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In the era of big data, distributed data stores have become an indispensable necessity. Almost
all these data stores store sensitive data such as our voicemails, messages, emails, shopping data,
health records, etc. Unfortunately, with an increasing number of data breaches on a regular basis,
privacy has become a major concern. Encryption is often proposed as a solution to privacy issues,
however, naively applied encryption leads to brittle systems that fail to provide satisfactory privacy
guarantees; it is only through careful system-wide analysis that complicated systems can achieve
provable privacy.
This thesis formalizes the use of end-to-end encryption (where data is kept encrypted at all times)
in distributed hash tables (DHTs) and key-value stores (KVSs). Both are fundamental in the design
of storage systems we use today. For example, Amazon’s Dynamo KVS underlies its shopping
cart, Facebook’s Cassandra KVS supports Messenger and Google’s Bigtable KVS manages data in
Gmail. Integrating end-to-end encryption into these basic building blocks would therefore allow us
to support privacy-preserving systems which would greatly increase the confidentiality of our data.
In particular, we introduce the notion of encrypted DHTs and encrypted KVSs and provide security
definitions that capture the security properties one would desire from such encrypted systems. We
then isolate the key properties (such as load balancing, equivocation) needed from the plaintext
DHTs and KVSs to have secure constructions. Finally, we give constructions of encrypted DHTs
and encrypted KVSs and formally analyze their security under our security definitions. Also, to
show that the required properties are indeed achievable in practice, we study common DHTs and
KVSs and show that they satisfy all the requirements.
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Chapter 1

Introduction

In the era of big data, distributed data stores (DDS) have become an indispensable necessity. The
huge benefit of using these DDSs comes in terms of efficiency, availability and scalability. Almost
all the DDSs store sensitive data about us such as our voicemails, messages, emails, shopping data,
health records, etc. Unfortunately, with an increasing number of data breaches on a regular basis,
privacy has become a major concern. Moreover, due to their distributed nature, they are harder to
secure than their non-distributed counterparts.

Encryption is often proposed as a solution to some of the privacy concerns, however, naively
applied encryption leads to brittle systems that might fail to provide satisfactory privacy guarantees.
For instance, encrypting data at rest and decrypting it before use might not be enough because each
decryption exposes the data and increases its likelihood of being stolen. Therefore, to overcome
this problem, cryptographers have started developing end-to-end encrypted solutions. End-to-end
encryption ensures that data is kept encrypted, even in use, and is therefore one of the best ways
to achieve data confidentiality.

In this thesis, I initiate the study of end-to-end encryption in DDSs. In particular, I design and
analyze schemes for storing, querying and updating encrypted data in data stores. I study two kinds
of data stores, first store data in distributed hash tables (DHTs), and the second on blockchains.
DHT based data stores are extremely popular and have applications in content delivery networks,
P2P networks, key-value stores, distributed file systems, just to name a few. On the other hand,
blockchain based data stores are slowly gaining popularity as they try to provide guarantees of
both blockchains and traditional databases, like decentralization, tamper-proofness and support for
complex queries. Integrating end-to-end encryption into these building blocks would therefore allow
us to support complex privacy-preserving systems that are built on top of them and would greatly
enhance the confidentiality of our data.
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1.1 Thesis at a Glance

Before giving an overview of individual chapters in this thesis, I first describe the two main themes
that run through all my works.

• Formalizing systems: I used the methodology of provable security to formally study the secu-
rity of end-to-end encrypted DDSs (called encrypted DDSs henceforth). Under this framework,
each encrypted DDS is analyzed with respect to a specific security definition and against a
particular threat model. There are two steps, first formally defines the encrypted DDS and the
next its security. Formalizing the encrypted DDS is a non-trivial step as it requires abstraction
of the core components of the underlying DDS, such as, how the DDS nodes store data, how
they talk to each other, what happens in the event of node failures, to name a few. The second
step requires designing a security definition that captures the security properties one would
desire from an encrypted DDS. Since a system is only as secure as its security definition, it is
crucial that the definition accurately models the threats in the real world.

• Designing and analyzing systems: I also designed encrypted DDSs and analyzed their
security under formal security definitions. The analysis involved exploring fundamental con-
nections between privacy and distributed systems. For instance, a key question in the theory
of distributed systems is the connection between a machine’s local knowledge and its global
knowledge. Privacy is also concerned about the same question – how much information does
a corrupted machine have about the global system?

Together, my work tries to answer how practical distributed data stores and encryption interact
and tries to understand the ways in which they leak information. My thesis is divided into three
chapters as follows.

1.1.1 Encrypted Distributed Hash Tables

Distributed Hash Tables. Distributed hash tables (DHTs) are the most fundamental building
block in the design of highly scalable and reliable systems. DHTs are decentralized and distributed
systems that store label/value pairs (`, v) and support get and put operations. The former is used to
store pairs in DHTs while the latter is used to retrieve pairs from DHTs. DHTs are distributed in the
sense that the pairs are stored across multiple nodes instead of a single node. DHTs provide many
useful properties but the most important are load balancing and fast data retrieval and storage even
in highly-transient networks (i.e., where storage nodes join and leave at high rates). It is hard to
overstate the impact that the DHTs have had on systems design. For example, DHTs enable Amazon
to handle over a billion purchases a year and Facebook to support two billion users worldwide.

Results. In Chapter 3, we develop a framework that allows us to formally analyze encryption in
context of DHTs. We isolate two properties of DHTs, balance and non-committing allocation, and
show that the security of any end-to-end encrypted DHT is a function of these two properties. To
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show that the balance and non-committing allocations are indeed achievable in practice, we study
Chord [78]—which is arguably the most influential DHT– and show that it satisfies both these
properties. This work is under submission [24].

Insights. The work challenged our initial intuitions in many ways and helped us gain a deeper
understanding of the intricate relationships between privacy and distributed systems. For example,
suppose a subset of nodes are corrupted and collude. During the operation of this DHT, what
information can the corrupted nodes learn about our data? A-priori, it might seem that the only
information they can learn is related to what they collectively hold (i.e., the union of the data they
store). For example, they might learn that there are at least m pairs stored in the DHT, where m
is the sum of the number of pairs held by each corrupted node. While this intuition might seem
correct, it is not true! In fact, the corrupted nodes can infer additional information about data they
do not hold. For example, they can infer a good approximation on the total number of pairs in the
system even if they collectively hold a small fraction of it. Here, the problem is that since DHTs are
load balanced, with high probability, each node receives approximately the same number of pairs.
Because of this, the corrupted nodes can guess that, with high probability, the total number of pairs
in the system is about mn/t, where t is the number of corrupted nodes and n is the total number of
nodes. While this may seem benign, this is just one example to highlight that finding and analyzing
information leakage in distributed systems can be non-trivial. In fact, otherwise desirable properties
of distributed systems (e.g., load balancing) can have subtle effects on security.

1.1.2 Encrypted Key-Value Stores

Key-Value Stores. Like DHTs, key-value stores (KVSs) store label/value pairs which can be
accessed by get and put operations. Unlike DHTs, they replicate the same pair on multiple nodes
instead of storing it on a single one. KVSs are fault-tolerant because a value can be accessed even if
some nodes fail. KVSs provide a simple data model but have become fundamental to modern systems
due to their high performance, scalability and availability. For example, Amazon’s Dynamo [55]
KVS underlies its shopping cart, Facebook’s Cassandra [82] KVS supports Messenger and Google’s
Bigtable [51] KVS manages data in Gmail.

Results. In Chapter 4, we extend our previous framework to encrypted KVSs and show that the
encrypted KVSs achieve the same level of security as their counterparts in non-distributed setting
[52, 50]. However, we also show that if the underlying KVS satisfies read-your-writes consistency,
then the security can be improved—effectively showing that a certain level of consistency can improve
the security of a system. This work was published in Indocrypt [23].

Insights. The most challenging (and fascinating) part of this work was discovering the effect of
consistency guarantees on security. Since most practical KVSs are eventually consistent, we wanted
to formalize eventual consistency under the provable security framework. However, it turned out that
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the framework was not amenable to this notion of consistency. This raised the question if eventually
consistent systems are fundamentally “insecure” or just that the consistency models do not play
well with the cryptographic models? We later realised that certain alternate notions of consistency
did lend themselves to be formalized precisely in cryptographic settings. In particular, if the KVS
is read-your-writes consistent, which is a stronger consistency notion than eventual consistency,
then the encrypted KVS based on it can be shown to be secure. The precise relationship between
consistency and leakage is intriguing and is still unexplored and is left for future work.

1.1.3 Encrypted Blockchain Dababases

Blockchain Databases. Blockchain databases are storage systems that combine properties of
both blockchains and traditional databases like decentralization, tamper-proofness, low query latency
and support for complex queries. As they gain wider adoption, concerns over the confidentiality of
the data they manage will increase. Already, several projects [89, 14, 94] use blockchains to store
sensitive data like electronic healthcare and financial records, legal documents, and customer data.

Results. In Chapter 5, we develope ways of storing modifiable encrypted inverted-indices on top
of blockchains. All our schemes are legacy-friendly in the sense that they could be used with any
blockchain. We also implement our schemes on Algorand [1] and Ethereum [5] blockchains and
evaluated their efficiency emperically. This work was published in AFT [22].

Insights. The work has several challenges, the biggest being that blockchains are tamper-proof
and yet we need a way to update the inverted-indices stored on top of them. A simple idea is to write
an entirely new index every time an update is made. Unfortunately, in case of blockchains, every
write costs money making this a very expensive solution. Moreover, in blockchains, writes are not
just expensive, but also are very slow. For example, in Bitcoin, a transaction (a.k.a a write) needs
to become 6 blocks deep to be considered “stable”. Therefore, we design new techniques that took
these factors into account and help us achieve efficiency — money-wise, time-wise and storage-wise
— both for reads and writes.

At a high-level, to reduce our write-complexity, we model the inverted-index in such a way that
it only has a few dependencies between its sub-components and then we write all the independent
sub-components in parallel to the blockchain. All the components sent to the blockchain at the
same time, “stabilize” almost together, saving us time from having to wait for each one of them to
stabilize individually.
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Chapter 2

Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power
set. We write x ← χ to represent an element x being sampled from a distribution χ, and x

$← X

to represent an element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x ← A. Given a sequence v of n elements, we refer to its ith element
as vi or v[i]. If S is a set then |S| refers to its cardinality. If s is a string then |s|2 refers to its bit
length. We denote by Ber(p) the Bernoulli distribution with parameter p.

Dictionaries. A dictionary structure DX of capacity n holds a collection of n label/value pairs
{(`i, vi)}i≤n and supports get and put operations. We write vi := DX[`i] to denote getting the value
associated with label `i and DX[`i] := vi to denote the operation of associating the value vi in DX
with label `i.

Multi-maps. A multi-map structure MM with capacity n is a collection of n label/tuple pairs
{(`i,vi)}i≤n that supports get and put operations. Similar to dictionaries, we write vi := MM[`i] to
denote getting the tuple associated with label `i and MM[`i] := vi to denote operation of associating
the tuple vi to label `i.

