task with a binary “light/dark” variable.

As an agent transitions between different grid locations, this binary variable switches with equal

probability. By adding this variable, the state space is doubled to 200 states. Note that the state s

will be communicated to the agent as an index that ranges from 0 to 199. The agent is not informed

about the fact that states are augmented by a binary variable. To determine how this 200 state

light-dark maze can be compressed, the agent would have to infer that state 0 and state 100 are

equivalent and can be compressed to one latent state, for example.

The task “Maze B Coloured” (second map in bottom row of Figure 4.5) is constructed by

augmenting the right half of the maze with a “red/green/blue” colour variable. In this case, states

corresponding to the left half of the maze are not changed, but states that correspond to the right

half are augmented with either the colour red, green, or blue. Intuitively, as the agent transitions

into the right half of the maze, it will observe a coloured grid cell and colours will randomly switch

between either red, green, or blue. Conforming to the light-dark maze construction, the state is

presented to the agent as an index ranging from 0 to 199. The agent is not given a state in a

factored form, for example a grid position and colour.

The bottom row of Figure 4.5 depicts the five-task curriculum. In this experiment, an agent

can either learn how to maximize reward in each of the 200-state tasks or learn how to compress

each task into 100 latent states, generalize information across different tasks, and ultimately learn

an optimal policy faster and generate higher total reward.

Figure 4.6 presents the results of the learning experiment conducted on the maze-task curriculum.

The average-per-task episode length of each algorithm is plotted in Figure 4.6(a). Because each

task is a navigation problem, a low average episode length indicates that an algorithm reaches the

rewarding goal using fewer time steps and can generate on average more reward per time step. For Q-

learning, the average episode length per task remains roughly constant (blue curve in Figure 4.6(a)),

because Q-learning does not transfer information across tasks. In comparison, the reward-predictive

non-parametric Bayesian model achieves a significantly lower average episode length on tasks three

73

through four. This behaviour is explained by the posterior plotted in Figures 4.6(c) and 4.6(d).

On the first two tasks, the reward-predictive model adds two new state abstractions into its belief

set (Figures 4.6(c)). During training on task 1 and task 2, this model uses the identity state

abstraction and does not (and cannot) generalize across two different states. Consequently, there is

no difference in performance between the reward-predictive model and Q-learning. Task 1 and task

2 expose the agent for the first time to a light-dark and a coloured maze and after learning in these

two tasks the reward-predictive model adds a new state abstraction into its belief set (orange boxes

in Figure 4.6(c), left panel). From task 3 onward, the agent detects within the first few episodes

which state abstraction to re-use in which task, resulting in faster learning and consequently shorter

average episode lengths on these tasks. Specifically, on Task 3 and Task 4 the reward-predictive

model re-uses the state abstraction learned in Task 1, though these tasks use different mazes (Maze

A and Maze B in Figure 4.5); indicating that the learned state abstraction only models light/dark

state equivalences and is independent of the transitions and rewards themselves. Similarly, on Task

5 the reward-predictive model re-uses the state abstraction learned in Task 2, despite both tasks

using different mazes; indicating that this state abstraction only models colour state equivalences

and does not depend on the transitions or rewards of either maze. These results demonstrate that

the reward-predictive model is capable of extracting two state abstractions, one for the light-dark

scenario and one for the coloured scenario, and re-using these state abstractions.

In contrast, the reward-maximizing model only performs comparably to the reward-predictive

model on the third task (orange curve in Figure 4.6(a)). The posterior probability plot for this

model (Figure 4.6(d)) indicates that only on task 3 a previously learned state abstraction is re-used.

This re-use occurs because the first and third tasks are identical and the first task’s solution can

be repeated on the third task. For all other tasks, the reward-maximizing model introduces a new

state abstraction into its belief set. This supports the hypothesis that the reward-maximizing model

effectively memorizes a solution for each task and can only repeat previously learned solutions.

Figure 4.6(b) compares the average episode length of the reward-predictive model with transfer-

ring and adjusting SFs, the system used in prior work [11, 12, 64, 75, 89, 100, 123, 61, 70]. In the

tested grid-world tasks, we found that our SF-learning algorithm implementation in combination

with the used initialization heuristics converges faster to an optimal policy than the Q-learning al-

gorithm, resulting in a shorter average episode lengths. The reward-predictive model can be adopted

to use the SF-learning algorithm instead of the Q-learning algorithm and this model is presented in

74

Task 1
Maze A

Light Dark

Task 2
Maze B

Coloured

Task 3
Maze A

Light Dark

Task 4
Maze B

Light Dark

Task 5
Maze A

Coloured

80

90

100

110

120

130

140

150

160

A
vg

.
ep

is
od

e
le

ng
th

pe
r

ta
sk

Q-learning
Reward-Maximizing

Reward-Predictive

100

200

300
SF-learning
with SF transfer
SF-learning

Reward Predictive
with SF-learning

Task 1
Maze A

Light Dark

Task 2
Maze B

Coloured

Task 3
Maze A

Light Dark

Task 4
Maze B

Light Dark

Task 5
Maze A

Coloured

50

60

70

80

A
vg

.
ep

is
od

e
le

ng
th

pe
r

ta
sk

(a) Avg. episode length comparison for each learning algorithm. (b) Avg. episode length comparsion of transferring SFs across
tasks with the reward-predictive model.

(d) Posterior probabilities during learning for the
reward-maximizing model.

(c) Posterior probabilities during learning for the
reward-predictive model.

0 200 400 600 800 1000

Task 1 Task 2 Task 3 Task 4 Task 5
Episode

Identity
Rep. 1
Rep. 2

0 200 400 600 800 1000

Task 1 Task 2 Task 3 Task 4 Task 5
Episode

Identity
Rep. 1
Rep. 2
Rep. 3

0.0

0.5

1.0

Pr
ob

ab
ili

ty

Figure 4.6: Transferring state representations influences learning speed on the maze curriculum.
4.6(a): Performance comparison of each learning algorithm that uses Q-learning to obtain an optimal
policy. The reward-predictive model identifies two state abstractions and re-used them in tasks 3
through 5, resulting in faster learning than the reward-maximizing model. 4.6(b): Performance
comparison of each learning algorithm that uses SF-learning to obtain an optimal policy. Similar
to (A), the reward predictive model identifies two state abstractions and re-used them in tasks 3
through 5. Re-using previously learned SFs across tasks (orange curve) degrades performance.
4.6(a), 4.6(b): Each experiment was repeated ten times and the average across all repeats was
plotted. The shaded areas indicate the standard errors of measure. For each experiment, different
learning rates and hyper-parameter settings were tested and the settings resulting in the lowest
average episode length are plotted. In Appendix B.3.2, Tables B.6 and B.7 lists the used hyper-
parameters in detail. Figure B.1 also illustrates how the Bayesian model parameters α and β
influence the number of learned abstractions and their performance. 4.6(c), 4.6(d): Plot of the
posterior distribution as a function of training episode. The orange rectangle indicates tasks in
which the agent used the identity abstraction to learn a new state representation that was added
into the belief set after 200 episodes of learning.

75

Figure 4.6(b). The blue curve in Figure 4.6(b) plots the average episode length when the SF-learning

algorithm is used to find an optimal policy. In this simulation, the SF-learning algorithm does not

transfer a representation and instead resets its weights when switching between tasks. The orange

curve plots the average episode length when the SF-learning re-uses previously learned SFs instead of

resetting its representation. Figure 4.6(b) demonstrates that re-using SFs degrades performance on

the maze task sequence while the reward-predictive model outperforms a SF-learning baseline. On

tasks 3 and 5, the reward-predictive model outperforms the SF transfer method because the reward-

predictive model identifies which state abstraction to use in which task, as previously discussed.

Note that when transitioning from task 3 to task 4, the underlying light-dark state abstraction is

not changed whereas in all other task changes the underlying state abstraction is changed as well.

This result suggests that SFs themselves implicitly incorporate parts of the state abstraction helping

the SF-learning algorithm to converge faster in task 4.

4.2.4 Comparison to Transferring Successor Features

Lastly, in this section, we illustrate the differences between re-using reward-predictive state ab-

stractions and re-using successor features themselves [75, 89, 11]. Although reward-predictive state

abstractions can be extracted from successor features, the resulting abstraction is a more abstract

aspect of an MDP than simply reusing the successor features. Figure 4.7 presents a guitar-playing

example to illustrate this idea. In this example, the task is to play a guitar scale, a sequence of

notes such as C-D-E-F-G-A-B. On a guitar, the note “C” can be played by holding down a finger

at one out of multiple possible locations on the fret board, as illustrated in Figure 4.7(a) . (Even

within the same octave, the note “C” can be played in up to five different ways.) A skilled guitarist

has internalized a representation that links fret-board positions to the notes they produce. In this

example, a reward-predictive state abstraction captures this aspect of mapping all positions on the

fret board to a latent state of playing the note “C”.

The guitar-scale task illustrated in Figure 4.7(a) is constructed such that the agent always starts

at a separate start state. To play a scale correctly, the agent has to select an action sequence that

corresponds to playing the note sequence correctly. The state is represented as a bit matrix, where

each entry corresponds to a position (circle) on the fret board. Because the note “C” can be played

at multiple fret-board locations (orange circles), each location is mapped to the same latent state.

In the guitar-scale task the agent transitions through a sequence of fret-board locations by playing

76

1 25 50 75 100 125 150 175 200
Episode

80

60

40

20

0

R
ew

ar
d

pe
r

ep
is

od
e

SF-learning
with SF transfer
Reward Predictive
with SF-learning

(c) Reward per episode during learning in Scale 1 and 2.

Scale 1
C-D-E-F-G-A-B

Scale 2
A-B-C-D-E-F-G

Audio File S1 Audio File S2

Audio File S3

(b) Total-reward obtained by each learning algorithm.

Scale 1:
C-D-E-F-G-A-B

Scale 2:
A-B-C-D-E-F-G

0

200

400

600

800

To
ta

lR
ew

ar
d

SF-learning (Baseline)
SF-learning
with SF transfer
Reward Predictive
with SF-learning

a≠C
r=-1

a≠D
r=-1

a≠E
r=-1

a≠F
r=-1

a≠G
r=-1

a≠A
r=-1

a≠B
r=-1

a=C
r=1

a=D
r=1

a=E
r=1

a=F
r=1

a=G
r=1

a=A
r=1

a=B
r=1

B

E

G

D

A

A

D

D#

G#

C#

F#

A#

D#

E

D

F#

B

C

F

A#

D#

G

C

C#

F#

B

E

G#

C#

D

G

C

F

E

A

A#

D#

G#

C#

F

A#

B

E

AE

A

C#

F#

G

C

F

A#

D

G

G#

C#

F#

B

D#

G#

A

D

G

C

D

G

B

E

F

A#

D#

G#

C

F

F#

B

F

A

D

D#

G#

C#

F#

A#

D#

E

AF#

B

E

G#

C#

D

G

CA

D

F#

B

C

F

A#

D#

F

C

C#A

D

G

C

E

A

A#

D#

G#

C#

F

A#

B

E

C

F

F#

B

E

A

C#

F#

G

C

F

A#

D

G

G#

C#

F#

B

D#

G#

E

A

D

G

B

E

F

A#

D#

G#

Fret Board:

Scale 1 MDP
(C-D-E-F-G-A-B):

(a) Guitar-Scale Task

Figure 4.7: Guitar-Playing example. 4.7(a): Guitar-Scale task for scale C-D-E-F-G-A-B. The bottom
schematic illustrates how the guitar-scale MDP is constructed for one octave: Starting at the start
state (black dot), the agent progresses through different fret-board configurations by selecting which
note to play next. For each correct transition, a reward of zero is given, and for each incorrect
transition a reward of −1 is given. 4.7(b): Total reward for each algorithm after first learning
an optimal policy for Scale 1 (C-D-E-F-G-A-B) and then learning an optimal policy for Scale 2
(A-B-C-D-E-F-G). 4.7(c): Reward per episode plot of one repeat for both the SF transfer and
reward-predictive model. For the first 100 episodes, which are spent in scale task 1, both algorithms
converge to an optimal reward level equally fast and learn to play the scale correctly. A recording of
the optimal scale sequence is provided in Audio File S1. On scale task 2 (episodes 101 and onward),
the reward-predictive model can re-use a previously learned state abstraction and converge to an
optimal policy faster than the SF transfer algorithm. After only ten episodes in scale task 2, the
reward-predictive model has learned how to play the scale correctly (please refer to Audio File S2)
while the SF transfer algorithm has not yet converged to an optimal policy and does not play the
scale correctly (please refer to Audio File S3).

77

a sequence of notes. Rewards are only maximized across time if the agent plays the correct scale

(Figure 4.7(a), bottom schematic). Note that the illustrated state sequence is repeated three times,

once for each octave. (The schematic illustrates only one chain to simplify the presentation.) Which

octave is played is determined at random and the transition from the start state (black dot) into one

of the fret boards that correspond to the note “C” is non-deterministic. This assumption allows us

to reduce the action space from 60 fret board positions to 12 notes (A, A#, B, C, C#, D, D#, E,

F, F#, G, G#). The last fret board (a fret board corresponding to the note “B” in this example)

is an absorbing state.

For a sequence of two guitar-scale tasks, Figure 4.7(b) compares the performance of a reward-

predictive model with that of transferring previously learned SFs. Note that these two guitar-scale

tasks differ in their transitions, rewards, and optimal policy. While all algorithms perform similarly

in learning the first scale (given that they have to learn the abstraction), only the reward-predictive

model (green curve) exhibits transfer to the second scale. Each algorithm was simulated in each

task for 100 episodes and each simulation was repeated ten times. (Table B.8 lists the used hyper-

parameters.) Figure 4.7(c) plots the reward obtained in each episode for both the reward-predictive

model and the SF transfer algorithm and illustrates that the reward-predictive model obtains an

optimal policy faster on the second task. This performance improvement can be attributed to the

fact that the reward-predictive model builds an internal representation that more closely models

how to generalize across different fret-board locations, which is invariant to the scale (i.e, the reward

sequence is identical if the agent correctly plays the scale in any of the octaves). Because only

equivalences across fret-board locations are modelled, one would also expect a similar performance

improvement for any randomly chosen scale. In contrast, SFs encode the visitation frequencies

of future (latent) states under a specific policy, a property that changes between the two tasks.

Note that this result is not generated because a portion of the note sequence overlaps between the

two scales (C-D-E-F-G), otherwise the SF transfer algorithm would exhibit positive transfer on the

second scale. Thus, the performance discrepancy in Figure 4.7(b) comes about because SFs and

reward-predictive state abstractions model different aspects of an MDP.

78

4.3 Discussion

In reinforcement learning, the agent’s goal is to find a reward-maximizing policy. But, whereas typi-

cal RL applications pertain to a single MDP, in a lifelong learning scenario (such as that confronted

by biological agents), the objective is to maximize reward across a variety of environments. For this

purpose, it is critical to discover state abstractions that can be efficiently re-used and transferred

across a variety of situations. While several approaches exist for discovering useful state abstrac-

tions that reduce the complexity of a high dimensional task environment (e.g., using deep neural

networks) in an attempt to maximize reward, this article demonstrates that, for longer term benefits,

an agent should focus on learning reward-predictive state abstractions. Our findings indicate that

such abstractions permit an agent to discover state spaces that can be re-used by way of analogy to

previously seen state spaces, without requiring the details of the task (transitions, reward functions,

or optimal policy) to be preserved.

Our initial simulations considered situations in which a single abstraction could be transferred

to a subsequent MDP. However, in a lifelong learning scenario, one must consider multiple possible

abstract structures that may pertain to any novel situation. When a musician picks up a banjo,

they may quickly recognize its similarity to other string instruments—even those with alternate

tuning—and efficiently learn to play a scale; the same musician may re-use a different structure when

attempting to master the accordion. Previous theoretical work relied on non-parametric Bayesian

clustering models that assess which of several previously seen structures might apply to a novel

situation and be flexibly combined in a compositional fashion [40], a strategy supported by empirical

studies in humans [41]. However, such an approach still requires the agent to recognize that the

specific transition function and/or the reward function is portable to new situations. Here, we applied

a similar non-parametric Bayesian agent to cluster reward-predictive state abstractions, affording

“zero-shot” transfer of state representations to novel environments that are only similar by way of

analogy to previously seen scenarios. Because the reward-predictive model can identify which state

abstractions are embedded in a task and re-use these state abstraction to accelerate learning, the

presented results suggest that reward-predictive state representations generalize across tasks.

Biologically, our findings motivate studies to investigate whether brain systems involved in rep-

resenting state spaces, such as the hippocampus and orbitofrontal cortex [86, 119, 94], have learn-

ing rules that are guided by minimizing reward-predictive loss, rather than simply minimizing the

79

Bellman error as in classical temporal difference learning rules leveraged by striatal dopaminergic

systems [76, 27]. Indeed, dopaminergic learning signals themselves are diverse, not only conveying

reward prediction errors used for optimizing actions, but with some signals (perhaps projecting to

distinct circuits) appearing to be used to learn about state transitions that permit subsequent trans-

fer [95, 78, 75, 89]. Our simulations motivate more tailored experiments to investigate the potential

role of such signals in compressing state representations such that they can be analogically reused.

Existing experiments searching for neural and behavioural correlates of the SR [75, 89] have

not varied both rewards and transitions, because (unlike the reward-predictive model), the SR is

not robust to these changes across environments. Our work motivates the development of targeted

experimental designs that would test if human subjects can reuse a latent structure that is present

in a set of tasks despite variations in transitions and rewards. For example, one could design a

human subject study similar to [41] where participants solve a sequence of grid-world navigation

problems, but augment the design to test if subjects reuse a latent structure present in a set of tasks

despite variations in transitions and rewards, similar to the task sequence presented in Figure 4.5.

As illustrated in Figure 4.6, the specific pattern of generalization across tasks is predicted to vary

depending on whether agents use reward-predictive state abstractions or re-use SR abstractions.

Thus, our work provides a concrete testable behavioural prediction that would discriminate between

our work and existing work.

Offline hippocampal replay has been proposed to reflect sampling from a model to train model-

free RL and facilitate planning [72, 69, 93, 5]. Our work provides a predicted amendment to this

notion: we suggest that replay may be prioritized in such a way that facilitates the construction of

reward-predictive state abstractions. In our work on learning (Section 4.2.3), while the agent is first

interacting in a novel MDP, it retains an identity (i.e. un-compressed) state abstraction. Only after

sufficiently learning and interacting in this task, the agent can then construct a new state abstraction

that can be used for planning in the future. Indeed, for efficient learning and generalization, retain-

ing the identity map while learning is critical; otherwise the agent is likely to create a sub-optimal

abstraction that will not generalize. We suggest that the online use of the identity matrix may de-

pend on the highly pattern-separated and conjunctive representations in the hippocampus, whereas

the more abstract representations that facilitate generalization and transfer may be cortical [7].

Moreover, we speculate that one way this abstraction could be learned offline would be if, during

replay, hippocampal events could be sequentially sampled from regions of the state space that are

80

most similar in a reward-predictive sense (i.e., those that incur the least reward-predictive loss). In

this way, an abstract graph-like structure suitable for future planning could be constructed [91, 43]

but further augmented so that it does not depend on temporal adjacency of transitions within the

graph itself, but rather in terms of the ability to predict future expected reward sequences – facil-

itating a deeper form of transfer. This reward-predictive loss function for guiding replay may also

shed light on recent studies in rodents demonstrating that replay is biased toward recently received

rewards (e.g., food) rather than those that are currently desired (e.g., water) after revaluation, even

though behaviour is directed toward the desired one [24]. While this pattern is counter-intuitive

from the perspective that replay is used for future planning, it accords with that expected from an

algorithm that compresses the state space based on reward-predictive representations, where reward

is defined by the previously experienced reward function. Consequently, these representations do not

generalize to any arbitrary task and are restricted to variations in transitions, rewards, and optimal

policy. This restriction of reward-predictive state abstractions can be observed in Figure 4.5, where a

representation learned for the light-dark maze would not be re-used on the coloured maze. Because

the presented model demonstrates that generalization across different rewards and transitions is

possible, future studies on replay would test subjects for generalization across different tasks instead

of only testing for recall of a previously observed task structure.

The Tolman-Eichenbaum machine [117, 118] presents a model for generalization in the

hippocampal-entorhinal system [15]. Similar to reward-predictive state abstractions, this model

learns a latent representation that is predictive of future outcomes or stimuli but is also tied to a

fixed transition function. While this model is not formulated in the usual RL framework, predicting

future outcomes or stimuli can also be understood as a form of reward prediction. However,

this model is trained directly on entire interaction sequences to predict future outcomes, and the

learned representations are thus tied to the transition function. The presented transfer examples

and simulations illustrate that reward-predictive state abstractions are not restricted by these

limitations and can be directly re-used, assuming certain state equivalences are preserved.

Our approach also stands in contrast to prior attempts to leverage SFs [11, 12, 64, 75, 89,

100, 123, 61] in which the SFs themselves are used to initialize learning in novel environments.

Such an approach can accelerate learning in some situations, but it can be fragile to changes in the

optimal policy and transition function. A similar effect has also been shown for variations of reward-

maximizing state abstractions [3], but these abstractions are also adjusted to each task, similar to

81

SFs. While prior work mitigates this re-learning by associating a novel task with one out of multiple

previously learned SFs [70, 12], these methods still rely on initializing learning with a previously

learned representation to obtain a performance gain over solving a task from scratch. Universal

successor feature approximators (USFA) [21] mitigate the dependency of previously learned SF to

a single policy by defining SFs as a function ψψψπ(s, a;www), where the weight vector www describes a

particular MDP. While this approach only requires learning one SF representation function for a

family of policies, this model also assumes fixed transition functions. In contrast, reward-predictive

representations have the ability to abstract away irrelevant task features and these abstractions can

be re-used without re-learning them. While the presented reward-predictive model transfers state

abstractions across tasks, this model has to re-learn how individual latent states are associated with

one-step rewards or SFs for each task. In fact, the presented abstraction transfer models could be

combined with prior work [12, 70, 40, 41] that transfers SFs, latent transition functions, or latent

reward functions to integrate the benefits of each transfer system.

In related work [100], the SR of an MDP was compressed using PCA and the obtained represen-

tations were demonstrated to be suitable for transfer and connections to place cells and grid cells

in the hippocampus. However, this compressed SR constructs a representation of the transition

function itself, and hence transfer is again limited to environments that share the same transition

function. In contrast, reward-predictive state abstractions separate the transition dynamics (and the

SR) from the compression on the state space itself, and thus generate a latent state representation

of a task exploiting analogical task equivalences. Latent state abstractions are not tied to particu-

lar transitions [26, 40], and can thus circumvent this dependency without adjusting the transferred

representation itself.

While reward-predictive state abstractions do not limit an agent’s ability to obtain an optimal

policy for an MDP [46, 63], the solution space of possible reward-predictive state abstractions is

far more constrained. Prior deep learning models [38] construct latent state representations as part

of a model-free and model-based hybrid model that constructs a latent state representation and

extracts the underlying state-transition dynamics. In contrast to their method, reward-predictive

state abstractions compress the state space by generalizing across states that generate identical

future expected reward sequences. While this chapter uses LSFMs to compute lpredictive, several

other methods exist to evaluate reward-predictive state abstractions [28, 36, 35].

82

4.3.1 Limitations and Future Directions

With the exception of Figure 4.2(c), each simulation experiment assumes that a given task has an

(unknown) state-abstraction embedding. In this case, there always exists a state abstraction which,

if discovered, would allow any learning algorithm to find an optimal policy. A case that has not been

studied in this article and is left for future work is the case when a task is over-compressed (i.e.,

lossy compression). Over-compressing a task induces approximation errors, because the compression

removes too much information or detail from the state space such that accurate predictions are no

longer possible. If only the latent state is given as state input to an algorithm like Q-learning, the

algorithm may not converge and learn an optimal policy because the latent state is only providing

partial information about the actual state of the task. One could analyze the problem as a partially

observable MDP (POMDP) [68], but algorithms that can solve POMDPs also maintain a belief about

which actual state they are in. In this literature, the actual state is assumed to be unknown to the

agent. Because this work assumes that the actual state is known to the agent, the benefit of using

such an algorithm is not clear in the case where a task is over-compressed by a state abstraction.

Under what assumptions algorithms like Q-learning can be combined with state abstractions that

over-compress a task is left for future work.

The presented results consider finite MDPs, allowing the algorithm to tabulate a value or latent

state for each possible state. Another direction of future work is to extend the presented models and

algorithms to larger state spaces, such as images. Such an extension would integrate neural networks

or deep learning techniques, and allow the presented models to be applied to more complex tasks,

such as computer games [17] or visual transfer tasks that can also be used in a human subject

study [26].

4.4 Conclusion

The presented results suggest that reward-predictive state abstractions generalize across tasks with

different transition and reward functions, motivating the design of future transfer algorithms. The

discussed connections to predictive representations in the brain and generalization in human and ani-

mal learning motivate further experiments to investigate if biological systems learn reward-predictive

representations.

