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The Prelude

In this thesis, I introduce novel concentration-of-measure bounds for the supremum deviation, several variance

concepts, and a family of game-theoretic welfare functions. It is divided into three parts, the first focusing

on statistical methods and machine learning, followed by fair machine learning, and concluding with non-

i.i.d. statistical estimation tasks. In particular, I introduce empirically centralized Rademacher averages

to probabilistically bound the deviation between the empirical and true means over a family of functions,

with applications to multiple comparisons problems in statistical and scientific settings (smaller p-values and

tighter confidence intervals), and to various supervised and unsupervised machine learning settings (reduced

sample complexity and sharper generalization bounds). I then show applications of these bounds to various

machine-learning, fair machine-learning, and data-science settings, with deep theoretical implications and

impactful practical consequences. Parts I and II assume an independently and identically distributed (i.i.d.)

setting, where we observe many statistically independent occurrences before drawing conclusions, but in

closing, part III extends some of my methods and themes to study non-i.i.d. mean-estimation problems.

Naturally, some conclusions are weaker in these relaxed settings, but I find that many of the same data-

dependent and variance-sensitivity themes apply, and give practical algorithms for realistic problems where

the i.i.d. assumption is prohibitive.

Special attention is made throughout this thesis to connect complicated bounds and ideas to simple and

intuitive concepts (like the central limit theorem or linear regression), while explaining and rigorously justifying

all finite-sample probabilistic guarantees, as well as assumptions and proof techniques. Consequently, at

the heart of this thesis is the marriage of simple ideas about intuitive random processes to sophisticated

techniques and bounds from the theory of concentration of measure and probabilistic methods, applied in

complicated settings to a variety of learning and statistical estimation problems. Topics are chosen for both

their theoretical relevance and how well they illustrate and connect such ideas, but also for their practical

relevance and applicability to high-impact real-world problems. Note also that, except when sufficiently

succinct and pedagogically pertinent, all proofs are relegated to the appendices.
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Part I: Concentration of Measure and Uniform Convergence in Machine Learning Part I deals

primarily with statistical estimation guarantees in standard machine-learning settings. Chapter 1 introduces

the empirically centralized Rademacher average, which yields probabilistic data-dependent bounds on the

supremum deviation (SD) of empirical means of functions in a family F from their expectations (i.e.,

supf∈F
∣∣Ê[f ]− E[f ]

∣∣), with optimal dependence on the supremum variance and the function ranges. Such

bounds are impactful in machine learning, as they bound the generalization gap between training and test error,

and thus control overfitting and quantify the bias-complexity tradeoff (i.e., the tension at the heart of machine

learning between better fit and increased bias as model complexity grows). More generally, such uniform

convergence bounds have applications to multiple comparisons problems in statistical and scientific settings

(smaller p-values and tighter confidence intervals), and to various supervised and unsupervised machine

learning settings (reduced sample complexity and sharper generalization bounds). Empirical centralization

yields data-dependent supremum deviation bounds that improve the dependence of non-centralized (standard)

Rademacher averages on raw variances to centralized variances, thus matching (asymptotically) known

lower-bounds for mean estimation. To compute the bounds in practice, I develop novel tightly-concentrated

Monte-Carlo estimators for the empirical Rademacher average of the empirically-centralized family, and show

novel concentration results for the empirical wimpy variance. My experimental evaluation shows that these

bounds greatly outperform their non-centralized counterparts, and are extremely practical, even at small

sample sizes.

A major issue, ubiquitous in supervised learning settings, is the cost of obtaining labeled training data. The

methods of chapter 1 may be viewed as a mechanism to get more out of limited labeled data, i.e., by showing

that far less of it is required than previously thought, but chapter 2 takes a complimentary and orthogonal

approach. In chapter 2, I adopt a transductive learning setting, wherein we have a vast set of points, a tiny

fraction of which are labeled, and wish to learn to predict the remaining labels. I then describe a transductive

learning algorithm that uses these data, alongside additional knowledge in the form of weak labelers, which

are arbitrarily inaccurate predictors for either the target task or some related task. In particular, I show that

accurate learning is possible with a small labeled training set when (a subset of) the family of weak labelers

is somewhat well-aligned with the target task. The strategy here is to estimate and (probabilistically) bound

appropriately-chosen statistics of the weak labelers using the supervised data, and then consider a feasible

set of possible labelings for the unlabeled data that respect these statistics. When sufficient labeled data

are available to well-estimate the chosen family of statistics, and the feasible label space is of low diameter,

learning the minimax-optimal classifier over this feasible set then yields strong generalization guarantees. In

particular, if the weak-labeler statistics give sufficient information about the target task, and we have sufficient

2



labeled data to accurately constrain their statistics, then all feasible labelings are reasonably accurate, and if

sufficiently many unlabeled data are available, then we can learn a complicated model; these conditions neatly

factor the labeled and unlabeled sample complexities, and describe conditions under which weak-labelers are

sufficient to supplement a small labeled dataset.

Part II: Fairness with Population Means: Malfare, Welfare, and Fair PAC Learning In part II,

I begin with an axiomatic justification to the power mean family of welfare functions, which summarize

societal wellbeing, while making tradeoffs between the needs of the overall population and of marginalized

groups (cf., utilitarianism versus egalitarianism). From the same axiomatization, starting with a measure

of discontentment (loss) rather than contentment (utility), I derive the parallel concept of malfare. For

linear welfare functions, malfare acts as the negative welfare of the negative utility, however nonlinear welfare

functions (e.g., the egalitarian welfare, or the Nash social welfare) may be undefined for negative utilities,

whereas nonlinear malfare functions may be applied directly to loss or risk values. This is crucial to fairness

in ML, where we generally seek to minimize loss (rather than maximize utility), and we require nonlinear

power-mean malfare functions to specify fairness tradeoffs. These arguments are strongly grounded in the

economic theory of cardinal welfare, but from them I show statistical estimation and learning guarantees more

characteristic of the computer science literature. In particular, malfare is a natural target in machine learning

problems where we minimize (negatively connoted) loss, rather than maximize (positively connoted) utility.

As an application, I cast a streaming-media codec-selection problem as a fairness-sensitive learning problem,

wherein we seek to efficiently select a small set of media-encoders that can mutually satisfy a userbase with

diverse preferences (e.g., quality versus bandwidth consumption). Optimizing welfare objectives maximize

the impact of each selected codec, whereas without considering fairness and welfare objectives, it’s easy to

optimize only for a target demographic, or under invalid assumptions on users, thus potentially discriminating

against some groups of users. This is an important accessibility issue, as these types of considerations

ensure that audiovisual streaming and telecommunications services effectively serve populations that are

often sidelined by digital services, including those with limited internet access, as well as those with various

audiovisual perception conditions. I explore various welfare and Pareto optimality concepts, and how the

bias-complexity tradeoff manifests in multivariate settings and with fairness issues.

From a more theoretical angle, I also show statistical estimation guarantees for welfare and malfare, and from

the social planning problem, develop a theory of fair machine learning, based on the probably approximately

correct (PAC) learning framework, termed fair-PAC (FPAC) learning. An FPAC-learner is an algorithm

that learns an ε-δ malfare-optimal model with bounded sample complexity, for any data distribution, and
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for any (axiomatically justified) malfare concept. We show broad conditions under which, with appropriate

modifications, many standard PAC-learners may be converted to FPAC learners. This places FPAC learning

on firm theoretical ground, as it yields statistical, and in some cases computational, efficiency guarantees for

many well-studied machine-learning models. FPAC-learning is also practically relevant, as it democratizes

fair machine learning, by providing concrete training algorithms and rigorous generalization guarantees for

these models.

Part III: Sample-Efficient Mean-Estimation with Dependent Sequential Data Finally, part III

extends the methods and themes of the previous parts, where I assume an independently and identically

distributed (i.i.d.) sample, into more general weakly dependent settings. As in the data-dependent guarantees

with empirically centralized Rademacher averages, the goal here is to get the strongest guarantees under the

weakest assumptions: in particular, this means my algorithms must be sensitive to structure found in the

data. While notions of approximate independence can be difficult to rigorously bound from data, I find that

appropriate variance concepts are easy to bound, and are sufficient to obtain asymptotically near-optimal

sample-complexity guarantees for mean estimation in two dependent settings. In particular, I first examine

block databases, where the key assumption is that contiguous blocks of records can be accessed nearly as

efficiently as individual records, and second, I examine Markov chains, where each step of the chain is a

memoryless random variable (i.e., conditionally independent from its history given the previous step), and it

is as easy to collect a trace of dependent (often correlated) samples as to collect a pair of near-independent

samples.

In both cases, I give data-dependent algorithms for ε-δ mean-estimation that avoid worst-case sample-

complexity behavior. In particular, by considering not just independent or near-independent samples (as

guaranteed via structural assumptions), but instead all of the dependent samples (available at no extra cost),

I find that often the variance of the mean estimate decreases; particularly so when the data are less dependent

than indicated by a priori structural assumptions. This decrease in variance implies more rapid convergence

of empirical mean estimates by various central limit theorems, though this work undertakes the significantly

more challenging endeavor of showing commensurate improvements to finite-sample guarantees on convergence

rates. Furthermore, as I do not assume a priori knowledge of the appropriate variance concepts, sufficient

sample sizes are not known a priori, and thus I employ a progressive sampling strategy to avoid drawing too

many samples. The details of variance-estimation and necessary multiple-comparisons corrections entailed

are subtle, but intuitively, this acts as a “guess and check” method, wherein we optimistically select an initial

small sample size, which I use to estimate variances and means, and increase it until a sufficiently large
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sample has been drawn to provide the desired guarantee. Surprisingly, despite being variance-oblivious, these

strategies are asymptotically optimal, up to logarithmic factors, in both the block-database and Markov-chain

settings. In both cases, a priori guarantees on the amount of dependence do appear in our bounds, but only

transiently, and as the additive error is taken to 0, terms involving only variance, which is estimated entirely

from the data, come to dominate. This calls into question the importance of difficult-to-bound quantities

measuring the degree of dependence.

This Work, as a Whole Read separately, each part represents a significant advancement in its respective

field; the first in statistical learning theory, with an emphasis on algorithms and generalization guarantees

requiring less labeled data than previous methods; the second in the axiomatic philosophy, practice, and

statistical learning guarantees of fair machine learning; and the third in showing that themes and bound

forms from sampling problems in standard i.i.d. settings translate well into non i.i.d. settings (with some

additional work). Special attention is paid to keep each part readable outside of the greater context of this

work, however the reader will better appreciate thematic connections, applications, and technical synergy

when they are considered as a whole.

To better appreciate the connections and common themes running through this thesis, the preface of each

part contains a preview of the concentration inequalities derived within. In particular, I develop a leitmotif

of analogues of the Hoeffding and Bennett inequalities for bounded random variables, in the i.i.d. mean-

estimation, malfare estimation, and non-i.i.d. mean-estimation settings, laying bare the common threads

between each part. In their original forms, both results characterize the rate (with exact constants) that

i.i.d. sums of bounded random variables converges to its mean. The Bennett inequality yields sub-Poisson

(Poisson-like) or sub-gamma tails, with asymptotic behavior dominated by the variance of the random

variables, and the Hoeffding inequality yields similar sub-Gaussian tails, in terms of the worst-case variance

bound r2/4, where r is the range of the random variables in question. Where appropriate, I also discuss

more sophisticated uniform-convergence bounds, and how they manifest in each setting. Such bounds are

important in many settings, as they allow us to study the simultaneous convergence of not just one or a

handful of functions to their means, but rather large and even infinite sets of functions, without relying on

union bounds (a.k.a. the Bonferroni correction). In the first part, these bounds are straightforward, as we

consider risk (mean loss) in machine-learning settings with i.i.d. training data. The second part generalizes

these results to consider malfare, which is a nonlinear function of risk over multiple groups, but we still

obtain similar range, variance, and Rademacher average dependent tail bounds in this setting. Finally, in

part three, we relinquish the i.i.d. assumption, which complicates matters greatly, but ultimately we attain
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similar bounds, now with additional terms capturing the degree of (approximate) independence.

To further solidify the connections between the three main parts, I note that the methods of part I and part III

are not mutually incompatible, opening the door to strong uniform convergence bounds in non-i.i.d. settings,

and furthermore, the fair learning setting of part II obviously benefits from the statistical bounds of part I,

but similar analysis is certainly possible in non-i.i.d. settings. Indeed, in a connected and interdependent

world, it may be the case that practical fair systems need to consider the intricacies of non-i.i.d. learning,

and ultimately the importance of philosophically grounded and statistically rigorous fair-learning systems,

operating on real-world data with all the messy dependence structures that may entail, just may be exactly

what is needed, not only to bring new deep and interesting problems to the computer science community, but

also to solve problems of algorithmic and natural injustice and unfairness in the world at large.
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Part I

Concentration of Measure and

Uniform Convergence in

Machine Learning
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The highly theoretical work of this part is key to the success in the data science and fair machine learning

domains. Furthermore, this work in concentration of measure and uniform convergence is key to understanding

and assessing the quality of our solutions in the pattern mining, data science, and fairness settings, as the

basic statistical estimation themes echo throughout in various forms. Throughout the work we maintain a

running metaphor of sub-Gaussian and sub-gamma bounds, and describe how, in most cases we can’t expect

to beat the sub-Gaussian bound, which are asymptotically equivalent to sub-gamma bounds.

Tail Bounds and Concentration of Measure For some function f , we are interested in the convergence

of the empirical mean Ê[f ] on m samples to its expectation E[f ]. The Central Limit Theorem (CLT) tells us

that Ê[f ] is asymptotically Gaussian, thus by the Chernoff bound for the Gaussian distribution, we have

lim
m→∞

P

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥

√
2V[f ] ln 2

δ

m

 ≤ δ .

[Devroye et al., 2016] show matching finite-sample lower-bounds for any mean estimator, thus the best bounds

we can hope to achieve should be on par with the above. This class of bound is generally called sub-Gaussian,

with V[f ] replaced by various variance proxies. If we restrict our attention to bounded f , i.e., f ∈ X → [a, b],

where r
.
= b− a, Hoeffding’s inequality [Hoeffding, 1963] states

P

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥

√
r2 ln 2

δ

2m︸ ︷︷ ︸
Variance Term

 ≤ δ . (1)

Here the sub-Gaussian variance proxy is r2

4 , which by Popoviciu’s inequality, is the worst-case variance of

any range r random variable. Bennett’s inequality [Bennett, 1962] tells us that

P

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥ r ln 2

δ

3m︸ ︷︷ ︸
Scale Term

+

√
2V[f ] ln 2

δ

m︸ ︷︷ ︸
Variance Term

 ≤ δ , (2)

which yields the desired variance dependence, at the cost of a fast-decaying scale term. As such, the bound is

sub-gamma [see Boucheron et al., 2013, chapter 2], rather than sub-Gaussian. We may thus view the scale

term as a finite-sample correction to a sub-Gaussian bound.

Our uniform convergence bounds then apply simultaneously to large sets of functions, which translate to

various guarantees on generalization error, estimation quality, and fairness. The natural comparison is to
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Hoeffding’s inequality with a union bound over F , which tells us that

P

sup
f∈F

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥

√
r ln 2|F|

δ

2m

 ≤ δ .

Despite its weaknesses, this result powers many sample complexity guarantees in computer science. The

principal aim of chapter 1 is to show that in many applications, we can improve over Hoeffding’s inequality,

and may nearly match variance-sensitive lower-bounds or Bennett’s inequality.

Semisupervised Learning with Weak Labelers In (semi)supervised learning settings, the need for

sharp tail bounds and generalization inequalities is often motivated by a dearth of labeled training data.

Empirically centralized Rademacher averages are a mechanism to get more out of limited labeled data, but in

chapter 2, I investigate a weakly semisupervised setting, where a small number of training labels are augmented

with the output of weak labelers, which are assumed to be loosely correlated with the target task. I then

describe a transductive learning algorithm for this setting, with strong data-dependent learning guarantees

when the family of weak labelers is somewhat well-aligned with the target task.

In particular, the strategy is to estimate and bound appropriately-chosen statistics of the weak labelers using

labeled data and applying concentration inequalities, e.g., Hoeffding, Bennett, or (empirically centralized)

Rademacher bounds. The algorithm then considers a feasible set Y of possible labelings for the unlabeled data

that respect these statistics. When sufficient labeled data are available to sharply-bound the chosen family of

statistics, and the feasible label space is of low diameter, learning the minimax-optimal classifier over this

feasible set then yields strong generalization guarantees. In particular, if the weak-labeler statistics give

sufficient information about the target task, and we have sufficient labeled data to constrain their statistics,

then all feasible labelings are reasonably accurate. Furthermore, if sufficiently unlabeled data are available,

then we can learn a complicated model (i.e., a model of high Rademacher complexity); these conditions neatly

factor the labeled and unlabeled sample complexities, and describe conditions under which weak-labelers are

sufficient to supplement a small labeled training set.

In this setting, generalization error bounds may be composed into three major terms, with some variations in

their exact form, depending on technical details. The first is the minimax empirical risk term, representing

both the fundamental difficulty of the (possibly unrealizable) learning task with the given hypothesis class,

which may be improved by learning a more complicated model. Second, we have uncertainty over the feasible

set Y, which may quantified, e.g., as the diameter of Y, and may be improved by constraining additional

statistics, adding weak labelers, or adding more labeled or unlabeled points. Then, thirdly we have an

9



overfitting term, which describes overfitting of a model to the minimax guarantee, which may be controlled

solely by adding more unlabeled training data. To make this concrete: the first two terms are independent of

the complexity of the model we are learning, so if we wish to, e.g., fit a sophisticated deep neural network to

a small amount of labeled training data, we may do so, offsetting the model complexity only by increasing

the size of the unlabeled training set. Surprising as this may be, the reader should consider that this term

addresses only overfitting, and good performance also requires that the diameter of the feasible set remain

small, which requires subtle conditions on the weak-labeler statistics: essentially it must be possible to

reconstruct the true labels of the target task with reasonable accuracy from them. Thus the method does

not perform the impossible alchemy of synthesizing an accurate model with generalization guarantees from

thin air, but rather provides a mechanism by which to utilize and quantify the information provided by

weak-labelers.
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Chapter 1

Empirically Centralized

Rademacher Averages

I introduce the use of empirical centralization to derive novel practical, probabilistic, sample-dependent

bounds to the Supremum Deviation (SD) of empirical means of functions in a family from their expectations.

My bounds have optimal dependence on the maximum (i.e., wimpy) variance and the function ranges, and

the same dependence on the number of samples as existing SD bounds. To compute the bounds in practice,

I develop novel tightly-concentrated Monte-Carlo estimators of the empirical Rademacher average of the

empirically-centralized family, and we show novel concentration results for the empirical wimpy variance.

Experimental evaluation shows that our bounds greatly outperform non-centralized bounds and are extremely

practical even at small sample sizes. This chapter is adapted from Cousins and Riondato [2020].

1.1 Introduction

The supremum deviation of the empirical means of functions in a family F ⊆ X → [a, b] ⊂ R from their

expectations is a key object in the study of empirical processes [Pollard, 1984]. Formally, let D be a distribution

on the domain X and x = {x1, . . . ,xm} be a collection of m independent samples from D. The Supremum

Deviation (SD) of F on x is the quantity

SD(F ,x) .
= sup

f∈F

∣∣∣∣Êx[f ]− E
D
[f ]

∣∣∣∣ , where Ê
x
[f ]

.
=

1

m

m∑
i=1

f(xi) .
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The sample-dependent Empirical Rademacher Average (ERA) R̂m(F ,x) of F on x and its expectation,

the Rademacher Average (RA) Rm(F ,D) of F [Koltchinskii, 2001, Bartlett and Mendelson, 2002], imply

bidirectional bounds on the SD (see (4)). Let σ be a collection of m independent Rademacher variables (i.e.,

uniform on {−1, 1}). These two quantities are defined as

R̂m(F ,x) .
= E

σ

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σif(xi)

∣∣∣∣∣∣
 , and Rm(F ,D) .

= E
x

[
R̂m(F ,x)

]
. (3)

The RA controls the finite-sample expected SD as [Van der Vaart and Wellner, 1996]

1
2Rm(F ,D)− 1√

m
sup
f∈F
‖f‖∞ ≤ E

x
[SD(F ,x)] ≤ 2Rm(F ,D) . (4)

Probabilistic deviation bounds can be obtained by studying the convergence properties of the SD, and

sample-dependent versions use the ERA and its deviation from the RA (see also theorem 1.3.2). The

dependence on the maximum q
.
= supf∈F‖f‖∞ of F makes the lower bound unsatisfactory, as this quantity

can be very large. This downside is particularly evident at relatively small sample sizes, which are actually

the most interesting in practice. As uniform convergence bounds are now used not “just” for the theoretical

analysis of the performance of learning, but also to develop randomized approximation algorithms for many

tasks [Riondato and Upfal, 2015, 2018, Pellegrina et al., 2019, Areyan Viqueira et al., 2019, Pellegrina et al.,

2020], we believe it is extremely important to derive practical bounds to the SD that are optimized not just

in terms of the number of samples, but also of other important parameters, such as the maximum and the

wimpy variance (see (10)). In this work, we use various forms of centralization to develop such practical

bounds. Define the distributional centralization CD(F) w.r.t. D as the family

CD(F)
.
= {x 7→ f(x)− E

D
[f ], f ∈ F} . (5)

CD(F) contains one function g for each f ∈ F , such that g is f shifted by its expectation w.r.t. D, thus,

ED[g] = 0 for each g ∈ CD(F). The Rademacher Average Rm(CD(F),D) of CD(F) sharply controls the

finite-sample expected SD as [Boucheron et al., 2013, Lemma 11.4]

1
2Rm(CD(F),D) ≤ E

x
[SD(F ,x)] ≤ 2Rm(CD(F),D) . (6)

Comparing (4) and (6), it is evident that the RA could be an arbitrary large multiplicative factor away from

the expected SD, especially at small-sample regimes or when the maximum q of F is large. The RA of the

12



distributional centralization instead is always at most a multiplicative factor two away in both directions.

Distributional centralization is therefore already known to be beneficial in the expected case, but can this

gain be generalized to the probabilistic case, possibly using only sample-dependent quantities?

Contributions. In this work we introduce the use of empirical centralization to derive practical, probabilistic

bounds to the SD. Our bounds exhibit a better or no worse dependence on important parameters such as

the wimpy variance, the range (see (8)), and the sample size m (see theorem 1.3.3). We also show that the

dependence on the wimpy variance that we obtain is optimal (lemma 1.3.4 and corollary 1.3.5). We introduce

a novel empirical counterpart to the RA of the distributional centralization which uses empirical centralization

to bound the SD. We analyze the bias of this quantity (lemma 1.2.1) and derive its concentration properties

(theorem 1.2.2) using tail bounds for self-bounding functions [Boucheron et al., 2000, 2009]. In order to

obtain fully-sample-dependent bounds, we introduce a Monte-Carlo estimator with sharp deviation bounds

(theorem 1.3.7), and we also develop novel tight bounds for the empirical wimpy variance (theorem 1.3.1),

which we believe to be of independent interest (e.g., in matrix concentration inequalities for estimating

eigenvalues of covariance matrices). The results of our experimental evaluation show the advantages of

centralization: the computed bounds to the SD are much smaller than those computed without centralization,

even at small sample sizes. All proofs are relegated to appendix A.1.

1.2 Empirical centralization

We define the empirical centralization Ĉx(F) of F w.r.t. the sample x ∈ Xm as

Ĉx(F)
.
= {x 7→ f(x)− Ê

x
[f ], f ∈ F} .

This quantity is an empirical counterpart to the distributional centralization CD(F) of F (see (5)). The key

quantity that we use to derive the sample-dependent probabilistic bounds to the SD (section 1.3) is the ERA

of the empirical centralization of F , i.e., the quantity

R̂m(Ĉx(F),x) .

This quantity is completely dependent on the realized x, even more, in some sense, than a “standard” ERA

(see (3)), because the considered family Ĉx(F) is also a function of x, i.e., it is sample-dependent. We now

derive its important properties: bias and concentration.
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Bias The expectation w.r.t. x of R̂m(Ĉx(F),x) is not the RA of the distributional centralization of

F (i.e., Rm(CD(F),D)), but we now show that the bias decreases rapidly in m, i.e., Rm(CD(F),D) ∈

Θ(Ex[R̂m(Ĉx(F),x)]). For ease of notation, let

b(m)
.
= E

σ


∣∣∣∣∣∣ 1m

m∑
i=1

σi

∣∣∣∣∣∣
 (which is Θ

(
1√
m

))
. (7)

Lemma 1.2.1. Suppose m ≥ 4. Then

Ex

[
R̂m(Ĉx(F),x)

]
1 + 2b(m)

≤ Rm(CD(F),D) ≤
Ex

[
R̂m(Ĉx(F),x)

]
1− 2b(m)

.

Concentration We now show that R̂m(Ĉx(F),x) is tightly concentrated around its expectation because

it is a self-bounding function [Boucheron et al., 2000, 2009] (see also definition A.1.1 in the supplementary

material). We call the widest range of F the quantity

r
.
= sup

f∈F

(
max
x∈X

f(x)−min
y∈X

f(y)
)

(≤ b− a) . (8)

It is possible that r � b− a, for example, when F contains a function f and a function g = f + c for some

c ∈ R. The widest range of the empirical and distributional centralizations of F is the same as the widest

range of F .

Theorem 1.2.2. Suppose m ≥ 1, and let χ
.
= 1 + 2b(m). For any δ ∈ (0, 1), with probability at least 1− δ

over the choice of x, it holds that

E
x
[R̂m(Ĉx(F),x)]≤ R̂m(Ĉx(F),x)+

2rχln 1
δ

3m
+

√√√√(rχln 1
δ√

3m

)2
+
2rχ(R̂m(Ĉx(F),x)+rb(m)) ln 1

δ

m
. (9)

The ERA of F is a self-bounding function [Boucheron et al., 2003, Sect. 5.1], but proving this fact for

the ERA of the empirical centralization Ĉx(F) of F is more challenging (see proof in the supplementary

material), because the empirical centralization Ĉx(F) itself depends on the sample x. This result, together

with lemma 1.2.1, enables us to use the ERA of the empirical centralization, and Monte-Carlo estimations of

it, to derive practical sharp upper-bounds to the SD.
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1.3 Uniform convergence bounds

We now introduce novel bounds to the SD using the ERA of the empirical centralization. Before doing so, we

must introduce an important technical concept.

Wimpy variance The raw (i.e., non-centralized) wimpy variance Wr(F) of F and the (centralized) wimpy

variance W(F) of F are key quantities in the study of probabilistic tail bounds to the SD [Boucheron et al.,

2013, Ch. 11]. They are defined as

Wr(F) .
= sup

f∈F
E

x∼D

[(
f(x)

)2]
, and W(F) .

= sup
f∈F

E
x∼D

[(
f(x)− E

D
[f ]

)2
]

. (10)

Naturally, the raw wimpy variance is always greater or equal to its centralized counterpart, and potentially

much larger. A key identity that we use throughout this work is

W(F) = Wr(CD(F)) = W(CD(F)) .

Empirical estimators on x for the raw wimpy variance and for the wimpy variance are

Ŵr
x(F)

.
= sup

f∈F

1

m

m∑
i=1

(
f(xi)

)2
, and Ŵx(F)

.
= sup

f∈F

1

m

m∑
i=1

(
f(xi)− Ê

x
[f ]

)2

.

To compute the sample-dependent bounds to the SD that we introduce later in this section, we develop novel

tail bounds to these estimators, which we believe to be of independent interest. Most prior work assumed

known a priori bounds to the wimpy variances, but we show that they can be replaced by empirical bounds.

Maurer and Pontil [2009] prove that the sample variance (i.e., when F is a singleton) is a weakly self-bounding

function [McDiarmid and Reed, 2006]. Our result holds for general F , and is stronger, as we show that the

wimpy variance is a (strongly) self-bounding function [Boucheron et al., 2000, 2009] (see also definition A.1.1

in the supplementary material).

Theorem 1.3.1. Suppose m ≥ 2. Let δ ∈ (0, 1). With probability ≥ 1− δ over the choice of x,

W(F) ≤ m
m−1Ŵx(F) +

r2 ln 1
δ

m− 1
+

√√√√(r2 ln 1
δ

m− 1

)2

+
2r2 m

m−1Ŵx(F) ln 1
δ

m− 1
. (11)

Bounds to the SD Bousquet [2002, Thm. 2.3 (presented here for clarity in a slightly weaker form)] uses

the wimpy variance to derive concentration bounds for the SD.
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Theorem 1.3.2 (Bousquet, 2002, Thm. 2.3). Let δ ∈ (0, 1). With probability ≥ 1− δ over the choice of x,

SD(F ,x) ≤ E
x

[
SD(F ,x)

]
+

2r ln 1
δ

3m
+

√√√√2
(
W(F) + 4r Ex

[
SD(F ,x)

])
ln 1

δ

m
. (12)

By plugging the r.h.s. of the symmetrization inequalities (4) and (6) in the r.h.s. of (12), one can obtain

bounds that depend on the RA of F or on the RA of the distributional centralization CD(F). Neither of

these bounds are sample-dependent. Such a bound can be obtained, for example, by using the ERA of F

and a tail bound (e.g., McDiarmid [1989]’s inequality or a tail bound for self-bounding functions [Boucheron

et al., 2009]) on the deviation of the ERA from the RA. The following result states our sample-dependent

bound to the SD using the empirical centralization Ĉx(F) and tail bounds to the wimpy variance, obtained

by combining lemma 1.2.1 and theorems 1.3.1 to 1.3.2.

Theorem 1.3.3. Assume m ≥ 4, and let η ∈ (0, 1). Take ν to be the r.h.s. of (11) computed with δ = η/3,

so P(W(F) > ν) ≤ η/3, and take λ to be the r.h.s. of (9) computed with δ = η/3, so P(Ex[R̂m(Ĉx(F),x)] >

λ) ≤ η/3. With probability ≥ 1− η over the choice of x, it holds that

SD(F ,x) ≤ 2λ

1− 2b(m)
+

2r ln 3
η

3m
+

√
2(ν + 8rλ/(1−2b(m))) ln 3

η

m
.

The r.h.s. is

2

1− 2b(m)
R̂m

(
Ĉx(F),x

)
+O

r ln 1
η

m
+

√
(W(F) + rRm(CD(F),D) + r2/

√
m) ln 1

η

m

 .

Is there any advantage in using this bound, i.e., in using empirical centralization, rather than using a bound

involving the ERA of F? I.e., how does it compare to the standard bound

SD(F ,x) ≤ 2R̂m (F ,x) +O

q ln 1
η

m
+

√
(W(F) + qRm(F ,D) + q

√
Wr(F)/

√
m) ln 1

η

m

 ?

We shall see that the r2/
√
m and q

√
Wr(F)/

√
m terms are incomparable, though both appear only in transient

O(m−3/4) terms, and the remaining differences all favor centralization. Most previous studies focused on the

behavior of SD bounds as functions of the sample size m, but we believe that efficient SD bounds for practical

applications (e.g., [Riondato and Upfal, 2018, 2015, Pellegrina et al., 2019, Areyan Viqueira et al., 2019,

Pellegrina et al., 2020]), must improve the dependence also on the other parameters, the wimpy variance
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being the most important. Indeed, developing such bounds is the goal of this work.

First of all, we remark that the dependence on the wimpy variance shown in (12) cannot be improved:

any bound to the SD of F must be Ω
√
W(F) ln 1

δ/m, as can be shown using minimax lower bounds and

median-of-means bounds [Devroye et al., 2016, Lugosi and Mendelson, 2019]. The question is thus whether

the complexity terms, i.e., R̂m(F ,x) and R̂m(Ĉx(F),x), can match this lower bound. Lemma 1.3.4 answers

this question in the negative for R̂m(F ,x), and in the positive for R̂m(Ĉx(F),x): the ERA of F is controlled

(in part) by the empirical raw wimpy variance, whereas the ERA of Ĉx(F) has corresponding depence on the

empirical (centralized) wimpy variance. As with ordinary function variances, the raw wimpy variance can be

unboundedly larger than the (centralized) wimpy variance, e.g., in the constant function family F .
= {x 7→ c}.

Lemma 1.3.4. For any x ∈ Xm, it holds

R̂m(F ,x) ≥
√

Ŵr
x(F)
2m

and R̂m(Ĉx(F),x) ≥
√

Ŵx(F)
2m

.

Furthermore, it holds

lim
m→∞

√
mRm(F ,D) ≥

√
2
πW

r(F) and lim
m→∞

√
mRm(CD(F),D) ≥

√
2
πW(F) .

To make the result concrete, consider that as soon as F contains a function f and a “c-shifted” version

of it f + c, for some c ∈ R+, then supg∈F |Êx[g]| ≥ c/2, thus Ŵr
x(F) ≥ c2/4, and from the above lemma,

R̂m(F ,x) ≥ c/
√
8m, but R̂m(Ĉx(F),x) does not suffer from this issue.

The significance of lemma 1.3.4 is that a dependence on the (centralized) wimpy variance cannot be obtained

without empirical centralization. One must settle for dependence on the raw wimpy variance, which can

be unboundendly larger than its centralized counterpart. The result also tells us that a dependence on the

(centralized) wimpy variance may be attained with empirical centralization. We show next that such is indeed

the case.

Optimal dependence on wimpy variance The quantity R̂m(Ĉx(F),x) is an ERA, thus it can be

upper-bounded using Massart’s finite-class lemma [Massart, 2000, lemma 5.2]. We now apply this celebrated

result to bound the ERA under empirical centralization while including the absolute value (absent from some

presentations) inside the supremum of the ERA.
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Corollary 1.3.5. Assume that F is finite. Let F±
.
= F ∪ {−f, f ∈ F}. It holds

R̂m(Ĉx(F),x) ≤

√
2Ŵx(F) ln|Ĉx(F±)|

m
. (13)

The use of F± is needed1 to handle the absolute value in our definition of the ERA (see (3)). Without

empirical centralization, the dependence would be on the raw wimpy variance, which equals the squared

`2 norm in “classic” presentations of Massart’s lemma. Corollary 1.3.5 shows that empirical centralization

enables optimal dependence on the centralized wimpy variance, which cannot be obtained without empirical

centralization, as shown in lemma 1.3.4.

Monte-Carlo estimation The quantity R̂m(Ĉx(F),x) is an ERA, so it “suffers” from the usual issue of

how to actually compute or bound it in order to bound the SD via theorem 1.3.3. While analytical methods

(e.g., Massart’s lemma) yield (generally loose) bounds, Monte-Carlo estimation with proper tail bounds gives

better results in practice, and it was proposed almost concurrently with the introduction of the ERA [Bartlett

and Mendelson, 2002].

Definition 1.3.6. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. The Monte-Carlo ERA

R̂
n

m(F ,x,σ) of F on x w.r.t. σ is the quantity

R̂
n

m(F ,x,σ) .
=

1

n

n∑
i=1

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
j=1

σi,jf(xi)

∣∣∣∣∣∣ .

It clearly holds Eσ[R̂
n

m(F ,x,σ)] = R̂m(F ,x). Bartlett and Mendelson [2002, Thm. 11] show that the

MC-ERA with n = 1 is concentrated about the ERA as

P
σ

(∣∣∣∣R̂m(F ,x)− R̂
1

m(F ,x,σ)
∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2mε2

q2

)
.

The r.h.s. can be used in theorem 1.3.3 inside the definition of λ (with the needed adjustment of the confidence

parameter δ using a union bound), thus obtaining an upper bound to the SD using the MC-ERA. The

leitmotif of this work is to obtain strong, practical, sample-dependent bounds to the SD, so we derive a

novel tail bound to the MC-ERA (theorem 1.3.7) for general n, where the strong dependence on q2 of the

above bound is replaced by a much weaker dependence, primarily on W(F). This change is similar to how

theorem 1.3.2 improves over textbook bounds to the SD that use McDiarmid’s bounded difference inequality.
1Since |Ĉx(F±)| ≤ 2|Ĉx(F)|, the bound can be reformulated as function of |Ĉx(F)| only.
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Our improved variance-sensitive bound uses a transportation-method inequality due to Samson [2007] to

upper bound the expectation of suprema of empirical processes. This result is, to our knowledge, novel, and

is worst-case asymptotically equivalent to the McDiarmid bounds, and improves over it when the wimpy

variance is small. The bound uses the empirical maximum q̂F (x) of F on x, defined as

q̂F (x)
.
= sup

f∈F,x∈x
|f(x)| (≤ q) .

Theorem 1.3.7. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. Let δ ∈ (0, 1). With probability

at least 1− δ over the choice of σ, it holds

R̂m(F ,x) ≤ R̂
n

m(F ,x,σ) +
2q̂F (x) ln

1
δ

3nm
+

√
4Ŵr

x(F) ln 1
δ

nm
. (14)

Empirical centralization obtains a dependence on the empirical wimpy variance of F , rather than on the raw

(i.e., non-centralized) wimpy variance. This advantage propagates when using the MC-ERA of the empirical

centralization to bound the SD of F . The dependence on the empirical maximum changes from q̂F (x) to

q̂Ĉx(F)(x), which can be a large improvement (and q̂Ĉx(F)(x) < 2q̂F (x) at most).

Corollary 1.3.8. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. Let δ ∈ (0, 1). With probability

at least 1− δ over the choice of σ, it holds

R̂m(Ĉx(F),x) ≤ R̂
n

m(Ĉx(F),x,σ) +
2q̂Ĉx(F)(x) ln

1
δ

3nm
+

√
4Ŵx(F) ln 1

δ

nm
.

Although n = 1 Monte-Carlo trials are sufficient to match the convergence rate of theorem 1.3.2, the

Monte-Carlo estimation error term can still be a significant portion of the total SD bound. For practical

usage, particularly with small sample sizes, or when extremely tight bounds are needed, more Monte-Carlo

trials (i.e., larger n) rapidly reduce the Monte-Carlo estimation error, and this error is soon dominated by

the tail bound terms of theorem 1.3.2.

Example: Batch panel of experts Consider now the batch panel of experts problem, where F is a finite

family of experts, and the task is to select the (approximately) most accurate among them, given a sample of

labeled instances. With the Monte-Carlo method, we may sharply bound the SD whenever evaluating the

requisite suprema is computationally feasible, e.g., via enumeration of F . Furthermore, we automatically

benefit from data-dependent and distribution-dependent structure, e.g., highly correlated or anticorrelated
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experts, and low wimpy variance over uniformly accurate F . This example immediately extends to model

selection via structural risk minimization if, e.g., the experts are organized into concentric groups by some a

priori confidence or quality estimate.

F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure 1.1: Comparison of SD bounds as functions of the sample size m. See the main text for an explanation
of the results.

F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure 1.2: Upper bounds to complexity measures and SD as functions of the sample size m. See the main
text for details.

1.4 Experimental evaluation

We performed experiments to evaluate the various bounds presented in the previous sections and compare

the bounds to the SD using empirical centralization to those without centralization. The code is included in

the supplementary material.

Function families We consider the function families Fp, for any p ≥ 1, containing all unit `p-norm-

constrained linear functions in Rd, i.e.,

Fp
.
= {x 7→ w · x, w ∈ Rd s.t. ‖w‖p ≤ 1} .
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These families are of immediate interest in many machine learning settings, such as the analysis of support

vector machines and neural networks, as both consist of Lipschitz loss and/or activation functions applied

to one or more linear functions (see, e.g., [Bartlett and Mendelson, 2002] for analysis). Additionally, a

bound on the SD of Fp over distribution D over Rd corresponds to the radius of the `p/p−1 (Hölder dual

norm) ball about Ê[x] in which ED[x] ∈ Rd falls. Such balls can be used to estimate covariance matrices,

high-dimensional sufficient statistics in graphical models [Bradley and Guestrin, 2012], and to learn equilibria

in simulation-based games [Areyan Viqueira et al., 2019, 2020].

Analytical bounds to the ERA of Fp on x and Monte-Carlo estimates of it (see definition 1.3.6) are relatively

straightforward [Shalev-Shwartz and Ben-David, 2014, Lemmas 26.10, 26.11] (see lemma A.2.1 in the

supplementary material). The following lemma extends these results to the empirical centralization.

Lemma 1.4.1. Let x̄
.
= 1

m

∑m
i=1 xi ∈ Rd. For the `1 norm, it holds

R̂m(Ĉx(F1),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi − x̄‖∞

√
2 ln(2d)

m
,

while for the `2 norm, it holds

R̂m(Ĉx(F2),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

 ≤ max
i
‖xi − x̄‖2

1√
m

.

Similar bounds are possible for other values of p; e.g., by linearity, the case of p =∞ is trivial. Note that

in addition to computing MC-ERAs from `p/p−1 dual norms, we may also compute (raw) empirical wimpy

variances from operator norms of (raw) covariance matrices of x. In particular, for F1, it is easy to show

that the wimpy variance is simply the largest variance along any standard basis vector. Similarly, for F2,

the wimpy variance is simply the maximum variance along any unit vector, i.e., the spectral norm of the

covariance matrix.

Data generation and parameter values We generated the samples x for our experiments from random

distributions over Rd. The ERA of the family F1 is susceptible to the value of d (see lemma 1.4.1 and

lemma A.2.1 in the supplementary material), so we use d = 4 and d = 256, while in the case of F2 the ERA is

independent of d, so we use d = 64. Details of the distributions are in the supplementary material. Range-like

quantities (i.e., q, q̂, or r) can be computed from the data and/or known a priori bounds: r = 1 for our F1

experiments and r = 8 for the F2 case. (Raw) wimpy variances correspond to norms of the (raw) covariance
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matrices used for data generation (see the supplementary material for details). In all experiments, we used

δ = 0.01 and n = 32 (we comment on this choice below). The sample size m varied from 4 (the minimum

possible, due to lemma 1.2.1) to 107.

A note on results visualization We present all of our results in plots with log-log axes, so that convergence

rates are clearly visible as slopes, and constant factors as vertical offsets. The x-axis is the sample size

m. Since we expect asymptotic convergence rates ∝ C/
√
m, where C depends on the (possibly raw) wimpy

variance of F , r, and δ, we plot all quantities multiplied by
√
m. This transformation allows to clearly visualize

Θ(C/
√
m) behaviors as straight horizontal lines, and o(C/

√
m) behaviors as (transient) downward slopes. For

completeness, we show plots without the scaling by
√
m in the supplementary material.

Results Figure 1.1 compares four bounds to the SD: using the Monte-Carlo estimate R̂
n

m(Ĉx(Fp),x,σ)

for the ERA R̂m(Ĉx(Fp),x) of the empirical centralization of Fp on x, using the Monte-Carlo estimate

R̂
n

m(Fp,x,σ) for the ERA R̂m(Fp,x) of the non-centralized Fp, using analytical bounds to R̂m(Ĉx(Fp),x)

from lemma 1.4.1, and using analytical bounds to R̂m(Fp,x) from lemma A.2.1 (in the supplementary

material). The thicker grey line is the quantity
√
mr; bounds above this line are vacuous.

At very small sample sizes (when all bounds are vacuous), the bounds obtained without centralization are

sharper than the bounds with empirical centralization, due to the bias-correction of lemma 1.2.1 (see ξ in

theorem 1.3.3) and the (fast-decaying) Θ(r/m3/4) term of theorem 1.2.2. Before m ≈ 200, when bounds

become non-vacuous, the advantages of empirical centralization become clear, and increase with the sample

size. Recall that each bound is scaled by
√
m, thus all are asymptotically horizontal, as Θ(C/

√
m) terms

eventually dominate the bound to the SD, where C varies greatly between bounds and methods. Thus

without empirical centralization, obtaining the same bound to the SD would require a larger sample size m

than with empirical centralization (this effect can be better observed in the non-
√
m-scaled plots in figure A.1

in the supplementary material.) The Monte-Carlo estimate, despite using only n = 32 Monte-Carlo trials,

gives better bounds to the SD than an analytical approach.

In figure 1.2, we drill down on the SD bounds using the Monte-Carlo estimate R̂
n

m(Ĉx(Fp),x,σ) for the ERA

R̂m(Ĉx(Fp),x) of the empirical centralization of Fp on x, showing this quantity, together with the upper

bounds to other intermediate quantities, that eventually lead to the SD bound: the ERA R̂m(Ĉx(Fp),x)

(obtained by applying theorem 1.3.7 to the MC-ERA), the RA Rm(Fp,D) (obtained by applying theorem 1.2.2

and lemma 1.2.1 to the bound on the ERA), and SD (obtained by applying the r.h.s. of (6) and theorem 1.3.2

to the bound on the RA).
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At small sample sizes, the fast-decaying terms dominate the bounds to the RA and SD, but, true to their

nature, quickly become negligible: all bounds are asymptotically Θ(C/
√
m), where C, which in the plots in

figure 1.2 appear as the vertical offset of each curve at high sample sizes, depends mostly on the wimpy

variance of F and the range r. The bounds that decay as Θ
√
W(F)/m (i.e., the MC-ERA → ERA and RA

→ SD bounds) introduce constant factor terms, manifest as asymptotic vertical gaps, whereas the remaining

bounds entirely vanish asymptotically. The gap from the MC-ERA to the ERA would disappear as the

number n of Monte-Carlo trials (which we fixed at n = 32) increases.

The range and wimpy variances are approximately the same in both F1 experiments but the MC-ERA are

much larger when d = 256 because here the RA is essentially the expected largest distance traveled over d

random walks, which increases with d (see also lemma 1.4.1).

In conclusion, the results confirm the advantages of empirical centralization to obtain tighter bounds to the

SD with optimal dependence on the wimpy variance, while still maintaining the same behavior in terms of

the number of samples as bounds not using centralization.

1.5 Conclusions

We develop practical, sharp, sample-dependent probabilistic bounds to the SD through empirical centralization,

together with novel results on the concentration of the wimpy variance and of Monte-Carlo estimates of the

ERA. Our bounds exhibit optimal dependence on the wimpy variance and the same dependence on the

number of samples as bounds not using centralization. The results of our experimental evaluation show that

the advantage is significant even at small sample sizes, and remains so as the sample size grows. In future

work, we will explore the important relationship between centralization and localization [Koltchinskii, 2006,

Giné and Koltchinskii, 2006].
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Chapter 2

Adversarial Learning with

Weak Supervision

In this work, I develop a rigorous approach for using a set of possibly correlated weak supervision sources in

order to solve a multi class classification task, when only a very small set of labeled data is available. The

algorithm optimally learns a model that has minimum expected risk among all the feasible solutions for a set

of unlabeled data, where the feasibility of a labeling is computed through constraints defined by estimated

statistics of the weak supervision sources. I provide theoretical guarantees for this approach that depend

on the information provided by the weak supervision sources. Notably, this method does not require the

weak supervision sources to have the same labeling space as the multi-class task. Finally, I demonstrate the

effectiveness of the approach with experiments on various image classification tasks. This chapter is based

on joint work with Alessio Mazzetto, Dylan Sam, Stephen Bach, and Eli Upfal.

2.1 Introduction

In the last decade, deep neural networks have been applied to accurately solve a wide range of classification

tasks in different domains, but the supervised learning of these models requires a considerable amount of

labeled data. An alternative strategy is to learn from weak supervision, i.e., sources of labels that are noisy or

heuristic. Examples include hand-written rules [Ratner et al., 2017, Wu et al., 2018, Safranchik et al., 2020]

and classifiers trained for related tasks [Varma et al., 2017, Bach et al., 2019, Chen et al., 2019]. Even if

these sources of information are noisy, results show that they can lead to high-quality models, particularly
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when the outputs from many sources are combined.

A key technical challenge in such work is how to combine multiple sources of weak supervision, since they

might conflict with each other. We assume access to little to no ground truth data. Instead, much prior

work on aggregating noisy labels [Dawid and Skene, 1979, Zhang et al., 2016, Gao and Zhou, 2013, Karger

et al., 2014, Ghosh et al., 2011, Dalvi et al., 2013, Ratner et al., 2016, 2019] assumes that the sources make

independent errors, which is a very strong assumption. Some recent works [Bach et al., 2017, Varma et al.,

2019] attempt to learn more sophisticated distributions but still rely on parametric assumptions that make

conditional independence assumptions. Independence assumptions in models of weak supervision sources

are hard to verify and limiting in practice. Many useful weak supervision sources, particularly ones learned

from related datasets, can be arbitrarily correlated, as there are systematic differences between the target

classification task and the mildly related tasks used to learn them. For example, if all the labelers are

fine-tuned from the same pretrained model, they are likely to inherit some of the same biases.

Recently, two pieces of work have addressed the problem of combining weak labelers without distribution

assumptions by taking an adversarial approach. Adversarial label learning (ALL) [Arachie and Huang, 2019]

first formulated the problem as a minimax optimization, learning a model that minimizes risk using the

worst-case assignment to the unknown ground truth labels. ALL is restricted to binary classification, it

does not solve the minimax optimization problem optimally, and provides no theoretical guarantees for the

models it learns. A later work, performance guaranteed majority vote (PGMV) [Mazzetto et al., 2021], takes

an alternative approach for the binary classification setting. It uses a small amount of labeled data and a

large amount of unlabeled data to empirically estimate properties of the labelers and define a constrained

optimization over the assignments to unknown labels with a worst-case error bound. However, this approach

is also limited to binary classification because it exploits the fact that when two labelers disagree, one must

be correct. Further, it requires performing the worst case optimization over each subset of labelers considered.

The resulting combinatorial blowup limits the number of labelers that can be considered simultaneously.

In this work, we address the limitations of ALL and PGMV by providing a computationally efficient framework

for multi class weak supervision with performance guarantees. Similar to ALL, we formulate the search

for ground truth as a search over a set of ground truth labels that satisfy statistical constraints on the

weak supervision sources. Unlike ALL, we optimally solve the optimization problem, and we show a novel

analysis that factors in the information provided by the weak supervision sources with respect to the target

classification, geometrically represented as the `1 diameter of the region of feasible labelings, to evaluate the

quality of the learnt model.

Contributions. We introduce a novel method to use the information provided by a set of arbitrarily
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correlated weak supervision sources in order to learn a classifier for a target classification task of interest.

Inspired by previous work, we use a little amount of labeled data to compute statistics on the weak supervision

sources, and we formulate an optimization problem to find the prediction model that achieves the lowest risk

among all the labelings of an unlabeled dataset that agree with those statistics.

Our main contributions are the following:

1. We develop the first rigorous method for learning multi class classification from weak supervision sources

(Section 4).

2. We provide theoretical analysis of our method, proving approximation guarantees on the quality of our

solution, and complexity bounds for the algorithm’s run-time (Section 4).

3. We evaluate the quality of the solution provided by our method using a geometrical quantity that

represents the aggregate information provided by the weak supervision sources with respect to the

target classification task (Section 4.2).

4. While the presentation of our method is general, we demonstrate the applicability of our approach

through two practical instances of prediction model and loss function: convex combination of the weak

supervision sources and multinomial logistic regression (Section 4.1)

5. We show how to extend our method for the case when the weak supervision sources do not have the

same labeling space as the multi-classification task. This is useful, for example, when learning with

attributes. In many weak supervision tasks we have information that partially constrains the correct

label, such as knowing that if a labeler detects stripes on an animal, it narrows down the possible

animal types (Section 4.3).

6. We conduct extensive experiments demonstrating the effectiveness of our novel approach for multi class

classification tasks. We also show that the performance of our approach compares favorably with the

best published adversarial weak learning algorithms for binary classification, ALL [Arachie and Huang,

2019] and PGMV [Mazzetto et al., 2021].

2.2 Related Work

The problem of learning from multiple, possibly conflicting weak labelers with little to no ground truth

data has received considerable attention recently [Ratner et al., 2016, Bach et al., 2017, Ratner et al., 2017,

Varma et al., 2019, Arachie and Huang, 2019, Mazzetto et al., 2021]. This setting is distinct from much

work on ensemble learning [Zhang and Ma, 2012], such as boosting [Schapire, 1990, Freund, 1995], where
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abundant labeled examples are used to learn to combine ensemble members. Other ensemble methods, such

as bagging [Breiman, 1996] take an unweighted vote of ensemble members but rely on the assumption that

each member is trained on labeled data sampled from the target distribution. Unlike these methods, in

weak supervision, the goal is to use other statistical properties of the labelers, such as their agreements and

disagreements, to learn to combine them. In this way, the labelers can potentially be improved without

increasing the need for labeled training data.