2.1 Cryptographic Vocabulary

Views. The view of a node N that participates in the execution of a randomized experiment Exp
consists of its random coins and all messages that it sends and receives. This is a random variable
which we denote by viewExp(N). When the experiment is clear from context we omit the subscript
for visual clarity. We sometimes consider the joint random variable consisting of the views of multiple
nodes. If S is a set of nodes, we denote by viewExp(S) the joint random variable 〈viewExp(N)〉N∈S .
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The random oracle model. The random oracle model is a paradigm in which a cryptographic
protocol is proven secure assuming oracle access to a random function which is instantiated in
practice with a cryptographic hash function. Access to random oracles is a powerful assumption
that enables cryptographers to design protocols that achieve strong security properties.

Leakage profiles. Many cryptographic primitives and protocols leak information. Examples in-
clude encryption schemes, which reveal the length of the plaintext; secure multi-party computation
protocols, which (necessarily) reveal about the parties’ inputs whatever can be inferred from the out-
put(s); order-preserving encryption schemes, which reveal implicit and explicit bits of the plaintext;
structured encryption schemes which reveal correlations between queries; and oblivious algorithms
which reveal their runtime and the volume of data they read. Leakage-parameterized security defi-
nitions [53, 52] extend the standard provable security paradigm used in cryptography by providing
adversaries (and simulators) access to leakage over plaintext data. This leakage is formally and pre-
cisely captured by a leakage profile which can then be analyzed through cryptanalysis and further
theoretical study.

2.2 Cryptographic Primitives

Encryption Scheme. A private-key encryption scheme is a set of three polynomial-time algo-
rithms SKE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a security pa-
rameter k and returns a secret key K; Enc is a probabilistic algorithm takes a key K and a message
m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and a ciphertext
c and returns m if K was the key under which c was produced. Informally, a private-key encryp-
tion scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs do not
reveal any partial information about the plaintext even to an adversary that can adaptively query
an encryption oracle. We say a scheme is random-ciphertext-secure against chosen-plaintext attacks
(RCPA) if the ciphertexts it outputs are computationally indistinguishable from random even to an
adversary that can adaptively query an encryption oracle.1

Pseudo random functions. A family of functions FK : {0, 1}m → {0, 1}n, indexed by a key
K ∈ {0, 1}k is said to be pseudorandom if the value FK(x) is efficiently computable given K and
x and the outputs of the function FK cannot be efficiently distinguished from a uniformly chosen
random function R : {0, 1}m → {0, 1}n.

2.2.1 Structured Encryption

Structured encryption (STE) schemes [52] encrypt data structures in such a way that they can
support operations on encrypted data. STE schemes can be distinguished depending on the type

1RCPA-secure encryption can be instantiated practically using either the standard PRF-based private-key encryp-
tion scheme or, e.g., AES in counter mode.
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of operations they support. This includes non-interactive and interactive schemes where the former
require only a single message while the latter require several rounds for queries and updates. STE
schemes can also be static or dynamic where the former do not support update operations whereas
the latter do. STE schemes can also be response-revealing or response-hiding, where the former
reveal the response to queries whereas the latter do not. We formally define an interactive dynamic
response-hiding STE as follows:

Definition 2.2.1 (Dynamic response-hiding STE). A dynamic response hiding STE scheme ΣEDS =
(Init,Query,Resolve,Edit+,Edit−) consists of four protocols that work as follows:

• (st,K; EDS)← InitC,S(1k;⊥) is a probabilistic protocol between the client C and the server S.
The client inputs the security parameter k while the server inputs nothing. The client receives
an empty state st, a key K, while the server receives an empty encrypted data structure EDS.

• (st′, r;⊥) ← QueryC,S(st,K, `; EDS) is a (probabilistic) protocol between the client C and the
server S. The client inputs the state st, the key K and the label `, while the server inputs the
encrypted data structure EDS. The client receives a response r and the server receives nothing.

• (st′; EDS′) ← Edit+
C,S(st,K, `,v; EDS): is a (probabilistic) protocol between the client C and

the server S. The client inputs its state st, the key K, a label `, and a value tuple v, while the
server inputs the encrypted data structure EDS. As output, the client receives an updated state
st′ and the server receives an updated state EDS′.

• (st′; EDS′) ← Edit−C,S(st,K, `,v; EDS): is a (probabilistic) protocol between the client C and
the server S. The client inputs its state st, the key K, a label ` and a value tuple v, while the
server inputs the encrypted data structure EDS. As output, the client receives an updated state
st′ and the server receives an updated state EDS′.

We say that a dynamic response hiding STE scheme ΣEDS is correct if for all k ∈ N, for all
(st0,K,EDS0) output by Init(1k;⊥), for all sequences of m = poly(k) operations op1, . . . , opm, for
all i ∈ [m], if opi is a query qi, Query(sti−1,K, `; EDSi−1) returns the correct response with all but
negligible probability; where sti−1 is the output of the Edit+, Edit− or Query protocols, while EDSi−1

is either the output of the last update ρ < i if it exists, or the output of the Init protocol otherwise.

Security. The standard notion of security for STE guarantees that: (1) an encrypted data struc-
ture reveals no information about its underlying data structure beyond the init leakage LI; (2) that
the query protocol reveals no information about the data structure and the queries beyond the
query leakage LQ; and that (3) the Edit+ and Edit− protocols reveal no information about the data
structure and the updates beyond the edit leakage LE+/LE− . If this holds for adaptively chosen
operations then the scheme is said to be adaptively secure.

Definition 2.2.2 (Adaptive security of STE [53, 52]). Let ΣEDS = (Init,Query,Resolve,Edit+,Edit−)
be a dynamic STE scheme and consider the following probabilistic experiments where A is a stateful
adversary, Sim is a stateful simulator, LI, LQ, LE+ and LE− are leakage profiles and z ∈ {0, 1}∗:
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RealΣ,A(k): given z the adversary A receives an empty encrypted data structure EDS from the
challenger, where (st,K; EDS) ← Init(1k;⊥). The adversary then adaptively chooses a poly-
nomial number of operations op1, . . . , opm such that opi is either a query or an update. For
all i ∈ [m], if opi is a query qi = `, the adversary and the challenger execute the protocol
Query, and the challenger receives an updated state st′ and a response e while the adversary
receives nothing, where (st′, e;⊥) ← Query(st,K, `; EDS). If opi is an update of the form
ui = (Edit+, `,v), the adversary and the challenger execute the protocol Edit+, and the chal-
lenger receives an updated state st′, while the adversary receives an updated encrypted data
structure EDS′, where (st′; EDS′) ← Edit+(st,K, `,v; EDS). On the other hand, if opi is an
update of the form ui = (Edit−, `,v), the adversary and the challenger execute the protocol
Edit−, and the challenger receives an updated state st′, while the adversary receives an updated
encrypted data structure EDS′, where (st′; EDS′)← Edit−(st,K, `; EDS). Finally, A outputs a
bit b that is output by the experiment.

IdealΣ,A,Sim(k): given z and leakage LI(DS) (where DS = ⊥) from the challenger, the simulator Sim
returns an empty encrypted data structure EDS to A. The adversary then adaptively chooses
a polynomial number of operations op1, . . . , opm such that opi is either a query or an update.
For all i ∈ [m], if opi = `, the simulator receives the query leakage LQ(DS, `) and executes
Query with the adversary. The adversary receives nothing as output. If opi = (Edit+, `,v),
the simulator receives the add leakage LE+(DS, `,v) and executes Edit+ with the adversary.
The adversary receives an updated encrypted data structure EDS′ as output. If, on the other
hand, opi = (Edit−, `,v), the simulator receives the delete leakage LE−(DS, `,v) and executes
Edit− with the adversary. The adversary receives an updated encrypted data structure EDS′ as
output. Finally, A outputs a bit b that is output by the experiment.

We say that ΣEDS is adaptively (LI,LQ,LE+ ,LE−)-secure if there exists a ppt simulator Sim such
that for all ppt adversaries A, for all z ∈ {0, 1}∗,∣∣∣Pr [ RealΣEDS,A(k) = 1 ]− Pr [ IdealΣEDS,A,Sim(k) = 1 ]

∣∣∣ ≤ negl(k).
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Chapter 3

Encrypted Distributed Hash Tables

3.1 Introduction

In the early 2000’s, the field of distributed systems was revolutionized in large part by the per-
formance and scalability requirements of large Internet companies like Akamai, Amazon, Google
and Facebook. The operational requirements of these companies—which include running services at
Internet scale using commodity hardware in data centers distributed across the world—motivated
the design of highly influential systems like Chord [110], Dynamo [55] and BigTable [51]. These
advances in distributed systems are what enable companies like Amazon to handle over a billion
purchases a year and Facebook to support two billion users worldwide.

Distributed hash tables. The most fundamental building block in the design of highly scalable
and reliable systems are distributed hash tables (DHT). DHTs are decentralized and distributed
systems that store data items associated to a label. Roughly speaking, a DHT is a distributed
dictionary data structure that stores label/value pairs (`, v) and that supports get and put operations.
The former takes as input a label ` and returns the associated value v. The latter takes as input
a pair (`, v) and stores it. DHTs are distributed in the sense that the pairs are stored by a set
of n nodes N1, . . . , Nn. To communicate and route messages to and from nodes, DHTs rely on a
(usually) randomly generated overlay network which, intuitively, maps node names to addresses and
of a distributed routing protocol that routes messages between addresses. DHTs provide many useful
properties but the most important are load balancing and fast data retrieval and storage even in
highly-transient networks (i.e., where storage nodes join and leave at high rates).

Classic applications of DHTs. It is hard to overstate the impact that DHTs have had on
system design and listing all their possible applications is not feasible so we will recall just a few.
One of the first applications of DHTs was to the design of content distribution networks (CDNs).
In 1997, Karger et al. introduced the notion of consistent hashing [78] which was adopted as a core
component of Akamai’s CDN. Since then, many academic and industry CDNs have used DHTs for
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fast content delivery [63, 109]. DHTs are also used by many P2P systems like BitTorrent [3] and
its many trackerless clients including Vuze, rTorrent, Ktorrent and µTorrent. Many distributed file
systems are built on top of DHTs, including CFS [54], Ivy [92], Pond [98], PAST [58].DHTs are
also the main component of distributed key-value stores like Amazon’s Dynamo [55] which underlies
the Amazon cart, LinkedIn’s Voldemort [111] and Riak [113]. Finally, many wide column NoSQL
databases like Facebook’s Cassandra [82], Google’s BigTable [51] and Amazon’s DynamoDB [106]
make use of DHTs.