Chapter 5

Scaling Reward-Predictive

Representations

In this chapter, we focus on scaling reward-predictive representations and the previously presented

models to control tasks where state spaces can be uncountably infinite sets. While the theoretical

analysis presented in Chapter 3 already provides a foundation for this case, the previously presented

representation-learning algorithms are designed for finite MDPs. To remove this restriction and

compute reward-predictive representations for arbitrary state spaces, we introduce a clustering al-

gorithm that learns a reward-predictive representation without making any assumptions about the

state space. It does so by assuming a regression oracle, a subroutine specifically designed for the

task at hand that performs empirical risk minimization (ERM) [113]. Here, ERM is used to find a

function to predict one-step rewards, SFs, and to map states to latent states.1 In practice, this ERM

subroutine is implemented using common deep learning techniques [48] that find a neural network

by minimizing a loss error objective. However, the presented algorithm can also be combined with

any other function-approximation technique.

The presented clustering algorithm extracts a reward-predictive representation from a data set

of one-step transitions. Consequently, this transition data set determines across which states the

resulting state representation generalizes. To control to what extend the used transition data set

informs the learning algorithm about the task, we focus on visual control tasks where the state

space can be compressed into a finite set of latent states. The formalism of Block MDPs [32] allows

us to conduct controlled experiments and analyze the differences between a learned representation

1Although one could alternatively use LAMs and design an algorithm that predicts expected next latent states
instead of SFs, we focus on LSFMs.

83

84

and the representation that is embedded into the task but hidden from the learning system itself.

Our simulations suggest that a training data set needs to contain all possible transitions between

these embedded latent task states. In this case, the transition data set implicitly communicates

the task’s latent structure and the presented clustering algorithm can infer this structure. If this

embedded latent structure is only partially expressed in the training data set, then we find that

the resulting reward-predictive representation is not suited for accurate reward-sequence prediction.

This behaviour is a consequence of the fact that the studied models are designed for arbitrary

transition and reward functions. Because these models do not incorporate any additional domain

knowledge about the task itself, they cannot generalize to a latent structure not represented in the

used training data and the resulting representations have high prediction errors. Note that assuming

Block MDPs is not equivalent to assuming finite MDPs: Because the state space is (uncountably)

infinite, a test data set may contain states that are not included in the training data. In this case,

a learned representation needs to generalize to inputs not observed during training.

This chapter is divided into two sections. Section 5.1 presents a theoretical analysis of the

reward-predictive representation-learning algorithm and proves under which conditions the algorithm

converges to an approximate reward-predictive representation. Furthermore, if the ERM subroutine

generates functions whose prediction errors can be bounded by a small enough value, then the

representation learning algorithm converges to a reward-predictive representation that compresses

the state space into as few latent states as possible without over-compressing the state space and

introducing approximation errors. Learning such a maximally-compressed representation is desirable

because a smaller latent space results in faster learning at transfer. In Section 5.2 we present the

second result, a set of simulations illustrating how re-usable reward-predictive representations can

be learned on visual control tasks. In these simulations, the ERM subroutine is implemented by a

gradient-descent algorithm that trains a convolutional neural network to predicts rewards, SFs, and

latent states. By varying the training data sets, we demonstrate that covering all embedded latent

states is important for obtaining an accurate reward-predictive representation. Furthermore, we

demonstrate on a visual control task that the learned reward-predictive representations are suitable

for re-use across tasks that vary in their transitions and rewards.

85

5.1 Reward-Predictive Clustering

In Chapter 3, we characterized reward-predictive representations in terms of LSFMs, a theoretical

model providing error bounds to test if a state representation is reward-predictive. These error

bounds upper-bound the one-step reward prediction errors such that

∀s ∈ S, ∀a ∈ A,
∣∣φφφ>s wwwa − Ep[r(s, a, s′)|s, a]

∣∣ ≤ εr (5.1)

and they bound the SF-prediction errors such that

∀s ∈ S, ∀a ∈ A,
∣∣∣∣φφφ>s + γEp

[
φφφ>s′FFF

∣∣s, a]−φφφ>s FFF a∣∣∣∣2 ≤ εψ. (5.2)

Line (5.1) is a re-statement of Equation (3.16)2 and Line (5.2) is a re-statement of Equation (3.19).

If the state space is (uncountably) infinite, then verifying the bounds in Lines (5.1) and (5.2) within

finitely many steps may not be possible without making further simplifying assumptions about the

reward or transition function. Because the goal is to study tasks with arbitrary transition and

reward functions and arbitrary state spaces, we forgo any additional assumptions and instead define

an empirical equivalent to Lines (5.1) and (5.2). This empirical equivalent can be evaluated given

a finite transition data set D = {(si, ai, ri, s′i)}Di=1. Each data point (si, ai, ri, s
′
i) in this data set D

describes a transition from state si to state s′i where action ai was selected and reward ri was given.

To simplify notation, we denote the set of all states observed in D with

DS = {s|∃(s, a, r, s′) ∈ D}, (5.3)

the set of all state-action combinations contained in D with

DSA = {(s, a)|∃(s, a, r, s′) ∈ D}, (5.4)

and the subset of transitions where action a is selected at state s with

D(s, a) = {(s̃, ã, r, s′) ∈ D|s̃ = s, ã = a}. (5.5)

2Here, the term Ep[r(s, a, s′)|s, a] describes the expected reward observed when selecting action a at state s.

86

Given such a data set, we first replace the expected one-step reward Ep[r(s, a, s′)|s, a] in Line (5.1)

with an empirical average across all observed state-action pairs:

r(s, a) =
1

|D(s, a)|
∑

(s,a,r,s′)∈D(s,a)

r. (5.6)

Similarly, we replace the expected next SF feature Ep
[
φφφ>s′FFF

∣∣s, a] with an empirical average across

all observed transitions from state s where action a is selected:

ψψψ(s, a;φ) =
1

|D(s, a)|
∑

(s,a,r,s′)∈D(s,a)

(1− γ)(φ(s))>FFF . (5.7)

Because SFs predict the visitation frequencies of future latent states, the SF vector ψψψ(s, a;φ) depends

on the state-representation function φ : s 7→ φφφs that determines the mapping between each state

s and each latent feature vector φφφs. The left side of Equation (5.7) does not explicitly state a

dependency on the matrix FFF , because this matrix FFF is only a function of the state representation

φ and the transition data set D: By Equation (3.18), FFF = 1
|A|{FFF a}a∈A and the matrices {FFF a}a∈A

are computed by solving a linear least-squares regression problem where the state representation

φ : s 7→ φφφs is used as a basis function. Appendix B.4.1 provides a detailed description of this

procedure. Using the averages defined in Equations (5.6) and (5.7), we define the empirical equivalent

of Lines (5.1) and (5.2) as

∀(s, a, r, s′) ∈ D,
∣∣φφφ>s wwwa − r(s, a)

∣∣ ≤ εr and
∣∣∣∣φφφ>s + γ(ψψψ(s, a;φ))> −φφφ>s FFF a

∣∣∣∣
2
≤ εψ. (5.8)

A representation function φ : s 7→ φφφs satisfying Line (5.8) may only be reward-predictive on the train-

ing data set D and may not satisfy the original LSFM conditions stated in Lines (5.1) and (5.2).

Consequently, this representation function may not be reward-predictive on the task itself. This

distinction parallels the usual distinction between training and test data observed in machine learn-

ing [113]: While a representation may perfectly “fit” the training data by satisfying Line (5.8), it is

possible that this representation may not perform well on as yet unseen test data and may not be

suited for accurate reward-sequence prediction. Nevertheless, in the following sections, we demon-

strate the contrary and argue for the practicality of our approach with a set of simulations where

a state representation satisfying Line (5.8) is learned and can be used to predict reward sequences

87

with near zero prediction errors.

5.1.1 Representation Learning With Partition Refinement

Figure 5.1 illustrates how the partition-refinement algorithm obtains a reward-predictive represen-

tation on a 4 × 4 version of the column-world task. In this MDP, the agent can move up, down,

left, or right to transition to adjacent grid cells. A reward is given in the green column. Similar

to the example presented in Figure 1.1, a reward-predictive representation generalizes across dif-

ferent columns and abstracts away the different rows of the task. At each iteration t, the iterative

partition-refinement algorithm constructs a cluster function

ct : s 7→ k (5.9)

where k is the partition index (an integer) and s is a state that occurs in some transition in D.

Figure 5.1(b) illustrates the cluster-function sequence c1, c2, c3 computed for the column-world task.

First, the cluster function c1 is constructed by merging states with equal one-step rewards into the

same state partition, resulting in the blue and green partitions. Then, the resulting partitions are

refined by computing SFs for all states and dividing partitions such that states with different SFs

fall into different partitions. This refinement step is repeated until the cluster function can be used

to construct a representation function

φt : s 7→ eeect(s) (5.10)

that satisfies the empirical LSFM conditions outlined in Line (5.8). This representation function φt

is only defined on states s that occur in the transition data set, because the cluster function ct is

defined only for these states. The vector eeect(s) denotes a one-hot bit vector where entry ct(s) is set

to one and all other entries are set to zero. In Figure 5.1(b), this refinement step is repeated until

further refinement would lead to the same cluster function. At this point, the following discussion

will show that a reward-predictive representation is obtained. Once this refinement procedure has

converged, the resulting cluster function ct is used to learn a state-representation function

φ̂ = arg min
φ:S→Rn

∑
s∈DS

||φ(s)− eeect(s)||
2
2. (5.11)

88

0 1 2 3

3
2
1
0 Rewarding Cell

(a) 4×4 Column World MDP

0 1 2 3

3
2
1
0

0 1 2 3

3
2
1
0

0 1 2 3

3
2
1
0

c1 c2 c3
(b) Partition Refinement Sequence

Figure 5.1: Partition Refinement on the Column-World MDP. 5.1(a): A 4×4 version of the Column-
World MDP where reward is given in the right column and the agent can move either up, down,
left, or right to transition to adjacent grid cells. 5.1(b): Partition sequence c1, c2, c3 computed with
partition refinement. Grid cells of the same colour belong to the same partitions. Each partition
grid map illustrates the partitions obtained at different refinement steps.

This function φ̂ is returned by the reward-predictive representation-learning algorithm.

A cluster function ct satisfying the empirical LSFM conditions (Line (5.8)) can be trivially ob-

tained by placing each observed state into its own singleton partition. Nonetheless, such a cluster

function ct is not desirable because it does not inform the regression problem in Line (5.11) about

how to generalize across different inputs. Consequently, the learned representation function φ̂ is

not optimized to generalize across different states and, during evaluation, may not perform well on

previously unseen test states. Therefore, we desire the cluster function ct to construct as few state

partitions as possible. We refer to state representations that minimize the number of constructed

state partitions as maximally compressed. Before discussing how to obtain such a maximally com-

pressed representation in Section 5.1.4, we first present how the cluster algorithm obtains a reward-

predictive representation on a finite-state MDP and then generalize the discussion to arbitrary state

spaces where function approximation is needed.

One-Step Reward Clustering

The clustering algorithm starts by constructing a cluster function c1 that merges two states into

the same cluster if they are approximately equal in their empirical one-step rewards. Assuming

the transition data set contains a transition for all state-action pairs (an assumption we relax in

Section 5.1.2), the algorithm first constructs a vector

rrr(s) = [r(s, a1), ..., r(s, an)]
>

(5.12)

that concatenates the average rewards r(s, ai) for all actions a1, ..., an for each observed state s.

Using these vectors rrr, a cluster function c1 is constructed such that two states s and s̃ belong to

89

the same cluster if their one-step rewards differ by at most εr. Formally, this property of c1 can be

expressed as

c1(s) = c1(s̃) =⇒ ||rrr(s)− rrr(s̃)||1 ≤ εr. (5.13)

Suppose we construct a weight vector wwwa for each action a such that the ith entry averages r(s, a)

across all states s associated with the ith partition, then

wwwa(i) =
1

|{s ∈ DS |ct(s) = i}|
∑

s∈DS |ct(s)=i

r(s, a). (5.14)

Because Equation (5.14) averages over values that are at most εr apart (by construction of c1 in

Line (5.13)), we have that |wwwa(i)− r(s, a)| ≤ ε and more generally

∣∣∣eee>ct(s)wwwa − r(s, a)
∣∣∣ ≤ εr. (5.15)

Therefore the reward condition stated in the empirical LSFM conditions (Line (5.8)) is satisfied for

a state representation s 7→ eeect(s). Because the clustering algorithm is constrained to only refine a

partitioning, two states that are separated into two different partitions will not be merged into the

same partition at a later iteration. Consequently, each cluster function in the generated sequence of

cluster functions c1, c2, ... satisfies this reward condition.

Partition Refinement by Successor Feature Clustering

Once the first cluster function c1 is constructed, the clustering is refined by iteratively dividing

existing state partitions. This procedure is similar to the reward clustering presented in the previous

paragraph, but involves clustering different feature descriptor vectors ξξξ. At refinement iteration t,

a state representation φt−1 is constructed using the cluster function ct−1 of the previous iteration

such that

∀s ∈ DS , φt−1(s) = eeect−1(s). (5.16)

Then, the feature descriptor vector concatenates the next SF vectors ψψψ(s, a;φt−1) for all actions and

ξξξ(s; ct−1) =
[(
ψψψ
(
s, a1;φt−1

))>
, ...,

(
ψψψ
(
s, an;φt−1

))>]>
. (5.17)

90

Similar to the previous discussion, if the state space is finite and each state s can be described by

an index, then the vector ξξξ can be computed using Equation (5.7), assuming the transition data

set contains a transition for each state-action combination. How to estimate ξξξ(s; ct−1) when this

assumption does not hold is described in the following section. Using these feature descriptor vectors,

the cluster function ct is constructed such that two states s and s̃ are merged into the same partition

if ξξξ(s; ct−1) and ξξξ(s̃; ct−1) are almost equal. Formally, the cluster function ct is constructed such

that

ct(s) = ct(s̃) =⇒
∣∣∣∣ξξξ(s, ct−1)− ξξξ(s̃, ct−1)

∣∣∣∣
1
≤ εψ. (5.18)

With this refinement procedure, a sequence of cluster functions c1, ..., cT is constructed until two

consecutive cluster functions construct the same state partitions. At this point, the refinement

procedure has converged and

cT (s) = cT (s̃) =⇒
∣∣∣∣ξξξ(s, cT)− ξξξ(s̃, cT)

∣∣∣∣
1
≤ εψ. (5.19)

To arrive at the SF fixed point in Line (5.8) (empirical LSFM conditions), we observe that, for any

two states s and s̃ that belong to the same partition, their SF vectors ψψψ are at most εψ apart. This

fact follows from the construction of the ξξξ vectors, which concatenate the next SF vectors ψψψ for all

actions a (Equation (5.17)). Therefore,

∀a ∈ A, cT (s) = cT (s̃) =⇒
∣∣∣∣ψψψ(s, a;φT)−ψψψ(s̃, a;φT)

∣∣∣∣
1
≤ εψ. (5.20)

We define a set of square matrices {FFF a}a∈A such that, for the ith row,

FFF a(i) = eee>i + γ
1

{s ∈ DS |cT (s) = i}
∑

s∈DS |cT (s)=i

(ψψψ(s̃, a;φT))>. (5.21)

91

By construction of cT (Line (5.20)), the summation in Equation (5.21) averages over elements that

are at most εψ apart (in terms of their L1-norm). Therefore,

∣∣∣∣∣∣ψψψ(s, a;φT)− 1

{s ∈ DS |cT (s) = i}
∑

s∈DS |cT (s)=i

ψψψ(s̃, a;φT)
∣∣∣∣∣∣
1
≤ εψ (5.22)

⇐⇒
∣∣∣∣∣∣eeei + γψψψ(s, a;φT)−eeei − γ

1

{s ∈ DS |cT (s) = i}
∑

s∈DS |cT (s)=i

ψψψ(s̃, a;φT)

︸ ︷︷ ︸
=−(FFFa(i))> by (5.21)

∣∣∣∣∣∣
1
≤ εψ (5.23)

⇐⇒
∣∣∣∣∣∣eeei + γψψψ(s, a;φT)− (FFF a(i))>

∣∣∣∣∣∣
1
≤ εψ. (5.24)

In Line (5.23), the vector difference is scaled down by a factor γ < 1 and extended with eeei terms.

Line (5.24) is obtained by substitution using Equation (5.21). Because (eeecT (s))
>FFF a = (FFF a(i))>, we

arrive at an SF fixed-point bound and

∣∣∣∣∣∣eee>cT (s) + γ
(
ψψψ(s, a;φT)

)> − γeee>cT (s)FFF a∣∣∣∣∣∣1 ≤ εψ. (5.25)

Consequently, if the vector ψψψ(s, a;φT) is of dimension d,

∣∣∣∣∣∣eee>cT (s) + γ
(
ψψψ(s, a;φT)

)> − γeee>cT (s)FFF a∣∣∣∣∣∣2 ≤ √dεψ (5.26)

and the SF fixed-point bound of the empirical LSFM conditions (Line (5.8)) is satisfied for a re-

scaled εψ. Consequently, this partition-refinement procedure has converged to a reward-predictive

representation if two consecutive refinement steps do not change the state partitions. This result is

formally proven in Theorem 5 in Appendix A.3.

The outlined refinement procedure can always arrive at a cluster function cT satisfying the

empirical LSFM conditions (Line (5.8)) by placing each observed state into a singleton partition.

Because the reward-predictive representation algorithm only refines a state partition by separating

states into two different partitions but never merging two states into the same partition, no two

cluster functions in the sequence of cluster functions c1, ..., cT can repeat. Hence, the algorithm

cannot loop and the cluster function sequence c1, ..., cT is always finite. (See also the proof of

Theorem 5.)

92

5.1.2 Function Approximation

The previously presented partition-refinement procedure computes the vectors rrr(s) and ξξξ(s, ct−1)

by first estimating the empirical average reward r and the empirical average next SF vectors ψψψ at

each observed state s ∈ Dstate for each action a ∈ A. If the state space is finite and the transition

data set contains each state-action combination, then r(s, a) and ψψψ(s, a) can be computed using

Equations (5.6) and (5.7). If the state space is (uncountably) infinite, then using Equations (5.6)

and (5.7) may not be possible. Moreover, each state may occur only exactly once in the transition

data set and may only be paired with one action. In this case, the representation-learning algorithm

uses empirical risk minimization to approximate r and ψψψ and predict r(s, a) and ψψψ(s, a) for state-

action combinations not contained in the transition data set.

Figure 5.2 illustrates when r(s, a) and ψψψ(s, a) are predicted using a learned model. In this

example, states are described as positions in R2 and all points lying in the shaded square belong to

the same partition and latent state. Specifically, selecting action a from within the grey square results

in a transition to the right and a reward of zero, while selecting action b results in a transition to the

top and a reward of one. We assume that the transition data set only contains the two transitions

indicated by the blue arrows. In this case, we have r(p, a) = 0 and r(q, b) = 1, because (p, a) and

(q, a) are state-action combinations contained in the transition data set and a reward of zero and

one was given, respectively. To estimate r for the missing state-action combinations (p, b) and (q, a),

we approximate the function r with a function ĝr : S × A → R and then use ĝr to predict r for

the these missing state-action combinations. Such a function ĝr can be found by minimizing the

least-squared-error objective
∑

(s,a,r,s′)∈D(g(s, a) − r(s, a))2 that evaluates the difference between

r(s, a) and the predicted value g(s, a). In practice, each state-action pair (s, a) may occur only once

in the transition data set and the sampled one-step reward r = r(s, a) in this case. Consequently,

we focus on minimizing the difference between the predictions ĝr(s, a) and the sampled rewards to

find ĝr:

ĝr ∈ arg min
g∈Gr

∑
(s,a,r,s′)∈D

(g(s, a)− r)2. (5.27)

In this optimization problem, the function space Gr is searched to find ĝr. To ensure that ĝr

accurately approximates r, an expert designer can implicitly inject domain knowledge into this

optimization process by constraining Gr. For example, if neural networks are used, these constraints

can be implemented by picking a specific neural network architectures. If the resulting function

93

Transition included in dataset

Missing transition

p

b, r=1

p’
a, r=0

p’’

q

q’

q’’

b, r=1 a, r=0

Figure 5.2: Function approximation is needed to predict r and ψψψ for state-action combinations not
observed in the transition data set. In this example, the state space consists of points in R2 and the
action space consists of actions a and b. We assume that a maximally compressed reward-predictive
representation merges all points in the grey square into one latent state. Selecting the action a from
within the grey square results in a transition to the right and generates a reward of 0. Selecting the
action b from within the grey square results in a transition to the top and generates a reward of 1.
If the data set only contains the two transitions indicated by the blue arrows and the transitions
indicated by the orange arrows are missing, then function approximation is used to predict r and ψψψ
for the missing state and action combinations (p, b) and (q, a). These function approximators need
to be constrained such that they output the same one-step rewards and SF vectors for points that
fall within the shaded square.

ĝr accurately approximates r, then we can use ĝr to predict r(s, a) for state-action pairs (s, a) not

included in the transition data set. These predictions can then be used to predict the vectors rrr(s).

The SF vectors ψψψ(s, a) for missing state-action combinations (s, a) are estimated using the same

rationale. Here, a function ĝψ : S × A → Rn is found to predict SF vectors as accurately as

possible. This optimization process first estimates the matrices {FFF a}a∈A and their average matrix

FFF = 1
|A|
∑
a∈AFFF a using linear least-squares regression where φt is used a basis function (see also

Appendix B.4.1). Similar to the previous discussion, we do not use the vector ψψψ(s, a;φt) to access

prediction errors and instead compute the difference between the predicted vector and the SF vector

sampled at the next state s′, the vector eee>ct(s′)FFF . In practice, a state-action pair (s, a) occurs only

once in the transition dataset and in this case ψψψ(s, a;φt) = eee>ct(s′)FFF if (s, a, r, s′) ∈ D. Formally, the

function ĝψ can be minimizing the empirical risk [113]:

ĝψ ∈ arg min
g∈Gψ

∑
(s,a,r,s′)∈D

||(g(s, a))> − eee>cT (s′)FFF ||
2
2. (5.28)

Similar to approximating one-step rewards, an expert designer can constrain the searched function

space Gψ to ensure that ĝψ accurately approximates ψψψ. For example, if neural networks are used,

94

these constraints can be implemented by picking specific neural network architectures. If the re-

sulting function ĝψ accurately predicts the next SF vectors, then ĝψ(s, a) ≈ ψψψ(s, a;φ). In this case,

the function ĝψ can be used to predict the SF vectors for state-action pairs (s, a) not contained in

the transition data set. These predictions can then be used to predict the feature descriptor vectors

ξξξ(s; c).

In the subsequent simulations, we demonstrate how deep learning techniques can be used to solve

the optimization problem in Equation (5.27), where choosing particular network architectures and

hyper-parameters constrain the function space G and lead to accurate approximations of r. Note

that Figure 5.2 only provides a minimal example illustrating the need for function approximation.

In practice, especially when deep learning techniques are used, many more transitions are needed to

find a function that accurately predicts r or ψψψ.

5.1.3 Iterative Reward-Predictive Representation Learning Algorithm

The presented clustering operations can be combined with function approximation to design an

iterative reward-predictive representation algorithm. Algorithm 3 summarizes this procedure.

Algorithm 3 Iterative Reward-Predictive Representation Learning

1: Input: A transition data set D = {(si, ai, ri, s′i)}ni=1, ε̂r, ε̂ψ > 0.
2: ĝr = arg ming∈Gr

∑
(s,a,r,s′)∈D(g(s, a)− r)2 . Eq. (5.27)

3: Construct r̂rr(s) = [ĝr(s, a1), ..., ĝr(s, an)]
>

, ∀s ∈ DS
4: Construct c1 such that c1(s) = c1(s̃) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 ≤ ε̂r. . Eq. (5.13)
5: for t = 2, ..., T , until consecutive cluster functions construct the same partitions do
6: Compute LSFM matrix FFF = 1

|A|
∑
a∈AFFF a for φt−1 : s 7→ eeect−1(s). . App. B.4.1

7: ĝψ = arg ming∈Gψ
∑

(s,a,r,s′)∈D ||g(s, a)− eee>ct−1(s′)
FFF ||22 . Eq. (5.28)

8: Construct ξ̂ξξ(s, ct−1) =
[
(ĝψ(s, a1))>, ..., (ĝψ(s, an))>

]>
, ∀s ∈ DS

9: Construct ĉt such that ĉt(s) = ĉt(s̃) =⇒ ||ξ̂ξξ(s, ct−1)− ξ̂ξξ(s̃, ct−1)||1 ≤ ε̂ψ . Eq. (5.18)
10: Construct ct by intersecting ct−1 with ĉt.

11: φ̂ = arg minφ
∑
s∈DS ||φ(s)− eeecT (s)||22. . Eq. (5.11)

12: return φ̂

Algorithm 3 estimates a state representation to satisfy the empirical LSFM conditions (Line (5.8))

for εr and εψ. To account for prediction errors when approximating one-step rewards or SFs, smaller

clustering thresholds ε̃r and ε̃ψ are chosen. Algorithm 3 first estimates the function ĝr to predict

one-step rewards (Line 2) and then uses predictions made by ĝr to construct the vectors r̂rr(s),

which predicts rrr(s) for each state observation (Line 3). Subsequently, the reward clustering c1 is

95

constructed in Line 8 using a threshold ε̂r < εr. The threshold ε̂r is smaller than the required

εr to account for prediction errors in r̂rr(s). This reward clustering is then iteratively refined by

first estimating the matrix FFF (Line 6). Subsequently, this matrix is used to find the function ĝψ

that approximates SF vectors (Line 7). The predictions made by the function ĝψ are then used

to construct the vectors ξ̂ξξ(s, ct−1), which predict the feature descriptor vectors ξξξ(s, ct−1) for each

observed state s. In Line 10, these feature-descriptor vectors are used to construct the intermediate

cluster function ĉt. Here, the used threshold ε̃ψ is smaller than the required εψ to account for

approximation errors in ξ̂ξξ(s, ct−1). To constrain the algorithm to only separate partitions, the next

cluster function ct is obtained by intersecting the partitions of the intermediate clustering ĉt with

the clustering of the previous iteration. This loop continues until two consecutive cluster functions

construct the same state partitions (Line 5). The resulting cluster function cT is then used to

estimate a state-representation function that approximates the map s 7→ eeecT (s) as accurately as

possible (Line 11).