This work has its roots in crowdsourcing, where the “labelers” are people with different, unknown levels

of reliability. Dawid and Skene’s seminal work [Dawid and Skene, 1979] showed how the accuracy of each

labeler could be estimated with expectation maximization by assuming a naive Bayes distribution over the

labelers’ votes and the latent ground truth. Since then, much work has provided theoretically guaranteed

algorithms for learning under these assumptions [Zhang et al., 2016, Gao and Zhou, 2013, Karger et al., 2014,

Ghosh et al., 2011, Dalvi et al., 2013]. When the labelers are humans working without coordination, the

independence assumption is a reasonable one.

Recently, frameworks for weakly supervised machine learning like Snorkel [Ratner et al., 2016, Bach et al.,

2017, Ratner et al., 2017] have used and extended these learning techniques to the setting in which the

labelers are programmed rules, weak classifiers, or other heuristics. As described in the introduction, learned

and programmed labelers can have heavily correlated errors because of common elements in the heuristics

they use. This potential problem has motivated attempts to relax the independence assumption. One line of

work [Bach et al., 2017, Varma et al., 2019] has tried to learn more sophisticated parametric models of the

labelers, but they are still limited by how correct their assumptions are, which are hard to verify in practice.

In this work, we therefore focus on methods for learning from weak supervision without assumptions on the

distribution of labeler outputs and ground truth.

2.3 Preliminaries

We denote scalar and generic items as lowercase symbols, vectors as lowercase bold symbols, and matrices are

bold uppercase symbols. The i-th column of a matrix A as denoted by the corresponding lowercase symbol

ai, i.e., A = [a1, . . . ,an]. Due to space constraints, the proofs are deferred to the Appendix.

In multi class learning, we have a domain X and a classifier function h that maps each x ∈ X to one of k

possible labels (classes). Since we will work later with distributions over the k classes, it is convenient to

represent label i, 1 ≤ i ≤ k as a k dimension vector ei with all the components set to 0 except for the i-th

component that is set to 1. Thus, h : X → Y = {e1, . . . , ek}. A classifier (e.g., softmax layer of a neural
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network) may output a probability distribution vector y ∈ Rk
≥0 over the k classes, where yc is the probability

that the item belongs to class c, and
∑

c yc = 1. We call Y� ⊃ Y the set of all possible probability vectors. A

loss function ` : Y� × Y → R≥0 quantifies the error of the classifier’s output h(x) with respect to the true

label y. Let pXY be the probability distribution over X × Y. Given a classifier h, its risk is defined as

R(h)
.
= E

x∼pXY
`(h(x),y)

In standard supervised learning, we are given labeled samples from pXY , and we find a classifier with low risk

among a set of classifiers H, which is also called a hypothesis class. The amount of labeled data required to

guarantee that we can find (or train) such a classifier is referred to sample complexity, and it is proportional

to a measure of richness of H. For many classification tasks of interest, there could be low availability of

labeled data, and this is a critical problem for a wide range of domains, where the most successful hypothesis

classes have high dimension (e.g., convolutional neural networks for images).

In this work we assume access to mL i.i.d. labeled samples (x̃1, ỹ1), . . . , (x̃mL
, ỹmL

) from pXY , where the

amount mL is insufficient for the direct supervised learning of H. To circumvent the lack of sufficient training

data, we assume access to a set of weak labelers (classifiers) ϕ1, . . . ,ϕn, also called weak supervision sources.

These labelers are weak in that they can be inaccurate with respect to the target classification task. For

example, the weak labelers could be trained for classification tasks that are only mildly related to the target

classification task. For example, we could train a labeler to detect stripes on zebras and horses, and then

attempt to use it to label data as either tigers or lions. Moreover, we add no further assumptions on the

properties of those classifiers, and their output could be arbitrarily correlated. We also assume access to

m unlabeled data points X = {x1, . . . , xm} sampled independently from the marginal distribution pX . Our

method uses the weak supervision sources ϕ1, . . . ,ϕn to constraint the space of the possible labels that can

be given to those unlabeled data points. We use the limited labeled data to compute statistics about the

weak classifier, and then consider possible labeling of the unlabeled data X that satisfy those statistics.

As an example, suppose that we use the mL labeled data points to compute as a statistic the empirical risk

of each weak supervision source, i.e., we take

µ̂i
.
=

1

m

m∑
j=1

`(ϕi(x̃j), ỹj) ,

for i ∈ 1, . . . , n. In section 2.4 we will use related statistics in order to prove strong theoretical guarantees.

If we were to assign a labeling to the unlabeled data points X, a reasonable approach would be to find a

labeling such that the empirical risk of the weak supervision source i computed with respect of those labels is
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equal to µ̂i. However, this is a computationally hard problem, as we have to assign a discrete label (from Y)

to each item, and each label affects the empirical risk of all the weak supervision sources. Moreover, there

is no guarantee that we can find such a labeling for the unlabeled data, and it is unclear which labeling to

choose in case there are multiple solutions.

To address the computational issues with a discrete selection of the labels, we assign a probability vector

from Y� to each unlabeled data point. In other words, for each unlabeled item xj , we assign a probability

vector y, where the c-th component of that vector represents the probability that item xj belongs to class c.

Given a classifier h, we compute the loss of the classifier on item x with respect to the probability vector

y ∈ Y� as expected loss. Abusing notation, let e ∼ y denote that e = ec ∈ Y with probability yc, and define

`�(h(x),y)
.
= E

e∼y
`(h(x), e) =

k∑
c=1

yc · `(h(x), ec) . (15)

We observe that this definition of loss generalizes the one computed with respect to a discrete labeling, in fact

for each e ∈ Y, we have that `(h(x), e) = `�(h(x), e). The loss (15) is computationally easier to work with,

as it is linear with respect to the labeling y. Let Y ∈ Rk×m be a matrix that describes a possible labeling

of the unlabeled data points; in particular the jth column of the matrix Y is yj ∈ Y�, and it denotes the

probability vector of the labeling of the item xj . The empirical risk of a classifier h on the unlabeled data X

with labeling Y is then defined as

R̂(h;X,Y )
.
=

1

m

m∑
j=1

`�(h(xj),yj) .

Finding a labeling Y for which R̂(h;X,Y ) = µ̂i for i ∈ 1, . . . , n is equivalent to the computationally easy

task of solving a linear system with O(n+m) constraints (the n constraints on the empirical risk equality

and m constraints on probability vectors summing to 1) and O(mk) variables. However, there still could be

multiple solutions to such a linear system. The core idea of the method presented in section 2.4 is to find a

model that has the lowest risk across all those possible solutions.

2.4 Adversial Labeling Method

Let H = {hθ : θ ∈ Θ ⊆ Rd} be the hypothesis class that we will use to find the classifier for the classification

task of interest, where each classifier h ∈ H is parametrized by a vector of weights θ.

Let Y ∗ be the (unknown) true labelings of the unlabeled data X. For each weak supervision source i, we use
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the labeled data to compute a interval 4i such that with high probability we have that R̂(ϕi(x);X,Y ∗) ∈ 4i

for i ∈ 1, . . . , n. This is a crucial property that we will need to show our theoretical bound (theorem 2.4.8),

and one may refer to lemma 2.4.1 to see how to build such intervals.

Let Y� be the set of all possible labeling matrices Y such that the empirical risk of ϕi computed with respect

to the labeling Y of the unlabeled data X belongs to the corresponding interval 4i for each weak supervision

source. Formally, the set Y� is defined as

Y� .
=

Y ∈ Rk×m

∣∣∣∣∣∣∣
yj ∈ Y� ∀j ∈ 1, . . . ,m

R̂(ϕi;X,Y ) ∈ 4i ∀i ∈ 1, . . . , n

 .

We will refer to Y� as the set of feasible labelings. The next lemma shows how to build the intervals 4i to

guarantee that with high probability the true labeling Y ∗ is feasible.

Lemma 2.4.1 (Two-Sample Bounded Difference Interval Statistics). Suppose that the codomain of the loss

function ` is contained in the interval [0, B]. Let µ̂1, . . . , µ̂n be the empirical risks of ϕ1, . . . ,ϕn computed

with respect to the mL labeled samples. Fix a value δ ∈ (0, 1) and let γ be defined as

γ
.
= B

√
(mL +m) ln 2n

δ

2mLm
.

If we set 4i = [µi − γ, µi + γ], then with probability at least 1− δ it holds that Y ∗ ∈ Y�.

We want to find the classifier that achieves the lowest empirical risk among the feasible labelings of the

unlabeled data points. That is, we choose the classifier hθ̂ ∈ H, where θ̂ is the solution of the following

minimax problem

θ̂
.
= argmin

θ∈Θ
max
Y ∈Y�

R̂(hθ;X,Y ) . (16)

The optimization problem above has some nice properties. The set Y� is specified by linear constraints in Y .

Moreover, the objective of the minimax (16) problem is also linear in Y . Hence, it is easy to see that for a

given θ ∈ Θ, it is possible to solve the maximization problem

f(θ)
.
= max

Y ∈Y�
R̂(hθ;X,Y ) (17)

through a linear program with O(mk) variables and O(m+ n) linear constraints.

In order to solve the minimax problem (16), we will introduce a few assumptions on the loss function and the
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model choice H, which are satisfied by many classic machine learning settings. In particular, we would like

the function f(θ) to be convex, so that we can solve the minimization problem minθ∈Θ f(θ). Even if f(θ) is

convex, we may not be able to apply a gradient-based optimization method as f(θ) involves a maximization,

hence it is not differentiable everywhere. To solve this issue, we will use the concept of subgradient, which is

a generalization of the concept of gradient. This will require the loss function to be Lipschitz. A function

g : Rd1 → Rd2 is said to be L-Lipschitz if for any a,a′ ∈ Rd1 , it holds that
∥∥g(a)− g(a′)

∥∥
2
≤ L

∥∥a− a′
∥∥
2
.

Definition 2.4.2 (The Subgradient). Let A ⊆ Rb be the domain of a function g. A vector v ∈ Rb is a

subgradient for a function g at x ∈ A if for any y ∈ A we have that

g(a′)− g(a) ≥ vT · (a′ − a) .

For each a ∈ A, we define

∂g(a)
.
= {v : v is a subgradient of g at a} .

If a function is differentiable in a point, then its subgradient with respect to that point is unique, and it is

equal to the gradient.

Fact 2.4.3. If a function g is convex, then there exists at least one subgradient for each point of its domain.

The following intermediate result that immediately follows from the definition of `� will prove useful throughout

this discussion.

Lemma 2.4.4 (Lipschitz Constants under Convex Combination). Let `(hθ(x), e) be convex and L-Lipschitz

with respect to θ for any (x, e) ∈ X × Y . Then, for any probability vector y ∈ Y�, the function `�(hθ(x),y)

is also convex and L-Lipschitz with respect to θ.

The next Lemma shows that under some conditions, it is possible to compute the subgradient of the function

f .

Lemma 2.4.5 (The Subgradient at Nondifferentiable Points). Fix a value θ ∈ Θ, let Y ′ .
= argmaxY ∈Y� R̂(hθ;X,Y ),

and assume that `(hθ(x), e) is convex with respect to θ for any x ∈ X and e ∈ Y. Then

∅ 6= ∂R(hθ;X,Y ′) ⊆ ∂f(θ) .

A subgradient-based optimization approach [Shor, 2012] is similar to gradient descent, however at each
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Algorithm 1 Adversarial Subgradient Algorithm
Input: Number of iterations T , step size h, H, X, ϕ1, . . . ,ϕn

Output: Approximate solution θ̃ of (16) (See theorem 2.4.6)

θ̃(0) = θ(0) ← arbitrary point θ ∈ Θ

for t ∈ 1, . . . , T do
Y ′ ← argmaxY ∈Y R̂(hθ(t−1) ,Y )

v ← arbitrary vector from ∂R̂(hθ,Y
′)

θ(t) ← ProjΘ(θ
(t−1) − hv) (ProjΘ(·) denotes projection onto Θ)

θ̃(t) ← argmin{f(θ̃(t−1)), f(θ(t))}

end for
Return θ̃(T )

iteration we use a subgradient instead of the gradient, and we memorize the best solution found among all

the iterations.

The subgradient-based optimization algorithm used to solve the optimization problem (16) is presented in

algorithm 1.

As observed before, Y ′ as defined in the algorithm can be computed by solving a linear program. The

projection step depends on the set of parameters Θ. While this is not a requirement for our approach, if

the loss function `(hθ(x),y), is differentiable with respect to θ, then we can compute the gradient of the

empirical risk instead of a subgradient.

Theorem 2.4.6 (Optimality Guarantees of the Subgradient Method). Suppose that for any (x,y) ∈ X × Y ,

`(hθ(x),y) is L-Lipschitz continuous and convex with respect to θ. Let step size h > 0, and iteration count

T ∈ N, and θ̃ as returned by algorithm 1. Then, we have that

f(θ̃)− f(θ̂) ≤ �2(Θ) + L2h2T

2hT
,

where �(·) is computed with respect to the `2-norm, i.e., �2(Θ)
.
= maxθ1,θ2∈Θ‖θ1 − θ2‖22, and θ̂ is defined

as in (16).

Corollary 2.4.7 (Convergence Rates of the Adversarial Subgradient Algorithm). Suppose that the same

assumptions of theorem 2.4.6 hold. For any ε > 0, then if h = ε/L2 and T ≥ L2�2(Θ)
ε2 , we have that

f(θ̃)− f(θ̂) ≤ ε .
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Therefore, we can compute a solution within ε-additive error of (16) in O(L
2�2(Θ)

ε2 ) steps of the subgradient

algorithm.

2.4.1 Risk Guarantees and Statistical Learning

In this section, we develop a bound on the true risk of the classifier hθ̂ that is a solution of the optimization

problem (16). The bounds are expressed in function of the Rademacher complexity of the function family

L .
= {`� ◦h : h ∈ H} that describes the loss of each function h ∈ H, the risk minimizer θ∗ = argminθ∈Θ R(hθ),

and the normalized `1 diameter DY� of the feasible set of solutions Y�.

DY�
.
= sup

Y ′,Y ′′∈Y�

1

m

m∑
j=1

∥∥∥y′
j − y′′

j

∥∥∥
1

. (18)

The quantity DY� characterizes the information given by the classifiers ϕ1, . . . ,ϕn on the classification task.

In particular, a weak supervision source provides useful information on the classification task of interest

only if it reduces the size of the feasible set, and it provably improves the performance of our algorithm if it

decreases the average diameter DY� .

Given a function family L, we define the empirical Rademacher average [see Mitzenmacher and Upfal, 2017]

of the unlabeled items X and a possible labeling Y of those items as

R̂(L;X,Y )
.
= E

σ

 sup
`�◦h∈L

1

m

m∑
i=1

σi`
�(h(xi),yi)

 ,

where σ1, . . . ,σm are independent random variables from the Rademacher distribution, i.e., P(σi = 1) =

P(σi = −1) = 1
2 . Intuitively, this quantity measures the capacity of H to overfit, and under mild conditions,

approaches 0 as sample size m tends to infinity, in which case overfitting becomes impossible.

Theorem 2.4.8 (Optimality of Adversarial Solutions). Let hθ̂ be the solution of (16). Let θ∗ ∈ argminθ∈Θ R(hθ).

Suppose that the codomain of the loss function ` is contained in the interval [0, B]. Let Y ∗ be the true

(unknown) labeling of the unlabeled data X, and assume that Y ∗ ∈ Y�. Then, with probability 1− δ it holds

that

R(hθ̂) ≤ R(hθ∗) +BDY� + sup
Y ∈Y�

4R̂(L;X,Y ) +O

B

√
ln 1

δ

m

 . (19)

The bound of theorem 2.4.8 requires the computation of the diameter of the set Y� with respect to the
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`1-norm. This set is a polytope Y� ⊆ Rkm, though due to the equality constraints for each unit k-simplex on

each of the m unlabeled points, it may be embedded and expressed as a standard H-polytope in R(k−1)m, as

it is specified by linear inequality constraints on the possible labelings. While this bound provides insight on

how the information provided by the weak supervision sources affect the quality of our solution, computing

the diameter is hard. Brieden et al. [2001] show that computing the `1 diameter is NP-hard, as is computing

even a multiplicative
√
(k − 1)m approximation. Furthermore, particularly in the case of k = 2, it seems

straightforward to construct problem instances with a great degree of control over the constraints, so there is

no reason to think our problem is in general easier than the general case.

2.4.2 The Centerpoint Strategy: Bounds without Adversarial Learning

Although we have shown a polynomial-time algorithm for (convex) minimax optimization, it is worth noting

that solving a linear program at each subgradient step adds significant overhead to training time, and this

strategy also precludes using our method with out-of-the-box optimizers and machine learning algorithms.

We also note that the minimax gap is necessarily small when the feasible set Y� is small, as captured by the

diameter term of theorem 2.4.8. Taking this intuition into account, we know that if the feasible set is small,

then there is little difference between a minimax-optimal model, and a model trained to optimize any point

in the feasible set.

In this subsection, we adopt a methodology based on this idea, where a point in the feasible set, termed a

centerpoint, is selected, a model is optimised for that (fixed) labelling, using any black-box optimizer, and

generalization bounds are obtained for said model. We derive these bounds as corollaries of a minimax bound,

so they are not as statistically efficient, however they may be computationally more efficient, and are clearly

more modular, and thus this method is easier to incorporate into existing systems. Finally, while any point in

the feasible set may be used as a centerpoint, we know that particular choices may yield desirable properties

and intuitive interpretations, so we discuss such choices. The next theorem quantifies the performance of the

centerpoint method.

Theorem 2.4.9 (Generalization Bounds for Feasibility-Constrained Learning). Fix θ ∈ Θ, and let Y ∈ Y�

be a feasible labeling. Suppose that the codomain of the loss function ` is contained in the interval [0, B].

Let Y ∗ be the true (unknown) labeling of the unlabeled data X, and assume that Y ∗ ∈ Y�. Then, with
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probability 1− δ, it holds that

R(hθ) ≤ sup
Y ′∈Y�

R̂(hθ; (X,Y ′)) + 2 sup
Y ′∈Y�

R̂m(L; (X,Y ′)) + 3B

√
ln 1

δ

2m
(20)

≤ R̂(hθ; (X,Y )) +
B

2
sup

Y ′∈Y�

∥∥Y − Y ′∥∥
1,1

+ 2 sup
Y ′∈Y�

R̂m(L; (X,Y ′)) + 3B

√
ln 1

δ

2m
(21)

≤ R̂(hθ; (X,Y )) +BDY� + 2 sup
Y ′∈Y�

R̂m(L; (X,Y ′)) + 3B

√
ln 1

δ

2m
. (22)

Theorem 2.4.9 provides generalization bounds with respect to a fixed model θ ∈ Θ. The inequality (20) is a

standard minimax bound, and it can be observed that the right-hand side is minimized by choosing θ equal

to the solution of (16). Naturally, the question arises, how should θ be selected to optimize the other forms?

In particular, we seek reasonable choices of Y such that θ trained to optimize Y perform well. For this

purpose, we will ignore the R̂(hθ; (X,Y )) term, as this can’t be computed without knowing Y , and also the

2 supY ′∈Y� R̂m(L; (X,Y ′)) term, as this term can generally be bounded independently of Y .

The next bound (21) shows that the generalization bound is minimized by picking the point Y that minimizes

the radius term supY ′∈Y�

∥∥Y − Y ′
∥∥
1,1

. Such a minimizer is known as an `1 outer Chebyshev center, and for

this reason is a natural choice of centerpoint. Unfortunately, Brieden et al. [2001] show that computing the `1

outer Chebyshev center of a polytope is as hard as computing the diameter `1, making this centerpoint choice

difficult to work with. In a related problem, Eldar et al. [2008] obtain promising results with a relaxation of

the `2 outer Chebyshev center, and we are hopeful that similar techniques may lead to an effective and easily

computed centerpoint choice in this setting.

Another intuitive choice is the arithmetic mean (a.k.a. the centroid or barycenter) of the feasible region

Y�. This is rather elegant, as the hypothesis hθ that minimizes the empirical risk on average over Y� also

minimizes empirical risk of the average labeling in Y�, i.e., we have

Y
.
= min

θ∈Θ

1

Z

∫
y∈Y�

R̂(hθ;X,Y ) dY = min
θ∈Θ

R̂

(
hθ;X,

1

Z

∫
Y�

Y dY

)
,

for normalizing constant Z. This gives us a nice interpretation as an average-case optimal solution over the

uncertainty over feasible labelings. Similarly, we can also consider only the integer solutions (i.e., integrate

and normalize w.r.t. Y instead of Y�). This is an instance of the vertex centroid problem, which Elbassioni and

Tiwary [2008] show to be #P hard, however they also show it can be approximated efficiently via sampling
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Figure 2.1: Two polytopes in R2, with their `1 outer Chebyshev centers and barycenters. The barycenter is
always uniquely defined, but in the right isosceles triangle, the Chebyshev center is not unique, but rather
consists of the entire perpendicular bisector of the hypotenuse.

methods. The `1 outer Chebyshev center and barycenter are contrasted graphically on example polytopes in

figure 2.1.

2.4.3 Applications

In order to feature the generality of our framework, we show two examples of different instantiations of the

optimization problem (16) for different choices of loss function and prediction models for which we can apply

corollary 2.4.7.

Convex combination of the weak supervision sources. Let Θ = {θ = (θ1, . . . , θn) ∈ Rn
+ :
∑n

i=1 θi = 1}.

Our prediction model is a convex combination of the output of the weak classifiers ϕ, . . . ,ϕn. In particular,

given θ ∈ Θ, the classifier hθ is defined as hθ(x) =
∑n

i=1 θiϕi(x) for any x ∈ X . It is easy to see that

�(Θ) ≤
√
2. Given an arbitrary vector v ∈ Rn, the projection step to Θ can be done efficiently by using for

example the algorithm in Wang and Carreira-Perpinán [2013].

Let ` be the Brier loss, defined as for any (x, e) ∈ X × Y is defined as:

`(hθ(x), e)
.
=

k∑
c=1

(
hθ(x)c − ec

)2
= ||hθ(x)||22 − 2hθ(x)

T · e+ 1 .
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It is easy to see that the function `(hθ(x), e) is convex and differentiable with respect to θ. Moreover, the

loss function has codomain [0, 2].

Lemma 2.4.10. The loss `(hθ(x), e) of a prediction model hθ defined as in this subsection is 2
√
n-Lipschitz

continuous with respect to θ.

softMax (multinomial logistic legression). Suppose that each item is a vector in Rb, i.e., X ⊆ Rb, and

assume that ||x||2 ≤ Bx for any x ∈ X . Let Θ
.
= {θ = (wT

1 . . .wT
k ) ∈ Rk×b : wc ∈ Rb ∧ ||wc||2 ≤ Bw for c ∈

1, . . . , k}. That is, θ is the concatenation of k vectors with bounded norm. If we are given θ Observe that

with this definition of Θ, we have that �(Θ) ≤
√
2kBw. Given a vector θ = (wT

1 . . .wT
k ), the projection step

to Θ is simply θ̃ = (w̃T
1 . . . w̃T

k ), where w̃c = wc/min(Bw/||wc||2, 1) for c ∈ 1, . . . , k.

Given θ = (wT
1 . . .wT

k ) ∈ Θ, and x ∈ X , we define

hθ(x)
.
=

(
exp(wT

1 · x)∑k
c=1 exp(w

T
c · x)

, . . . ,
exp(wT

k · x)∑k
c=1 exp(w

T
c · x)

)T

.

This classifier is a particular instantiation of softMax combined with a linear model. For a vector v =

(v1, . . . , vd)
T , define lnv

.
= (ln v1, . . . , ln vd)

T . Given (x, e) ∈ X × Y , we define the cross-entropy loss ` of the

prediction model hθ as

`(hθ(x), e)
.
= −eT · ln(hθ(x)) .

This combination of prediction model and loss function is also known as multinomial logistic regression. It is

easy to see that the loss function is differentiable with respect to θ, and it is a known result that `(hθ(x), e)

is convex with respect to θ for any (x, e) ∈ X × Y [Böhning, 1992]. Moreover, the loss function is bounded,

and Lipschitz continuous, as shown by the next two lemmas.

Lemma 2.4.11. For any (x, e) ∈ X × Y, and θ ∈ Θ, we have that `(hθ(x), e) ∈ [0, BwBx + ln k].

Lemma 2.4.12. For any (x, e), the loss `(hθ(x), e) of a prediction model hθ defined as in this subsection is

(kBx)-Lipschitz continuous with respect to θ.

2.4.4 Constraining the feasible set

The presentation of section 2.4 implicitly assumes an alignment between the output classes of the weak

supervision sources ϕ1, . . . ,ϕn and the target classification task. In fact, as seen in lemma 2.4.1, we compute

the intervals 4i based on the empirical risk of the weak supervision sources using labeled data of the target
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classification task. However, for many application of interests, the weak supervision sources could output to a

different codomain, potentially with a unequal number of classes. As an example, suppose that we would

like to distinguish between images of {cat,dog, rabbit,bear}. A binary classifier that tells us if the animal

represented in an image has a tail or not still provides a useful clue with respect to the target classification

task, and we would like to use that information.

In this section, we will show how to constrain the feasible set of labelings Y� in a more general setting, where

the weak supervision source ϕi is a classifier that maps elements from the domain X to soft labels over ki

classes, i.e., ϕi : X → Y�
ki

, where Y�
ki

= {v ∈ Rki

≥0 :
∑

c vc = 1}.

Consider the weak supervision source ϕi. For each c ∈ 1, . . . , k and c̃ ∈ 1, . . . , ki, we use the mL labeled data

(x̃1, ỹ1), . . . , (x̃mL
, ỹmL

) to compute the statistic

µ̂i,c,c̃(X̃, Ỹ )
.
=

1

|X̃|

|X̃|∑
j=1

yj,c[ϕi(xj)]c̃ .

It is clear that the function µ̂i,c,c̃(X̃, Ỹ ) is linear in Ỹ . For each weak supervision source ϕi, true class

c ∈ 1, . . . , k, and weak supervision source’s output class c̃ ∈ 1, . . . , ki, based on the value µ̂i,c,c̃(X̃, Ỹ ), we

compute an interval 4i,c,ĉ, defined as

4i,c,ĉ
.
= [µ̂i,c,c̃(X̃, Ỹ )− γ, µ̂i,c,c̃(X̃, Ỹ ) + γ] .

where the value γ is specified in lemma 2.4.13.

Given a labeling Y of the unlabeled dataset X, we say that Y is a feasible solution if for each i, c and c̃, it

holds that

µ̂i,c,c̃(X,Y ) ∈ 4i,c,ĉ . (23)

That is, the set of all the feasible solutions Y� is defined as

Y� .
=

Y ∈ Rk×m

∣∣∣∣∣∣∣
yj ∈ Y� ∀j ∈ 1, . . . ,m

µ̂i,c,c̃ ∈ 4i,c,c̃ ∀i ∈ 1, . . . , n, ∀c, c̃

 .

Notice that the constraints specified in Y� are still linear in Y , therefore we can still compute the value f(θ)

(as in (17)) by solving a linear program, and all discussion of empirical-risk based constraints still applies.

In order to be able to give the theoretical bound of theorem 2.4.8, we need to guarantee that the true labeling
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Y ∗ of the unlabeled data X is feasible. This is possible by choosing a suitable value γ when defining the

intervals 4i,c,c̃, in the following result, which closely resembles lemma 2.4.1.

Lemma 2.4.13 (Confusion Matrix Interval Risk Bounds). Suppose failure probability δ ∈ (0, 1). For every

i ∈ 1, . . . , n, c ∈ 1, . . . , k, and c̃ = 1, . . . , ki let 4i,c,c̃ be computed as in (23), and let K
.
= k

∑n
i=1 ki. Now, if

we use the value

γ
.
=

√
(mL +m) ln 2nK

δ

2mLm

as the radius of these intervals, then with probability at least 1− δ it holds that Y ∗ ∈ Y�.

2.5 Experiments

We demonstrate the applicability and performance of our method on image multi class classification tasks

derived from the DomainNet [Peng et al., 2019] dataset. We also provide experiments on image binary

classification tasks derived from the Animals with Attributes 2 [Xian et al., 2018] dataset in order to compare

our methods with additional baselines.

DomainNet contains images from 6 different domains P = {clipart, infograph, painting, quickdraw, real, sketch}

and features 345 different classes. Animals with Attributes 2 contains natural images of 50 types of animals.

Associated with the dataset is a list of 85 attributes for each animal class, which we use to create weak

supervision sources. Animals with Attributes 2 is divided into 40 “seen” classes and 10 “unseen” classes,

where the seen classes can be used to train attribute classifiers without leaking information about the unseen

classes.

We refer to our algorithms by using the acronyms AMCL-CC and AMCL-LR, where AMCL stands

for Adversial Multi Class Learning. AMCL-CC is an implementation of our method that uses a convex

combination of the weak supervision sources as the prediction model, whereas AMCL-LR uses multinomial

logistic regression (see Section 4.1). For every image, we compute the output of a pretrained ResNet-18 and

use it as inputs for AMCL-LR.

2.5.1 Setup

From DomainNet, we select k = 5 random classes from the 25 classes with the largest number of data. Then,

for each domain p ∈ P , we learn a multi class classifier ϕp for those k classes in domain p. The classifier

ϕp is trained by fine-tuning a pretrained ResNet-18 network [He et al., 2016] using 60% of the labeled data

for that domain. For each domain p, we consider the classifiers trained in domains other than p as weak
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Figure 2.2: Experimental results on Animals with Attributes for the binary classification tasks of dolphin v.
blue whale (left) and seal v. walrus (right) as we vary the amount of labeled data. Each method uses 560
unlabeled data for dolphin v. blue whale and 602 unlabeled data for seal v. walrus.
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Figure 2.3: Experimental results on Domain Net for the clipart and quickdraw domains as we vary the
amount of labeled data. Each method uses 500 unlabeled data. Results are listed for the 5 classes of {sea
turtle, vase, whale, bird, violin }.

supervision sources, i.e., the classifiers {ϕq} for q ∈ P \ {p}. We remark that these weak supervision sources

never have access to samples from domain p.

From Animals With Attributes, we create binary classification tasks by selecting pairs of unseen classes.

Following Mazzetto et al. [2021], we create weak supervision sources by using the seen classes to train

classifiers for the attributes that distinguish them. Similarly to Domain Net, these classifiers are learned by

fine-tuning a pretrained ResNet-18 network using labeled data from the seen classes. In order to focus on the

most challenging tasks, where the weak supervision sources are not highly accurate, we select the 4 class

pairs among the unseen classes with the lowest majority vote accuracy.

We remark that all algorithms that require unlabeled data are evaluated in a transductive setting: the

unlabeled data used by the algorithms is also used to evaluate the final learnt prediction models.
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2.5.2 Baselines and algorithms

Following the example of [Mazzetto et al., 2021], we compare our method with the following baselines and

algorithms:

Best Weak Supervision Source (Best WSS): We report the accuracy of the best weak supervision

source.

Majority Vote (MV): We consider a simple approach to combining the weak supervision sources: we

average their output and select the most voted class. This approach requires no learning, but is suboptimal

when weak supervision sources’ errors are not independent and/or have unequal levels of accuracy.

Semi-Supervised Dawid-Skene Estimator (DS): We also consider a semi-supervised extension to the

standard crowdsourcing algorithm [Dawid and Skene, 1979] that finds the optimal aggregation of the outputs

of independent weak supervision sources. The Dawid-Skene estimator is also the default aggregation method

for the Snorkel system [Ratner et al., 2017]. Here, we use a semi-supervised version of this algorithm, for a

fair comparison with our work. We simply optimize the marginal likelihood of the weak supervision sources’

outputs for unlabeled data and the joint likelihood with the label when it is observed.

Adversarial Label Learning (ALL): This algorithm [Arachie and Huang, 2019] learns a prediction model

that has the highest expected accuracy with respect to an adversarial labeling of an unlabeled dataset, where

this labeling must satisfy error constraints on the weak supervision sources. This approach shares similarities

with our method; however, it fails to provide theoretical guarantees on the learning of the prediction model.

For a fair comparison to our method, we use logistic regression as the prediction model, and use the same

features given to AMCL-LR.

Performance-guaranteed Majority Vote (PGMV): This method finds a subset of weak supervision

sources whose majority vote achieves high accuracy with respect to the worst-case distribution of the output

the weak supervision sources. Again, this worst-case distribution is constrained by using statistics computed

on the weak supervision sources (individual error rates and pairwise differences).

Due to the limitations of PGMV and ALL, we can run those algorithms only for binary classification tasks.

2.5.3 Results

Animals With Attributes (binary classification): In figure 2.2, we report the results on the Animals

With Attributes dataset for two binary classification tasks.

In the binary setting, our methods match or outperform the state-of-the-art methods PGMV and ALL over
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all amounts of labeled data. We note that even though AMCL-LR and ALL use the same inputs and train

the same prediction model, our method achieves overall higher accuracies in addition to providing theoretical

guarantees on the learning of the prediction model.

Domain Net (multi-class classification): In figure 2.3, we report the accuracies of the different algorithms

on the Domain Net dataset for the clipart and quickdraw domains. We remark that ALL and PGMV cannot

be used in this setting, as they are restricted to binary classification.

In the multi class setting, our methods again match or outperform the baselines over all amounts of labeled

data. We note that in the quickdraw domain, the weak supervision sources are overall very inaccurate, and

it is difficult to recover useful information from them. However, differently from the baselines DS and MV,

AMCL-CC can still recover and improve upon the best weak supervision source.

Again, as noted by the Best WSS column, the weak supervision sources are quite inaccurate in this dataset.

Therefore, we do not report the results for the AMCL-LR algorithm as the weak supervision sources do

not constrain the feasible set of solutions enough for our method to learn a more complex model such as

multinomial logistic regression.

Due to space constraints, additional plots and experimental details for both datasets are reported in the

Appendix.

2.6 Conclusion

We develop the first rigorous method that can use information provided by arbitrarily correlated weak

supervision sources in order to learn a prediction model for a multi class classification task. In many practical

settings, our method can optimally learn the model that achieves the smallest risk with respect to an

adversarial feasible labeling of a unlabeled dataset, and we provide theoretical guarantees on the quality of

the learnt model based on a measure of the information provided by the weak supervision sources. Finally,

we provide experiments that illustrate the applicability of our approach and its advantages over existing

methods.
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Part II

Fairness with Population Means:

Malfare, Welfare, and

Fair PAC Learning
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The rise of machine learning in industry and government has brought about a commensurate rise in algorithmic

bias and fairness issues, with increasing recognition by academics that such issues must be explicitly considered

in practical fairness-sensitive machine learning settings. It is now well-known that historic data reflect historic

biases and injustices, and that, due to availability bias, machine learning models are frequently trained on data

from prominent, privileged, or majority groups while minorities remain understudied and underdocumented,

and these issues have well-studied effects on the efficacy and (un)fairness of many contemporary machine

learning systems. While part I addresses this issue only implicitly, by tailoring machine learning methods

and generalization guarantees to the small sample setting (and thus democratizing such methods to operate

not just on well-studied large groups, but also on smaller populations), here I take a more direct approach to

confronting algorithmic bias and fairness issues in machine learning.

For context, traditional constraint-based notions of algorithmic fairness have risen to prominence in machine

learning, with the potential to correct for some forms of data and/or algorithmic bias by ensuring demographic-

parity concepts, e.g., equality of opportunity, equality of outcome, and other such desiderata. Fairness by

demographic-parity constraint has several prominent flaws: most notably, many parity constraints are

mutually unsatisfiable, and by nature, there is inherent tension between minimizing loss and constraining

for fairness, where additional tolerance parameters (which quantify the degree to which fairness constraints

impact a solution) must be specified to strike a balance between accuracy and fairness. Perhaps in response

to these issues, some recent work has trended toward welfare-based fairness-concepts, wherein both accuracy

and fairness are encoded in a welfare function defined on a group of subpopulations. Welfare metrics

quantify overall wellbeing across such populations, and welfare-based objectives and constraints incentivize

fair machine learning methods to produce satisfactory solutions that consider the diverse needs of multiple

groups. Unfortunately, welfare based approaches require a notion of (positive) per-group utility, and I argue

that this is not natural to many machine learning tasks, which instead seek to minimize some negatively

connoted loss value.

Introducing Malfare In this part, I derive an equivalently-axiomatically justified alternative to welfare,

termed malfare, and propose its use as a cardinal objective in fair machine learning tasks. In particular,

malfare measures overall societal harm (rather than wellbeing), and malfare minimization naturally generalizes

risk minimization to (nonlinearly) consider model performance across multiple protected groups, and is thus

ideal for tasks like ensuring facial recognition or speech recognition systems are accurate and accessible across

a diverse population. I then cast fair machine learning as a direct malfare minimization problem, where a

group’s dissatisfaction is simply their risk (expected loss). Surprisingly, except in two trivial cases, the axioms
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of cardinal welfare (malfare) dictate that this is not equivalent to simply defining utility as negative loss. The

framework is established in chapter 3, and it is instantiated in a practical learning setting in chapter 4.

Building upon these concepts, in chapter 5 I define fair-PAC learning, where a fair PAC-learner is an algorithm

that learns an ε-δ malfare-optimal model with bounded sample complexity, for any data distribution, and

for any (axiomatically justified) malfare concept. We show broad conditions under which, with appropriate

modifications, many standard PAC-learners may be converted to fair-PAC learners. This places fair-PAC

learning on firm theoretical ground, as it yields statistical efficiency guarantees for many well-studied machine-

learning models, and is also practically relevant, as it democratizes fair machine learning by providing

concrete training algorithms and rigorous generalization guarantees for these models. In particular, I show

via a constructive polynomial reduction that realizable fair PAC-learning reduces to realizable PAC-learning,

and furthermore, I show, non-constructively, that for learning problems where PAC-learnability implies

uniform convergence, it is equivalent to fair-PAC-learnability. In addition to statistical guarantees, I also

show computational guarantees: in particular, I show that when training is possible via convex optimization

or efficient-enumeration of an approximate cover of the hypothesis space, then ε-δ training malfare-optimal

models, as with risk-optimal models, requires polynomial time.

A Preview of Technical Results As for statistical guarantees in malfare estimation, corollary 3.4.2 shows

that for any fair w-weighted malfare function W

(·;w) (precisely defined in chapter 3), empirical malfare is

tightly concentrated about true malfare. In particular, assume g groups, any loss function ` : X → [0, r], risk

values S ∈ [0, r]g s.t. Si = EDi [`], samples xi ∼ Dm
i and empirical risk values Ŝi = 1

m

∑m
j=1 `(xi,j). Then

with probability at least 1− δ over choice of x, we have

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r

√
ln 2g

δ

2m
. (24)

Malfare estimation is more challenging than risk estimation, as the empirical malfare is in general a biased

estimator of true malfare. Still, this result is clearly analogous to Hoeffding’s inequality for the risk, suffering

only a
√
log g dependence on the number of groups g. Alternatively, again with probability at least 1− δ over

choice of x, we have a (variance-dependent) Bennett’s inequality analogue of

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r ln 2g

δ

3m
+ max

i∈1,...,g

√
2VDi

[`] ln 2g
δ

m
. (25)

These results should be contrasted with inequalities (1) and (2) for mean-estimation, as they generalize said

results to malfare estimation. It is a straightforward matter to extend them to depend on empirical variances,

and I further generalize to give uniform convergence guarantees over function families in chapter 4.
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Chapter 3

Quantifying Population Sentiment

with Welfare and Malfare

In this chapter, I address an inherent difficulty in welfare-theoretic fair machine learning by proposing

an equivalently-axiomatically justified alternative and studying the resulting computational and statistical

learning questions. Welfare metrics quantify overall wellbeing across a population consisting of one or more

groups, and welfare-based objectives and constraints have recently been proposed to incentivize fair machine

learning methods to produce satisfactory solutions that consider the diverse (often mutually incompatible)

needs of multiple groups. Unfortunately, many machine-learning problems are more naturally cast as loss

minimization, rather than utility maximization tasks, which complicates direct application of welfare-centric

methods to fair machine learning tasks. I thus define a complementary measure to welfare, termed malfare,

measuring overall societal harm (rather than wellbeing), with axiomatic justification via the standard axioms

of cardinal welfare.

With this definition in hand, I then cast fair machine learning as a direct malfare minimization problem,

where a group’s malfare is their risk (expected loss). Surprisingly, except in two trivial cases, the axioms

of cardinal welfare (malfare) dictate that this is not equivalent to simply defining utility as negative loss.

Previous welfare based methods have generally defined welfare in an ad-hoc manner, and I show that, in

particular, seemingly intuitive definitions of welfare in terms of loss lead to absurdities or non-trivial and

uninterpretable hyperparameters. Furthermore, I show that malfare exhibits rapidly-converging finite-sample

concentration-of-measure guarantees, and thus may be estimated with great accuracy from a small sample.

This chapter is adapted from the first half of Cousins [2021].
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3.1 Introduction

It is now well-understood that contemporary ML systems for tasks like facial recognition [Buolamwini and

Gebru, 2018, Cook et al., 2019, Cavazos et al., 2020], medical settings [Mac Namee et al., 2002, Ashraf

et al., 2018], and many others exhibit differential accuracy across gender, race, and other protected-group

membership. This immediately yields accessibility issues to users of such systems, and can lead to direct

discrimination, e.g., facial recognition in policing yielding disproportionate false-arrest rates, and ML in

medical technology yielding disproportionate health outcomes, exacerbating existing structural and societal

inequalities impacting many minority groups. In welfare-centric ML methods, both accuracy and fairness

are encoded in a single welfare function defined on a group of subpopulations. Welfare is then directly

optimized [Rolf et al., 2020] or constrained [Speicher et al., 2018, Heidari et al., 2018] to promote fair learning

across all groups. This addresses differential performance and bias issues across groups by ensuring that (1),

each group is seen and considered during training, and (2), an outcome is incentivized that is desirable overall,

ideally according to some mutually-agreed-upon welfare function. Unfortunately, welfare based metrics require

a notion of (positive) utility, and we argue that this is not natural to many machine learning tasks, where we

instead minimize some negatively connoted loss value (e.g., in decision-theory or with proper scoring rules).

We thus define a complementary measure to welfare, termed malfare, measuring societal harm (rather than

wellbeing). In particular, malfare arises naturally when one applies the standard axioms of cardinal welfare

(with appropriate modifications) to loss rather than utility. With this framework, we then cast fair machine

learning as a direct malfare minimization problem, where a group’s malfare is their risk (expected loss).

Perhaps surprisingly, defining and minimizing a malfare function is not equivalent to defining and maximizing

some welfare function, while taking utility to be negative loss (except in the trivial cases of egalitarian and

utilitarian malfare). This is essentially because nearly every function satisfying the standard axioms of

cardinal welfare requires nonnegative inputs, and it is not in general possible to contort a loss function into a

utility function while satisfying this requirement. For example, while minimizing the 0-1 loss, which simply

counts the number of mistakes a classifier makes, is isomorphic to maximizing the 1-0 gain, which counts

number of correct classifications, minimizing some malfare function defined on 0-1 loss over groups is not in

general equivalent to maximizing any welfare function defined on 1-0 gain. More strikingly, for problems

like minimizing square error (i.e., in regression), it is in general not even possible to define a complementary

nonnegative gain function without changing the optimal solution, even for a single group.

We briefly summarize our contributions as follows.

1. We derive in section 3.3 the malfare concept, extending welfare to measure negatively-connoted attributes,
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and show that malfare-minimization naturally generalizes risk-minimization to produce fairness-sensitive

machine-learning objectives that consider multiple protected groups.

2. We show in section 3.4 that in many cases, while empirical estimates of welfare and malfare are statistically

biased, they may be sharply estimated using standard finite-sample concentration-of-measure bounds.

3.2 Related Work

Constraint-based notions of algorithmic fairness have risen to prominence in machine learning, with the

potential to ensure demographic-parity (e.g., equality of opportunity, equality of outcome, or equalized

odds) thus correcting for some forms of data or algorithmic bias. While noble in intent and intuitive by

design, fairness by demographic-parity constraints has several prominent flaws: most notably, several popular

parity constraints are mutually unsatisfiable [Kleinberg et al., 2017], and their constraint-based formulation

inherently puts accuracy and fairness at odds, where additional tolerance parameters are required to strike a

balance between the two. Furthermore, recent works [Hu and Chen, 2020, Kasy and Abebe, 2021] have shown

that welfare and even disadvantaged group utility can decrease even as fairness constraints are tightened,

calling into question whether demographic parity constraints are even beneficial to those they purport to aid.

Without deeper axiomatic underpinnings, it is unclear why one should choose one notion of fairness over

another, and it is unsatisfying that we do not have a way of comparing and selecting between them without

appealing to informal arguments.

Perhaps in response to these issues, some recent work has trended toward welfare-based fairness-concepts [Hu

and Chen, 2020, Rolf et al., 2020], wherein both accuracy and fairness are encoded in a welfare function defined

on a group of subpopulations. Welfare is then directly optimized [Rolf et al., 2020] or constrained [Speicher

et al., 2018, Heidari et al., 2018] to promote fair learning across all groups Perhaps the most similar to

our work is a method of [Hu and Chen, 2020], wherein they directly maximize empirical welfare over linear

(halfspace) classifiers; however as with other previous works, an appropriate utility function must be selected,

which we avoid by instead using malfare. We argue that empirical welfare maximization is an effective

strategy when an appropriate and natural measure of utility is available, but in machine learning contexts

like this, there is no “correct” or clearly neutral way to convert loss to utility. Our strategy avoids this issue

by working directly in terms of malfare and loss.

The most poignant contrast to existing work we can make is to the Seldonian learner [Thomas et al., 2019]

framework, which can be thought of as extending PAC-learning to learning problems with both constraints

and arbitrary nonlinear objectives. We argue that this generality is harmful to the utility of the concept
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as a mathematical or practical object, as nearly any ML problem can be posed as a constrained nonlinear

optimization task. The utility in fair PAC learning is that it is sophisticated enough to handle fairness issues,

with a particular axiomatically justified objective, but remains simple enough to study as a mathematical

object; in particular reductions between various PAC and FPAC learnable classes are of great value in

understanding FPAC learning, which would not be possible in a more general framework.

3.3 Quantifying Population-Level Sentiment

A generic population mean function M(S;w) quantifies some sentiment value S, across a population Ω

weighted by w. In particular, S : Ω → R0+ describes the values over which we take the mean, and w, a

probability measure over Ω, describes their weights. When S measures a desirable quantity, generally termed

utility, the population mean is a measure of cardinal welfare [Moulin, 2004], and thus quantifies overall

well-being. We also consider the inverse-notion of ill-being, termed malfare, in terms of an undesirable S,

generally loss or risk, which naturally extends the concept. We show an equivalent axiomatic justification

for malfare, and argue that its use is more natural in many situations, particularly when considering or

optimizing loss functions.

Definition 3.3.1 (Population Means: Welfare and Malfare). A population mean function M(S;w) measures

the overall sentiment of population Ω, measured by sentiment function S : Ω→ R0+, weighted by probability

measure w over Ω. If S denotes a desirable quantity (e.g., utility), we call M(S;w) a welfare function, written

W(S;w), and inversely, if it is undesirable (e.g., disutility, loss, or risk), we call M(S;w) a malfare function,

written W

(S;w).

For now, think of the term population mean as signifying that an entire population, with diverse and

subjective desiderata, is considered and summarized, rather than a single objective viewpoint. As we

introduce axioms and show consequent properties, the appropriateness of the term shall become more

apparent. Note that we use the term sentiment to refer to S with neutral connotation, but when discussing

welfare or malfare, we often refer to S as utility or risk, respectively, as in these cases, S describes a well-

understood pre-existing concept. Coarsely speaking, the three notions are identical, all being functions of

the form (Ω→ R0+)×Measure(Ω, 1)→ R0+, however we shall see that in order to promote fairness, the

desirable axioms of malfare and welfare functions differ slightly. The notation reflects this; M(S;w) is an M

for mean, whereas W(S;w) is a W for welfare, and W

(S;w) is an W(inverted W), to emphasize its inverted

nature.

Often we are interested in unweighted population means, given sentiments as a vector S ∈ Rg
0+. Unweighted
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means may be defined in terms of weighted means, as

M(S) .
= M

(
i 7→ Si; {i 7→ 1

g}
)

,

abusing notation to concisely express the uniform measure. Indeed, it may seem antithetical to fairness to

allow for weights in malfare and welfare definitions; consider however that weights can represent differential

population sizes, and thus ensure that the welfare or malfare of weight-preserving decompositions of groups

into subgroups with equal risk or utility remains constant.

Example 3.3.2 (Utilitarian Welfare). Suppose individuals reside in some space X , where distributions

D1:g over domain X describe the distribution over individuals in each group. Suppose also utility function

U(x) : X → R0+, describing the level of satisfaction of an individual, w.r.t., e.g., some situation, allocation,

or classifier. We now take the sentiment function to be the mean utility (per-group), i.e.,

S(ωi)
.
= E

x∼Di

[U(x)] = E
Di

[U] .

Now, given a weights vector w, describing the relative frequencies of membership in each of the g groups, we

define the utilitarian welfare as

W1(S;w)
.
=

g∑
i=1

w(ωi)S(ωi) = E
ω∼w

[S(ω)] = E
w
[S] .

Of course, in statistical, sampling, and machine learning contexts, D1:g and w may be unknown, so we now

discuss an empirical analogue. Section 3.4 is then devoted to showing how and when empirical population

means well-approximate their true counterparts.

Example 3.3.3 (Empirical Utilitarian Welfare). Now suppose D1:g are unknown, but instead, we are given

a sample x1:g,1:m ∈ X g×m, where xi,1:m ∼ Di. We define an empirical analogue of the utilitarian welfare as

in example 3.3.2, instead taking

Ŝ(ωi)
.
= Ê

x∈xi

[U(x)] & Ŵ1(Ŝ,w)
.
= E

w
[Ŝ] .

Similarly, if w is unknown, but we may sample from some D over Ω×X , we can use empirical frequencies ŵ

in place of true frequencies w, and define Ŝ(ωi) as conditional averages over the subsample associated with

group i.
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3.3.1 Axioms of Cardinal Welfare and Malfare

Definition 3.3.4 (Axioms of Cardinal Welfare and Malfare). We define the population-mean axioms for

population-mean function M(S;w) below. For each item, assume (if necessary) that the axiom applies

∀S,S ′ ∈ Ω→ R0+, scalars α, β ∈ R0+, and probability measures w over Ω.

1. (Strict) Monotonicity: ∀ε : Ω→ R0+ s.t.
∫
w
ε(ω) d(ω) > 0: M(S;w) < M(S + ε;w).

2. Symmetry: ∀ permutations π over Ω: M(S;w) = M(π(S);π(w)).

3. Continuity: {S ′ | M(S ′;w) ≤ M(S;w)} and {S ′ | M(S ′;w) ≥ M(S;w)} are closed sets.

4. Independence of unconcerned agents: Suppose subpopulation Ω′ ⊆ Ω. Then

M



p ∈ Ω′ : α

p 6∈ Ω′ : S(p)
;w

 ≤ M



p ∈ Ω′ : α

p 6∈ Ω′ : S ′(p)
;w

⇒ M



p ∈ Ω′ : β

p 6∈ Ω′ : S(p)
;w

 ≤ M



p ∈ Ω′ : β

p 6∈ Ω′ : S ′(p)
;w

 .

5. Independence of common scale: M(S;w) ≤ M(S ′;w)⇒ M(αS;w) ≤ M(αS ′;w).

6. Multiplicative linearity: M(αS;w) = αM(S;w).

7. Unit scale: M(1;w) = M(1, . . . , 1;w) = 1.

8. Pigou-Dalton transfer principle: Suppose µ = Ew[S] = Ew[S ′], and ∀p ∈ Ω :
∣∣µ− S ′(p)∣∣ ≤ ∣∣µ− S(p)∣∣.

Then W(S ′;w) ≥W(S;w).

9. Anti-Pigou-Dalton transfer principle: Suppose as in 8, and conclude W

(S ′;w) ≤ W

(S;w).

We take a moment to comment on each of these axioms, to preview their purpose and assure the reader of

their necessity. Axioms 1-5 are the standard axioms of cardinal welfarism (1-4 are discussed by Sen [1977],

Roberts [1980], and 5 by Debreu [1959], Gorman [1968]). Together, they imply (via the Debreu-Gorman

theorem) that any population-mean can be decomposed as a monotonic function of a sum (over groups) of log

or power functions. Axiom 6 is a natural and useful property, and ensures that dimensional analysis on mean

functions is possible: in particular, the units of mean functions match those of sentiment. Note that axiom 6

implies axiom 4, and it is thus a simple strengthening of a traditional cardinal welfare axiom. This axiom

also ensures that units of population means preserve the units of S, making dimensional analysis greatly

more convenient; we will also see that it is essential to show convenient statistical and learnability properties.