Off-chain storage. Currently, the field of distributed systems is going through another revolution
brought about by the introduction of blockchains [93]. Roughly speaking, blockchains are distributed
and decentralized storage networks with integrity and probabilistic eventual consistency. Blockchains
have many interesting properties and have fueled an unprecedented amount of interest in distributed
systems and cryptography. For all their appeal, blockchains have several shortcomings; the most
important of which are limited storage capacity and lack of confidentiality. To address this, a lot of
effort in recent years has turned to the design of distributed and/or decentralized off-chain storage
networks whose primary purpose is to store large amounts of data while supporting fast retrieval
and storage in highly transient networks. In fact, many influential blockchain projects, including
Ethereum [118, 8], Enigma [122], Storj [101] and Filecoin [81] rely on off-chain storage: Ethereum,
Enigma and Storj on their own custom networks and Filecoin on IPFS [34]. Due to the storage and
scalability requirements of these blockchains, these off-chain storage networks often use DHTs as a
core building block.

DHTs and end-to-end encryption. As discussed, DHTs are a fundamental building block in
distributed systems with applications ranging from CDNs to blockchains. DHTs were originally
designed for applications that mostly dealt with public data: for example, web caching or P2P file
sharing. The more recent applications of DHTs, however, also need to handle private data. This is
the case, for example, for off-chain storage networks, many of which aim to support decentralized
apps for medical records, IoT data, tax information, customer records and insurance data, just to
name a few. Indeed, most of these networks (e.g., Ethereum’s Swarm, IPFS, Storj and Enigma)
explicitly implement some form of end-to-end encryption.

The specific designs are varied but, as far as we know, none of them have been formally analyzed.
This is not surprising, however, since the problem of end-to-end encryption in the context of DHTs
has never been properly studied. In this work, we address this by formalizing the goals of encryption
in DHTs. In particular, we introduce the notion of an encrypted DHT (EDHT) and propose formal
syntax and security definitions for these objects. Due to the ubiquity of DHTs and the recent interest
in using them to store sensitive data, we believe that a formal study of confidentiality in DHTs is a
well-motivated problem of practical importance.

The standard scheme. The simplest approach to storing sensitive data on a DHT—and the
one we will study in this work—is to store a label/value pair (`, v) as (FK1(`),EncK2(v)) on a
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standard DHT. Here, F is a pseudo-random function and Enc is a symmetric-key encryption scheme.
Throughout we will refer to this as the standard scheme. The underlying DHT will then assign this
pair to a storage node in a load balanced manner, handle routing and will move pairs around
the network if a node leaves or joins. This scheme is simple and easy to implement and is, roughly
speaking, what most systems implement. Ethereum’s Swarm, for example, stores pairs as

(
H(ct), ct

)
,

where ct ← EncK(v) and H is a hash function. But is this secure? Answering this question is not
simple as it is not even clear what we mean by security. But even if we were equipped with a
meaningful notion of security, we will see that the answer is not straightforward. The reason is
because, as we will see, the security of the standard scheme is tightly coupled with how the the
underlying DHT is designed.

Information leakage in EDHTs. To illustrate this point, suppose a subset of nodes are corrupted
and collude. During the operation of this DHT, what information can they learn about a client’s
data and/or queries? A-priori, it might seem that the only information they can learn is related
to what they collectively hold (i.e., the union of the data they store). For example, they might
learn that there are at least m pairs stored in the DHT, where m is the sum of the number of pairs
held by each corrupted node. With respect to the client’s queries they might learn, for any label
handled by a corrupted node, when a query repeats. While this intuition might seem correct, it is
not true. In fact, the corrupted nodes can infer additional information about data they do not hold.
For example, they can infer a good approximation on the total number of pairs in the system even
if they collectively hold a small fraction of it. Here, the problem is that DHTs are load balanced
in the sense that, with high probability, each node will receive approximately the same number of
pairs. Because of this, the corrupted nodes can guess that, with high probability, the total number
of pairs in the system is about mn/t, where t is the number of corrupted nodes and n is the total
number of nodes.

While this may seem benign, this is just one example to highlight the fact that finding and
analyzing information leakage in distributed systems can be non-trivial. In fact, some of the very
properties which we aim for in the context of distributed systems (e.g., load balancing) can have
subtle effects on security.

3.1.1 Our Contributions

In this work, we aim to formalize the use of end-to-end encryption in DHTs and the many systems
they support. As an increasing number of applications wish to store sensitive data on DHT-based
systems, the use of end-to-end encryption in DHTs should be raised from a technique to a crypto-
graphic primitive with formal syntax and security definitions. Equipped with these definitions, our
goal will be to understand and study the security guarantees of the simple EDHT described above.
As we will see, analyzing and proving the security of even this simple scheme is complex enough.
We make several contributions.
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Security of EDHTs. Our first contribution is a simulation-based definition of security for EDHTs.
The definition is in the real/ideal-world paradigm commonly used to formalize the security of multi-
party computation [45]. Formulating security in this way allows for definitions that are modular and
intuitive. Furthermore, this seems to be a natural way to define security since DHTs are distributed
objects. In our definition, we compare a real-world execution between n nodes, an honest client and
an adversary, where the latter can corrupt a subset of the nodes. Roughly speaking, we say that an
EDHT is secure if this experiment is indistinguishable from an ideal-world execution between the
nodes, the honest client, an ideal adversary (i.e., a simulator) and an functionality that captures
the ideal security properties of EDHTs. As discussed above, for any EDHT scheme, including the
standard construction, there can be subtle ways in which some information about the dataset is
leaked (e.g., its total size). To formally capture this, we parameterize our definition with (stateful)
leakage functions that capture exactly what is or is not being revealed to the adversary. We note
that our definitions handle static corruptions and are in the standalone setting.

EDHTs and structured encryption. The notion of an EDHT can be viewed and understood
from the perspective of structured encryption (STE). STE schemes are encryption schemes that
encrypt data structures in such a way that they can be privately queried. From this perspective,
EDHTs are a form of distributed encrypted dictionaries and, in fact, one recovers the latter from
the former when the network consists of only one node. We note that this connection is not just
syntactical, but also holds with respect to the security definitions of both objects and to their leakage
profiles. Indeed the standard scheme’s leakage profile on a single-node network reduces to the
leakage profile of common dictionary encryption schemes [52, 50]. This leakage, however, represents
the “worst-case” leakage of the standard EDHT. This suggests that distributed STE schemes can
leak less than non-distributed STE schemes which makes sense intuitively since, in the distributed
setting, the adversary can only corrupt a subset of the nodes whereas in the non-distributed setting
the adversary corrupts the only existing node and, therefore, all the nodes.

With this in mind, one can view our results as another approach to the recent efforts to suppress
the leakage of STE schemes [76, 73]. That is, instead of (or in addition to) compiling STE schemes as
in [76] or of transforming the underlying data structures as in [73], one could distribute the encrypted
data structure.

Probabilistic leakage. Our security definition allows us to formally study any leakage produced
by EDHT schemes. Interestingly, our analysis of the standard scheme will show that it achieves a
very novel kind of leakage profile. Now, this leakage profile is itself quite interesting. First, it is
probabilistic in the sense that it leaks only with some probability p ≤ 1. As far as we know, this
is the fist time such a leakage profile has been encountered. Here, the information it leaks (when
it does leak) is the query equality pattern (see [76] for a discussion of various leakage patterns)
which reveals if and when a query was made in the past. This is not surprising as labels are passed
as FK(`) to the underlying DHT, which are deterministic. This leakage profile is also interesting
because the probability p with which it leaks is determined by properties of the underlying DHT
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and, in particular, to its load balancing properties. Specifically, the better the DHT load balances
its data the smaller the probability that the EDHT will leak the query equality.

Worst-case vs. expected leakage. A-priori one might think that the adversary should only
learn information related to pairs that are stored on corrupted nodes and that, since DHTs are load
balanced, the total number of pairs visible to the adversary will be roughly mt/n. But there is a
slight technical problem with this intuition: a DHT’ s allocation of labels depends on its overlay
and, for any set of corrupted nodes, there are many overlays that can induce an allocation where,
say, a very large fraction of labels are mapped to corrupted nodes. The problem then is that, in
the worst-case, the adversary could see all the (encrypted) pairs. We will show, however, that the
intuition above is still correct because the worst-case is unlikely to occur. More precisely, we show
that with probability at least 1−δ over the choice of overlay, the standard scheme achieves a certain
leakage profile L which is a function of δ (and other parameters). As far as we know, this is the
first example of a leakage analysis that is not worst-case but that, instead, considers the expected
leakage (with high probability) of a construction. We believe this new kind of leakage analysis is of
independent interest and that the idea of expected leakage may be a fruitful direction in the design
of low- or even zero-leakage schemes.

Formalizing DHTs. To better understand EDHTs and their security properties, we aim for a
modular treatment. In particular, we want to isolate the properties of the underlying DHTs that
have an effect on security and decouple the components of the system that have to do with the
DHT from the cryptographic primitives we use like encryption and PRFs. This is in line with how
systems designers use encryption in DHTs; as far as we know, all DHT-based systems that support
end-to-end encryption add encryption on top of an “unmodified” DHT. Our first step, therefore, is
to formally define DHTs. This includes a formal syntax but, more interestingly, a useful abstraction
of the core components of a DHT including, their network overlays, their allocations (i.e., how they
map label/value pairs to nodes) and their routing components.

Properties of DHTs. As mentioned above, we found that the security of the standard EDHT
scheme is tightly coupled with two main properties of DHTs. More precisely, we discovered that the
former’s leakage is affected by a property we call balance which, roughly speaking, means that with
probability at least 1 − δ over the choice of overlays, the DHT allocates any label ` to any θ-sized
set of nodes with probability at most ε (over the choice of allocation). Note that this definition
essentially guarantees a (one-sided) form of load balancing.

Another interesting finding we made was that if the standard scheme is to satisfy our simulation-
based definition, then the underlying DHT has to satisfy a form of equivocation. Intuitively, the
DHT must be designed in such a way that, for any fixed overlay within a (large) class of overlays,
it is possible to “program” the allocation so that it maps a given label to a given server. We found
the appearance of equivocation in the context of DHTs quite surprising as it is usually a property
that comes up in the context of cryptographic primitives.
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Chord in the perpetual setting. Having isolated the properties we need from a DHT in order
to prove the security of the standard scheme, it is natural to ask whether there are any known DHTs
that satisfy them. Interestingly, we not only found that such DHTs exist but that Chord [78]—which
is arguably the most influential DHT—is both balanced and non-committing in the sense that it
supports the kind of equivocation discussed above in the random oracle model. Without getting
into details of how Chord works (we refer the reader to section 3.5 for a description), we mention
here that Chord makes use of two hash functions: one to map names to addresses and a second to
map labels to addresses. In section 3.5, we show that Chord is non-committing if the second hash
function is modeled as a random oracle.