5.1.4 Convergence to Maximally Compressed Representations

As discussed in Section 5.1.1, the goal here is to find a reward-predictive state representation that

generalizes across different states where possible by constructing as few latent states as possible.

To analyze under which conditions Algorithm 3 converges to such a maximally-compressed repre-

sentation, we observe that the computed cluster-function sequence c1, ..., cT encodes a hierarchical

clustering of observed states. This hierarchical structure is illustrated in Figure 5.3 for a 4×4 version

of the column world task. In this task, a reward-predictive representation only generalizes across

the four columns and compresses the 16 different grid cells into four latent states for εψ = εr = 0

(Figure 5.3(b)). The partition-refinement procedure implemented by Algorithm 3 discovers this

reward-predictive state representation by iteratively expanding the depth of the tree structure de-

picted in Figure 5.3(c). Algorithm 3 does not need to compute c0 explicitly because the clustering c1

can be directly computed by clustering the states by one-step rewards, as described in Section 5.1.1.

(We include the initial cluster c0 only to complete the tree structure for illustration purposes.) By

the argument presented in Section 5.1.1, this refinement procedure stops in the column-world exam-

ple once a cluster function is reached that generalizes only across columns. Because the computed

cluster function c3 already encodes a reward-predictive representation in this example, Algorithm 3

96

c0

c1

c2

c3

Grid Position

C
lu

st
er

 S
eq

ue
nc

e

(3
,3

)
(3

,2
)

(3
,1

)
(3

,0
)

(2
,3

)
(2

,2
)

(2
,1

)
(2

,0
)

(1
,3

)
(1

,2
)

(1
,1

)
(1

,0
)

(0
,3

)
(0

,2
)

(0
,1

)
(0

,0
)

0 1 2 3

3
2
1
0

0 1 2 3

3
2
1
0

(c) Cluster Tree Constructed by Refinement Algorithm

(a) Column World MDP

Rewarding Cell

(b) Optimal Reward-Predictive Representation

Colours indicate
state partitions.

Figure 5.3: The cluster-function sequence computed by the iterative reward-predictive representation
learning algorithm encodes a hierarchical clustering of states. 5.3(a): The 4 × 4 version of the
Column-World MDP repeated from Figure 5.1(a) for illustration. 5.3(b): For εψ = εr = 0, a
maximally-compressed reward-predictive state representation generalizes across different columns,
as indicated by the colouring. 5.3(c): The sequence of cluster functions computed by Algorithm 3
for the 4× 4 Column-World MDP encodes a tree structure.

would not continue to further refine any state partitions and expand the cluster tree. In this sec-

tion, we present a formal analysis of the assumptions under which Algorithm 3 discovers such a

maximally-compressed reward-predictive representation.

In Algorithm 3, the number of constructed latent states depends on

1. the ability to find accurate approximations of one-step rewards and SF vectors and

2. the ability to cluster a set of vectors into as few clusters as possible.

We first focus on the second condition and assume access to a function approximation subroutine

that computes a function whose prediction errors are always bounded.

Assumption 3 (ε-Perfect). The functions ĝr and ĝψ computed in lines 2 and 7 are such that there

exists small ε̃r, ε̃ψ > 0 such that for all observed states s, all actions a, and each iteration t,

∣∣ĝr(s, a)− r(s, a)
∣∣ ≤ ε̃r and

∣∣∣∣ĝψ(s, a)−ψψψ(s, a;φt)
∣∣∣∣2
2
≤ ε̃ψ. (5.29)

In practice, one cannot know if Assumption 3 holds nor how accurate predictions made by ĝr and

ĝψ are, a principle that is described in ERM [16]. However, recent advances in deep learning [16] has

found that increasing the capacity of neural networks often makes it is possible to interpolate the

97

≤ε

>>ε

Figure 5.4: A set of points can be clustered in polynomial time if the inter-cluster distance of an
optimal clustering is larger than the used cluster threshold ε.

training data and still perform almost perfectly on independently sampled test data. Consequently,

it may be possible to satisfy Assumption 3 by using large enough neural network architectures,

assuming a diverse enough training data set. In the following section, we demonstrate on two

visual control tasks that it is in fact possible to find ĝr and ĝψ that (almost) satisfy this ε-perfect

assumption.

To obtain a maximally-compressed state representation, the cluster steps in Lines 4 and 9 must

construct as few clusters as possible. Clustering a set of vectors such that vectors of the same clusters

are at most ε apart while also minimizing the number of used clusters is an instantiation of finding

an optimal hierarchical clustering, a computational problem that is NP-hard [60]. Alternatively, one

could constrain the maximum number of clusters found at each iteration, for example by using the

k-Means clustering algorithm. However, finding k clusters while minimizing the distance between

any two vectors of the same cluster is also NP-hard [71]. In general, by Kleinberg’s impossibility

theorem [57] an algorithm that finds an arbitrary clustering for vectors of arbitrary scale while also

minimizing the distance between points of the same cluster does not exist. Therefore we make an

assumption about the used cluster thresholds. For example, suppose a set of points (or vectors) is

concentrated into a number of different clusters as illustrated in Figure 5.4. These points can be

clustered into the three coloured partitions in polynomial time by merging states that are at most

ε apart into the same cluster. This strategy works if the inter-cluster distance is significantly bigger

than the used threshold ε.

To ensure that each clustering operation of Algorithm 3 falls into the scenario illustrated in

Figure (5.4), we make the following assumption about εr and εψ.

Assumption 4 (Separability). For any arbitrary maximally-compressed reward-predictive cluster

98

function c∗, the values ε̂r, ε̂ψ > 0 are assumed to be small enough such that

c∗(s) 6= c∗(s̃) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 > ε̂r or ||ξ̂ξξ(s, c∗)− ξ̂ξξ(s̃, c∗)||1 > ε̂ψ. (5.30)

Assumption 4 can always be satisfied if the cluster function c∗ only merges states with either the

same one-step rewards or the same SFs. This case is equivalent to setting εr = εψ = 0 and for any

two states s and s̃ that belong to the same partition

rrr(s) = rrr(s̃) and ξξξ(s; c∗) = ξξξ(s̃; c∗). (5.31)

Because the transition data set contains a finite number of states, the set of different rrr and ξξξ vectors

is finite and one can always pick a positive ε̃r and ε̃ψ to satisfy the separability assumption.

Under these two assumptions, the following theorem can be proven guaranteeing that Algorithm 3

converges to a maximally compressed reward-predictive cluster function.

Theorem 5 (Convergence). Under Assumption 3, Algorithm 3 converges to a reward-predictive

state representation. Additionally, if the hyper-parameters ε̂r and ε̂ψ are picked small enough to

satisfy the Assumption 4, then Algorithm 3 converges to a maximally-compressed reward-predictive

state representation.

Theorem 5 formally proves what is suggested by the column-world example in Figure 5.3: If one-

step rewards and SFs can be approximated up to a small enough error, then the iterative reward-

predictive representation-learning algorithm converges to a maximally-compressed reward-predictive

representation. Furthermore, this representation does not over-compress the state space of a given

task and does not merge different columns in the Column-World example. Such an over-compressed

representation could still be learned for higher εr and εψ settings, as illustrated in Figure 5.5. Yet

these representations are not guaranteed by Theorem 5 to construct the fewest possible number of

latent states. Appendix A.3 presents a formal proof of Theorem 5

Figure 5.5 illustrates reward-predictive representations obtained by the proposed clustering al-

gorithm on the puddle-world task previously used in Figure 3.6. In this task, the identity map is an

optimal reward-predictive representation because retaining the exact grid position is important for

predicting reward sequences accurately (Section 3.3 discusses this example). Figure 1 illustrates the

99

0 1 2 3 4 5

20

40

60

80

100

N
um

be
r o

f L
at

en
t S

ta
te

s

Feature Cluster Threshold

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 0 0 0 0 0 0 0 0 0
1 1 1 2 3 4 5 0 0 0
6 6 7 8 9 10 11 0 0 0

12 12 13 14 15 16 17 0 0 0
18 18 19 20 21 22 23 0 0 0
24 24 25 26 27 28 29 0 0 0
30 30 31 32 33 34 35 0 0 0
36 37 38 39 40 41 42 0 0 0
43 44 45 46 47 48 49 0 0 0
50 51 52 53 54 55 56 0 0 0

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
2 2 2 2 2 3 4 0 0 0
5 5 5 5 5 6 4 0 0 0
5 5 5 5 5 6 4 0 0 0
5 5 5 5 5 6 4 0 0 0
5 5 5 5 5 6 4 0 0 0
5 5 5 5 5 6 4 0 0 0
7 8 8 8 8 9 4 0 0 0

10 11 12 12 12 12 0 0 0 0

Map 1 Map 2

Map 3

(b) Partition Maps Obtained for Different Cluster Thresholds(a) Puddle World Map

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Start State
Goal cell, reward +1
Puddle cell, reward -1

Figure 5.5: Approximate reward-predictive representations found in the puddle-world task. 5.5(a):
Map of the puddle-world MDP previously presented in Figure 3.6 and repeated here for illustration.
The agent can move up, down, left, or right to adjacent grid cells and either receive a reward of +1
for entering the goal cell or a reward of −1 for entering the puddle. Transitions are non-deterministic
because choosing an action leads to not moving to another grid cell with 5% chance. 5.5(c): The
number of found latent states decreases as the feature cluster threshold εψ is increased. Map 1, Map
2, and Map 3 illustrate the found state partitions for different threshold settings.

100

partition maps found for different feature cluster threshold settings εψ. As the cluster threshold in-

creases, the number of latent states decreases and the found reward-predictive representations start

out with the identity map (Map 1) and then become more “over-compressed” until only a one-step

reward clustering is obtained (Map 3). Map 2 illustrates a representation found for an in-between

threshold where partition map is refined for most areas of the grid, but there exists still a large state

partition with index 0. This partition map highlights one key difference between the proposed clus-

tering algorithm and the gradient descent algorithm used in Section 3.3: While the gradient descent

algorithm builds tiles of roughly the same size as illustrated in Figure 3.6, the partition-refinement

procedure may at first only focus on refining some portions of the state space and leave a larger

state subset in the same partition for multiple iterations.

5.2 Generalization With Neural Networks

In this section, we demonstrate how the presented clustering algorithm can be combined with deep

learning techniques and applied to visual control tasks. The first control task is an extension of the

puddle-world task presented first in Section 3.3. We focus on this task to illustrate that a transition

data set needs to be informative about the task’s embedded grid structure. If a data set does not

completely cover this embedded structure, then the learned reward-predictive representation is not

suitable for accurate reward-sequence prediction. Subsequently, we present an image version of the

combination-lock problem previously presented in Section 3.5.1. With this task, we illustrate that

neural networks that model a reward-predictive representation can be re-used across tasks with

different transitions and rewards. Further, at transfer, such a previously learned representation

network is re-used without any modifications to accelerate learning of an optimal policy. These

results extend the previously presented discussion on transfer and highlight that reward-predictive

representations also generalize across tasks where state spaces are uncountably infinite and function

approximation is used.

5.2.1 Latent State Coverage Determines Predictive Performance

The transition data set used for representation learning influences how the resulting representation

generalizes across states. We study this dependency using an image version of the puddle-world task.

This task is a deterministic version of the puddle-world task presented in Figure 3.6(a), but instead

101

of providing an agent with a state index, this index is converted into an image. This conversion is

non-deterministic and the chance of observing the exact same state image twice is zero. Figure 5.6(a)

outlines this procedure. First, the 10× 10 grid (left schematic in Figure 5.6(a)) is mapped onto the

square area depicted in the centre of Figure 5.6(a). This square area is the set of points

{(x, y) ∈ R2|0 < x < 10, 0 < y < 10}. (5.32)

Each grid cell is mapped to one of the square patches within this area (as indicated by the centre

grid schematic in Figure 5.6(a)). For example, the grid cell (1, 1) is mapped to the set {(x, y) ∈

R2|0 < x < 1, 0 < y < 1}, the grid cell (2, 1) is mapped to the set {(x, y) ∈ R2|1 < x < 2, 0 < y < 1},

and so forth. To render an image, a grid cell—for example the cell at (8, 4)—is first mapped to its

corresponding square patch (the blue square in Figure 5.6(a)). Then, a point is sampled uniformly

at random from this patch and a white dot is rendered at this location in a black 100× 100 image.

Because the set of points that can be sampled is uncountably infinite, the number of different images

that correspond to one grid cell is uncountably infinite.3

The puddle world’s grid structure can be found by the reward-predictive clustering algorithm, as

illustrated in Figure 5.6(b). Here, the ERM subroutine is implemented by a gradient descent algo-

rithm to approximate one-step rewards, SFs, and the resulting reward-predictive representation with

convolutional neural networks [48]. (Table B.9 provides a detailed description of the implementation

and used hyper-parameter.) Figure 5.6(b) shows a contour plot of how different (x, y) positions are

matched with different latent states. For this plot, a set of (x, y) positions is first rendered into

images and these images were then fed through the learned convolutional neural network. This

representation network is constrained to output a probability vector over the learned latent states.

The contour plot in Figure 5.6(b) visualizes the latent state with the highest probability value for

each (x, y) position.

The only domain knowledge the clustering algorithm receives is to use a 2-layer convolutional

neural network to process a 100× 100 pixel image. Otherwise, the algorithm only observes a tran-

sition data set and does not receive any information about the grid structure of the task or how

many latent states are present. Figure 5.6(b) illustrates how closely the underlying grid structure is

3We also use anti-aliasing to render each image such that two close by points are not rendered as the exact same
image.

102

1 4 7 10

1

4

7

10

Each cell corresponds
to 1 out of 100
embedded states.

Start State
Goal cell, reward +1
Puddle cell, reward -1

100
10

0

(7.2, 3.6)

Sample point
uniformly from
corresponding square.

x

y

The (x, y) position
is rendered as an
image.

(a) Image Puddle World Task

(e) Performance of Policy Estimated with Value Iteration

0 10000 20000 30000 40000
Data Set Size in Number of Transitions

0.00

0.25

0.50

0.75

R
ew

ar
d-

Se
qu

en
ce

Pr
ed

ic
tio

n
Er

ro
r

99.00 99.25 99.50 99.75 100.00
Embedded State-Action Coverage in %

(c) Reward-Sequence Prediction Errors

0 10000 20000 30000 40000
Data Set Size in Number of Transitions

A
vg

er
ag

e
R

ew
ar

d
Pe

r T
im

e
St

ep

Optimal Policy

Embedded State-Action Coverage in %

0 10
x

0

10

y

82 85 81 79 71 73 74 76 2 3
83 84 80 78 70 72 75 77 1 4
90 89 86 49 50 55 61 60 17 18
88 87 45 44 46 54 58 57 19 20
24 23 26 48 47 53 59 56 15 16
22 21 25 37 38 52 51 64 67 66
92 91 42 36 39 35 34 65 68 69
94 93 43 40 41 32 33 31 62 63
99 95 96 14 12 29 27 5 7 8
0 98 97 13 11 30 28 6 9 10

100

101

(b) Partition Map of Learned Representation

(d) Prediction Errors as a Function Of Coverage

99.5 100.0
Embedded State-

Action Coverage in %

0.1

0.2

0.3

R
ew

ar
d-

Se
qu

en
ce

Pr
ed

ic
tio

n
Er

ro
r

99.5 100.0
Embedded State-

Action Coverage in %

5000 Transitions 10000 Transitions

(f) Policy Performance as a Function Of Coverage

99.5 100.0
Embedded State-

Action Coverage in %

0.00

0.02

0.04

A
vg

er
ag

e
R

ew
ar

d
Pe

r T
im

e
St

ep

99.5 100.0
Embedded State-

Action Coverage in %

5000 Transitions 10000 Transitions

Figure 5.6: Low embedded state coverage decreases predictive performance in the image puddle-
world task. 5.6(a): The image puddle-world task extends the puddle-world task (Figure 3.6(a))
by rendering grid positions as images. Grid positions are rendered by first mapping each grid cell
to a square area. Then, an (x, y) position is sampled from this area and rendered as a white dot.
Because the image rendering pipeline is non-deterministic, transitions appear non-deterministic.
5.6(b): Partition plot illustrating how different dot positions are associated with latent states by
the learned reward-predictive representation network. 5.6(c): Reward-sequence prediction errors
for each learned model and training data size. Prediction errors are averaged over 200 time-step
reward sequences. 5.6(e): Using each learned model, the policy optimal with respect to this model
is evaluated 20 times and the average reward per time step is recorded. 5.6(c), 5.6(e): The colouring
plots if the embedded state-action space was covered by the used training data set. The dots and
error bars plot averages and standard error of measure across 20 evaluation repeats. 5.6(d), 5.6(f):
Reward-sequence prediction errors and policy performance plotted as a function of embedded state-
action space coverage for two different data set sizes.

103

approximated. Approximation errors still corrupt the learned representation to some extent, result-

ing in discovering 102 latent states instead of 100. For example, the top left corner of the contour

plot in Figure 5.6(b) shows that the partitions corresponding to latent state 10 and latent state

100 were incorrectly separated. This separation comes about because the used ERM subroutine

is not satisfying the ε-perfect assumption for all possible inputs (states-action combinations). To

accommodate approximation errors to some extent, we found it useful to exclude state partitions

that contain only very few state observations in relation to the training data set size. For example,

the simulation used in Figure 5.6(b) excluded any state partition that contained 20 or fewer state

observations. At the end of training, this rule led to withholding 123 transitions out of 40000 tran-

sitions in total. This method of excluding state partitions is a heuristic and makes the assumption

that the number of state observations that correspond to each latent state is roughly equal—an

assumption that is satisfied by using uniform random action selection to generate transitions from

the image puddle-world task.

To study the dependence between the learned reward-predictive representation and the used

training data, we repeatedly ran the presented clustering algorithm on data sets of varying sizes.4

By varying the size of the collected data set, we can control to what extent the task’s embedded

grid structure is covered. For each simulation, we evaluated the learned representation network’s

suitability for accurate reward-sequence prediction and computation of an optimal policy. The pol-

icy optimal with respect to the learned representation is computed by first estimating the transition

and reward tables between the different latent states using the last cluster function cT generated by

the clustering algorithm. These transition and reward tables are then fed into the value-iteration

algorithm [106, Chapter 4.4] to obtain a policy. This policy is then evaluated through multiple

simulation runs and the average reward per time step is recorded. Figures 5.6(c) and 5.6(e) plot

the obtained evaluation results for different data-set sizes. As the data-set size increases, the re-

sulting representation’s performance improves. For data sets with 30000 or more transitions, the

learned model is (almost) optimal, because reward-sequence prediction errors are near zero and the

policy obtained through value iteration achieves an almost optimal reward level. This trend is not

surprising, because providing more data typically improves a deep learning system’s performance.

Because a uniform distribution is used for sampling the state images, the probability of observing

4Transition data sets were collected by sampling multiple trajectories using uniformly random action selection.
Then, a prefix of the first trajectory is truncated to obtain a transition data set of a specific size.

104

the same image twice is zero. Consequently, the training data differs from the test data. Because the

learned model’s performance is near optimal for large enough data sets, the learned representation

can associate a previously unseen image with the correct latent state, leading to accurate predictions.

Therefore, the learned representation correctly generalizes to previously unseen data.

The colouring of the plotted data points indicates to what extent the embedded latent state-

action space is covered when generating the training data. A coverage of 100% means that all four

actions at all grid cells were visited and the latent grid structure was fully explored. A coverage of

less than 100% indicates that a certain fraction of latent state-action combinations were not visited

and some portion of the grid structure was not fully explored. This colouring in Figures 5.6(c)

and 5.6(e) indicates that only data sets with 100% latent state-action coverage lead to near optimal

models. Furthermore, the policy performance plot in Figure 5.6(e) indicates that for data-set sizes

between 5000 and 10000 transitions incomplete coverage leads to a worse performing model, even for

a fixed data set size. This trend is also present in Figure 5.6(c). Partial latent-state-action coverage

decreases performance of the learned reward-predictive representation because the clustering algo-

rithm does not generalize to unseen latent states. Figures 5.6(d) and 5.6(f) further highlight this

dependency and illustrate that using training data that does not fully cover the task’s grid structure

results in decreased performance. This behaviour is a consequence of the algorithm’s generic design:

Because the cluster algorithm is designed to process data of tasks with arbitrary reward or transition

functions, the learned models do not encode an inductive bias that enables generalization to unseen

transitions or rewards.

For example, if one grid cell is not covered by the training data, then the algorithm is not

provided with any information about rewards at this grid cell or transitions to and from this grid

cell. Making any predictions about such a missing grid cell means knowing how to generalize any

learned transitions or rewards to this missing grid cell. In this context, knowing how to generalize

means making additional assumptions about the transition or reward function that is not explained

by the training data. Such an assumption could be implemented by providing an inductive bias

to expect a grid world structure, for example. Consequently, any agent that does not make any

assumptions about what transitions or rewards to expect cannot make an informed guess about

such a missing grid cell. In fact, the agent is limited to inferences that stem only from the observed

training data. The agent may not even infer that such a missing grid cell exists, because the agent

has not observed any corresponding data. This inability of generalizing to unseen latent states

105

Action 1:
Action 2:
Action 3:

Training Task Transfer Task

Figure 5.7: MNIST Combination-Lock Task. In both the training and transfer task, the agent can
choose from one of three actions to rotate one of the three dials by one number. Each dial has ten
sides and any number combination is rendered using the MNIST image data set [62], as illustrated
by the image on the left. In the training task, the right dial (dark grey dial) spins at random at
every time step and has no effect on obtaining reward. Here, to obtain reward, the agent has to
use actions 1 and 2 to rotate the left and centre dials so both show the digit nine. While the right
dial (dark grey dial) also spins at random in the transfer task, the transition and reward functions
are different to the training task. Here, the rotation direction of the centre dial is inverted and the
agent has to rotate the dial into any combination that starts with eight and two.

or actions is a consequence of designing an agent that assumes any generic transition and reward

function.

5.2.2 Generalization Across Tasks With Neural Networks

While the presented model does not generalize to unseen latent states within a task, a learned

reward-predictive representation can be efficiently re-used in previously unseen tasks, assuming the

modelled latent structure is observed. In this section, we present simulations to demonstrate this

form of transfer with a neural network. These results extend the transfer discussion in Chapters 3

and 4 to visual control tasks where function approximation is needed.

Figure 5.7 illustrates the used training and transfer tasks: Here, we use an extension of the

combination-lock task previously presented in Section 3.5.1 where each dial has ten different positions

and the lock’s number combination is converted into an image using digits from the MNIST image

data set [62]. Because the right dial always spins at random, both tasks have 100 embedded latent

states. Still, the number of possible state images is large, because the MNIST data set contains

multiple different images for the same digit and because the third digit in the state image is not

relevant for the task. In both tasks, the agent has to repeatedly move the left and centre dials one

number at a time to reach a rewarding number combination. Both training and transfer tasks differ

in their rewards and transitions, because a different number combination is rewarded and because

the rotation direction of the centre dial is reversed in the transfer task.

To learn a reward-predictive representation, a training data set of 400000 transitions is sampled

106

from the training task using uniform random action selection. This data set is generated using

images from the MNIST training set. Then, the reward-predictive clustering algorithm is run on

this data set using a deep learning subroutine to approximate rewards, SFs, and the resulting

reward-predictive representation with a deep convolutional neural network. To satisfy the ε-perfect

assumption as closely as possible, this neural network was scaled in size by adding multiple layers

and integrating other deep learning techniques such as dropout [99] and batch normalization [50].

Table B.10 describes the used network in detail.

Figure 5.8 illustrates how the learned reward-predictive representation network generalizes across

different images and reports the learned model’s performance. For the training task, the reward-

predictive clustering algorithm discovered 119 latent states, more latent states than actually needed.

The matrix plot in Figure 5.8(a) shows that these extra states were constructed because number

combinations corresponding the the same embedded latent state are not associated with the same

learned latent state. For example, images containing number combinations that start with 8, 9 are

mapped into three different latent states. This is caused by approximation errors when estimating the

feature descriptor vectors ξ̂ξξ or reward vectors r̂rr for different observed states. These approximation

errors push these vectors apart for states that should be clustered together. Consequently, the

clustering operation assigns different latent states to these images. Furthermore, to some extent,

approximation errors also cause images containing completely different number combinations to be

incorrectly associated with the same latent state. Still, these approximation errors affects only a

very small number of states as illustrated in Figure 5.8(b), where most off-diagonal entries are close

to zero.

We also evaluated the learned reward-predictive representation network using the same evaluation

procedure used in Section 5.2.1. The box-plots in Figure 5.8(b) summarize the obtained results.