Axiom 7 furthers this theme, as it ensures that not only do units of means match those of S, but scale does as

well (making comparisons like Si is above the population-welfare meaningful), and also enabling comparison

across populations (in the sense that comparing averages is more meaningful than sums). Finally, axiom 8

(the Pigou-Dalton transfer principle [see Pigou, 1912, Dalton, 1920]) is also standard in cardinal welfare
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theory as it ensures fairness, in the sense that welfare is higher when utility values are more uniform, i.e.,

incentivizing equitable redistribution of “wealth” in welfare. Its antithesis, axiom 9, encourages the opposite;

in the context of welfare, this perversely incentivizes an expansion of inequality, but for malfare, which we

generally wish to minimize, the opposite occurs, thus this axiom characterizes fairness in the context of

malfare.

Axioms 6-4 are novel to this work, and are key in strengthening the Debreu-Gorman theorem to ensure that

all welfare and malfare functions are power means in the sequel. Axiom 9 is also novel, as it is necessary to

flip the inequality of axiom 8 when the sense of the population mean is inverted from welfare to malfare;

in particular, the semantic meaning shifts from requiring that “redistribution of utility is desirable” to

“redistribution of disutility is not undesirable.”

For context, we present an additional axiom; that of additive separability. For simplicity, we present it only

in the unweighted discrete case, as there is some subtlety to an equivalent measure-theoretic formulation,

and we derive no benefit from assuming this axiom, as it is largely incompatible with our assumptions, and

presented only for comparison purposes.

Definition 3.3.5 (Additive Separability). Population-mean M(S1:g) is additively separable if there exist

functions f1:g s.t. each fi ∈ R0+ → R0+, and M(S1:g) may be decomposed as

M(S1,S2, . . . ,Sg) =
g∑

i=1

fi(Si) .

While seemingly quite important to early welfare theorists (e.g., the Debreu-Gorman theorem is generally

presented in additively-separable form), and it gives rise to some convenient interpretability and computational

properties, we argue that these are far-outstripped by those stemming from the multiplicative linearity and

unit scale axioms, with no real difference in generality.1 Furthermore, unlike these and other standard cardinal

welfare axioms, additive separability seems a bit-heavy handed, assuming something very specific that is

supposedly convenient for the economist, with little justification as to why and how it serves as a fundamental

property of cardinal welfare itself. These properties are discussed in section 3.3.3, and directly compared with

the additively-separable form in section 3.3.4.
1In this sense, the additive welfare functionals are somewhat like the natural sufficient statistics of the exponential family, in

that, while additivity is sometimes convenient, it comes only with the sacrifice of other desiderata.
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3.3.2 The Power Mean

We now define the p-power mean Mp(·), for any p ∈ R ∪ ±∞, which we shall use to quantify both malfare

and welfare. Power means arise often when analyzing population means obeying the various axioms of

definition 3.3.4, and as we shall see in theorem 3.3.7, are a particularly important class of population means.

Definition 3.3.6 (Power-Mean Welfare and Malfare). Suppose p ∈ R ∪ ±∞. We first define the unweighted

power mean of sentiment vector S ∈ Rg
0+ as

Mp(S)
.
=



p ∈ R \ {0} p

√√√√1

g

g∑
i=1

Spi

p = −∞ min
i∈1,...,g

Si

p = 0 g

√√√√ g∏
i=1

Si = exp

1

g

g∑
i=1

ln(Si)


p =∞ max

i∈1,...,g
Si

.

We now define the weighted power mean, given sentiment value function S : Ω→ R0+ and probability measure

w over Ω, as

Mp(S;w)
.
=



p ∈ R \ {0} p

√∫
w

Sp(ω) d(ω) = p

√
E

ω∼w
[Sp(ω)]

p = −∞ min
ω∈Support(w)

S(ω)

p = 0 exp

(∫
w

lnS(ω) d(ω)
)

= exp

(
E

ω∼w
[lnS(ω)]

)
p =∞ max

ω∈Support(w)
S(ω)

.

In both the weighted and unweighted cases, p ∈ {−∞, 0,∞} resolve as their (unique) limits, and for all p ∈ R,

note that power means are special cases of the (weighted) generalized mean, defined for strictly monotonic f

as Mf (S;w)
.
= f−1

(
Eω∼w[lnS(ω)]

)
.

Theorem 3.3.7 (Properties of the Power-Mean). Suppose S, ε are sentiment values Ω→ R0+, and w is a

probability measure over Ω. Then

1. Monotonicity: Mp(S;w) is weakly-monotonically-increasing in p, and strictly if S attains distinct a, b ∈ R

with nonnegligible probability.

2. Subadditivity: ∀p ≥ 1 : Mp(S + ε;w) ≤ Mp(S;w) +Mp(ε;w).
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3. Contraction: ∀p ≥ 1 :
∣∣Mp(S;w)−Mp(S ′;w)

∣∣ ≤ Mp(
∣∣S − S ′∣∣ ;w) ≤

∥∥S − S ′∥∥∞.

4. Curvature: Mp(S;w) is concave in S for p ∈ [−∞, 1] and convex for p ∈ [1,∞].

3.3.3 Properties of Welfare and Malfare Functions

We now show that the axioms of definition 3.3.4 are sufficient to characterize many properties of welfare and

malfare.

Theorem 3.3.8 (Population Mean Properties). Suppose population-mean function M(S;w). If M(·; ·)

satisfies (subsets of) the population-mean axioms (see definition 3.3.4), we have that M(·; ·) exhibits the

following properties. For each, assume arbitrary sentiment-value function S : Ω→ R0+ and weights measure

w over Ω. The following then hold.

1. Identity: Axioms 6 & 7 imply M(ω 7→ α;w) = α.

2. Axioms 1-5 imply ∃p ∈ R, strictly-monotonically-increasing continuous F : R→ R0+ s.t.

M(S;w) = F

(∫
w

fp(S(ω)) d(ω)
)

= F

(
E

ω∼w

[
fp(S(ω))

])
, with


p = 0 f0(x)

.
= ln(x)

p 6= 0 fp(x)
.
= sgn(p)xp

.

3. Axioms 1-7 imply F (x) = f−1
p (x), thus M(S;w) = Mp(S;w).

4. Axioms 1-5 and 8 imply p ∈ (−∞, 1].

5. Axioms 1-5 and 9 imply p ∈ [1,∞).

Taken together, the items of theorem 3.3.8 tell us that the mild conditions of axioms 1-4 (generally assumed

for welfare), along with multiplicative linearity, imply that welfare and utility, or malfare and loss, are

measured in the same units (e.g., nats or bits for cross-entropy loss, square-Y-units for square error, or

dollars for income utility), and power-mean malfare is effectively the only reasonable choice of welfare or

malfare function. Even without multiplicative linearity, axioms 1-5 imply population mean functions are still

monotonic transformations of power-mean. Furthermore, the entirely milquetoast unit scale axiom implies

that sentiment values and population means have the same scale, making comparisons like “the risk of group

i is above (or below) the population malfare” meaningful. Finally, we also have that p ∈ [−∞, 1) incentivizes

redistribution of utility from better-off groups to worse-off groups, and similarly p ∈ [1,∞) incentivizes

redistribution of harm2 from worse-off groups to better-off groups.
2Note that, mathematically speaking, it is entirely valid to quantify welfare with p > 1 or malfare with p < 1, and indeed

such characterizations may arise in the analysis of unfair systems; however we generally advocate against intentionally creating
such unfair systems.
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3.3.4 A Comparison with the Additively Separable Form

In particular, assuming axioms 1-5, all population means are monotonic transformations of the power mean,

thus whether we assume additive separability, and get the additively-separable form

M(S) = c

g∑
i=1

fp(Si) = cgMp
p(S) ,

for p ∈ R \ {0} (where usually c = 1 is taken as the canonical form), or we assume axioms 6 & 7, and get the

power-mean, there is no real loss of descriptiveness, as all such population-means remain isomorphic under

the binary comparison operator (≤). With additive separability, it is straightforward to compute the welfare

of a population from the welfares of subpopulations, but it is still computationally trivial to do this with

power means. Furthermore, the limiting cases of p ∈ ±∞ become undefined in the additively separable form,

and we lose monotonicity in p (see theorem 3.3.7), both of which are remedied with power means.

With additive separability, welfare summarizes population sentiment by intuitively generalizing the idea of

summation. In contrast, in our setting, we prefer to think of welfare as a generalized average. This yields

desirable statistical estimation and learnability properties (shown in the sequel), but is also useful in and of

itself, as it allows us to, for instance compare individual sentiment values to welfare, as both the units and

scale match.

Another reason to prefer the power-mean over the additively separable form is the potential for direct

comparisons between group sentiments, population means of subgroups, and overall population means. In

particular, the dimensional analysis properties of the power mean are convenient, as these comparisons agree

in units (due to axiom 6) and scale (due to axiom 7). No such dimensional analysis is possible with the

additively separable form, as, e.g., if S is measured in dollars, then W2
2(S;w) is measured in square dollars

(a rather unintuitive unit).

3.3.5 Relating Power Means and Inequality Indices

We now discuss and define relative inequality indices I(S;w), which have been employed in the literature

[Sen et al., 1997] to construct welfare functions of the form

W(S;w) = W1(S;w)
(
1− I(S;w)

)
.
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1: Monotonicity 2: Symmetry 3: Continuity 4: IOUA 5: IOCS

6: × Lin.

7: Unit Scale

Mono. in Gen. Mean
M(S) = (F ◦Mf )(S)

Mono. in p-Mean
M(S) = (F ◦Mp)(S)

Scaled p-Mean
M(S) = αMp(S)

p-Mean
M(S) = Mp(S)

8: Pigou-Dalton 9: Anti-Pigou-Dalton

p ≤ 1
Fair Welfare

p ≥ 1
Fair Malfare

Figure 3.1: Relationships between population-mean axioms and properties. Assumptions and axioms shown
in pastel blue, and properties shown in pastel red. Equivalent properties hold for weighted population mean
functions.

This characterization intuitively starts with the utilitarian welfare, which measures overall satisfaction and

then downweights based on how unfairly distributed utility is amongst the population. The “relative” in

relative inequality indices connotes the fact that they are restricted to domain [0, 1], thus the welfare metric

matches the utilitarian under no inequality, and is 0 under maximal inequality.

We show that a large class of such functions are actually power means, which both gives them axiomatic

justification, and shows prior support in the literature for the power mean. In particular, we first consider

the Atkinson index relative inequality measure family [Atkinson et al., 1970].

Definition 3.3.9 (Atkinson Index). For all ε ∈ R, we define the Atkinson index as

Atkε(S;w)
.
= 1− M1−ε(S;w)

M1(S;w)
.

Note that often the Atkinson index is restricted to ε ∈ [0, 1]; outside this range, it may exceed 1. Furthermore,

the Atkinson index is generally stated without weights, and in a mathematically equivalent form, in which

the resemblance to the power mean is less obvious, but for our purposes the above form is clearer. From it,

we immediately have the following lemma.

Lemma 3.3.10 (Relating Atkinson’s Indices and Power Means). Suppose some ε ∈ R, and take p = 1− ε.

It then holds that

Mp(S;w) = M1(S;w)(1−Atkε(S;w)) .

Proof. This is a direct consequence of definition 3.3.9, noting p = 1− ε⇔ ε = 1− p.

This is not particularly surprising in light of the welfare-centric derivation of [Atkinson et al., 1970], but
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nonetheless it yields a valuable alternative way to think about power means and inequality-weighted wel-

fare functions. In particular, it gives a direct axiomatic justification of the welfare function W(S;w) =

W1(S;w)(1 − Atkε(S;w)) (see theorem 3.3.8), and also gives an alternative intuitive interpretation of

power-mean welfare (as inequality-weighted utilitarian welfare).

Note that similar properties may be shown for the isomorphic inequality measures of generalized entropy

indices and Theil indices [Theil, 1967], though in this context their forms are generally less pleasing.

3.4 Statistical Estimation of Malfare Values

We first illustrate the ease with which p-power means can be estimated, in contrast to the standard additive

welfare formulations. Perhaps surprisingly, we find that empirical welfare and malfare are biased estimators,

yet they admit much sharper finite-sample tail bounds than the additive welfare formulations, which are

unbiased.

Lemma 3.4.1 (Statistical Estimation). Suppose probability distribution D, population-mean M obeying

monotonicity, sentiment value function S such that, given functions fω, we have S(ω) = Ex∼D[fω(x)], sample

x ∼ Dm, and empirical sentiment value estimate Ŝ .
= Êx∈x[fω(x)]. If it holds with probability at least 1− δ

that ∀ω : S ′(ω)− ε(ω) ≤ S(ω) ≤ S ′(ω) + ε(ω), then with said probability, we have

Mp(0 ∨ (Ŝ − ε);w) ≤ Mp(Ŝ;w) ≤ Mp(Ŝ + ε;w) ,

where a ∨ b denotes the (elementwise) minimum.

Proof. This result follows from the assumption, and the monotonicity axiom (i.e., adding or subtracting ε

can not decrease or increase the power mean, respectively). The minimum with 0 on the LHS is required

simply because by definition, sentiment values are nonnegative, and Mp is in general undefined with negative

inputs.

We now reify this result, applying the well-known Hoeffding [1963] and Bennett [1962] bounds to show

concentration and derive an explicit form for ε.

Corollary 3.4.2 (Statistical Estimation with Hoeffding and Bennett Bounds). Suppose fair power-mean

malfare W

(·; ·) (i.e., p ≥ 1), loss function ` : X → [0, r], S ∈ [0, r]g s.t. Si = EDi
[`], samples xi ∼ Dm

i , and
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take Ŝi
.
= 1

m

∑m
j=1 `(xi,j). Then with probability at least 1− δ over choice of x,

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r

√
ln 2g

δ

2m
.

Alternatively, again with probability at least 1− δ over choice of x, we have

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r ln 2g

δ

3m
+ max

i∈1,...,g

√
2VDi

[`] ln 2g
δ

m
.

As corollary 3.4.2 follows directly from lemma 3.4.1, with Hoeffding and Bennett inequalities applied to derive

ε bounds, similar results are immediately possible with arbitrary concentration inequalities. In particular,

similar data-dependent bounds may be shown, e.g., with empirical Bennett bounds, removing dependence on

a priori known variance. In particular, we may apply theorem 1.3.3 to bound ε, either elementwise (over

groups) with a union bound, or jointly, if the loss functions for each group may be combined into a single

function family.

Furthermore, note that while these bounds may be used for evaluating the welfare or malfare of a particular

classifier or mechanism (through S and Ŝ), they immediately extend to learning over a finite family via the

union bound. Much like in standard statistical learning theory, the exponential tail bounds of corollary 3.4.2

allow the family to grow exponentially, at linear cost to sample complexity. Also as in standard uniform

convergence analysis (generally discussed in the context of empirical risk minimization), we can easily handle

infinite hypothesis classes and obtain much sharper bounds by considering uniform convergence bounds over

the family, e.g., with Rademacher averages and appropriate concentration-of-measure bounds.

In learning contexts, minimizing the malfare among all groups immediately generalizes minimizing risk of

a single group. These statistical estimation bounds immediately imply that the empirical malfare-optimal

solution is a reasonable proxy for the true malfare-optimal solution, as we now formalize.

Definition 3.4.3 (The Empirical Malfare Minimization (EMM) Principle). Suppose hypothesis class H ⊆

X → Y, training samples z1:g drawn from distributions D1:g over X × Y, loss function ` : Y × Y → R0+,

malfare function W, group weights w. The empirical malfare minimizer is then defined as

ĥ
.
= argmin

h∈H

W(
i 7→ R̂(h; `, zi);w

)
,
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and the EMM principle states that ĥ is a reasonable proxy for the true malfare minimizer

h∗ .
= argmin

h∗∈H

W(
i 7→ R(h∗; `,Di);w

)
.

In all cases, these bounds provide further justification for using the power-mean over the additively separable

form, as it is substantially harder to achieve comparable bounds on Mp
p(S;w), due to the increased difficulty

of controlling the range and Lipschitz constant of these quantities. Of course, as power-mean bounds imply

bounds on the additively-separable form (and vice-versa), we recommend working with power means, and

then converting back to the additively separable form (if so desired).
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Chapter 4

Ewoks: an Algorithm for

Fair Codec Selection

In this chapter, I frame the problem of selecting sets of streaming media codecs as a supervised learning

task, which I address with the Empirical Welfare-Optimal k codec Selection (Ewoks) algorithm. I consider

multivariate optimality concepts (over, e.g., audio quality versus bandwidth consumption), such as Pareto

optimality, minimax-optimality, and various welfare concepts. Welfare solutions perform well in aggregate

over sets or distributions of users with varied preferences, quantifying and providing fine-grained control over

algorithmic fairness and bias issues. I prove that Ewoks-solutions are approximately welfare-optimal over the

underlying media distribution via rigorous statistical learning guarantees, and show empirically that Ewoks

solutions are fairer (as measured by welfare) than single-objective solutions. This chapter is based on joint

work with Clayton Sanford and Eli Upfal.

4.1 Introduction

Streaming video now accounts for an estimated 58% of all internet traffic [Sandvine, 2018], thus there is strong

user demand and economic incentive to optimize stream quality and resource utilization. Most streamed

audio and video data is compressed with a codec (coder-decoder), with complicated, subjective, multivariate

(often conflicting) objectives; for example resource utilization metrics, (e.g., compression ratio, encode/decode

CPU time), fidelity / distortion (quality) metrics, and fault tolerance, are all important, to varying degrees

for various users, applications, and media types. Furthermore, while codecs are generally developed and
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tested on particular use cases (e.g., lossless audio, low-bandwidth speech data, various qualities of music

data), and relative performance on each attribute varies depending on the media being encoded.

While many codecs purport efficacy for various use cases, little effort has been put into rigorous multivariate

comparative statistical analysis. In practice, sets of streaming media codecs are generally selected ad-hoc by

domain experts to target particular bitrates or quality thresholds, which may be suboptimal for users with

different preferences, or over different media distributions. For example, low-quality mp3 encodings may be

used for a low-bitrate music stream, and lossless FLAC encodings for a high-quality stream, but for a speech

stream, there exist specialized codecs that will achieve higher quality than a general-purpose codec at a

given compression ratio. Furthermore, relative codec performance across media is inconsistent, and usually

selecting the best encoding among a set of codecs outperforms any individual codec on average.

The multivariate aspect of the codec-selection problem induces both deep theoretical quandries and impactful

real-world fairness and algorithmic bias issues. New technologies often fail to adequately serve global users,

resulting in products with varying degrees of success across markets, harming both potential users and

developers. We model the preferences of a user with a loss function ` mapping codec attributes to user

dissatisfaction, and model user diversity by considering a set or distribution L over loss functions.

We address all of these issues with a novel fair media streaming strategy, employing a codec set c, s.t. when a

user with loss function ` requests media x, we return the encoding c(x) for c ∈ c that minimizes (` ◦ c)(x),

thus optimizing for data-dependent user preference. We then propose the Empirical Welfare-Optimal k

codec Selection (Ewoks) algorithm, which learns a data-dependent set of k codecs c that is welfare-optimal

over L. Data-dependence is key, as Ewoks considers each codec in an unbiased way, allowing empirical

performance to dictate whether it is selected, which automates the process of selecting domain-appropriate

codecs, eliminating bias due to distribution-shift.

While various welfare concepts characterize different notions of fairness, Ewoks is not tied to any particular

welfare function. Rather, we show how to optimize and bound generalization error across a broad class of

welfare concepts, where both utilitarian and egalitarian welfare arise as special cases.

It may be computationally intractable to optimize welfare over large datasets, and one may wish to approximate

with a sample [see e.g. Riondato and Upfal, 2015, 2016, 2018], and in dynamic settings, new media are

continuously uploaded, and thus are unavailable during training. We show that Ewoks solutions are not only

empirically optimal, but also approximately optimal over the underlying media distribution of the training

data, thus mitigating overfitting concerns, by posing codec selection as a statistical learning problem and

showing data-dependent uniform-convergence bounds.
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We show novel finite-sample data-dependent welfare-generalization bounds with Monte-Carlo Rademach-

er averages [Koltchinskii, 2001, Bartlett and Mendelson, 2002] and modern entropy-method concentra-

tion inequalities [Boucheron et al., 2003, 2013], which outperform standard Martingale-based Rademacher

bounds [Mitzenmacher and Upfal, 2017], particularly in the small-sample setting. Our bounds are sensitive

to the empirical variances of codec performances, and can substantially improve upon the generalization

guarantees of variance-insensitive methods. Such welfare-generalization guarantees are particularly important,

as unlike with risk and loss functions, empirical welfare is not an unbiased estimator of welfare.

We now summarize our contributions:

1. We introduce k codec selection, reframing traditionally manual codec selection as a supervised learning

problem, and propose the Ewoks algorithm it.

2. We control for algorithmic bias and fairness issues by learning distribution-dependent models and robustly

optimizing over a broad class of welfare concepts.

3. We show welfare generalization bounds through uniform convergence theory and novel sharp variance-

sensitive tail bounds.

4. We validate experimentally that Ewoks robustly controls for overfitting and unfairness due to optimizing

for specific user models or data distributions.

4.2 The Ewoks Algorithm

In the codec selection framework, we assume media exist in some space X , and a family C of codecs, which

act as functions from X onto a compressed X ′ and back, which we abstract to functions from X onto the

space of attribute values Ra
0+. Attributes represent various objectively measurable properties such as quality

and resource utilization metrics. For example, mp3, with fixed encoder hyperparameters, is a codec, and

the quality / distortion metrics and compression ratio are attributes of an encoding. We generally assume

monotonically minimizing each objective is desirable (i.e., decreasing some attribute while others remain

constant is never bad), though often this may be relaxed.

We also assume a family L ⊆ Ra
0+ → R0+ of loss functions, such that each loss ` ∈ L, codec c ∈ C, media

sample x ∈ X , (` ◦ c)(x) quantifies the subjective dissatisfaction of ` on encoding c(x). Therefore L represents

the space of user preferences for various options and tradeoffs, for instance for video framerate, quality,

resolution, and compression ratio. In other words, the family L objectively captures the subjective desiderata

of users, each represented by some ` ∈ L. While each ` ∈ L is an objective metric, by considering all of L
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simultaneously, we remain sensitive to the subjective nature of the problem.

Given a set c of k codecs, when a user with some loss function ` requests media x ∈ X , we serve the request

by selecting the c ∈ c that minimizes (` ◦ c)(x), and returning (c, c(x)). Consequently, it’s generally sufficient

to select a codec set such that on average (over the media distribution), at least one codec is satisfactory for

each user. We quantify the aversion of a user with loss function ` to codec set c over media distribution D

with the risk

R(c; `,D) .
= E

x∼D

[
min
c∈c

(` ◦ c)(x)
]

. (26)

The brief explanation above, and the optimality concepts discussed in the sequel, are sufficient to understand

and analyze Ewoks.

4.2.1 Welfare-Optimal k codec Selection

Given a large codec family C, the computation and storage costs of serving each query with the optimal

c ∈ C become prohibitive. Depending on the data distribution D and user needs (represented by L), many

codecs may contribute little marginal benefit, hence a subset of C is often sufficient. For a single loss function

`, `-optimality encourages selecting a diverse codec set c, as there is little marginal benefit to adding a

high-performing codec c to c if its performance is highly correlated with some c′ ∈ c (as may occur with

similar encoding algorithms or parameters). Furthermore, in general, Ewoks considers a loss family L in

aggregate, and welfare-objectives incentivize selecting a diverse codec set that performs well for all ` ∈ L. In

short, our goal is to select some c ⊆ C from among the set of size-k subsets of C, henceforth written
(C
k

)
, that

performs well in aggregate over L w.r.t. D.

With a specific user or objective use-case, represented by loss function `, risk is the natural way to quantify

performance. We then define the risk minimizer c∗` as

c∗`
.
= argmin

c∈(Ck)
R(c; `,D) . (27)

With a family or distribution L over loss functions, we face tradeoffs as to the degree to which each ` ∈ L may

be satisfied. One approach to algorithmic fairness and robustness against arbitrary use-cases is to select a set

of codecs c that optimizes worst-case performance (minimax-optimality) over L. This corresponds to the

egalitarian-welfare optimal solution concept1 over L. Welfare concepts capture various aspects of multivariate
1Although welfare is usually defined in terms of (desirable) utility u(·), we instead consider (undesirable) loss `(·), and thus in

some sense seek to minimize a notion of antiwelfare over loss. Our methods can be reposed to work in either direction, e.g., by
defining utility u(a) = 1− `(a).
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optimality in multi-agent systems [Gibbons, 1992], and egalitarian welfare ensures fairness, because it always

incentivizes selecting c to benefit the least-satisfied users. Alternatively, utilitarian welfare considers the

mean loss across a distribution over users, which is fair in a different sense. Utilitarian welfare will not ignore

the desires of large groups in favor of improving small worst-case groups, though in ML systems it may create

positive feedback loops, magnifying preexisting inequity. Rather than argue for a particular welfare concept,

a deep philosophical choice which depends on many extrinsic factors, we show that our statistical methods

are sufficient to control for generalization error within a broad class of welfare concepts.

In general, take welfare concept M(c;L,D) to be a function that takes a codec set c, a distribution over loss

functions L, and a media distribution D over X , and yields a real-valued measure of overall well-being. In

this section, we show all results in full generality, but for intuition, recall the power mean definition 3.3.6.

We also refer to both welfare and malfare as welfare, as whether we wish to minimize or maximize depends

on whether codec attributes are positive or negative (e.g., positive quality or negative distortion). Recall

that Mp(. . . ) is monotonic in p, 1 & ∞ correspond to utilitarian and egalitarian welfare, respectively, and

intermediate p are of interest as compromises thereof (e.g., the p = 2 quadratic welfare lies between egalitarian

and utilitarian welfare, and weighs high-risk users more heavily than low-risk groups). We require only that

M(·) is λ-Lipschitz continuous in the `∞-norm of ` 7→ Ex∼D[minc∈c(` ◦ c)(x)] (i.e., an ε-perturbation to all

risk values changes M(·) by ≤ λε). We also assume that M(·) is monotonic in the risk of each user, making

Pareto-optimality a meaningful optimality concept.

Given loss function family or distribution L, media distribution D over X , and welfare concept M(·), we now

quantify the performance of some k codec selection c ∈
(C
k

)
as its welfare w.r.t. M(·). The M-optimal codec

set c∗M is then defined as
c∗M

.
= argmin

c∈(Ck)
M(c;L,D) . (28)

4.2.2 Empirical Welfare Optimization

We now consider the task of approximating the risk-optimal c∗` or welfare-optimal c∗M, given only a sample

x ∼ Dm. We define the empirical risk R̂(c; `,x) as the sample average loss

R̂(c; `,x)
.
= Ê

x∈x

[
min
c∈c

(` ◦ c)(x)
]

, (29)

and similarly, define the empirical risk minimizer ĉ` as

ĉ`
.
= argmin

c∈(Ck)
R̂(c; `,x) , (30)
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corresponding to eqs. 26 and 27, respectively.

Similarly, for welfare M(·), we take the empirical welfare M̂(c;L,x) to be welfare computed with empirical risk

R̂(c; `,x) instead of risk R(c; `,D), and define the empirical welfare minimizer, by analogy with equation 28,

as
ĉM

.
= argmin

c∈(Ck)
M̂(c;L,x) . (31)

The Empirical Welfare-Optimal k codec Selection (Ewoks) algorithm computes ĉM as a proxy for c∗M. We

assume the combinatorial optimization aspect of this task is tractable via enumeration, or by exploiting its

inherent submodularity (diminishing returns in adding codecs), as usually the computational bottleneck is

encoding each xi with each c ∈ C. Although Ewoks is straightforward, the difficulty arises in determining

the minimum sample size that guarantees that the welfare (over D) of ĉM approaches that of c∗M.

In the statistical parlance, the empirical risk is an unbiased estimator of risk, i.e., E[R̂(c; `,x)] = R(c; `,D),

and ĉ` is an M-estimator [Huber, 1964]. The Empirical Risk Minimization (ERM) paradigm [Vapnik, 1992]

states that ĉ` is a reasonable proxy for c∗` , and much of statistical learning theory quantifies the finite-sample

selection bias (overfitting) of ĉ`. Similarly, with insufficient data, ĉM can overfit, in which case the estimation

error M(ĉM;L,D)−M(c∗M;L,D)� 0, and ĉM is a poor proxy for c∗M. In general, the empirical welfare is a

biased estimator of welfare (i.e., E[M̂(c;L,x)] 6= M(c,L,D)), however in section 4.2.3 we show tail bounds on

the welfare-estimation error, thus controlling for overfitting and providing methods to guarantee that Ewoks

solutions are statistically significant.

Note that k is a fixed hyperparameter of the Ewoks algorithm, and should be selected to balance the tradeoff

as k increases between the cost of managing more codecs and increased overfitting against empirical-welfare

improvement. As model complexity increases in k, optimizing k to balance the bias-variance tradeoff is

statistically-efficient with structural risk minimization [Koltchinskii, 2001].

4.2.3 Generalization Analysis

We now show exponential tail bounds on the welfare optimality-gap M(ĉM;L,D)−M(c∗M;L,D). We bound

the supremum deviation over all risk values with novel variance-sensitive tail bounds which we then use to

bound the welfare optimality-gap. Here it is convenient to discuss a generic function family, so given codec

family c ⊆ X → Ra
0+, loss family L ⊆ Ra

0+ → R0+, and k ∈ N, we define

F .
= min◦L◦

(C
k

)
=
{
x 7→min

c∈c
(`◦c)(x)

∣∣c∈(Ck), `∈ L} .
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F captures the k codec selection-specific details of the problem, thus we seek to show uniform convergence

over F , which we will use to bound the gap between empirical and expected welfare of Ewoks solutions.

Definition 4.2.1 (Rademacher Averages). Suppose distribution D over X, sample x ∈ Xm, n Monte-Carlo

trials, and Rademacher matrix σ ∈ (±1)n×m. We define

1. for fixed σ and x, the n-Monte-Carlo Empirical Rademacher Average (n-MCERA):

R̂
n

m(F ,x,σ) .
=

1

n

n∑
j=1

sup
f∈F

∣∣∣∣ 1m
m∑
i=1

σj,if(xi)

∣∣∣∣ ;

2. averaging over σ ∼ i.i.d. Rademacher (uniform on ±1), the Empirical Rademacher Average (ERA):

R̂m(F ,x) .
= E

σ

[
R̂

1

m(F,x,σ)
]
; &

3. averaging over x∼Dm, the Rademacher Avg. (RA):

Rm(F ,D) .
= E

x

[
R̂m(F,x)

]
.

The n-MCERA is a Monte-Carlo estimate (w.r.t. σ) of the ERA, and the ERA is a sample estimate (w.r.t.

x) of the RA. Recall that through symmetrization, we have

E
x

[
sup
f∈F

∣∣∣∣ED[f ]− Ê
x
[f ]

∣∣∣∣︸ ︷︷ ︸
Supremum Deviation

]
≤ 2Rm(F ,D

)
, (32)

where the supremum deviation (SD) uniformly bounds the gap between empirical and expected values of each

f ∈ F simultaneously.

While RAs control the expected SD, and boundedness is sufficient to obtain sharp tail bounds on the

convergence of n-MCERA and ERA to the RA, sharp bounds on the SD require also that the variance of

each f ∈ F is controlled. We define the wimpy variance (see Boucheron et al. [2013, ch. 11]), and our novel

estimate, the empirical wimpy variance as

v
.
= sup

f∈F
V
D
[f ] & v̂

.
= sup

f∈F

1

m

m∑
i=1

(
f(xi)− Ê

D
[f ]
)2

,
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respectively. We now show bounds that quantify the relationships between the SD, n-MCERA, v, and v̂ in the

following novel theorem, which enjoys the asymptotic improvements of variance-sensitive bounds [Bousquet,

2002] without assuming a priori variance knowledge. In particular, our bound excels in the small-sample

setting for bounded functions of uniformly low variance, as occurs in the codec selection problem.

Theorem 4.2.2 (Variance-Sensitive Bounds). Suppose distribution D over X , training sample x ∼ Dm, Monte-

Carlo trial count n, i.i.d. Rademacher matrix σ ∈ (±1)n×m, codec family C, loss family L ⊆ Ra
0+ → [−r, r],

λ-Lipschitz welfare M(·), and codec selection size k. ∀δ ∈ (0, 1), let F .
= min ◦L ◦ (Ck), take v̂ to be the

empirical wimpy variance of F over x and v̂raw to be the empirical raw wimpy variance, and take

1. εERA
.
=

4r 4
δ

3nm
+

√
4v̂raw ln 4

δ

nm
;

2. εRA
.
=

2r ln 4
δ

m
+

√
2r(R̂

n

m(F,x,σ) + εERA) ln
4
δ

m
;

3. R̃ .
= R̂

n

m(F,x,σ) + εERA + εRA;

4. ṽ
.
= m

m−1 v̂ +
4r2 ln 4

δ

m
+

√
2r2v̂ ln 4

δ

m− 1
; &

5. εSD
.
=

r ln 4
δ

3m
+

√
2(ṽ + 4rR̃) ln 4

δ

m
.

It then holds with with pr. ≥ 1− δ over x,σ that

1.
∣∣∣M(ĉM,L,D)− M̂(ĉM,L,x)

∣∣∣ ≤ 2λR̃+ λεSD &

2. M(ĉM,L,D)−M(c∗M,L,D) ≤ 4λR̃+ 2λεSD .

The details of the proof are rather cumbersome, but the key idea is that we take a union bound over 4

probabilistic upper-tail-bounds; in particular, w.h.p., v ≤ ṽ (1 tail bound), and Rm(F,D) ≤ R̃ (2 tail bounds

for n-MCERA → ERA → RA). The fourth tail bound is on the SD of F , which by Lipschitz properties yields

bounds on welfare-gaps. Note that if we assume λ = 1, 4R̃+ 2εSD is

4R̂
n

m(F,x,σ) +Θ

(
r ln 1

δ

m
+

√
(v+rRm(F,D)) ln 1

δ

m

)
. (33)

With worst-case variance v = r2/4, we recover the slow-decaying Θ
√

r2ln 1
δ /m McDiarmid terms of standard

methods, however generally we get asymptotic mixed-rate convergence, where the Θ(r ln 1
δ /m) term depends

on the scale r, but decays quickly in m, and the Θ
√
(v+rRm(F,D))ln 1

δ /m term depends on
√
v instead of r,

but decays slowly in m. Note that the latter term simplifies to Θ
√

v ln 1
δ /m when we consider the limiting

behavior as m→∞ and assume Rm(F ,D) tends to 0, thus the essence of the bound is fast-decay as r/m

plus slow decay as
√

v/m.

This dichotomy is key to understanding the bound’s strong performance in the small sample setting: we see

initial rapid decay while the r term is dominant, followed by slow decay as the
√
v term comes to dominate.
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Where the transition occurs is primarily dictated by the relative values of r and v, but for sufficiently small v,

we see fast-decaying tail bounds and excellent performance in the small-sample regime (see section 4.3.3).

4.2.4 Linear Loss Families

For large C and k, it can become computationally intractable to compute the wimpy variance and n-MCERA,

and in general they are rather opaque, due to the supremum over codec combinations and the minimum over

selected codecs. We now show simple compositional bounds for linear loss families mapping attribute vectors

a ∈ Ra
0+ onto R0+, taking

Lp
.
= { `(a) .

= w · a | w ∈ Ra
0+ s.t. ‖w‖p ≤ 1 } (34)

for p ≥ 1. To control the range of Lp, we assume also a bounded domain X , in particular we assume bounded

q-norm for q
.
= p−1

p , or q = 1 for p = ∞, thus ‖·‖p and ‖·‖q are dual norms (i.e., by Hölder’s inequality,∣∣w · c(x)∣∣ ≤ ‖w‖p‖c(x)‖q). We now show that both the variance and ERA of the (nonlinear) k codec selection

problem can be bounded with their (linear) counterparts in 1 codec selection.

Theorem 4.2.3 (Bounds for Linear Loss Families). Suppose p, q, s.t. |p−1|+ |q−1| = 1, codec family C, Lp

as in (34), and assume sup
c∈C,x∈X

‖c(x)‖q ≤ s. For all k ∈ 1, . . . |C|, take Fk
.
= min ◦Lp ◦

(C
k

)
, and v̂k to be the

empirical wimpy variance of Fk on sample x. Taking Ĉx[c] ∈ Ra×a to denote the empirical covariance matrix

of the attributes of codec c over x, and ‖·‖p→q to be the `p-`q operator norm, it holds that

v̂1 = sup
c∈C

sup
`∈L

V̂
x
[` ◦ c] ≤ sup

c∈C

∥∥Ĉ
x
[c]
∥∥
q→p

, &

R̂
n

m(F1,x,σ) ≤ 1
n

n∑
j=1

sup
c∈C

∥∥∥∥∥ 1
m

m∑
i=1

σj,ic(xi)

∥∥∥∥∥
q

.

Furthermore, for any a, b ∈ N s.t. k = a+ b, we have

v̂k ≤ v̂a + v̂b ≤ kv̂1 , &

R̂m(Fk,x) ≤ R̂m(Fa,x) + R̂m(Fb,x) ≤ kR̂m(F1,x) .

Here we see that linearity of Lp is convenient, though it does not in general convert the Ewoks problem to a

linear problem, due to the minimum over selected codecs. However, F1 is completely linear, thus for k = 1 it
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is easy to compute Rademacher averages and variances. With sufficient computational resources, R̂m(Fk,x)

and v̂k can be computed as precisely as required, and theorem 4.2.3 allows us to trade statistical efficiency

for computational efficiency by truncating the computation at some selection size j < k, and then loosely

bounding R̂m(Fk,x) and v̂k in terms of R̂m(Fj ,x) and v̂j , with particularly efficient computation for j = 1.

We now illustrate the use of theorem 4.2.3 with a simple corollary for the `2 linear loss family.

Corollary 4.2.4 (Bounds for Linear Loss Families). Suppose as in theorem 4.2.3, and also p = q = 2, and

all attribute values are contained by the unit sphere. Then

v̂k ≤ k sup
c∈C

∥∥∥∥Ĉx [c]
∥∥∥∥
2→2

,

where ‖·‖2→2 is the spectral norm (largest eigenvalue). Additionally, with pr. ≥ 1− δ over x,σ, it holds that

R̂m(Fk,x)≤k

(
R̂

n

m(F1,x,σ) +

√
ln 1

δ

2nm

)
≤k

(
1
n

n∑
i=1

sup
c∈C

∥∥∥∥∥1
m

m∑
j=1

σi,jc(xj)

∥∥∥∥∥
2

+

√
ln 1

δ

2nm

)
.

Consequently, theorem 4.2.2 holds with

εRA ≤
ln 4

δ

3m
+

√
2k(R̂

n

m(F1,x,σ) + εERA) ln
4
δ

m
;

R̃ ≤ k
(
R̂

n

m(F1,x,σ) + εERA

)
+ εRA; &

ṽ ≤ m
m−1kv̂1 +

2 ln 4
δ

m
+

√
2kv̂1 ln

4
δ

m− 1
.

Here we see that, for linear loss family L2, we can bound the wimpy variance by computing the maximum

variance along any unit vector (much like in PCA or SVD). Similarly, bounding the ERA is straightforward

as well, as each trial of the n-MCERA essentially corresponds to measuring the maximum (over codecs)

distance traveled (`2 norm) in attribute space over a random walk (directions dictated by each σi,j). Note

that together, corollary D.3.6 & theorem 4.2.2 imply that for 1-Lipschitz welfare M(·), r ∈ Θ(1), with pr.

≥ 1− δ, we have M(ĉM,L,D)−M(c∗M,L,D) ≤

4kR̂
n

m(F1,x,σ)+Θ

(
ln 1

δ

m
+

√
k(v1+Rm(F1,D))ln1

δ

m

)
. (35)
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Type Codec # Parameter Distortion
Vbr c0-c9 0, 1, …, 9 Low-Med
Abr c10-c13 320, 256, 128, 64 Low-Med
Vbr c14-c16 9.9, 9.99, 9.999 Med-High
Abr c17-c19 32, 16, 8 Med-High
Wav c20 — None

Table 4.1: We employ Variable Bit Rate (Vbr) mp3, parameterized by quality, Average Bit Rate (Abr) mp3,
parameterized by bitrate, and uncompressed wav codecs.

4.3 Experimental Evaluation of Ewoks

We study various notions of multivariate optimality on four datasets, spanning speech and several music

genres. The Debussy dataset consists of the complete orchestral works of Claude Debussy, conducted by Yan

Pascal Tortelier; the Explosions dataset is the 2000–2013 discography of progressive rock band Explosions in

the Sky; the Zeppelin dataset is the complete discography of hard rock band Led Zeppelin; and the LibriVox

dataset contains public-domain LibriVox audiobooks, all cut into short nonoverlapping audio samples. In

some experiments, we pool all music datasets or all four datasets to evaluate Ewoks on heterogeneous data.

Table 4.1 describes the codecs c0, c1, . . . , c20 used in all experiments.

We quantify distortion in the audio domain with the Perceptual Evaluation of Audio Quality (PEAQ) [Thiede

et al., 2000] metric, which is an objective measure of how well one audio sample approximates another,

based on psychoacoustic principles, that aims to measure the degree of human-perceived difference. In all

experiments, we consider two attributes, the first being PEAQ distortion, normalized to [0, 1], and the second

being the compression ratio, also in [0, 1].

4.3.1 Data-Dependence and Pareto Optimality

A codec set c ∈
(C
k

)
is said to be Pareto-optimal among

(C
k

)
if there exists a linear loss function (nonnegative

linear combination of attributes; see equation 34) ` ∈ L2 for which the risk (equation 26) of c is minimal

among
(C
k

)
, i.e.,

Pareto
((C

k

)
,D
) .
=

⋃
`∈L2

argmin
c∈(Ck)

R(c; `,D) . (36)

For k = 1, the Pareto-optimal frontier of C in Rd
0+ is then the lower convex-hull2 LCH(·) of the set of mean

attribute values of all Pareto-optimal codecs, i.e.,

PFrnt(C,D) .
= LCH

{
E

x∼D
[c(x)]

∣∣ c ∈ C} . (37)
2NB the convex hull CH(a) of pointset a ⊆ Ra is the convex closure of a, and the lower convex hull is LCH(x)

.
= {a′ ∈

CH(a) | ∀ε � 0: a′ − ε 6∈ CH(a)}.
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Figure 4.1: Pareto-optimal frontiers for all datasets. Mean distortion (x axis) and compression ratio (y axis)
shown for each codec •, with Pareto-optimal frontiers for codec families of sizes k ∈ {1, 2, |C|}, color-coded by
dataset. Curves for each k are unambiguous, since k increases from top-right to bottom-left. Mean-attribute
sets for Pareto-optimal k = 2 pairs are shown in the inset as dotted curves.
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This notion is easily visualized (see figure 4.1), and it concisely represents the set of mean attribute values

(and thus risk values) of c∗` ∈ CH(C) for any ` ∈ L2.

To generalize the Pareto-optimal frontier to k > 1, first observe that the mean attribute values of a k codec

set depend on ` ∈ L2, as Ewoks takes a minimum over k codecs. Consequently, each c ∈
(C
k

)
is assoociated

with a mean-attribute set, and we take the Pareto-optimal frontier of
(C
k

)
to be the lower convex hull of the

union of the mean-attribute sets of each c ∈
(C
k

)
. Algebraically, PFrnt(

(C
k

)
,D) is the LCH of

⋃
c∈(C

k
)

{
E

x∼D

[
argmin
c(x)∈c(x)

`(c(x))

] ∣∣∣∣∣ ` ∈ L2

}
. (38)

Observe that equation 38 generalizes equation 37, as for k = 1 and C = {c}, we have argminc(x)∈c(x) `(c(x)) =

c(x). Note that the subadditive nonlinearity of the argmin (i.e., the improvement from selecting the best

among k codecs) improves PFrnt(
(C
k

)
,D) monotonically in k. Again the Pareto-optimal frontier concisely

visualizes the possible mean attribute values (and thus risks) of the optimal c ∈
(C
k

)
for any ` ∈ L2.

Note that, like the welfare concepts of section 4.2.1, Pareto-optimality is a notion of multivariate optimality.

As with welfare, we may define the empirical Pareto-optimal set and the empirical Pareto-optimal front,

w.r.t. sample x, by replacing ED[·] with Êx[·]. Furthermore, by its inherently linear nature, it is trivial to

adapt the uniform convergence guarantees of theorem 4.2.3 to bound the gap between empirical and true

Pareto-optimaltity concepts.

In figure 4.1, we plot the empirical mean PEAQ distortion and compression ratios of codecs, and empirical

Pareto-optimal frontiers of codec sets of sizes k ∈ {1, 2, |C|} on the music, speech, and mixed datasets.

Immediately we see that the Pareto-optimal frontiers differ between datasets, illustrating the importance

of data-dependent codec selection. We see that on the speech and music datasets, the k = 1 (top-right

most) Pareto-optimal frontier usually performs similarly to the k = |C|, which indicates little variability in

codec performance over these distributions, thus a static codec for each objective performs reasonably well.

However, for the mixed dataset, we see a massive improvement in moving from k = 1 to k = 2 codecs, and

modest diminishing returns for k > 2. This makes sense, as for fixed objectives, different codecs are often

optimal for the LibriVox and music datasets, thus combining them is optimal in the mixed dataset.

4.3.2 Fairness and Welfare-Optimality

The above Pareto-optimality experiments indicate that for any fixed objective, there exists a small codec

set that is near-optimal (i.e., PFrnt(
(C
2

)
,D) ≈ PFrnt(

( C
|C|
)
,D)) However, we see in the inset that individual

pairs of codecs (dotted lines) only achieve Pareto-optimality for small ranges of L, thus k > 2 codecs may
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Table 4.2: Experiments optimizing `1/2 loss, and M1(·), M∞(·), and M2(·) welfares on au. a) Objective values,
and b) regret for each row-objective, when optimizing ĉC for each column-objective oC .

a) Objective Values:
k `1/2 M1 M∞ M2

1 .297 .297 .341 .309
2 .294 .217 .328 .234
3 .293 .208 .327 .229
|C| .293 .202 .326 .223

b) k = 3 Regret Matrix:
`1/2 M1 M∞ M2

`1/2 0 .0098 .0097 .0015
M1 .1343 0 .1221 .0189
M∞ .0811 .0374 0 .0103
M2 .0607 .0035 .0454 0
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ĉM∞ (Egalitarian)
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Figure 4.2: Empirical risk (y-axis) plotted against linear objective family L1 (x-axis), with distortion weight
w1 = x and compression ratio weight w2 = 1 − x, on au, for k ∈ {1, 2, 3}. Empirically-optimal codec sets
ĉo ∈

(C
k

)
for each objective o are also given.

be required to well-optimize many loss functions simultaneously; consequently, we expect various welfare

concepts to continue improving beyond k = 2. In table 4.2 & figure 4.2, we study the effect of increasing k on

the welfare of various Ewoks-optimal solution concepts, which is sensitive to performance across all of L.

In this experiment, we consider the 2-dimensional `1-linear loss family L1 = {a 7→ w · a : w1 ∈ [0, 1],w2 =

1−w1} (see eq 34), where w1 and w2 represent the penalty-weight a user places on distortion and compression

ratio, respectively. We optimize the neutral single linear objective (see eq 34) `1/2(a)
.
= (1/2, 1/2) ·a, utilitarian

welfare M1(·) on the loss distribution over L1 with density ∝ |w1 − 1/2|2 (i.e., the user distribution is biased

towards the extremes), as well as egalitarian welfare M∞(·) over L1 and quadratic welfare M2(·) with uniform

density over L1.

Table 4.2a shows the raw empirical objective values of each optimality concept, for k ∈ {1, 2, 3, |C|}, and

table 4.2b shows the regret of (row) objective oR on ĉC optimized for each (column) objective oC , which is

the amount by which objective oR would improve if ĉC were optimized for oR instead of oC .

To better understand the tradeoffs made by Ewoks under various objectives, for each objective o, figure 4.2

plots the empirical risk (see equation 29) of each o-optimal k codec selection ĉo w.r.t. each ` ∈ L1 as a

function of distortion weight w1. In particular, each plot corresponds to a selection size k, and each line

represents the empirical risk w.r.t. the linear loss function with w1 = x, i.e., from left to right we interpolate

from pure distortion to pure compression ratio losses.
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Figure 4.3: Log-log plots of Ewoks
√
m-scaled M(·)-optimality gap bound

√
mε (x-axis), versus sample size

m (y-axis), in expectation with 4R̂
n

m(F,x,σ), and w.h.p. with McDiarmid and theorem 4.2.2.

From the objective values matrix in table 4.2, we see that the single-objective `1/2 experiences rapidly

diminishing returns as k increases, improving by only 0.004 from k = 1 to k = |C|, whereas the welfare

objectives gradually improve with increasing k. This is as expected, because a sufficiently diverse set of

codecs must be selected so as to perform reasonably well across all ` ∈ L, rather than for some fixed `.

This experiment also clearly illustrates the fairness impact of objective choice, as we see that improving

utilitarian welfare M1(·) can decrease egalitarian welfare M∞(·), as occurs for k = 2, when ĉM1 = {c18, c20},

which are the second-lowest bitrate and uncompressed codecs, respectively, resulting in high regret (0.1343)

for M∞(·) (see table 4.2a). This is unsurprising, as it is easy to produce low distortion or low compression

ratio encodings; the difficulty lies in optimizing both simultaneously. The regret matrix (table 4.2b) also

shows fairness tradeoffs; here we see that the quadratic-welfare-optimal ĉM2
is much better on-average than

ĉM∞ (utilitarian regret 0.0189 versus 0.1121), despite worst-case performance only 0.01 worse than ĉM∞ . This

confirms that while optimizing the worst-case M∞(·) is at-odds with optimizing the average-case M1(·), the

quadratic M2(·) is a reasonable compromise.

4.3.3 Uniform Convergence Bounds

We now show that our uniform convergence bounds yield valuable conclusions as to the approximate optimality

of Ewoks solutions, and outperform McDiarmid bounds on real data. In figure 4.3, we plot Ewoks optimality-

gap bounds against sample size m, assuming M(·) is 1-Lipschitz, and using selection-size k = 3, loss family

L1 (see (34)), n = 100 Monte-Carlo trials, and tail bounds with failure probability δ = 0.01. Here all bounds

are scaled by
√
m to visualize the deviation of rates from Θ

√
1/m, which appears flat under

√
m-scaling.

We immediately see that our variance-sensitive bounds (theorem 4.2.2) are significantly sharper than the
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McDiarmid bounds, yielding valuable conclusions after only m ≈ 1000 samples. The mixed convergence rates

(see theorem 4.2.2) of these bounds are visible as initial fast-decay (negative slopes), straightening out as

m → ∞ and the asymptotic Θ
√

v/m slow rate is reached. In contrast, the McDiarmid bounds, and the

n-MCERAs themselves, all exhibit slow Θ
√

1/m rates (even slopes). In particular, the poor performance of

the McDiarmid bounds occurs because they are always dominated by their concentration term 6
√

ln 1
δ/2m,

visible as a large parallel gap between them and the n-MCERAs.

We see also from their relative order that au is the easiest to learn, and all the most difficult. This is

unsurprising; in music and mixed data, we expect more variability (thus variance), and also more benefit

(overfitting) with k > 1 (thus higher R̃).

4.4 Discussion

We propose a novel media streaming strategy, where a small set of codecs c is selected such that the set

includes a “good” solution for each ` ∈ L over D. We develop the Empirical Welfare-Optimal k codec Selection

(Ewoks) algorithm, which learns a data-dependent set of k codecs c that is welfare-optimal over L. The

selection size k balances between the cost of compressing / storing multiple encodings of media, and the

improvement to user experience and fairness.

Our experiments show the importance of considering both the objective and the data-distribution. We see

that while k codec selection yields modest improvement for single-objectives (section 4.3.1), particularly

for heterogenous (mixed speech / music) data, it greatly improves welfare-objectives over loss families

(section 4.3.2). Our experiments confirm that bias-issues exist in codec selection, and exhibit several surprising

phenomena (e.g., optimizing a single neutral loss function can yield bias issues, learning a more sophisticated

[higher k] model for one welfare-concept can harm other welfare concepts), further motivating rigorous

analysis and provable methods for controlling algorithmic bias.