Transient EDHTs. All the analysis discussed above was for what we call the perpetual setting
where nodes never leave the network. 1 Note that the perpetual setting is realistic and interesting
in itself. It captures, for example, how DHTs are used by many large companies who run nodes in
their own data centers, e.g., Amazon, Google, LinkedIn. Nevertheless, we also consider the transient
setting where nodes are allowed to leave and join the network arbitrarily. We extend our syntax and
security definitions to this setting and prove that the standard scheme—equipped with certain join
and leave protocols—achieves another probabilistic leakage profile. Necessarily, this leakage profile
is more complex than the one achieved in the perpetual setting. At a high level, it works as follows.
For puts and gets the leakage is roughly the same as in the perpetual setting. For joins, it leaks
the number of previous put operations for labels that were stored and routed exclusively by honest
nodes. For leaves there are two cases. When an honest node leaves, the leakage is the same as a
join and when a corrupted node leaves there is no leakage. Our leakage analysis in the transient
setting relies on a new and stronger property of the underlying DHT we call stability which, roughly
speaking, means that with probability at least 1− δ over the choice of overlay parameter ω, for all
large enough overlays, the DHT allocates any label to any θ-sized set with probability at most ε.

Chord in the transient setting. Having analyzed the standard EDHT in the transient setting,
we study its properties when it is instantiated with a transient variant of Chord. Our analysis of
Chord’s stability is non-trivial. At a very high level the main challenge is that, in the transient
setting, Chord’s overlay changes with every leave or join. To handle this, we introduce a series of
(probabilistic) bounds to handle “dynamic” overlays that may be of independent interest.

3.2 Related work

Since we already discussed related work on DHTs and their applications, we skip describing it again.
However, as described earlier, an EDHT scheme can also be viewed as a form of distributed STE
scheme, we therefore discuss some related work from the encrypted search literature.

1Note that in this setting we allow nodes to fail as long as they come back up in a bounded amount of time.
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Encrypted search. An encrypted search algorithm (ESA) is a search algorithm that operates on
encrypted data. ESAs can be built from various cryptographic primitives including oblivious RAM
(ORAM) [66], fully-homomorphic encryption (FHE) [64], property-preserving encryption (PPE)
[25, 33, 38, 100, 85] and structured encryption (STE) [52] which is a generalization of searchable
symmetric encryption [107]. Each of these approaches achieves different tradeoffs between efficiency,
expressiveness and security/leakage. For large datasets, structured encryption seems to provide the
best tradeoffs between these three dimensions: achieving sub-linear (and even optimal) search times
and rich queries while leaking considerably less than PPE-based solutions and either the same as
[76] or slightly more than ORAM-based solutions. Various aspects of STE have been extensively
studied in the cryptographic literature including dynamism [65, 75, 74, 108, 39, 50, 40, 60], locality
[49, 28, 56, 29, 57], expressiveness [52, 48, 99, 62, 61, 90, 71, 72, 77, 121] and leakage [69, 47, 76, 37, 73].

3.3 Distributed Hash Tables

A distributed hash table is a distributed storage system that instantiates a dictionary data structure.
It is distributed in the sense that the data is stored by a set of n nodesN1, . . . , Nn and it instantiates a
dictionary in the sense that it stores label/value pairs and supports Get and Put operations. Because
they are distributed, DHTs rely on an overlay network which, intuitively, consists of a set of node
addresses and a distributed routing protocol. As discussed in Section 5.1, DHTs are a fundamental
primitive in distributed systems and have many applications.

In this work, we will consider two kinds of DHTs: perpetual and transient. Perpetual DHTs
are composed of a fixed set of nodes that are all known at setup time. They can handle nodes
going down (e.g., due to failure) and coming back online but such unresponsive nodes are expected
to come back online after some period of time. Transient DHTs, on the other hand, are designed
for settings where nodes are not known a-priori and can join and leave at any time. Perpetual
DHTs are suitable for “permissioned” settings like the backend infrastructure of large companies
whereas transient DHTs are better suited to “permissionless” settings like peer-to-peer networks
and permissionless blockchains.

3.3.1 Perpetual DHTs

Syntax. We formalize DHTs as a collection of six algorithms DHT = (Overlay,Alloc,FrontEnd,
Daemon,Put,Get). The first three algorithms, Overlay, Alloc and FrontEnd are executed only once
by the entity responsible for setting up the system. Overlay takes as input an integer n ≥ 1, and
outputs a parameter ω from a space Ω. Alloc takes as input parameters ω and n, and outputs a
parameter ψ from a space Ψ. FrontEnd takes as input parameters ω and n and outputs a parameter
φ from space Φ. We refer to these parameters as the DHT parameters and represent them by
Γ = (ω, ψ, φ). Each DHT has an address space A and the DHT parameters in Γ define different
components of the DHT over this address space. For example, ω maps node names to addresses in
A, ψ maps labels to addresses in A, φ determines the address of a front-end node (or starting node).
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The fourth algorithm, Daemon, takes Γ and n as input and is executed by every node in the network.
Daemon is halted only when a node wishes to leave the network and it is responsible for setting up
its calling node’s state for routing messages and for storing and retrieving label/value pairs from
the node’s local storage. The fifth algorithm, Put, is executed by a client to store a label/value pair
on the network. Put takes as input Γ and a label/value pair ` and v, and outputs nothing. The
sixth algorithm, Get, is executed by a client to retrieve the value associated to a given label from
the network. Get takes as input Γ and a label ` and outputs a value v. Since all DHT algorithms
take Γ as input we sometimes omit it for visual clarity.

Abstracting DHTs. To instantiate a DHT, the parameters ω and ψ must be chosen together
with a subset C ⊆ N of active nodes (i.e., the nodes currently in the network) and an active set
of labels K ⊆ L (i.e., the labels stored in the DHT). Once a DHT is instantiated, we can describe
it using a tuple of function families (addr, server, route, fe) that are all parameterized by subset of
parameters in Γ. These functions are defined as

addrω : N→ A serverω,ψ : L→ A routeω : A×A→ 2A, feφ : L→ A

where addrω maps names from a name space N to addresses from an address space A, serverω,ψ
maps labels from a label space L to the address of the node that stores it, routeω maps two addresses
to the addresses of the nodes on the route between them, and feφ maps labels to node addresses who
forward client requests to the rest of the network. For visual clarity we abuse notation and represent
the path between two addresses by a set of addresses instead of as a sequence of addresses, but we
stress that paths are sequences. Note that this is an abstract representation of a DHT that will be
particularly useful for our analysis but, in practice, the overlay network, including its addressing
and routing functions, are implemented by the Daemon algorithm.

We sometimes refer to a pair (ω,C) as an overlay and to a pair (ψ,K) as an allocation. Abstractly
speaking, we can think of an overlay as an assignment from active nodes to addresses and of an
allocation as an assignment of active labels to addresses. In this sense, overlays and allocations are
determined by a pair (ω,C) and (ψ,K), respectively.

Visible addresses. A very useful notion for our purposes will be that of visible addresses. For
a fixed overlay (ω,C) an address a ∈ A is s-visible to a node N ∈ C if there exists a label
` ∈ L such that if ψ allocates ` to a, then either: (1) addrω(N) = serverω,ψ(`); or (2) addrω(N) ∈
routeω(s, serverω,ψ(`)). The intuition behind this is that if a label ` is mapped to an address in
Vis(s,N) then N either stores the label ` or routes it when the operation for ` starts at address s.
We point out that the visibility of a node changes as we change the starting address s. For example,
the node is maybe present on the path to serverω,ψ if s is the starting address but not on the path
if s′ is the starting address. Throughout we assume the set of visible addresses to to be efficiently
computable.

Since the set of s-visible addresses depends on parameters ω and the set C of nodes that are
currently active, we subscript Visω,C(s,N) with all these paramters. Finallym we also extend the
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notion to the set of s-visible addresses Visω,C(s, S) for a set of nodes S ⊆ C which is defined simply
as Visω,C(s, S) = ∪N∈SVisω,C(s,N). Again, for visual clarity, we will drop the subscripts wherever
they are clear from the context.

Front-end distribution. Another important notion in our analysis is that of a label’s front-end
distribution which is the probability distribution that governs the address of an operation’s “entry
point” into the DHT network. It is captured by the random variable feφ(`), where φ is sampled by
the algorithm FrontEnd. In this work we assume front-end distributions to be label-independent in
the sense that every label’s front-end node distribution is the same. We therefore simply refer to
this distribution as the DHT’s front-end distribution.

Allocation distribution. The next important notion in our analysis is what we refer to as a
label’s allocation distribution which is the probability distribution that governs the address at which
a label is allocated. More precisely, this is captured by the random variable ψ(`), where ψ is sampled
by the algorithm Alloc. We also assume allocation distributions are label-independent in the sense
that every label’s allocation distribution is the same 2. We therefore simply refer to this distribution
as the DHT’s allocation distribution.

Given a DHT’s allocation distribution, we also consider a distribution ∆(S) that is parameterized
by a set of addresses S ⊆ A. This distribution is over S and has probability mass function

f∆(S)(a) = fψ(a)∑
a∈S fψ(a) = Pr [ψ(`) = a ]

Pr [ψ(`) ∈ S ] ,

where fψ is the probability mass function of the DHT’s allocation distribution.

Non-committing allocations. As we will see in Section 4.5, our EDHT construction can be
based on any DHT but the security of the resulting scheme will depend on certain properties of
the underlying DHT. We describe these properties here. The first property that we require of a
DHT is that the allocations it produces be non-committing in the sense that it supports a form
of equivocation. More precisely, for some fixed overlay (ω,C) and allocation (ψ,K), there should
exist some efficient mechanism to arbitrarily change/program ψ. In other words, there should exist
a polynomial-time algorithm Program such that, for all (ω,C) and (ψ,K), given a label ` ∈ L and
address a ∈ A, Program(`, a) modifies the DHT so that ψ(`) = a. For the special case of Chord,
which we study in Section 3.5, this can be achieved by modeling one of its hash functions as a
random oracle.

Balanced overlays. The second property is related to how well the DHT load balances the
label/value pairs it stores. While load balancing is clearly important for storage efficiency we will
see, perhaps surprisingly, that it also has an impact on security. Intuitively, we say that an overlay
(ω,C) is balanced if for all labels `, the probability that any set of θ nodes sees ` is not too large.

2This is true for every DHT we are aware of [88, 70, 110, 58].
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Definition 3.3.1 (Balanced overlays). Let ω ∈ Ω be an overlay parameter and let C ⊆ N be a set
of active nodes. We say that an overlay (ω,C) is (ε, θ)-balanced if for all ` ∈ L and for all S ⊆ C
with |S| = θ,

Pr [ serverω,ψ(`) ∈ Visω,C(feφ(`), S) ] ≤ ε,

where the probability is over the coins of Alloc and FrontEnd and where ε can depend on θ.

Definition 3.3.2 (Balanced DHT). We say that a distributed hash table DHT = (Overlay,Alloc,
FrontEnd,Daemon,Put,Get) is (ε, δ, θ)-balanced if for all C ⊆ N, the probability that an overlay
(ω,C) is (ε, θ)-balanced is at least 1− δ over the coins of Overlay and where ε and δ can depend on
C and θ.