During evaluation, the MNIST test set is used to render the image states to ensure that the training

data is different from the evaluation (test) data. Furthermore, we also train a neural network

to classify images based on the left and centre digits into the 100 embedded latent states. This

neural network forms a baseline model: While neither neural network can perfectly classify all test

images, the baseline model is trained using optimal latent state labels and the reward-predictive

representation network is trained using the labels found by the clustering algorithm. Besides using

different labels, the deep learning routine used to obtain this baseline model is identical to the

deep learning routine used to learn the reward-predictive representation network. Both plots in

107

0 20 40 60 80 100
Latent State Index

(0,0,*)

(9,9,*)

C
om

bi
na

tio
n

Pa
tte

rn

0 20 40 60 80 100
% Classified

102 105 108
(8,7,*)
(8,8,*)
(8,9,*)
(9,0,*)

(a) Classification of Number Combinations Images
into Latent States

(b) Comparison of Learned Representation On
Training Task With Test MNIST Images

10 4 10 3 10 2 10 1
Reward-Sequence
Prediction Error

Hard Coded

Reward Predictive

Constant Model
(One Latent State)

0.00 0.05
Average

Reward per Step

Figure 5.8: Reward-predictive representation learned for the MNIST combination-lock training task.
5.8(a): Matrix plot where each row shows which number combinations are classified into which latent
state. For this plot, the state observations of the training data set were used. The combination
(8, 7, ∗) corresponds to any number combination where the left and centre dials are set to eight and
seven, respectively. Each row of this matrix plot sums to 100%. An optimal clustering would assign
each combination a separate latent state, resulting in a diagonal matrix. However, approximation
errors lead to spurious latent states that are visualized as additional columns. 5.8(b): Bar-plot
comparing the performance of the learned reward-predictive representation with a network trained
to predict the 100 embedded states and a one-latent-state model for reference. Reward-sequence
prediction errors and the average reward per step (of the policy optimal with respect to the learned
model) are computed as described in Section 5.2.1.

108

Figure 5.8(b) suggest that the learned reward-predictive representation network performs similarly

to the baseline model. Even the baseline model occasionally predicts incorrect reward sequences,

because this network is not capable of perfectly classifying all test images correctly. A constant

model that merges all states into one latent state performs poorly. This result is expected, because

this model does not use the correct latent representation.

Next, we test if re-using the learned reward-predictive representation network leads to learning

an optimal policy faster in the transfer combination lock (Figure 5.7). To obtain a controlled transfer

experiment, we adopted the DQN algorithm [73] to learn an optimal policy and vary the initializa-

tion and learning conditions of the used Q-network.5 Figure 5.9(a) illustrates the used Q-network

architecture: The DQN algorithm uses the exact same network architecture as the learned reward-

predictive representation but initializes all weights using Xavier initialization [47] (an initialization

method commonly used in deep learning). The reward-predictive agent, which re-uses the learned

reward-predictive representation, replaces all but the top-most linear layer of the Q-network with the

transferred representation. If this representation is suitable for transfer, then this reward-predictive

agent should learn an optimal policy faster than the default agent, because most network weights are

initialized to a (close to) optimal solution. Note that the reward-predictive agent only updates the

top-most linear layer and the transferred representation network’s weights are fixed during learning

in the transfer task. In this comparison, the DQN algorithm serves as an experimental control. As a

reference, we are also testing a hard-coded representation agent that replaces all lower network layers

with a classifier that has access to the transfer lock’s embedded latent state. Because this agent has

access to the internal state of the combination-lock task (a form of ground-truth knowledge), input

images are always classified into the correct embedded latent state. This hard-coded representation

agent is used to set a baseline for the transfer simulation and should perform best.

Figure 5.9(b) compares how quickly the three different agent configurations reach a short (op-

timal) episode length. Because the combination-lock task only rewards entering the goal state at

which an episode finishes, always completing an episode within as few steps as possible indicates an

optimal policy. Here, an optimal policy completes the transfer combination-lock task in 16 steps. In

this transfer task the agent always starts at combination (0, 0, 0) and has to reach the combination

pattern (8, 2, ∗) by rotating the left and centre dials. This can be accomplished in (at least) 16

steps. The plot in Figure 5.9(b) indicates that the reward-predictive agent (blue curve) converges

5Table B.11 in Appendix B.4.2 lists the used hyper-parameter.

109

Q(s,a1)
Q(s,a2)
Q(s,a3)

State representation network
varied at transfer

Linear layer
mapping latent states to Q-values

(a) The Tested Deep Q-Networks Integrate Different Representation Networks

0 25 50 75 100
Episode

15
20
25
30
35
40
45
50
55

Ep
is

od
e

Le
ng

th

Hard-Coded Rep.
Reward-Predictive Agent
DQN

(b) Eposide Length On The Transfer Task

(c) Avg. Episode Length On The Transfer Task

15 20 25 30 35
Avg. Episode Length

Hard-Coded
Representation

Reward-Predictive
Agent
DQN

DQN With
Q-Network Transfer

Rew
ard

-Pred
ict

ive

Age
nt DQN

DQN W
ith

Q-N
etw

ork
 Tran

sfe
r

Hard-Coded
Representation

Reward-Predictive
Agent

DQN

2.7× 10 7 3.2× 10 11 2.5× 10 13

2.3× 10 6 1.9× 10 7

9.9× 10 1

(d) P-values Testing For Difference in Avg.Performance

Figure 5.9: Reward-predictive representation networks can be re-used in the MNIST combination-
lock transfer task without modifications. 5.9(a): The used Q-network is a deep convolutional neural
network mapping each image to a vector of Q-values. For each simulation, the used network architec-
ture is identical to the network architecture used by the clustering algorithm. The reward-predictive
agent initializes this network with the learned reward-predictive representation network and does not
update the weights of the representation network during learning. 5.9(b): Average episode length
comparison between the reward-predictive agent, the DQN agent, and the hard-coded representation
agent. Each simulation is repeated 20 times and the shaded area indicates the standard error of
measure. 5.9(c): Box-plot of the average episode length of each evaluated agent averaged over 20
simulation repeats. 5.9(d): Welch’s t-test p-values testing for a significant difference in the average
episode length of each agent. A low p-value indicates a significant difference in average episode
length. A goodness of fit test (Kolmogorov–Smirnov test) of the collected data with a normal dis-
tribution resulted in p-values of at least 68% and does not suggest that the data does not follow
a normal distribution. Consequently, using the Welch’s t-test, which assumes normally distributed
data, is appropriate. This plot indicates that there is a significant difference in performance between
using a hard-coded representation, a previously learned reward-predictive representation network,
and training the Q-network from scratch using the DQN algorithm. Re-using a Q-network learned
for the training task does not lead to a significant performance improvement.

110

significantly faster than the DQN (orange curve), suggesting that re-using the previously learned

reward-predictive representation leads to faster convergence. As expected, the hard-coded repre-

sentation agent (black curve) outperforms the other two agents. There is a significant performance

difference between the hard-coded representation agent and the reward-predictive agent, because

approximation errors of the re-used reward-predictive representation network limit fast convergence

to an optimal policy to some extent. Still, this reward-predictive agent converges to an optimal

policy without changing any weights of the re-used representation network or adapting the repre-

sentation network in any other way to the task at hand. This finding stands in contrast to prior

work on Deep SF-learning algorithms [12] and meta-learning methods such as MAML [37], where

previously learned networks are adapted to the task at hand.

Figure 5.9(c) presents a box-plot comparing the tested algorithm’s performance with a fourth

DQN agent configuration where learning is initialized with a Q-network trained on the training

combination-lock task (box-plot with green points labelled “DQN With Q-Network Transfer”). The

transferred Q-network initialization is then updated until the algorithm converges to an optimal

policy. Updating the Q-network and changing its weights is necessary because the transitions and

rewards differ between the combination-lock training and transfer task (Figure 5.7) and consequently

the optimal policy differs as well. Still, transferring a Q-network trained on the combination-lock

training task does not improve performance significantly, because the policy optimal in the transfer

combination-lock task differs too significantly from the policy optimal in the training task. This

Q-network transfer algorithm is similar to the Deep SF framework presented by Barreto et al. [12],

where a SF network is learned for a set of MDPs that differ in their rewards. These SF networks

are constructed such that they are equivalent to a Q-network. Specifically, for MDP i, the predicted

SF vector ψψψπi(s, a) = Qπi(s, a), where πi is the policy learned in MDP i. While Barreto et al. focus

on multi-task transfer and how to combine multiple previously learned networks, the Q-network

transfer algorithm presented in Figure 5.7 resembles this method for a single task setting. Yet, this

system does not exhibit positive transfer on the combination-lock tasks, because these two tasks are

varied in their transitions and rewards and most of the transferred network has to be re-trained to

find an optimal policy.

Figure 5.9(d) reports p-values testing for significant differences in average performance. These

values indicate that the reward-predictive agent significantly outperforms the DQN algorithm,

demonstrating that re-using a previously learned reward-predictive representation network does

111

20 40 60 80 100
Avg. Episode Length

Reward-Predictive
SF-Learning

SF-Learning

SF-Learning
With SF Transfer

SF-L
ear

nin
g

SF-L
ear

nin
g

W
ith

 SF Tran
sfe

r

Reward-Predictive
SF-Learning

SF-Learning

8.3× 10 216.7× 10 24

1.8× 10 1

(a) Avg. Episode Length on Transfer Task (b) P-Values Testing for Difference in Avg. Performance

Figure 5.10: Re-using reward-predictive representations leads to faster convergence than re-using
SFs. 5.10(a): Box-plot of the average episode length for each agent across 20 repeats. Table B.12
lists the hyper-parameters used for this experiment. 5.10(b): P-values of a Welch’s t-test testing
for significant differences in average performance. A goodness of fit test (Kolmogorov–Smirnov test)
of the collected data with a normal distribution resulted in p-values of at least 61% and does not
suggest that the data does not follow a normal distribution. Consequently, using the Welch’s t-test
is appropriate.

accelerate learning in the MNIST combination-lock transfer task.

Lastly, Figure 5.10 highlights that transferring SFs as described in Chapter 2 accelerates learning

less significantly than transferring reward-predictive representations. To obtain a fair comparison,

we combine the (linear) SF-learning algorithm (Algorithm 2) with different state-representation

functions to map images to a discrete set of latent states and record whether using a specific repre-

sentation type accelerates learning on the MNIST combination-lock transfer task (Figure 5.7). The

reward-predictive SF-learning agent re-uses the reward-predictive representation network learned

for the combination-lock training task to map images to discrete latent states. These discrete la-

tent states are then fed as input into the SF-learning algorithm. Consequently, this agent uses the

reward-predictive representation to generalize across different states and compresses the task’s image

state space into a small latent space. For comparison, the default SF-learning algorithm uses a digit

classifier that maps each of the 1000 different number combination shown in a state image to one

of 1000 different latent states. While this classifier processes the state image inputs for the agent,

the resulting agent does not generalize across states that are equivalent in terms of predicting re-

ward sequences. To test if re-using previously learned SFs leads to accelerated learning, this default

agent was first used to learn an optimal policy on the combination-lock training task. The learned

successor features are then used to initialize learning in the combination-lock transfer task.

112

The results plotted in Figure 5.10 suggest that transferring the previously learned reward-

predictive representation network accelerates learning significantly. While re-using SFs does ac-

celerate learning slightly, as indicated by the box-plot and p-values for the “SF-Learning With SF

Transfer” agent, this method is still outperformed by the reward-predictive agent. This performance

improvement can be attributed to the fact that the reward-predictive model builds an internal repre-

sentation that more closely models how to generalize across different number combinations. Because

this aspect is preserved at transfer, this method outperforms the SF transfer method that models a

task’s optimal policy, which differs in the used tasks.

The transfer experiments presented in Figures 5.9 and 5.10 focus on testing whether using a

specific representation type leads to positive transfer and therefore only use the DQN algorithm and

SF-learning to obtain an optimal policy. Because reward-predictive representations can be used to

predict reward-sequences and enable model-based RL, one could also implement a (deep) model-

based RL agent. At transfer, this agent would first estimate the latent transition and reward tables

through exploration and could then immediately compute an optimal policy. By using a reward-

predictive representation to map state images to discrete latent states, it is possible to simulate a

model-based RL algorithm such as RMax [23] on a visual control task and find an optimal policy

faster than an equivalent model-free learning approach [101], similar to the experiments presented

in Section 4.2.3. However, such a comparison is left to future work.

5.3 Discussion

In this chapter, we explored a clustering algorithm that learns reward-predictive representations

for control tasks where state spaces can be uncountably infinite sets. Given a transition data

set as input, this algorithm clusters different state observations and each cluster corresponds to a

reward-predictive latent state. While the presented partition refinement approach is similar to the

block splitting technique presented by Givan et al. [46], the presented cluster algorithm is designed

to process state data from an uncountably infinite input set and is not constrained to a finite

state space. State data is processed using an ERM subroutine to obtain a function, for example

a neural network, to predict one-step rewards, SFs, and latent states. Furthermore, in Section 5.1

we study under which assumptions the algorithm is robust to prediction errors that stem from this

ERM subroutine and when a maximally-compressed reward-predictive representation is obtained.

113

Specifically, the assumptions state that the used ERM subroutine needs to be ε-perfect and returns

functions whose approximation errors can be bound by some (small) ε. While this assumption

may seem restrictive, Belkin et al. [16] demonstrate that over-parameterized neural networks can

be used to interpolate training data and exhibit near perfect performance during testing. The ε-

perfect assumption is necessary because the clustering algorithm uses the ERM subroutine’s result to

inform the next clustering iteration. Both simulations presented in Section 5.2 demonstrate that not

satisfying this ε-perfect assumption leads to constructing spurious latent states and “overrefining”

the partitioning of the observed state set. In these cases, prediction errors perturb some of the vectors

used for clustering, resulting in the construction of additional clusters. However, withholding clusters

that correspond to only very few observed states from the next refinement iteration mitigates the

construction of spurious latent states to some extent.

Because reward-predictive representations are used to predict reward sequences, these repre-

sentations are evaluated on their predictive performance. Consequently, any approximation errors

(caused by not adhering to the ε-perfection assumption) impact the resulting model’s predictive

performance—a property common to model-based RL algorithms [109, 110, 6]. Evaluating a model’s

predictive performance is more stringent than what is typically used for model-free RL algorithms

such as DQN. Typically, model-free RL algorithms are evaluated on the learned optimal policy’s per-

formance and are not evaluated on their predictive performance. For example, while DQN can learn

an optimal policy for a task, the learned Q-network’s prediction errors may still be high for some

inputs [120]. Prediction errors of this type are often tolerated, because model-free RL algorithms

are evaluated based on the learned policy’s performance and not their predictive performance. In

contrast, reward-predictive representations are evaluated for their prediction accuracy. To achieve

low prediction errors, the presented results suggest that finding ε-perfect approximations becomes

important. Furthermore, the simulations on the MNIST combination-lock task demonstrate that

this goal can be accomplished by using a larger neural network architecture.

While model-based and model-free hybrid architectures [80, 97, 92] also incorporate a reward-

sequence-prediction component, these models predict reward-sequences only over very short horizons

(for example, Oh et al. [80] use 10 time steps). These short reward-sequence predictions are used

to accelerate a model-free learning process that obtains an optimal policy through trial and error

114

interaction. Because model-free learning is also used to to improve the model used for reward-

sequence predictions, these model-based and model-free hybrids do not implement “strict” model-

based RL systems. In contrast, reward-predictive representations are learned from a fixed data

set that was collected using uniform random action selection. With the learned model, reward

sequences can be predicted for horizons that are sufficiently long to assess the execution of a task

from the beginning to the end. In fact, we demonstrate that value iteration can be used to extract an

optimal policy directly from the learned model and without any additional trial-and-error learning. A

similar observation can be made concerning deep bisimulation learning methods [44] that implement

a model-free and model-based hybrid architecture to accelerate model-free learning and are not a

form of “strict” model. However, learning reward-predictive representations on larger scale tasks

comparable to the tasks used in related work [80, 97, 92, 38, 79, 66, 84], for example Atari games [17],

is left for future work.

Section 5.2.2 extends the transfer results presented in Chapters 4 and 3 to visual control tasks

where function approximation is needed. We demonstrate that the learned reward-predictive rep-

resentation network generalizes across transitions and rewards just as the tabular reward-predictive

representations studied in the previous chapters generalize across transitions and rewards. The key

distinction between the simulations presented in this chapter is that the representation function is

implemented with a neural network mapping images to latent state vectors instead of mapping state

indices to latent state vectors. At transfer, the reward-predictive representation network does not

need to be updated or adapted to the task at hand, because reward-predictive representations en-

code task knowledge that generalizes across variations in transitions and rewards. This choice stands

in contrast to prior work on (Deep) SF transfer [12, 13, 61, 123], meta-learning [37], or multi-task

learning [90, 30] (see also Khetarpal et al. [55] for a survey). These methods transfer a value function

or policy model to initialize and accelerate learning. Because these methods transfer a model of a

task’s policy, these models have to be adapted to each transfer task, if the transfer task’s optimal

policy differs from the previously learned policies. Reward-predictive representations overcome this

limitation by only modelling how to generalize across different states. Because reward-predictive

representations do not encode the specifics of how to transition between different latent states or

how latent states are tied to rewards, these representations are robust changes in transitions and

rewards. Furthermore, the reward-predictive representation network is learned using a single task

and the resulting network is sufficient to demonstrate positive transfer across different transitions

115

and rewards. This property stands also in contrast to Zhang et al. [122], where the focus is on

extracting a common task structure from a set of tasks. Still, in a lifelong learning scenario, re-using

the same reward-predictive representation network to solve every task may not be possible because

an agent may have to generalize across different states (as discussed in Chapter 4). In the MNIST

combination-lock example, transfer is possible if the right dial always spins at random, because the

reward-predictive representation network has learned to ignore and abstract away this dial. However,

if instead the center dial is randomized at transfer, then the previously learned reward-predictive

representation cannot be re-used. As demonstrated in Section 4.2.3, one could use different (non-

parametric) meta-learning models to combine multiple learned representations. Implementing these

meta-learning models on visual control tasks is left for future work.

One assumption made in the presented experiments is that a task’s state space can always be

compressed into a small enough finite latent space. While compressing a finite data set into finitely

many latent states is always possible (by associating each observed state with a distinct latent

state), the presented model always learns a fully conjunctive representation. In the combination-lock

examples, the reward-predictive representation associates a different latent state (one-hot vector)

with each relevant combination pattern. This representation is conjunctive because it does not model

the fact that the dials rotate independently. A disjunctive or factored representation could map each

of the three dials independently into three separate latent state vectors and a concatenation of these

vectors could be used to describe the task’s latent state. Such a latent representation is similar to

factored representations used in prior work [49, 31] and these factored representations permit a more

compositional form of generalization across different tasks [54, 14, 25]. How to extract such factored

representations from unstructured state spaces such as images still remains a challenging problem.

We leave such an extension of reward-predictive representations and LSFMs to future work.

Lastly, the presented experiments generate training data sets by simulating trajectories using

uniform random action selection. While this method is sufficient for learning reward-predictive

representations on the tested tasks, a more directed exploration approach may be necessary in

more complex control tasks. Here, the presented insights could be used to design model-based

exploration strategies to optimize the data-collection process. For example, after collecting one

trajectory, a reward-predictive representation could be computed given this data and latent state-

action combinations could be identified that have not been visited so far. These missing latent

state-action combinations could then be used to inform exploration in the next step and this process

116

could be repeated. Using latent states for efficient exploration has been studied before by Du et al.

[32]. Yet, Du et al. focus on exploration efficiency and not on constructing a particular representation

type. The results presented in this chapter could be used to develop new model-based exploration

strategies to learn reward-predictive representations.

5.4 Conclusion

The presented results and clustering algorithm demonstrate how reward-predictive representations

can be scaled to tasks with (uncountably) infinite state spaces where function-approximation tech-

niques, such as deep learning, are required. We formally showed under what assumptions the

presented algorithm converges to a maximally-compressed reward-predictive representation. Fur-

ther, we demonstrated that the learned reward-predictive representation generalizes to test data

not observed during training. Lastly, we illustrated that the learned reward-predictive representa-

tions generalize across tasks with different transitions and rewards. These results support the thesis

statement proposed in Chapter 1 to tasks where state spaces are (uncountably) infinite.

Chapter 6

Conclusions and Future Directions

Implementing knowledge re-use in artificial reinforcement learning systems accelerates learning by

avoiding repeatedly learning the same solution from scratch. This dissertation studies how to imple-

ment knowledge re-use in reinforcement learning systems. While RL systems are typically designed

to maximize rewards in a single task, we find that a RL system’s objective changes in the con-

text of lifelong learning: Instead of finding a maximally compressed model to solve a single task,

the presented research indicates that learning a model detailed enough to predict reward sequences

leads to internalizing re-usable task knowledge. We demonstrate that knowledge re-use across tasks

can be accomplished by re-using reward-predictive representations. Because reward-predictive rep-

resentations model analogies between different task states they are not tied to specifics of the task’s

transitions or rewards. These analogies encode how to generalize across inputs in a specific task. If

these analogies are preserved at transfer, then the learned reward-predictive representation can be

re-used.

In Chapters 2 and 3 we present an analysis of which latent representations an intelligent agent

can construct to support different predictions, leading to new connections between model-based and

model-free RL. We find that different SF formulations can be used to implement either model-free

learning or model-based learning. While prior work [11] implements a model-free SF learning mecha-

nism, we introduce LSFMs and tie our new SF formulation to model-based learning. Specifically, we

phrase model-based learning as a (reward-predictive) representation-learning problem. This method

differs from the usual approach to model-based RL (e.g. Dyna [103] or RMax [23]) where the

transition and reward function is approximated. Chapter 4 presents results suggesting that reward-

predictive state abstractions generalize across tasks with different transition and reward functions.

117

118

This stands in contrast to prior work on SFs that focuses on transfer where only the reward func-

tion is varied [11, 12, 13, 75, 89, 100, 61, 123]. Furthermore, we study a lifelong learning scenario

where re-using a single reward-predictive representation is not possible. Here, we demonstrate with

a non-parametric Bayesian model that an agent can learn a set of different reward-predictive rep-

resentations and can quickly identify which previously learned representation should be re-used.

Lastly, we present in Chapter 5 a clustering algorithm that integrates deep learning techniques to

learn reward-predictive representations on tasks with uncountably infinite state spaces. These re-

sults extend the previous transfer discussion and demonstrate that reward-predictive representations

also generalize across tasks with uncountably infinite state spaces where function approximation is

needed.

6.1 Future Directions

Biologically, our findings motivate further research to investigate whether brain systems involved

in state representation implement reward-predictive representations. While existing work already

presents neural and behavioural correlates of the SR [75, 89], these experiments focus only on vari-

ations in rewards. The models presented in this dissertation motivate experimental designs (similar

to Franklin and Frank [41]) to test whether human subjects re-use and learn a latent structure

that is preserved despite variations in transitions and rewards. Furthermore, offline hippocampal

replay has been proposed to reflect sampling from a model to enable model-free learning and plan-

ning [72, 69, 93, 5]. In alignment with this notion, the transfer simulations presented in Section 4.2.3

retain an identity abstraction when learning in a completely novel task and representation learning

is performed offline between task transitions. Retaining an identity map instead of generalizing in a

completely novel task is important to for complete exploration and to obtain a representative data

set that informs an accurate reward-predictive representation. The simulations in Section 5.2.1 on

the image puddle world task further confirm the need for efficient exploration. If the training data

set leaves portions of a task out, then the resulting reward-predictive representation is sub-optimal.

Consequently it may be difficult to learn a reward-predictive representation in an online learning

setting. Instead, the presented clustering algorithm would be used after exploring a novel task, sim-

ilar to the transfer learning simulation with multiple abstractions presented in Section 4.2.3. The

119

connection between reward-predictive representations and model construction motivates further re-

search on replay that would test if human subjects learn and re-use a latent structure across tasks

that vary in their transitions and rewards.

In the combination lock simulations (Section 5.2.2), the learn reward-predictive representation

maps different number combinations into a discrete set of latent states. This latent space is con-

junctive representation, because each number combination is mapped to a distinct one-hot vector.

Alternatively, one could also construct a disjunctive representation that separately maps each digit

into one of ten different “dial latent states”. The combination of these “dial latent states” could

then be used for predicting reward-sequences. Such a representation is disjunctive and further ex-

plores the task’s structure, similar to factored state representations [49]. A disjunctive or factored

reward-predictive representation would allow a more compositional form of knowledge re-use similar

to Kansky et al. [54], because at transfer one could only re-use and combined different reward-

predictive components. However, how to learn such factored reward-predictive representations is

left to future work.

Appendix A

Proofs of Theoretical Results

A.1 SF-learning and Q-Learning Connection (Chapter 2)

Proof of Proposition 1. Before proving the main statement, we first make the following observation.

Assuming that for some t, θθθt = FFF twww, then

www>yyys,a,r,s′ = www>

(
ξξξs,a + γ

∑
a′

b(s′, a′)ψψψπs′,a′

)
(A.1)

= r(s, a) + γ
∑
a′

b(s′, a′)www>ψψψπs′,a′ (A.2)

= r(s, a) + γ
∑
a′

b(s′, a′)www>FFF tξξξs′,a′ (A.3)

= r(s, a) + γ
∑
a′

b(s′, a′)θθθ>t ξξξs′,a′ (A.4)

= ys,a,r,s′ . (A.5)

Equation (A.3) follows by substitution with Equation (2.16). The proof of the main statement is by

induction on t.