We rigorously analyze the generalization error of Ewoks (section 4.2.3), applying Rademacher averages

with a novel variance-sensitive bound for welfare-generalization. We handle arbitrary Lipschitz welfare

functions, whereas previous applications gave weaker bounds limited to simple cases, such as utilitarian

welfare in auctions [Hoy et al., 2017]. Since general welfare-concepts depend nonlinearly on many loss values

simultaneously, uniform convergence is an ideal tool to analyze them. Our experiments (section 4.3.3) also

show our bounds significant improvement traditional methods in the small-sample domain.

Our data-driven codec-selection approach follows trends in machine learning and databases. We replace fixed

codecs with learned codecs, in much the same way that autoML systems replace fixed models with learned
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pipelines [Hutter et al., 2011], and database systems replace static indices with learned indices [Kraska et al.,

2018]. As this trend continues, and more critical services integrate learned components, the importance of

fairness continues to grow; we are confident that our welfare analysis methods for provable fairness can be

applied beyond the domain of codec selection.
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Chapter 5

Fair Probably Approximately Correct

Learning

Building upon the concept of malfare of chapter 3, I define fair-PAC learning, where a fair PAC-learner is an

algorithm that learns an ε-δ malfare-optimal model with bounded sample complexity, for any data distribution,

and for any (axiomatically justified) malfare concept, i.e., power-mean malfare with p ∈ [1,∞). This definition

extends Valiant’s [Valiant, 1984] classic PAC-learning formalization of machine learning, and I show that, with

appropriate modifications, many (standard) PAC-learners may be converted to fair-PAC learners, and argue

that fair-PAC-learners are intuitive and easy to use, as one must only select an axiomatically justified malfare

concept (encoding their desired fairness concept), hypothesis class, and confidence guarantees, and then

receives a provably ε-δ optimal model. I show broad conditions under which, with appropriate modifications,

many standard PAC-learners may be converted to fair-PAC learners. I also argue that fair-PAC-learners are

intuitive and easy to use, as one must only select a malfare concept (encoding their desired fairness concept),

hypothesis class, and confidence guarantees, and then one receives a provably (probabilistically) near-optimal

model.

This is in contrast to similar frameworks, e.g., the Seldonian learner of [Thomas et al., 2019], where

(1), the arbitrarily statistically infeasible task of constrained optimization must be addressed, and (2),

learning guarantees are in terms of less-interpretable constrained objectives (e.g., specified objectives, parity

constraints, and tolerance values), rather than singular cardinal malfare objectives, which directly encode

an interpretable single-parameter fairness concept that ranges between average case (p = 1) and worst case

(p =∞) performance across groups. This places fair-PAC learning on firm theoretical ground, as it yields
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statistical, and in some cases computational, efficiency guarantees for many well-studied machine-learning

models, and is also practically relevant, as it democratizes fair machine learning by providing concrete training

algorithms and rigorous generalization guarantees for these models.

In this framework, both PAC and FPAC learning are parameterized by a learning task (model space and loss

function), and I explore the rich hierarchy of learnability under variations of these concepts. In particular, I

show that for many loss functions, PAC and FPAC learning are statistically equivalent (i.e., PAC-learnability

implies FPAC-learnability) in section 5.2. Furthermore, in section 5.3 I show that standard convexity

conditions sufficient for PAC-learnability are also sufficient for FPAC-learnability, as are certain coverability

conditions that ensure the hypothesis space is sufficiently small so as to limit overfitting, and may be efficiently

approximately searched. I explore the basic relationships between various learnability classes, but many

open questions remain, and I hope that future work will further characterize these practically interesting and

theoretically deep problems. This chapter is adapted from the latter half of Cousins [2021].

5.1 Statistical and Computational Efficiency Learning Guarantees

In this section, we define a formal notion of fair-learnability, termed fair PAC-learning, where a loss function

and hypothesis class are fair PAC-learnable essentially if any distribution can be approximately learned from

a polynomially-sized sample (w.h.p.). We then construct various fair-PAC learners, and relate the concept to

standard PAC learning [Valiant, 1984], with the understanding that this allows the vast breadth of research

of PAC-learning algorithms, and quite saliently, necessary and sufficient conditions, to be applied to fair-PAC

learning. In particular, we show a hierarchy of fair-learnability via generic statistical and computational

learning theoretic bounds and reductions.

Hypothesis Classes and Sequences We now define hypothesis class sequences, required to discuss

nontrivial computational complexity in learning. This definition is adapted from [Shalev-Shwartz and

Ben-David, 2014, Def. 8.1], which treats only binary classification.

Definition 5.1.1 (Hypothesis Class Sequence). A hypothesis class sequence H = (H1,H2, . . . ) is a nested

sequence of hypothesis classes mapping X → Y. In other words, H1 ⊆ H2 ⊆ . . . .

Usually, Hi is easily derived from Hj . For instance, linear classifiers naturally form a sequence of families

using their dimension:

Hd
.
=
{
x 7→ sgn

(
x · (w ◦ 0)

) ∣∣∣w ∈ Rd
}

.
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Here each Hi is defined over domain R∞, but it is more natural to discuss them as objects over Rd. Similarly,

unit-scale univariate polynomial regression naturally decomposes as

Hd
.
=
{
x 7→ (x, x2, . . . , xd) ·w

∣∣∣w ∈ [−1, 1]d
}

.

The hypothesis class sequence concept is necessary, as it allows us to distinguish statistically easy problems,

like learning hyperplanes in finite-dimensional space, from the statistically challenging problem of learning

hyperplanes in R∞. It is also important to studying computational-hardness of statistically-easy learning

problems, as this essentially boils down to selecting a hypothesis class sequence such that learning time

complexity grows superpolynomially (in d).

For context, we first present a generalized notion of PAC-learnability, which we then generalize to fair-PAC-

learnability. Standard presentations consider only classification under 0-1 loss, but following the generalized

learning setting of Vapnik [2013], some authors consider generalized notions for other learning problems (see,

e.g., Shalev-Shwartz and Ben-David [2014, Definition 3.4]).

Definition 5.1.2 (PAC-Learnability). Suppose nested hypothesis class sequence H1 ⊆ H2 ⊆ . . . , all over

X → Y , and loss function ` : Y×Y → R0+. We say H is PAC-learnable w.r.t. ` if ∃ a (randomized) algorithm

A, such that ∀:

1. sequence index d;

2. instance distribution D over X × Y;

3. additive approximation error ε > 0; and

4. failure probability δ ∈ (0, 1);

it holds that A can identify a hypothesis ĥ ∈ H, i.e., ĥ← A(D, ε, δ, d), such that

1. there exists some sample complexity function m(ε, δ, d) :
(
R+ × (0, 1)×N

)
→ N s.t. A(D, ε, δ, d) consumes

no more than m(ε, δ, d) samples from D (i.e., has finite sample complexity); and

2. with probability at least 1− δ (over randomness of A), ĥ obeys

R(ĥ; `,D) ≤ inf
h∗∈H

R(h∗; `,D) + ε .

The class of such learning problems is denoted PAC, thus we write (H, `) ∈ PAC to denote PAC-learnability.
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Furthermore, if for all d, the space of D is restricted such that

∃h ∈ Hd s.t. R(h; `,D) = 0 ,

then (H, `) is realizable-PAC-learnable, written (H, `) ∈ PACRlz.

Observation 5.1.3 (On Realizable Learning). Our definition of realizability appears to differ from the

standard form, in which D is a distribution over only X , and y is simply computed as h∗(x), for some h∗ ∈ H.

We instead constrain D such that there exists a 0-risk h∗ ∈ H, which is equivalent for any loss function `

such that `(y, ŷ) = 0 ⇔ y = ŷ, e.g., 0-1 classification loss, or absolute or square regression loss. With our

definition, it is much clearer that realizable learning is a special case of agnostic learning, and furthermore,

we handle a much broader class of problems, for which there may be some amount of noise, or wherein a

ground truth may not even exist.

For instance, in a recommender system, y may represent the set of items that x will like, and h may

predict a singleton set, and thus we take `(y, {ŷ}) = 1y(ŷ). There is no ground-truth here, but rather we

seek a compatible solution that recommends appropriate items to everyone. Similarly, in high-dimensional

classification, we often treat classifier output as a ranked list of predictions, and the top-k loss is taken to be

`(y, ŷ) = 1ŷ1:k
(y). Again, no ground truth exists, but 0-risk learning is still possible if there is not “too much”

ambiguity (e.g., foxes and dogs can be confused, as long as they are separated from horses and zebras).

We now generalize this concept to fair-PAC-learnability. In particular, we replace the univariate risk-

minimization task with a multivariate malfare-minimization task. Following the theory of section 3.3.3, we

do not commit to any particular objective, but instead require that a fair-PAC-learner is able to maximize

any fair malfare function satisfying the standard axioms. Furthermore, here problem instances grow not just

in problem complexity d, but also in the number of groups g.

Definition 5.1.4 (Fair PAC (FPAC)-Learnability). Suppose nested hypothesis class sequence H1 ⊆ H2 ⊆

· · · ⊆ X → Y, and loss function ` : Y × Y → R0+. We say H is fair PAC-learnable w.r.t. group count g and

loss function ` if ∃ a (randomized) algorithm A, such that ∀:

1. sequence index d;

2. group count g;

3. instance distribution D1:g over (X × Y)g;

4. group weights measure w over {1, . . . , g};

5. malfare concept W

(·; ·) satisfying axioms 1-7 and 9;
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6. additive approximation error ε > 0; and

7. failure probability δ ∈ (0, 1);

it holds that A can identify a hypothesis ĥ ∈ H, i.e., ĥ← A(D1:g,w,

W

, ε, δ, d), such that

1. there exists some sample complexity function m(ε, δ, d, g) :
(
R+×(0, 1)×N×N

)
→ N s.t.A(D1:g,w,

W

, ε, δ, d)

consumes no more than m(ε, δ, d, g) samples (finite sample complexity); and

2. with probability at least 1− δ (over randomness of A), ĥ obeys

W(
i 7→ R(ĥ; `,Di);w

)
≤ argmin

h∗∈H

W(
i 7→ R(h∗; `,Di);w

)
+ ε .

The class of such fair-learning problems is denoted FPAC, thus we write (H, `) ∈ FPAC to denote fair-PAC-

learnability.

Finally, if for all d, the space of D is restricted such that

∃h ∈ Hd s.t. max
i∈1,...,g

R(h; `,Di) = 0 ,

then (H, `) is realizable-fair-PAC-learnable, written (H, `) ∈ FPACRlz.

We now observe that a few special cases are familiar learning problems, though we argue that all cases are of

interest, and simply represent different ideals of fairness which may be situationally appropriate.

Observation 5.1.5 (Malfare Functions and Special Cases). By assumption, W

(·; ·) must be W

p(·; ·) for

p ∈ [1,∞). Taking g = 1 implies w = (1), and W

p(S;w) = S1, thus reducing the problem to standard PAC-

learning. Similarly, taking p = 1 converts the problem to weighted loss minimization (weights determined by

w), and p =∞ yields a minimax optimization problem, where the max is over groups, commonly encountered

in adversarial and robust learning settings.

An aside on the flexibility of fair-PAC-learnability Note that the generalized definition of (fair)

PAC-learnability is sufficiently broad so as to include many supervised, semi-supervised, and unsupervised

learning problems. While this is not immediately apparent, consider that, for instance, k-means clustering can

be expressed as a learning problem where the task is to identify a set of k vectors in Rd where the hypothesis

class maps a vector x on to the nearest cluster center, and the loss function is the square distance. This is a

surprisingly natural fairness issue when cast as a resource allocation problem; if, for instance each cluster

center represents a cellphone tower, then we seek to place towers to serve all groups, and to avoid serving one
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or more groups particularly well at the expense of others.

On Computational Efficiency Some authors consider not just the statistical but also the computational

performance of learning, generally requiring that A have polynomial time complexity (and thus implicitly

sample complexity). In other words, they require that A(D, ε, δ, d) terminates in m(ε, δ, d) ∈ Poly( 1ε ,
1
δ , d)

steps. The main focus of this manuscript is sample complexity, but for completeness, we note that a

similar concept of polynomial-time fair-PAC learnability is equally interesting, where here we assume

A(D1:g,w,

W

, ε, δ, d) may be computed by a Turing machine (with access to sampling and entropy oracles)

in m(ε, δ, d, g) ∈ Poly( 1ε ,
1
δ , d, g) steps, and thus implicitly the same bound on sample complexity. We denote

these concepts PACAgn
Poly, PACRlz

Poly, FPACAgn
Poly, and FPACRlz

Poly.

Some trivial reductions We first observe (immediately from definitions 5.1.2 and 5.1.4) that PAC-learning

is a special case of fair-PAC-learning. In particular, taking g = 1 implies Mp(S) = M1(S) = S1, thus malfare-

minimization coincides with risk minimization. The more interesting question, which we seek to answer in

the remainder of this document, is when and whether the converse holds. Furthermore, when possible, we

would like to show practical, sample-and-compute-efficient constructive reductions.

Realizability We first show that in the realizable case, PAC-learnability implies fair PAC-learnability. In

particular, we employ a simple and practical constructive polynomial-time reduction. More efficient reductions

are possible for particular values of p, g. Our reduction simply takes a sufficiently number of samples from

the uniform mixture distribution over all g groups, and PAC-learns on this distribution. As the reduction

is constructive, (and efficiency-preserving) this gives us generic algorithms for (efficient) FPAC-learning in

terms of algorithms for PAC-learning.

Theorem 5.1.6 (Realizable Reductions). Suppose loss function ` and hypothesis class H. Then

1. (H, `) ∈ PACRlz ⇒ (H, `) ∈ FPACRlz; and

2. (H, `) ∈ PACRlz
Poly ⇒ (H, `) ∈ FPACRlz

Poly.

We construct a(n) (efficient) FPAC-learner for (H, `) by noting that there exists some A′ with sample-

complexity mA′(ε, δ, d) and time complexity tA′(ε, δ, d) to PAC-learn (H, `), and takingA(D1:g,w,

W

, ε, δ, d)
.
=

A′(mix(D1:g),
ε
g , δ, d). Then A FPAC-learns (H, `), with sample-complexity mA(ε, δ, d, g) = mA′( εg , δ, d), and

time-complexity tA(ε, δ, d, g) = tA′( εg , δ, d).
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Proof. We first show the sample complexity result. Suppose ĥ← A′(p,w,D1:g, ε, δ, d). Then, with probability

at least 1− δ (by the guarantee of A), we have

W

p(i 7→ R(h; `,Di)),w) ≤ W

∞
(
i 7→ R(h; `,Di), i 7→ 1

g

)
≤ g

W

1

(
i 7→ R(h; `,Di), i 7→ 1

g

)
= gR

(
h; `,mix(D1:g)

)
≤ g ε

g = ε .

We thus may conclude that (H, `) is efficiently realizable-PAC-learnable by A′, with sample complexity

mA(ε, δ, d, g) = mA′( εg , δ, d). Similarly, if A has polynomial runtime, then so too does A′, thus we may also

conclude efficiency.

While mathematically correct, if somewhat trivial, unfortunately, this argument does not extend to the

agnostic case. This is essentially because in general it is not possible to simultaneously satisfy all groups, and

even with reweighting, the malfare of ERM solutions are highly unstable in the weights. To see this, suppose

Y .
= {a, b}, group A always wants a, and group B always wants b, with symmetric preferences, and we wish

to optimize egalitarian malfare. For any reweighting, the utility-optimal solution is always to produce all

a or all b, except with equal weights, when all solutions are equally good. Thus for no reweighting do all

reweighted-risk solutions even approximate the egalitarian-optimal solution (which is evenly split between a

and b). We thus conclude that simple constructive reductions using PAC-learners as subroutines is likely to

solve the general problem.

In addition to the argument being inextensible to the agnostic case, we note that, philosophically speaking,

realizable FPAC learning is rather uninteresting, essentially because in a world where all parties may be

satisfied completely, the obvious solution is to do so (and this solution is in fact an equilibrium). Thus

unfairness and bias issues logically only arise in a world of conflict (e.g., in zero-sum settings, or under

limited resources constraints, which foster competition between groups). Thus while the realizable case is

straightforward and solvable, we argue that in practice, the agnostic learning setting is far more relevant.

5.2 Characterizing Fair Statistical Learnability with FPAC-Learners

We first consider only questions of statistical learning. In other words, we ignore computation for now, and

show only that there exist fair-PAC-learning algorithms of unbounded runtime. In particular, we show a

generalization of the fundamental theorem of statistical learning to fair learning problems. The aforementioned
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result relates uniform convergence and PAC-learnability, and is generally stated for binary classification

only. We define a natural generalization of uniform convergence to arbitrary learning problems within our

framework, and then show conditions under which a generalized fundamental theorem of (fair) statistical

learning holds. In particular, we show that, neglecting computational concerns, PAC-learnability and fair-PAC

learnability are equivalent for learning problems with a particular no-free-lunch guarantee.

We first define a generalized notion of uniform convergence as defined by [Shalev-Shwartz and Ben-David,

2014]. In particular, our definition applies to any bounded loss function,1 thus greatly generalizes the standard

notion for binary classification.

Definition 5.2.1 (Uniform Convergence). Suppose ` : Y ×Y → [0, r] ⊆ R and hypothesis class H ⊆ X → Y .

We say (H, `) ∈ UC if

lim
m→∞

sup
D over X×Y

E
z∼Dm

[
sup
h∈H

∣∣∣R̂(h; `, z)− R(h; `,D)
∣∣∣] = 0 .

Observation 5.2.2. We stress that this definition is both uniform over ` composed with the hypothesis class

H and uniform over all possible distributions D. The classical definition of uniform convergence in probability

applies to a singular D, however it is standard in PAC-learning and VC theory to assume uniformity over D,

so we adopt this convention.

Standard uniform convergence definitions consider only the convergence of empirical frequencies of events

to their true frequencies, whereas we generalize to consider uniform convergence of the empirical means of

functions to their expected values.

In discussing uniform convergence, it is often necessary to consider not the loss function or hypothesis class

in isolation, but their composition, defined as

∀h ∈ H : (` ◦ h)(x, y) .
= `(y, h(x)) & ` ◦ H .

= {` ◦ h |h ∈ H} .

It is also helpful to consider the sample complexity of ε-δ uniform-convergence, where we take

mUC(` ◦ H, ε, δ)
.
= argmin

m

∣∣∣∣∣∣ sup
D over X×Y

P

(
sup
h∈H

∣∣∣∣ED[` ◦ h]− Ê
z∼Dm

[` ◦ h]
∣∣∣∣ > ε

)
≤ δ

 ,

i.e., the minimum sufficient sample size to ensure ε-δ uniform-convergence over the loss family ` ◦ H.

It is in general true that uniform convergence implies PAC-learnability; this is well-known for binary
1Boundedness should not be strictly necessary for learnability even uniform convergence, but vastly simplifies all aspects of

the analysis. In many cases, it can be relaxed to moment-conditions, such as sub-Gaussian or sub-exponential assumptions.
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classification, but we show the generalized result for completeness. The converse is true for some learning

problems, but not for others, which we shall use as a powerful tool to characterize when PAC-learnability

implies fair-PAC-learnability. We first state the fundamental theorem of statistical learning (for classification)

[Shalev-Shwartz and Ben-David, 2014, theorems 6.2, 29.3].

Theorem 5.2.3 (Fundamental Theorem of Statistical Learning (Classification)). Suppose ` is the 0-1 loss

for k-class classification, where k <∞. Then the following are equivalent.

1. ∀d ∈ N: Hd has finite Natarajan-dimension (= VC dimension for k = 2 classes).

2. ∀d ∈ N: (`,Hd) has the uniform convergence property.

3. Any ERM rule is a successful agnostic-PAC learner for H.

4. H is agnostic-PAC learnable.

5. Any ERM rule is a successful realizable-PAC learner for H.

6. H is realizable-PAC learnable.

It is somewhat subtle to generalize this result to arbitrary learning problems. In particular, there are

PAC-learnable problems for which uniform convergence does not hold. However, Alon et al. [1997] show

similar results for various regression problems, with the (scale-sensitive) γ-fat-shattering dimension playing

the role of the Vapnik-Chervonenkis or Natarajan dimension in classification.

Theorem 5.2.4 (Fundamental Theorem of Fair Statistical Learning). Suppose ` such that ∀H : (H, `) ∈

PACRlz ⇒ (H, `) ∈ UC. Then, for any hypothesis class sequence H, the following are equivalent:

1. ∀d ∈ N: (`,Hd) has the (generalized) uniform convergence property.

2. Any EMM rule is a successful agnostic-fair-PAC learner for (`,H).

3. (`,H) is agnostic-fair-PAC learnable.

4. Any EMM rule is a successful realizable-fair-PAC learner for (`,H).

5. (`,H) is realizable-fair-PAC learnable.

Proof. First note that 1 ⇒ 2 is a rather straightforward consequence of the definition of uniform convergence

and the contraction property of fair malfare functions (theorem 3.3.7 item 3). In particular, take m
.
=

mUC(` ◦ Hd,
ε
2 ,

δ
g ). By union bound, this implies that with probability at least 1 − δ, taking samples

z1:g,1:m ∼ Dm
1 × · · · × Dm

g , we have

∀i ∈ {1, . . . , g} : sup
h∈Hd

∣∣∣R(h; `,Di)− R̂(h; `, zi)
∣∣∣ ≤ ε

2
.
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Consequently, as W

(·;w) is 1-‖·‖∞-|·| in risk (see lemma 3.4.1), it holds with probability at least 1− δ that

∀h ∈ Hd :
∣∣∣ W(

i 7→ R̂(h; `, zi);w
)
− W(

i 7→ R(h); `,Di);w
)∣∣∣ ≤ ε

2
.

Now, for EMM-optimal ĥ, and malfare-optimal h∗, we apply this result twice to get

W(
i 7→ R(ĥ; `,Di);w

)
≤ W(

i 7→ R̂(ĥ; `, zi);w
)
+ ε

2

≤ W(
i 7→ R̂(h∗; `, zi);w

)
+ ε

2

≤ W(
i 7→ R(h∗; `,Di);w

)
+ ε .

Therefore, under uniform convergence, the EMM algorithm agnostic fair-PAC learns (H, `) with finite sample

complexity mA(ε, δ, d, g) = g ·mUC(` ◦ Hd,
ε
2 ,

δ
g ), completing 1 ⇒ 2.

Now, observe that 2 ⇒ 3 and 4 ⇒ 5 are almost tautological: the existence of (agnostic / realizable) fair-PAC

learning algorithms imply (agnostic / realizable) fair-PAC learnability.

Now, 2 ⇒ 4 and 3 ⇒ 5 hold, as realizable learning is a special case of agnostic learning.

As 1 implies 2-4, which in turn each imply 5, it remains only to show that 5 ⇒ 1, i.e., if H is realizable

fair PAC learnable, then H has the uniform convergence property. In general, the question is rather subtle,

but here the assumption “suppose ` such that (H, `) ∈ PACRlz ⇒ (H, `) ∈ UC” does most of the work. In

particular, as PAC-learning is a special case of FPAC-learning, we have

(H, `) ∈ FPACAgn ⇒ (H, `) ∈ PACAgn ,

then applying the assumption yields (H, `) ∈ UC.

The reductions and equivalences that compose this result are graphically depicted in figure 5.1.

Observation 5.2.5 (The Gap Between Uniform Convergence and (fair) PAC-Learnability). Note that the

assumption “suppose ` such that (H, `) ∈ PACRlz ⇒ (H, `) ∈ UC” does not in general hold. In many cases

of interest, it is known to hold, e.g., finite-class classification under 0-1 loss, and bounded regression under

square and absolute loss.

In general, verifying this condition is a rather subtle task, and until more general techniques are developed,

must be repeated for each learning problem (loss function). Regardless, this lies beyond the scope of this

86



UC(`)
Finite

Natarajan / VC
dimension

Uniform Convergence

PAC(`) FPAC(`)

PAC(`) ERM FPAC(`) EMM

Agnostic Learning

PACRlz(`) FPACRlz(`)

PACRlz(`) ERM FPACRlz(`) EMM
Realizable Learning

PAC Learning FPAC Learning

0-1 loss
k <∞ classes

A
ss

um
pt

io
n

on
`

Figure 5.1: Implications between membership in PAC and fair-PAC classes. In particular, for arbitrary fixed
`, implication denotes implication of membership of some H (i.e., containment); see theorems 5.2.4 and 5.1.6.
Dashed implication arrows hold conditionally on `. Note that when the assumption on ` (see theorem 5.2.4)
holds, the hierarchy collapses, and in general, under realizability, some classes are known to coincide.

manuscript, as we have reduced the question of fair-PAC learnability to one of (generic) PAC-learnability.

5.3 Characterizing Computational Learnability with Efficient FPAC

Learners

In this section, we consider the more granular question of whether FPAC learning is computationally harder

than PAC learning. In other words, where previously we showed conditions under which PAC = FPAC, here we

focus on the subset of models with polynomial time training efficiency guarantees, i.e., PACPoly = FPACPoly.

Theorem 5.1.6 has already characterized the computational complexity of realizable FPAC-learning, so we now

focus on the agnostic case. In the agnostic case, we show neither a generic reduction or non-constructive proof

that PACPoly = FPACPoly, nor do we show a counterexample; rather we leave this question for future work.

We do, however, show that under conditions commonly leveraged as sufficient for efficient PAC-learning, so

too is efficient FPAC-learning possible. In particular, section 5.3.1 provides an efficient constructive reduction

(i.e., an algorithm) for efficient FPAC-learning under standard convex optimization settings, and section 5.3.2

shows the same when a small cover of H exists and may be efficiently enumerated. The results of this section

are summarized graphically in figure 5.2.
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mUC(` ◦ Hd, ε, δ) ∈ Poly( 1ε ,

1
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Uniform Convergence
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Θd ⊆ RPoly(d)
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Realizable Learning

PACPoly Learning FPACPoly Learning

Figure 5.2: Implications between membership in various poly-time PAC and fair-PAC classes. In particular,
for arbitrary but fixed `, implication denotes implication of membership of some H (i.e., containment). See
theorems 5.3.1 and 5.3.2.

In both the convex optimization and efficient enumeration settings, the proofs take the same general form: we

show that ε-approximate EMM on m total samples is computationally efficient (in Poly(m, ε, d) time), and

then argue that so long as sample complexity of FPAC-learning via EMM is polynomial, then we may construct

an FPAC learner using ε-approximate EMM with polynomial time complexity. In particular, the proofs

simply account for optimization and sampling error, and in both cases construct efficient FPAC-learners.

5.3.1 Efficient FPAC Learning with Convex Optimization

Here we show concretely and constructively the existence of fair-PAC-learners under standard convex

optimization assumptions via the subgradient method [Shor, 2012], with constants fully derived. Sharper

analyses are of course possible, and potential improvements are discussed subsequently, but our result is

immediately practical and can be applied verbatim to problems like generalized linear models [Nelder and

Wedderburn, 1972] and many kernel methods with little analytical effort.

Theorem 5.3.1 (Efficient FPAC Learning via Convex Optimization). Suppose each hypothesis space

Hd ∈ H is indexed by Θd ⊆ RPoly(d), i.e., Hd = {h(·; θ) | θ ∈ Θd}, s.t. (Euclidean) Diam(Θd) ∈ Poly(d), and
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Algorithm 2 Approximate Empirical Malfare Minimization via the Subgradient Method
1: procedure APSG(`,H, θ0,mUC(·, ·),D1:g,w,

W

(·; ·), ε, δ)
2: Input: λ`-Lipschitz loss function `, λH-Lipschitz hypothesis class H with parameter space Θ, initial

guess θ0 ∈ Θ, uniform-convergence sample-complexity bound mUC(·, ·), group distributions D1:g, group
weights w, malfare function W

(·; ·), solution optimality guarantee ε-δ.
3: Output: ε-δ- W

(·; ·)-optimal h ∈ H (under the conditions of theorem 5.3.1).
4: mA ← mUC(

ε
3 ,

δ
g ) . Determine sufficient sample size

5: z1:g,1:mA ∼ DmA
1 × · · · × DmA

g . Draw training sample for each group

6: n←
⌈(

3Diam(Θ)λ`λH
ε

)2⌉
. Iteration count

7: α← Diam(Θ)
λ`λH

√
n

. Learning rate (≈ ε
3λ2

`λ
2
H

)
8: f(θ) : Θ 7→ R0+

.
=

W(
i 7→ R̂(h(·; θ); `, zi);w

)
. Define empirical malfare objective

9: θ̂ ← ProjectedSubgradient(f,Θ, θ0, n, α) . Run PSG algorithm on empirical malfare
10: return h(·; θ̂) . Return ε-δ optimal model
11: end procedure

∀x ∈ X , θ ∈ Θd, h(x; θ) can be evaluated in Poly(d) time, and θ̃ ∈ RPoly(d) can be Euclidean-projected onto

Θd in Poly(d) time. Suppose also ` such that ∀x ∈ X , y ∈ Y : θ 7→ `(y, h(x; θ)) is a convex function, and

suppose Lipschitz constants λ`, λH ∈ Poly(d) and some norm ‖·‖Y over Y s.t. ` is λ`-‖·‖Y -|·|-Lipschitz in ŷ,

i.e.,

∀y, ŷ, ŷ′ ∈ Y :
∣∣`(y, ŷ)− `(y, ŷ′)

∣∣ ≤ λ`

∥∥ŷ − ŷ′
∥∥
Y ,

and also that each Hd is λH-‖·‖2-‖·‖Y -Lipschitz in θ, i.e.,

∀x ∈ X , θ, θ′ ∈ Θd :
∥∥h(x; θ)− h(x; θ′)

∥∥
Y ≤ λH

∥∥θ − θ′
∥∥
2

.

Finally, assume ` ◦Hd exhibits ε-δ uniform convergence with sample complexity mUC(ε, δ, d) ∈ Poly( 1ε ,
1
δ , d).

It then holds that, for arbitrary initial guess θ0 ∈ Θd, for any group distributions D1:g, group weights w, and

fair malfare function W

(·; ·), the algorithm (see algorithm 2)

A(D1:g,w,

W

(·; ·), ε, δ, d) .
= APSG

(
`,Hd, θ0,mUC(·, ·, d),D1:g,w,

W

(·; ·), ε, δ
)

fair-PAC-learns (H, `) with sample complexity m(ε, δ, d, g) = g ·mUC(
ε
3 ,

δ
g , d), and (training) time-complexity

∈ Poly( 1ε ,
1
δ , d, g), thus (H, `) ∈ FPACAgn

Poly.

It is of course possible to show similar guarantees under relaxed conditions. and with sharper sample

complexity and time complexity bounds. The above result merely characterizes a simple and standard convex

optimization setting under which standard convex optimization risk minimization guarantees readily translate

to malfare minimization.
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5.3.2 Uniform Convergence and Efficient Covering

As we have seen in section 5.2, uniform convergence implies, and is often equivalent to, (fair) PAC-learnability.

However, these results all consider only statistical learning, and to analyze computational learning questions,

we introduce a strengthening of uniform convergence that considers computation. We now show sufficient

conditions for polynomial-time fair PAC-learnability via covering numbers, which we use both to show uniform

convergence and to construct an efficient training algorithm.

In particular, we show that if a polynomially-large cover of each `◦Hd exists and can be efficiently enumerated,

then (H, `) ∈ FPACPoly. In what follows, an `2-γ-empirical-cover of loss family (` ◦ Hd) ⊆ X 7→ R0+ on a

sample z ∈ (X × Y)m is any Hd,γ such that

∀h ∈ Hd : min
hγ∈Hd,γ

√√√√ 1

m

m∑
i=1

(
(` ◦ h)(zi)− (` ◦ hγ)(zi)

)2 ≤ γ .

We take C(` ◦ Hd, z, γ) to denote such a cover, and C∗(` ◦ Hd, z, γ) to denote such a cover of minimum

cardinality. Finally, we define the uniform covering numbers

N (` ◦ Hd,m, γ)
.
= sup

z∈(X×Y)m

∣∣C∗(` ◦ Hd, z, γ)
∣∣ & N (` ◦ Hd, γ)

.
= sup

m∈N
N (` ◦ Hd,m, γ) .

This concept is crucial to both our uniform convergence and optimization efficiency guarantees. In particular,

our construction ensures that N (` ◦ Hd,m, γ) is sufficiently small so as to ensure polynomial training time on

a polynomially-large training sample is sufficient to FPAC-learn (`,H).

With this exposition complete, the FPAC-learning algorithm we present is simply EMM on a cover Ĉ(`◦Hd, z, γ)

that is not superpolynomially larger than N (` ◦ Hd,m, γ), which our construction ensures exists and may be

efficiently enumerated, and upon which we guarantee that a polynomially-large training sample is sufficient.

We now state the result, noting that full derivation with exact constants appears in the appendix.

Theorem 5.3.2 (Efficient FPAC-Learning by Covering). Suppose loss function ` of bounded codomain (i.e.,

‖`‖∞ is bounded), and hypothesis class sequence H, s.t. ∀m, d ∈ N, z ∈ (X × Y)m, there exist

1. a γ-`2 cover C∗(` ◦ Hd, z, γ), where
∣∣C∗(` ◦ Hd, z, γ)

∣∣ ≤ N (` ◦ Hd, γ) ∈ Poly( 1γ , d); and

2. an algorithm to enumerate a γ-`2 cover Ĉ(` ◦ Hd, z, γ) of size PolyN (` ◦ Hd,m, γ) in Poly(m, 1
γ , d) time.

Then (`,H) ∈ FPACPoly, where (1) is sufficient to show that (`,H) is fair-PAC learnable with polynomial

sample complexity, and (2) is required only to show polynomial training time complexity.
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This immediately implies that fixed H that are finite, or of bounded pseudodimension or γ-fat-shattering

dimension2 are fair-PAC-learnable. For instance, this includes classifiers such as all possible languages of

Boolean formulae over (constant) d variables, or halfspaces (i.e., linear hard classifiers H .
= {x 7→ sgn(x ·w) |

w ∈ Rd}), as well as GLM, subject to regularity constraints to appropriately control the loss function.

However, it is perhaps not as powerful as it appears; it applies to fixed hypothesis classes, thus each of the

above linear models over Rd is efficiently fair-PAC learnable, but it says nothing about their performance as

d→∞.

This is essentially because the statistical analysis to show polynomial sample complexity requires only that

lnN (` ◦ Hd, γ) ∈ Poly( 1γ , d), whereas our training algorithm must actually enumerate an empirical cover,

which yields the (exponentially) stronger requirement that N (` ◦ Hd,m, γ) ∈ Poly( 1γ , d) for polynomial time

complexity. Indeed, we see that while the covering numbers we assume imply uniform convergence with

sample complexity polynomial in d, when covering numbers grow exponentially in d, then our algorithm yields

only exponential time complexity in d. Consequently, the result only implies polynomial-time algorithms w.r.t.

sequences that grow slowly in complexity; e.g., sequences of linear classifiers that grow only logarithmically in

dimension Hd
.
= {x 7→ sgn(x ·w) | w ∈ Rbln dc}.

Note also that theorem 5.3.2 leverages covering arguments in both their statistical and computational capacities.

Statistical bounds based on covering are generally well-regarded, particularly when strong analytical bounds

on covering numbers are available, although sharper results are possible (e.g., through the entropy integral

or majorizing measures). Furthermore, while we do construct a polynomial time training algorithm, in

many cases, specific optimization methods (e.g., stochastic gradient descent or Newton’s method) exist to

perform EMM more efficiently and with higher accuracy. Worse yet, efficient enumerability of a cover may be

non-trivial in some cases; while most covering arguments in the wild are either constructive, or compositional

to the point where each component can easily be constructed, it may hold for some problems that computing

or enumerating a cover is computationally prohibitive.

On Compositionality and Coverability Conditions The covers and covering numbers discussed above

are of course properties of each ` ◦ Hd, rather than ` and each Hd individually. This creates proof obligation

for each loss function of interest, in contrast to theorem 5.3.1, wherein only Lipschitz continuity of ` is

assumed, and the remaining analysis is on H. Fortunately, in many cases it is still possible to analyze covers

of each Hd in isolation, and then draw conclusions across a broad family of ` composed with each Hd. In

particular, via standard properties of covering numbers, if ` is Lipschitz-continuous w.r.t. some pseudonorm
2The reader is invited to consult [Anthony and Bartlett, 2009] for an encyclopedic overview of various combinatorial dimensions,

associated covering-number and shattering-coefficient concepts, and their applications to statistical learning theory.
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‖·‖Y over Y, and γ-`2 covering numbers of each Hd w.r.t. ‖·‖Y are well-behaved, it can be shown that the

conditions of theorem 5.3.2 are met. This is useful as, for example, regression losses like square error, absolute

error, and Huber loss are all Lipschitz continuous on bounded domains, and thus analysis on each Hd alone is

sufficient to apply theorem 5.3.2 with each such loss function.

5.4 Conclusion

The central thrust of this paper introduces malfare minimization as a fair learning task, and shows relationships

between the statistical and computational issues of malfare and risk minimization. In particular, we argue

that our method is more in line with welfare-centric machine learning theory than demographic-parity theory,

however malfare is better aligned to address machine learning tasks cast as loss minimization problems

than is welfare. As such, the first half of this manuscript is dedicated to deriving and motivating malfare

minimization, while the latter studies the problem from statistical and computational learning theoretic

perspectives.

5.4.1 Contrasting Malfare and Welfare

With our framework now fully laid out and initial results presented, we now contrast our malfare-minimization

framework with traditional welfare-maximization approaches in greater detail. We do not claim that malfare

is a better or more useful concept than welfare; but rather we argue only that it is significantly different

(with surprising non-equivalence results between power-mean welfare and malfare functions), stands on an

equal axiomatic footing, and it stands to reason that the right tool (malfare) should be used for the right

job (fair loss minimization). With this said, we acknowledge that some learning tasks, e.g., bandit problems

and reinforcement learning tasks, are more naturally phrased as maximizing utility or (discounted) reward.

However, with a few exceptions, e.g., the spherical scoring rule from decision theory, most supervised learning

problems are naturally cast as minimizing nonnegative loss functions (arguably via cross-entropy or KL-

divergence minimization through maximum-likelihood, either as explicitly intended [Nelder and Wedderburn,

1972], or ex-post-facto through subsequent analysis [Cousins and Riondato, 2019]).

We are highly interested in exploring a parallel theory of fair welfare optimization, however some key

malfare properties do not hold for welfare. In particular, fair welfare functions Wp(·; ·) for p ∈ [0, 1)

are not Lipschitz continuous; for example, the Nash social welfare (a.k.a. unweighted geometric welfare)

W0(S;ω 7→ 1
g ) = g

√∏g
i=1Si is unstable to perturbations of each Si around 0, which causes difficulty in

both the statistical and computational aspects of learning. Leveraging this fact, it is trivial to construct
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welfare-maximization learning problems for which sample complexity is unbounded, making straightforward

translation of our FPAC framework into a welfare setting rather vacuous, except in contrived, trivial, or

degenerate cases. Essentially, this is because while corollary 3.4.2 holds for both welfare and malfare,

it does not imply uniform sample-complexity bounds, whereas, such bounds are trivial for fair malfare

(see lemma 3.4.1), due to the contraction property (theorem 3.3.7 item 3). It thus seems such a theory would

need either to either impose additional assumptions to avoid non-Lipschitz behavior (e.g., artificially limit

the permitted range of p), or otherwise provide weaker (non-uniform) learning guarantees.

5.4.2 FPAC Learning: Contributions and Open Questions

After motivating the malfare-minimization machine learning setting, we introduce fair PAC-learning to study

the statistical and computational difficulty of malfare minimization. As a generalization of PAC-learning,

known hardness results (e.g., lower-bounds on computational and sample complexity of loss minimization)

immediately apply, thus, coarsely speaking, the interesting question is whether, for some tasks, malfare

minimization is harder than risk minimization. Theorem 5.2.4 answers this question in the negative for

sample complexity, under appropriate conditions on the loss function, as does theorem 5.1.6 under realizability.

The remaining cases are left open, though section 5.3 at least shows that many conditions sufficient for

PAC-learnability are also sufficient for FPAC-learnability.

We are optimistic that our FPAC-learning definitions will motivate the community to further pursue the deep

connections between various PAC and FPAC learning settings, as well as promote cross-pollination between

computational learning theory and fair machine learning research. We believe that deeper inquiry into these

questions will lead to both a better understanding of what is and is not FPAC-learnable, as well as more

practical and efficient reductions and FPAC-learning algorithms.
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Part III

Sample-Efficient Mean-Estimation

with Dependent Sequential Data
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In this part, I examine sampling and data science problems where we do not assume our setting can be

reduced to an independently and identically distributed (i.i.d.) statistical estimation task. As the analysis

of non-i.i.d. settings requires far more sophisticated techniques than i.i.d. settings, I focus on the simpler

statistical problem of mean estimation, rather than uniform convergence bounds.3 I am confident that

our methods can be generalized to handle more sophisticated concentration-of-measure techniques, such as

Rademacher averages, though with significantly more analytical complexity than in the i.i.d. case.

In particular, I consider two settings where the data are somehow temporally or sequentially dependent (e.g.,

correlated), and we still wish to recover guarantees similar to those in the i.i.d. case. While the examples I

give are for sampling and data science problems, there is no reason that similar methods can not be applied

to machine learning tasks and other application domains.

As in the machine learning settings of parts I and II, where data dependent bounds are desirable to leverage

the structure of the data-distribution, without unreasonably assuming a priori knowledge of properties

like variances, I wish to show similar guarantees (w.h.p.) while assuming as little as possible a priori, and

providing efficient algorithms, with sample complexity bounds comparable to those attainable assuming

additional information were available. This is very important in practical sampling problems, as the reason

we are sampling in the first place is generally that we know very little about a distribution, and it is infeasible

to compute such properties exactly, so assuming known properties greatly hinders the practical usability of

such methods.

Two Settings of Non-I.I.D. Mean Estimation I now describe our two settings, while aggressively

focusing on their similarities, perhaps to the point of extreme reductionism. Note that despite their intuitive

similarities, and the great similarity between the algorithms and sample complexity guarantees they admit,

the subtle technical differences between these results are quite substantial. In particular, results in the setting

are essentially self-contained, depending primarily on known bounds in the i.i.d. setting, while the second has

deep roots in recent developments in the theory of concentration inequalities for Markov chains.

I first consider an important setting in databases and data analysis, where data are stored in such a way that

random access is expensive, but access to contiguous blocks of data is cheap, e.g., in sequentially accessible

media. This includes many physical media, such as magnetic tapes, LaserDiscs (and other optical media),

spinning magnetic disk drives, and wax cylinders, but also more generally, in modern digital systems, including

in blocks stored across multiple files, drives, or servers across a network. In each of these settings, there is a
3Do note that elementary machine learning guarantees for finite families, early VC theoretic bounds, and to some extent

covering number analysis methods are all based on simple mean-estimation, making these results applicable in these settings as
well.
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simple and efficient access pattern for the data, however standard sampling methods require random access,

which may be orders of magnitude slower.

I give an algorithm that is able to leverage this database structure by sampling large (but dependent)

blocks, at cost comparable to drawing the same quantity of independent samples. In the worst case, samples

within blocks are highly correlated, and the method is no better than if one sample were drawn from each

block. However, often, in particular when samples within each block are actually independent, the sample

complexity of my method nearly matches that of methods that assume each sample in each block were drawn

independently.

In the second setting, I adopt a widely-used theoretical model of dependent processes, namely, I assume we

wish to sample to estimate the expectation of a function f over the stationary distribution of a Markov chain

M. Here I continue the theme of approximate independence, where now rather than sampling blocks with

independence between them and dependence within them, we draw a long chain of samples, where nearby

samples may be dependent, but the chain is guaranteed to mix, in the sense that sufficiently-distant samples

are nearly independent. Precise definitions of mixing and mixing time, as well as the closely-related relaxation

time, are given in chapter 7, but for now it suffices to understand that there exists some T such that samples

at least T steps apart in the chain behave near-independently for the purposes of mean-estimation.

Preview of the Method At a high level, both settings are the same, in the sense that we have an a

priori guarantee of approximate independence, i.e., between blocks, or across large gaps in Markov chains. In

fact, both have a parameter T describing the degree of known independence, i.e., the size of each block, or

the relaxation time (which, roughly describes the length between samples in the chain for them to behave

near-independently for mean estimation). They also may exploit structure in the potentially-dependent space

between these near-independent milestones, which yields stronger guarantees when more independence exists

in the data (distribution) than would be implied by the a priori guarantees.

Upon closer examination, one may note that in the block sampling setting, we have complete independence

across spans of T records, whereas in the Markov chain setting, we have only approximate independence.

Fortunately, through modern concentration inequalities, this only results in small constant-factor changes

to tail bounds and sample complexity, thus despite the significantly more challenging partial independence

setting of Markov chains, I recover the same category of guarantee, with comparable constants in all bounds.

It is also worth noting that in both cases, the guarantees and bounds are shown by analyzing novel variance

concepts. In particular, in block sampling I use the inter-block variance, defined as the variance over blocks of

the average of f (rather than the variance of f over all records), and in the Markov chain setting, I use the
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inter-trace variance, defined as the stationary variance over length-T traces of M of the average of f (rather

than the standard stationary variance, i.e., the variance of f over the stationary distribution of M). In both

cases, I show that when more independence exists than an a priori assumption on T indicates, these variance

concepts are commensurately smaller. Such independence structure is sufficient but not necessary for our

methods to yield improvements, and this analysis leads to intuitive and simple conditions under which the

method is guaranteed to outperform classical alternatives.

As for the actual mechanism of these methods, both work by taking averages over all available samples

(regardless of their potential dependence). This doesn’t impact expectation, via linearity of expectation,

and can only reduce the variance of the estimate. Because they don’t require a priori variance bounds, the

algorithms employ progressive sampling, meaning they operate on an iteratively-doubling sample of blocks or

traces, and at each iteration, upper-bound the appropriate variance-concept, and terminate when the sample

size is sufficiently small given said variance bound to ensure that the user-supplied ε-δ mean-estimation

guarantee is met. Due to this dynamic sampling schedule, these algorithms dynamically adapt their sample-

consumption to structure found within the data, and consequently, the dominant terms of their sample

complexities match known lower-bounds for (variance-aware) mean-estimation to within logarithmic factors.

The Form of the Bounds I now briefly preview the sample complexity guarantees derived in this part.

Let T denote the block size or a relaxation time bound, r the range of f , and vT the inter-block or inter-trace

variance of f . Then both algorithms consume no more than

O

(
log

(
log r/ε

δ

)(
Tr

ε
+

TvT
ε2

))
(39)

records or Markov-chain steps, with probability at least 1− δ. First note that the log log r/ε term is incurred

by correcting for multiple comparisons (early stopping) made over iterations of progressive sampling. Ignoring

this term, if we then consider that this bounds the number of dependent samples, and we have a factor-T

fewer of near-independent samples, the result then matches Bennett’s inequality, with vT playing the role of v.

In the worst case, vT ∈ Θ(v1), where v1 is the variance or stationary variance of f , and we match i.i.d.

guarantees that take a single record from each length-T block or sequence. However, when more independence

exists in the data, vT � v1, and we get a more interesting sample complexity bound. Note that we assume

no a priori knowledge of vT , v1, or their relationship, yet nevertheless, these quantities appear in sample

complexity bounds.

In particular, in the block sampling setting, if we assume vT ≤ αv1

T , which occurs with α = 1 assuming
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perfect independence within blocks, then the number of blocks consumed by the block sampling algorithm,

via equation 39 is

O

(
log

(
log r/ε

δ

)(
r

ε
+

αv1
Tε2

))
. (40)

Similarly, in the Markov-chain setting, I show that TvT ∈ O(τrelv1), where τrel is the relaxation time of chain

M, thus equation 39 yields a sample complexity bound of

O

(
log

(
log r/ε

δ

)(
Tr

ε
+

τrelv1
ε2

))
. (41)

The fascinating insight here is that, although estimating the relaxation time τrel is generally impossible

without strong assumptions on M, τrel still appears in the sample complexity bound. In particular, the loose

bound T appears in equation 41, but is asymptotically dominated by a term involving τrel as ε→ 0. Again

these bounds are presented in loose simplified forms to emphasize their similarity; in the subsequent two

chapters, sharper forms, non-asymptotic guarantees, and corresponding insights are derived.
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Chapter 6

Mean Estimation in Block Databases

I formulate and analyze BlockSample, a suite of sampling algorithms that use the entire information in each

sampled block to estimate the mean values of arbitrary functions of record values. BlockSample is tailored

to modern data storage where the cost of retrieving a random record is essentially the same as the cost of

reading a block of records. The algorithms progressively sample blocks of records, rather than individual

records, and estimate the variance of the mean functions between blocks. By applying a specially tailored

version of Bernstein’s large deviation bound, the algorithm adaptively computes the required number of

blocks to yield provable confidence intervals (or ε-δ-approximations) of function means. Thus, the sampling

cost of BlockSample adapts to the amount of variance and degree of independence within each block, despite

assuming no a priori information about either. In experiments on real data, a 40× speedup over i.i.d. sampling

was achieved for a block size of 128 records. This chapter is based on joint work with Larry Rudolph and Eli

Upfal.

6.1 Preliminaries

We assume that our database D is organized into M fixed-size blocks, each containing exactly B records in

space X , thus D may be thought of as a matrix in XM×B , where Di,j is the j record in block i. Records may

contain several fields, e.g., an Employee record x ∈ X may be (Name ∈ String, ID ∈ N, Salary ∈ R). Let D

be uniform distribution over the M × B records of D. Given a function f : X → R, or a function family

F ⊆ X → R, where F = {f1, . . . , fn}, we want to estimate the expected value, i.e., the scalar ED[f ] or the

vector ED[F ] = (ED[f1], . . . ,ED[fn]).

Our algorithms do not have access to the distribution D over the individual records. Instead the algorithms
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sample from a uniform distribution over the M blocks. To estimate ED[f ] the algorithm samples blocks

xr,1:B = Di,1:B, for i ∼ U(1 : M), and computes Êxr,1:B
[f ] = 1

B

∑B
j=1 f(xr,j), i.e., the mean value of the

block’s B records, for each block. Since by linearity,

E
D
[f ] = E

i∼U(1:M)

[
Ê

Di,1:B

[f ]
]
.

we can estimate ED[f ] by 1
mB

∑mB

i=1 Êxi,1:B
[f ] for mB blocks of size B, chosen uniformly at random.

We are interested in the minimum number of block samples needed to obtain an (ε, δ)-estimate of ED[f ], i.e.,

m∗
B(ε, δ) = inf

m∗
B∈N

: sup
mB>m∗

B

P


∣∣∣∣∣∣ 1

mB

mB∑
i=1

Ê
xi,1:B

[f ]− E
D
[f ]

∣∣∣∣∣∣ ≥ ε

 ≤ δ .

Thus, our algorithms and analysis focus on the random variable Êxi,1:B
[f ] for block i chosen uniformly

at random. The mean and range of Êxi,1:B
[f ] is equal to that of f , its variance, the inter-block-variance

VB
.
= Vi∼U(1:M)[ÊDi,1:B

[f ]], is typically smaller than v
.
= VD[f ], the variance of f .

To show this, we apply the law of total variance to decompose the total variance v = VD[f ] into intra-block

variance V �
B and inter-block variance VB as

V
D
[f ] =

1

MB

M∑
i=1

B∑
j=1

(
f(Di,j)− Ê

D1:M,1:B

[f ]
)2

=

1

M

M∑
i=1

1

B

B∑
j=1

(
f(Di,j)− Ê

Di,1:B

[f ]
)2

︸ ︷︷ ︸
Intra-Block Variance V �

B

+
1

M

M∑
i=1

(
Ê

Di,1:B

[f ]− Ê
D1:M,1:B

[f ]
)2

︸ ︷︷ ︸
Inter-Block Variance VB

.

Here we are primarily interested in the inter-block variance VB , and its impact on the required block-sample

size. The above shows us that 0 ≤ VB ≤ v; the minimal VB = 0 is obtained when all blocks are identical,

while the maximum value VB = v is obtained when the records within each block are identical, but different

between blocks. A third case of interest is VB = v/B which corresponds to a uniform random partition of

record to blocks. In general, VB corresponds to the dependence between the allocations of items to blocks

and the value of f . For example, if the data represents some sequential process such as time series, positive

sequential dependence leads to higher VB , while negative sequential dependence gives smaller VB . Note that

B = 1 corresponds to standard uniform random sample of individual items, with V �
1 = 0, thus V1 = v.