3.3.2 Transient Distributed Hash Tables

In this section, we formalize DHTs in the context of transient networks.

Syntax. Transient DHTs are a collection of eight algorithms DHT+ = (Overlay,Alloc,FrontEnd,
Daemon,Put,Get, Leave, Join). The first six algorithms are same as in the perpetual setting. The
seventh is an algorithm Leave executed by a node N ∈ C when it wishes to leave the network. Leave
takes nothing as input and outputs nothing but it halts the Daemon algorithm. The eighth is an
algorithm Join that is executed by a node N ∈ N \ C that wishes to join the network. It takes
nothing as input and outputs nothing but executes the Daemon algorithm. When a node executes a
Leave or Join, the routing tables of all the other nodes are updated and label/value pairs are moved
around in the network according to allocation ψ. In other words, when a node leaves, its pairs are
reallocated in the network and when a node joins, some pairs stored on the other nodes are moved
to the new node.

Note that when a node N ∈ C leaves the network, the set of active nodes C automatically
shrinks to exclude N . Similarly, when a node N ∈ N \C joins the network, the set of active nodes
C expands to include N . From now on, whenever we write C we are referring to the current set of
active nodes.

Stability. To prove the security of EDHTs in the transient setting, we need the underlying DHT
to satisfy a stronger notion than balance which we call stability.

Definition 3.3.3 (Stability). We say that a transient distributed hash table DHT+ = (Overlay,Alloc,
FrontEndDaemon,Put,Get, Leave, Join) is (ε, δ, θ)-stable if

Pr

 ∧
C⊆N:|C|≥θ

(ω,C) is (ε, θ)-balanced

 ≥ 1− δ

where the probability is over the choice of ω, and ε = ε(C).
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Notice that stability requires that Overlay returns an overlay parameter ω such that, with high
probability, (ω,C) is balanced for all possible subsets of active nodes C simultaneously. Balance,
on the other hand, only requires that for all sets of active nodes C, with high probability Overlay
will output an overlay parameter ω such that (ω,C) is balanced. In other words, stability requires
a single overlay parameter ω that is “good” for all subsets of active nodes whereas balance does not.

3.4 Encrypted Distributed Hash Tables in the Perpetual Set-
ting

In this Section, we formally define encrypted distributed hash tables. An EDHT is an end-to-end
encrypted distributed system that instantiates a dictionary data structure.

3.4.1 Syntax and Security Definitions

Syntax. We formalize symmetric EDHTs as a collection of seven algorithms EDHT = (Gen,Overlay,
Alloc,FrontEnd,Daemon,Put,Get). The first algorithm Gen is executed by a client and takes as input
a security parameter 1k and outputs a secret key K. All the other algorithms have the same syntax
as before (See Section 3.3), with the difference that Get and Put also take the secret key K as input.

Security. We now turn to formalizing the security of an EDHT. We do this by combining the
definitional approaches used in secure multi-party computation [45] and in structured encryption
[53, 52]. The security of multi-party protocols is generally formalized using the Real/Ideal-world
paradigm. This approach consists of defining two probabilistic experiments Real and Ideal where
the former represents a real-world execution of the protocol where the parties are in the presence of
an adversary, and the latter represents an ideal-world execution where the parties interact with a
trusted functionality shown in Figure 3.1. The protocol is secure if no environment can distinguish
between the outputs of these two experiments. Below, we will describe both these experiments more
formally.

Before doing so, we discuss an extension to the standard definitions. To capture the fact that
a protocol could leak information to the adversary, we parameterize the definition with a leakage
profile that consists of a leakage function L that captures the information leaked by the Put and Get
operations. Our motivation for making the leakage explicit is to highlight its presence.

The real-world experiment. The experiment is executed between a trusted party T , a client C,
a set C ⊆ N of n nodes N1, . . . , Nn, an environment Z and an adversary A. The trusted party T
runs Overlay(n) and Alloc(ω, n) and FrontEnd(ω, n), and sends (ω, ψ, φ) to all parties, i.e., the nodes,
the client, the environment and the adversary. Given z ∈ {0, 1}∗, the environment Z sends to the
adversary A, a subset I ⊆ C of nodes to corrupt. The client C generates a secret key K ← Gen(1k).
The nodes execute EDHT.Daemon(ω, ψ, n). Z then adaptively chooses a polynomial number of
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Functionality FLDHT

FLDHT stores a dictionary DX initialized to empty and proceeds as follows, running with client C, n
nodes N1, . . . , Nn and a simulator Sim:
• Put(`, v): Upon receiving a label/value pair (`, v) from client C, it sets DX[`] := v, and sends the

leakage L(DX, (put, `, v)) to the simulator Sim.
• Get(`): Upon receiving a label ` from client C, it returns DX[`] to the client C and the leakage
L(DX, (get, `,⊥)) to the simulator Sim.

Figure 3.1: FLDHT : The DHT functionality parameterized with leakage function L.

operations opj , where opj ∈ {get, put} × L× {V,⊥} and sends it to C. If opj = (get, `), the client
C executes EDHT.Get(K, `). If opj = (put, `, v), C initiates EDHT.Put(K, `, v). The client forwards
its output from running the get/put operations to Z. A computes a message m from its view and
sends it to Z. Finally, Z returns a bit that is output by the experiment. We let RealA,Z(k) be a
random variable denoting Z’s output bit.

The ideal-world experiment. The experiment is executed between a client C, a set C ⊆ N of n
nodes N1, . . . , Nn, an environment Z and a simulator Sim. Each party also has access to the ideal
functionality FLDHT. Given z ∈ {0, 1}∗, the environment Z sends to the simulator Sim, a subset
I ⊆ C of nodes to corrupt. Z then adaptively chooses a polynomial number of operations opj ,
where opj ∈ {get, put} × L × {V,⊥}, and sends it to the client C which, in turn, forwards it to
FLDHT. If opj = (get, `), the functionality executes FLDHT.Get(`). Otherwise, if opj = (put, `, v)
the functionality executes FLDHT.Put(`, v). C forwards its outputs to Z whereas Sim sends Z some
arbitrary message m. Finally, Z returns a bit that is output by the experiment. We let IdealSim,Z(k)
be a random variable denoting Z’s output bit.

Definition 3.4.1 (L-security). We say that an encrypted distributed hash table EDHT = (Gen,
Overlay,Alloc,FrontEnd,Daemon,Put,Get) is L-secure, if for all ppt adversaries A and all ppt
environments Z, there exists a ppt simulator Sim such that for all z ∈ {0, 1}∗,

|Pr[RealA,Z(k) = 1]− Pr[IdealSim,Z(k) = 1]| ≤ negl(k).

3.4.2 The Standard EDHT in the Perpetual Setting

We now describe the standard approach to storing sensitive data on a DHT. This approach relies
on simple cryptographic primitives and a non-committing and balanced DHT.

Overview. The scheme EDHT = (Gen,Overlay,Alloc,Daemon,Put,Get) is described in detail in
Figure 3.2 and, at a high level, works as follows. It makes black-box use of a distributed hash
table DHT = (Overlay,Alloc,Daemon,Put,Get), a pseudo-random function F and a symmetric-key
encryption scheme SKE = (Gen,Enc,Dec).
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Let DHT = (Overlay,Alloc,Daemon,Put,Get) be a distributed hash table, SKE = (Gen,Enc,Dec) be
a symmetric-key encryption scheme and F be a pseudo-random function. Consider the encrypted
distributed hash table EDHT = (Gen,Overlay,Alloc,Daemon,Put,Get) that works as follows:
• Gen(1k):

1. sample K1
$← {0, 1}k and compute K2 ← SKE.Gen(1k)

2. output K = (K1,K2)

• Overlay(n):

1. compute and output ω ← DHT.Overlay(n)

• Alloc(n, ω):

1. compute and output ψ ← DHT.Alloc(n, ω)

• FrontEnd(n, ω):

1. compute and output φ← DHT.FrontEnd(n, ω)

• Daemon(ω, ψ, n) :

1. Execute DHT.Daemon(ω, ψ, n)

• Put(K, `, v) :

1. Parse K as (K1,K2)
2. compute t := FK1 (`)
3. compute e← SKE.Enc(K2, v)
4. execute DHT.Put(t, e)

• Get(K, `):

1. Parse K as (K1,K2)
2. Initialise v := ⊥
3. compute t := FK1 (`)
4. execute e← DHT.Get(t)
5. if e 6= ⊥, compute and output v ← SKE.Dec(K2, e)

Figure 3.2: EDHT: The Standard EDHT Scheme

The Gen algorithm takes as input a security parameter 1k and uses it to generate a key K1 for the
pseudo-random function F and a key K2 for the symmetric encryption scheme SKE. It then outputs
a key K = (K1,K2). The Overlay, Alloc, FrontEnd and Daemon algorithms respectively execute
DHT.Overlay, DHT.Alloc, DHT.FrontEnd and DHT.Daemon to generate and output the paramters
ω, ψ and φ. The Put algorithm takes as input the secret key K and a label/value pair (`, v). It
first computes t := FK1(`) and e← Enc(K2, v) and then executes DHT.Put(t, e). The Get algorithm
takes as input the secret key K and a label `. It computes t := FK1(`) and executes e← DHT.Get(t).
It then outputs SKE.Dec(K, e).

Security. We now describe the leakage of EDHT. Intuitively, it reveals to the adversary the times
at which a label is stored or retrieved with some probability. More formally, it is defined with the
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following stateful leakage function

• Lε(DX, (op, `, v)) :

1. if ` has never been seen

(a) sample and store b` ← Ber(ε)

2. if b` = 1

(a) if op = put output (put, opeq(`))

(b) else if op = get output (get, opeq(`))

3. else if b` = 0

(a) output ⊥

where opeq is the operation equality pattern which reveals if and when a label was queried or put in
the past. Note that when ε = 1 (for some θ), Lε reduces to the leakage profile achieved by standard
encrypted dictionary constructions [52, 50]. On the other hand, when ε < 1, this leakage profile is
“better” than the profile of known constructions.

Discussion. We now explain why the leakage function is probabilistic and why it depends on the
balance of the underlying DHT. Intuitively, one expects that the adversary’s view is only affected by
get and put operations on labels that are either: (1) allocated to a corrupted node; or (2) allocated
to an uncorrupted node whose path (starting from the client) includes a corrupted node. In such a
case, the adversary’s view would not be affected by all operations but only a subset of them. Our
leakage function captures this intuition precisely and it is probabilistic because, in the real world,
the subset of operations that affect the adversary’s view is determined probabilistically because it
depends on the choice of overlay and allocation—both of which are chosen at random. The way this
is handled in the leakage function is by sampling a bit b with some probability and revealing leakage
on the current operation if b = 1. This determines the subset of operations whose leakage will be
visible to the adversary.