120

121

Base Case: For t = 1, assume θθθ0 = FFF 0www. Then

www>FFF 1 = www>
(
FFF 0 + αψ (FFF 0ξξξs,a − yyys,a,r,s′)> ξξξs,a

)
(A.6)

= www>FFF 0 + αψ
(
www>FFF 0ξξξs,a −www>yyys,a,r,s′

)>
ξξξs,a (A.7)

= θθθ0 + αψ
(
θθθ>0 ξξξs,a − ys,a,r,s′

)>
ξξξs,a (A.8)

= θθθ1. (A.9)

Equation (A.8) us obtained by substituting the identity in Equation (A.5) for t = 0. Equation (A.9)

is obtained by substituting the linear TD iterate from Equation (2.13).

Induction Step: Assuming the hypothesis www>FFF t = θθθ>t holds for t and proceeding as in the base case,

then

www>FFF t+1 = www>
(
FFF t + αψ (FFF tξξξs,a − yyys,a,r,s′)> ξξξs,a

)
(A.10)

= www>FFF t + αψ
(
www>FFF tξξξs,a −www>yyys,a,r,s′

)>
ξξξs,a (A.11)

= θθθt + αψ
(
θθθ>t ξξξs,a − ys,a,r,s′

)>
ξξξs,a (A.12)

= θθθt+1. (A.13)

Hence for all t, www>FFF t = θθθt, as desired.

Note that this proof assumes that both iterates are applied for exactly the same transitions.

This assumption is not restrictive assuming that control policies are constructed using the current

parameters θθθt in the case for TD-learning or the parameters FFF t and www in the case for SF-learning.

Even in the control case, where an ε-greedy exploration strategy is used, for example, both algorithms

will produce an identical sequence of value functions and will chose actions with equal probability.

A.2 LSFM Theorems (Chapter 3)

For an equivalence relation ∼ defined on a set S, the set of all partition is denoted with S/ ∼. Each

partition [s] ∈ S/ ∼ is a subset of S and s ∈ [s].

Definition 5 (Bisimilarity [35]). For an MDP M = 〈S,A, p, r, γ〉 where 〈S,Σ, p〉 is a measurable

space with σ-algebra Σ and p is a Markov kernel labelled for each action a ∈ A. Consider an

122

equivalence relation ∼b on the state space S such that each state partition [s′] also lies in the σ-

algebra and ∀[s′] ∈ S/ ∼b, [s′] ∈ Σ. The equivalence relation ∼b is a bisimulation if

s ∼b s̃ ⇐⇒ ∀a ∈ A, Ep [r(s, a, s′)|s, a] = Ep [r(s̃, a, s′)|s̃, a] (A.14)

and ∀[s′] ∈ S/ ∼b, p([s′]|s, a) = p([s′]|s̃, a). (A.15)

Using this definition, Theorem 1 can be proven.

Proof of Theorem 1. Consider any two states s and s̃ such that φφφs = φφφs̃. For both s and s̃ we have

Ep [r(s, a, s′)|s, a] = φφφ>s wwwa = φφφ>s̃ wwwa = Ep [r(s̃, a, s′)|s̃, a] , (A.16)

and the bisimulation reward condition in Equation (A.14) holds. To show that also the bisimulation

transition condition in Equation (A.15) holds, observe that

φφφ>s = φφφ>s̃ ⇐⇒ (A.17)

φφφ>sMMMa = φφφ>s̃MMMa ⇐⇒ (A.18)

Ep [φφφs′ |s, a] = Ep [φφφs′ |s̃, a] ⇐⇒ (A.19)

n∑
i=1

p(s, a, [si])eeei =

n∑
i=1

p(s̃, a, [si])eeei, (A.20)

where [si] ⊂ S are all states that are mapped to the one-hot feature vector eeei. Each side of

the identity (A.20) computes an expectation over one-hot bit vectors and thus the ith entry of∑n
i=1 p(s, a, [si])eeei contains the probability value p(s, a, [si]). Hence both s and s̃ have equal prob-

abilities of transitioning into each state partition that is associated with eeei. Define an equivalence

relation ∼φ such that

∀s, s̃ ∈ S, φφφs = φφφs̃ ⇐⇒ s ∼φ s̃. (A.21)

Because all feature vectors φφφs are one-hot bit vectors, there are at most n partitions and the set of

all state partitions has size |S/ ∼φ | = n. Combining these observations, Equation (A.20) can be

rewritten as

∀[s′] ∈ S/ ∼φ, p([s′]|s, a) = p([s′]|s̃, a). (A.22)

By lines (A.16) and (A.22), the equivalence relation ∼φ is a bisimulation relation and if φφφs = φφφs̃

123

then both s and s̃ are bisimilar.

Lemma 2. Assume an MDP, state representation φ : S → {eee1, ..., eeen}, LSFM {FFF a,wwwa}a∈A, and

arbitrary policy π ∈ Πφ. Let FFFπ be an n×n real valued matrix with each row FFFπ(i) = Eπ
[
eee>i FFF a

∣∣s],
then

Eπ
[
φφφ>s FFF a

∣∣s] = eee>i FFF
π, (A.23)

where φφφs = eeei for some i. For a LAM {MMMa,wwwa}a∈A, let MMMπ be a n×n real-valued matrix with each

row MMMπ(i) = Eπ
[
eee>i MMMa

∣∣s], then

Eπ
[
φφφ>sMMMa

∣∣s] = eee>i MMM
π. (A.24)

Proof of Lemma 2. The first identities in (A.23) and (A.24) hold because φφφs = eeei for some i. Then,

Eπ
[
φφφ>s FFF a

∣∣s] =
∑
a

π(s, a)φφφsFFF a =
∑
a

π(s, a)eee>i FFF a = Eπ
[
eee>i FFF a

∣∣s] = FFFπ(i) = eee>i FFF
π

and

Eπ
[
φφφ>sMMMa

∣∣s] =
∑
a

π(s, a)φφφsMMMa =
∑
a

π(s, a)eee>i MMMa = Eπ
[
eee>i MMMa

∣∣s] = MMMπ(i) = eee>i MMM
π.

Definition 6 (Weighting Function). For an MDP M = 〈S,A, p, r, γ〉, let ∼ be an equivalence

relation on the state space S, creating a set of state partitions S/ ∼. Assume that each state

partition [s] is a measurable space 〈[s],Σ[s], ω[s]〉, where ω[s] is a probability measure indexed by each

partition [s] with σ-algebra Σ[s]. The function ω is called the weighting function.

Lemma 3. Assume an MDP, state representation φ : S → {eee1, ..., eeen}, LSFM {FFF a,wwwa}a∈A, and

arbitrary abstract policy π ∈ Πφ. Then,

∀s,∀a φφφ>s FFF a = φφφ>s + γEp,π [φφφs′FFF a′ |s, a] =⇒ ∀s,∀a,∃MMMa such that FFF a = III + γMMMaFFF
π, (A.25)

where the matrix FFFπ is constructed as described in Lemma 2.

124

Proof of Lemma 3. Consider an equivalence relation ∼φ that is constructed using the state repre-

sentation φ and

∀s, s̃ ∈ S, φφφs = φφφs̃ ⇐⇒ s ∼φ s̃. (A.26)

The weighting function ω models a probability distribution of density function of visiting a state s

that belongs to a state partition [s] ∈ S/ ∼φ. Because all states s ∈ [s] are mapped to the same

feature vector φφφs, we have that

Eω[s]
[φφφs] = φφφs. (A.27)

The stochastic matrix MMMa is defined for every action a as

MMMa(i, j) = Eω[s]

[
Pr
{
s
a→ eeej

}]
with φφφs = eeei, (A.28)

where Pr
{
s
a→ eeej

}
is the probability of transitioning into the state partition associated with the

latent state eeej and

Pr
{
s
a→ eeej

}
= p(s, a, [si]) such that ∀s ∈ [si], φ(s) = eeej . (A.29)

The identity in Equation (A.25) can be re-written as follows:

φφφ>s FFF a = φφφ>s + γEp,π [φφφs′FFF a′ |s, a] ⇐⇒

φφφ>s FFF a = φφφ>s + γEp [φφφs′ |s, a]FFFπ ⇐⇒ (by Lemma 2)

Eω[s]

[
φφφ>s FFF a

]
= Eω[s]

[(
φφφ>s + γEp [φφφs′ |s, a]

)
FFFπ
]

⇐⇒

φφφ>s FFF a = φφφ>s + γEω[s]
[Ep [φφφs′ |s, a]]FFFπ ⇐⇒ (by (A.27))

φφφ>s FFF a = φφφ>s + γEω[s]

 n∑
j=1

Pr
{
s
a→ eeej

}
eee>j

FFFπ ⇐⇒

φφφ>s FFF a = φφφ>s + γ
[
Eω[s]

[
Pr
{
s
a→ eee1

}]
, ...,Eω[s]

[
Pr
{
s
a→ eeen

}]]
︸ ︷︷ ︸

n-dimensional row vector, because eeej is one-hot

FFFπ ⇐⇒

φφφ>s FFF a = φφφ>s + γ [MMMa(i, 1), ...,MMMa(i, n)]FFFπ ⇐⇒ (by (A.28))

φφφ>s FFF a = φφφ>s + γφφφ>sMMMaFFF
π ⇐⇒ (by φφφs = eeei)

φφφ>s FFF a = φφφ>s (III + γMMMaFFF
π) (A.30)

125

Equation (A.30) holds for any arbitrary state s and because each state is mapped to a one of the

one-hot vectors {eee1, ..., eeen},

∀i ∈ {1, ..., n}, eee>i FFF a = eee>i (III + γMMMaFFF
π) ⇐⇒

FFF a = III + γMMMaFFF
π.

Lemma 4. Consider a state representation φ : S → {eee1, ..., eeen}, an arbitrary abstract policy π ∈ Πφ,

an LSFM {FFF a,wwwa}a∈A and LAM {MMMa,wwwa}a∈A where each transition matrix MMMa is stochastic.

Then,

FFF a = III + γMMMaFFF
π =⇒ ∃ (FFFπ)

−1
and (FFFπ)

−1
= III − γMMMπ, (A.31)

where the matrix MMMπ is constructed as described in Lemma 2.

Proof of Lemma (4). By Lemma 2, one can write for any arbitrary i

eee>i FFF
π = Eπ

[
eee>i FFF a

]
⇐⇒

eee>i FFF
π = Eπ

[
eee>i (III + γMMMaFFF

π)
]

⇐⇒ (by Lemma 3)

eee>i FFF
π = eeeiIII + γEπ

[
eee>i MMMa

]
FFFπ ⇐⇒

eee>i FFF
π = eeeiIII + γeee>i MMM

πFFFπ ⇐⇒ (by Lemma 2)

eee>i FFF
π = eeei (III + γMMMπFFFπ) (A.32)

Because Equation (A.32) holds for every i,

FFFπ = III + γMMMπFFFπ ⇐⇒

FFFπ − γMMMπFFFπ = III ⇐⇒

(III − γMMMπ)FFFπ = III.

Because MMMπ is stochastic, it has a spectral radius of at most one and all its eigenvalues λj ≤ 1.

126

Thus the matrix III − γMMMπ is invertible because

det(III − γMMMπ) ≥ det(III) + (−γ)n det(MMMπ) ≥ 1− γn det(MMMπ) = 1− γn
∏
j

λj︸ ︷︷ ︸
≤1

> 0. (A.33)

Hence FFFπ = (III − γMMMπ)
−1 ⇐⇒ (FFFπ)

−1
= III − γMMMπ.

Using these lemmas, Theorem 2 can be proven.

Proof of Theorem 2. The proof is by reducing Equation (3.10) to Equation (3.8) using the previously

established lemmas and then applying Theorem 1. Equation (3.10) can be re-written as follows:

φφφ>s FFF a = φφφ>s + γEp,π [φφφs′FFF a′ |s, a] ⇔

φφφ>s FFF a = φφφ>s + γEp [φφφs′ |s, a]FFFπ ⇔(Lem. 2)

φφφ>s FFF a(III − γMMMπ) = φφφ>s (III − γMMMπ) + γEp [φφφs′ |s, a]FFFπ(III − γMMMπ) ⇔(Lem. 4)

φφφ>s FFF a(III − γMMMπ) = φφφ>s (III − γMMMπ) + γEp [φφφs′ |s, a]FFFπ (FFFπ)
−1 ⇔(Lem. 4)

φφφ>s FFF a(III − γMMMπ) = φφφ>s (III − γMMMπ) + γEp [φφφs′ |s, a] ⇔

φφφ>s (III + γMMMaFFF
π)(III − γMMMπ) = φφφ>s (III − γMMMπ) + γEp [φφφs′ |s, a] ⇔(Lem. 3)

φφφ>s γMMMaFFF
π(III − γMMMπ) = γEp [φφφs′ |s, a] ⇔

φφφ>s γMMMa = γEp [φφφs′ |s, a] ⇔(Lem. 4)

φφφ>sMMMa = Ep [φφφs′ |s, a] (A.34)

Using the reward condition stated in Equation (3.10) and Equation (A.34) Theorem 1 can be applied

to conclude the proof.

To prove the last claim of Theorem 2, assume that

φφφ>s FFF a = φφφ>s + γEp,π [φφφs′FFF a′ |s, a] (A.35)

for some policy π ∈ Πφ. Consider an arbitrary distinct policy π̃ ∈ Πφ, then the fixed-point Eq. (A.35)

127

can be re-stated in terms of then policy π̃:

φφφ>s FFF a = φφφ>s + γEp,π [φφφs′FFF a′ |s, a] ⇔ (A.36)

φφφ>sMMMa = Ep [φφφs′ |s, a] ⇔(Eq. (A.34)) (A.37)

γφφφ>sMMMaFFF
π̃ = γEp [φφφs′ |s, a]FFF π̃ ⇔(multiply with FFF π̃ and γ) (A.38)

φφφ>s + γφφφ>sMMMaFFF
π̃ = φφφ>s + γEp [φφφs′ |s, a]FFF π̃ ⇔(add φφφs) (A.39)

φφφ>s (III + γMMMaFFF
π̃) = φφφ>s + γEp [φφφs′ |s, a]FFF π̃ ⇔ (A.40)

φφφ>s FFF a = φφφ>s + γEp [φφφs′ |s, a]FFF π̃ ⇔(Lem. 3) (A.41)

φφφ>s FFF a = φφφ>s + γEp,π̃ [φφφs′FFF a|s, a] ⇔(Lem. 2) (A.42)

This argument shows that if Eq. (A.35) holds for a policy π, then Eq. (A.42) also holds for other

arbitrary policy π̃.

A.2.1 Approximate Reward-Predictive State Representations

This section presents formal proofs for Theorem 3 and 4. While the following proofs assume that

the matrix FFF is defined as stated in Equation (3.18), these proofs could be generalized to different

definitions of FFF , assuming that the matrix FFF is not a function of the state s and only depends on

the matrices {FFF a}a∈A.

Lemma 5. For an MDP, a state representation φ, a LSFM {FFF a,wwwa}a∈A and a LAM {MMMa,wwwa}a∈A

where ∆ = 0,

εp ≤ εψ
1 + γM

γ
. (A.43)

Proof of Lemma 5. The proof is by manipulating the definition of εψ and using the fact that ∆ = 0

and FFF a = III + γMMMaFFF . Let M = 1
|A|
∑
a∈AMMMa, then

FFF = III + γMMMFFF ⇐⇒ III = (III − γMMM)FFF (A.44)

Hence the square matrix III − γMMM is a left inverse of the square matrix FFF . By associativity of matrix

multiplication, III + γMMM is also a right inverse of FFF and FFF (III − γMMM).1 Consequently, the norm of FFF
−1

1If FFF
−1
FFF = III then FFF = FFFIII = FFF (FFF

−1
FFF) = (FFFFFF

−1
)FFF . If FFF

−1
FFF 6= III were true, then it would contradict

FFF = (FFFFFF
−1

)FFF . Hence FFFFFF
−1

= III and the right inverse exists.

128

can be bounded with ∣∣∣∣∣∣FFF−1∣∣∣∣∣∣ =
∣∣∣∣(III − γFFF)

∣∣∣∣ ≤ 1 + γM. (A.45)

For an arbitrary state and action pair s, a,

δδδ>s,a = φφφ>s + γEp
[
φφφ>s′FFF

∣∣s, a]−φφφ>s FFF a (A.46)

= φφφ>s + γEp
[
φφφ>s′FFF

∣∣s, a]− γφφφ>sMMMaFFF + γφφφ>sMMMaFFF −φφφ>s FFF a (A.47)

= φφφ>s + γ
(
Ep
[
φφφ>s′
∣∣s, a]−φφφ>sMMMa

)
FFF + γφφφ>sMMMaFFF −φφφ>s FFF a (A.48)

Let εεε>s,a = Ep
[
φφφ>s′
∣∣s, a]−φφφ>sMMMa. Re-arranging the identity in (A.48) results in

γεεε>s,aFFF = δδδ>s,a −φφφ>s − γφφφ>sMMMaFFF +φφφ>s FFF a ⇐⇒

γεεε>s,a = δδδ>s,aFFF
−1 −φφφ>s FFF

−1 − γφφφ>sMMMa +φφφ>s FFF aFFF
−1 ⇐⇒ (by (A.44))

γεεε>s,a = δδδ>s,aFFF
−1 −φφφ>s FFF

−1 − γφφφ>sMMMa +φφφ>s (III + γMMMaFFF)FFF
−1 ⇐⇒ (by ∆ = 0)

γεεε>s,a = δδδ>s,aFFF
−1 −φφφ>s FFF

−1 − γφφφ>sMMMa +φφφ>s FFF
−1

+ γφφφ>sMMMa ⇐⇒

γεεε>s,a = δδδ>s,aFFF
−1 ⇐⇒

γ
∣∣∣∣εεε>s,a∣∣∣∣ ≤ ∣∣∣∣δδδ>s,a∣∣∣∣ ∣∣∣∣∣∣FFF−1∣∣∣∣∣∣ ⇐⇒

γ
∣∣∣∣εεε>s,a∣∣∣∣ ≤ εψ ∣∣∣∣∣∣FFF−1∣∣∣∣∣∣ ⇐⇒ (by (3.19))∣∣∣∣εεε>s,a∣∣∣∣ ≤ εψ(1 + γM)/γ ⇐⇒ (by (A.45)) (A.49)

Note that the bound in Equation (A.49) does not depend on the state and action pair s, a and thus

∀s, a,
∣∣∣∣Ep [φφφ>s′ ∣∣s, a]−φφφ>sMMMa

∣∣∣∣ ≤ εψ(1 + γM)/γ =⇒ εp ≤ εψ(1 + γM)/γ. (A.50)

The following lemma is a restatement of Lemma 1 in the main paper.

Lemma 6. For an MDP, a state representation φ, a LSFM {FFF a,wwwa}a∈A and a LAM {MMMa,wwwa}a∈A

where ∆ ≥ 0,

εp ≤ εψ
1 + γM

γ
+ Cγ,M,N∆, (A.51)

where Cγ,M,N = (1+γ)(1+γM)N
γ(1−γM)

129

Proof. The proof reuses and extends the bound shown in Lemma 5. Using the LAM {MMMa,wwwa}a∈A,

construct an LSFM {FFF ∗a,www∗a}a∈A such that

FFF ∗a = III + γMMMa
1

|A|
∑
a∈A

FFF ∗a︸ ︷︷ ︸
=FFF
∗

. (A.52)

If

ε∗ψ = sup
s,a

∣∣∣φφφ>s + γEp
[
φφφ>s′FFF

∗
∣∣∣s, a]−φφφ>s FFF ∗a∣∣∣ , (A.53)

then

εp ≤ ε∗ψ
1 + γM

γ
, (A.54)

by Lemma 5. By linearity of the expectation operator, the SF-error for the LSFM {FFF ∗a,www∗a}a∈A and

LSFM {FFF a,wwwa}a∈A can be founded for any arbitrary state and action pair s, a with

∣∣∣∣∣∣ (φφφ>s + γEp
[
φφφ>s′FFF

∗
∣∣∣s, a]−φφφ>s FFF ∗a)︸ ︷︷ ︸

=δδδ∗s,a

−
(
φφφ>s + γEp

[
φφφ>s′FFF

∣∣s, a]−φφφ>s FFF a)︸ ︷︷ ︸
δδδs,a

∣∣∣∣∣∣ (A.55)

≤ γN
(
FFF
∗ −FFF

)
+N (FFF ∗a −FFF a) . (A.56)

As stated in Equation (A.55), the SF errors for the LSFM {FFF a,wwwa}a∈A are defined as δδδs,a and for

the LSFM {FFF ∗a,www∗a}a∈A as δδδ∗s,a. Because the LSFM {FFF a,wwwa}a∈A has a ∆ > 0, we define

∆∆∆ =
1

|A|
∑
a

III + γMMMaFFF −FFF a (A.57)

= III + γMMMFFF −FFF . (A.58)

By Equation (A.57), ||∆∆∆|| ≤ 1
|A|
∑
a ||III + γMMMaFFF − FFF a|| ≤ ∆ (by triangle inequality). Reusing

Equation (A.58) one can write,

FFF
∗ −FFF = III + γMMMFFF

∗ − III − γMMMFFF + ∆∆∆ (A.59)

= γMMM(FFF
∗ −FFF) + ∆∆∆ (A.60)

⇐⇒ ||FFF ∗ −FFF || ≤ γM ||FFF ∗ −FFF ||+ ∆ (A.61)

⇐⇒ ||FFF ∗ −FFF || ≤ ∆

1− γM
(A.62)

130

Similarly, define

∆∆∆a = III + γMMMaFFF −FFF a, (A.63)

then,

FFF ∗a −FFF a = III + γMMMaFFF
∗ − III − γMMMaFFF + ∆∆∆a (A.64)

= γMMMa(FFF
∗ −FFF) + ∆∆∆a (A.65)

⇐⇒ ||FFF ∗a −FFF a|| ≤ γM ||FFF
∗ −FFF ||+ ∆ (A.66)

≤ γM ∆

1− γM
+ ∆ (A.67)

=
∆

1− γM
(A.68)

Substituting lines (A.62) and (A.68) into (A.56),

∣∣∣∣δδδ∗s,a − δδδs,a∣∣∣∣ ≤ (1 + γ)N∆

1− γM
. (A.69)

For both LSFM {FFF a,wwwa}a∈A and {FFF ∗a,www∗a}a∈A, the worst case SF prediction errors εψ and ε∗ψ are

defined as

εψ = sup
s,a
||δδδs,a|| and ε∗ψ = sup

s,a
||δδδ∗s,a||. (A.70)

To find a bound on |εψ − ε∗φ|, the maximizing state and action pairs are defined as

ssup, asup = arg sup
s,a
||δδδs,a|| and s∗sup, a

∗
sup = arg sup

s,a
||δδδ∗s,a||. (A.71)

If (ssup, asup) = (s∗sup, a
∗
sup) then

∣∣εψ − ε∗ψ∣∣ ≤ (1 + γ)N∆

1− γM
. (by (A.69)) (A.72)

131

If (ssup, asup) 6= (s∗sup, a
∗
sup) and εψ ≥ ε∗ψ, then

εψ − ε∗ψ =
∣∣∣∣δδδssup,asup

∣∣∣∣− ∣∣∣∣δδδ∗s∗sup,a∗sup ∣∣∣∣ (A.73)

≤
∣∣∣∣δδδssup,asup

∣∣∣∣− ∣∣∣∣δδδ∗ssup,asup ∣∣∣∣ (by (A.71)) (A.74)

≤
∣∣∣∣δδδssup,asup − δδδ∗ssup,asup

∣∣∣∣ (by inv. triangle in eq.) (A.75)

≤ (1 + γ)N∆

1− γM
. (by (A.69)) (A.76)

If (ssup, asup) 6= (s∗sup, a
∗
sup) and ε∗ψ ≥ εψ, then

ε∗ψ − εψ =
∣∣∣∣δδδ∗s∗sup,a

∗
sup

∣∣∣∣− ∣∣∣∣δδδssup,asup ∣∣∣∣ (A.77)

≤
∣∣∣∣δδδ∗s∗sup,a

∗
sup

∣∣∣∣− ∣∣∣∣δδδs∗sup,a∗sup ∣∣∣∣ (by (A.71)) (A.78)

≤
∣∣∣∣δδδ∗s∗sup,a

∗
sup
− δδδs∗sup,a∗sup

∣∣∣∣ (by inv. triangle ineq.) (A.79)

≤ (1 + γ)N∆

1− γM
. (by (A.69)) (A.80)

By lines (A.72), (A.76), and (A.80),

∣∣εψ − ε∗ψ∣∣ ≤ (1 + γ)N∆

1− γM
=⇒ ε∗ψ ≤ εψ +

(1 + γ)N∆

1− γM
. (A.81)

Substituting (A.81) into (A.54) results in the desired bound:

εp ≤ ε∗ψ
1 + γM

γ
≤
(
εψ +

(1 + γ)N∆

1− γM

)
1 + γM

γ
= εψ

1 + γM

γ
+

(1 + γ)(1 + γM)N

γ(1− γM)
∆. (A.82)

Using these lemmas, Theorem 3 can be proven.

Proof of Theorem 3. The proof is by induction on the sequence length T .