In addition to variance our algorithms are often concerned with the range of the function f . In particular, we

assume knowledge of an interval r such that ∀x ∈ X : f(x) ∈ r, and we denote the lower and upper limits of
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r as brc and dre, and the length as bre = dre − brc.

6.1.1 Variance and Concentration Inequalities

We saw in the above discussion that averaging the value of a function over all records in a randomly chosen

block gives an unbiased estimate of ED[f ] with possibly smaller variance than the value of the function on

one random record. To fully utilise the possible reduction in variance we need:

1. A tight bound on the minimum sample size m∗
B(ε, δ) as a function of the sample variance; and

2. Adapting the bound in (1) to use the empirical variance instead of the true variance of the sample.

In the asymptotic regime, the Central Limit Theorem (CLT) gives an optimal solution to (1) and the

t-distribution properties resolve (2). In the finite sample regime these tasks are harder and do not have

optimal solution. Nevertheless, rigorous finite-sample guarantees are needed in algorithmic applications

because asymptotic bounds for samples from common distributions such has heavy-tailed distributions can

be extremely inaccurate on finite samples.

The standard CS tool for finite-sample bounds is Hoeffding’s inequality [Hoeffding, 1963], which generalizes

Chernoff’s inequality (see, e.g., [Mitzenmacher and Upfal, 2017]) to provide sub-Gaussian guarantees that

depend on the range of the random variable.

Theorem 6.1.1 (Hoeffding’s Inequality). Suppose distribution D over r ⊆ R and mean µ, and sample

x ∼ Dm. We then have

P
x1:m


∣∣∣∣∣∣ 1m

m∑
i=1

xi − µ

∣∣∣∣∣∣ ≥
√

2 1
4
bre2 ln( 2δ )

m

 ≤ δ &

m∗(ε, δ, bre) ≤
2 1

4
bre2 ln( 2δ )

ε2
.

(42)

Hoeffding’s inequality is tight to within constant factors when variance is maximal (i.e., v = 1
4bre2), but is

quite loose as v → 0.

In our work, we seek bounds that merge the simple assumptions and rigorous finite-sample guarantees

of Hoeffding’s inequality [Hoeffding, 1963] with the sharpness and variance-dependence of the asymptotic

CLT-Gaussian bounds. To this end, we build on Bennett’s (1962) inequality (which improves an earlier

result of Sergei Bernstein Bernstein [1924] under identical conditions), by replacing dependence on known a

priori variance with empirical variance.

Theorem 6.1.2 (Bennett’s inequality (sub-gamma form)). Suppose D a distribution over r ⊆ R, where bre
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and variance v. Then

P
x1:m


∣∣∣∣∣∣ 1m

m∑
i=1

xi − µ

∣∣∣∣∣∣ ≥ bre ln(
2
δ )

3m︸ ︷︷ ︸
Scale

+

√
2v ln( 2δ )

m︸ ︷︷ ︸
Scale

 ≤ δ &

m∗(ε, δ, bre, v) ≤
2bre ln( 2δ )

3ε︸ ︷︷ ︸
Scale

+
2v ln( 2δ )

ε2︸ ︷︷ ︸
Variance

.

(43)

This bound has sub-gamma form, i.e., resembles the Chernoff bound of a gamma random variable (see

[Boucheron et al., 2013]). The form of ε is a convenient lens through which to view the result; we decompose

the bound into a fast-decaying (in m) bre-dependent scale term and a slow-decaying (in m) v-dependent

variance-term. If we ignore the scale term, Bennett’s inequality matches the asymptotic CLT-Gaussian bound,

despite holding non-asymptotically, and improves upon Hoeffding’s inequality, by replacing the worst-case

1
4bre2 sub-Gaussian variance-proxy with a sub-gamma variance-proxy of v. The fast-decaying bre-term is

usually quite small, and it acts as a finite-sample correction for an asymptotic sub-Gaussian bound.

Our analysis relies of two large deviation bounds. We apply a sub-gamma bound to the error in estimating

the variance by the empirical variance, and then use that estimate of the variance to compute a bound on the

required sample size using a Bennett’s type bound. Together, this results can be viewed as a sub-gamma

finite sample approximation for the t-statistic.

6.1.2 Prior Work

Sampling techniques and their analysis have been studied extensively, mostly in the asymptotic regime. Here

we are interested in finite-sample analysis, as required for algorithmic analysis. We are particularly focused on

large deviation bounds that are sensitive to the sample variance, and on tight substituting the variance with

empirical one. Similar bounds exist in the literature [Audibert et al., 2007, Mnih et al., 2008, Audibert et al.,

2009, Maurer and Pontil, 2009], however our analysis is sharper, and we show a complementary lower-tail

bound, which we required for high-probability sample-complexity guarantees.

With known variance, it is easy to determine a sufficient sample size m to satisfy an ε-δ error guarantee,

but with empirical variance, we can’t determine if a sample-size is sufficient until we’ve already drawn it,

necessitating a sort of guess and check approach. We address this issue with progressive sampling, which has

been used in data-science settings where sufficient sample sizes are not known a priori, e.g., with Rademacher

averages in pattern mining problems, [Pietracaprina et al., 2010, Riondato and Upfal, 2015] and with variance

in relative confidence interval estimation [Mnih et al., 2008]. The basic idea is that we pick a sampling
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schedule (a priori) that tells us how many samples to progressively draw at each timestep, and we follow the

schedule until our ε-δ guarantee is met, after which we can stop sampling.

6.2 Algorithms

In this section, we present our mean-query sampling algorithms for block data, alongside intuitive explanation,

and rigorous finite-sample correctness and efficiency guarantees. We first consider in section 6.2.1 the

simple case of single-function mean estimation with additive guarantees, emphasizing simplicity and intuitive

presentation over sampling efficiency and flexibility. We then present an optimized algorithm for multi-function

mean estimation in section 6.2.2. Our first algorithm assumes that the function f being estimated has range

[0, 1], but we lift this restriction in the generalized algorithm. We close by sketching how these algorithms

may be modified to support arbitrary error guarantees and address other related tasks.

6.2.1 A Simple Block Sampling Algorithm

We first present a simple technique for single-function block-mean estimation, pseudocode given as algorithm 3.

Algorithm 3 takes as input query parameters, which are a database D of M blocks of size B and a function

f : X → [0, 1] upon which to perform mean estimation, and the confidence parameters ε and δ, which

determine the width and confidence of the resulting additive-ε guarantee. In each iteration, algorithm 3

draws a geometrically-increasing number of blocks to sample uniformly from the database. It then averages

f over all the records in each block, and then applies an empirical-variance sensitive variant of Bennett’s

inequality, repeating until it produces a 2ε-diameter CI.

Intuitively, algorithm 3 enforces its ε-δ additive guarantees by establishing a fixed schedule of geometrically

increasing sample-sizes and bound-applications that are all valid simultaneously (via union bound). Essentially,

algorithm 3 initially draws a small sample, after which it may terminate immediately, if the empirical variance

(and thus w.h.p. the true variance) is ≈ 0, via application of theorem 6.1.2; otherwise, it samples additional

blocks to double the total sample size at each iteration, until either the Bennett confidence interval satisfies

the requested ε-δ guarantee, or the maximum iteration count N is reached, after which a Hoeffding confidence

interval implies the guarantee. In both cases, the bounds depend on ln(N) to account for the multiple-

comparisons made by the algorithm in iterations before termination (i.e., the possibility that a small sample is

drawn with empirical variance v̂ � v, leading to early termination). Formally, we characterize the guarantees

of algorithm 3 below, with proof given in the appendix.
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Algorithm 3 Simple Block Sampling
1: procedure UBMS(D, f , ε, δ) → µ̂
2: Input: Database D of M blocks of size B, function f : X → [0, 1], confidence interval width ε, and

failure probability δ ∈ (0, 1)
3: Output: Additive ε-δ approximation µ̂ of E

D
[f ]

4: N ←
⌈
log2

(
3

28ε

)⌉
. Maximum iteration index

5: α← 14 ln( 3N
δ )

3ε . Minimal Sufficient Sample Size
6: β ← 2 . Geometric Schedule Ratio
7: U0 ← 0;V0 ← 0 . Avg & avg2 accumulators
8: m0 ← 0 . Sample count begins at 0
9: for t ∈ 1, 2, . . . , N do

10: mt ←
⌈
αβt

⌉
. Geometric sampling schedule

11: m′
t ←mt −mt−1 . Marginal sample size

12: I ∼ Um′
t(1, . . . ,M) . Draw uniform block indices

13: xt,·,· ← Read(D, I) . Read of xt,·,· ∈ Xm′
t×B

14: Ut ← Ut−1 +
m′

t∑
j=1

Ê
xt,j,1:B

[f ] . Sum block avgs

15: µ̂t ← 1
mt

Ut . Grand mean

16: Vt ← Vt−1 +
m′

t∑
j=1

Ê
xt,j,1:B

2[f ] . Sum square block avgs

17: v̂t ← mt

mt−1

(
1

mt
Vt − µ̂2

t

)
. Inter-block variance

18: if (t = N) ∨
(

7 ln( 3N
δ )

3mt
+

√
2 ln( 3N

δ )v̂t

mt
≤ ε

)
then

19: return µ̂t

20: end if
21: end for
22: end procedure
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Figure 6.1: Sample complexity (y-axis) of algorithm 3
(theorem 6.2.1.1), and algorithm 4 (theorem 6.2.3)
with optimized β, compared to Hoeffding, Bennett,
and asymptotic Gaussian bounds, as a function of
variance (x-axis). Note that variance is not known a
priori to algorithm 3, but is used in the other bounds.
Here r = 1, ε = 10−3 and δ = 10−9.

Theorem 6.2.1 (Algorithm 3 Guarantees). Suppose ε > 0 and δ ∈ (0, 1), then with respect to the distribution

M of sampling blocks uniformly at random,

1. P
(∣∣µ̂− ED[f ]

∣∣ ≤ ε
)
≥ 1− δ; &

2. If δ ≤ 0.01, then P
(
m̂ ≤ 2 +

4 ln( 3N
δ )

ε

(
v
ε + 8

3

))
≤ 1− δ.

Item 1 simply tells us that algorithm 3 works “as advertised,” and produces a confidence interval of the

user-requested diameter (tolerance) with the user-supplied certainty (failure probability). Item 2 is rather

more informative; it tells us that, at least with high probability, the sample consumption of algorithm 3 is

small, and mostly dependent on the inter-block variance of f . It is interesting to note that although this

variance is not known a priori, it still characterizes the sample consumption of algorithm 3.

In figure 6.1, we contrast the high-probability sample-complexity bound of algorithm 3 with the corresponding

sample complexities of Bennett and asymptotic Gaussian bounds. We see that, although the latter two

methods are not usable in practice, as they require known variance, algorithm 3 is nearly as sample-efficient,

despite only using empirical variance. Note also that the figure is not entirely fair, as it compares a rather

loose high probability bound on algorithm 3 sample consumption to the exact required sample-size of the

Bennett and Hoeffding bounds.
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Algorithm 4 Block Mean Sampling
1: procedure BMS(D, (F , r1:n,µ0,1:n,v0,1:n), (ε, δ), β) → µ1:n

2: Input: Database D of M size B blocks, function family F ∈
∏n

i=1(X → ri), (range, mean, variance)
interval bounds (ri,µ0,i,v0,i) for each fi ∈ F , target CI (radius, error probability) bounds (ε, δ), geometric
ratio β

3: Output: Confidence intervals µi∈1:n of each E
D
[fi]

4: . Compute max timestep N and min sufficient size dαe

5: N ← 1 ∨

logβ
(

max
i∈1:n4(dvie+ 7brie

3 ε) ∧ brie2
max
i∈1:n4(bvic+ 7brie

3 ε) ∧ brie2

)
6: α← 1

2ε2 ln(
3nN
δ )
(
max
i∈1:n4(bvic+ 7brie

3 ε) ∧ brie2
)

7: U0,1:n ← 0; V0,1:n ← 0 . Avg & avg2 accumulators
8: m0 ← 0 . Initialize sample count
9: T ← 3nN . Compute total # of tail bounds

10: for t ∈ 1, 2, N do . Main loop
11: mt ←

⌈
αβt

⌉
. Geometric sampling schedule (cumulative)

12: m′
t ←mt −mt−1 . # of blocks to process this round

13: I ∼ Um′
t(1, . . . ,M) . Draw m′

t uniform block indices
14: xt,·,· ← Read(D, I) . Read of xt,·,· ∈ Xm′

t×B

15: for fi ∈ F do
16: Ut,i ← Ut−1,i +

m′
t∑

j=1

Ê
xt,j,·

[fi] . Sum of block avgs

17: µ̂t,i ← 1
mt

Ut,i . Grand mean

18: Vt,i ← Vt−1,i +
m′

t∑
j=1

Ê
xt,j,·

2[fi] . Sum of square block means

19: v̂t,i ← mt

mt−1

(
1

mt
Vt,i − µ̂2

t,i

)
. Inter-block variance

20: εv ←
2brie2ln(Tδ)

3mt
+

√(
brie2ln(Tδ)√

3mt

)2
+
2brie2ln(Tδ)(v̂+ brie

2mt
4(mt−1)2

)

mt

21: vt,i ← vt−1,i ∩
[
0, v̂t,i + εv

]
. Refine variance bound

22: ε− ←min

(
(drie−bµt−1,ic)ln(Tδ)

3mt
+
√

2dvt,ieln(Tδ)
mt

, brie

√
ln(T

δ
)

2mt

)
23: ε+ ←min

(
(dµt−1,ie−bric)ln(Tδ)

3mt
+
√

2dvt,ieln(Tδ)
mt

, brie

√
ln(T

δ
)

2mt

)
24: µt,i ← µt−1,i ∩

[
µ̂t,i − ε−, µ̂t,i + ε+

]
. Refine mean

25: end for
26: if max

i∈1:n
bµt,ie ≤ 2ε then . Check additive ε-error

27: returnµt,1:n

28: end if
29: end for
30: end procedure
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6.2.2 A Refined Block Sampling Algorithm

We now present algorithm 4, which supports compound queries (multiple functions), can use a priori variance

and expectation knowledge, and is generally more sample-efficient than algorithm 3. Briefly put, the sample

complexity improvements derive from using tighter concentration inequalities, propagating bounds between

timesteps, though the overall structure is largely unchanged.

Here we walk through algorithm 4, in particular emphasizing where and how it differs from algorithm 3.

The first major difference is in its input; rather than taking a single function f , algorithm 4 operates on a

function family F . Additionally, algorithm 4 relaxes the unit range assumption of algorithm 3, and thus

needs the range ri of each fi ∈ F , and also takes (possibly vacuous) a priori mean and variance bounds

µ0,· and v0,· of each fi ∈ F . The algorithm also adds a β parameter, which determines the geometric ratio

between successive sample sizes (discussed further in section 6.2.3), whereas algorithm 3 simply fixes β = 2.

Another major difference is in the sampling schedule of algorithm 4. Because the algorithm must operate on a

family of functions, each with their own range, and possibly variance bounds, determining the range of sample

sizes to draw, and thus the number N of doubling geometric samples to draw, is more involved. We use a

union bound over a variance and 2-tailed mean bound for each function at each timestep, for a total of 3nN

bounds. Because algorithm 4 can not terminate until each fi ∈ F has been ε-additively estimated, the smallest

and largest sample sizes are both worst-case over F , and depend on the known range ri, which increases

both, and variance bounds vi, where lower bounds can increase minimal sample sizes, and upper-bounds can

decrease maximal sample sizes. The details are rather complicated (see proof of theorem 6.2.2, but intuitively,

a sampling schedule is selected using a priori knowledge to avoid statistical inefficiency by ignoring infeasible

sample sizes. However, if we assume F = {f1} & r1 = [0, 1], (as in algorithm 3), the schedule of algorithm 4

is more efficient, using fewer iterations, (N ≤ dlog2(3/28ε)e) and a finer geometric sample size grid (β ≤ 2).

Each step of the main loop progressively samples blocks (line 14), and for each f ∈ F computes the empirical

variances and means of block-averages (lines 17 & 19). The algorithm then refines its existing bounds on

variances and means (lines 21-24), which synthesizes the information gained this iteration with the a priori

bounds and previous iterations. Algorithm 4 may require fewer samples than algorithm 3, as it also considers

upper and lower bounds from previous timesteps, which due to random fluctuations in empirical means and

variances, may be sharper than the current bound.

While the exact form of the tail bounds in algorithm 4 is rather subtle, they are defined and discussed

further in section 6.2.2, and they always improve upon the simple empirical Bennett inequality (line 18) of

algorithm 3. The last step of each iteration is then to check the additive ε-error termination condition, which
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is satisfied with certainty by the end of iteration N .

Concentration Inequalities Algorithm 3 uses a generic sub-gamma empirical Bennett bound, whereas

algorithm 4 uses an asymmetric refined bound with weaker dependence on function ranges. This is significant

in the block-sampling setting, as we generally expect very small inter-block variances (VB � V1 ≤ 1
4bre2),

in which case the fast-decaying Θ(bre ln( 1δ )/m) scale term can dominate the slow-decaying Θ
√
ln( 1δ )v/m

variance term, thus moving closer to purely sub-Gaussian tails greatly reduces sample complexity.

Algorithm 4 bounds the variance v in terms of the unbiased empirical variance v̂ with probability at least

1− δ as

v ≤ v̂ +
2bre ln( 1δ )

3m︸ ︷︷ ︸
Scale

+

√√√√(bre ln( 1δ )√
3m

)2

+
2bre2 ln( 1δ )(v̂+

m
4(m−1)2 )

m︸ ︷︷ ︸
Variance

, (44)

(used on line 20) and similarly, our efficiency guarantees require a bound in the opposite direction, namely,

with probability at least 1− δ, we have

v̂ ≤ v +
bre ln( 1δ )

3m︸ ︷︷ ︸
Scale

+

√
2bre2 ln( 1δ )(v +

m
4(m−1)2 )

m︸ ︷︷ ︸
Variance

, (45)

both discussed further in the appendix. Additional we apply Bennett’s inequality more carefully, noting that

the upper and lower tails can use scale terms drie−E[fi]
3 and E[fi]−bric

3 , respectively (see lines 22 & 23), which

gives asymmetric tail bounds up to a factor-2 sharper than the scale term brie
3 used by algorithm 3.

6.2.3 Setting Parameters

Schedule Selection With the introduction of the β parameter, algorithm 4 allows the user to tune the

geometric sampling schedule to tradeoff between a large number of closely-spaced sample sizes (and thus a

large union bound), or a small number of distant sample sizes (and thus potentially overshooting the sufficient

sample size).

We note that while algorithm 3 simply fixes β = 2, as this intuitively simple choice leads to a straightforward

doubling of sample size at every step, this choice is often quite sub-optimal, by up to a 2-factor (hence the

≈ 2-factor gap between UBMS and Bennett’s inequality in figure 6.1). Decreasing β can remove of this

2-factor, though only to a point, as taking β too close to 1 increases N , which counteracts this improvement.

The other difficulty of using algorithm 4 is in setting the range, mean, and variance parameters r, µ, and

v. First note that f : X → r implies ED[f ] ∈ r and VD[f ] ≤ 1
4bre2, thus bounding r is sufficient to invoke
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algorithm 4, and sharper bounds on µ & v are only used to improve performance.

Often f has bounded range (e.g., indicator functions, percentages, etc.), but in general, we need to assume

the database and its indices maintain enough information to compute appropriate bounds. In particular,

we assume they maintain a few elementary statistics on each field. If f is defined on a single field (similar

methods apply for multivariate f) with range rX , then

r ⊆
[
min
x∈rx

f(x),max
x∈rx

f(x)
]
,

which simplifies to [f(brxc), f(drxe)] for increasing f .

Expectation and variance bounds are trickier, and depend on exactly which statistics we maintain and the

properties of f . To illustrate the principle, we consider the case of contraction functions, i.e., f : R → R

s.t. ∀x ∈ R :
∣∣∣ d
dx

∣∣∣ ≤ 1. If f is a contraction, it holds that VB ≤ VD[f ] ≤ V[D], thus this is another case

where field-statistics maintained by the database yield a priori knowledge exploitable by algorithm 4. Similar

properties requiring various assumptions on f and database statistics can be shown to bound v and µ, which

in all cases can be given to algorithm 4 to improve sampling efficiency.

Algorithm 4 Guarantees The correctness and efficiency guarantees of algorithm 4 are much like in

algorithm 3, although they must depend on |F| to account for multiple comparisons, and are also sensitive to

a priori range and variance knowledge.

Theorem 6.2.2 (Algorithm 4 Correctness Guarantees). Suppose ε > 0 and δ ∈ (0, 1), and take µ̂ ←

BMS(D, (F , r,µ,v), (ε, δ), β). Let n = |F| and take N as computed on line 5. Then with probability at least

1− δ over randomness of BMS, it holds that

∀i ∈ 1, . . . , n :

(
E
D
[fi] ∈ µ̂ ∧ bµ̂ie ≤ 2ε

)
,

and therefore max
i∈1,...,n

∣∣∣∣ED[fi]− dµie − bµic
2

∣∣∣∣ ≤ ε.

Note that algorithm 4 produces interval estimates, which are more informative, not necessarily centered

on the empirical mean, and often sharper than requested, particularly in multi-function estimation, when

some function means are more easily estimated than others, and this information may be useful to the user

downstream. The first statement in theorem 6.2.2 is a guarantee for these interval estimates, and the second

converts their centers to point estimates, and more closely resembles theorem 6.2.1.1.
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Theorem 6.2.3. Suppose ε > 0 and δ ≤ 0.01n, and take

µ̂← BlockMeanSampling(D, (F , r,µ,v), (ε, δ), β) .

Let n = |F| and take N as computed on line 5. Then, taking Vmax and rmax to be the largest inter-block

variance and range among F , with probability at least 1− δ
3N over randomness of BlockMeanSampling,

it holds that

m̂(ε, δ, v) ≤

⌈
2β ln( 3nNδ )

ε

(
Vmax

ε
+

8rmax

3

)⌉
.

Proof. To see this result, note that together, eqs. 44 & 45 and Bennett’s inequality are sufficient to show that

if algorithm 4 reaches a sample of size at least

2 ln( 3nNδ )

ε

(
Vmax

ε
+

8rmax

3

)
,

then with probability at least 1− δ
3N , the empirical variance of each fi will be small enough to satisfy the

termination condition. This exact sample size is not necessarily considered by algorithm 4, but because of its

geometric structure, we can guarantee that a sample size a factor ≤ β in excess of the above (rounded up) is

present in the sampling schedule, and termination w.h.p. will occur there. Note that here equation 44 is

required, as we need to show that the empirical variance is not much greater than the true variance, whereas

in the correctness proof, we only cared about the reverse bound. Note also that the statement holds with

probability independent of N , as it only considers the largest single timestep where the sample size is no

greater than the stated bound: terminating earlier only decreases m̂, and we show that terminating later

occurs with probability ≤ δ
3N . The δ ≤ 0.01n requirement is necessary only to get the 8

3 constant from

eqs. 44 & 45; see appendix for details.

This result mirrors that of theorem 6.2.1.1, although a more careful analysis gives a higher-probability

guarantee, removes a nuisance constant term, and is now sensitive to β and the other parameters of algorithm 4.

This bound with optimal selection of β is plotted against the corresponding result for theorem 6.2.1 and

various tail bounds in figure 6.1.

Comparative Sample Complexity Analysis In some sense, the strongest possible way to show that

algorithm 4 is near optimal is to compare its sample complexity to that of the minimax-optimal mean

estimation algorithm under identical conditions. In particular, assuming variance v and range ≥
√
4v, suppose

that A is a non-adaptive (fixed-sample size) ε-δ single-function mean-estimation algorithm, and m∗(ε, δ, v)
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its sample complexity. [Devroye et al., 2016] show that under mild-conditions on δ,

m∗(ε, δ, v) ≥
ln( 1δ )v

ε2
,

i.e., the minimax optimal mean estimator requires at least this many samples. The best-known upper-bounds

nearly match up to constant factors [Lugosi and Mendelson, 2019], but induce additional dependence on

other parameters. In our case, we have additive dependence on range, and thus can’t get a purely competitive

ratio, but the following theorem gives an affine-characterization of our bound, which is nearly multiplicative

when rmax/ε is small.

Theorem 6.2.4. Suppose as in theorem 6.2.3, and also ln( 1δ )v/ε
2 > 5 & δ < min( 12 , 0.01n, 2

4ε2/v). With

probability at least 1− δ, it then holds that

m̂(ε, δ, v) ≤ 2β

(
1 +

ln(3nN)

ln( 1δ )

)
m∗(ε, δ, v) + β

16 ln( 3nNδ )rmax

3ε
.

Proof. This result is a consequence of theorem 6.2.1 item 2 and the sample-complexity lower-bound of [Devroye

et al., 2016]. Note that the sub-gamma variance term is purely multiplicative term, but the sub-gamma scale

term is additive, as the lower-bound has no range-dependence. The assumptions of δ are required by the

sample-complexity lower-bound and theorem 6.2.3.

This result is significant, as it tells us that despite its relative simplicity, no amount of cleverness can yield a

general algorithm that performs significantly better than algorithm 4.

6.3 Experiments

This section compares the behavior of the two algorithms for various mean queries on a very large industrial

dataset containing public disk block traces on block accesses in a data-center1. There is no need to compare

the results of the sample to the full dataset, rather what is important is to see how the results of the i.i.d.

sample compare to the block samples. The experiments vary block sizes B ∈ {1, . . . , 128}, with 1 being i.i.d.

sampling, and 128 being blocks of 128 records. We require more samples for higher confidence (small δ) and

tighter intervals (small ε), and similarly, when inter-block variance VB (which generally decreases with B) is

large. Here we evaluate performance for various queries, parameter settings, and block sizes.

In each experiment, we estimate means to within target confidence interval diameter 2ε. The first two
1The Two Sigma data object trace set will be made generally available soon; it has been used in several other publications.
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Legend:

Figure 6.2: Confidence interval width 2ε̂ vs. sample size for frequency estimation tasks on the Two Sigma
disk block traces dataset, with base-10 log-log axes. In each experiment, target ε = 1

100 and δ = 1
1000 , and

the column field and |F| are given in the title. Independent sampling shown in red, and block sampling with
block size B = 100 in blue. We show algorithm 4 (defined only at specific sample sizes, denoted by ppp marks)
comparing to Hoeffding, Bennett, and (asymptotic) Gaussian tail bounds. Termination occurs when a bound
crosses the ε = 1

100 line, so lower curves are better.

experiments show how various bounds behave as a function of sample size m, and the final experiment

examines how sample size m̂ changes as a function of block size B. Our primary goal in these experiments is

to show that the sample complexity of block sampling is much less than that of independent sampling, which

we see by comparing performance across different block sizes.

The Hoeffding bound is our baseline as a non-asymptotic sufficient sample size is computed a priori given only

range information, thus is invariant under block size and variance. The Bennett and asymptotic Gaussian

bounds, on the other hand, depend on the (unknown) true variance VB of the data, so are not usable in

practice. They are presented only for comparison purposes. A secondary goal of these experiments is to show

that our algorithms, despite having less a priori information, are still competitive with the Bennett and

Gaussian bounds.

All plots are presented on log-log axes, so as to distinguish many similar curves across a broad range of sample

sizes and confidence interval diameters. This is quite helpful as it visually contrasts the linear Θ(m−1/2)

convergence rates of the sub-Gaussian Hoeffding and Gaussian bounds to the curved mixed-rate sub-Gamma

Bennett and algorithm 4 bounds.

6.3.1 Frequency Estimation Tasks

We first address several frequency estimation tasks on each categorical fields of the dataset (Job, Rack,

Dataset, Machine, and Object IDs), as well as the joint task of frequency estimation on all five categorical
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fields, and on categorical estimation of (Machine, Dataset) tuples. In each task, we require a single indicator

function for each category of the relevant (combinations of) categorical field(s), the expectation of which is

the category frequency, thus all f ∈ F have range [0, 1], and variance ≤ 1/4. Each query is performed with

algorithm 4 using β = 1.25, and results are presented in figure 6.2.

The queries are arranged by increasing function family size |F|, thus Hoeffding sample complexity is monotonic

in F . However, the remaining bounds, which are variance-sensitive, often attain improved sample complexity

for larger F , as maximum variance more strongly impacts performance than function family size.

Except for the Job, Dataset, and All experiments, which each contain a single high-variance function, we

see that the variance-dependent bounds outperform Hoeffding’s inequality, even for independent sampling.

Furthermore, using B = 10 or B = 100 reduces the variance substantially, and algorithm 4 beats Hoeffding’s

inequality in all datasets.

In all experiments, we see sample consumption decrease as a function of block size, empirically validating

the thesis that block-information yields superior convergence rates over independent sampling. Indeed

we generally see sample complexity behave roughly ∝ 1
B , though due to dependence within blocks, the

constant-of-proportionality is ≥ 1. Nevertheless, the improvement with increasing block size is still quite

substantial. This also illustrates why standard i.i.d. bounds can’t be applied to the mB samples at each

timestep directly, and so our variance-based approach is required.

Also of note is the clear curvature of the Bennett and algorithm 4 bounds in log-log space. Both the

Hoeffding and Gaussian plots are linear (slope −1/2), as confidence interval radius ε obeys ε ∝ cmax/
√
m and

ε ∝
√
Vmax/m, respectively, whereas the Bennett and empirical Bennett (algorithm 4) inequalities yield curves

with initial cmax/m-rate decay (slope −1), followed by subsequent
√

Vmax/m-rate decay (slope −1/2). This

curvature is more visible when Vmax is very close to 0 (e.g., when B = 100), as with the chosen parameters,

the algorithm 4 generally starts with a large enough sample size that the
√
Vmax/m term dominates. This is

significant in block sampling, as for a sufficiently large block size (thus small variance), we can expect to

remain in the fast-decaying (slope −1) regime for longer, and thus quickly reach a sufficient sample size.

A final point of interest is that algorithm 4 bounds exhibit slight deviations from the ideal sub-Gaussian and

sub-Gamma curves of the other bounds, which generally appear as dips in the algorithm 4 curves. These

deviations are most visible in the Job and Dataset field experiments, and are mainly due to using empirical

variance instead of variance. Correcting for these fluctuations is also the reason why the algorithm 4 bounds

are necessarily looser than the Bennett bounds.
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10 ,

1
10 ) c = (0, 1)

Figure 6.3: Sigmoid read size experiments, with log-log axes and various affine cost models. Confidence
interval width 2ε̂ is plotted as a function of affine cost c0m+ c1Bm for B ∈ {1, 10, 100}. The left plot only
pays per-block, and the right plot pays per record.

6.3.2 Sigmoid Functions

To understand how the algorithms behave for particular functions this subsection determines averages of

sigmoid functions of read sizes (in mb) on the Two Sigma block traces dataset. We consider 15 sigmoid

functions (see appendix), each a contraction with range [−103, 103], and want simultaneous ε = 0.5, δ = 10−6

confidence intervals on each. Unlike the frequency experiments, these functions have large range, so are

expected to have much higher variance. Additionally, we assume a priori knowledge of the variance v and

range r of the read size field. Because each sigmoid is a monotonic contraction function, we use v and r to

provide algorithm 4 with a priori ri and v0,i bounds (see section 6.2.3), to improve sampling efficiency.

We again compare Hoeffding, Bennett, and Gaussian bounds to algorithm 4 with β = 1.25, but now plot,

figure 6.3, confidence interval width against various measures of cost. In particular, we consider affine costs

of block size, measured as mc1 +mBc2 where c1 is the cost of reading and processing each block, and c2 is

the cost of reading and processing each record. Intuitively, c1 represents the networking and communication

costs of accessing a block, and c2 represents the cost of processing each element of a block.

In the left plot, where c = (1, 0) (pay-per-block), we see similar trends as in the frequency estimation tasks;

again algorithm 4 performance is quite near that of the Gaussian bound, and increasing block size greatly

improves all variance-sensitive bounds. In the middle plot, where c = ( 9
10 ,

1
10 ), we see great improvement

moving from B = 1 to B = 10, but diminishing returns thereafter, as large blocks, with their high-cost and

low variance, can’t compete with a larger number of low-cost small blocks. In the right plot, we have c = (0, 1)

(pay-per-sample), where independent sampling outperforms the larger block sizes. This is unsurprising, as

here dependent and independent data have the same cost, and due to autocorrelation of nearby read-sizes,

block-averages have higher variance than averages of B independent samples (thus Gaussian performance is

worse), and Bennett and algorithm 4 performance is significantly worse, as they also pay the price of having
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Figure 6.4: Sample Complexity versus Block Size
on Mean Read Offset Task. For all B ∈ 1, . . . , 100,
we plot empirical sample consumption m̂, and sam-
ple consumption bound m∗ for both algorithm 3 and
algorithm 4 with β = 1.05.

fewer independent samples in their sub-gamma scale terms.

These experiments nicely illustrate the limitations of block sampling; the improvement one gets depends

entirely upon how one measures, and how one measures should depend on a specific application or architecture.

In the convenient model where one pays only for blocks, one can generally expect large improvement moving

from independent sampling to block sampling. With a hybrid affine cost, which may be reasonable for

balancing IO and computation costs the c = ( 9
10 ,

1
10 ) plot is illustrative, perhaps with even greater gains,

when compute costs are much less than 1/9 of IO costs. Finally, the takeaway of the c = (0, 1) is almost

tautological: if there is no cost benefit to operating on blocks, then we generally can’t expect to benefit from

block sampling.

6.3.3 Block Size and Sample Complexity

In this experiment, we estimate the mean read offset, truncated to 4GiB (i.e., reads above 4GiB were

considered to be 4GiB), in the block-traces dataset. Like the sigmoid experiments, this is a continuous task,

but here we provide no a priori variance bounds, and only the range bound r = [0, 232]B. Our goal is to see

how efficient block-sampling schedules are, and how much they benefit from large block sizes.

In section 6.3.3, we plot (ε = 0.1,δ = 10−6) sample consumption m̂, as well as the sample complexity

bounds m∗ (from theorems 6.2.1 and 6.2.3) for algorithm 3 (scaled as necessary to establish unit range), and

algorithm 4 with β = 1.05. With β = 1.05, taking B = 100, we see that block-sampling yields a greater than

40-fold improvement in sample complexity over independent sampling. We also see that sample consumption

decreases roughly hyperbolically as a function of block size (as under independence), which explains the

strong performance of block sampling on this dataset.

These experiments are also quite revealing as to the differences between algorithms 3 and 4 and the importance

of the geometric schedule constant β. In algorithm 3, where effectively β = 2, we see large and infrequent
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discrete jumps in sample consumption, due to the coarse sampling schedule. We can see how inefficient this is

by comparing it to the much finer β ≈ 1 sampling schedule of algorithm 4, where a smaller sample size is

almost always sufficient.

6.4 Conclusion

Motivated by the fact that in modern data storage the cost of accessing a random record is essentially the

same as the cost of reading a block of records, we present a rigorous technique for taking full advantage of all

the record in the sampled block instead of just a random one, as done in standard sampling methods. The

algorithms are progressive, continually fetching random blocks until the stopping conditions are met. This is

well suited to progressively refined results when a coarse-grain result is shown almost immediately and then

improved over time.

While we focused here on mean-estimation algorithms, the concept of block sampling is far more general.

Our methods extend to any estimation task with a termination condition that can be progressively estimated

at each step. In particular, with trivial modifications, our can estimate relative confidence intervals and

conditional means. Similarly, in the multi-function case, (e.g., estimating averages over multiple fields), the

uniform bound (FWER) over F is rather stringent, and it is a simple matter to instead bound the `2-distance

between the point-estimate-means and true means, or provide a false discovery rate (FDR) guarantee, both

of which are less sensitive to bad behavior of small subsets of F .

The disaggregation of storage from compute, especially in the cloud, means that there no single model for the

cost of accessing data. Large datasets are distributed across multiple storage servers, which is appropriate

for parallel processing over large data sets. Parallel or distributed processing often involves higher compute

costs, non-uniform startup times, and delays due to stragglers. As a result, it is sub-second response time for

simple operations are difficult to achieve without block sampling.
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Chapter 7

Mean Estimation and the

Markov-Chain Monte-Carlo Method

I introduce a novel method for MCMC-mean estimation, whose sample complexity depends on a novel

measure: the inter-trace variance, which characterizes the sample complexity of MCMC-mean estimation

better than stationary variance (used widely in classical mean estimators). For a range R function f with

stationary variance vπ, standard variance-agnostic MCMC mean-estimators run the chain for Õ(TR2

ε2 ) steps,

when given as input an (often loose) upper-bound T on the relaxation time τrel (≤ mixing time τmix), and

when an upper-bound V on vπ is known, Õ
(
TR
ε + TV

ε2

)
steps suffice.

For an arbitrary trace length τ , I define the inter-trace variance trv(τ), and using it I introduce the

DYNAmic Mcmc Inter-Trace variance Estimation (DynaMITE) algorithm for mean-estimation. DynaMITE

estimates w.h.p. the mean to within ε additive error in Õ
(
TR
ε + τrel·trv(τrel)

ε2

)
steps, without a priori variance

bounds (w.r.t. f) on the stationary variance vπ, or the trace variance trv(τrel). When ε is small, the

dominating complexity term is τrel · trv(τrel), thus the complexity of DynaMITE principally depends on the

a priori unknown τrel and trv(τrel). I show that often trv(T ) = o(vπ), and furthermore, it always holds that

trv(τrel) ≤ 2vπ, thus the worst-case complexity of DynaMITE is Õ(TR
ε + τrel·vπ

ε2 ), improving the dependence

of classical methods on the loose bounds T and V . This chapter is adapted from Cousins, Haddadan, and

Upfal [2020].
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7.1 Introduction and Related Work

Assume we have a bounded, real-valued function f : Ω→ [a, b], and a distribution π defined on the domain

Ω, and our goal is to estimate the average of this function, µ .
= Eπ[f(x)]. Having enough samples from π,

one can estimate µ by taking the average of such samples, usually referred to as the empirical mean µ̂. The

accuracy of this estimate depends on the variance of f and the number of samples. Markov chains are often

used to approximately sample from π efficiently Aldous et al. [1997], Brightwell and Winkler [1991], Wilson

[2004], Randall [2006], Levin and Peres [2017], which can be used to construct a FPRAS for many #P-hard

problems which aim to find the size of Ω.

Classical Markov Chain Monte Carlo (MCMC) approaches work by analytically determining a sufficient

quantity m of approximately-independent samples to estimate µ, and then generating such samples by

running a Markov chain. One approach is to run m copies of a Markov chain M converging to a stationary

distribution π for T steps, where T is chosen to exceed the mixing time τmix, which ensures each sample is

approximately π-distributed. Another approach is to run a single instance of a Markov chain for a larger

number of steps, and estimate µ from these samples (rather than restarting the chain every T steps to collect

a single sample). In the latter approach, m is taken proportional to an upper-bound T on the relaxation

time τrel (≤ τmix); both τmix and τrel are formally defined in section 7.2. Unfortunately, because MCMC is

generally used with distributions too complicated to analyze precisely, we lack sharp bounds on vπ
.
= Vπ[f ],

and furthermore, it is often difficult to sharply bound τrel (or τmix) analytically Guruswami [2016], Levin and

Peres [2017], Lovász and Winkler [1998].

A series of papers analyze the sample complexity of such approaches Lezaud [1998], Miasojedow [2012], Paulin

[2015], Jiang et al. [2018], Mitzenmacher and Upfal [2017], Chung et al. [2012], Fan et al. [2018], Leon and

Perron [2004], Peskun [1973], finding it to be Õ
(
T (V/ε2 + R/ε)

)
for variance-aware bounds, where V ≥ vπ,

r
.
= b− a, and Õ hides log factors. For variance-agnostic bounds, which assume no prior knowledge of vπ, the

bound becomes Õ(TR2
/ε2) (see theorems 7.2.5 and 7.2.6 for more details). The drawbacks of these approaches

are twofold: (1) among these algorithms, the more-efficient variance-aware methods need an a priori bound

V ≥ vπ, and (2) the complexity of these methods depend on the upper-bounds they receive on relaxation

time and the stationary variance as input, and are thus inefficient when given loose upper-bounds.

Mean estimation is an interesting problem, well-studied in theoretical computer science, and has also borne

fruit as a tool for solving other difficult theoretical computer science problems. For example, Jerrum, Valiant,

and Vazirani reduced estimating the size of a self-reducible set to solving a series of mean-estimation tasks,
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and ongoing work in the area seeks to reduce the complexity of such reductions Stefankovic et al. [2007],

Huber [2015], David G. Harris [2007], Kolmogorov [2018]. Furthermore, there has been an emerging line of

research to analyze sublinear algorithms having query access to input graphs using random walks Chierichetti

and Haddadan [2018], Ben-Hamou et al. [2018], Bera and Seshadhri [2020], for example to estimate the

mean of a real-valued function on vertices Chierichetti and Haddadan [2018]. In addition, mean estimation

using MCMC has enormous applications in other fields of science such as computational biology Vandin et al.

[2016, 2012a,b, 2011], Enright et al. [2002], Azad et al. [2018], chemistry Gillespie [2007], statistical physics

Del Moral and Miclo [2007], Mignani and Rodolfo [2001], Diaconis [2009], Navarro et al. [2016], and various

subfields of computer science e.g. statistical learning, image processing, etc Fan et al. [2013], Salatino et al.

[2019], Yuan and Kendziorski [2006], Tu and Zhu [2002].

In this work, we show that the inter-trace variance v· better characterizes MCMC sample-complexity than

does the stationary variance vπ (we formally define vτ for arbitrary τ in section 7.2.1). In particular, we

present and analyze the DynaMITE algorithm, which begins by running a Markov chain for T ≥ τrel steps,

and averaging f along this trace. We call any τ consecutive steps of a chain a τ -trace (dropping τ when it

is clear from context). Using a progressive sampling schedule, DynaMITE repeatedly doubles the chain

length, taking more and more samples f1
avg, f

2
avg, . . . , each f i

avg being the average of the ith T -trace. At each

iteration, DynaMITE approximates the inter-trace variance vT by empirically estimating V[favg], and stops

when the termination condition is satisfied.

We show that w.h.p., the sample consumption of DynaMITE is Õ
(
Tr
ε + T ·vT

ε2

)
= Õ

(
Tr
ε + τrel·vτrel

ε2

)
, where

vτrel is the trace variance of a τrel-trace. Note that this improves the sample complexity of traditional variance-

agnostic approaches, and also dominates variance-aware approaches when ε is small, despite assuming no a

priori knowledge of vT . Moreover, the complexity of DynaMITE is primarily dependent on the a priori

unknown relaxation time and inter-trace variance, rather than their loose upper bounds, which limits the

efficiency of standard approaches. Note that while T appears in DynaMITE and its sample complexity

bound, its contribution is negligible for small ε, and a loose T bound is compensated for by earlier termination.

Our goal in this paper is to demonstrate the significance of using the inter trace variance vτ instead of the

stationary variance vπ. We develop techniques to theoretically guarantee vτrel = o(vπ) in specific scenarios,

and then prove this phenomenon occurs in example 7.2.2 (see lemma 7.2.3).

Road map The paper is organized as follows: Section 7.2 contains all the preliminaries, important definitions,

and classical results that we use in our proofs. In section 7.3, we introduce our algorithm, and provide a

proof sketch for its correctness and efficiency. Finally, proofs are presented in full detail in appendix F.1.
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Our Contributions:

1. We introduce the inter-trace variance v·, and show that vτrel characterizes the sample complexity of

MCMC-mean estimators better than vπ. It always holds that vτrel ≤ 2vπ, furthermore, we identify conditions

under which vτrel = o(vπ). We conjecture that this is common, and show a technique for bounding vτrel,

when a simpler projection chain approximates f ’s image on MCMC-traces.

2. Leveraging v·, we design DynaMITE. Under the standard MCMC assumptions of known relaxation

time bound T ≥ τrel and bounded range r, DynaMITE requires Õ
(
Tr
ε + τrel·vτrel

ε2

)
samples, without assuming

any a priori knowledge of τrel, vτrel or vT . For small ε, note that while DynaMITE takes a loose upper

bound on τrel as input, its complexity depends on τrel and vτrel; this is particularly impactful, as practical

MCMC efficacy is often limited by loose bounds on τrel, and sharply upper bounding vτrel is seldom an easy

task.

3. DynaMITE’s sample complexity is always better than classic MCMC mean-estimators, since it

reduces the dependency on loose upper bounds T and V . Furthermore, if vT = o(vπ), then DynaMITE is

asymptotically better than classic algorithms. We note that complexity of DynaMITE depends on vτrel

oblivious to any prior knowledge of vτrel.

7.2 Preliminaries

In this section, we first introduce notation that we use throughout the text and relevant theorems from

the literature. Throughout this work, we take f : X → [a, b] to be a function, and π a probability

distribution on X . We define the mean and stationary variance of f as µ
.
= Ex∼π[f ]

.
=
∫
X f(x) dπ(x) and

vπ
.
= Vπ(f) = Ex∼π[(f(x)− µ)2], respectively. An MCMC mean-estimator estimates µ by collecting samples

running a Markov chain.

7.2.1 The Inter-Trace Variance

MCMC Terminology A Markov chainM on sample space X is a sequence of random variables X1, X2, . . .

that is memoryless. The evolution of M is characterized by its transition matrix; here we abuse notation

and also use M to represent its transition matrix, i.e., for any x, y ∈ X , M(x, y)
.
= P(Xi = y|Xi−1 = x),

and thus P(Xi+k = y|Xi = x) = Mk(x, y), where Mk is the standard matrix powering notation. When

ν is a probability distribution on X , by M(ν) we mean the distribution of Xi when Xi−1 ∼ ν. The

distribution of the chain after k steps of M is denoted by Xi+k = Mk(Xi). For arbitrary τ , we call a

sequence of random variables generated by M a τ -trace of Markov chain M. We use vector notation to
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denote traces of Markov chains, i.e., X1:τ : X1, X2, . . . Xτ is a τ -trace of M (we drop the subscript 1 : τ

when the length is clear from context). We assume all the Markov chains we discuss are ergodic and lazy1

(see Levin and Peres [2017] if not familiar with definitions), and denote the stationary distribution by π.

For ergodic chains, and w.r.t. a precision parameter ε, the mixing time, denoted by τmix(ε), is defined

as the minimum τ satisfying TVD(Mτ (ν), π) ≤ ε for any arbitrary starting distribution ν, and we take

τmix
.
= τmix(1/4). It is known that τmix(ε) ≤ τmix log(ε

−1). We denote the second largest absolute eigenvalue

M by λ, and the relaxation time by τrel. Note that τrel
.
= (1 − λ)−1 and it is closely related to τmix, as(

τrel(M)− 1
)
ln(2) ≤ τmix(M) ≤ τrel(M) ln

(
2/√πmin

)
, see Levin and Peres [2017]. We use T to denote a

known upper-bound on the relaxation time.

We are interested in designing algorithms to estimate µ using samples from π collected by running M.

Assume X : X1, X2, . . . , Xτ is an τ -trace of M, we define the empirical mean µ̂(X)
.
= 1

τ

∑τ
i=1 f(Xi). Note

that µ̂ is an unbiased estimator for µ, i.e., E[µ̂(X)] = µ. Since X are not i.i.d. samples, we can not use the

standard Bessel’s correction as an unbiased variance estimator. Therefore, we devise a novel MCMC unbiased

estimator for variance, which is based on running two independent Markov chains in parallel, and averaging

the square difference of f between them (see definition 7.3.4).

We now introduce the inter-trace variance v·, which is the backbone of our proposed algorithm DynaMITE.

Letting T be an upper-bound on τrel, DynaMITE uses progressive sampling to estimate vT , thus it requires

no a priori knowledge of vT , vτrel or vπ.

Inter-Trace Variance Let τ be an arbitrary length. On the set of all τ -traces, we define the probability distri-

bution π(τ) as π(τ)(X1:τ )
.
= π(X1)

∏τ−1
i=1M(Xi, Xi+1). For an arbitrary F defined on Ωτ , by EX∼π(τ) [F (X)],

we mean the expectation of F on any τ -trace of the Markov chain when X1 ∼ π, and other consecutive Xis

follow the transition of the Markov chain. For arbitrary τ and X1:τ , we define favg(X1:τ )
.
= 1

τ

∑τ
i=1 f(Xi).

Note that by linearity of expectation, EX∼π(τ) [favg(X)] = µ. We denote the variance of favg by vτ , i.e.,

vτ
.
= EX∼π(τ) [(favg(X)− µ)2]. Note that under independence, we have vτ = vπ

τ , and for mixing processes

(see Thm. 3.1 of Paulin [2015]), we get

1

τ
vπ ≤ vτ ≤

2τrel
τ

vπ . (46)

Receiving as input T , an upper-bound on relation time, DynaMITE uses averages along T -traces of M

and it estimates vT . We show that DynaMITE’s sample complexity is dominated by vτrel, thus when vτrel

is significantly smaller than the stationary variance (i.e., vτrel = o(vπ)), DynaMITE outperforms classical
1We explicitly note when reversibility is needed.
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methods. We show this occurs, when f partitions the state space of M in such a way that the projection

chain (defined below in definition 7.2.1) has a much smaller relaxation time (vτrel = o(vπ)).

Definition 7.2.1 (Projection chain Levin and Peres [2017]). Having an equivalence relationship ' on X and

classes X̃ = {[x];x ∈ X} such that if x ' x′, then M(x, [y]) =M(x′, [y]), we call the Markov chain M̃ with

state space X̃ transition probabilities M̃([x], [y]) =M(x, [y]) a projection chain (see section 2.3 of Levin and

Peres [2017] for full discussion).

In example 7.2.2, we introduce a class of functions having equal means and stationary variances, but projecting

differently on traces of a fixed chain. Thus we can prove that while they all have equal vπ, under appropriate

parameterization, vτrel can take any arbitrary value in the range of equation 46.

Example 7.2.2. Consider the Markov chain C, known as the cycle, defined on [n] = {1, 2, . . . , n} having

transition probabilities: C(i, i) = 1/2, C(i, i+ 1) = 1/4 and C(i, i− 1) = 1/4, where i− 1 and i+ 1 are taken

mod n. Clearly the stationary distribution on this chain is uniform, and it is well known that the mixing

time and relaxation time are both Θ(n2).

The following class of functions defined on [n] all satisfy Eπ(fi) = 1/2 and vπ(fi) = 1/4. However, as shown

in lemma 7.2.3, each has a different value for vτrel, covering the entire spectrum in equation 46:

For 1 ≤ i ≤ n
2 , let fi : [n] → {0, 1} be fi(x) = 0 if and only if x mod 2i < i, so fi’s image on the cycle is

consecutive length-i runs of 0s and 1s (see figure 7.1). Note that in the two extreme cases, we have, (1)

f1 : [n]→ {0, 1}, f1(x) = 0 if and only if x mod 2 = 0, and (2) fn/2 : [n]→ {0, 1}, fn/2(x) = 0 if and only if

x ≤ n
2 .

On equivalence classes of mod 2, we find the corresponding projection chain, denoted by Cf1 , which has

transition probabilities: Cf1(0, 1) = Cf1(1, 0) = 1/4 and Cf1(0, 0) = Cf1(1, 1) = 1/2. Similarly, for arbitrary i,

we denote the projection chain on equivalence classes of mod 2i by Cfi . Clearly the trace variance of fi on C

and on Cfi are the same. Figure 7.1 illustrates these projections.

Figure 7.1: The image of fis on a cy-
cle of length n = 16, and corresponding
projection chains with the same trace
variance.

fn/2

· · ·

f2 f1

0 1 2 3

1/2 1/2 1/2 1/2

1/4 1/4 1/4

1/4

Cf2

0 1

1/2 1/2

1/4

1/4

Cf1
We now present the following lemma with a proof sketch. The complete proof is presented in the appendix.
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Lemma 7.2.3. For 1 ≤ i ≤ n
2 , let fi be defined as above, for arbitrary τ we have vτ (fi) = Θ(i

2
/τ). In

particular, for τ = Θ(τrel(M)) = Θ(n2), we have vτ (fn/2) = Θ(1), and vτ (f1) = Θ(1/n2).

Proof sketch. We first prove that vτ (fi) ≤ Θ(i
2
/τ). Note that x 7→ x mod 2i partitions the set [n] into 2i

partitions, and the relaxation time of the projection chain Cfi is Θ(i2). Since the trace variance of fi on C

and Cfi are the same, by applying inequality 46, we get vτ (fi) ≤ Θ(i
2
/τ).