Now, for the simulation to go through, the operations simulated by the simulator need to be
visible to the adversary with the same probability as in the real execution. But these probabilities
depend on ω and ψ which are not known to the leakage function. Note that this implies a rather
strong definition in the sense that the scheme hides information about the overlay and the allocation
of the DHT.

Since ω and ψ are unknown to the leakage function, the leakage function can only guess as
to what they could be. But because the DHT is guaranteed to be (ε, δ, θ)-balanced, the leakage
function can assume that, with probability at least 1− δ, the overlay will be (ε, θ)-balanced which,
in turn, guarantees that the probability that a label is visible to any adversary with at most θ
corruptions is at most ε. Therefore, in our leakage function, we can set the probability that b = 1
to be ε in the hope that simulator can “adjust” the probability internally to be in accordance to
the ω that it sampled. Note that the simulator can adjust the probability only if for its own chosen
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ω, the probability that a query is visible to the adversary is less than ε. But this will happen with
probability at least 1− δ so the simulation will work with probability at least 1− δ.

We are now ready to state our main security Theorem which proves that the standard EDHT
construction is Lε-secure with probability that is negligibly close to 1− δ when its underlying DHT
is (ε, δ, θ)-balanced.

Theorem 3.4.2. If |I| ≤ θ and if DHT is (ε, δ, θ)-balanced, has non-committing and has label-
independent allocation and front-end distributions, then EDHT is Lε-secure with probability at least
1− δ − negl(k).

Proof. Consider the simulator Sim that works as follows. Given a set of corrupted nodes I ⊆ C, it
computes ω ← DHT.Overlay(n), initializes n nodes N1, . . . , Nn in C, simulates the adversary A with
I as input and generates a symmetric key K ← SKE.Gen(1k). In the following, let B def= Visω,C(s, I)
and p′

def= Pr [ψ(`) ∈ B ], which is unique since we assume label-independent allocations. If p′ > ε,
the simulator aborts otherwise it continues.

When a put/get operation is executed, Sim receives from FEDHT the leakage

λ ∈
{(

put, opeq(`)
)
,

(
get, opeq(`)

)
,⊥
}
.

If λ = ⊥ then Sim does nothing. If λ 6= ⊥, then Sim checks the query equality to see if the label has
been used in the past. If not, it samples and stores a bit

b′ ← Ber
(
p′

ε

)
.

Note that, this is indeed a valid Bernoulli distribution since

p′ = Pr [ψ(`) ∈ B ] = Pr [ serverω,ψ(`) ∈ Visω,C(s, I) ] ≤ ε,

where the second equality follows from the definition of visible address, and the last inequality follows
from |I| ≤ θ and (ω,C) being (ε, θ)-balanced.

If the label was seen in the past, Sim retrieves the bit b′ that was previously sampled. If b′ = 0,
then it does nothing, but if b′ = 1 it uses the query equality to check if the label has been used in
the past. If so, it sets t to the d-bit value previously used. If not, it sets t $← {0, 1}d, computes
e← SKE.Enc(K, 0), and samples an address a← ∆ω,C(B), and programs ψ to map t to a. Finally,
if the operation was a put, it executes DHT.Put(t, e), otherwise it executes DHT.Get(t). Once all
of the environment’s operations are processed, the simulator returns whatever the adversary outputs.

It remains to show that the view of the adversary A during the simulation is indistinguishable
from its view in a Real experiment. We do this using a sequence of games.

Game0 : is the same as a RealA,Z(k) experiment.
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Game1 : is the same as Game0 except that the encryption of the value v during a Put is replaced by
SKE.Enc(K2, 0).

Game2 : is the same as Game1 except that output of the PRF F is replaced by a truly random string
of d bits.

Game3 : is the same as Game2 except that for each operation (op, `, v) (where v can be null), we check
if ` has been seen before. If not, we sample a bit b` ← Ber(ε), else we set b` to the bit previously
sampled. If b` = 1 and op = (put, `, v), we replace the Put operation with Sim(put, opeq(`)),
and if b` = 1 and op = (get, `), we replace the Get operation with Sim(get, opeq(`)). If b` = 0,
we do nothing.

Game1 is indistinguishable from Game0, otherwise the encryption scheme is not semantically se-
cure. Game2 is indistinguishable from Game1 because the outputs of pseudorandom functions are
indistinguishable from random strings.

We now show that the adversary’s views in Game2 and Game3 are indistinguishable. We denote
these views by view2(I) and view3(I), respectively, and consider the ith “sub-views” view2

i(I)
and view3

i(I) which include the set of messages seen by the adversary (through the corrupted
nodes) during the execution of opi. Let op denote the sequence of q operations generated by the en-
vironment. Let `1, . . . , `q be the labels of the operations in op, and let t1, . . . , tq be the corresponding
random strings obtained by replacing FK(`i) with random strings. Because DHT is (ε, δ, θ)-balanced,
we know that with probability at least 1 − δ, the overlay (ω,C) will be (ε, θ)-balanced. So for the
remainder of the proof, we assume the overlay is (ε, θ)-balanced.

First, we treat the case where ti (or equivalently `i) has never been seen before. Let Ei be the
event that ψ(ti) ∈ B, where B = Visω,C(s, I) are the addresses visible to the corrupted nodes. For
all possible views v, we have

Pr
[

view2
i(I) = v

]
= Pr

[
view2

i(I) = v ∧ Ei

]
+ Pr

[
view2

i(I) = v ∧ Ei

]
= Pr

[
view2

i(I) = v | Ei

]
· Pr [ Ei ] + Pr

[
view2

i(I) = v | Ei

]
·
(

1− Pr [ Ei ]
)

= Pr
[

view2
i(I) = v | Ei

]
· Pr [ Ei ]

where the third equality follows from the fact that, conditioned on Ei, the nodes in I do not see any
messages at all.

Turning to view3, let Qi be the event that bi = 1 ∧ b′i = 1. Then for all possible views v, we
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have

Pr
[

view3
i(I) = v

]
= Pr

[
view3

i(I) = v ∧Qi

]
+ Pr

[
view3

i(I) = v ∧Qi

]
= Pr

[
view3

i(I) = v | Qi

]
· Pr [Qi ] + Pr

[
view2

i(I) = v | Qi

]
·
(

1− Pr [Qi ]
)

= Pr
[

view3
i(I) = v | Qi

]
· Pr [Qi ] (3.1)

where the third equality follows from the fact that, for all i, conditioned on Qi, either Sim is never
executed or Sim does nothing. In either case, the nodes in I will not see any messages, so for all v
we have Pr

[
view3

i(I) = v | Qi
]

= 0.

Notice, however, that

Pr [Qi ] = Pr [ bi = 1 ∧ b′i = 1 ] = ε · Pr [ψ(ti) ∈ B ]
ε

= Pr [ψ(ti) ∈ B ] = Pr [ Ei ],

so to show that the views are equally distributed it remains to show that for all v,

Pr
[
view2

i(I) = v | Ei
]

= Pr
[
view3

i(I) = v | Qi
]
. (3.2)

To see why this holds, notice that, conditioned on Ei and Qi, the only difference between Game2 and
Game3 is that, in the former, the labels ti are mapped to an address a according to an allcoation
(ψ,K) generated using Alloc, whereas in the latter, the labels ti are programmed to an address a
sampled from ∆ω,C(B). We show, however, that in both cases, the labels ti are allocated with the
same probability distribution. In Game2, for all a ∈ B, we have

Pr [ψ(ti) = a | Ei ] = Pr [ψ(ti) = a ∧ Ei ]
Pr [ Ei ] = Pr [ψ(ti) = a ]

Pr [ Ei ] = Pr [ψ(ti) = a ]
Pr [ψ(ti) ∈ B ] ,

where the second equality follows from the fact that the event
{
ψ(ti) = a

}
⊆ Ei.

In Game3, for all a ∈ B, we have,

Pr [ψ(ti) = a | Qi ] = Pr [ψ(ti) = a ]
Pr [ψ(ti) ∈ B ] ,

since a is sampled from ∆ω,C(B). Since, for all i, conditioned on Qi and Ei, labels are allocated to
addresses with the same distribution in both games and since this is the only difference between the
games,

Pr
[
view3

i(I) = v | Qi
]

= Pr
[
view2

i(I) = v | Ei
]
. (3.3)

Plugging Eq. 3.3 into Eq. 3.1, we have that for all i and all v,

Pr
[
view2

i(I) = v
]

= Pr
[
view3

i(I) = v
]
.

Now we consider the case where ti has been seen in the past. In this case, Put or Get operations will
produce the same messages that were generated in the past which means that view2

i(I) will be the
same as before. Similarly, view3

i(I) will be the same as before because, whenever ti has been seen
in the past, Sim behaves the same.
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Efficiency. The standard scheme does not add any overhead to time, round, communication and
storage complexities of the underlying DHT.

3.5 A Chord-Based EDHT in the Perpetual Setting

In this section, we analyze the security of the standard EDHT when its underlying DHT is instanti-
ated with Chord. We first give a brief overview of how Chord works and then show that: (1) it has
non-committing overlays in the random oracle model; and (2) it is balanced.

Setting up Chord. For Chord, the space Ω is the set of all hash functions H1 from N to A =
{0, . . . , 2m − 1}. Overlay samples a hash function H1 uniformly at random from H1 and outputs
ω = H1. The map addrω is the hash function itself so Chord assigns to each active node N ∈ C an
address H1(N) in A. We call the set χC = {H1(N1), . . . ,H1(Nn)} of addresses assigned to active
nodes a configuration.

The parameter space Ψ is the set of all hash functions H2 from L to A = {0, . . . , 2m − 1}. Alloc
samples a hash function H2 uniformly at random from H2 and outputs ψ = H2. The map serverω,ψ
maps every label ` in L to the address of the active node that follow H2(`) in a clockwise direction.
More formally, serverω,ψ is the function succχC ◦ H2, where succχC is the successor function that
assigns each address in A to its least upper bound in χC. Here, {0, . . . , 2m−1} is viewed as a “ring”
in the sense that the successor of 2m−1 is 0.

Chord allows its clients to choose any node as the front-end node to issue its operations. Moreover,
it does not restrict them to connect to the same node feφ(`), everytime the client wants to query
the same `. This means that for Chord, feφ is not necessarily a function but can be a one-to-many
relation. Unfortunately we cannot prove Chord to be balanced for arbitrary feφs. We therefore
modify Chord and model its space Φ as the set of all hash functions H3 from L to addresses of
active nodes. FrontEnd samples a hash function H3 uniformly at random from H3 and outputs
φ = H3. The map feφ is the hash function H3 itself so it assigns a front-end node with address H3(`)
to each label `.

Based on ω = H1, the Daemon algorithm constructs a routing table by storing the addresses of
the node’s 2ith successor where 0 ≤ i ≤ logn (we refer the reader to [110] for more details). Note
that a routing table contains at most logn other nodes. The Chord routing protocol is fairly simple:
given a message destined to a node Nd, a node N checks if N = Nd. If not, the node forwards the
message to the node N ′ in its routing table with an address closest to Nd. Note that the routeω map
for Chord is deterministic given a fixed set of active nodes and it guarantees that any two nodes
have a path of length at most logn.