Base Case: For T = 1,

∣∣φφφ>s wwwa1 − Ep [r1|s, a1]
∣∣ =

∣∣φφφ>s wwwa1 − r(s, a1)
∣∣ ≤ εr. (A.83)

132

Induction Step: Assume that the bound (3.22) holds for T , then for T + 1,

∣∣φφφ>sMMMa1 · · ·MMMaTwwwaT+1
− Ep [rT+1|s, a1, ..., aT+1]

∣∣ (A.84)

=
∣∣∣φφφ>sMMMa1 · · ·MMMaTwwwaT+1

− Ep
[
φφφ>s2MMMa2 · · ·MMMaTwwwaT+1

∣∣s, a1]
+ Ep

[
φφφ>s2MMMa2 · · ·MMMaTwwwaT+1

∣∣s, a1]− Ep [rT+1|s, a1, ..., aT+1]
∣∣∣ (A.85)

≤
∣∣∣ (φφφ>sMMMa1 − Ep

[
φφφ>s2
∣∣s, a1])MMMa2 · · ·MMMaTwwwaT+1

∣∣∣
+
∣∣∣Ep [φφφ>s2MMMa2 · · ·MMMaTwwwaT+1

∣∣s, a1]− Ep [rT+1|s, a1, ..., aT+1]
∣∣∣ (A.86)

≤
∣∣∣∣∣∣φφφ>sMMMa1 − Ep

[
φφφ>s2
∣∣s, a1] ∣∣∣∣∣∣ · ∣∣∣∣∣∣MMMa2 · · ·MMMaTwwwaT+1

∣∣∣∣∣∣
+
∣∣∣Ep [φφφ>s2MMMa2 · · ·MMMaTwwwaT+1

∣∣s, a1]− Ep [rT+1|s, a1, ..., aT+1]
∣∣∣

≤
∣∣∣∣∣∣φφφ>sMMMa1 − Ep

[
φφφ>s2
∣∣s, a1] ∣∣∣∣∣∣ · ∣∣∣∣∣∣MMMa2 · · ·MMMaTwwwaT+1

∣∣∣∣∣∣
+
∣∣∣Ep [φφφ>s2MMMa2 · · ·MMMaTwwwaT+1

− Ep [rT+1|s1, a2..., aT+1]
∣∣s, a1] ∣∣∣ (A.87)

≤ εpMT−1W

+ εp

T−1∑
t=1

M tW + εr (A.88)

= εp

(T+1)−1∑
t=1

M tW + εr. (A.89)

Theorem 6. For an MDP, state representation φ : S → Rn, and for all T ≥ 1, s, a1, ..., aT ,

∣∣φφφ>sMMMa1 · · ·MMMaT−1
wwwaT − Ep [rT |s, a1, ..., aT]

∣∣ ≤ (εψ 1 + γM

γ
+ Cγ,M,N∆

) T−1∑
t=1

M tW + εr.

Proof of Theorem 6. The proof is by reusing the bound in Theorem 3 and substituting εp with the

bound presented in Lemma 1.

Theorem 4, which is stated in the main paper, can be proven as follows.

133

Proof of Theorem 4. The value error term can be upper-bounded with

∣∣V π(s)−φφφ>s vvvπ
∣∣ ≤∑

a∈A
π(s, a)

∣∣r(s, a) + γEp [V π(s′)|s, a]−φφφ>s wwwa − γφφφ>sMMMavvv
π
∣∣ (A.90)

≤
∑
a∈A

π(s, a)
∣∣r(s, a)−φφφ>s wwwa

∣∣+ γ
∣∣Ep [V π(s′)|s, a]−φφφ>sMMMavvv

π
∣∣ (A.91)

The second term in Equation (A.91) is bounded by

∣∣Ep [V π(s′)|s, a]−φφφ>sMMMavvv
π
∣∣

=
∣∣Ep [V π(s′)|s, a]− Ep

[
φφφ>s′vvv

π
∣∣s, a]+ Ep

[
φφφ>s′vvv

π
∣∣s, a]−φφφ>sMMMavvv

π
∣∣

= sup
s

∣∣V π(s)−φφφ>s vvvπ
∣∣+
∣∣Ep [φφφ>s′vvvπ∣∣s, a]−φφφ>sMMMavvv

π
∣∣

= sup
s

∣∣V π(s)−φφφ>s vvvπ
∣∣+
∣∣∣∣Ep [φφφ>s′ ∣∣s, a]−φφφ>sMMMa

∣∣∣∣ ||vvvπ||
= sup

s

∣∣V π(s)−φφφ>s vvvπ
∣∣+ εp ||vvvπ|| (A.92)

Substituting (A.92) into (A.91) results in

∣∣V π(s)−φφφ>s vvvπ
∣∣ ≤∑

a∈A
π(s, a)

(∣∣r(s, a)−φφφ>s wwwa
∣∣+ γ

(
sup
s

∣∣V π(s)−φφφ>s vvvπ
∣∣+ εp ||vvvπ||

))
. (A.93)

Let B = sups
∣∣V π(s)−φφφ>s vvvπ

∣∣, then

∣∣V π(s)−φφφ>s vvvπ
∣∣ ≤∑

a∈A
π(s, a)(εr + γ (B + εp ||vvvπ||))

= εr + γB + γεp ||vvvπ|| (A.94)

The bound in Equation (A.94) does not depend on any particular state and action pair s, a and thus

∀s, a,
∣∣V π(s)−φφφ>s vvvπ

∣∣ ≤ εr + γB + γεp ||vvvπ|| =⇒ B ≤ εr + γB + γεp ||vvvπ||

=⇒ B ≤ εr + γεψ ||vvvπ||
1− γ

. (A.95)

To bound the Q-value function,

∣∣Qπ(s, a)−φφφ>s qqqa
∣∣ ≤ ∣∣r(s, a) + γEp [V π(s′)|s, a]−φφφ>s wwwa − γφφφ>sMMMavvv

π
∣∣ , (A.96)

134

which is similar to Equation (A.91) and the proof proceeds in the same way. The LSFM bound

εr + γεp ||vvvπ||
1− γ

≤ εr + εψ(1 + γM) ||vvvπ||+ γCγ,M,N∆ ||vvvπ||
1− γ

(A.97)

follows by Lemma 1.

A.2.2 Bound on Error Term ∆

The following proposition formally proofs the bound presented in Equation (3.25).

Proposition 2. For a data set D = {(si, ai, ri, s′i)}
D
i=1,

∆ ≤ max
a
||ΦΦΦ+

a ||22Lψ, (A.98)

where each row of ΦΦΦa is set to a row-vector φφφs for a transition (s, a, r, s′) ∈ D that uses action a,

and ΦΦΦ+
a is the pseudo-inverse of ΦΦΦa.

Proof of Proposition 2. For a data set D = {(si, ai, ri, s′i)}
D
i=1, construct the matrix ΦΦΦa and similarly

construct the matrix ΦΦΦ′a where each row of ΦΦΦ′a is set to a row-vector φφφs′ for a transition (s, a, r, s′) ∈ D

that uses action a. The transition matrix of a LAM can be obtained using a least squares regression

and

MMMa = arg min
MMM
||ΦΦΦaMMM −ΦΦΦ′a||22 =⇒ MMMa = ΦΦΦ+

aΦΦΦ′a, (A.99)

where ΦΦΦ+
a is the pseudo-inverse of ΦΦΦa. Using this notation, one can write

ΦΦΦa + γΦΦΦ′aFFF −ΦΦΦaFFF a = LLLa ⇐⇒ (A.100)

ΦΦΦ+
aΦΦΦa + γΦΦΦ+

aΦΦΦ′aFFF −ΦΦΦ+
aΦΦΦaFFF a = ΦΦΦ+

aLLLa ⇐⇒ (A.101)

III + γMMMaFFF −FFF a = ΦΦΦ+
aLLLa ⇐⇒ (A.102)

||III + γMMMaFFF −FFF a||22 ≤ ||ΦΦΦ+
a ||22||LLLa||22. (A.103)

Note that Lψ =
∑
a∈ALLLa, and thus

∆ = max
a
||III + γMMMaFFF −FFF a||22 ≤ max

a
||ΦΦΦ+

a ||22Lψ. (A.104)

135

A.3 Convergence Proofs of Clustering Algorithm

A.3.1 Norm Identities

Before presenting the convergence proof, we first define the following quantities and prove identities

of their norms.

We now define the empirical partition-to-partition transition matrices as counting the empirical

probabilities of transitioning from a partition i to a partition j. This transition matrix is equivalent

to finding the transition matrices {MMMa}a∈A of a LAM and then computing MMM = 1
|A|
∑
a∈AMMMa.

Definition 7 (Empirical Partition Transition Matrix). For a transition dataset D and cluster func-

tion c, we define an empirical partition-to-partition transition matrix MMM as

MMM(i, j) =
|{(s, a, r, s′) ∈ D|c(s) = i ∧ c(s′) = j}|

|{(s, a, r, s′) ∈ D|c(s) = i}|
. (A.105)

Note that the matrix MMM(i, j) is left-stochastic and all rows sum to one.

For the following lemma we consider the L1 matrix norm which is defined for a matrix

||AAA||1 = max
j

∑
i

|AAA(i, j)|. (A.106)

Lemma 7. For a transition dataset D and cluster function c, we can compute the L1 matrix norm

of the normalized SF matrix (1− γ)FFF with

∣∣∣∣∣∣(1− γ)FFF
>
∣∣∣∣∣∣
1

= 1. (A.107)

Further, the L1 matrix norm of 1− γ scaled transposed inverse of FFF is

∣∣∣∣∣∣(FFF−1)>/(1− γ)
∣∣∣∣∣∣
1

= 1. (A.108)

Note that FFF = (III − γMMM)−1.

Proof. The proof of both identities proceeds by showing that all rows sum to one. Consider the

left-stochastic transition matrix MMM (for some cluster function c and dataset D). Each row of MMM

136

sums to one. Consequently, each column of MMM
>

sums to one and

∣∣∣∣∣∣MMM>∣∣∣∣∣∣
1

= max
j

∑
i

∣∣∣MMM>(i, j)
∣∣∣ = max

i

∑
j

∣∣∣MMM(i, j)
∣∣∣︸ ︷︷ ︸

=1

= 1. (A.109)

Further, multiplying multiple left-stochastic matrices with themselves results in a left-stochastic

matrix. Consequently each row the matrix product MMM
t

for some integer t ≥ 1 sums to one and

∣∣∣∣∣∣∣∣(MMM t
)>∣∣∣∣∣∣∣∣

1

= max
j

∑
i

∣∣∣∣(MMM t
)>

(i, j)

∣∣∣∣ = max
i

∑
j

∣∣∣(MMM t
)

(i, j)
∣∣∣︸ ︷︷ ︸

=1

= 1. (A.110)

We assume that the matrices {FFF a}a∈A are constructed such that Equation (3.21), the matching

condition FFF a = III+γMMMaFFF , holds for every action a. Here, each entryMMMa(i, j) describes the empirical

probability of transitioning from partition i to partition j when action a is selected. Because the

matrix FFF = 1
|A|
∑
a∈AFFF a and the matrix MMM = 1

|A|
∑
a∈AMMMa, we have that

FFF = III + γMMM =

∞∑
t=1

γt−1MMM
t−1

. (A.111)

Transposing and scaling this matrix by a factor 1− γ results in the identity

(1− γ)FFF = (1− γ)

∞∑
t=1

γt−1MMM
t−1

. (A.112)

Each row of the matrix (1− γ)FFF sums to one, because for an arbitrary row i,

∑
j

(
(1− γ)FFF

)
(i, j) =

∑
j

(
(1− γ)

∞∑
t=1

γt−1MMM
t−1
)

(i, j) (A.113)

=
∑
j

(1− γ)

∞∑
t=1

γt−1MMM
t−1

(i, j) (A.114)

= (1− γ)

∞∑
t=1

γt−1
∑
j

MMM
t−1

(i, j)︸ ︷︷ ︸
=1

(A.115)

= (1− γ)

∞∑
t=1

γt−1 (A.116)

= 1, (A.117)

137

where line (A.114) follows by the distributive and commutative property of addition and multipli-

cation between matrices and scalars. Line (A.116) follows by using the closed-form solution of a

geometric series, and
∑∞
t=1 γ

t−1 = 1
1−γ . Because each row of the matrix (1− γ)FFF sums to one, we

obtain Equation (A.107):

∣∣∣∣∣∣(1− γ)FFF
>
∣∣∣∣∣∣
1

= max
j

∑
i

∣∣∣((1− γ)FFF
>)

(i, j)
∣∣∣ = max

i

∑
j

∣∣(1− γ)FFF (i, j)
∣∣

︸ ︷︷ ︸
=1 by line (A.117)

= 1. (A.118)

For Equation (A.108), we consider an arbitrary row i and compute

∑
j

(
III − γMMM

)
(i, j) = 1− γ

∑
j

MMM(i, j)︸ ︷︷ ︸
=1

= 1− γ, (A.119)

where the first equality follows from III being the identity matrix and the second equality follows

from each row of MMM summing to one because MMM is left-stochastic. Consequently,

∣∣∣∣∣∣(FFF−1)>/(1− γ)
∣∣∣∣∣∣
1

=
∣∣∣∣∣∣(III − γMMM)>/(1− γ)

∣∣∣∣∣∣
1

(A.120)

= max
j

∑
i

(III − γMMM)>(i, j)/(1− γ) (A.121)

= max
i

∑
j

(III − γMMM)(i, j)︸ ︷︷ ︸
=1−γ

/(1− γ) (A.122)

=
1− γ
1− γ

(by Eq. (A.119)) (A.123)

= 1. (A.124)

Definition 8 (LAM Feature Descriptor). For a cluster function c and a transition dataset D, we

define the LAM feature descriptor as

ηηη(s, a; c) =
1

|D(s, a)|
∑

(s,a,r,s′)∈D(s,a)

eeec(s′). (A.125)

Definition 9. For two cluster functions c and c∗ such that c ∈ C(c∗), the indices of each partition

138

in clustering c∗ that are contained in partition i in clustering c is

I(i) = {j|∃s.c(s) = i ∧ c∗(s) = j}. (A.126)

Definition 10. For two cluster functions c and c∗ such that c ∈ C(c∗), the projection matrix ΦΦΦ is

defined as

ΦΦΦ(i, j) = 111[i∈I(j)], (A.127)

where the right side of Equation (A.127), is an indicator function that evaluates to one if i ∈ I(j).

This matrix is of size n×m, where n is the number of partitions induced by c∗, m is the number of

partitions induced by c, and n ≥ m because c ∈ C(c∗).

Lemma 8. For two cluster functions c and c∗ such that c ∈ C(c∗),

∣∣∣∣ΦΦΦ>∣∣∣∣
1

= 1 (A.128)

Proof. Because c ∈ C(c∗), each row index i can only occur in one index set I(j). In other words, if

i ∈ I(j) then i 6∈ I(j̃) for j 6= j̃. Therefore, exactly one entry in each row of the matrix ΦΦΦ is set to

one and each row sums to one:

∀i,
∑
j

ΦΦΦ(i, j) = 1. (A.129)

Consequently, ∣∣∣∣ΦΦΦ>∣∣∣∣
1

= max
j

∑
i

∣∣(ΦΦΦ>) (i, j)
∣∣ = max

i

∑
j

|ΦΦΦ(i, j)|︸ ︷︷ ︸
=1

= 1. (A.130)

A.3.2 Sub-Cluster Properties

The convergence proof of the clustering algorithm presented in Chapter 5 argues in part by induction

on the set of all possible sub-cluster.

Definition 11 (Sub-Cluster). For a cluster function c∗ the set of all sub-cluster is defined as

C(c∗) = {c : S → N|∀s, s̃, c(s) 6= c(s̃) =⇒ c∗(s) 6= c∗(s̃)}. (A.131)

139

An element c ∈ C(c∗) is a sub-clustering of c∗, because if c separates two different states, then

they are also separated in c∗. This set of sub-cluster is closed under intersection.

Lemma 9 (Closed Under Intersection). If c, c̃ ∈ C(c∗) for some cluster function c∗, then c∩c̃ ∈ C(c∗)

where c ∩ c̃ intersects the cluster function c and c̃ and for any two states s and s̃,

(c ∩ c̃)(s) = (c ∩ c̃)(s̃) ⇐⇒ c(s) = c(s̃) and c̃(s) = c̃(s̃). (A.132)

Proof. Consider an arbitrary cluster function c∗. Negating line (A.132) we have hat

(c ∩ c̃)(s) 6= (c ∩ c̃)(s̃) ⇐⇒ c(s) 6= c(s̃) or c̃(s) 6= c̃(s̃). (A.133)

for two states s and s̃. Because c, c̃ ∈ C(c∗),

(c(s) 6= c(s̃) =⇒ c∗(s) 6= c∗(s̃)) (A.134)

and (c̃(s) 6= c̃(s̃) =⇒ c∗(s) 6= c∗(s̃)) (A.135)

=⇒ ((c ∩ c̃)(s) 6= (c ∩ c̃)(s̃) =⇒ c∗(s) 6= c∗(s̃)) (A.136)

=⇒ c ∩ c̃ ∈ C(c∗). (A.137)

Before proving a property relating the feature descriptor vectors ξξξ between different sub-clusterings,

we first focus on the LAM feature descriptor vector ηηη.

Lemma 10. For a cluster function c∗, and two states s and s̃ occuring in a transition dataset,

∀c ∈ C(c∗),
∣∣∣∣∣∣ηηη(s, a; c)− ηηη(s̃, a; c)

∣∣∣∣∣∣
1
≤
∣∣∣∣∣∣ηηη(s, a; c∗)− ηηη(s̃, a; c∗)

∣∣∣∣∣∣
1

(A.138)

Proof. We first observe that in each row of the matrix ΦΦΦ exactly one entry is set to one (as stated

in the proof of Lemma 8), and for any state s we have by construction of ΦΦΦ that

eee>c(s) = eee>c∗(s)ΦΦΦ. (A.139)

140

Using the projection matrix ΦΦΦ we can express ηηη(s, a; c) in terms of ηηη(s, a; c∗):

(ηηη(s, a; c))> =
1

|D(s, a)|
∑

(s,a,r,s′)∈D(s,a)

eee>c(s′) (by Definition 8) (A.140)

=
1

|D(s, a)|
∑

(s,a,r,s′)∈D(s,a)

eee>c∗(s)ΦΦΦ (by Equation (A.139)) (A.141)

= (ηηη(s, a; c∗))>ΦΦΦ (by Definition 8) (A.142)

⇐⇒ ηηη(s, a; c) = ΦΦΦ>ηηη(s, a; c∗) (A.143)

Using identity (A.143), we can obtain the bound (A.138):

∣∣∣∣∣∣ηηη(s, a; c)− ηηη(s̃, a; c)
∣∣∣∣∣∣
1

=
∣∣∣∣∣∣ΦΦΦ>ηηη(s, a; c∗)−ΦΦΦ>ηηη(s̃, a; c∗)

∣∣∣∣∣∣
1

(by Eq. (A.143)) (A.144)

=
∣∣∣∣∣∣ΦΦΦ>(ηηη(s, a; c∗)− ηηη(s̃, a; c∗)

)∣∣∣∣∣∣
1

(A.145)

≤
∣∣∣∣∣∣ΦΦΦ>∣∣∣∣∣∣

1︸ ︷︷ ︸
=1

∣∣∣∣∣∣ηηη(s, a; c∗)− ηηη(s̃, a; c∗)
∣∣∣∣∣∣
1

(by Lemma (8)) (A.146)

=
∣∣∣∣∣∣ηηη(s, a; c∗)− ηηη(s̃, a; c∗)

∣∣∣∣∣∣
1

(A.147)

Now we prove a property relating the feature descriptor vectors ξξξ between different sub-clusterings.

Lemma 11. For a cluster function c∗, and two states s and s̃ occurring in a transition data set,

∀c ∈ C(c∗),
∣∣∣∣∣∣ξξξ(s, c)− ξξξ(s̃, c)∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣ξξξ(s, c∗)− ξξξ(s̃, c∗)∣∣∣∣∣∣

1
(A.148)

Proof. Because ξξξ concatenates the SF vectors ψψψ for all actions, we first focus on these SF vectors.

We can express ψψψ(s, a;φφφ) in terms of ηηη(s, a; c) for a representation function φφφ : s 7→ eeec(s). Using

Equations (5.7) and (A.125) we can express ψψψ(s, a;φφφ) in terms of ηηη(s, a; c) for a representation

function φφφ : s 7→ eeec(s):

(ψ(s, a;φφφ))> =
1

|D(s, a)|
∑

(s,a,r,s′)∈D(s,a)

(1− γ)eee>c(s′)FFF (by Eq. (5.7)) (A.149)

= (φφφ(s, a; c))>(1− γ)FFF . (by Eq. (A.125)) (A.150)

141

For the cluster function c∗ and the corresponding representation function φφφ∗ : s 7→ eeec∗(s) we denote

the SF matrix with FFF
∗

and

(ψ(s, a;φφφ∗))> = (φφφ(s, a; c∗))>(1− γ)FFF
∗
. (A.151)

By invertibility of FFF
∗

(Lemma 4), we can transform Equation (A.151):

ψ(s, a;φφφ∗) = (1− γ)(FFF
∗
)>ηηη(s, a; c∗) (A.152)

⇐⇒ ((FFF
∗
)−1)>ψ(s, a;φφφ∗)/(1− γ) = ηηη(s, a; c∗) (A.153)

Further, by Equation (A.143)

φφφ(s, a; c) = ΦΦΦ>φφφ(s, a; c∗) (A.154)

and we can express the SF vector ψ(s, a;φφφ) in terms of the vector ψ(s, a;φφφ∗):

ψψψ(s, a;φφφ) = FFF
>
ηηη(s, a; c) (A.155)

= (1− γ)FFF
>

ΦΦΦ>ηηη(s, a; c∗) (by Eq. (A.143)) (A.156)

= (1− γ)FFF
>

ΦΦΦ>((FFF
∗
)−1)>ψψψ(s, a;φφφ∗)/(1− γ) (by Eq. (A.153)) (A.157)

= FFF
>

ΦΦΦ>((FFF
∗
)−1)>ψψψ(s, a;φφφ∗) (A.158)

Using Equation (A.158), we can bound the difference in SF vectors for two arbitrary states s and s̃:

∣∣∣∣∣∣ψψψ(s, a;φφφ)−ψψψ(s̃, a;φφφ)
∣∣∣∣∣∣
1

=
∣∣∣∣∣∣FFF>ΦΦΦ>((FFF

∗
)−1)>ψψψ(s, a;φφφ∗)−FFF>ΦΦΦ>((FFF

∗
)−1)>ψψψ(s̃, a;φφφ∗)

∣∣∣∣∣∣
1

(A.159)

≤
∣∣∣∣∣∣FFF>ΦΦΦ>((FFF

∗
)−1)>

∣∣∣∣∣∣
1

∣∣∣∣∣∣ψψψ(s, a;φφφ∗)−ψψψ(s̃, a;φφφ∗)
∣∣∣∣∣∣
1

(A.160)

≤
∣∣∣∣∣∣FFF>∣∣∣∣∣∣

1︸ ︷︷ ︸
=1

∣∣∣∣∣∣ΦΦΦ>∣∣∣∣∣∣
1︸ ︷︷ ︸

=1

∣∣∣∣∣∣((FFF ∗)−1)>
∣∣∣∣∣∣
1︸ ︷︷ ︸

=1

∣∣∣∣∣∣ψψψ(s, a;φφφ∗)−ψψψ(s̃, a;φφφ∗)
∣∣∣∣∣∣
1

(A.161)

=
∣∣∣∣∣∣ψψψ(s, a;φφφ∗)−ψψψ(s̃, a;φφφ∗)

∣∣∣∣∣∣
1
. (A.162)

Line (A.162) follows by lemmas 8 and 7 and the previous two lines by properties of the matrix

142

p-norm || · ||1 (where p = 1). Because the vector ξξξ concatenates the vectors ψψψ for each action,

∀c ∈ C(c∗),
∣∣∣∣∣∣ξξξ(s, c)− ξξξ(s̃, c)∣∣∣∣∣∣

1
=
∑
a∈A

∣∣∣∣∣∣ψψψ(s, a;φφφ)−ψψψ(s̃, a;φφφ)
∣∣∣∣∣∣
1

(A.163)

≤
∑
a∈A

∣∣∣∣∣∣ψψψ(s, a;φφφ∗)−ψψψ(s̃, a;φφφ∗)
∣∣∣∣∣∣
1

(by Eq. (A.162)) (A.164)

=
∣∣∣∣∣∣ξξξ(s, c∗)− ξξξ(s̃, c∗)∣∣∣∣∣∣

1
. (A.165)

Now we prove a property about the separability of the vectors rrr and ξξξ that are constructed for

sub-clustering. Because the following lemma is needed for the convergence proof of the clustering

algorithm, the separability assumption (Assumption 4) is necessary.