We now proceed to prove that vτ (fi) ≥ Θ(i
2
/τ). Let S0 = {i/3 + 1, i/3 + 2, . . . , 2i/3} ⊆ [n]. In the

appendix by an application of Lévy’s inequality and Hoeffding’s inequality, we show that the trace variance

of any trace of length at most i2 conditioned starting at S0 is Θ(1). Similarly, we define Sk to be Sk
.
=

{k(2i) + (i/3 + 1), k(2i) + (i/3 + 2), . . . , k(2i) + 2i/3}, and using a similar argument we can show that any

walk starting at S =
⋃n/2i

k=0 Sk has trace variance at least constant. Since the stationary probability of S is 1
3 ,

we conclude vτ ≥ Θ(1). See Figure 7.2 for visualization of fi on C, and the region S.

Figure 7.2: Image of fn/6 on a cycle for various values of n,
zero values are colored in red, and one values in blue. The
trace variance for trace length than (n/52)2, conditioned
starting at S =

⋃6
k=1 Sk (circled regions), is constant.

f36/6 f72/6 lim
n→∞

f6n/6

7.2.2 Classic MCMC-Mean Estimators

In contrast to our proposed algorithm DynaMITE, which increases the sample size dynamically, the classic

methods are static; they receive a fixed m as input and run the chain for m steps to generate the trace

X1:m : X1, X2, . . . , Xm. These algorithms then returns the empirical mean µ̂ as the output.

In the following theorems X1:m : X1, X2, . . . , Xm, is a length m stationary trace of M, (i.e., X1:m ∼ π(T )),

with mixing time τmix, relaxation time τrel, and second largest eigenvalue λ. Based on each of these theorems

we obtain the sample complexity (sufficient m) of a variance-aware or variance-agnostic algorithm. Remember

that f is a bounded function with range [a, b], we define r
.
= b− a as the range of f . We use the following

definition for sample complexity.

Definition 7.2.4 (Sample complexity). Assume algorithm A runs a Markov chain for m steps and generates

a trace X1, X2, . . . , Xm. Algorithm A uses this trace to find an estimation for µ, namely µ̂. If there exists mA

such that for any m ≥ mA, we have P(|µ− µ̂| ≥ ε) ≤ δ, we call mA the sample complexity of algorithm A.
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Theorem 7.2.5 (Hoeffding-Type Bounds for Mixing Processes, (see Thm. 2.1 of [Fan et al., 2018])). For

any δ ∈ (0, 1), we have

P

|µ̂− µ| ≥

√
2(1 + λ)( r2

4 ) ln(
2
δ )

(1− λ)m

 ≤ δ . (47)

This implies sample complexity

mH(λ, r, ε, δ) =
1 + λ

1− λ
ln( 2δ )

r2

2ε2
∈ Θ

(
τrel ln(

1
δ )

r2

ε2

)
.

Largely due to their simplicity and convenience, Hoeffding-type bounds enjoy ubiquity in computer science.

Unfortunately, they are generally much looser than variance-aware bounds, as the dependence on variance v

is replaced by variance proxy ( r2 )
2 (maximal assuming range r). While it is not generally possible to remove

dependence on r entirely, Bernstein-type inequalities greatly reduce this dependence, often yielding asymptotic

improvement to sample complexity Audibert et al. [2007], Mnih et al. [2008], Audibert et al. [2009], Maurer

and Pontil [2009].

Theorem 7.2.6 (Bernstein-Type Bound for Mixing Process [Jiang et al., 2018, Thm. 1.2]). 2 For any

δ ∈ (0, 1), we have

P

|µ̂− µ| ≥
10r ln( 2δ )

(1− λ)m
+

√
2(1 + λ)vπ ln(

2
δ )

(1− λ)m

 ≤ δ . (48)

Sample complexity of the static variance-aware algorithm: This implies sample complexity

mB(λ, r, v, ε, δ) =
2

1− λ
ln( 2δ )

(5r
ε

+
(1 + λ)vπ

ε2

)
∈ Θ

(
τrel ln(

1
δ )
(r
ε
+

vπ
ε2

))
.

7.3 DynaMITE

In this section we present the DynaMITE: DYNAmic Mcmc Inter-Trace variance Estimation method.

We show that its sample complexity is dependent on the a priori unknown trace variance vT . As discussed

previously, in various scenarios, vT is significantly smaller than the stationary variance vπ.

Our algorithm consists of three subroutines: (1) McmcPro employs progressive sampling, beginning with a

small sample obtained by running the chain, and we progressively increase the sample size until a stopping

condition is met, namely the mean is ε-δ well-estimated. In each round of McmcPro, we bound vT using
2Note that thms. 7.2.5 and 7.2.6 assume stationarity, i.e., they consider traces X1:m : X1, X2, . . . Xm assuming X1 ∼ π. This

can be done using what is known as a warm start. For more details see subsection F.1.1 in the appendix.
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an unbiased estimator of it, which we obtain from running two independent copies of M in parallel (see

definition 7.3.4). In order to find a suitable stopping conditioning guaranteeing that the empirical mean is

sufficiently accurate, we employ the Bernstein bound (theorem 7.2.6). (2) Our main procedure DynaMITE

runs the above progressive schedule on a trace chain (defined in definition 7.3.3), using the trace averaging

technique explained in section 7.2. (3) Finally, in procedure WarmStartDynaMITE, we begin at an

arbitrary (nonstationary) state, but run it chain for at least the uniform mixing time τunif steps before

starting sampling, and apply an appropriate nonstationarity correction. Note that this is performed only

once, and does not significantly impact sample complexity, which thus depends on τrel rather than τunif .

The following theorems, proved in appendix F.1, guarantee correctness and efficiency of DynaMITE.

Theorem 7.3.1 (Correctness of DynaMITE). Consider a Markov chain M over Ω, and assume its second

absolute eigenvalue is less than Λ. Assume we have function f : Ω→ [a, b] with r
.
= b− a, and we want to

estimate true mean, µ .
= Eπ[f ] with precision ε > 0, and confidence (1− δ) ∈ (0, 1).

If we start at stationarity, i.e., (x0, x1) ∼ π(M⊗M), we take mean estimate µ̂ as either

1. µ̂←McmcPro((x0, x1),M,Λ, f, ε, δ); or

2. µ̂← DynaMITE((x0, x1),M,Λ, f, ε, δ) for lazy M.

More generally, for a nonstationary start from any ω ∈ Support(π(M)), given minimum supported stationary

probability at least πmin, we may take

3. µ̂←WarmStartDynaMITE(ω,M,Λ, πmin, f, ε, δ) for lazy, reversible M.

In all cases, with probability at least 1− δ, we have |µ̂− µ| ≤ ε.

Theorem 7.3.2 (Efficiency of DynaMITE). Suppose as in theorem 7.3.1. With probability at least 1− δ,

it holds that total sample consumption m̂ of DynaMITE obeys

m̂ ∈ O

(
log

(
log(r/ε)

δ

)(
r

(1− Λ)ε
+

τrelvτrel
ε2

))

Note on input parameters and their interplay with efficiency The improvement of DynaMITE

over standard methods discussed in section 7.2 is threefold: (1) First, in McmcPro, we develop a dynamic

sampling schedule, which is called in line 24 of DynaMITE. Note that McmcPro also works if we simply

run it on the original chain. In this simpler version, the sample complexity depends on the a priori unknown

vπ. Thus we get an improvement over standard methods, whose complexity depend on loose upper bound V .

(2) In DynaMITE, we employ the trace averaging technique to reduce the sample complexity from Tvπ to
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Algorithm 5 McmcPro, DynaMITE, and WarmStartDynaMITE routines
1: procedure McmcPro((X0, X1), M, Λ, f , ε, δ) 7→ µ̂
2: Input: Initial state (X0, X1) ∈ X 2 of tensor product chain, Markov chain M over X , second absolute

eigenvalue upper-bound Λ, function f : X → [a, b] with r
.
= b− a, confidence interval radius ε, and failure

probability δ ∈ (0, 1).
3: Output: Additive ε, δ approximation µ̂ of µ = Eπ[f ].

4: N ← max
(
1, blog2

(
r
2ε

)
c
)

; α←
(1 + Λ)r ln 3N

δ

(1− Λ)ε
; m0 ← 0 . Initialize sampling schedule

5: for i ∈ 1, 2, . . . , N do
6: mi ←

⌈
α2i
⌉

. Total sample count at iteration i
7: for j ∈ (mi−1 + 1), . . . ,mi do
8: (Xj,1, Xj,2) ∼ (M⊗M)(Xj−1,1, Xj−1,2) . Run both chains up to step mi

9: end for

10: µ̂i ← 1
2mi

mi∑
j=1

(f ⊕ f)(Xj,0, Xj,1) . Empirical mean

11: v̂i ← 1
2mi

mi∑
j=1

(f 	 f)2(Xj,0, Xj,1) . Empirical variance

12: ui ← v̂i +
(11 +

√
21)(1 + Λ/

√
21)r2 ln 3N

δ

(1− Λ)mi
+

√
(1 + Λ)r2v̂i ln

3N
δ

(1− Λ)mi
. Variance upper bound

13: ε̂i ←
10r ln 3N

δ

(1− Λ)mi
+

√
(1 + Λ)ui ln

3N
δ

(1− Λ)mi
. Apply Bernstein bound

14: if (i = N) ∨ (ε̂i ≤ ε) then . Terminate if accuracy guarantee is met
15: return µ̂i

16: end if
17: end for
18: end procedure

19: procedure DynaMITE((x0, x1), M, Λ, f , ε, δ) 7→ µ̂
20: Input: Initial state (x0, x1) ∈ X × X , lazy Markov chain M over X , second absolute eigenvalue

upper-bound Λ, function f : X → [a, b], confidence interval radius ε, and failure probability δ ∈ (0, 1).
21: Output: Additive ε, δ approximation µ̂ of µ = Eπ[f ].

22: T ← d 1+Λ
1−Λ ln

√
2e . Select T s.t. τrel(M(T )) ≤ 2

23: (X0, X1)←
(
(ω1, ω2, ω3, . . . , ωT−1︸ ︷︷ ︸
Arbitrary ω1:T−1∈ΩT−1

, x0), (ω1, ω2, ω3, . . . , ωT−1︸ ︷︷ ︸
Arbitrary ω1:T−1∈ΩT−1

, x1)
)

. Initialize trace chain state

24: return McmcPro
(
(X0, X1),M(T ),ΛT , favg, ε, δ

)
. Run McmcPro on trace chain

25: end procedure

26: procedure WarmStartDynaMITE(ω0, M, Λ, πmin, f , ε, δ) 7→ µ̂
27: Input: Initial state ω0 ∈ Support(π(M)), lazy reversible Markov chain M over X , second absolute

eigenvalue upper-bound Λ, minimum probability lower-bound πmin, function f : X → [a, b], confidence
interval radius ε, and failure probability δ ∈ (0, 1).

28: Output: Additive ε, δ approximation µ̂ of µ = Eπ[f ].

29: τunif ←

⌈
ln 1

πmin

ln 1
Λ

⌉
. Uniform mixing time bound

30: (x0, x1) ∼ (M⊗M)τunif (ω0, ω0) . Run product chain until uniformly mixed
31: return DynaMITE

(
(x0, x1),M,Λ, f, ε, δ

4

)
. Run DynaMITE with nonstationarity correction

32: end procedure
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TvT , thus, if vT = o(vπ) we obtain asymptotic improvement over standard methods (again we require no a

priori knowledge of vT ). (3) Since it always holds TvT ≤ 2τrelvτrel, DynaMITE’s complexity depends on

τrelvτrel, i.e., the a priori unknown τrel and vτrel. Thus, even in the worst case when vτrel ≈ vπ, our algorithm

outperforms static MCMC-mean estimators whose complexity is TV (see theorem 7.2.6 in section 7.2).

Starting at Nonstationarity Often we can’t assume even a single (perfectly) stationary sample may be

efficiently drawn, and realistically can only start with an arbitrary ω ∈ Support(π). WarmStartDynaMITE

uses a standard warm start technique (widely used in MCMC algorithms), where the chain is run from an

arbitrary point for its uniform mixing time, and then DynaMITE is run, applying a standard nonstationarity

correction (see appendix F.1.1) to account for the nonstationary start. Note that this correction applies to

both theorems 7.2.5 and 7.2.6 of section 7.2.

Prelude to a Proof We show theorem 3.1 in several steps. First, given M, we define a trace chain M(T ),

whose state space is all possible traces of length T (definition 7.3.3), and we show that for T ≥ τmix(M),

mixing and relaxation times of M(T ) are at most constant (lemma F.1.5). Second, in definition 7.3.4 we

introduce a novel MCMC unbiased variance estimator, which runs two copies of M in parallel, denoted

M⊗M, and averages the square difference of f in them, i.e., we note that vπ = 1
2 Eπ(M⊗M)[(f 	 f)2]. We

prove the correctness of our variance estimator in lemma 7.3.5, and in line 11 of DynaMITE we employ it to

estimate vT . Third, we use variance-sensitive concentration bounds for mixing processes to bound the true

mean µ in terms of the empirical mean µ̂ and empirical variance v̂. Note that since we apply the variance

estimation algorithm to the trace chain M(T ), v̂ is an estimator for vT . Since our algorithm depends on the

empirical variance, we don’t know a priori how many samples will be required to estimate the mean, so we

run with a doubling sampling schedule until the desired guarantee is met.

We now define the T -trace Markov chain of M, which we denote M(T ).3 We use the trace chain knowing

(for proof, see lemma F.1.5) that M(T ) has constant mixing and relaxation time for T ≥ τrel.

Definition 7.3.3 (Trace chain). For a Markov chain M on state space Ω, we define M(T ) on state space

ΩT as follows: given a = (a1, a2 . . . aT ) and b = (b1, b2, . . . bT ) in ΩT , the probability of going from a to b is

M(T )(a, b)
.
=M(aT , b1)

∏T−1
i=1 M(bi, bi+1).

The following definition provides us with an unbiased MCMC estimator for variance.

Definition 7.3.4 (Unbiased MCMC variance estimator). Suppose function f : X 7→ R, chain M over X ,

and assume X1 and X2 are two length m independent traces of M. The following definition for v̂ satisfies

E[v̂] = vπ, thus v̂ is an unbiased estimator for vπ.
3We use parentheses in the exponent to preserve standard matrix powering notation.
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v̂
.
=

1

2m

m∑
i=1

(f(X1,i)− f(X2,i))
2 .

In other words, we can think X1 and X2 as the two factors of a single trace X of the tensor product chain

M⊗M, which steps forward by simultaneously running both factor chains for one step. Given a sample

X ∼ (M⊗M)(m), this variance estimate v̂ can then be represented as the empirical mean of half the square

difference function, i.e., the function 1
2 (f 	 f)2.

Note that applying the above estimator to M yields an unbiased estimate of vπ, but applying it to M(T )

yields an unbiased estimator of vT , thus it is sufficient to estimate both the stationary and trace variances.

The following lemma, proved in the appendix, bounds the error of this estimator.

Lemma 7.3.5 (Trace Variance Estimation). Let v̂ be defined as in definition 7.3.4, it then holds that, for

any δ ∈ (0, 1), we have

P

vπ ≥ v̂ +
(11 +

√
21)(1 + λ√

21
)r2 ln 1

δ

(1− λ)m
+

√
(1 + λ)r2v̂ ln 1

δ

(1− λ)m

 ≤ δ .

Sampling Schedule and Proof Sketch We first note that correctness of DynaMITE and Warm-

StartDynaMITE follow from that of McmcPro, as they simply apply McmcPro to a trace chain and/or

apply a nonstationarity correction.

The key to McmcPro is an a priori fixed sampling schedule, which determines the sizes of progressively larger

samples. To ensure correctness, a sequence of tail bounds must all hold simultaneously w.h.p. by union bound.

The main difficulty is that the schedule length N and the probability concentration bounds are codependent.

A shorter schedule is more statistically efficient, but can overshoot the sufficient sample size, and the opposite

holds for longer schedules. We explain how to resolve this cyclic dependence in the next paragraph.

Over a run of DynaMITE, we take (up to) 3N probability concentration bounds (N bounds for variance,

line 12, and N bounds each for upper and lower mean bounds, line 13). We first establish the worst-case

Hoeffding sample complexity mN (theorem 7.2.5) and best-case Bernstein sample complexity α (theorem 7.2.6)

by taking v = 0,

mI
.
= mH(Λ, r, ε, 2δ

3N ) =
(1 + Λ)r2 ln 3N

δ

2(1− Λ)ε2
, & α

.
=

(1 + Λ)r ln 3N
δ

(1− Λ)ε
≈ mB(Λ, r, 0, ε,

2δ
3N ) .

We know from these bounds that once a sample of size mN is drawn, the desired guarantee has been met,

and similarly, before a sample of size ≈ α is drawn, the desired Bernstein bound can not be met. We now

select the minimal N such that each sample size mi obeys mi ≤ 2mi−1. Observe that in the ratio mN

α ,
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all dependence on N is divided out (ln 3N
δ terms cancel). We initially run the chain for m1 to be d2αe,

and in iteration i, we run up to d2αie steps, thus we conclude N
.
= blog2( r

2ε )c ≥ dlog2(
r
2ε )e − 1 (doubling)

iterations are sufficient. These computations are repeated verbatim by McmcPro (lines 4 & 6) to compute

the sampling schedule.
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Conclusion and Discussion

Part I introduces new statistical techniques for variance-sensitive uniform convergence bounds and generaliza-

tion guarantees in machine learning. The centralization strategy of chapter 1 achieves asymptotically-optimal

bound convergence rates, and our Monte-Carlo estimation procedure yields sharp bounds with both central-

ized (theorem 1.3.7) and non-centralized (corollary 1.3.8) Rademacher averages. This has broad implications

in machine learning, data science, and statistical settings, and can also be used as a component statistical

method, mutatis mutandis, in all subsequent chapters. Chapter 2 then continues this theme of efficient

use of data by introducing an algorithm that augments a small amount of labeled data with the output of

weak labelers, which are assumed to be machine learning models associated with correlated tasks. I show

both computational guarantees on efficient learnability and statistical guarantees on generalization bounds

involving both the number of labeled and unlabeled samples.

Overall, the work of part I may be interpreted as novel methods to reduce the burden of acquiring large

amounts of labeled data to train sophisticated machine learning models. Indeed, with the ever-expanding

available computational power available (i.e., as characterized by Moore’s law, and more recently with learning

on GPUs, FPGAs, and specialized hardware) we have trained more complicated models (in particular, deeper

neural networks), but datasets have had to grow commensurately to support training such models without

overfitting. However, as computation becomes cheaper, the economic costs of collecting larger datasets do not

always scale similarly, leaving learning from small datasets a problem that is both practically important and

theoretically challenging. In fact, these methods are particularly impactful, as poor performance and analysis

in the small sample setting can be a fairness issue, in the sense that by nature of their size and visibility,

more data may be available on majority groups than minority or understudied groups, which contributes to

marginalized groups being often poorly-served by machine learning systems.

Following the pure statistical methods of part I, in part II, I define malfare parallel to welfare (definition 3.3.1),

and show that subject to several intuitive and basic axioms (section 3.3.1), all welfare and malfare functions are

power means (definition 3.3.6, see theorem 3.3.8). I then argue that fair ML should seek to minimize malfare,
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as this naturally generalizes loss minimization to multiple groups. I then combine the uniform convergence

guarantees of part I with the fairness setting of part II in chapter 4, where I introduce the fair codec selection

problem. Finally, chapter 5 defines a concept of fair-PAC-learnability in terms of malfare minimization,

and characterizes both necessary and sufficient conditions for various flavors of fair learnability. Following

Valiant’s introduction of classical PAC-learning in order to rigorously characterize machine learning problems

in the lexicon of computer scientists, I define malfare minimization as the target of fair-PAC learning, with

axiomatically justified fairness characteristics, the precise details of which also lead to interesting theoretical

computer science and statistical estimation questions. In particular, I show a hierarchy of PAC-learning and

fair-PAC-learning settings, and am excited to see additional connections drawn in future work.

Finally, in part III I leave the i.i.d. setting behind, with two dependent mean-estimation settings of great

practical and theoretical interest. Chapter 6 describes a common real-world problem in databases, where a

user wants to estimate the mean of a function, without waiting for the database to iterate over all records.

Motivated by the real-world performance characteristics of modern database systems, I show that, while in

the worst case, sampling entire blocks may not improve over sampling individual records, my algorithm is

able to detect independence within blocks automatically, and adapts accordingly. Chapter 7 adapts this

idea of algorithmically adapting to independence detected within the data, and applies it to sample from

Markov chains. Such settings are both of great interest to the theoretical computer science community, as

increasingly attention is placed on randomized algorithms, and also to practitioners in diverse fields, from

significance testing in the sciences to machine learning and artificial intelligence, wherein such methods are

vital to efficiently reason under partial knowledge in an uncertain world.

I have additionally published works in several related areas that have not made it into this thesis, namely

anomaly detection [Cousins et al., 2017], automated machine learning [Binnig et al., 2015, 2018], empirical

game theory and mechanism design [Viqueira et al., 2019, 2020, 2021], and statistical data science [Pellegrina

et al., 2020]. Of special note are two somewhat more theoretical papers in pure machine learning. In

Cousins and Upfal [2017], I show generalization bounds for a distance-based classifier, including what is

to my knowledge the only known exact (closed form) expression for the empirical Rademacher average of

a nontrivial classification model. In Cousins and Riondato [2019], I theoretically unify classification trees

with the entropy impurity criterion and regression trees with the square-error impurity criterion, as well as

an infinite family of parametric conditional-density estimation trees, under the cross-entropy information

criterion, and show all to be instances of the minimax-entropy principle, with consequent efficient training

heuristics.
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The theme running through all of my work is the importance placed on rigorous guarantees for domain-

appropriate properties in various probabilistic processes, most notably in machine learning (generalization

bounds), sampling (mean estimation guarantees), and data science (frequent itemsets, equilibria in empirical

game theory, etc.) settings. In particular, almost all of my papers rigorously show finite-sample probabilistic

guarantees in some probabilistic setting, and overall my work illustrates that while such guarantees may induce

significant proof complexity, often they asymptotically match or nearly match known lower bounds for sample

complexity and approximate central-limit-theorem bounds. I argue that this additional analytical overhead is

a price worth paying, as finite-sample guarantees are a necessary component in understanding the behavior

and failure modes of machine learning and data science systems. As we see machine learning increasingly

employed in our day-to-day lives, and witness the catastrophic consequences of failures of such systems, the

importance of rigorous analysis of these methods to avoid negative outcomes becomes increasingly apparent.
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Appendix A

Supplementary Material for Chapter 1

A.1 Proofs

Lemma 1.2.1. Suppose m ≥ 4. Then
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[
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]
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.

Proof. We first show the rightmost inequality. Starting from the definition of the RA of the distributional

centralization, and then subtracting and adding Êx[f ], it holds
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The subadditivity of the supremum and of the absolute value, and the linearity of the expectation allow us to

split the r.h.s. into two summands and obtain

Rm(CD(F),D) ≤ E
σ,x

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
f(xi)− Ê

x
[f ]
)∣∣∣∣∣∣
+ E

σ,x

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
Ê
x
[f ]− E

D
[f ]
)∣∣∣∣∣∣
 .

Both terms on the r.h.s. can be seen as expectations w.r.t. x of the ERAs on x of two sample-dependent

families: the empirical centralization of F , and the family

Kx
.
= {y 7→ Ê

x
[f ]− E

D
[f ], f ∈ F} .
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Each function in Kx is constant. Thus, we can write

Rm(CD(F),D) ≤ E
x

[
R̂m(Ĉx(F),x)

]
+ E

x

[
R̂m(Kx,x)

]
. (49)

Using (7) and the linearity of expectation we have that, for each x ∈ Xm, it holds

R̂m(Kx,x) = sup
f∈F
|Ê
x
[f ]− E

D
[f ]|b(m) = SD(F ,x)b(m) = SD(CD(F),x)b(m), (50)

where in the last step we use the fact that the SD is invariant to shifting of functions. Continuing from (49)

and using (50) and the rightmost inequality of (6), we obtain

Rm(CD(F),D) ≤ E
x

[
R̂m(Ĉx(F),x)

]
+ 2Rm(CD(F),D)b(m) .

The hypothesis m ≥ 4 implies 1− 2b(m) > 0 (see (7)), so we can rewrite the above as

Rm(CD(F),D) ≤
1

1− 2b(m)
E
x

[
R̂m(Ĉx(F),x)

]
,

which completes the proof of the upper bound.

We next show the lower bound. Starting from the definition of R̂m(Ĉx(F),x) and subtracting and adding

ED[f ], it holds

E
x

[
R̂m(Ĉx(F),x)

]
= E

σ,x

sup
f∈F

∣∣∣∣ 1m
m∑
i=1

σi

((
f(xi)− E

D
[f ]
)
+
(
E
D
[f ]− Ê

x
[f ]
))∣∣∣∣
 .

The subadditivity of the supremum and of the absolute value, and the linearity of the expectation allow us to

split the r.h.s. into two summands and obtain

E
x

[
R̂m(Ĉx(F),x)

]
≤ E

σ,x

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
f(xi)− E

D
[f ]
)∣∣∣∣∣∣


+ E
σ,x

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
E
D
[f ]− Ê

x
[f ]
)∣∣∣∣∣∣
 . (51)

The first term on the r.h.s. is the RA of the distributional centralization of F , i.e., it is Rm(CD(F),D). The
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second term is the expectation w.r.t. x of the ERA on x of the family

Zx
.
= {x 7→ E

D
[f ]− Ê

x
[f ], f ∈ F} .

Each function in Zx is constant. Proceeding in exactly the same way as we did for the family Kx in the proof

of the upper bound, we can write

R̂m(Zx,x) = SD(CD(F),x)b(m) . (52)

Continuing from (51) and using (52) and the rightmost inequality of (6), we obtain

E
x

[
R̂m(Ĉx(F),x)

]
≤ Rm(CD(F),D) + 2Rm(CD(F),D)b(m) ≤ (1 + 2b(m))Rm(CD(F),D),

and our proof is complete.

Definition A.1.1. A function Z ∈ Xm → R is (α,β)-self-bounding with scale γ, for some α > 0, β ≥ 0,

γ ≥ 0 if for each j = 1, . . . ,m, there exists a function Zj ∈ Xm → R such that, for any x ∈ Xm it holds that

1. Zj(x) does not depend on the j-th component xj of x; and

2. it holds Zj(x) ≤ Z(x) ≤ Zj(x) + γ;

Additionally, the functions Zj , j = 1, . . . ,m, must be such that, for any x ∈ Xm, it holds
m∑
j=1

(
Z(x)−Zj(x)

)
≤

αZ(x) + β.

Theorem A.1.2. Let Z be a function from Xm to R that is (α, β)-self-bounding with scale γ, for α ≥ 1/3.

Let δ ∈ (0, 1) and let x be a collection of m i.i.d. samples from X . With probability at least 1− δ over the

choice of x, it holds

E
x

[
Z(x)

]
≤ Z(x) + αγ ln

1

δ
+

√(
αγ ln

1

δ

)2

+ 2γ(αZ(x) + β) ln
1

δ
. (53)

Additionally, when α = 1, we may improve the constants to

E
x

[
Z(x)

]
≤ Z(x) +

2

3
γ ln

1

δ
+

√(
1√
3
γ ln

1

δ

)2

+ 2γ(Z(x) + β) ln
1

δ
. (54)

Proof. In both cases, we will assume WLOG γ = 1. The results then hold by linearity, noting that if Z(·) is

α-β self-bounding, with scale γ, then 1
γZ(·) is α-β/γ self-bounding, with scale 1; the general case thus follows
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by dividing out γ, obtaining a bound, and then multiplying through by γ.

We first show equation 53. Assume scale γ = 1. It is known that for γ = 1, we have for all α ≥ 1
3 , as described

in [Boucheron et al., 2009, Thm. 1], which improves the earlier bounds of [Maurer, 2006]

P
(
Z(x) ≤ E

x
[Z(x)]− ε

)
≤ exp

(
−ε2

2(αEx[Z(x)] + β)

)
. (55)

Now, taking δ equal to the RHS of (55), and solving for ε, this implies that with probability at least 1− δ,

we have

Z(x) +
β

α
≥ E

x

[
Z(x)

]
+

β

α
−
√

2(αE
x

[
Z(x)

]
+ β) ln

1

δ
.

Note that this is a quadratic inequality in
√
Ex

[
Z(x)

]
+ β

α , solving for which (via the quadratic formula)

yields nondegenerate solution

E
x

[
Z(x)

]
≤ Z(x) + α ln

1

δ
+

√(
α ln

1

δ

)2

+ 2α(E
x

[
Z(x)

]
+ β) ln

1

δ
.

Finally, in the general case, with γ-scaling, we have

E
x

[
Z(x)

]
≤ Z(x) + γα ln

1

δ
+

√(
γα ln

1

δ

)2

+ 2γα(E
x

[
Z(x)

]
+ β) ln

1

δ
.

We now show equation 54 (i.e., assume α = 1). Again assume γ = 1. This result follows via identical logic

to the above, this time using the sub-gamma form (see Boucheron et al. [2013, Ch. 2.1], section 2.1) of the

stronger sub-Poisson 1-β self-bounding function inequality [Boucheron et al., 2000, Thm. 1].

In particular, here we have that with probability at least 1− δ,

Z(x) ≥ E
x

[
Z(x)

]
+

1

3
ln

1

δ
−
√
2(E

x

[
Z(x)

]
+ β) ln

1

δ
,

which by the quadratic formula, yields

E
x

[
Z(x)

]
≤ Z(x) +

2

3
ln

1

δ
+

√(
γ√
3
ln

1

δ

)2

+ 2(E
x

[
Z(x)

]
+ β) ln

1

δ
.

The general result then follows via γ-scaling.
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Theorem 1.2.2. Suppose m ≥ 1, and let χ
.
= 1 + 2b(m). For any δ ∈ (0, 1), with probability at least 1− δ

over the choice of x, it holds that

E
x
[R̂m(Ĉx(F),x)]≤ R̂m(Ĉx(F),x)+

2rχln 1
δ

3m
+

√√√√(rχln 1
δ√

3m

)2
+
2rχ(R̂m(Ĉx(F),x)+rb(m)) ln 1

δ

m
. (9)

Proof. This proof proceeds by showing that R̂m(Ĉx(F),x) is a (1, rb(m))-self-bounding function with scale

rχ/m, then applying (54) from theorem A.1.2. First note that the result trivially holds for m = 1, as the

empirically centralized ERA will always be 0, thus we assume m ≥ 2 henceforth.

For any x ∈ Xm, let

Y(x)
.
= R̂m(Ĉx(F),x),

and let x\j (resp. σ\j) denote the m− 1-dimensional vector of all but the j-th element of x (resp. σ). Define

Yj(x)
.
=

m− 1

m
R̂m−1

(
Ĉx\j (F),x\j

)
= E

σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑

i=1,i6=j

σi

(
f(xi)− Ê

x\j
[f ]

)∣∣∣∣∣∣
 .

We define these functions for convenience of notation. They will be handy when we later introduce the

functions Z and Zj , j = 1, . . . ,m that we want to show to be self-bounding.

We now show that Yj(x) ≤ Y(x)+r/mb(m). Starting from the definition of Yj(x) and adding and subtracting

(f(xj)− Êx\j [f ])/2m to the argument of the supremum, it holds

Yj(x) = E
σ\j

supf∈F

1

m

∣∣∣∣∣∣∣∣
 m∑

i=1
i 6=j

σi

(
f(xi)− Ê

x\j
[f ]

)+
1

2

(
f(xj)− Ê

x\j
[f ]
)
− 1

2

(
f(xj)− Ê

x\j
[f ]
)∣∣∣∣∣∣∣∣
 .

Doubling and halving the sum in the argument of the expectation, and leveraging the subadditivity of the

supremum and of the absolute value, we obtain

Yj(x) ≤ E
σ\j



1

2

sup
f∈F

1

m

∣∣∣∣∣∣∣∣
m∑
i=1
i 6=j

σi

(
f(xi)− Ê

x\j
[f ]
)
+
(
f(xj)− Ê

x\j
[f ]
)∣∣∣∣∣∣∣∣


+
1

2

sup
f∈F

1

m

∣∣∣∣∣∣∣∣
m∑
i=1
i 6=j

σi

(
f(xi)− Ê

x\j
[f ]
)
−
(
f(xj)− Ê

x\j
[f ]
)∣∣∣∣∣∣∣∣



.

The two-term sum forming the argument of the outermost expectation is the expectation w.r.t. only σj (i.e.,
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conditioned on σ\j) of the quantity

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
f(xi)− Ê

x\j
[f ]

)∣∣∣∣∣∣ .

Thus, using the law of total expectation, we can write

Yj(x) ≤ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
f(xi)− Ê

x\j
[f ]

)∣∣∣∣∣∣
 .

By subtracting and adding Êx[f ] to each term of the sum, and using the subadditivity of the supremum and

of the absolute value, and the linearity of the expectation, we obtain

Yj(x) ≤ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
f(xi)− Ê

x
[f ]

)∣∣∣∣∣∣


=Y(x)

+E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
Ê
x
[f ]− Ê

x\j
[f ]

)∣∣∣∣∣∣
 . (56)

The first term on the r.h.s. is Y(x). The second term is the ERA of the sample-dependent family

Wx
.
=

{
y 7→ 1

m
(f(xj)− Ê

x\j
[f ]), f ∈ F

}
.

Each function in Wx is constant. Using (7) and the linearity of expectation, like we did in the proof of

lemma 1.2.1 for the family Kx (see (50)), it holds

R̂m(Wx,x) =
1

m
sup
f∈F
|f(xj)− Ê

x\j
[f ]|b(m) ≤ r

m
b(m) .

Thus, continuing from (56) by incorporating the above fact, it holds

Yj(x) ≤ Y(x) +
r

m
b(m) . (57)

We now show that Yj(x) ≥ Y(x)−(1+b(m))r/m. Starting from the definition of Yj and adding and removing

1

m

(
σj

(
f(xj)− Ê

x\j
[f ]
))
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to the argument of the supremum, it holds

Yj(x) = E
σ

supf∈F

1

m

∣∣∣∣∣∣∣∣
 m∑

i=1
i 6=j

σi

(
f(xi)− Ê

x\j
[f ]

)+ σj

(
f(xj)− Ê

x\j
[f ]
)
− σj

(
f(xj)− Ê

x\j
[f ]
)∣∣∣∣∣∣∣∣
 .

Then, from the triangle inequality and the fact that

sup
f∈F

∣∣σj

(
f(xj)− Ê

x\j
[f ]
)∣∣ ≤ r,

we obtain

Yj(x) ≥ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
f(xi)− Ê

x\j
[f ]

)∣∣∣∣∣∣
− r

m
.

From here, we add and subtract σi Êx[f ] to each term of the sum, and then use the triangle inequality, the

subadditivity of the supremum, and the linearity of expectation, to obtain

Yj(x) ≥ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
f(xi)− Ê

x
[f ]

)∣∣∣∣∣∣


=Y(x)

−E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
Ê
x
[f ]− Ê

x\j
[f ]

)∣∣∣∣∣∣
− r

m
.

The second term on the r.h.s. is again the ERA of a family of constant functions, each of them taking value

at most r/m. Thus using (7), it follows that

Yj(x) ≥ Y(x)− (1 + b(m))
r

m
.

Combining the above and (57), we obtain

Y(x)− (1 + b(m))
r

m
≤ Yj(x) ≤ Y(x) +

r

m
b(m) . (58)

We now show that
m∑
j=1

(
Y(x)−Yj(x)

)
≤ Y(x) . (59)

Starting from the definition of the Yj functions, and using the linearity of expectation and the subadditivity
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of the supremum

m∑
j=1

Yj(x) =

m∑
j=1

E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑

i=1,i6=j

σi

(
f(xi)− Ê

x\j
[f ]

)∣∣∣∣∣∣


≥ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
j=1

m∑
i=1,i6=j

σi

(
f(xi)− Ê

x\j
[f ]

)
.

∣∣∣∣∣∣
 .

We rearrange the terms in the double sums, and use the linearity of expectation to obtain

m∑
j=1

Yj(x) ≥ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣(m− 1)

m∑
i=1

σi

(
f(xi)− Ê

x
[f ]

)∣∣∣∣∣∣


≥ (m− 1)E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
f(xi)− Ê

x
[f ]

)∣∣∣∣∣∣
 ,

which completes our proof of (59), as the last expectation is Y(x).

Define now the functions

Z(x)
.
= Y(x) and Zj(x)

.
= Yj(x)−

r

m
b(m) for each j = 1, . . . ,m .

The value of Zj(x) clearly does not dependent on the j-th component of x. Also, from (58) it follows that

Zj(x) ≤ Z(x) ≤ Zj(x) + (1 + 2b(m))
r

m
for each j = 1, . . . ,m .

A consequence of (59) is finally that

m∑
j=1

(
Z(x)− Zj(x)

)
≤ Z(x) + rb(m) .

Thus Z, i.e., R̂m(Ĉx(F),x), is a (1, rb(m))-self-bounding function with scale (1 + 2b(m))r/m. An application

of (54) from theorem A.1.2 completes the proof.

Before proving theorem 1.3.1, we need the following lemma.

Lemma A.1.3. It holds

W(F) ≤ m

m− 1
E
x
[Ŵx(F)] .

Proof. Using Bessel’s correction, we can rewrite the definition of wimpy variance to use the empirical
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expectation as

W(F) = sup
f∈F

E
x

 1

m

m∑
i=1

(
f(xi)− E

D
[f ]
)2 = sup

f∈F
E
x

 1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]
)2 .

An application of Jensen’s inequality gives

W(F) ≤ E
x

[
sup
f∈F

1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]
)2

= m
m−1Ŵx(F)

]
.

Theorem 1.3.1. Suppose m ≥ 2. Let δ ∈ (0, 1). With probability ≥ 1− δ over the choice of x,

W(F) ≤ m
m−1Ŵx(F) +

r2 ln 1
δ

m− 1
+

√√√√(r2 ln 1
δ

m− 1

)2

+
2r2 m

m−1Ŵx(F) ln 1
δ

m− 1
. (11)

Proof. This proof proceeds by showing that Ŵx(F) is a (m/m−1, 0)-self-bounding with scale r2/m, then

applying lemma A.1.3, and finally (53) from theorem A.1.2.

Let x\j denote the vector x with the j-th component removed, as we defined it also in the proof for

theorem 1.2.2. Let V̂x[f ] denote the (unbiased) sample variance of f over x, i.e.,

V̂x[f ]
.
=

1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]

)2

.

Define

Z(x)
.
=

m

m− 1
Ŵx(F) = sup

f∈F
V̂x[f ] = sup

f∈F

1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]

)2

and

Zj(x)
.
= sup

f∈F

1

m− 1

m∑
i=1,i6=j

(
f(xi)− Ê

x\j
[f ]
)2

. (60)

We first show that

Zj(x) = sup
f∈F

V̂x[f ]−
1

m

(
f(xj)− Ê

x\j
[f ]

)2
 , (61)

as this form comes in handy many times. Starting from the definition of Zj in (60), we add and subtract
1

m−1 (f(xj)− Êx\j [f ])
2

to the argument of the supremum, and then add and subtract Êx[f ] to the argument
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of the sum, to obtain:

Zj(x) = sup
f∈F

1

m− 1


 m∑

i=1

(
f(xi)− Ê

x\j
[f ]
)2− (f(xj)− Ê

x\j
[f ]
)2

= sup
f∈F

1

m− 1


 m∑

i=1

((
f(xi)− Ê

x
[f ]
)
+
(
Ê
x
[f ]− Ê

x\j
[f ]
))2− (f(xj)− Ê

x\j
[f ]
)2

By expressing the square in the argument of the sum, separating the three resulting terms in three distinct

sums (associative property of the sum), and noticing that one of these sum is
∑m

i=1(f(xi)− Êx[f ]) = 0, and

another has argument (Êx[f ]− Êx\j [f ])
2

independent from i, we obtain

Zj(x) = sup
f∈F

1

m− 1

[ m∑
i=1

(
f(xi)− Ê

x
[f ]
)2

=(m−1)V̂x[f ]

+m
(
Ê
x
[f ]− Ê

x\j
[f ]
)2
−
(
f(xj)− Ê

x\j
[f ]
)2]

.

It holds Êx[f ] =
1
mf(xj) +

m−1
m Êx\j [f ], so we have

Zj(x) = sup
f∈F

1

m− 1

(m− 1)V̂x[f ] +m

(
1

m
f(xj)−

1

m
Ê
x\j

[f ]

)2

−
(
f(xj)− Ê

x\j
[f ]
)2 .

The identity in (68) then follows through simple algebraic steps.

We want to show that Z is a (m/m−1, 0)-self-bounding function with scale r2/m (see definition A.1.1). By

definition of Zj in (60), the value of Zj(x) does not depend on the j-th component of x, as required by the

first point in definition A.1.1.

We now show that, for any j = 1, . . . ,m, it holds,

Zj(x) ≤ Z(x) ≤ Zj(x) +
r2

m
for any x ∈ Xm, (62)

as required by the second point in definition A.1.1. The leftmost inequality follows from the definitions of Z

and Zj . To show the rightmost inequality, we start from (68), and use the subadditivity of the supremum to

obtain

Zj(x) ≥


(
sup
f∈F

V̂x[f ]

)
=Z(x)

−

(
sup
f∈F

1

m

(
f(xj)− Ê

x\j
[f ]
)2)

 .

The rightmost supremum is always smaller than r2/m because |f(xj)− Êx\j [f ]| ≤ r, thus we have obtained
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the rightmost inequality in (62).

We now show that, for any x ∈ Xm, it holds

m∑
i=1

(
Z(x)− Zj(x)

)
≤ m

m− 1
Z(x),

as in the last requirement of definition A.1.1. Starting again from (68) and using the subadditivity of the

supremum, it holds

m∑
j=1

Zj(x) =

m∑
j=1

sup
f∈F

[
V̂x[f ]−

1

m

(
f(xj)− Ê

x\j
[f ]
)2]
≥ sup

f∈F

m∑
j=1

[
V̂x[f ]−

1

m

(
f(xj)− Ê

x\j
[f ]
)2]

.

By simple algebra we then get

m∑
j=1

Zj(x) ≥ sup
f∈F

mV̂x[f ]−
1

m

m∑
j=1

(
f(xj)− Ê

x\j
[f ]
)2 .

From here, we use the fact that

Ê
x\j

[f ] =
1

m− 1

(
m Ê

x
[f ]− f(xj)

)
,

to get
m∑
j=1

Zj(x) ≥ sup
f∈F

mV̂x[f ]−
1

m

m∑
j=1

(
m

m− 1
f(xj)−

m

m− 1
Ê
x
[f ]

)2
 .

Now by simplifying some terms on the r.h.s., we obtain

m∑
j=1

Zj(x) ≥ sup
f∈F

mV̂x[f ]−
m

(m− 1)

1

m− 1

m∑
j=1

(
f(xj)− Ê

x
[f ]

)2

=V̂x[f ]

 .

Collecting terms and using the original definition of Z results in

m∑
j=1

Zj(x) ≥
(
m− m

m− 1

)
Z(x) .

Thus,
m∑
j=1

(
Z(x)− Zj(x)

)
≤ mZ(x)−

(
m− m

m− 1

)
Z(x) ≤ m

m− 1
Z(x),

which concludes our proof that Z, is (m/m−1, 0)-self-bounding with scale r2/m.
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We now use the above fact to prove the thesis. A consequence of lemma A.1.3 is

P
x

(
Ŵx(F) ≤W(F)− ε

)
≤ P

x

(
Ŵx(F) ≤

m

m− 1
E
x
[Ŵx(F)]− ε

)
.

From here, we use the definition

Z(x) =
m

m− 1
Ŵx(F)

and apply (53) from theorem A.1.2 to obtain the thesis.

The constants in this bound are somewhat sub-optimal, as there is a significant gap between the best-known

(sub-Poisson) tails for (1, 0)-self-bounding and the best-known (sub-gamma) tails for (1 + ε, 0)-self-bounding

functions. We hope that future work leads to refined analysis of tail bounds for (α, 0)-self-bounding functions

that decay gracefully as α exceeds 1.

Lemma 1.3.4. For any x ∈ Xm, it holds

R̂m(F ,x) ≥
√

Ŵr
x(F)
2m

and R̂m(Ĉx(F),x) ≥
√

Ŵx(F)
2m

.

Furthermore, it holds

lim
m→∞

√
mRm(F ,D) ≥

√
2
πW

r(F) and lim
m→∞

√
mRm(CD(F),D) ≥

√
2
πW(F) .

Proof. From the subadditivity of the supremum, it holds that

R̂m(F ,x) ≥ sup
f∈F

E
σ


∣∣∣∣∣∣ 1m

m∑
i=1

σif(xi)

∣∣∣∣∣∣
 .

An application of Khintchine’s inequality [Haagerup, 1982] gives

R̂m(F ,x) ≥ sup
f∈F

1√
2

√
‖f(x)‖22

m2
,

where f(x) denotes the m-dimensional vector of values of f on x. The proof of the leftmost inequality in the

thesis ends by noting that

Ŵr
x(F) =

‖f(x)‖22
m

.

The rightmost inequality is then a corollary, using the identity Ŵr
x(Ĉx(F)) = Ŵx(F).

The asymptotic lower bounds follow by replacing the Khintchine’s inequality step with an application of the
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central limit theorem.

Before proving theorem 1.3.7 we need to introduce an important technical result. For any u ∈ R, let

h(u)
.
= (1 + u) ln(1 + u)− u, and let (u)+

.
= max(0, u).

Theorem A.1.4 (Samson’s bound, [Boucheron et al., 2013, Thm. 12.11]). Let Q1, . . . ,Qm be possibly

different probability distributions over a domain Y . Let G ⊆ X → [−1, 1]. Furthermore, assume that for each

g ∈ G and i ∈ {1, . . . ,m}, it holds EQi [g] = 0. Now, for any y ∈ Ym, let

Z(y)
.
= sup

g∈G

m∑
i=1

g(yi) and S2 .
= E

y

sup
g∈F

m∑
i=1

E
y′
i∼Qi

[((
g(yi)− g(y′i)

)
+

)2] .

Let y ∈ Ym, with each yi ∼ Qi, independently (but not necessarily identically, since the distributions may be

different). It holds1

P
y

(
Z(y) ≤ E

Q1:m

[Z]− ε

)
≤ exp

(
−S2

4
h

(
2ε

S2

))
. (63)

Theorem 1.3.7. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. Let δ ∈ (0, 1). With probability

at least 1− δ over the choice of σ, it holds

R̂m(F ,x) ≤ R̂
n

m(F ,x,σ) +
2q̂F (x) ln

1
δ

3nm
+

√
4Ŵr

x(F) ln 1
δ

nm
. (14)

Proof. Without loss of generality, we assume that q̂F (x) = 1. The general case then follows via scaling.

Let

Z(σ)
.
= nmR̂

n

m(F ,x,σ) =
n∑

j=1

sup
f∈F

∣∣∣∣∣∣
m∑
i=1

σj,if(xi)

∣∣∣∣∣∣ .

It holds Eσ[Z] = nmR̂m(F ,x).

We first show that we can apply Samson’s bound (theorem A.1.4) to Z, i.e., to the scaled MC-ERA. Consider

the function family F± introduced in corollary 1.3.5, and consider the n-times Cartesian product of F± with

itself

(F±)
n
= F± × · · · × F±

n times

.

We use f = (f1, . . . , fn) to denote an element of (F±)
n. Now, define the family

G .
= {g(σj,i)

.
= σj,ifj(xi),f ∈ (F±)

n} .

1To be precise, this is an immediate consequence of the statement of [Boucheron et al., 2013, Thm. 2.11], through an
application of the Chernoff method to the moment generating function given therein.
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The functions in G have domain Y = {−1, 1} and values in [−1, 1]. It holds

Z(σ) = sup
f∈(F±)n

n∑
j=1

m∑
i=1

σj,ifj(xi) = sup
g∈G

∑
(j,i)∈{1,...n}×{1,...,m}

g(σj,i) . (64)

Thus Z has the form required by theorem A.1.4.

Let σ′ denote a second n×m i.i.d. Rademacher matrix (like σ), and define

S2 .
= E

σ

 sup
f∈(F±)n

n∑
j=1

m∑
i=1

E
σ′

j,i

[((
σj,ifj(xi)− σ′

j,ifj(xi)
)
+

)2]
= nE

σ

 sup
f∈F±

m∑
i=1

2
((
σ1,if(xi)

)
+

)2 .

It holds

S2 ≤ 2nmŴr
x(F) . (65)

For each g ∈ G, g(σj,i) and g(σj′,i′) are independent, though not necessarily identically distributed, for

(j, i) 6= (j′, i′), due to the dependence of g(σj,i) on indices (j, i). It also holds, for each g ∈ G, and indices

(j, i), that Eσi,j
[g(σi,j)] = 0, simply due to multiplication by symmetric (Rademacher) r.v.’s.

Thus, we can use Samson’s bound (theorem A.1.4) on G, Z, and S2, although it is generally more convenient

to work with F and (F±)
n.

We now show the thesis. Fix ε ∈ (0, 1). It follows from Samson’s bound that

P
σ

(
R̂m(F ,x) ≥ R̂

n

m(F ,x,σ) + ε
)
= P

σ

(
E[Z] ≥ Z(σ) + nmε

)
≤ exp

(
−S2

4
h

(
2nmε

S2

))
.

The function

g(x)
.
= xh

(
2nmε

x

)
is monotonically decreasing in its argument. Thus, using (65) gives

P
σ

(
R̂m(F ,x) ≥ R̂

n

m(F ,x,σ) + ε
)
≤ exp

−nmŴr
x(F)

2
h

(
ε

Ŵr
x(F)

) .

Now, for u > −1/2, define the function

h1(u)
.
= 1 + u−

√
1 + 2u .
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Using the fact (see Boucheron et al. [2013, Ch. 2.4]) that

h(u) ≥ 9h1

(
u

3

)
for every u ∈ (−1,+∞),

we obtain

P
σ

(
R̂m(F ,x) ≥ R̂

n

m(F ,x,σ) + ε
)
≤ exp

−9

2
nmŴr

x(F)h1

(
ε

3Ŵr
x(F)

) .

The result for q̂F (x) = 1 is obtained by imposing that the r.h.s. be at most δ and solving for ε using standard

sub-gamma inequalities. The general case then follows via linear scaling.

This bound is quite comparable to Bousquet’s bound on the SD (see theorem 1.3.2). The variance factors

Ŵr
x(F) and Ŵx(F) are convenient, as they depend only on sample variances, rather than true variances and

expected supremum deviations.

Even if Samson’s inequality introduces additional 2-factors on both the range and variance w.r.t. theorem 1.3.2,

both are divided by MC-trial count n, so for n ≥ 2 trials, the Monte-Carlo error terms become negligible.

A.2 Details on the Experimental Evaluation

As mentioned in the main text, lemma 1.4.1 is a consequence of [Shalev-Shwartz and Ben-David, 2014,

Lemmas 26.11, 26.10], reported here for completeness.2

Lemma A.2.1 (Shalev-Shwartz and Ben-David, 2014, Lemmas 26.11, 26.10). It holds

R̂m(F1,x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σixi

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi‖∞

√
2 ln(2d)

m
,

and

R̂m(F2,x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σixi

∥∥∥∥∥∥
2

 ≤ max
i
‖xi‖2

1√
m

.

We now show the centralized variants.

2The identities in the lemma are not reported in the original, but can be easily obtained through a slightly more refined proof
than the one presented in the original. See the proof of lemma 1.4.1 for intuition.

158



Lemma 1.4.1. Let x̄
.
= 1

m

∑m
i=1 xi ∈ Rd. For the `1 norm, it holds

R̂m(Ĉx(F1),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi − x̄‖∞

√
2 ln(2d)

m
,

while for the `2 norm, it holds

R̂m(Ĉx(F2),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

 ≤ max
i
‖xi − x̄‖2

1√
m

.

Proof. We show the `2 case in detail; the reasoning for the `1 case is essentially the same (see details at the

end of the proof). The definition of R̂m(Ĉx(F2),x) is

R̂m(Ĉx(F2),x) = E
σ

 sup
w:‖w‖2≤1

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
w · xi − Ê

x
[w]
)∣∣∣∣∣∣
 ,

where

Ê
x
[w] =

1

m

m∑
i=1

(w · xi) = w · x̄ .