Storing and retrieving. Once the DHT is instantiated, each Chord node instantiates an empty
dictionary data structure DXi. When a client executes a Put operation on a label/value pair (`, v),
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it computes N` = succχC(H2(`)) and uses the Chord routing protocol to send the pair (`, v) to the
node N` who stores it in its local dictionary DXi. When executing a Get query on a label `, the
Client also computes N` = succχC(H2(`)) and, again, uses the Chord routing protocol to send the
label ` to N`. The latter looks up ` in its local dictionary DXi and uses the Chord routing protocol
to return the associated value v.

Non-committing allocation. Given a label ` and an address θ, the allocation (H2,K) can be
changed by programming the random oracle H2 to output θ when it is queried on `.

Allocation distribution. Since Chord assigns labels to addresses using a random oracle H2, it
follows that for all overlays (H1,C), all labels ` ∈ L and all addresses a ∈ A,

fH2(a) = Pr [H2(`) = a ] = 1
|A| ,

which implies that Chord has label-independent allocations. From this it also follows that ∆(S) has
a probability mass function

f∆(S)(a) = 1
|S|

.

Before describing the visibility of nodes in Chord and analyzing its balance, we define notation
that will be useful in our analysis.

Notation. The arc of a node N is the set of addresses in A between N ’s predecessor and itself.
Note that the arc of a node depends on a configuration χ. More formally, we write arcχ(N) =
(predχ(H1(N)), . . . ,H1(N)], where predχ(N) is the predecessor function which assigns each address
in A to its largest lower bound in χ. The area of a node N is defined as area(χ,N) = |arcχ(N)|
and the area of a set of nodes S ⊆ χ is area(χ, S) =

∑
N∈S area(χ,N). We denote by maxareas(χ, x),

the sum of the areas of x largest arcs in configuration χ. The maximum area of a configuration χ

is equal to maxareas(χ, θ). As we will see, the maximum area is central not only to analyzing the
balance of Chord but also to analyzing its stability.

Visible addresses. Given a fixed overlay (H1,C), an address s ∈ A and a node N ∈ C, if the
starting address is s = H1(N), then VisχC(s,N) = A. This is because H1(N) lies on routeχC(s, a)
for all a ∈ A. Now for an address s ∈ A such that s 6= H1(N), we have

VisχC(s,N) =
{

arcχC(N ′) : H1(N) ∈ routeχC(s,H1(N ′))
} ⋃

arcχC(N)

Finally, for any set S ⊆ C, Visω,C(s, S) = ∪N∈SVisω,C(s,N).

3.5.1 Analyzing Chord’s Maximum Area

As we showed in Theorem 3.4.2, the leakage profile of the standard EDHT depends on the balance
of the underlying DHT. As we will see, analyzing the balance of Chord is non-trivial and relies on
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a quantity we call the maximum area. Before defining and analyzing this quantity we first describe
some notation.

Preliminaries. We now recall a Theorem from Byers, Considine and Mitzenmacher [42] that will
help us upper bound Chord’s maximum area.

Theorem 3.5.1 ([42]). Let C ⊆ N be a set of active nodes. If the following conditions hold (where
all the probabilities are over the coins of Overlay):

1. for some constant δ1,

Pr
[

maxareas(χC, 1) ≤ δ1|A| log |C|
|C|

]
≤ 1− p1

2. For suitable constants δ2, δ3, δ4 > 0, and 2 ≤ c ≤ δ4 log |C|,

Pr
[ ∣∣∣∣{α ∈ A : |α| ≥ c|A|

|C|

}∣∣∣∣ ≤ δ2|C|
ec/δ3

]
≥ 1− p2

where A is the set of all arcs in χC.

then, for all θ ≤ c2|C|

Pr
[

maxareas(χC, θ) ≤
γ1|A|θ
|C| log |C|

θ

]
≥ 1− p1 − p2 · log |C|

where
γ1 = 2δ3 + δ1

1− δ4
2δ3

, and c2 = min(2δ2e−2/δ3 , 1/e).

To use Theorem 3.5.1 to bound Chord’s maximum area, we need to find the constants for which
Chord satisfies the Theorem’s two conditions. We do this using the following Lemmas. The first is by
Wang and Loguinov [117] and upper bounds the size of Chord’s maximum arc (i.e. maxareas(χC, 1)).

Lemma 3.5.2 ([117]). Let C ⊆ N be a set of active nodes. Then,

Pr
[

maxareas(χC, 1) ≤ (1 + c1)|A| log |C|
|C|

]
≥ 1− 1

|C|c1
,

where the probability is over the coins of Overlay (i.e., the choice of H1).

For the second condition, we recall another Lemma from [42] based on the negative dependence
of the size of Chord’s arcs.

Lemma 3.5.3 ([42]). Let C ⊆ N be a set of active nodes. For 2 ≤ c ≤ n,

Pr
[ ∣∣∣∣{α ∈ A : |α| ≥ c|A|

|C|

}∣∣∣∣ ≥ 2|C|
ec

]
≤ e−|C|e

−c/3

where the probability is over the coins of Overlay (i.e., the choice of H1).
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Finding the constants. From Theorem 3.5.1 and Lemmas 3.5.2 and 3.5.3, we have the following
Corollary which upper bounds Chord’s maximum area.

Corollary 3.5.4. Let C ⊆ N be a set of active nodes. Then, for θ ≤ |C|/e

Pr
[

maxareas(χC, θ) ≤
6|A|θ
|C| log |C|

θ

]
≥ 1− 1

|C|2 − (e−
√
|C| · log |C|).

Proof. Setting c1 = 2 in Lemma 3.5.2, we get δ1 = 3, and p1 = 1/|C|2. Setting c = δ4 log |C| in
Lemma 3.5.3, we get δ2 = 2, δ3 = 1, and p2 ≈ e−|C|

1−δ4 = e−
√
|C| (setting δ4 = 0.5). Substituting

the values of δ1 = 3, δ2 = 2, δ3 = 1, δ4 = 0.5, we get γ1 = 6 and γ2 = e.
Therefore, from Theorem 3.5.1, for all θ ≤ |C|/e,

Pr
[

maxareas(χC, θ) ≤
6|A|θ
|C| log |C|

θ

]
≥ 1− 1

|C|2 − (e−
√
|C| · log |C|)

Experimental evaluation of maximum area. In the above Corollary, the error probability
of O(1/|C|2) stems from the fact that Lemma 3.5.2 only bounds maxareas(χC, 1) with probability
1−O(1/|C|2).

We ran two experiments to empirically study the probability that maxareas(χC, 1) is bounded
by (1 + c1)|A| log |C|/|C|. We found out that probability of sampling a good configuration is ap-
proximately 0.96 when |C| ≈ 210 = 1024. Therefore, our experiments suggest that for |C| ≥ 1024,
the Overlay algorithm samples a good configuration with exponentially high probability (See Figure
3.3). In both experiments, we set |A| = 224 and c1 = 0 and vary |C|. Then, for each value of |C|,
we sample 10000 configurations as follows: we sample |C| points uniformly at random from A, sort
them and compute the length of the maximum arc maxareas(χC, 1). We then count the number of
configurations for which maxareas(χC, 1) ≤ (1 + c1)|A| log |C|/|C| = |A| log |C|/|C|. We call such
configurations “good” configurations. This gives us the probability of sampling a good configuration
for fixed |A|, c1 and |C|. Note that we chose c1 = 0 because this is the worst value of c1: any
configuration with maxareas(χC, 1) less than |A| log |C|/|C| will also have maxareas(χC, 1) less than
(1 + c1)|A| log |C|/|C|, where c1 ≥ 1.

Figure 3.3a shows the probability of sampling a good configuration as the number of nodes (or
correspondingly arcs) are doubled from 1 to 220, and Figure 3.3b shows the probability when the
number of nodes are incremented by 1000 starting from 210 until ∼ 214. We see in both plots of
Figure 3.3 that the probability of sampling a good configuration increases exponentially as a function
of the number of active nodes |C|. Moreover, the probability of sampling a good configuration is
approximately 0.96 when |C| ≈ 210 = 1024. Therefore, our experiments suggest that for |C| ≥ 1024,
the Overlay algorithm samples a good configuration with exponentially high probability.

3.5.2 The Balance of Chord

We are now ready to analyze the balance of Chord.
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(a) (b)

Figure 3.3: Probability of sampling a good configuration. We write a value x on x-axis to mean 2x
in Figure 3.3a while 210 + x · 1000 in Figure 3.3b.

Theorem 3.5.5. Let C ⊆ N be a set of active nodes. If maxareas(χC, θ) ≤ λ, then χC is (ε, θ)-
balanced with

ε = θ log |C|
|C| + λ

|A|

Proof. Let n = |C| and let S be a set of addresses of at most θ nodes in C. For all ` ∈ L, we define
E1 as the event that the address of at least one of the replicas of ` is in S and E2 as the event that
at least one of the addresses in S is on the path to a replica of `. Precisely,

E1 = {server(`) ∈ S}, E2 = {S ∩ route(fe(`), server(`)) 6= ∅}

For Chord, we then have that,

Pr [ serverχC(`) ∈ VisχC(fe(`), S) ] = Pr [ E1 ∨ E2 ] ≤ Pr [ E1 ] + Pr [ E2 ], (3.4)

We first bound the probability of E1,

Pr [ E1 ] = Pr [ server(`) ∈ S ] = Pr
[
H2(`) ∈ ∪N :H1(N)∈SarcχC(N)

]
≤ λ

|A| (3.5)

We now bound E2. By the union bound and the law of total probability, we have that,

Pr [ E2 ] = Pr [S ∩ route(fe(`), server(`)) 6= ∅ ]

≤
∑
N∈S

Pr [N ∈ route(fe(`), server(`)) ]

=
∑
N∈S

∑
r∈C

Pr [N ∈ route(fe(`), r) | server(`) = r ] · Pr [ server(`) = r ] (3.6)

But note that,

Pr [N ∈ route(fe(`), r) | server(`) = r ] = logn
n
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which follows from the fact that path lengths in Chord are at most logn. Substituting this in Eq.
(4.7) we get,

Pr [ E2 ] ≤
∑
N∈S

∑
r∈C

logn
n
· Pr [ server(`) = r ]

=
∑
N∈S

logn
n

∑
r∈C

Pr [ server(`) = r ]

=
∑
N∈S

logn
n

= θ logn
n

(3.7)

Finally, the Theorem follows by plugging Eqs. (4.6) and (4.8) into Eq. (4.5).