Lemma 12 (Vector Separability of Sub-Cluster). Assume a maximally compressed reward-predictive

cluster function c∗ and values ε̂r, ε̂ψ > 0 that satisfy Assumption 4. Then, for any c, c̃ ∈ C(c∗) such

that c(s) 6= c(s̃) =⇒ c̃(s) 6= c̃(s̃),

c(s) 6= c(s̃) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 > ε̂r or ||ξ̂ξξ(s, c̃)− ξ̂ξξ(s̃, c̃)||1 > ε̂ψ. (A.166)

Proof of Lemma 12. By Assumption 4,

c∗(s) 6= c∗(s̃) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 > ε̂r or ||ξ̂ξξ(s, c∗)− ξ̂ξξ(s̃, c∗)||1 > ε̂ψ. (A.167)

By inversion of the implication, we have that

||r̂rr(s)− r̂rr(s̃)||1 ≤ ε̂r and ||ξ̂ξξ(s, c∗)− ξ̂ξξ(s̃, c∗)||1 ≤ ε̂ψ =⇒ c∗(s) = c∗(s̃) (A.168)

By Lemma 11, ||ξ̂ξξ(s, c̃) − ξ̂ξξ(s̃, c̃)||1 ≤ ||ξ̂ξξ(s, c∗) − ξ̂ξξ(s̃, c∗)||1 for c̃ ∈ C(c∗). (Here, we pick c̃ such that

it is also a sub-clustering of c and c(s) 6= c(s̃) =⇒ c̃(s) 6= c̃(s̃).) Consequently,

||r̂rr(s)− r̂rr(s̃)||1 ≤ ε̂r and ||ξ̂ξξ(s, c̃)− ξ̂ξξ(s̃, c̃)||1 ≤ ε̂ψ =⇒ c∗(s) = c∗(s̃) (A.169)

143

By Definition 11, if c ∈ C(c∗), then

c(s) 6= c(s̃) =⇒ c∗(s) 6= c∗(s̃) (A.170)

and by inversion of the implication

c∗(s) = c∗(s̃) =⇒ c(s) = c(s̃). (A.171)

Combining Lines (A.169) and (A.171) results in

||r̂rr(s)− r̂rr(s̃)||1 ≤ ε̂r and ||ξ̂ξξ(s, c̃)− ξ̂ξξ(s̃, c̃)||1 ≤ ε̂ψ =⇒ c(s) = c(s̃) (A.172)

and by inversion

c(s) 6= c(s̃) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 > ε̂r or ||ξ̂ξξ(s, c̃)− ξ̂ξξ(s̃, c̃)||1 > ε̂ψ. (A.173)

We now make an additional assumption about the cluster algorithm:

Assumption 5 (Compactness). At every cluster operation in Algorithm 3 a maximally compressed

clustering is obtained.

Assumption 5 makes explicit that the clustering operation must not construct clusters when

not necessary. However, this assumption is not restrictive in the presented context, because if

the function approximation routine is ε-perfect (Assumption 3) and the separability assumption

(Assumption 4) is satisfied, then computing a compact clustering is trivial (one can greedily merge

vectors into the same cluster that fall in their distance below the used threshold).

A.3.3 Convergence Proof

First, we provide a formal definition of a maximally-compressed reward-predictive representation.

Definition 12 (Maximally-Compressed Reward Predictive). A cluster function c∗ is maximally-

compressed reward predictive if the representation function φφφ : s 7→ eeec∗(s) satisfies the empirical

LSFM conditions (5.8) for εr = εψ = 0 while minimizing the number of constructed latent states.

144

Now we present the lemmas needed for the convergence proof.

Lemma 13 (Termination Condition). If the refinement loop in Algorithm 3 terminates with a cluster

function cT , then cT encodes an empirical approximate reward-predictive representation.

Proof. The proof follows from the arguments presented in Section 5.1.1. If cT is returned by Algo-

rithm 3, then the vectorswwwa can be constructed using Equation (5.14). Then Equation (5.15) follows

and the reward condition in Line (5.8) is satisfied. For the SF fixed point, we use Equation (5.21)

to construct the matrices FFF a. By the argumentation presented in Section 5.1.1, Equation (5.26) fol-

lows and the SF fixed-point condition in Line (5.8) is satisfied. Therefore the representation function

φ : s 7→ eeecT (s) is an empirical approximate reward-predictive representation.

Lemma 14 (Refinement). Consider the cluster function sequence c0, c1, ..., ct generated by Algo-

rithm 3. Then,

∀0 ≤ i < j, ci(s) 6= ci(s̃) =⇒ cj(s) 6= cj(s̃). (A.174)

Proof. The proof is by construction of ct for t ≥ 1 and follows from line 10 of Algorithm 3.

We refer to a cluster function c∗ that satisfies the empirical LSFM conditions (5.8) and minimizes

the number created latent states as maximally compressed.

The following lemma states the main result needed for proving convergence to a maximally

compressed representation.

Lemma 15. Under Assumption 4 and 5, Algorithm 3 constructs a sequence of cluster functions

c1, ..., ct ∈ C(c∗) for some maximally-compressed reward-predictive cluster function c∗.

Proof. The proof is by induction on the cluster function sequence.

Base Case: Algorithm 3 constructs the reward cluster function c1 such that

c(s) = c(s̃) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 ≤ ε̂r (A.175)

and by Assumption 5, the number of cluster’s is minimized. By inversion of Line A.176,

||r̂rr(s)− r̂rr(s̃)||1 > ε̂r =⇒ c(s) 6= c(s̃). (A.176)

145

By separability (Assumption 4),

c∗(s) 6= c∗(s̃) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 > ε̂r (A.177)

=⇒ c(s) 6= c(s̃) (by Line (A.176)) (A.178)

=⇒ c1 ∈ C(c∗). (by definition of C(c∗)) (A.179)

Induction Hypothesis (I.H.): For T ∈ N and a maximally-compressed reward-predictive cluster

function c∗, we assume that for all t ∈ (1, T], ct−1 ∈ C(c∗).

Induction Step: For the induction step, we assume a smaller clustering threshold ε such that

cT (s) 6= cT (s) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 > ε̂r or ||ξ̂ξξ(s, cT−1)− ξ̂ξξ(s̃, cT−1)||1 > ε. (A.180)

Below we will relax this assumption. If ||r̂rr(s) − r̂rr(s̃)||1 > ε̂r, then c∗(s) 6= c∗(s̃) as well because c∗

is maximally-compressed reward-predictive (by the argument in the base case). Suppose cT (s) 6=

cT (s) =⇒ ||ξ̂ξξ(s, cT−1)− ξ̂ξξ(s̃, cT−1)||1 > ε. Because we assume a smaller cluster threshold ε,

cT (s) = cT (s) =⇒ ||ξ̂ξξ(s, cT−1)− ξ̂ξξ(s̃, cT−1)||1 ≤ ε. (A.181)

Combining Line (A.181) with the implication cT (s) 6= cT (s) =⇒ ||ξ̂ξξ(s, cT−1) − ξ̂ξξ(s̃, cT−1)||1 > ε

results in

cT (s) = cT (s) ⇐⇒ ||ξ̂ξξ(s, cT−1)− ξ̂ξξ(s̃, cT−1)||1 ≤ ε. (A.182)

Because approximations of vectors ξξξ are ε-perfect and because a smaller cluster threshold is used in

Algorithm 3 to account for approximation errors, we have that

||ξ̂ξξ(s, cT−1)− ξ̂ξξ(s̃, cT−1)||1 ≤ ε ⇐⇒ ξξξ(s, cT−1) = ξξξ(s̃, cT−1). (A.183)

Combining Lines (A.183) and (A.182) leads to

cT (s) = cT (s) ⇐⇒ ξξξ(s, cT−1) = ξξξ(s̃, cT−1). (A.184)

146

Consequently,

ĉT (s) 6= ĉT (s̃) (A.185)

=⇒ ξξξ(s, cT−1) 6= ξξξ(s̃, cT−1) (by Line (A.184)) (A.186)

=⇒ ξξξ(s, c∗) 6= ξξξ(s̃, c∗) (by applying Lemma 11 to the difference on both sides) (A.187)

=⇒ c∗(s) 6= c∗(s̃) (by c∗ satisfying Definition 12) (A.188)

=⇒ ĉT ∈ C(c∗). (by Definition 11) (A.189)

=⇒ cT = ĉT ∩ cT−1 ∈ C(c∗). (by Lemma 9 and I.H.) (A.190)

This proves that cT ∈ C(c∗) where c∗ is maximally-compressed reward predictive.

To complete the proof, we show that ε̂ψ can be used to cluster the vectors ξ̂ξξ at every iteration.

Here, the separability assumption (Assumption 4) allows us to apply Lemma 12 and obtain that for

every t ∈ (1, T],

ct(s) 6= ct(s) =⇒ ||r̂rr(s)− r̂rr(s̃)||1 > ε̂r or ||ξ̂ξξ(s, ct−1)− ξ̂ξξ(s̃, ct−1)||1 > ε̂ψ. (A.191)

Consequently, we can set ε̂ψ = ε in the induction argument above.

Proof of Theorem 5. By Lemmas 13 and 14, Algorithm 3 converges to a reward-predictive state

representation within finitely many steps. At the very least, the algorithm terminates at a state

representation that associates a separate latent state with each state observation.

Under Assumptions 4 and 5, the algorithm terminates on a cluster function ct ∈ C(c∗) (by

Lemma 15). Because c∗ is assumed to be maximally-compressed reward-predictive representa-

tion, then the sub-clustering ct ∈ C(c∗) is also maximally compressed (any sub-clustering of a

maximally-compressed reward-predictive representation c∗ is either not reward-predictive, or it is

also a maximally-compressed reward-predictive representation). Consequently, the last cluster func-

tion constructed by Algorithm 3 maximally-compressed reward predictive representation.

Appendix B

Simulation Implementation and

Hyper-Parameters

B.1 Learning Rates Used In Chapter 2 Simulations

Table B.1: Learning rates used for Q-learning in Figures 2.2 and 2.3.

Tested α
Slight Rew. Change
Best α

Sig. Rew. Change
Best α

Q-learning
with ε-Greedy

0.1, 0.3, 0.5, 0.7, 0.9 0.7 0.1

Q-learning
with Optimistic

0.1, 0.3, 0.5, 0.7, 0.9 0.9 0.9

Table B.2: Learning rates used for SF-learning in Figures 2.2 and 2.3.

Slight Rew. Change Sig. Rew. Change
Tested αSF Tested αr Best αSF Best αr Best αSF Best αr

SF-learning
with ε-Greedy

0.1, 0.3, 0.5,
0.7, 0.9

0.1, 0.3, 0.5,
0.7, 0.9

0.7 0.5 0.1 0.1

SF-learning
with Optimistic

0.1, 0.3, 0.5,
0.7, 0.9

0.1, 0.3, 0.5,
0.7, 0.9

0.5 0.9 0.3 0.9

B.2 Implementation Details of Chapter 3 Simulations

The presented experiments are conducted on finite MDPs and use a state representation function

φ : s 7→ ΦΦΦ(s, :), (B.1)

147

148

where ΦΦΦ is a S ×n matrix and ΦΦΦ(s, :) is a row with state index s. The feature dimension n is a fixed

hyper parameter for each experiment.

B.2.1 Matrix Optimization in Column World

The column world experiment (Figure 3.5) learns a state representation using the full transition

and reward tables. Assume that the transition table of the column world task is stored as a set of

stochastic transition matrices {PPP a}a∈A and the reward table as a set of reward vectors {rrra}a∈A.

The one-step reward prediction errors and linear SF prediction errors are minimized for the LSFM

{FFF a,wwwa}a∈A using the loss objective

LLSFM-mat =
∑
a∈A
||ΦΦΦwwwa − rrra||22 + αψ||ΦΦΦ + γPPP aΦΦΦFFF −ΦΦΦFFF a||22. (B.2)

For αψ = 1, the loss objective LLSFM-mat is optimized with respect to all free parameters {FFF a,wwwa}a∈A

and ΦΦΦ. Similarly, a LAM {MMMa,wwwa}a∈A is computed using the loss objective

LLAM-mat =
∑
a∈A
||ΦΦΦwwwa − rrra||22 + ||ΦΦΦMMMa −PPP aΦΦΦ||22. (B.3)

This loss objective is optimized with respect to all free parameters {MMMa,wwwa}a∈A and ΦΦΦ. Both

experiments used the Adam optimizer [56] with a learning rate of 0.1 and Tensorflow [1] default

parameters. Optimization was initialized by sampling entries for ΦΦΦ uniformly from the interval

[0, 1]. The LAM {MMMa,wwwa}a∈A or LSFM {FFF a,wwwa}a∈A was initialized using a least squares solution

for the initialization of ΦΦΦ.

B.2.2 Puddle-World Experiment

In the puddle world MDP transitions are probabilistic, because with a 5% chance, the agent does

not move after selecting any action. The partition maps presented in Figures 3.6(b) and 3.6(c)

were obtained by clustering latent state vectors using agglomerative clustering. A finite data set of

transitions D = {(si, ai, ri, s′i)}
D
i=1 was collected by selecting actions uniformly as random. Given

149

Hyper-Parameter LAM LSFM Tested Values

Learning Rate 0.0005 0.0005 0.0001, 0.0005, 0.001, 0.005

αψ - 0.01 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0

αp 1.0 - 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0

αN 0.1 0.0 0.0, 0.0001, 0.001, 0.01, 0.1

Feature Dimension 80 80

Batch Size 50 50

Number of Training Transitions 10000 10000

Number of Gradient Steps 50000 50000

Table B.3: Hyper-Parameter for Puddle-World Experiment

such a data set D, the loss objective

LLAM =

D∑
i=1

(
φφφ>siwwwai − ri

)2
︸ ︷︷ ︸

=Lr

+αp

D∑
i=1

∣∣∣∣∣∣φφφ>siMMMa −φφφ>s′i
∣∣∣∣∣∣2
2︸ ︷︷ ︸

=Lp

+αN

D∑
i=1

(∣∣∣∣∣∣φφφsi∣∣∣∣∣∣2
2
− 1
)2

︸ ︷︷ ︸
=LN

,

is used to approximate a reward-predictive state representation using a LAM. Optimization was

initialized by each entry of the matrix ΦΦΦ uniformly at random and then finding a LAM {MMMa,wwwa}a∈A

for this initialized representation using least squares regression.

For the LSFM experiment, the matrix ΦΦΦ was also initialized using values sampled uniformly at

random. The LSFM {FFF a,wwwa}a∈A was set to zero matrices and vectors at initialization. Both loss

objective functions were optimized using the Adam optimizer with Tensorflow’s default parameters.

Table B.3 lists the hyper-parameter that were found to work best for each model. Figures 3.6(h)

and 3.6(i) are plotted by first evaluating an ε-greedy policy using the full transition and reward tables

of the task. Then the state representation is used to find an approximation of the value functions

for each ε setting using least-squares linear regression. Each curve then plots the maximum value

prediction error.

B.2.3 Transfer Experiments

For the transfer experiment presented in Section 3.5, a training data set of 10000 transitions was

collected from Task B. The LSFM was trained using the hyper-parameter listed in Table B.4.

Value-predictive state representations are learned using a modified version of Neural Fitted Q-

iteration [87]. The Q-value function is computed with

Q(s, a;ΦΦΦ, {qqqa}a∈A) = φφφ>s qqqa, (B.4)

150

Hyper-Parameter LSFM Tested Values

Learning Rate 0.001 0.0001, 0.0005, 0.001, 0.005

αψ 0.0001 0.001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0

αN 0.0 0.0, 0.0001, 0.001, 0.01, 0.1

Feature Dimension 50

Batch Size 50

Number of Training Transitions 10000

Number of Gradient Steps 50000

Table B.4: Hyper-Parameter for LSFM on Task A

where the state features φφφs are computed as shown in Equation (B.1). To find a value-predictive

state representation, the loss function

Lq(ΦΦΦ, {qqqa}a∈A) =

D∑
i=1

(Q(si, ai;ΦΦΦ, {qqqa}a∈A)− ysi,ai,ri,s′i)
2 (B.5)

is minimized using stochastic gradient descent on a transition data set D = {(si, ai, ri, s′i)}
D
i=1. When

differentiating the loss objective Lq with respect to its free parameters ΦΦΦ, {qqqa}a∈A, the prediction

target

ys,a,r,s′ = r + γmax
a′

Q(s′, a′;ΦΦΦ, {qqqa}a∈A) (B.6)

is considered a constant and no gradient of ys,a,r,s′ is computed. A value-predictive state repre-

sentation is learned for Task A by optimizing over all free parameters ΦΦΦ, {qqqa}a∈A. Table B.5 lists

the used hyper-parameter. For Task A the best hyper-parameter setting was obtained by testing

the learned state representation on Task A and using the model that produced the shortest episode

length, averaged over 20 repeats.

On Task B, a previously learned state representation is evaluated using the same implementation

of Fitted Q-iteration, but the previously learned state representation is re-used and considered a

constant. At transfer, gradients of Lq are only computed with respect to the vector set {qqqa}a∈A and

the feature matrix ΦΦΦ is held constant.

The tabular model first compute a partial transition and reward table of Task B by averaging

different transitions and reward using the given data set. If no transition is provided for a particular

state and action pair, uniform transitions are assumed. If no reward is provided for a particular state

and action pair, a reward value is sampled uniformly at random from the interval [0, 1]. Augmenting

a partial transition and reward table is equivalent to providing the agent with a uniform prior over

rewards and transitions. The tabular model’s optimal policy is computed using value iteration.

151

Hyper-Parameter Fitted Q-iteration,
learning on Task A

Fitted Q-iteration,
evaluation on Task B

Tested Values

Learning Rate 0.001 0.00001 0.00001, 0.0001, 0.001, 0.01

Feature Dimension 50 50

Batch Size 50 50

Training Transitions 10000 Varies

Gradient Steps 50000 20000

Table B.5: Hyper-Parameter used for Fitted Q-iteration

To plot the right panel in Figure 3.7(c), twenty different transition data sets of a certain fixed

size were collected and the Fitted Q-iteration algorithm was used to approximate the optimal value

function. For both tested state representations and data sets, a small enough learning rate was found

to guarantee that Fitted Q-iteration converges. The found solutions were evaluated twenty times,

and if all evaluation completed the navigation task within 22 time steps (which is close to optimal),

then this data set is considered to be optimally solved. Note that all tested evaluation runs either

complete within 22 time steps or hit the timeout threshold of 5000 time steps. Table B.5 lists the

hyper-parameters used for Fitted Q-iteration to obtain the right panel in Figure 3.7(c). For transfer

evaluation, the hyper-parameter setting was used that approximated the Q-values optimal in Task

B with the lowest error.

B.2.4 Combination Lock Experiment

For the combination lock simulations presented in Figure 3.8, each Q-learning configuration was

tested independently on each task with learning rates 0.1, 0.5, and 0.9. Because Q-values were

initialized optimistically with a value of 1.0, each plot in Figure 3.8 uses a learning rate of 0.9.

To find a reward-predictive state representation, the LSFM loss objective LLSFM-mat (Equa-

tion (B.2)) was optimized 100000 iterations using Tensorflow’s Adam optimizer with a learning rate

of 0.005 and αψ = 0.01.

152

B.3 Implementation Details for Chapter 4 Simulations

B.3.1 State Abstractions in Tabular Tasks

For finite state and action MDPs, the transition function can be presented as a set of left-stochastic

transition matrices {MMMa}a∈A where

∀a ∈ A, ∀i, j ∈ S, MMMa(i, j) = p(i, a, j), (B.7)

and a set of expected reward vectors {rrra}a∈A where

∀a ∈ A, ∀i ∈ S, rrra(i) = Es′ [r(s, a, s′)]. (B.8)

Using a weighting function ω, the latent transitions and reward “aggregate” across states s ∈ S that

map to the same abstract state sφ ∈ Sφ. Specifically, the abstract reward function w is constructed

as

w(sφ, a) =
∑

s:φ(s)=sφ

ω(s)rrra(s). (B.9)

The transition function between latent states m is constructed as

m(sφ, a, s
′
φ) =

∑
s:φ(s)=sφ

∑
s′:φ(s′)=s′φ

ω(s)p(s, a, s′). (B.10)

Here, the weighting function is assumed to be non-negative and the sum across a state partition

evaluates to one:
∑
s:φ(s)=sφ

ω(s) = 1. The simulations presented in Sections 4.2.1 and 4.2.2 and

Chapter 5 assume a uniform weighting function which averages across state partitions. Similar to

Equations (B.7) and (B.8), the abstract transition matrices {MMMa}a∈A and abstract reward vectors

{wwwa}a∈A can be computed and

∀a ∈ A, ∀i, j ∈ Sφ, MMMa(i, j) = m(i, a, j) and wwwa(i) = w(i, a). (B.11)

Note that function m defines transition probabilities between latent states in the same way the

transition function p defines transition probabilities between states [67]. Consequently, the latent

model described by the matrices and vectors {MMMa,wwwa}a∈A can be used as a normal MDP, with the

153

only difference that this latent MDP is defined on latent states. A policy that is optimal with respect

to this compressed or latent MDP {MMMa,wwwa}a∈A can be computed by performing value iteration [106,

Chapter 4.4] on the matrices and vectors {MMMa,wwwa}a∈A. Such a policy is then used as the optimal

policy for an agent that generalizes across states according to the state abstraction φ.

B.3.2 Hyper-Parameters Used for Learning Experiments

Table B.6: Learning rates used for Q-learning (Algorithm 1) and SF-learning (Algorithm 2) in
Section 4.2.3. Both algorithms are initialized optimistically, because this leads to faster convergence
as described in Section 2.2.

Tested αSF Tested αr Tested α

B
es

t
α
S
F

B
es

t
α
r

B
es

t
α

SF-learning with SF transfer,
orange curve in Fig. 4.6

0.1, 0.5, 0.9 0.1, 0.5, 0.9 - 0.5 0.9 -

SF-learning baseline,
blue curve in Fig. 4.6

0.1, 0.5, 0.9 0.1, 0.5, 0.9 - 0.5 0.9 -

Reward predictive with SF,
green curve in Fig. 4.6

0.1, 0.5, 0.9 0.1, 0.5, 0.9 - 0.5 0.9 -

Q-Learning in Fig. 4.6
Including abstraction agents

- - 0.1,0.5,0.9 - - 0.9

Table B.7: Hyper-parameters tested for mixture model in Section 4.2.3.

Tested α Tested β
B

es
t
α
S
F

B
es

t
α
r

Reward maximizing,
orange curve in Fig. 4.6(a)

10−5, 10−4, 10−3, 10−2, 10−1 1, 102, 104 10−3 102

Reward predictive
green curve in Fig. 4.6(a)

10−5, 10−4, 10−3, 10−2, 10−1 1, 102, 104 10−5 102

Reward predictive with SF-learning,
green curve in Fig. 4.6(b)

10−9, 10−5, 10−1 1, 102, 104 10−9 102

154

(a) (b)

10 5 10 4 10 3 10 2 10 1
Value

100

150

200

250

300

350

400

A
vg

.
Ep

is
od

e
Le

ng
th

10 5 10 4 10 3 10 2 10 1
Value

1
2
3
4
5
6

A
vg

.
B

el
ie

f
Sp

ac
e

Si
ze =1.0

=100.0
=10000.0

10 5 10 4 10 3 10 2 10 1
Value

100

150

200

250

300

350

400

A
vg

.
Ep

is
od

e
Le

ng
th

10 5 10 4 10 3 10 2 10 1
Value

100

150

200

250

300

350

400

A
vg

.
Ep

is
od

e
Le

ng
th

10 5 10 4 10 3 10 2 10 1
Value

1
2
3
4
5
6

A
vg

.
B

el
ie

f
Sp

ac
e

Si
ze =1.0

=100.0
=10000.0

(c) (d)

R
ew

ar
d

M
ax

im
iz

in
g

R
ew

ar
d

Pr
ed

ic
tiv

e

Figure B.1: Model parameters α and β control the belief space size of the non-parametric Bayesian
model presented in Section 4.2.3. (a): Avg. episode length of the reward-maximizing model. (b)
Avg. belief space size of the reward-maximizing model. (c) Avg. episode length of the reward-
predictive model. (d) Avg. belief space size of the reward-predictive model.

Table B.8: Hyper-Parameter used in guitar example in Section 4.2.4. For each agent the SF-learning
algorithm (Algorithm 2) was used and initialized optimistically as described in Section 2.2.

Tested αSF Tested αr

B
es

t
α
S
F

B
es

t
α
r

SF-learning
Baseline

0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.1 0.9

SF-learning
with SF transfer

0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.9 0.9

Reward predictive
with SF-learning

0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.9 0.9

155

B.4 Implementation Details of Chapter 5 Simulations

B.4.1 Computing LSFMs

The weight matrices and vectors {FFF a,wwwa}a∈A of a LSFM are estimated using linear regression.

Specifically, given a transition data set D, the weight vector wwwa is estimated such that

wwwa = arg min
vvv∈Rn

∑
(s,a,r,s′)∈D

(eee>c(s)vvv − r)
2. (B.12)

Note that the clustering algorithm always constructs a representation mapping states to one-hot

vectors using a cluster function c. To compute the SF matrices {FFF a}a∈A the latent transition

matrices of a LAM are first estimated {MMMa}a∈A such that

MMMa = arg min
MMM∈Rn×n

∑
(s,a,r,s′)∈D

(eee>c(s)MMM − eee
>
c(s′))

2. (B.13)

By Lemma 4, the latent transition matrices {MMMa}a∈A of a LAM are related to the SF matrices

{FFF a}a∈A with the identity

FFF a = III + γMMMaFFF , (B.14)

where γ is the discount factor used by the LSFM. Furthermore, we have

FFF
−1

= III − γMMM. (B.15)

Because the state representation used by the clustering algorithm maps each state to a one-hot

vector, the matrices {MMMa}a∈A are stochastic. Consequently, Equation (B.15) and (B.14) are used

to compute {FFF a}a∈A given latent transition matrices {MMMa}a∈A.