Using linearity, we then get

R̂m(Ĉx(F2),x) = E
σ

 sup
w:‖w‖2≤1

∣∣∣∣∣∣w · 1m
m∑
i=1

σi(xi − x̄)

∣∣∣∣∣∣
 .

Now, for ease of notation, let u
.
= 1

m

∑m
i=1 σi(xi − x̄). The supremum is realized when

w =
u

‖u‖2
,

because in this case the vector w has the same direction as u, and the largest possible norm ‖w‖2 = 1. Since

the two vectors w and u are collinear, the Cauchy-Schwarz inequality holds with equality, and we have

w · u = ‖w‖2‖u‖2 = ‖u‖2 =

∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

.

We thus obtain

R̂m(Ĉx(F2),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

 .
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From here, we can proceed as in the second part of the proof of [Shalev-Shwartz and Ben-David, 2014,

Lemma 26.10] to obtain the thesis.

By similar reasoning (now with Hölder’s inequality in place of the Cauchy-Schwarz inequality, and following

the proof of Shalev-Shwartz and Ben-David [2014, Lemma 26.11]), we get that

R̂m(Ĉx(F1),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi − x̄‖∞

√
2 ln(2d)

m
.

A.2.1 Data Generation

Our data distributions for both the `1 and `2 constrained linear family experiments are both randomized and

parameterized by dimension d. Rademacher averages and wimpy variances depend on the randomization and

d, and ranges may be bounded a priori in terms of d.

`1 Datasets In our `1 experiments, each xj is independently Beta-distributed, thus x ∼ B(α1,β1)× · · · ×

B(αd,βd). The parameters α and β are themselves randomized, in particular, we sample αj and βj from√
χ2
j , where χ2

k is the χ2 distribution with k degrees of freedom. In these datasets, r = q = 1.

`2 Datasets In our `2 experiments, we generate random mean vector µ ∈ Rd and covariance matrix

Σ ∈ Rd×d, then sample x′ ∼ N (µ,Σ), and finally obtain sample x by projecting x′ to the nonnegative

hyperquadrant of the radius
√
d `2 sphere; i.e.,

x = argmin
x∈Rd:‖x‖2≤

√
d∧0�x

‖x− x′‖2 .

Taking Id to be the identity matrix, we sample µ ∼ N (1, Id), and taking a ∼ U(0, 1)d×d, we let Σ .
= aa>

d +Id.

In these datasets, r = q =
√
d.

A.2.2 Supplementary Plots

Figure A.1 shows the same results as figure 1.1 (in the main text), but without the scaling of the quantities

by
√
m. Similarly, figure A.2 shows the same results as figure 1.2, sans scaling by

√
m. Additionally, both

plots also include a McDiarmid term 3r
√
ln 1

η/2m, representing the additive error incurred bounding the

SD in terms of R̂
1

m(F ,x,σ). We stress that this term does not include the MC-ERA itsef, and thus is just
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F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure A.1: Comparison of SD bounds as functions of the sample size m. See the main text for details.

one summand of the total McDiarmid SD bound. Nevertheless, the McDiarmid term alone asymptotically

exceeds all other bounds in all experiments, except for the (loose) noncentralized analytical bound of F1 over

R256. This sharply illustrates the benefit of variance-sensitive bounds over (range-only) McDiarmid bounds.

F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure A.2: Comparison of SD bounds as functions of the sample size m. See the main text for details.
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Appendix B

Supplementary Material for Chapter 2

B.1 Deferred proofs

Proof of Lemma 2.4.1. For the sake of the proof, assume that we have two labeled set of samples of size m

and mL from pXY , call them respectively S and SL. The set S represents our unlabeled sample, and the set

SL represents the labeled sample. For any δ ∈ (0, 1), we would like to find a γ > 0 such that with probability

1− δ, for all i ∈ 1, . . . , n (simultaneously), we have

∣∣∣∣∣∣ 1m
∑

(x,y)∈S

`(ϕi(x),y)−
1

mL

∑
(x,y)∈SL

`(ϕi(x),y)

∣∣∣∣∣∣ ≤ γ . (66)

The sample S represents the unlabeled data x1, . . . , xm we have access to. In fact, 1
m

∑
(x,y)∈S `(ϕi(x),y) =

R̂(ϕi;X,Y ∗). The inequality (66) implies that for the true labeling of the unlabeled data x1, . . . , xm, for all

i ∈ 1, . . . , n, it holds that:

R̂(ϕi;X,Y ∗) ∈ [µi − γ, µi + γ]

where µi =
1

mL

∑
(x,y)∈SL

`(ϕi(x),y) is the empirical mean computed from the labeled sample SL.
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By using Hoeffding’s inequality, we have that for a fixed i, it holds that:

P
S,SL


∣∣∣∣∣∣ 1m
∑

(x,y)∈S

`(ϕi(x),y)− 1
mL

∑
(x,y)∈SL

`(ϕi(x),y)

∣∣∣∣∣∣ > γ


≤ 2 exp

(
−2γ2∑m

j=1(
B
m )2 +

∑mL

j=1(
B
mL

)2

)

= 2 exp

(
−2mLmγ2

B2(m+mL)

)
=

δ

n
(67)

By taking a union bound and solving (67) with respect to γ, the statement follows.

Proof of Lemma 2.4.5. By invoking lemma 2.4.4, it is easy to see that the function R(hθ;X,Y ′) is a

convex combination of convex functions with respect to θ, hence it is also convex in θ. Let v ∈ ∂R(hθ;X,Y ′).

By Fact 3, such a vector always exists. Then, we have that for any θ′ ∈ Θ, it holds that:

R(hθ′ ,Y ′)− R(hθ,Y
′) ≥ vT (θ′ − θ)

As f(θ′) ≥ R(hθ′ ,Y ′), we have that:

f(θ′)− f(θ) ≥ vT (θ′ − θ)

which implies that v is a subgradient of f at θ.

Proof of Theorem 2.4.6 We need to show that f(θ) is convex and L-Lipschitz continuous with respect to

θ to apply the standard convergence result for constant step size subgradient optimization [Bertsekas, 2015]

To show that f(θ) is convex it is straightforward to see that R̂(hθ,Y ) is convex in θ as it is the convex

combination of convex functions in θ. For any λ ∈ [0, 1], we have that:

f(λθ1 + (1− λ)θ2) = max
Y ∈Y

Lc(hλθ1+(1−λ)θ2
,Y )

≤ max
Y ∈Y

[
λLc(hθ1

,Y + (1− λ)Lc(hθ2
,Y )

]
≤ λmax

Y ∈Y
Lc(hθ1

,Y ) + (1− λ)max
Y ∈Y

Lc(hθ2
,Y )

= λf(θ1) + (1− λ)f(θ2)

Also, f(θ) is L-Lipschitz in θ. In fact, it is straightforward to see that R̂(hθ;X,Y ) is also L-Lipschitz
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continuous in θ. For any θ1,θ2 ∈ Θ, we have that:

∣∣f(θ1)− f(θ2)
∣∣ ≤ max

Y ∈Y

∣∣∣R̂(hθ1 ;X,Y )− R̂(hθ2 ;X,Y )
∣∣∣

≤ L‖θ1 − θ2‖2

The subgradient of f(θ) in θ is computed by using lemma 2.4.5.

Proof of Lemma 2.4.10. For each i ∈ 1, . . . , n, we have that:

∂

∂θi
`(hθ(x), e) = 2

(
ϕi(x)

T · hθ(x)−ϕi(x)
T · e

)

Therefore, we can bound the norm of the gradient of ` as:

∥∥∇θ`(hθ(x), e)
∥∥
2
= 2

√√√√ n∑
i=1

(
ϕi(x)T · (hθ(x)− e)

)2 See Above

≤ 2

√√√√ n∑
i=1

(1)
2

∥∥ϕi(x)
T
∥∥
1
= 1∥∥hθ(x)− e

∥∥
∞ ≤ 1

Hölder’s Inequality

= 2
√
n .

This implies that the function `(hθ(x), e) is 2
√
n-Lipschitz continuous with respect to θ.

Proof of Lemma 2.4.11. Without loss of generality, suppose that ei = 1. We have that:

`(hθ(x), e) = − ln

(
exp(wT

i · x)∑k
c=1 exp(w

T
c · x)

)

It is easy to see that `(hθ(x), e) ≥ 0. By using Cauchy-Schwarz inequality, we have that:

`(hθ(x), e) = − ln

(
exp(wT

i · x)∑k
c=1 exp(w

T
c · x)

)

≤ − ln

(
exp(−BwBx)

k exp(BwBx)

)
≤ 2BwBx + ln k
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Proof of Lemma 2.4.12. For a fixed (x, e) ∈ X × Y, consider the function ω(p) : Rk → Y� defined as

ω(p)
.
= −

k∑
c=1

ec · ln(pc) ,

and let

h(θ)
.
=

(
exp(wT

1 · x)∑k
c=1 exp(w

T
c · x)

, . . . ,
exp(wT

k · x)∑k
c=1 exp(w

T
c · x)

)T

,

where θ = (w1 . . .wk)
T , and observe that `(hθ(x), e) = ω ◦ h(θ).

It is well known that ` is LωLh-Lipschitz continuous with respect to θ, where Lω and Lh are the Lipschitz

constants respectively of ω and h. It is also a known result that Lω ≤ 1 (see for example Proposition 4 of

Gao and Pavel [2018]).

We now want to compute Lh. We will use the fact that maxθ∈Θ ||Jh(θ)||F ≤ Lh, where Jh denotes the

Jacobian matrix of h and || · ||F denotes the Frobenius norm.

For ease of notation, let h(θ) = p = (p1, . . . , pk)
T . We have that for each i ∈ 1, . . . , k, it holds that

∂[h(θ)]i
∂wj

= pipjx for j 6= i

∂[h(θ)]i
∂wi

= (pi − p2i )x

Therefore, we can bound the square of the Frobenius norm of the Jacobian matrix of h with:

||Jh(θ)||2F =
∑
i,j

∣∣∣∣∣∣
∣∣∣∣∣∂[h(θ)]i∂wj

∣∣∣∣∣
∣∣∣∣∣∣
2

2

≤ ||x||22

∑
i

[pi(1− pi)]
2 +

∑
i6=j

[pipj ]
2


≤ ||x||22(k + k2/2) ≤ ||kx||22

We can conclude that h is kBx-Lipschitz continuous, and the statement follows.

Proof of Theorem 2.4.8 From Chapter 14 of [Mitzenmacher and Upfal, 2017], we know that:

R(hθ̂) ≤ R̂(hθ̂;X,Y ∗) + 2R̂(L;X,Y ∗) +O

B

√
ln 1

δ

m
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By definition of f(·), it holds that R̂(hθ̂;X,Y ∗) ≤ f(θ̂). As θ̂ is the optimal solution of (16), we have that

f(θ̂) ≤ f(θ∗). Let Y ′ .
= argmaxY ∈Y� R̂(hθ∗ ;X,Y ). It holds that:

f(θ∗) = R̂(hθ∗ ;X,Y ′)

= R̂(hθ∗ ;X,Y ′) + R̂(hθ∗ ;X,Y ∗)− R̂(hθ∗ ;X,Y ∗)

= R̂(hθ∗ ;X,Y ∗) +
∣∣∣R̂(hθ∗ ;X,Y ′)− R̂(hθ∗ ;X,Y ∗)

∣∣∣
By using the fact that ` is bounded, and the definition of diameter DY� , we have that:

∣∣∣R̂(hθ∗ ;X,Y ′)− R̂(hθ∗ ;X,Y ∗)
∣∣∣ =

∣∣∣∣∣∣ 1m
m∑
j=1

k∑
c=1

`(h(xj), ec)(y
′
jc − y∗

jc)

∣∣∣∣∣∣
≤ B

1

m

m∑
j=1

k∑
c=1

∣∣∣y′
jc − y∗

jc

∣∣∣ ≤ BDY�

To wrap it up, it results that

R(hθ̂) ≤R̂(hθ∗ ;X,Y ∗) +BDY� + 2R̂(L;X,Y ∗) +O

B

√
ln 1

δ

m


≤ R(hθ∗) +BDY� + 4R̂(L;X,Y ∗) +O

B

√
ln 1

δ

m


≤ R(hθ∗) +BDY� + sup

Y ∈Y �
4R̂(L;X,Y ) +O

B

√
ln 1

δ

m

 .

Proof of Theorem 2.4.9 This result is essentially a corollary of theorem 2.4.8. After bounding the

minimax-risk, the next lines follow via elementary geometric inequalities and range assumptions.

Proof of Lemma 2.4.13 The proof is along the same lines of the proof of lemma 2.4.1, but we take a union

bound with respect to all the nK intervals 4i,c,ĉ for i ∈ 1, . . . , n, c ∈ 1, . . . , k, and ĉ = 1, . . . , ki. Moreover,

as for any j ∈ 1, . . . ,m, we have that yj,c[ϕi(xj)]c̃ ≤ 1, we take B = 1 during the proof (as in lemma 2.4.1).

B.2 Additional Experimental Details

We provide further information specifying the experimental setup used to generate our figures.
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B.2.1 Weak Supervision Sources

We first build the weak supervision sources on our two datasets as follows.

Animals with Attributes Each class is annotated with a binary vector of attributes. For each attribute,

we train a binary classifier by finetuning a ResNet-18 using labeled data from the seen classes. When we

consider a classification task between two unseen classes, we use as weak supervision sources the classifiers for

the attributes which are different between the animals of these two unseen classes. We report the results of

the 4 binary classification tasks which have the lowest majority vote accuracy. We chose these particular

tasks to demonstrate the abilities of our methods on the tasks that have the least accurate and most highly

correlated weak supervision sources.

DomainNet We sample 5 classes among the 25 classes of DomainNet with the largest number of data. For

each domain, we use 60% of the available data for those classes to fine tune a pretrained ResNet-18 network.

We perform this procedure on two disjoint samples of test classes to illustrate our results on two distinct

multi class classification tasks.

In our experiments, we use the pretrained ResNet-18 from PyTorch. We finetune this ResNet-18 network

following the approach described in [He et al., 2016], using cross-entropy loss.

B.2.2 Algorithm Hyperparameters

The subgradient method (algorithm 1) used to train AMCL-CC and AMCL-LR uses the following hyperpa-

rameters:

AMCL-CC We set δ = 0.1 and build the constraints as in lemma 2.4.1. We use ε = 0.1 and define the step

size h and the number of iterations T as in corollary 2.4.7.

AMCL-LR In this case, the loss function is bounded as in lemma 2.4.11. Since this value could be potentially

very large, which in turn it would result in large intervals and number of iterations, we use the value B = 1

in the experiments. We set δ to 0.1 and build the constraints as in lemma 2.4.1. We do not bound the set of

weights Θ: in the experiments, the norm of the weights of the multinomial logistic regression model has never

diverged. We run the subgradient algorithm for 1/ε2 iterations with step size ε, with ε = 0.1
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B.3 Additional Figures

B.3.1 Animals with Attributes

We provide the remaining figures for our experiments on the Animals with Attributes dataset. The last two

binary classification tasks are bat versus rat and horse versus giraffe.

From figure B.1, we note that our methods show similar results as the figures displayed in the main body of

the paper. AMCL-LR matches or outperforms all other methods on both tasks, over all ranges labeled data.

AMCL-CC is within a few accuracy points of the other baselines and AMCL-LR on these tasks.

B.3.2 DomainNet

We provide the remaining figures for our experiments on the DomainNet dataset. We provide histograms

when using the other 4 domains as the target task and also provide histograms for results on another of the

samples of 5 classes. The first sample of classes as mentioned in the main body of the paper is {sea turtle,

vase, whale, bird, violin }. The second sample is {tornado, trombone, submarine, feather, zebra }.

From figures B.2–B.6, we note that in most domains our methods perform better than or match all other

approaches, namely in both samples of clipart, quickdraw, painting, and the second sample of sketch. Our

methods achieve slightly lower accuracy than the best performing baseline on the real domain and on the

second sample of the infograph domain, although they are not beaten by a single baseline in all of these

tasks. We believe that the combination of our theoretical guarantees and that our methods achieve similar or

sometimes better empirical performance captures the benefits of AMCL.
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Figure B.1: Experimental results on the Animals with Attributes dataset for the binary classification tasks of
bat versus rat (left) and horse versus giraffe (right) as we vary the amount of labeled data. Each method uses
347 unlabeled data points for bat versus rat and 1424 unlabeled data points for horse versus giraffe.
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Figure B.2: Experimental results on the second sample of Domain Net for the clipart and quickdraw domains
as we vary the amount of labeled data. Each method uses 500 unlabeled data points.
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Figure B.3: Experimental results on both samples of Domain Net for the infograph domain as we vary the
amount of labeled data. Each method uses 500 unlabeled data points.

B.4 Experiments on Synthetic Data

We run synthetic experiments to show that our method is robust with respect to the addition of correlated

weak supervision sources. (Similar discussion has been done in Arachie and Huang [2019]).

We consider a multi class classification task over 5 classes, and 25 weak supervision sources ϕ1, . . . ,ϕ25.

In this classification task, each item of the domain X has an unique true label. Given an item x ∈ X , for

i ∈ 1, . . . , 10, the weak supervision source ϕi returns the correct label with probability 1
2 , and a random

label with probability 1
2 . The output of the weak supervision source ϕi is independent to the output of the

weak supervision sources ϕj for j ∈ {1, . . . , 10} \ {i}. Therefore, the weak supervision source ϕi is correct

with probability 1
2 (1 +

1
k ). For i ∈ 11, . . . , 25, the weak supervision sources ϕi outputs the same result than

the weak supervision source ϕ1. Note that the weak supervision sources ϕ11, . . . ,ϕ25 do not provide any

additional information with respect to the target classification task, as they add redundant constraints to the

set of feasible labelings Y�. The majority vote of the weak supervision sources ϕ1, . . . ,ϕ25 is highly affected
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Figure B.4: Experimental results on both samples of Domain Net for the painting domain as we vary the
amount of labeled data. Each method uses 500 unlabeled data points.
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Figure B.5: Experimental results on both samples of Domain Net for the real domain as we vary the amount
of labeled data. Each method uses 500 unlabeled data points.

by these dependencies, and it is very likely to provide the same answer as ϕ1, which is only 1
2 (1+

1
k ) accurate

on average. On the other hand, the majority vote of the weak supervision sources ϕ1, . . . ,ϕ10 would improve

upon the individual accuracy of the weak supervision sources, as their output is independent.

We use 500 unlabeled examples, run experiments varying the amount of labeled data, and show that our

method AMCL-CC is robust against those dependencies. For the sake of these experiments, as we want to

use very small amount of labeled data, we set γ = 0 when building the constraints for Y� as in lemma 2.4.1.

The experimental results are reported in appendix B.4. The table shows that AMCL-CC is robust with

respect to dependencies among weak supervision sources, whereas majority vote is greatly affected by them.

In fact, in this case the majority vote does not improve upon the individual accuracy of the weak supervision

sources, which is on average 1
2 (1 +

1
k ) =

3
5 .
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Figure B.6: Experimental results on both samples of Domain Net for the sketch domain as we vary the
amount of labeled data. Each method uses 500 unlabeled data points.

Table B.1: We report the experimental results on the synthetic dataset. We report the accuracy obtained by
our method AMCL-CC and the majority vote, when varying the amount of labeled examples (we report the
average accuracy over 3 distinct runs).

Labeled Examples AMCL-CC Majority Vote
100 0.902 0.595
50 0.828 0.602
25 0.819 0.598
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Appendix C

Supplementary Material for Chapter 3

C.1 Welfare and Malfare

We now show theorem 3.3.7.

Theorem 3.3.7 (Properties of the Power-Mean). Suppose S, ε are sentiment values Ω→ R0+, and w is a

probability measure over Ω. Then

1. Monotonicity: Mp(S;w) is weakly-monotonically-increasing in p, and strictly if S attains distinct a, b ∈ R

with nonnegligible probability.

2. Subadditivity: ∀p ≥ 1 : Mp(S + ε;w) ≤ Mp(S;w) +Mp(ε;w).

3. Contraction: ∀p ≥ 1 :
∣∣Mp(S;w)−Mp(S ′;w)

∣∣ ≤ Mp(
∣∣S − S ′∣∣ ;w) ≤

∥∥S − S ′∥∥∞.

4. Curvature: Mp(S;w) is concave in S for p ∈ [−∞, 1] and convex for p ∈ [1,∞].

Proof. We omit proof of item 1, as this is a standard property of power-means (generally termed the power

mean inequality [Bullen, 2013, chapter 3]).

We first show item 2. By the triangle inequality (for p ≥ 1), we have

Mp(S + ε;w) ≤ Mp(S;w) +Mp(ε;w) .
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We now show item 3 First take ε
.
= S − S ′. Now consider

Mp(S;w) = Mp(S ′ + ε;w) Definition of ε

≤ Mp(S ′ + ε+;w) Monotonicity

≤ Mp(S ′;w) +Mp(ε+;w) item 2

≤ Mp(S ′;w) +Mp(
∣∣S − S ′∣∣ ;w) . Monotonicity

By symmetry, we have Mp(S ′,w) ≤ Mp(S,w) +Mp(
∣∣S − S ′∣∣ ;w), which implies the result.

We now show item 4. First note the special cases of p ∈ ±∞ follow by convexity of the maximum (p =∞)

and concavity of the minimum (p = −∞).

Now, note that for p ≥ 1, by concavity of p
√
·, Jensen’s inequality gives us

M1(S;w) = E
ω∼w

[S(ω)] = E
ω∼w

[ p
√
Sp(ω)] ≤ p

√
E

ω∼w
[Sp(ω)]︸ ︷︷ ︸

Definition of Convexity

= Mp(S;w) ,

i.e., convexity, and similarly, for p ≤ 1, p 6= 0, we have by convexity of p
√
·, we have

M1(S;w) = E
ω∼w

[S(ω)] = E
ω∼w

[ p
√
Sp(ω)] ≥ p

√
E

ω∼w
[Sp(ω)]︸ ︷︷ ︸

Definition of Concavity

= Mp(S;w) .

Similar reasoning, now by convexity of ln(·), shows the case of p = 0.

We now show theorem 3.3.8.

Theorem 3.3.8 (Population Mean Properties). Suppose population-mean function M(S;w). If M(·; ·)

satisfies (subsets of) the population-mean axioms (see definition 3.3.4), we have that M(·; ·) exhibits the

following properties. For each, assume arbitrary sentiment-value function S : Ω→ R0+ and weights measure

w over Ω. The following then hold.

1. Identity: Axioms 6 & 7 imply M(ω 7→ α;w) = α.

2. Axioms 1-5 imply ∃p ∈ R, strictly-monotonically-increasing continuous F : R→ R0+ s.t.

M(S;w) = F

(∫
w

fp(S(ω)) d(ω)
)

= F

(
E

ω∼w

[
fp(S(ω))

])
, with


p = 0 f0(x)

.
= ln(x)

p 6= 0 fp(x)
.
= sgn(p)xp

.
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3. Axioms 1-7 imply F (x) = f−1
p (x), thus M(S;w) = Mp(S;w).

4. Axioms 1-5 and 8 imply p ∈ (−∞, 1].

5. Axioms 1-5 and 9 imply p ∈ [1,∞).

Proof. Item 1 is an immediate consequence of axioms 6 & 7 (multiplicative linearity and unit scale).

We now note that item 2 is the celebrated Debreu-Gorman theorem [Debreu, 1959, Gorman, 1968], extended

by continuity and measurability of S to the weighted case.

We now show item 3. This result is essentially a corollary of item 2, hence the dependence on axioms 1-4.

Suppose S(·) = 1. By item 1, for all p 6= 0, we have

α = αM(S;w) = M(αS;w) = F

(
E

ω∼w

[
fp(αS(ω))

])
= F

(
E

ω∼w

[
fp(α)

])
= F

(
sgn(p)αp

)
.

From here, we have α = F
(
sgn(p)αp

)
, thus F−1(u) = sgn(p)up, and consequently, F (v) = p

√
sgn(p)v.

Taking p = 0 gets us

α = αM(S;w) = F

(
E

ω∼w

[
ln(αS(ω))

])
= F (ln a) ,

from which it is clear that F−1(u) = ln(u)⇒ F (v) = exp(v).

For all values of p ∈ R, substituting the values of fp and F (·) into item 2 yields M(S;w) = Mp(S;w) by

definition.

We now show 4 and 5. These properties follow directly from 2, wherein fp are defined, and Jensen’s inequality.

We now show corollary 3.4.2.

Corollary 3.4.2 (Statistical Estimation with Hoeffding and Bennett Bounds). Suppose fair power-mean

malfare W

(·; ·) (i.e., p ≥ 1), loss function ` : X → [0, r], S ∈ [0, r]g s.t. Si = EDi [`], samples xi ∼ Dm
i , and

take Ŝi
.
= 1

m

∑m
j=1 `(xi,j). Then with probability at least 1− δ over choice of x,

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r

√
ln 2g

δ

2m
.
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Alternatively, again with probability at least 1− δ over choice of x, we have

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r ln 2g

δ

3m
+ max

i∈1,...,g

√
2VDi

[`] ln 2g
δ

m
.

Proof. This result is a corollary of lemma 3.4.1, applied to ε, where we note that for p ≥ 1, by theo-

rem 3.3.7 item 3 (contraction) it holds that

Mp(Ŝ + ε;w) ≤ Mp(Ŝ;w) +‖ε‖∞ & Mp(0 ∨ (Ŝ − ε);w) ≤ Mp(Ŝ;w)−‖ε‖∞ .

Now, for the first bound, note that we take εi
.
= r

√
ln 2g

δ

2m , and by Hoeffding’s inequality and the union bound,

for Ω = {1, . . . , n}, we have ∀ω : S ′(ω)− ε(ω) ≤ S(ω) ≤ S ′(ω) + ε(ω) with probability at least 1− δ. The

result then follows via the power-mean contraction (theorem 3.3.7 item 3) property.

Similarly, for the second bound, note that we take εi
.
=

r ln 2g
δ

3m +

√
2VDi

[`] ln 2g
δ

m , which this time follows via

Bennett’s inequality and the union bound. Now, we again apply lemma 3.4.1, noting that M(ε) ≤ M∞(ε) =

‖ε‖∞ (by power-mean monotonicity, theorem 3.3.7 item 1), and the rest follows as in the Hoeffding case.
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Appendix D

Supplementary Material for Chapter 4

D.1 Pseudocode and Ewoks Algorithm Details

Algorithm 6 presents pseudocode for the Ewoks. In particular, we describe the optimization algorithm

CodecSelection(. . . ), where the optimal ĉW ∈
(C
k

)
is selected, as well as the routines StoreMedia(. . . ),

which adds a piece of media to the database, and QueryMedia(. . . ), which serves a user the best-available

encoding for their loss function.
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Algorithm 6 Pseudocode for Ewoks Operations
1: procedure CodecSelection(C, k,L,W,x) 7→ ĉW
2: Input: Codec family C, selection size k, loss distribution L, welfare concept W, sample x ∈ Xm

3: Output: Ewoks-optimal c ∈
(C
k

)
4: Effect Sets global codec-selection ĉW (for use with EncodeMedia)
5: for all i ∈ 1, . . . ,|C| do . Precompute attribute values
6: for all j ∈ 1, . . . ,m do
7: Ai,j,: ← Ci(xj) . A ∈ R|C|×m×a

+

8: end for
9: end for

10: I ← {i ∈ 1, . . . ,|C| |6 ∃i′ < i s.t. Ai,:,: = Ai′,:,:} . Prune Coincident Codecs
11: if Prune Monotonic then . Prune monotonically-dominated codecs (Optional)
12: I ←

{
i ∈ I

∣∣ 6 ∃i′ s.t. Ai′,:,:�Ai,:,:

}
13: end if
14: if Prune Generic then . Prune L-dominated codecs (Optional)

15: I ←

{
i ∈ I

∣∣∣∣∣ 6 ∃i′ 6= i s.t. sup
`∈L

max
j∈1,...,m

`(Ai′,j,:)−`(Ai,j,:) < 0

}
16: end if
17: I ′ ← argmin

I′∈(Ik)
Ŵ({i(j) 7→ Ai,j,1:a | i ∈ I ′};L, 1, . . . ,m) . Combinatorial Optimization

18: ĉW ← {Ci | i ∈ I ′}
19: return ĉW
20: end procedure
21: procedure EncodeMedia(x, ID) 7→ ∅
22: Input: Media x, media ID ID.
23: Effect Stores each encoding ∀c ∈ ĉW : c(x) of media x at index ID.
24: for c ∈ c do
25: StoreID,c ← c(x) . Store encoded media and attributes
26: end for
27: end procedure
28: procedure QueryMedia(`, ID) 7→ (Codec×Encoding)
29: Input: Loss function `, some media ID ID that has previously been passed to EncodeMedia(·, ·)
30: Output: Optimal codec c ∈ ĉW and encoding c(x), for x the media referenced by ID
31: c← argmin

c′∈c
`(StoreID,c′)

32: return (c,StoreID,c) . Return encoded media
33: end procedure
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D.2 Supplementary Experiments and Methods

Here we present supplementary detail on our datasets, additional experiments in the video domain, and

additional high-detail plots and extensions of experiments presented in the paper body.

D.2.1 Experimental Setup

As discussed in Section 4.3, we performed encoding experiments on audio data extracted from audio-books

and music. In this section, we present additional detail on our audio and video datasets, as well as encoding

parameters.

For each of our music, speech, and video datasets, we give the sample count, sample length, and detailed format

information in table D.1. Each music dataset was ripped from CD, and the au dataset was downloaded from

librivox.org [McGuire]. Each of the files in the original datasets are split into sample count contiguous

nonoverlapping sample length segments, measured in seconds (s), with a possible shorter final “leftover

segment” per file. In particular, we decompose the information rate, measured in bit rate bits per second

(b/s), or, perhaps more conveniently, base-1000-kilobytes per second (KB/s; 1KB = 8000b), into sample

rate, which gives the number of discrete samples per second, measured in cycles / second (Hertz or hz), or

equivalently in frames / second (fps), and sample depth, which is the number of bits per sample. Sample

depth is further decomposed by domain: audio is either stereo, which refers to 2-channel (left and right)

sound (thus doubling the bitrate), or monaural, which contains a single channel, generally heard in both ears;

similarly, video samples are frames, or images, each split into a resolution x× y array of pixels (px), each of

which has 3 color values (RGB). Both audio waveform samples and color intensity values are represented as

linearly-scaled unsigned fixed-width integers.

All audio was initially in the uncompressed wav format (see table D.1), and all mp3 encoding was performed

Table D.1: Sample count, length, rate, and depth of all music, speech, and video datasets. All numbers
given are for the original (uncompressed) data formats.

Modality Dataset Count Length Sample Rate Sample Depth Information Rate

Music

de 8741

2s 44100hz 16 bit
Stereo (2ch)

1411200 b/s
172 KB/s

ex 9443
lz 13163
Total 31347

Speech au 16530 10s 44100hz 16 bit
Monaural (1ch)

705600 b/s
86 KB/s

Video video 1033 1s 30fps
256 × 144 px
3 col (RGB)

8 b/col/px

26542080 b/s
3240 KB/s
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with the LAME [Hegemann et al., 2017] encoder. LAME is a recursive acronym for Lame Ain’t an Mp3

Encoder, and is known for its advanced psychoacoustic modelling, flexibility, and high perceptual-quality mp3

encodings. Details on audio encoding are given in table 4.1. The video dataset was ripped from a youtube

video (compressed), but we treated it as though the original rip were the ground-truth (uncompressed) video,

and measured deviation from the original as distortion, though we compute compression ratio as a ratio of

the original compressed video size. Our experiments utilize 22 mp4 codec variants, each a constant rate factor

(Crf) mp4, encoded by Ffmpeg, with quality parameter ranging from {30, . . . , 51}.

D.2.2 Video Experiments

To demonstrate the flexibility of our approach, we also apply Ewoks to the selection of video codecs.

Perceptual quality metrics are an area of active research, particularly in the visual domain, and in our video

experiments, we characterize distortion with the peak signal to noise ratio (PSNR) Erfurt et al. [2019] metric.

Figure D.1 visualizes the Pareto-optimal frontier for 22 mp4 video compression codecs, which showcases similar

trade-offs as those demonstrated for audio compression in figure 4.1. We use mp4 codecs with integer-valued

Constant Rate Factor (quality parameter) between 30 and 51 with the FFMPEG compression software. The

mean performance of 22 codecs is plotted, along with Pareto optimality curves for all k ∈ {1, 2,|C|}.

Because this experiment is a proof of concept, our dataset is limited in size and complexity. Our set of media

consists of a 17:13 minutes:seconds long, 144p 30fps video youtube video (https://www.youtube.com/watch?

v=310PF8ctRTM) sliced into 1033 distinct 1-second segments. We removed the audio from the video, so the

we need only compress 1-second intervals of frames of images.

We measure divergence in terms of the peak signal-to-noise ratio (PSNR), a common method for measuring

how the fidelity of a compressed image (i.e., how much said image resembles its original form) [Gonzalez and

Woods, 1992]. PSNR compares two images by taking the logarithm of the maximum squared error over the

mean squared error. This scaling ensures that subtle and drastic changes to an image can be compared at

the same order of magnitude with the same metric. This metric can also be applied to video compression

by computing frame-by-frame differences between pixels. Because we need to restrict our attributes to the

interval [0, 1], and want a measure of distortion rather than quality, we take the PSNR Divergence to be

1− PSNR
max PSNR , where maxPSNR refers to the largest PSNR divergence over all our codecs for the given fixed

video segment.
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Figure D.1: Empirical Pareto-optimal frontiers for a selection of video codecs, for k ∈ {1, 2, |C|}. Divergence
measure PSNR (y-axis) versus compression ratio (x-axis) on the video dataset.
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Figure D.2: Pareto optimality curves for k ∈ {1, 2, |C|}, for all audio datasets. The figure matches figure 4.1,
except here, the music dataset is split into its constituent datasets (de, ex, and lz). All codecs, Pareto-
optimality curves, and Pareto-optimal pair mean-attribute-sets are color-coded by dataset (see legend in top
right), and again k always increases from top-left to bottom-right.
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W(·)-Gap Bounds ε versus Sample Size m, k = 3, All Datasets
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W(·)-Gap Bounds ε versus Sample Size m, k = 5, All Datasets
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δ

2m — 4R̃+ 2εSD (Theorem 4.2.2)
Figure D.3: Semilog, log-log, and normalized log-log plots of Ewoks welfare-optimality gap bounds ε (x-axis) bounds
versus sample size m (y-axis), in expectation with 4R̂

n

m(F,x,σ), and w.h.p. with McDiarmid and theorem 4.2.2. The
first row presents results for k = 3, and the second for k = 5. The left, center, and right plots in each row contain the
same information, and vary only in presentation. The left column contains semilog (log-x, natural-y axes) plots, and
the center column contains log-log plots. The right column also contains log-log plots, but in this plot, all bounds are
scaled by

√
m, to visually characterize Θ

√
1/m rates as straight lines.
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D.2.3 Supplementary Audio Experiments

Here we show additional plots and experiments on the audio datasets discussed in section 4.3.

In particular, we first complement the Pareto-optimality visualization of figure 4.1 with figure D.2, which

shows the same in much greater detail (matching the inset, with mean-attribute sets of all codec pairs).

We also give in figure D.3 plots supplementing figure 4.3, now with semilog, log-log, and
√
m-scaled plots of

the same data. We additionally present plots for k = 3 and k = 5 (only k = 3 is given in the paper body).

D.3 Proof Compendium

We now prove our main results stated in the paper body.

D.3.1 Proof of Theorem 4.2.2

The result is shown via a chain of union bounds on Rademacher averages and variances. We now show several

lemmas in service of the main result.

Lemma D.3.1 (Empirical Wimpy Variance Expectation). Suppose x ∼ Dm, and take

v
.
= sup

f∈F
E

x∼D

 m∑
i=1

(
f(x)− E

D
[f ]
)2 & v̂

.
= sup

f∈F

1

m

m∑
i=1

(
f(xi)− Ê

x
[f ]
)2

.

Then v ≤ m
m−1 Ex[v̂].

Proof.

v = sup
f∈F

E
x

 1

m

m∑
i=1

(
f(xi)− E

D
[f ]
)2 Linearity

= sup
f∈F

E
x

 1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]
)2 Bessel’s Correction

≤ E
x

sup
f∈F

1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]
)2 Jensen’s Inequality

= m
m−1 Ex[v̂] Definition of v̂
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Lemma D.3.2 (Empirical Wimpy Variance Concentration). Suppose as in lemma D.3.1, and furthermore

F ⊆ X → [0, 1]. Then

P

v ≥ m
m−1 v̂ +

2 ln( 1δ )

m
+

√
2v̂ ln( 1δ )

m− 1

 ≤ δ .

Proof. Suppose X ∈ Xm, let X\j denote the vector X, missing the jth component, and take Z(X)
.
= sup

f∈F
(m−

1)V̂X [f ] = sup
f∈F

m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2

, and Zj(X)
.
= sup

f∈F
(m−2)V̂X\j[f ] = sup

f∈F

m∑
i=1
i 6=j

(
f(Xi)− Ê

X\j
[f ]
)2

, where

V̂X [f ] denotes the (unbiased) sample variance of f over X.

We first show that

Zj(X) = sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2− m−1

m

(
f(Xj)− Ê

X\j
[f ]
)2

; (68)

to see this, consider that

Zj(X) = sup
f∈F

m∑
i=1
i 6=j

(
f(Xi)− Ê

X\j
[f ]
)2

= sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X\j
[f ]
)2− (f(Xj)− Ê

X\j
[f ]
)2 Additive Identity

Definition of Zj

= sup
f∈F

 m∑
i=1

((
f(Xi)− Ê

X
[f ]
)
+
(
Ê
X
[f ]− Ê

X\j
[f ]
))2− (f(Xj)− Ê

X\j
[f ]
)2

Additive Identity

= sup
f∈F

m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2
+2
(
f(Xi)− Ê

X
[f ]
)(
Ê
X
[f ]− Ê

X\j
[f ]
)
+
(
Ê
X
[f ]− Ê

X\j
[f ]
)2−(f(Xj)− Ê

X\j
[f ]
)2 Unfactoring

= sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2+m

(
Ê
X
[f ]− Ê

X\j
[f ]
)2 − (f(Xj)− Ê

X\j
[f ]
)2 m∑

i=1

(
f(Xi)− Ê

X
[f ]

)
= 0

= sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2+m

(
1
mf(Xj)− 1

m Ê
X\j

[f ]
)2 − (f(Xj)− Ê

X\j
[f ]
)2 E

X
[f ] = 1

mf(Xj) +
m−1
m Ê

X\
[f ]

= sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2− m−1

m

(
f(Xj)− Ê

X\j
[f ]
)2

. Algebra

The desideratum reduces to showing that m
m−1Z(·) is an ( m

m−1 , 0)-self-bounding function (see Boucheron et al.

[2009]). Nonnegativity is clear from the definiton of Z(·). We now show underestimation; first consider that
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for any j ∈ {1, . . . ,m},

Zj(X) = sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2− m−1

m

(
f(Xj)− Ê

X\j
[f ]
)2 Eq. 68

≥

sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2

−(sup
f∈F

m−1
m

(
f(Xj)− Ê

X\j
[f ]
)2) Properties of Suprema

≥ Z(X)− m−1
m .

Definition of Z(·)

∀ f ∈ F : image(f) ⊆ [0, 1]

We may thus conclude that m
m−1Zj(X) ≥ m

m−1Z(X) − 1, which satisfies 1-underestimation. We now show

that Z(·), and subsequently m
m−1Z(·), obey ( m

m−1 , 0)-self-boundedness.

m∑
j=1

Z(X)− Zj(X) = mZ(X)−
m∑
j=1

sup
f∈F

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2− m−1

m

(
f(Xj)− Ê

X\j
[f ]
)2 Eq. 68

≤ mZ(X)− sup
f∈F

m∑
j=1

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2− m−1

m

(
f(Xj)− Ê

X\j
[f ]
)2 Subadditivity

= mZ(X)− sup
f∈F

m

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2− m−1

m

m∑
j=1

(
f(Xj)− Ê

X\j
[f ]
)2 Linearity

= mZ(X)− sup
f∈F

m

 m∑
i=1

(
f(Xi)− Ê

X
[f ]
)2−m−1

m

m∑
j=1

(
m

m−1f(Xj)− m
m−1 ÊX[f ]

)2 Ê
X\j

[f ]= 1
m−1

(
mÊ

X
[f ]−f(Xj)

)
= m(m−1)

m−1 Z(X)−
(m(m−1)

m−1 − m
m−1

)
Z(X) = m

m−1Z(X) Definition of Z(·)

It is now a straightforward matter to observe that m
m−1Z(·), also obeys ( m

m−1 , 0)-self-boundedness, as

m∑
j=1

Z(X)− Zj(X) ≤ m
m−1Z(X)⇒ m

m−1Z(X)− m
m−1Zj(X) ≤ m

m−1 ·
(

m
m−1Z(X)

)
.

With all three desiderata shown, we may now conclude that m
m−1Z(·) is a 0-overestimating, 1-underestimating
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( m
m−1 , 0)-self-bounding function. Now, observe that

P
x

(
W ≥ m

m−1Ŵ + ε
)
= P

x

(
m

m−1Ŵ ≤W − ε
)

Equivalent Events

≤ P
x

(
m

m−1Ŵ ≤
m

m−1 E[Ŵ]− ε
)

Lemma D.3.1

= P
x

(
1

m−1Z(x) ≤ 1
m−1 E[Z]− ε

)
Ŵ = 1

mZ(x)

= P
x

(
1
m ·

m
m−1Z(x) ≤ 1

m ·
m

m−1 E[Z]− ε
)

. Equivalent Events

≤ exp

(
−mε2

2( m
m−1 v̂ + ε)

)
= exp

(
−mε2

2( m
m−1 v̂ + ε)

)
. Sbf Inequality

The step marked Sbf Inequality follows via standard self-bounding function inequalities; see Boucheron

et al. [2009]. An application of the quadratic formula (positive solution) then yields the result, as

ε =
ln( 1δ )

m
+

√√√√( ln( 1δ )

m

)2

+
2v̂ ln( 1δ )

m− 1
≤

2 ln( 1δ )

m
+

√
2v̂ ln( 1δ )

m− 1
⇒ P

(
v ≥ m

m−1 v̂ + ε
)
≤ δ .

With these results, we now show a variance-sensitive supremum-deviation bound in terms of the n-MCERA.

Lemma D.3.3 (Empirical-Variance Sensitive Uniform Convergence Tail Bounds). Suppose as in theorem 4.2.2.

It then holds with probability at least 1− δ over choice of x,σ that

sup
f∈F

∣∣∣∣ED[f ]− Ê
x
[f ]

∣∣∣∣ ≤ 2R̃+ εSD .

Proof. This result follows from a chain of 4 union bounds, each of probability δ
4 , where first v is bounded in

terms of v̂ with lemma D.3.2, then R̂m(F,x) is bounded in terms of R̂
n

m(F,x,σ) with McDiarmid’s bounded

difference inequality [McDiarmid, 1989], Rm(F,D) is bounded in terms of R̂m(F,x) with the self-bounding

function inequality [Boucheron et al., 2000, Thm. 1] (see Oneto et al. [2013] for details), and finally the

supremum deviation is bounded with the symmetrization inequality equation 4 [Boucheron et al., 2013,

see Lemma 11.4] and the refinement of Talagrand’s inequality for empirical processes due to Bousquet [2002,

Thm. 2.3]. The aforementioned results implicitly assume r = 1, so we first consider that case, and then note

that by linear scaling, we attain the general result. In particular, while F , the SD, and each Rademacher

average and tail bound thereof scale linearly, the variance-like quantities εv, v, and v̂ all scale quadratically
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with r2, which has a linear effect, since these always appear inside a root in the final bound. Note also that

while these bounds do place some restrictions on the failure probability δ, our 4-term union bound holds

vacuously when δ ≥ 1
4 , and said restrictions do not apply to δ < 1

4 .

All but the Monte-Carlo bounds are discussed elsewhere, so we give further detail here. Note that this result

generalizes a theorem of Bartlett and Mendelson [2002, thm. 11], which holds for the special case of n = 1.

The probability space in play is the n×m Rademacher random variables of σ, changing any one of which

produces a change of no more than 2r
nm to the n-MCERA, which yields via McDiarmid’s inequality

P
σ

R̂m(F ,x) ≥ R̂
n

m(F ,x,σ) + 2r

√
ln( 4δ )

2nm

 ≤ δ

4
.

This is sufficient to show the stated result. A more careful analysis can improve this bound by noting that,

due to the presence of the absolute value, R̂
n

m(F ,x,σ) = R̂
n

m(F ,x,−σ), and there is essentially one fewer

degree of freedom as a result.

We note also that the stated bound in each of the above references is in most cases sharper than what

we present; this is because we are interested in the explicit form of ε as a function of δ, and thus use the

convenient sub-gamma characterizations, even when sharper sub-Poisson bounds are available. With numeric

inversion, these bounds can be used with fixed δ, and are appropriate when sharper bounds are required,

but they come at the cost of computational overhead, algebraic inconvenience, and lack of interpretability.

Similarly, the uniform union bound of probability δ
4 is also suboptimal, but again is algebraically convenient,

and the potential improvement from nonuniform division of δ is quite small.

With this result, we are now ready to show theorem 4.2.2.

Theorem 4.2.2 (Variance-Sensitive Bounds). Suppose distribution D over X , training sample x ∼ Dm, Monte-

Carlo trial count n, i.i.d. Rademacher matrix σ ∈ (±1)n×m, codec family C, loss family L ⊆ Ra
0+ → [−r, r],

λ-Lipschitz welfare W(·), and codec selection size k. ∀δ ∈ (0, 1), let F .
= min ◦L ◦ (Ck), take v̂ to be the

empirical wimpy variance of F over x and v̂raw to be the empirical raw wimpy variance, and take

1. εERA
.
=

4r 4
δ

3nm
+

√
4v̂raw ln 4

δ

nm
;

2. εRA
.
=

2r ln 4
δ

m
+

√
2r(R̂

n

m(F,x,σ) + εERA) ln
4
δ

m
;

3. R̃ .
= R̂

n

m(F,x,σ) + εERA + εRA;

4. ṽ
.
= m

m−1 v̂ +
4r2 ln 4

δ

m
+

√
2r2v̂ ln 4

δ

m− 1
; &

5. εSD
.
=

r ln 4
δ

3m
+

√
2(ṽ + 4rR̃) ln 4

δ

m
.

It then holds with with pr. ≥ 1− δ over x,σ that

187



1.
∣∣∣W(ĉW,L,D)− Ŵ(ĉW,L,x)

∣∣∣ ≤ 2λR̃+ λεSD &

2. W(ĉW,L,D)−W(c∗W,L,D) ≤ 4λR̃+ 2λεSD .

Proof. This result follows via lemma D.3.3, followed by several straightforward deterministic manipulations.

This result is also a probabilistic guarantee, and it suffices to show that the condition on welfare is satisfied

under the assumptions and probabilistic guarantee of the aforementioned lemma. Henceforth we assume the

conclusion of lemma D.3.3 holds, and thus the following hold only with probability ≥ 1− δ.

By assumption, W(c,L,x) is λ-`∞-Lipschitz in the empirical risks (w.r.t. L) of c on x. Consequently, a

uniform bound of 2R̃ + εSD on empirical risks (lemma D.3.3) implies a λ(2R̃ + εSD) bound on welfare. It

therefore holds that ∣∣W(ĉW,L,D)− Ŵ(ĉW,L,x)
∣∣ ≤ λ(2R̃+ εSD) ,

which yields item (1). Similarly, we have

∣∣Ŵ(c∗W,L,x)−W(c∗W,L,D)
∣∣ ≤ λ(2R̃+ εSD) ,

and consequently, by the triangle inequality (noting that Ŵ(ĉW,L,x) ≤ Ŵ(c∗W,L,x) by definition), we have

∣∣W(ĉW,L,D)−W(c∗W,L,D)
∣∣ ≤ 2λ(2R̃+ εSD) = 4λR̃+ 2λεSD ,

which completes the result. Note that here, the largest value the LHS can attain occurs when the empirical

welfare of c∗W is overestimated by λ(2R̃ + εSD), while ĉW is underestimated by λ(2R̃ + εSD), making ĉW

empirically optimal over x, and no worse than 2λ(2R̃+ εSD)-suboptimal over D.

D.3.2 Proof of Theorem 4.2.3

Theorem 4.2.3 combines several well-understood properties of variance with a bound on the Rademacher

averages of minima of function families. We fist show lemmas regarding variances of linear families and

Rademacher averages of minima. Each lemma in this subsection assumes

1. dual norms: p, q, s.t. |p−1|+ |q−1| = 1;

2. Codec family: C such that sup
c∈C,x∈X

‖c(x)‖q ≤ 1; and

3. Linear loss family Lp = { `(a) .
= w · a | w ∈ Ra

0+ s.t. ‖w‖p ≤ 1 } (as defined in eq. 34).
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We first show bounds on the variances of singleton codec families.

Lemma D.3.4 (Variance of Linear Families).

sup
c∈C

sup
`∈L

V̂
x
[` ◦ c] = sup

c∈C

∥∥Ĉ
x
[c]
∥∥
q→p

Proof. First note that this result essentially holds componentwise over each c ∈ C. For a single c, in the

special case of p = q = 2, it is the standard Rayleigh decomposition argument used in singular value

decomposition (SVD) and principal component analysis (PCA), and for arbitrary p 6= q 6= 2 dual norms, the

spectral norm is generalized to an operator norm. We introduce the unit-sphere notation

Sa−1
p

.
= {w ∈ Ra | ‖w‖p = 1} ,

and now show the result proper:

sup
c∈C

sup
`∈L

V̂
x
[` ◦ c] = sup

c∈C
sup

w∈Sa−1
p

V̂
x
[w · c(·)] Definition of L

= sup
c∈C

sup
w∈Sa−1

p

w Ĉ
x
[c]w> Variance Properties

= sup
c∈C

∥∥∥∥Ĉx [c]
∥∥∥∥
p→q

.

∥∥∥∥Ĉx [c]w>
∥∥∥∥
q

≤ ‖w‖p

∥∥∥∥Ĉx [c]
∥∥∥∥
p→q

Hölder’s Inequality

Note that Hölder’s inequality, which generalizes the Cauchy-Schwarz inequality to a · b ≤ ‖a‖p‖b‖q, holds

with equality for appropriate choice of w, which the supremum selects, yielding (strict) equality.

We now show compositional bounds on the Rademacher averages of codec selection.

Lemma D.3.5 (Bounding Rademacher Averages of Minima). Suppose F1,F2, . . . ,Fk ⊆ X → R, and let

Fmin
.
= { min

i∈1,...,k
fi(x) | f ∈ F1 × · · · × Fk } .

Then R̂m(Fmin,x) ≤
m∑
i=1

R̂m(Fi,x).
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Proof. We first show the result for k = 2.

R̂m(Fmin,x) = E
σ

 sup
f1∈F1,f2∈F2

∣∣∣∣∣∣ 1m
m∑
i=1

σi min
(
f1(xi), f2(xi)

)∣∣∣∣∣∣
 Definition

= E
σ

 sup
f1∈F1,f2∈F2

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
f1+f2−|f1−f2|

2

)
(xi)

∣∣∣∣∣∣
 Minimum Identity

≤ E
σ

 sup
f1∈F1
f2∈F2

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
f1+f2

2

)
(xi)

∣∣∣∣∣∣
+E

σ

 sup
f1∈F1
f2∈F2

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
|f1−f2|

2

)
(xi)

∣∣∣∣∣∣
 Triangle Inequality

= R̂m( f1+f2
2 ,x) + R̂m( |F1	F2|

2 ,x) Definition

= R̂m( f1+f2
2 ,x) + R̂m(|·| ◦ F1	F2

2 ,x) Algebra

≤ R̂m( f1+f2
2 ,x) + R̂m(F1	F2

2 ,x) Talagrand’s Contraction Inequality

≤ R̂m(F1,x) + R̂m(F2,x) Direct Summation

The result now follows by induction. Note that the contraction inequality avoids the usual 2-factor gap, as

the |·| function is odd.

With these ingredients, we now restate and show theorem 4.2.3.

Theorem 4.2.3 (Bounds for Linear Loss Families). Suppose p, q, s.t. |p−1|+ |q−1| = 1, codec family C, Lp

as in (34), and assume sup
c∈C,x∈X

‖c(x)‖q ≤ s. For all k ∈ 1, . . . |C|, take Fk
.
= min ◦Lp ◦

(C
k

)
, and v̂k to be the

empirical wimpy variance of Fk on sample x. Taking Ĉx[c] ∈ Ra×a to denote the empirical covariance matrix

of the attributes of codec c over x, and ‖·‖p→q to be the `p-`q operator norm, we have

v̂1 = sup
c∈C

sup
`∈L

V̂
x
[` ◦ c] ≤ sup

c∈C

∥∥Ĉ
x
[c]
∥∥
q→p

, & R̂
n

m(F1,x,σ) ≤ 1
n

n∑
j=1

sup
c∈C

∥∥∥∥∥ 1
m

m∑
i=1

σj,ic(xi)

∥∥∥∥∥
q

.

Furthermore, for any a, b ∈ N s.t. k = a+ b, we have

v̂k ≤ v̂a + v̂b ≤ kv̂1 , & R̂m(Fk,x) ≤ R̂m(Fa,x) + R̂m(Fb,x) ≤ kR̂m(F1,x) .

Proof. We first consider the bounds on v̂1 and R̂
1

m(F1,x,σ). Both are inequalities, as they are shown by

defining a linear loss family without nonnegativity constraints Lp±, and bounding the corresponding quantities
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for Lp±. In particular, take

Lp±
.
= { `(a) .

= w · a | w ∈ Ra s.t. ‖w‖p ≤ 1 } ,

which differs from Lp in that w ∈ Ra
0+ is relaxed to w ∈ Ra, thus Lp ⊆ Lp±. Now take F1±

.
= Lp ◦ C, and

note that F1 ⊆ F1±. It thus holds that the empirical wimpy variance and 1-ERA of F1± are at least as great

as the corresponding quantities for F1.

Consequently, from the definition of operator norm, we have

v̂1 = sup
c∈C

sup
`∈Lp

V̂
x
[` ◦ c] ≤ sup

c∈C
sup

`∈Lp±

V̂
x
[` ◦ c] = sup

c∈C

∥∥Ĉ
x
[c]
∥∥
q→p

.

Similarly, via dual-norm properties, we have

R̂
1

m(F1,x,σ) ≤ R̂
1

m(F1±,x,σ) = sup
c∈C

∥∥∥∥∥ 1
m

m∑
i=1

σic(xi)

∥∥∥∥∥
q

.

Now, note that the property

v̂a+b ≤ v̂a + v̂b ≤ (a+ b)v̂1

then follows by subadditivity of the variance of minima, and finally

R̂m(Fa+b,x) ≤ R̂m(Fa,x) + R̂m(Fb,x) ≤ (a+ b)R̂m(F1,x)

follows from lemma D.3.5.

Corollary D.3.6 (Bounds for Linear Loss Families). Suppose as in theorem 4.2.3, and also p = q = 2, and

all attribute values are contained by the unit sphere. Then

v̂k ≤ k sup
c∈C

∥∥∥∥Ĉx [c]
∥∥∥∥
2→2

,

where ‖·‖2→2 is the spectral norm (largest eigenvalue). Additionally, with pr. ≥ 1− δ over x,σ, we have

R̂m(Fk,x)≤k

(
R̂

n

m(F1,x,σ) +

√
ln 1

δ

2nm

)
≤k

(
1
n

n∑
i=1

sup
c∈C

∥∥∥∥∥1
m

m∑
j=1

σi,jc(xj)

∥∥∥∥∥
2

+

√
ln 1

δ

2nm

)
.
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Consequently, theorem 4.2.2 holds with

εRA ≤
ln 4

δ

3m
+

√
2k(R̂

n

m(F1,x,σ) + εERA) ln
4
δ

m
;

R̃ ≤ k
(
R̂

n

m(F1,x,σ) + εERA

)
+ εRA; &

ṽ ≤ m
m−1kv̂1 +

2 ln 4
δ

m
+

√
2kv̂1 ln

4
δ

m− 1
.

Proof. This result follows directly from theorem 4.2.3, noting that‖·‖2→2 is the spectral norm, and applying the

McDiarmid argument of lemma D.3.3 to (probabilistically) upper-bound R̂m(F1,x) as R̂
n

m(F1,x,σ) + εERA,

and then noting that R̂m(Fk,x) ≤ kR̂m(F1,x).

D.3.3 Justifications of Equations

We now justify or further elucidate several numbered equations found in the paper body.

Asymptotic Uniform Convergence Bounds We first consider equations 33 and 35. These follow from

theorem 4.2.2 and corollary D.3.6, respectively. Equation 33 assumes n ∈Ω( r2

v ), which is required to ensure

that the contributions of the term εERA are dominated by εSD, as

εERA =

√
r2

nm
∈ O

√
v

m
.

Note also that the ERA itself dominates the εERA terms, as by the Khintchine inequality [see Haagerup,

1982], we have

R̂m(F ,x) ≥
√

v̂

m
 
m→∞

√
v

m
,

where the v̂  v is asymptotic in m for fixed r. Essentially the same arguments hold for equation 35, now

assuming n ∈Ω( 1
v1
), as we assume (corollary D.3.6) r2 = r = 1, and the analysis now operates on F1, thus

v1 is the variance-concept of interest.

Pareto Optimality Equations We now consider equations 37 and 38. Note that we define the Pareto-

optimal fronts as the LCH(·) of the Pareto-optimal codecs / codec sets, but the expressions given merely take

the LCH(·) of all codecs / codec sets. This is because any Pareto-suboptimal codecs or codec sets included in

the LCH(·) by definition have no impact on the LCH(·), thus the two formulations are identical.
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Appendix E

Supplementary Material for Chapter 5

E.1 Efficient FPAC-Learning

We now show theorem 5.3.1.

Theorem 5.3.1 (Efficient FPAC Learning via Convex Optimization). Suppose each hypothesis space

Hd ∈ H is indexed by Θd ⊆ RPoly(d), i.e., Hd = {h(·; θ) | θ ∈ Θd}, s.t. (Euclidean) Diam(Θd) ∈ Poly(d), and

∀x ∈ X , θ ∈ Θd, h(x; θ) can be evaluated in Poly(d) time, and θ̃ ∈ RPoly(d) can be Euclidean-projected onto

Θd in Poly(d) time. Suppose also ` such that ∀x ∈ X , y ∈ Y : θ 7→ `(y, h(x; θ)) is a convex function, and

suppose Lipschitz constants λ`, λH ∈ Poly(d) and some norm ‖·‖Y over Y s.t. ` is λ`-‖·‖Y -|·|-Lipschitz in ŷ,

i.e.,

∀y, ŷ, ŷ′ ∈ Y :
∣∣`(y, ŷ)− `(y, ŷ′)

∣∣ ≤ λ`

∥∥ŷ − ŷ′
∥∥
Y ,

and also that each Hd is λH-‖·‖2-‖·‖Y -Lipschitz in θ, i.e.,

∀x ∈ X , θ, θ′ ∈ Θd :
∥∥h(x; θ)− h(x; θ′)

∥∥
Y ≤ λH

∥∥θ − θ′
∥∥
2

.

Finally, assume ` ◦Hd exhibits ε-δ uniform convergence with sample complexity mUC(ε, δ, d) ∈ Poly( 1ε ,
1
δ , d).

It then holds that, for arbitrary initial guess θ0 ∈ Θd, for any group distributions D1:g, group weights w, and

fair malfare function W

(·; ·), the algorithm (see algorithm 2)

A(D1:g,w,

W

(·; ·), ε, δ, d) .
= APSG

(
`,Hd, θ0,mUC(·, ·, d),D1:g,w,

W

(·; ·), ε, δ
)

fair-PAC-learns (H, `) with sample complexity m(ε, δ, d, g) = g ·mUC(
ε
3 ,

δ
g , d), and (training) time-complexity
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∈ Poly( 1ε ,
1
δ , d, g), thus (H, `) ∈ FPACAgn

Poly.

Proof. We now show that this subgradient-method construction of A requires Poly( 1ε ,
1
δ , d, g) time to identify

an ε-δ- W

p(·; ·)-optimal θ̃ ∈ Θd, and thus fair-PAC-learns (H, `). This essentially boils down to showing

that (1) the empirical malfare objective is convex and Lipschitz continuous, and (2) that algorithm 2 runs

sufficiently many subgradient-update steps, with appropriate step size, on a sufficiently large training set,

to yield the appropriate guarantees, and that each step of the subgradient method, of which there are

polynomially many, itself requires polynomial time.

First, note that by theorem 3.3.8 items 3 and 5, we may assume that W

(·; ·) can be expressed as a p-power

mean with p ≥ 1; thus henceforth we refer to it as W

p(·; ·). Now, recall that the empirical malfare objective

(given θ ∈ Θd and training sets z1:g) is defined as

W

p

(
i 7→ R̂(h(·; θ); `, zi);w

)
.

We first show that empirical malfare is convex in Θd. By assumption and positive linear closure, R̂(h(·; θ′); `, zi)

is convex in θ ∈ Θd. The objective of interest is the composition of W

p(·;w) with this quantity evaluated

on each of g training sets. By theorem 3.3.7 item 4, W
p(·;w) is convex ∀p ∈ [1,∞] in Rg

0+, and by the

monotonicity axiom, it is monotonically increasing. Composition of a monotonically increasing convex

function on Rg
0+ with convex functions on Θd yields a convex function, thus we conclude the empirical malfare

objective is convex in Θd.

We now show that empirical malfare is Lipschitz-continuous. Now, note that for any p ≥ 1, w,

∀S,S ′ :
∣∣ W

p(S;w)− W

p(S ′;w)
∣∣ ≤ 1

∥∥S − S ′∥∥∞ ,

i.e., W

p(·;w) is 1-‖·‖∞-|·|-Lipschitz in empirical risks (see theorem 3.3.7 item 3), and thus by Lipschitz

composition, we have Lipschitz property

∀θ, θ′ ∈ Θd :
∣∣∣ W

p

(
i 7→ R̂(h(·; θ); `, zi);w

)
− W

p

(
i 7→ R̂(h(·; θ′); `, zi);w

)∣∣∣ ≤ λ`λH
∥∥θ − θ′

∥∥
2

.

We now show that algorithm 2 FPAC-learns (H, `). As above, take m
.
= mUC(

ε
3 ,

δ
g , d). Our algorithm shall

operate on a training sample z1:g,1:m ∼ Dm
1 × · · · × Dm

g .

First note that evaluating a subgradient (via forward finite-difference estimation or automated subdiffer-

entiation) requires (dim(Θd) + 1)m evaluations of h(·; ·), which by assumption is possible in Poly(d,m) =
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Poly( 1ε ,
1
δ , d, g) time.

The subgradient method produces θ̃ approximating the empirically-optimal θ̂ such that [see Shor, 2012]

f(θ̃) ≤ f(θ̂) +

∥∥∥θ0 − θ̂
∥∥∥2
2
+ Λ2α2n

2αn
≤ Diam2(Θd) + Λ2α2n

2αn
,

for Λ-‖·‖2-|·|-Lipschitz objective f , thus taking α
.
= Diam(Θd)

Λ
√
n

yields

f(θ̃)− f(θ̂) ≤ Diam(Θd)Λ√
n

.

As shown above, Λ = λ`λH, thus we may guarantee optimization error

εopt
.
= f(θ̂)− f(θ∗) ≤ ε

3

if we take iteration count

n ≥ 9Diam2(Θd)λ
2
`λ

2
H

ε2
=

(
3Diam(Θd)λ`λH

ε

)2

∈ Poly( 1ε , d) .

As each iteration requires m ·Poly(d) ⊆ Poly( 1ε ,
1
δ , d, g) time, the subgradient method identifies an ε

3 -empirical-

malfare-optimal θ̃ ∈ Θd in Poly( 1ε ,
1
δ , d, g) time.

As m was selected to ensure ε
3 - δg uniform convergence, we thus have that by uniform convergence, and union

bound (over g groups), with probability at least 1− δ over choice of z1:g, we have

∀i ∈ {1, . . . , g}, θ ∈ Θd :
∣∣∣ W

p(i 7→ R̂(h(·; θ); `, zi);w)− W

p(i 7→ R(h(·; θ); `,Di);w)
∣∣∣ ≤ ε

3
.

Combining estimation and optimization errors, we get that with probability at least 1− δ, the approximate-

EMM-optimal h(·; θ̃) obeys

W

p(i 7→ R(h(·; θ̃); `,Di);w) ≤ W

p(i 7→ R̂(h(·; θ̃); `,zi);w) + ε
3

≤ W

p(i 7→ R̂(h(·; θ̂); `,zi);w) + 2ε
3

≤ W

p(i 7→ R̂(h(·; θ∗); `, zi);w) + 2ε
3

≤ W

p(i 7→ R(h(·; θ∗); `,Di);w) + ε .
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We may thus conclude that A fair-PAC learns H with sample complexity gm = g ·mUC(
ε
3 ,

δ
g , d). Furthermore,

as the entire operation requires polynomial time, we have (H, `) ∈ PACAgn
Poly.

We now work towards proof of theorem 5.3.2. We begin with a technical lemma deriving relevant properties

of the cover employed in the main result.

Lemma E.1.1 (Group Cover Properties). Suppose loss function ` of bounded codomain (i.e., ‖`‖∞ is

bounded), hypothesis class H ⊆ X → Y, and per-group samples z1:g,1:m ∈ (X × Y)g×m, letting ©g
i=1zi

denote their concatenation. Now define

Ĉ∪(1:g)
.
=

g⋃
i=1

Ĉ (` ◦ H, zi, γ) & Ĉ◦(1:g)
.
= Ĉ

(
` ◦ H,©g

i=1zi,
γ√
g

)
.

Then, letting Ĉ refer generically to either Ĉ∪(1:g) or Ĉ◦(1:g), the following hold.

1. If Ĉ is of minimal cardinality, then

∣∣∣Ĉ∪(1:g)

∣∣∣ ≤ gN (` ◦ H,m, γ) &
∣∣∣Ĉ◦(1:g)∣∣∣ ≤ N (` ◦ H, gm, γ√

g ) .

2. sup
D over X×Y

Rm(` ◦ H,D) ≤ inf
γ≥0

γ +‖`‖∞

√
lnN (` ◦ H, γ)

2m
.

3. Suppose lnN (` ◦ H, γ) ∈ Poly( 1γ ). Then the uniform-convergence sample-complexity of ` ◦ H over g

groups obeys

mUC(` ◦ H, ε, δ, g)
.
= argmin

m

∣∣∣∣∣∣ sup
D1:g over (X×Y)g

P

(
max

i∈1,...,g
sup
h∈H

∣∣∣∣EDi

[` ◦ h]− Ê
zi∼Dm

i

[` ◦ h]
∣∣∣∣ > ε

)
≤ δ


≤

8‖`‖2∞ ln
(

4

√
2g
δ N (` ◦ H, ε

4 )
)

ε2

∈ O

(
ln gN (`◦H,ε)

δ

ε2

)
⊂ Poly

(
1

ε
, exp

1

δ
, exp g

)
.

4. For the sample zi associated with each group i ∈ 1, . . . , g, Ĉ is a γ-uniform-approximation of empirical

risk R̂(h; `, zi), and a γ-`2 cover of the loss family ` ◦ H, as

max
i∈1,...,g

min
hγ∈Ĉ

∣∣∣R̂(h; `, zi)− R̂(hγ ; `, zi)
∣∣∣ ≤ max

i∈1,...,g
min
hγ∈Ĉ

√√√√ 1

m

m∑
j=1

(
(` ◦ h)(zi,j)− (` ◦ hγ)(zi,j)

)2 ≤ γ .
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5. Ĉ◦(1:g), but not necessarily Ĉ∪(1:g), simultaneously (across all groups) γ-uniformly-approximates empirical

risk, and is a γ-`2 cover of the loss family ` ◦ H, as

min
hγ∈Ĉ◦(1:g)

max
i∈1,...,g

∣∣∣R̂(h; `, zi)− R̂(hγ ; `, zi)
∣∣∣ ≤ min

hγ∈Ĉ◦(1:g)

max
i∈1,...,g

√√√√1

m

m∑
j=1

(
(` ◦ h)(zi,j)− (` ◦ hγ)(zi,j)

)2 ≤ γ .

Proof. We first show items 1 to 3, followed by a key intermediary relating risk values and `2 distances, and

close by showing items 4 and 5.

We begin with item 1. Both bounds follow directly from the definition of uniform covering numbers.

We now show item 2. This result follows via a standard sequence of operations over the Rademacher average.

In particular, observe

sup
D over X×Y

Rm(` ◦ H,D) = sup
D over X×Y

E
z∼Dm

[
R̂m(` ◦ H, z)

]
Definition of R

≤ sup
D over X×Y

E
z∼Dm

[
inf
γ≥0

γ + R̂m(C∗(` ◦ H, z, γ), z)
]

Discretization

≤ inf
γ≥0

γ + sup
D over X×Y

E
z∼Dm

‖`‖∞
√

ln
∣∣C∗(` ◦ H, z, γ)∣∣

2m

 Massart’s Inequality

≤ inf
γ≥0

γ +‖`‖∞

√
lnN (` ◦ H, γ)

2m
, Definition of N

where the Massart’s Inequality step follows via Massart’s finite class inequality [Massart, 2000, lemma 1],

and the Discretization step via Dudley’s discretization argument.

We now show item 3. By the symmetrization inequality, and a 2-tailed application of McDiarmid’s bounded

difference inequality [McDiarmid, 1989], where changing any zi,j has bounded difference ‖`‖∞
m , we have that

∀i : P

sup
h∈H

∣∣∣∣∣EDi

[` ◦ h]− Ê
zi∼Dm

i

[` ◦ h]

∣∣∣∣∣ > 2Rm(` ◦ H,Di) +‖`‖∞

√
ln 2

δ

2m

 ≤ δ

thus by union bound over g groups, we have

P

 max
i∈1,...,g

sup
h∈H

∣∣∣∣∣EDi

[` ◦ h]− Ê
zi∼Dm

i

[` ◦ h]

∣∣∣∣∣ > sup
D over X×Y

2Rm(` ◦ H,D) +‖`‖∞

√
ln 2g

δ

2m

 ≤ δ .
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Now, let estimation error bound εest
.
= sup
D over X×Y

2Rm(` ◦ H,D) +‖`‖∞
√

ln 2g
δ

2m , and observe that via item 2,

εest ≤ inf
γ≥0

2γ + 2‖`‖∞

√
lnN (` ◦ H, γ)

2m
+‖`‖∞

√
ln 2g

δ

2m
.

From here, we solve for an upper-bound on sample-size m to get

mUC(` ◦ H, ε, δ, g) ≤ inf
γ≥0

4‖`‖2∞ lnN (` ◦ H, γ) +‖`‖2∞ ln 2g
δ

2(ε− 2γ)2
=

2‖`‖2∞ ln

(
4

√
2g
δ N (` ◦ H, γ)

)
(ε− 2γ)2

≤
8‖`‖2∞ ln

(
4

√
2g
δ N (` ◦ H, ε

4 )

)
ε2

Set γ =
ε

4

∈ O

(
ln gN (`◦H,ε)

δ

ε2

)
⊂ Poly

(
1

ε
, exp

1

δ
, exp g

)
. N (` ◦ H, ε

)
∈ Poly

1

ε

We now show an intermediary which immediately implies the left inequalities of both items 4 and 5. In

particular, we may relate these empirical risk gaps to (size-normalized) `2 distance, as (for each i) we have

∀h ∈ H, hγ ∈ Ĉ that

∣∣∣R̂(h; `, zi)−R̂(hγ ; `,zi)
∣∣∣≤ 1

m

m∑
j=1

∣∣(` ◦ h)(zi,j)−(` ◦ hγ)(zi,j)
∣∣≤
√√√√1

m

m∑
j=1

(
(` ◦ h)(zi,j)−(` ◦ hγ)(zi,j)

)2
.

Here the last inequality holds since we divide m inside the
√
·. The opposite inequality holds for standard

`1 and Euclidean distance, where m is not divided, essentially because the `1 and `2 distances differ by up

to a factor
√
m, but this form may be familiar as the relationship between the mean and root mean square

errors. The unconvinced reader may note that this size-normalized `2 distance is in fact the (unweighted)

p = 2 power-mean, and thus this step follows via theorem 3.3.7 item 1.

We now show the right inequality of item 4. Note that for the case of Ĉ∪(1:g), the result is almost tautological,

as it holds per group by the union-based construction of Ĉ∪(1:g). The case of Ĉ◦(1:g) is more subtle, but we

defer its proof to the final item, as it then follows as an immediate consequence of the max-min inequality,

i.e., ∀h ∈ H,

max
i∈1,...,g

min
hγ∈̂C◦(1:g)

√√√√1

m

m∑
j=1

(
(` ◦ h)(zi,j)−(` ◦ hγ)(zi,j)

)2 ≤ min
hγ∈̂C◦(1:g)

max
i∈1,...,g

√√√√1

m

m∑
j=1

(
(` ◦ h)(zi,j)−(` ◦ hγ)(zi,j)

)2
.
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We now show item 5. Suppose (by way of contradiction) that there exists some h ∈ H such that

min
hγ∈Ĉ◦(1:g)

max
i∈1,...,g

√√√√ 1

m

m∑
j=1

(
(` ◦ h)(zi,j)− (` ◦ hγ)(zi,j)

)2
> γ .

One then need only consider the summands associated with a maximal i to observe that this implies

min
hγ∈Ĉ◦(1:g)

√√√√ 1

mg

g∑
i=1

m∑
j=1

(
(` ◦ h)(zi,j)− (` ◦ hγ)(zi,j)

)2
>

γ
√
g

,

thus Ĉ◦(1:g) is not a γ√
g -`2 cover of ©g

i=1zi, which contradicts its very definition. We thus conclude

∀h ∈ H : min
hγ∈Ĉ◦(1:g)

max
i∈1,...,g

√√√√ 1

m

m∑
j=1

(
(` ◦ h)(zi,j)− (` ◦ hγ)(zi,j)

)2 ≤ γ .

With lemma E.1.1 in hand, we are now ready to show theorem 5.3.2.

Theorem 5.3.2 (Efficient FPAC-Learning by Covering). Suppose loss function ` of bounded codomain (i.e.,

‖`‖∞ is bounded), and hypothesis class sequence H, s.t. ∀m, d ∈ N, z ∈ (X × Y)m, there exist

1. a γ-`2 cover C∗(` ◦ Hd, z, γ), where
∣∣C∗(` ◦ Hd, z, γ)

∣∣ ≤ N (` ◦ Hd, γ) ∈ Poly( 1γ , d); and

2. an algorithm to enumerate a γ-`2 cover Ĉ(` ◦ Hd, z, γ) of size PolyN (` ◦ Hd,m, γ) in Poly(m, 1
γ , d) time.

Then (`,H) ∈ FPACPoly, where (1) is sufficient to show that (`,H) is fair-PAC learnable with polynomial

sample complexity, and (2) is required only to show polynomial training time complexity.

Proof. We now constructively show the existence of a fair-PAC-learner A for (`,H) over domain X and

codomain Y. As in theorem 5.3.1, we first note that by theorem 3.3.8 items 3 and 5, under the conditions of

FPAC learning, this reduces to showing that we can learn any malfare concept W

p(·; ·) that is a p-power

mean with p ≥ 1.

We first assume a training sample z1:g,1:m ∼ Dm
1 × · · · × Dm

g , i.e., a collection of m draws from each of the

g groups. In particular, we shall select m to guarantee that the estimation error for the malfare does not

exceed ε
3 with probability at least 1− δ, i.e., we require that with said probability,

εest
.
=
∣∣∣ W

p(i 7→ R̂(h; `, zi);w)− W

p(i 7→ R(h; `,Di);w)
∣∣∣ ≤ ε

3
.
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Now, note that by theorem 3.3.7 item 3 (contraction), we have

∣∣∣ W

p(i 7→ R̂(h; `, zi);w)− W

p(i 7→ R(h; `,Di);w)
∣∣∣ ≤ max

i∈1,...,g
sup
h∈Hd

∣∣∣R(h; `,Di);w)− R̂(h; `, zi);w)
∣∣∣ ,

and by lemma E.1.1 item 3, a sample of size

m =

⌈
81‖`‖2∞ ln

(
4

√
2g
δ N (` ◦ H, ε

12 )
)

ε2

⌉
∈ O

(
ln gN (`◦H,ε)

δ

ε2

)
⊂ Poly

(
1

ε
, exp

1

δ
, exp g

)

suffices to ensure that

P

(
max

i∈1,...,g
sup
h∈Hd

∣∣∣R(h; `,Di);w)− R̂(h; `, zi);w)
∣∣∣ > ε

3

)
≤ δ ,

thus guaranteeing the stated estimation error bound.

With our sample size and estimation error guarantee, we now define the learning algorithm and bound its

optimization error. Take cover precision γ
.
= ε

3
√
g . By assumption, for each d ∈ N, we may enumerate a γ-cover

Ĉ(` ◦ Hd,©g
i=1zi, γ), where ©g

i=1zi denotes the concatenation of each zi, in Poly(gm, 1
γ , d) = Poly( 1ε ,

1
δ , d, g)

time. For the remainder of this proof, we refer to this cover as Ĉ.

Now, we take the learning algorithm to be empirical malfare minimization over Ĉ. Let

ĥ
.
= argmin

hγ∈Ĉ

W

p(i 7→ R̂(hγ ; `, zi);w) & h̃
.
= argmin

h∈Hd

W

p(i 7→ R̂(h; `, zi);w) ,

where ties may be broken arbitrarily. Note that via standard covering properties, that the optimization error

is bounded as

εopt
.
=

W

p

(
i 7→ R̂(ĥ; `, zi);w

)
− W

p

(
i 7→ R̂(h̃; `, zi);w

)
Definition

= sup
h∈Hd

min
hγ∈Ĉ

W

p

(
i 7→ R̂(hγ ; `, zi);w

)
− W

p

(
i 7→ R̂(h; `, zi);w

) Properties of Suprema

Definition of ĥ, h̃

≤ sup
h∈Hd

min
hγ∈Ĉ

max
i∈{1,...,g}

∣∣∣R̂(hγ ; `, zi)− R̂(h; `,zi)
∣∣∣ Item 3 (Contraction)

≤ √gγ =
ε

3
. Lemma E.1.1 Item 5

This controls for optimization error between the true and approximate EMM solutions h̃ and ĥ.
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We now combine the optimization and estimation error inequalities, letting

h∗ .
= argmin

h∈Hd

W

p(i 7→ R(h; `,Di);w) ,

denote the true malfare optimal solution, over distributions rather than samples, breaking ties arbitrarily. We

then derive

W

p(i 7→ R(h∗; `,Di);w)− W

p(i 7→ R(ĥ; `,Di);w)

=
( W

p(i 7→ R(h∗; `,Di);w)− W

p(i 7→ R̂(h∗; `, zi);w)
)

≤ εest

+
( W

p(i 7→ R̂(h∗; `, zi);w)− W

p(i 7→ R̂(h̃; `, zi);w)
)

≤ 0

+
( W

p(i 7→ R̂(h̃; `, zi);w)− W

p(i 7→ R̂(ĥ; `, zi);w)
)

≤ εopt

+
( W

p(i 7→ R̂(ĥ; `, zi);w)− W

p(i 7→ R(ĥ; `,Di);w)
)

≤ εest

≤ εopt + 2εest =
ε

3
+

2ε

3
= ε . See Above

We thus conclude that this algorithm produces an ε- W
p(·; ·) optimal solution with probability at least 1− δ,

and furthermore both the sample complexity and time complexity of this algorithm are Poly( 1ε ,
1
δ , g, d). Hence,

as we have constructed a polynomial-time fair-PAC learner for (H, `), we may conclude (H, `) ∈ FPACPoly.
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Appendix F

Supplementary Material for Chapter 7

F.1 A Compendium of Missing Proofs

Definition F.1.1. Consider X1:T : X1, X2, . . . XT . We define Ci to be the autocovariace of two steps of M

(at stationarity) being i apart. i.e., Ci
.
= Cov(X1, X1+i).

Note that for i.i.d samples the autocovariance of any pair of samples Xi and Xj is zero. We do not have

independence here nevertheless for reversible Makrov chains (See for example Equation 12.9 from Levin and

Peres [2017]) we have Ci ≤ λi
√
Vπ[f ]Vπ[f ] = λiv. The following lemmas will be used throughout:

Lemma F.1.2. Suppose X1:T : X1, X2, . . . XT is a trace of length T of M. using the above definition for

Ci, the trace variance are related as

vT =
1

T
vπ +

2

T 2

T−1∑
i=1

(T − i)Ci . (69)

Proof. The trace variance is

vT = E


 1

T

T∑
i=1

(f(Xi)− µ)

2
 = E

 1

T 2

T∑
i=1

T∑
j=1

(f(Xi)− µ)(f(Xj)− µ)

 =
1

T
vπ +

2

T 2

T−1∑
i=1

(T − i)Ci.

Lemma F.1.3. For any lazy reversible chain M, we have vπ ≤ 2v2 ≤ 3v3 ≤ . . . , i.e, for any T and T ′

satisfying T < T ′ we have, TvT ≤ T ′vT ′ .
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Lemma F.1.4. For 1 ≤ i ≤ n
2 , let fi be defined as in lemma 7.2.3, we have vT (fi) ≤ Θ(i

2
/2).

Proof. We first prove that vT (fi) ≤ Θ(i2)/T . Note that the function x 7→ x mod 2i partitions the set [n] to

2i partitions, and the relaxation time of the projection chain Mfi is Θ(i2).

We first assume WLOG that i divides 3: this is so we may analyze an convenient integer-length trace, but

the remaining cases hold with constant-factor differences. Note that τrel ∈Θ(n2), and our proof operates by

analyzing I-traces, for I
.
= i2/9, and then applying trace-variance inequalities to draw the desired conclusions.

Assume X1, X2, . . . , Xi2 is a trace of the unbiased walk on the cycle, and define Yk = Xk+1 − Xk. Thus,

Xk =
∑k−1

j=1 Yj + s0 where s0 is the starting point. Note that Yj is a symmetric random variable (thus

has equal mean and median), which we shall use to apply Lévy’s inequality. The proof strategy here is to

lower-bound vi2/9 by showing that a constant fraction of stationary traces inM(i2/9) see only one color. We call

such traces homogeneous, and note that for such traces X, we have (favg(X)− µ)2 = 1
4 (as favg(X) ∈ {0, 1},

and µ = 1
2 ), and from there we bound trace variances as appropriate.

We begin with a key step in deriving a lower-bound on the proportion of such homogeneous traces. In particular,

take S0
.
= {i/3+1, i/3+2, . . . , 2i/3} ⊆ [n], and similarly take Sk

.
= {ki+ i/3+1, ki+ i/3+2, . . . , ki+ 2i/3} ⊆ [n],

in other words each Sk is the middle third of the kth contiguous color region. Finally, take S
.
=
⋃n/i

k=1 Sk.

These regions are depicted graphically in figure 7.2.

Let SD(Y )
.
= max

k∈1,...,i2/9

∣∣∣∣∣∣
I∑

j=1

Yk

∣∣∣∣∣∣, i.e., SD(Y ) = max
k∈1,...,i2/9

∆◦(X1, Xk), for ∆◦ the shortest-path distance on the

cycle, and observe

P
(
SD(Y ) ≥ i

3

)
≤ 2P


∣∣∣∣∣∣∣
i2/9∑
j=1

Yj

∣∣∣∣∣∣∣ ≥
i

3

 Lévy’s inequality

≤ 4 exp

−2
(

i
3

)2
i2/9

 Hoeffding’s inequality

= 4 exp(−2) .
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From here, we decompose the trace variance and bound it as

vI = E
Y

 1
i2/9

i2/9∑
j=1

Yj − µ


2

By Definition

≥ P(X1 ∈ S)P
(
SD(Y ) ≤ i

3

∣∣∣∣X1 ∈ S

)
E

Y |SD(Y )≤ i
3

 1
i2/9

i2/9∑
j=1

Yj − µ


2

Law of Total Expectation

≥ 1

3

(
1− 4 exp(−2)

)1
4
> 0.03822 .

P(X1 ∈ S) = 1
3

See Above

(0− 1
2 )

2 = (1− 1
2 )

2 = 1
4

We thus conclude vI ∈ Θ(1), therefore via lemma F.1.3, vT ∈Θ(i
2
/T).

F.1.1 Correctness and Efficiency of DynaMITE

A Note on Nonstationarity

Note that theorems 7.2.5 and 7.2.6 assume stationarity i.e., they consider traces X1:m : X1, X2, . . . Xm

assuming X1 ∼ π. This assumption is often prohibitive, as drawing even a single such sample can be

computationally infeasible. We overcome this problem using the following equation for X1:m : X1, X2, . . . Xm,

X1 ∼ ν.

P
X

X1∼ν

(
|µ̂− µ| ≥ ε

)
≤
∥∥∥∥∂ν∂π

∥∥∥∥
π,∞

P
X

X1∼π

(
|µ̂− µ| ≥ ε

)
; (70)

see, e.g., [Fan et al., 2018], proof of theorem 2.3. Note that by eq. 70, it is sufficient to have
∥∥∥ ∂ν
∂π

∥∥∥
π,∞

=

ess supω∈Ω |
ν(x)
π(x) | ∈ O(1). This can generally be accomplished straightforwardly with a warm-start by selecting

an arbitrary fixed ω ∈ Ω, taking ν to be the distribution reached after running M for τrel(M) ln(1/πmin)

steps (see, e.g., Levin and Peres [2017]). With this in mind, for simplicity we assume stationarity, knowing

that our proofs and algorithm generalize with trivial modifications.

Stationarity and mixing time of trace chain M(T )

Lemma F.1.5 (Trace Chain Mixing). Having a Markov chain M with stationary distribution π and mixing

time τmix, the trace chain M(T )’s stationary distribution is π(T ) where π(T )(a)
.
= π(a1)

∏k−1
i=1 M(ai, ai+1)

and its mixing time is bounded as τmix(M(T )) ≤ 1 + 1
T τmix(M). In particular for T ≥ τmix(M), we have
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that the second largest eigenvalue of M(T ) is at most 4/5.

Proof of Lemma F.1.5. We first remark that it is not difficult to prove by induction that

(
M(T )

)j
(a, b) =M(j−1)T+1(aT , b1)

T−1∏
i=1

M(bi, bi+1).

It is not difficult to see that with the above definitions, for any a a trace of length T we have: π(T )(a) =∑
b∈ΩT π(T )(a, b)M(T )(a, b).

We now show that M(T ) is close to π(T ) after (τ(ε)/T ) + 1 steps . Let X0, X1, X2 . . . , be the trace of the

original random walk, thus each Xi is a random variable having distribution Xi ∼ Miµ. We partition

this trace into blocks of length T as follows: Bj = (Xj , Xj+1, . . . Xj+T−1). Thus the trace of M(T ) will be

B0, B1, B2, . . . .

Since the mixing time of M is τmix, we have: for any starting distribution ν over Ω, and τ ≥ τmix log(ε),

TVD(Mτ (ν), π) ≤ ε. Assume M(T ) has started at initial distribution ν′, looking at the distribution of

B τ(ε)
T +1

we will have:

TVD(B τ
T +1, π

(T )) =
1

2

∑
a∈ΩT

∣∣∣(M(T ))
τ
T +1ν′(a)− π(T )(a)

∣∣∣
=

1

2

∑
a∈ΩT

∣∣∣∣∣∣(Mτ )(ν′T , a1)

T−1∏
i=1

M(ai, ai+1)− π(T )(a)

∣∣∣∣∣∣
=

1

2

∑
a∈ΩT

∣∣∣∣∣∣(Mτ )(ν′T , a1)

T−1∏
i=1

M(ai, ai+1)− π(a1)

T−1∏
i=1

M(ai, ai+1)

∣∣∣∣∣∣
≤ ε

T−1∏
i=1

M(ai, ai+1) ≤ ε.

The bound on λ then follows since
(
τrel(M)− 1

)
ln(2) ≤ τmix(M) ≤ τrel(M) ln

(
2√
πmin

)
.

Trace Variance Estimation

Lemma 7.3.5 (Trace Variance Estimation). Let v̂ be defined as in definition 7.3.4, it then holds that, for

any δ ∈ (0, 1), we have
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P

vπ ≥ v̂ +
(11 +

√
21)(1 + λ√

21
)r2 ln 1

δ

(1− λ)m
+

√
(1 + λ)r2v̂ ln 1

δ

(1− λ)m

 ≤ δ .

Proof. The strategy here is to apply a Bernstein-type inequality to the empirical variance estimate v̂. As

Bernstein’s inequality bounds an expectation, we construct a tensor product chain M⊗M, and define a

function g : X × X 7→ R, such that EM×M[g] = VM f .

In particular, we first note that by the tensor product chain rule (see Ex. 12.6 of [Levin and Peres, 2017]),

the spectral gap (1− λ) of M⊗M equals that of M. We now define the function g : X × X 7→ [0, 1
2r

2] as

g(x1, x2)
.
= 1

2 (x1 − x2)
2.

We first show that g is an unbiased estimator of the variance of f , i.e., EM×M[g] = VM[f ]:

E[g] = E
[
1

2
(X1 −X2)

2

]
Definition of g

=
1

2
E
[
(X1 −X2)

2
]

Stationarity

=
1

2

(
E[X2

1 +X2
2 ]− 2E[X1X2]

)
Linearity

= E[X2
1 ]− (E[X1])

2 Independence

= V[X1] = vπ Variance Properties

We now seek to apply the Bernstein bound to g on M⊗M. Note that the range of g is [0, 1
2r

2]. We require

also a bound on the variance of the variance V[g]. We break the infinite regress here by noting that

V[g] = E[g2]− (E[g])2

≤ E[g · g]

≤ E[g 1
2r

2]

= 1
2r

2 E[g] .

= 1
2r

2vπ .

Note that this is effectively the argument of Bernstein’s inequality that removes higher moments (beyond the

second) from the exponential-sum decomposition in the Chernoff-MGF bound.
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Applying the Bernstein inequality (theorem 7.2.6) then yields

P (vπ ≥ v̂ + ε) ≤ δ ,

for

ε ≤
10r2 ln 1

δ

2(1− λ)m
+

√
2(1 + λ)V[g] ln 1

δ

(1− λ)m
Range(g) = 1

2r
2

≤
5r2 ln 1

δ

(1− λ)m
+

√
(1 + λ)r2vπ ln

1
δ

(1− λ)m
V[g] ≤ 1

2r
2vπ

We now seek a form that depends only on the empirical variance, which we derive via the quadratic formula.

ε ≤
(11 + λ)r2 ln 1

δ

2(1− λ)m
+

√√√√( (1 + λ)r2 ln 1
δ

2(1− λ)m

)2

+
5r2 ln 1

δ

(1− λ)m
·
(1 + λ)r2 ln 1

δ

(1− λ)m
+

(1 + λ)r2v̂ ln 1
δ

(1− λ)m

Quadratic

Formula

=
(11 + λ)r2 ln 1

δ

2(1− λ)m
+

√√√√( (1 + λ)r2 ln 1
δ

2(1− λ)m

)2

+

(√
5(1 + λ)r2 ln 1

δ

(1− λ)m

)2

+
(1 + λ)r2v̂ ln 1

δ

(1− λ)m
Algebra

=
(11 + λ)r2 ln 1

δ

2(1− λ)m
+

√√√√((2
√
5)2 + (1 + λ))

(√
1 + λr2 ln 1

δ

2(1− λ)m

)2

+
(1 + λ)r2v̂ ln 1

δ

(1− λ)m
((2
√
5)2 + (1 + λ)) = 21 + λ

≤
(11 + λ)r2 ln 1

δ

2(1− λ)m
+

√√√√√ (
√
21 + 11√

21
λ)r2 ln 1

δ

2(1− λ)m

2

+
(1 + λ)r2v̂ ln 1

δ

(1− λ)m

√
21 + λ

√
1 + λ ≤

√
21 +

11√
21

λ

≤
(11 +

√
21 + (1 + 11√

21
)λ)r2 ln 1

δ

2(1− λ)m
+

√
(1 + λ)r2v̂ ln 1

δ

(1− λ)m

√
a2 + b ≤ a+

√
b

=
((11 +

√
21)(1 + λ√

21
)r2 ln 1

δ

2(1− λ)m
+

√
(1 + λ)r2v̂ ln 1

δ

(1− λ)m
. Algebra

This concludes the result.

As an intermediary, we obtain the following, which shall prove useful in deriving efficiency guarantees.

Corollary F.1.6 (Trace Variance Estimation).

P

vπ ≥ v̂ +
5r2 ln 1

δ

(1− λ)m
+

√
(1 + λ)r2vπ ln

1
δ

(1− λ)m

 ≤ δ .
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DynaMITE’s correctness and efficiency

Theorem 7.3.1 (Correctness of DynaMITE). Consider a Markov chain M over Ω, and assume its second

absolute eigenvalue is less than Λ. Assume we have function f : Ω→ [a, b] with r
.
= b− a, and we want to

estimate true mean, µ .
= Eπ[f ] with precision ε > 0, and confidence (1− δ) ∈ (0, 1).

If we start at stationarity, i.e., (x0, x1) ∼ π(M⊗M), we take mean estimate µ̂ as either

1. µ̂←McmcPro((x0, x1),M,Λ, f, ε, δ); or

2. µ̂← DynaMITE((x0, x1),M,Λ, f, ε, δ) for lazy M.

More generally, for a nonstationary start from any ω ∈ Support(π(M)), given minimum supported stationary

probability at least πmin, we may take

3. µ̂←WarmStartDynaMITE(ω,M,Λ, πmin, f, ε, δ) for lazy, reversible M.

In all cases, with probability at least 1− δ, we have |µ̂− µ| ≤ ε.

Proof. We first show (1), i.e., correctness of McmcPro, and then show that correctness of Warm-

StartDynaMITE easily follows from that of DynaMITE, which follows from that of McmcPro.

We now show claim (1). First note that in initialization (independent of any sampling), McmcProcomputes

iteration count N and initial sample size α (line 4), which determine the schedule of sample sizes and

probabilistic bounds. Over the course of the algorithm, at each of N timesteps, a 1-tail (upper) bound on

variance ui is computed (line 12), and a 2-tail bound on mean µi is computed (line 13), for a total of 3N tail

bounds. Each tail is bounded with probability 1− δ
3N , thus by union bound, all hold simultaneously with

probability 1− δ. We assume henceforth that app tail bounds hold, thus all conclusions are thus qualified as

holding with probability ≥ 1− δ. Now, note that termination (line 14) occurs for one of two reasons: either

i = N , or ε̂i ≤ ε. We analyze these cases separately.

In case 1, we have termination at i < N , i.e., ε̂i ≤ ε. As assumed above, all tail bounds at each iteration

hold by union bound. Thus for the sample drawn at iteration i, in particular the variance bounds (line 12)

hold, as v̂i is an unbiased estimate of vT , and by lemma 7.3.5, w.h.p., vT ≤ ui. Similarly, the mean bounds

(13) hold via theorem 7.2.6 (noting that, by averaging over a pair of independent chains, the variance proxy

of interest is 1
2vT ). Note that while both tail bounds are taken over the tensor-product chain M⊗M, it

holds that λ(M⊗M) = λ(M), so the bound remains valid.

Consequently, when it holds that ε̂i ≤ ε, the algorithm returns the estimate µ̂i (line 15), which by the above

is sufficiently accurate to satisfy the stated guarantees.
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We now consider case 2, wherein we have termination at step i = N . When this occurs, it holds that

mi = mN =
⌈
α2N

⌉
≥ mH(λ, r, ε, δ

3I ) ,

and thus by Hoeffding’s inequality for mixing processes (theorem 7.2.5), we have |µ − µ̂N | ≤ ε, (i.e., the

schedule was selected exactly to ensure mN samples would be sufficient, regardless of early termination and

variance.

We now proceed to show claim (2). To see this result, note that

λ(M(T )) ≤ λT (M) ,

and thus claim (2) follows directly from claim (1).

Finally, note that claim (3) follows from claim (2), paired with Eq. 70. In particular, note that the uniform

mixing time is selected such that we have

∀ω :

∥∥∥∥∂Mτunif (ω)

∂π

∥∥∥∥
π,∞
≤ 2 ,

i.e., M is uniformly mixed. This further implies that the trace chain is uniformly mixed, as both πmin and

Λ are exponential in the trace-length T , which cancels out in the uniform-mixing bound (see Eq. 12.13 of

[Levin and Peres, 2017]). However, we still apply nonstationarity correction δ
4 instead of δ

2 , to account for

the fact that the tensor product chain (M⊗M) uniformly mixes slightly slower than M, even though it

relaxes and mixes as quickly as M.

Before showing efficiency, we state a lemma that allows us to relate TvT with τrelvτrel.

Lemma F.1.7 (Trace Variance of Large Traces). Suppose a lazy reversible Markov chain M. The product

of trace-size and trace-variance, i.e., TvT , is asymptotically equivalent for T ≥ τrel. In other words, we have

Θ(τrelvτrel) = Θ(TvT ) = Θ

(
lim
t→∞

tvt

)
.

Proof. We show this result by deriving a bidirectional inequality chain. We begin with the upper-bounds. By

monotonicity, we have

τrelvτrel ≤ TvT ≤ lim
t→∞

tvt .

We now show the lower-bounds. This direction is a bit subtler. Assume for now that T = nτrel for some
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integer n. We then have

TvT (M) = nτrelvn(M(τrel)) Identities

≤ nτrel
2τrel(M(τrel))vτrel

n
Eq. 3.14 of [Paulin, 2015]

= nτrel
2τrel(M(τrel))vτrel(M)

n
vπ(M(τrel)) = vτrel(M)

= 2τrelτrel(M(τrel))vτrel(M) Algebra

∈ Θ(τrelvτrel(M)) . τrel(M(τrel)) ∈ Θ(1)

Correcting for non-integer n is simple, as we may apply the result to the nearest integer n, and the ratio vT
vT ′

is bounded when T
T ′ is near 1.

Finally, note that

lim
t→∞

tvt ∈ Θ(τrelvτrel)

follows similarly via Eq. 15 of [Paulin, 2015].

We now present and prove an extended statement of theorem 7.3.2, which provides finite-sample and

asymptotic sample complexity bounds to McmcPro, DynaMITE, and WarmStartDynaMITE.

Theorem F.1.8 (Efficiency of DynaMITE). Suppose as in theorem 7.3.1, and take N
.
= log2

(
r
2ε

)
and

T
.
= d 1+Λ

1−Λ ln
√
2e. Then with probability at least 1− δ

3N , each mean-estimation algorithm runs for no more

than m̂ steps (individually), where m̂ is

1. for McmcPro:

m̂ ≤ 4T ln
3N

δ

(
5(6 + Λ)r

2(1− Λ)ε
+

(1 + Λ)vT
(1− Λ)ε2

)
∈ O

(
1

1− Λ
log

(
log(r/ε)

δ

)(
r

ε
+

vπ
ε2

))
;

2. for DynaMITE:
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m̂ ≤ 2T ln
3N

δ

(
65r

ε
+

12vT
ε2

)
∈ O

(
T log

(
log(r/ε)

δ

)(
r

ε
+

vT
ε2

))

= O

(
log

(
log(r/ε)

δ

)(
r

(1− Λ)ε
+

τrelvτrel
ε2

))
; &

3. for WarmStartDynaMITE:

m̂ ≤ 2d
ln 1

πmin

ln 1
Λ

e+ 2T ln
12N

δ

(
65r

ε
+

12vT
ε2

)
∈ O

(
ln 1

πmin

ln 1
Λ

+ T log

(
log(r/ε)

δ

)(
r

ε
+

vT
ε2

))

= O

(
ln 1

πmin

ln 1
Λ

+ log

(
log(r/ε)

δ

)(
r

(1− Λ)ε
+

τrelvτrel
ε2

))
.

Proof. The strategy here is to derive a sample size m′, dependent on r, vT , ε, δ, s.t. w.h.p., each algorithm will

terminate after drawing a sample of at least m′ traces. We then bound the total number of samples drawn

over the course of this process, and make some substitutions to derive the result. For brevity, throughout this

result we take η
.
= ln 3N

δ .

We show the result for McmcPro, using second absolute eigenvalue bound λ, as it immediately implies the

corresponding results for DynaMITE and WarmStartDynaMITE.

We first show that, with high probability, the empirical variance is not much larger than the true variance,

and thus with high probability, the variance-bounds used by McmcPro are not loose. Let

εv,1
.
=

5r2η

(1− Λ)m
, εv,2

.
=

√
(1 + Λ)r2vπη

(1− Λ)m
.

Now, note that by corollary F.1.6,1 we have for any sample size m that

P
(
v̂i ≥ vπ + εv,1 + εv,2

)
≤ δ

3N
.

1Note that here we take a lower-tail bound, rather than an upper-tail bound; the constants are identical and the result
similarly follows from the Bernstein inequality.
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We now consider the first iteration i such that mi ≥ m′, letting m
.
= mi and v̂

.
= v̂. On line 12 of McmcPro,

we have (w.h.p.)

ui ≤ v̂ +
(11 +

√
21 + (1 + 11√

21
)Λ)r2η

(1− Λ)m
+

√
(1 + Λ)r2v̂η

(1− Λ)m

≤ vπ + εv,1 + εv,2 +
(11+

√
21+(1+ 11√

21
)Λ)r2η

(1− Λ)m
+

√
(1+Λ)r2(vπ+εv,1+εv,2)η

(1− Λ)m
v̂≤vπ+εv,1+εv,2 (w.h.p.)

= vπ + εv,2 +
(16 +

√
21 + (1 + 11√

21
)Λ)r2η

(1− Λ)m
+

√
(1 + Λ)r2(vπ + εv,1 + εv,2)η

(1− Λ)m

= vπ + εv,2 +
(16 +

√
21 + (1 + 11√

21
)Λ)r2η

(1− Λ)m
+

√
(1 + Λ)r2η

(1− Λ)m

√
vπ + εv,1 + εv,2 Algebra

< vπ + εv,2 +
(16 +

√
21 + (1 + 11√

21
)Λ)r2η

(1− Λ)m
+

√
(1 + Λ)r2η

(1− Λ)m

(√
vπ+
√
εv,1
) √

a+ b+ 2
√
ab =

√
a+
√
b

≤ vπ + εv,2 +
(16 +

√
5 +
√
21 + (1 +

√
5

2 + 11√
21
)Λ)r2η

(1− Λ)m
+

√
(1 + Λ)r2vπη

(1− Λ)m

= vπ +
(16 +

√
5 +
√
21 + (1 +

√
5

2 + 11√
21
)Λ)r2η

(1− Λ)m︸ ︷︷ ︸
.
=εv,3

+2

√
(1 + Λ)r2vπη

(1− Λ)m︸ ︷︷ ︸
.
=εv,4

Substitution into the Bernstein bound (line 13), and similar algebra, gives us

ε̂i =
10rη

(1− Λ)mi
+

√
(1 + Λ)uiη

(1− Λ)mi

≤ 10rη

(1− Λ)mi
+

√
(1 + Λ)(vπ + εv,3 + εv,4)η

(1− Λ)mi
See Above

<
5(6 + Λ)rη

2(1− Λ)mi
+

√
(1 + Λ)vπη

(1− Λ)mi

√
a+ b+ 2

√
ab =

√
a+
√
b

Algebraic Bounds

We terminate when ε̂i ≤ ε, thus this implies sufficient sample size

m′ ≤ +η

(
5(6 + Λ)r

2(1− Λ)ε
+

(1 + Λ)vπ
(1− Λ)ε2

)
.
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Now, due to the doubling geometric grid, we must have mi ∈ [m′, 2m′], thus we have

mi ≤ 2η

(
5(6 + Λ)r

2(1− Λ)ε
+

(1 + Λ)vπ
(1− Λ)ε2

)
.

Now, each step of the tensor-product chain (M⊗M) requires two steps of M, so we conclude (1) by noting

that 4m′ samples suffice.

Now, to get (2), note that in DynaMITE, we take T
.
= d 1+Λ

1−Λ ln
√
2e, and thus λ(M(T )) ≤ λT ≤ 1

2 . The

finite-sample bound then follows from (1) as DynaMITE simply calls McmcPro (see line 24, multiplying

total sample complexity by T , as each step in (M(T ) ⊗M(T )) (i.e., the tensor-product trace-chain) takes T

steps inM for every step in theM⊗M chain of McmcPro. Finally, applying lemma F.1.7 yields the result.

We now show (3). In WarmStartDynaMITE, the nonstationarity correction appears as a factor-4 increase

on 1
δ (see line 31), and an additive sampling cost for the warm start (see line 29).
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