B.4.2 Hyper-Parameter for Simulation Experiments

156

Table B.9: Hyper-parameters used in the image puddle world example (Section 5.2.1). The first
layer receives the gray-scale image as input. The last layer does not have an activation function
when the network is used to approximate one-step rewards, SFs, or Q-values (in case one of the
DQN agent are used). When learning a state representation, then the last layer uses a soft-max
activation function. In this case, the loss objective to train the representation network (Algorithm 3,
line 11) is replaced using a cross-entropy loss. The ERM routine trains the network using the Adam
optimizer [56] 5 epochs to approximate one-step rewards or SFs. The final representation network is
trained for 10 epochs. The presented simulations use εr = 0.5 and εψ = 0.15. The cluster operation
is implemented using K-Means clustering implementation in SciKit learn [83] for k = 500. The
found centroids are then merged using agglomerative clustering (UPGMC algorithm) with the L1
norm [114, 77].

Input Layer 2D Convolution 5× 5 filter, 8 channels, ReLU activation fn.
2D Convolution 3× 3 filter, 8 channels
ReLU Activation
2D Convolution 5× 5 filter, 8 channels
ReLU Activation
Linear Layer 200 outputs
ReLU Activation
Linear Layer 200 outputs
ReLU Activation

Output Layer Linear Layer number of outputs equal number of cluster

157

Table B.10: Hyper-parameters used in the MNIST combination lock example (Section 5.2.2). The
first layer receives the gray-scale image as input. The last layer does not have an activation function
when the network is used to approximate one-step rewards, SFs, or Q-values (in case one of the DQN
agent are used). When learning a state representation, then the last layer uses a soft-max activation
function. In this case, the loss objective to train the representation network (Algorithm 3, line 11) is
replaced using a cross-entropy loss. For the MNIST combination lock task the Adam optimizer [56]
was used using tensorflow default parameters [1]. The ERM routine always trained the network for
80 epochs. For one-step reward and SF prediction a separate network was trained for each action.
The presented simulations use εr = 0.5 and εψ = 0.15. The cluster operation is implemented using
K-Means clustering implementation in SciKit learn [83] for k = 110. The found centroids are then
merged using agglomerative clustering (UPGMC algorithm) [114, 77] with the L1 norm.

Input Layer 2D Convolution 5× 5 filter, 32 channels
ReLU Activation
2D Convolution 5× 5 filter, 32 channels, no bias term
Batch Normalization
ReLU Activation
Max-Pooling 2× 2 filter
Dropout Keep probability of 0.25
2D Convolution 3× 3 filter, 64 channels
ReLU Activation
2D Convolution 3× 3 filter, 64 channels, no bias term
Batch Normalization
ReLU Activation
Max-Pooling 2× 2 filter
Dropout Keep probability of 0.25
Linear Layer 2048 outputs, no bias term
Batch Normalization
ReLU Activation
Linear Layer 2048 outputs, no bias term
Batch Normalization
ReLU Activation
Linear Layer 2048 outputs, no bias term
Batch Normalization
ReLU Activation
Dropout Keep probability of 0.25

Output Layer Linear Layer number of outputs equal number of cluster

158

Table B.11: Hyper-parameters used for the online learning simulations presented in Figure 5.9.
Each combination of test values was tested and the combination with the shortest average episode
length (the best parameter setting) is used in Figure 5.9. In all experiments, the neural networks
were trained using the Adam optimizer [56] and only the learning rates are optimized leaving the
other parameters to Tensorflow’s [1] defaults. An ε-greedy policy is used to select actions and the ε
parameter is decreased linearly from 1 to 0 for the first n exploration episodes.

Hard-Coded
Rep. Agent

Reward-Predictive
Rep. Agent

DQN
(both versions)

Hyper-parameter Tested Best Tested Best Tested Best

Learning Rate 0.1, 0.5, 0.9 0.9 0.1, 0.5, 0.9 0.9 10−4, 5 · 10−4, 10−3 10−4

Replay Buffer Size 50, 100, 200 200 50, 100, 200 100 50, 100, 200 200
Batch Size 32 32 32 32 32 32
Exploration Episodes 2 2 8 8 2 2

Table B.12: SF-learning hyper-parameter used in the MNIST combination lock transfer example
(Section 5.2.2). For each agent the SF-learning algorithm (Algorithm 2) and all weights are initialized
to zero (unless SF weights are transferred).

Tested αSF Tested αr

B
es

t
α
S
F

B
es

t
α
r

SF-learning
Baseline

0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.5 0.5

SF-learning
with SF transfer

0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.1 0.9

Reward predictive
with SF-learning

0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.1 0.9

Appendix C

Supplemental Files

Audio File S1: Sound version of the optimal policy in the scale task 1.

https://doi.org/10.1371/journal.pcbi.1008317.s007

Audio File S2: Sound version of the optimal policy in the scale task 2.

https://doi.org/10.1371/journal.pcbi.1008317.s008

Audio File S3: Sound version of the SF transfer algorithm’s policy after learning for 25 episodes

in scale task 2.

https://doi.org/10.1371/journal.pcbi.1008317.s009

159

https://doi.org/10.1371/journal.pcbi.1008317.s007
https://doi.org/10.1371/journal.pcbi.1008317.s008
https://doi.org/10.1371/journal.pcbi.1008317.s009

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from tensorflow.org.

[2] David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate

state abstraction. In Proceedings of The 33rd International Conference on Machine Learning,

pages 2915–2923, 2016.

[3] David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for

lifelong reinforcement learning. In Jennifer Dy and Andreas Krause, editors, Proceedings

of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Ma-

chine Learning Research, pages 10–19, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.

PMLR. URL http://proceedings.mlr.press/v80/abel18a.html.

[4] David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L. Littman, and Lawson L.S.

Wong. State abstraction as compression in apprenticeship learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2019.

[5] R Ellen Ambrose, Brad E Pfeiffer, and David J Foster. Reverse replay of hippocampal place

cells is uniquely modulated by changing reward. Neuron, 91(5):1124–1136, 2016.

160

https://www.tensorflow.org/
https://www.tensorflow.org/
http://proceedings.mlr.press/v80/abel18a.html

161

[6] Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based

reinforcement learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th

International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning

Research, pages 264–273, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL

http://proceedings.mlr.press/v80/asadi18a.html.

[7] Hisham E Atallah, Michael J Frank, and Randall C O’Reilly. Hippocampus, cortex, and basal

ganglia: Insights from computational models of complementary learning systems. Neurobiology

of learning and memory, 82(3):253–267, 2004.

[8] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-

forcement learning. In Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 263–272. JMLR.org, 2017.

[9] David Badre and Michael J Frank. Mechanisms of hierarchical reinforcement learning in

cortico–striatal circuits 2: Evidence from fmri. Cerebral cortex, 22(3):527–536, 2011.

[10] André Barreto, Rémi Munos, Tom Schaul, and David Silver. Successor features for transfer

in reinforcement learning. CoRR, abs/1606.05312, 2016. URL http://arxiv.org/abs/1606.

05312.

[11] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,

and David Silver. Successor features for transfer in reinforcement learning. In Advances in

Neural Information Processing Systems, pages 4055–4065, 2017.

[12] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel

Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using

successor features and generalised policy improvement. In Jennifer Dy and Andreas Krause,

editors, Proceedings of the 35th International Conference on Machine Learning, volume 80

of Proceedings of Machine Learning Research, pages 501–510, Stockholmsmässan, Stockholm

Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/barreto18a.

html.

[13] André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement

learning with generalized policy updates. Proceedings of the National Academy of Sciences,

117(48):30079–30087, 2020.

http://proceedings.mlr.press/v80/asadi18a.html
http://arxiv.org/abs/1606.05312
http://arxiv.org/abs/1606.05312
http://proceedings.mlr.press/v80/barreto18a.html
http://proceedings.mlr.press/v80/barreto18a.html

162

[14] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray

kavukcuoglu. Interaction networks for learning about objects, relations and physics. In Proceed-

ings of the 30th International Conference on Neural Information Processing Systems, NIPS’16,

page 4509–4517, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

[15] Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark, Alon B

Baram, Kimberly L Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? organizing

knowledge for flexible behavior. Neuron, 100(2):490–509, 2018.

[16] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-

learning practice and the classical bias–variance trade-off. Proceedings of the National Academy

of Sciences, 116(32):15849–15854, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1903070116. URL

https://www.pnas.org/content/116/32/15849.

[17] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012. URL

http://arxiv.org/abs/1207.4708.

[18] Richard E Bellman. Adaptive Control Processes: A Guided Tour, volume 2045. Princeton

University Press, 1961.

[19] Dimitri P Bertsekas. Dynamic programming and optimal control 3rd edition, volume ii. Bel-

mont, MA: Athena Scientific, 2011.

[20] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific,

1996.

[21] Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt,

David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint

arXiv:1812.07626, 2018.

[22] Justin A Boyan and Andrew W Moore. Generalization in reinforcement learning: Safely

approximating the value function. In Advances in neural information processing systems,

pages 369–376, 1995.

https://www.pnas.org/content/116/32/15849
http://arxiv.org/abs/1207.4708

163

[23] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for

near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231,

2002.

[24] Alyssa A. Carey, Youki Tanaka, and Matthijs A. A. van der Meer. Reward revaluation bi-

ases hippocampal replay content away from the preferred outcome. Nature Neuroscience,

22(9):1450–1459, 2019. doi: 10.1038/s41593-019-0464-6. URL https://doi.org/10.1038/

s41593-019-0464-6.

[25] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A composi-

tional object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341,

2016.

[26] Anne Gabrielle Eva Collins and Michael Joshua Frank. Neural signature of hierarchically

structured expectations predicts clustering and transfer of rule sets in reinforcement learning.

Cognition, 152:160–169, 2016.

[27] Anne GE Collins and Michael J Frank. Opponent actor learning (opal): Modeling interactive

effects of striatal dopamine on reinforcement learning and choice incentive. Psychological

review, 121(3):337, 2014.

[28] Gheorghe Comanici, Doina Precup, and Prakash Panangaden. Basis refinement strategies for

linear value function approximation in MDPs. In Advances in Neural Information Processing

Systems, pages 2899–2907, 2015.

[29] Peter Dayan. Improving generalization for temporal difference learning: The successor repre-

sentation. Neural Computation, 5(4):613–624, 1993.

[30] Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing

knowledge in multi-task deep reinforcement learning. In International Conference on Learning

Representations, 2020. URL https://openreview.net/forum?id=rkgpv2VFvr.

[31] Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation

for efficient reinforcement learning. In Proceedings of the 25th International Conference

on Machine Learning, ICML ’08, page 240–247, New York, NY, USA, 2008. Association

https://doi.org/10.1038/s41593-019-0464-6
https://doi.org/10.1038/s41593-019-0464-6
https://openreview.net/forum?id=rkgpv2VFvr

164

for Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390187. URL

https://doi.org/10.1145/1390156.1390187.

[32] Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dud́ık, and John

Langford. Provably efficient rl with rich observations via latent state decoding. arXiv preprint

arXiv:1901.09018, 2019.

[33] Eyal Even-Dar and Yishay Mansour. Approximate equivalence of Markov decision processes.

In Learning Theory and Kernel Machines, pages 581–594. Springer, 2003.

[34] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision

processes. In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages

162–169. AUAI Press, 2004.

[35] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous

Markov decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

[36] Norman Ferns and Doina Precup. Bisimulation metrics are optimal value functions. In UAI,

pages 210–219. Citeseer, 2014.

[37] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-

tation of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[38] Vincent François-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined rein-

forcement learning via abstract representations. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 3582–3589, 2019.

[39] Michael J Frank and David Badre. Mechanisms of hierarchical reinforcement learning in

corticostriatal circuits 1: computational analysis. Cerebral cortex, 22(3):509–526, 2012.

[40] Nicholas T Franklin and Michael J Frank. Compositional clustering in task structure learning.

PLoS computational biology, 14(4):e1006116, 2018.

[41] Nicholas T Franklin and Michael J Frank. Generalizing to generalize: when (and when not)

to be compositional in task structure learning. bioRxiv, 2019. doi: 10.1101/547406.

https://doi.org/10.1145/1390156.1390187

165

[42] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse

reinforcement learning. In International Conference on Learning Representations, 2018. URL

https://openreview.net/forum?id=rkHywl-A-.

[43] Mona M Garvert, Raymond J Dolan, and Timothy EJ Behrens. A map of abstract relational

knowledge in the human hippocampal–entorhinal cortex. Elife, 6:e17086, 2017.

[44] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deep-

MDP: Learning continuous latent space models for representation learning. In International

Conference on Machine Learning, pages 2170–2179, 2019.

[45] Samuel J Gershman and David M Blei. A tutorial on bayesian nonparametric models. Journal

of Mathematical Psychology, 56(1):1–12, 2012.

[46] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimiza-

tion in Markov decision processes. Artificial Intelligence, 147(1):163–223, 2003.

[47] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of

the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9

of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort, Sar-

dinia, Italy, 13–15 May 2010. JMLR Workshop and Conference Proceedings. URL http:

//proceedings.mlr.press/v9/glorot10a.html.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[49] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution

algorithms for factored mdps. Journal of Artificial Intelligence Research, 19:399–468, 2003.

[50] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[51] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement

learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[52] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably

efficient? In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

https://openreview.net/forum?id=rkHywl-A-
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org

166

[53] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A

survey. Journal of artificial intelligence research, 4:237–285, 1996.

[54] Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua

Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema net-

works: Zero-shot transfer with a generative causal model of intuitive physics. arXiv preprint

arXiv:1706.04317, 2017.

[55] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual rein-

forcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

[56] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[57] Jon Kleinberg. An impossibility theorem for clustering. Advances in neural information

processing systems, pages 463–470, 2003.

[58] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All

Combinations and Partitions. Addison-Wesley, 2005.

[59] George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in rein-

forcement learning using the Fourier basis. Proceedings of the Twenty-Fifth AAAI Conference

on Artificial Intelligence, pages pages 380–385, August 2011.

[60] Mirko Křivánek and Jaroslav Morávek. Np-hard problems in hierarchical-tree clustering. Acta

informatica, 23(3):311–323, 1986.

[61] Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor

reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

[62] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[63] Lucas Lehnert and Michael L Littman. Successor features combine elements of model-free and

model-based reinforcement learning. Journal of Machine Learning Research, 21(196):1–53,

2020.

http://arxiv.org/abs/1412.6980

167

[64] Lucas Lehnert, Stefanie Tellex, and Michael L Littman. Advantages and limitations of using

successor features for transfer in reinforcement learning. arXiv preprint arXiv:1708.00102,

2017.

[65] Lucas Lehnert, Michael L Littman, and Michael J Frank. Reward-predictive representations

generalize across tasks in reinforcement learning. PLoS computational biology, 16(10):e1008317,

2020.

[66] Felix Leibfried, Nate Kushman, and Katja Hofmann. A deep learning approach for joint video

frame and reward prediction in atari games. arXiv preprint arXiv:1611.07078, 2016.

[67] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state

abstraction for MDPs. In ISAIM, 2006.

[68] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning policies for

partially observable environments: Scaling up. In Machine Learning Proceedings 1995, pages

362–370. Elsevier, 1995.

[69] Yunzhe Liu, Raymond J Dolan, Zeb Kurth-Nelson, and Timothy EJ Behrens. Human replay

spontaneously reorganizes experience. Cell, 178(3):640–652, 2019.

[70] Tamas Madarasz and Tim Behrens. Better transfer learning with inferred successor maps. In

Advances in Neural Information Processing Systems, pages 9029–9040, 2019.

[71] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means prob-

lem is np-hard. In Sandip Das and Ryuhei Uehara, editors, WALCOM: Algorithms and Com-

putation, pages 274–285, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-

642-00202-1.

[72] Marcelo G Mattar and Nathaniel D Daw. Prioritized memory access explains planning and

hippocampal replay. Nature neuroscience, 21(11):1609–1617, 2018.

[73] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[74] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learn-

ing. MIT Press, 2018.

168

[75] Ida Momennejad, Evan M Russek, Jin H Cheong, Matthew M Botvinick, ND Daw, and

Samuel J Gershman. The successor representation in human reinforcement learning. Nature

Human Behaviour, 1(9):680, 2017.

[76] P Read Montague, Peter Dayan, and Terrence J Sejnowski. A framework for mesencephalic

dopamine systems based on predictive hebbian learning. Journal of neuroscience, 16(5):1936–

1947, 1996.

[77] Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms, 2011.

[78] Helen M Nasser, Donna J Calu, Geoffrey Schoenbaum, and Melissa J Sharpe. The dopamine

prediction error: contributions to associative models of reward learning. Frontiers in psychol-

ogy, 8:244, 2017.

[79] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-

conditional video prediction using deep networks in atari games. In Advances in Neural Infor-

mation Processing Systems, pages 2863–2871, 2015.

[80] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. arXiv preprint

arXiv:1707.03497, 2017.

[81] Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning via

posterior sampling. In Advances in Neural Information Processing Systems, pages 3003–3011,

2013.

[82] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L Littman.

An analysis of linear models, linear value-function approximation, and feature selection for rein-

forcement learning. In Proceedings of the 25th International Conference on Machine Learning,

pages 752–759. ACM, 2008.

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[84] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,

Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,

169

et al. Imagination-augmented agents for deep reinforcement learning. In Advances in neural

information processing systems, pages 5690–5701, 2017.

[85] Balaraman Ravindran and Andrew G Barto. Approximate homomorphisms: A framework for

non-exact minimization in markov decision processes. 2004.

[86] A David Redish, Steve Jensen, Adam Johnson, and Zeb Kurth-Nelson. Reconciling rein-

forcement learning models with behavioral extinction and renewal: implications for addiction,

relapse, and problem gambling. Psychological review, 114(3):784, 2007.

[87] Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural

reinforcement learning method. In European Conference on Machine Learning, pages 317–

328. Springer, 2005.

[88] Sherry Shanshan Ruan, Gheorghe Comanici, Prakash Panangaden, and Doina Precup. Rep-

resentation discovery for mdps using bisimulation metrics. In AAAI, pages 3578–3584, 2015.

[89] Evan M Russek, Ida Momennejad, Matthew M Botvinick, Samuel J Gershman, and

Nathaniel D Daw. Predictive representations can link model-based reinforcement learning

to model-free mechanisms. PLoS computational biology, 13(9):e1005768, 2017.

[90] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James

Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy

distillation. arXiv preprint arXiv:1511.06295, 2015.

[91] Anna C Schapiro, Nicholas B Turk-Browne, Kenneth A Norman, and Matthew M Botvinick.

Statistical learning of temporal community structure in the hippocampus. Hippocampus, 26

(1):3–8, 2016.

[92] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,

Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al.

Mastering atari, go, chess and shogi by planning with a learned model. arXiv preprint

arXiv:1911.08265, 2019.

[93] Nicolas W Schuck and Yael Niv. Sequential replay of nonspatial task states in the human

hippocampus. Science, 364(6447):eaaw5181, 2019.

170

[94] Nicolas W Schuck, Ming Bo Cai, Robert C Wilson, and Yael Niv. Human orbitofrontal cortex

represents a cognitive map of state space. Neuron, 91(6):1402–1412, 2016.

[95] Melissa J Sharpe, Chun Yun Chang, Melissa A Liu, Hannah M Batchelor, Lauren E Mueller,

Joshua L Jones, Yael Niv, and Geoffrey Schoenbaum. Dopamine transients are sufficient and

necessary for acquisition of model-based associations. Nature Neuroscience, 20(5):735, 2017.

[96] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529

(7587):484–489, 2016.

[97] David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel

Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-

to-end learning and planning. In International Conference on Machine Learning, pages 3191–

3199. PMLR, 2017.

[98] Zhao Song, Ronald E Parr, Xuejun Liao, and Lawrence Carin. Linear feature encoding for

reinforcement learning. In Advances in Neural Information Processing Systems, pages 4224–

4232, 2016.

[99] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of

machine learning research, 15(1):1929–1958, 2014.

[100] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus

as a predictive map. Nature Neuroscience, 20(11):1643, 2017.

[101] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps:

Pac analysis. Journal of Machine Learning Research, 10(Nov):2413–2444, 2009.

[102] Richard S. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine

Learning, 3(1):9–44, August 1988.

[103] Richard S Sutton. Integrated architectures for learning, planning, and reacting based on

approximating dynamic programming. In Proceedings of the seventh international conference

on machine learning, pages 216–224, 1990.

171

[104] Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse

coarse coding. Advances in neural information processing systems, pages 1038–1044, 1996.

[105] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Brad-

ford Book. MIT Press, Cambridge, MA, 1 edition, 1998.

[106] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[107] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press,

2018.

[108] Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael Bowling. Dyna-style

planning with linear function approximation and prioritized sweeping. In Proceedings of the

24th Conference on Uncertainty in Artificial Intelligence, 2008.

[109] Erik Talvitie. Self-correcting models for model-based reinforcement learning. In AAAI, pages

2597–2603, 2017.

[110] Erik Talvitie. Learning the reward function for a misspecified model. In Jennifer Dy and An-

dreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research, pages 4838–4847, Stockholmsmässan,

Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/

talvitie18a.html.

[111] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A

survey. Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

[112] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Hierarchical dirichlet

processes. Journal of the American Statistical Association, 101(476):1566–1581, 2006. doi:

10.1198/016214506000000302. URL https://doi.org/10.1198/016214506000000302.

[113] Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural

information processing systems, pages 831–838, 1992.

[114] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-

napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van

http://proceedings.mlr.press/v80/talvitie18a.html
http://proceedings.mlr.press/v80/talvitie18a.html
https://doi.org/10.1198/016214506000000302

172

der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.

Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,

Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-

tero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van

Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[115] Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292,

May 1992.

[116] Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,

Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia

Li, et al. Imagination-augmented agents for deep reinforcement learning. arXiv preprint

arXiv:1707.06203, 2017.

[117] James Whittington, Timothy Muller, Shirely Mark, Caswell Barry, and Tim Behrens. Gener-

alisation of structural knowledge in the hippocampal-entorhinal system. In S. Bengio, H. Wal-

lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural

Information Processing Systems 31, pages 8484–8495. Curran Associates, Inc., 2018.

[118] James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil

Burgess, and Timothy EJ Behrens. The tolman-eichenbaum machine: Unifying space and

relational memory through generalisation in the hippocampal formation. bioRxiv, page 770495,

2019.

[119] Robert C Wilson, Yuji K Takahashi, Geoffrey Schoenbaum, and Yael Niv. Orbitofrontal cortex

as a cognitive map of task space. Neuron, 81(2):267–279, 2014.

[120] Sam Witty, Jun Ki Lee, Emma Tosch, Akanksha Atrey, Michael Littman, and David Jensen.

Measuring and characterizing generalization in deep reinforcement learning. arXiv preprint

arXiv:1812.02868, 2018.

[121] Hengshuai Yao and Csaba Szepesvári. Approximate policy iteration with linear action models.

In AAAI, 2012.

173

[122] Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Learning robust state

abstractions for hidden-parameter block mdps, 2021.

[123] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard. Deep

reinforcement learning with successor features for navigation across similar environments. In

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

2371–2378. IEEE, 2017.

	List of Tables
	List of Figures
	State Representations in Reinforcement Learning
	Reinforcement Learning
	Temporal Difference Learning

	Predictive State Representations

	Successor Features as a Model-Free Mechanism
	Connection to Linear Temporal Difference Learning
	Transferring Learned Solutions Between Tasks
	Policy Dependence Limits Transfer Across Tasks

	Reward-Predictive State Representations
	Encoding Bisimulation Relations
	Approximate Reward-Predictive Representations
	Learning Reward-Predictive Representations
	Connection to Model-based Reinforcement Learning
	Generalization Across Transition and Reward Functions
	Reward-Predictive Representations Encode Task Relevant State Information

	Discussion
	Conclusions

	Reward-Predictive Representations Generalize Across Tasks
	Generalization Across States
	Generalization Across Tasks
	Transfer With Single State Abstractions
	Transfer With Multiple State Abstractions
	Learning to Transfer Multiple State Abstractions
	Comparison to Transferring Successor Features

	Discussion
	Limitations and Future Directions

	Conclusion

	Scaling Reward-Predictive Representations
	Reward-Predictive Clustering
	Representation Learning With Partition Refinement
	Function Approximation
	Iterative Reward-Predictive Representation Learning Algorithm
	Convergence to Maximally Compressed Representations

	Generalization With Neural Networks
	Latent State Coverage Determines Predictive Performance
	Generalization Across Tasks With Neural Networks

	Discussion
	Conclusion

	Conclusions and Future Directions
	Future Directions

	Proofs of Theoretical Results
	SF-learning and Q-Learning Connection (Chapter 2)
	LSFM Theorems (Chapter 3)
	Approximate Reward-Predictive State Representations
	Bound on Error Term

	Convergence Proofs of Clustering Algorithm
	Norm Identities
	Sub-Cluster Properties
	Convergence Proof

	Simulation Implementation and Hyper-Parameters
	Learning Rates Used In Chapter 2 Simulations
	Implementation Details of Chapter 3 Simulations
	Matrix Optimization in Column World
	Puddle-World Experiment
	Transfer Experiments
	Combination Lock Experiment

	Implementation Details for Chapter 4 Simulations
	State Abstractions in Tabular Tasks
	Hyper-Parameters Used for Learning Experiments

	Implementation Details of Chapter 5 Simulations
	Computing LSFMs
	Hyper-Parameter for Simulation Experiments

	Supplemental Files