Corollary 3.5.6. Let C be a set of active nodes. For all θ ≤ |C|/(e log |C|), Chord is (ε, δ, θ)-
balanced for

ε = θ

|C|

(
log |C|+ 6 log

(
|C|
θ

))
and δ = 1

|C|2 + (e−
√
|C| · log |C|)

Proof. From Corollary 3.5.4, we know that for θ ≤ |C|/e,

Pr [ maxareas(χC, θ) ≤ λ ] ≥ 1− δ for λ = 6|A|θ
|C| log |C|

θ

and δ as stated above in corollary statement. Therefore, from Theorem 3.5.5, we conclude that for
θ ≤ |C|/e,

Pr [ (H1,C) is (ε, θ)-balanced ] ≥ 1− δ for ε = θ log |C|
|C| + λ

|A|
Substituting the value of λ in last equation, we conclude the proof.

Remark. It follows from Corollary 3.5.6 that

ε = O

(
θ

|C| log |C|
)

and δ = O(1/|C|2). Note that assigning labels uniformly at random to nodes would achieve ε = θ/|C|
so Chord balances data fairly well. Note that balance of Chord is only log |C| factor away from
optimal balance which is very good given that the optimal balance is achieved with no routing at
all.
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3.5.3 The Security of our Chord-based EDHT

In the following Corollary we formally state the security of the standard scheme when its underlying
DHT is instantiated with Chord.

Corollary 3.5.7. If |L| = Θ(2k), |I| ≤ |C|/(e log |C|), and if EDHT is instantiated with Chord,
then it is Lε-secure with probability at least 1− 1/|C|2 − (e−

√
|C| · log |C|)− negl(k) in the random

oracle model, where

ε = θ

|C|

(
log |C|+ 6 log

(
|C|
θ

))
.

Proof. The corollary follows from Theorem 3.4.2, Theorem 3.5.6 and the fact that Chord has non-
committing allocations when H2 is modeled as a random oracle. Note that during the simulation,
the probability that A queries H2 on at least one of the strings t1, . . . , tq is at most poly(k)/|L|. This
is because A is polynomially-bounded so it can make at most poly(k) queries to H2. And since for
all i, ti = f(`i), where f is a random function, the probability that A queries H2 on at least one of
t1, . . . , tq is at most poly(k)/|L|. And since |L| = Θ(2k), this probability is negligible in k.

From the discussion of Theorem 3.5.6, we know that,

ε = O

(
|I|
|C| log |C|

)
and δ = O(1/|C|2). Setting |I| = |C|/(α log |C|), for some α ≥ e, we have ε = O(1/α). Recall
that, on each query, the leakage function leaks the query equality with probability at most ε. So,
intuitively, this means that if an α fraction of nodes are corrupted then, the adversary can expect
to learn the operation equality of an O(1/α) fraction of client queries. Note that this confirms the
intuition that distributing an STE scheme suppresses its leakage.

3.6 Encrypted Distributed Hash Tables in the Transient Set-
ting

In this section we define the security of transient EDHTs and analyze the security of the standard
construction in this setting.

3.6.1 Syntax and Security Definitions

Syntax. A transient EDHT is a collection of nine algorithms EDHT+ = (Gen,Overlay,Alloc,
FrontEnd,Daemon,Put,Get, Leave, Join). The first seven algorithms are the same as the perpetual
setting. The eighth is an algorithm Leave executed by an existing node in network when it wishes
to leave the network, whereas the ninth is an algorithm Join executed by a node willing to join
the network. Both of them take nothing as input and output nothing but either halt the Daemon
algorithm or make changes to the routing tables.
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Functionality FLDHT+

FLDHT+ stores a dictionary DX initialized to empty, a set C ⊆ N of active nodes, and a set I ⊆ N of
corrupted nodes. It proceeds as follows, running with client C, n active nodes in C and a simulator
Sim:
• Put(`, v): Upon receiving a label/value pair (`, v) from client C, it sets DX[`] := v, and sends the

leakage L(DX, (put, `, v)) to the simulator Sim.
• Get(`): Upon receiving a label ` from client C, it returns DX[`] to the client C and the leakage
L(DX, (get, `,⊥)) to the simulator Sim.

• Leave(N): Upon receiving N ∈ C, it returns the leakage L(DX, (leave, N)) to the simulator
Sim and updates its set C.

• Join(N): Upon receiving N ∈ N \C, it returns the leakage L(DX, (join, N)) to the simulator
Sim and updates its set C.

Figure 3.4: FLDHT+ : The DHT+ functionality parameterized with leakage function L.

We assume in this work that when a node leaves the network, all the pairs stored at that node
are “re-put” in the network and when a node joins the network all the pairs currently in the network
are “re-put”. We note that this is not the most efficient way to handle leaves and joins but in this
work our focus is on security rather than efficiency and this strategy has the worst possible leakage.

Security. The real and ideal experiments are the same as in Section 3.4 with the following differ-
ences. First, the trusted party T runs Overlay and Alloc with |N| nodes; second, the environment
selects and activates a subset a set C ⊆ N of nodes in the beginning; third, the environment also
sends Leave and Join operations adaptively along with Get and Put operations to nodes; and fourth,
the ideal functionality of Figure 4.1 is replaced with the ideal functionality described in Figure 3.4.

3.6.2 The Standard EDHT in the Transient Setting

In the transient setting, the standard scheme is composed of nine algorithms EDHT+ = (Gen,Overlay,
Alloc,FrontEnd,Daemon,Put,Get, Leave, Join). The first seven algorithms are exactly the same as the
standard EDHT scheme in the perpetual setting (See Figure 3.2). The Leave algorithm simply calls
DHT+.Leave while the Join algorithm calls DHT+.Join. We now turn to describing the leakage of
this scheme. We start with a description of the leakage for join and leave operations and then discuss
the leakage for put and get operations.

Join and leave leakage. Roughly speaking, during the execution of the scheme, the adversary
sees leakage on label/value pairs that are either stored at corrupted nodes or routed through cor-
rupted nodes. Now, when a join or leave operation occurs, label/value pairs are moved throughout
the network (e.g., during a leave, the leaving node’s pairs are redistributed to other nodes). At this
point, the adversary could get new leakage about pairs that it had not seen before the leave/join
operation. For example, this would occur if a previously unseen label/value pair (i.e., that was
stored on the leaving node) gets routed through a corrupted node during the re-distribution.
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To simulate a leave/join operation correctly, the simulator will have to correctly simulate the
re-distribution of pairs including of pairs it has not seen yet. But at this stage, it does not even
know how many such pairs exist. This is because it does not get executed on put operations for
labels not stored or routed by corrupted nodes. To overcome this, we reveal to the simulator how
many of these pairs exist through the leakage function.

This, however, affects the get and put leakages for these pairs: now that the pairs have been re-
distributed to (or routed through) a corrupted node the adversary will receive get and put leakages
on these pairs. There is a technical challenge here, which is that we do not know how to simulate
only the pairs that are re-distributed to (or routed through) corrupted nodes, so to address this we
additionally reveal to the simulator the leakage of all the previously unseen pairs. It is not clear if
this is strictly necessary and it could be that the scheme achieves a “tighter” leakage function. Note
that this does not affect new pairs, i.e., pairs that are added after the leave/join operation (until
another leave/join operation occurs).

Note that by revealing the number κ of previously unseen pairs, one can compute the total
number of put operations up to the last leave/join operation. We denote this value by τ and make
it explicit in the leakage function for ease of exposition.

The leakage profile. We are now ready to formally describe the leakage profile achieved by the
standard scheme in the transient setting.

• Lε
(

DX,
{

(op, `, v), (op, N)
})

:

1. if op = get ∨ put and ` has never been seen

(a) sample and store b` ← Ber(ε)

2. if b` = 1

(a) if op = put output (put, opeq(`))

(b) else if op = get output (get, opeq(`))

3. else if b` = 0

(a) Increment κ if op = put and ` has never been seen

(b) output ⊥

4. Increment τ

5. if op = leave ∨ join

(a) output (op, N, κ, τ)

(b) set b` = 1 for all the put labels that have been seen in the past

(c) reset κ to 0

We now show that EDHT+ is Lε-secure in the transient setting with probability negligibly close
to 1− δ when its underlying transient DHT is (ε, δ, θ)-balanced and is non-committing.
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Theorem 3.6.1. If |I| ≤ θ and DHT+ is (ε, δ, θ)-balanced, has non-committing allocations and has
label-independent allocation and front-end distributions, then EDHT+ is Lε-secure with probability
at least 1− δ − negl(k).

Proof. Consider the simulator Sim that works as follows. Given a set of corrupted nodes I ⊆ N,
and a set of active nodes C ⊆ N, it computes ω ← DHT+.Overlay(n), ψ ← DHT+.Alloc(n, ω, ρ),
φ← DHT+.FrontEnd(ω, n), initializes n nodes N1, . . . , Nn in C, simulates the adversary A with I as
input, and generates a symmetric key K ← SKE.Gen(1k). It then sets I ′ = C ∩ I. In the following,
let B = Visω,C(feφ(`), I ′), G = A \ B, and p′ = Pr [ψ(`) ∈ B ], all of which are unique since we
assume label independent allocations and label independent front-end nodes. If p′ > ε, the simulator
aborts, otherwise it continues. The simulator also initializes two empty multimaps MM and MM′.

When a leave/join operation is executed, the simulator receives from FDHT+ the leakage

λ ∈
{(

leave, N, κ, τ
)
,

(
join, N, κ, τ

)}
.

For each j ∈ [κ], it sets tj
$← {0, 1}d and ej ← SKE.Enc(K, 0), samples an address a ← ∆(G),

programs ψ to map t to a, computes N ′ ← server(tj), and adds (tj , ej) to MM[N ′]. It then sets
MM′[τ ′‖τ ] = {t1, . . . , tκ}, where τ ′ is the time of the last leave/join operation. It also sets b′i = 1 for
all the put labels that have been seen in the past. Finally, if the operation is a leave operation, it
updates C = C \ {N}, updates the routing tables to exclude N , and executes DHT.Put(t, v) on all
the (t, v) pairs stored in MM[N ], updating MM according to how pairs move.

If the operation is a join operation, it updates C = C∪{N}, updates the routing tables to include
N , and executes DHT.Put(t, v) on all the (t, v) pairs stored in MM for all the nodes, updating MM
according to how pairs move. It finally, resets MM[N ] to ⊥, I ′ = I ∩ C, B = Visω,C(fe(`), I ′),
G = A \B, and computes p′ = Pr [ψ(`) ∈ B ]. If p′ > ε, it aborts and exits, otherwise it continues.

When a put/get operation is executed, the simulator receives from FDHT+ leakage

λ ∈
{(

put, opeq(`)
)
,

(
get, opeq(`)

)
,⊥
}
.

If λ = ⊥ then Sim does nothing. If λ 6= ⊥, then Sim checks the operation equality to see if the label
has been used in the past. If not, it samples and stores a bit

b′ ← Ber
(
p′

ε

)
.

Note that, this is indeed a valid Bernoulli distribution since

p′ = Pr [ψ(`) ∈ B ]

= Pr [ serverω,ψ(`) ∈ Visω,C(fe(`), I ′) ]

≤ Pr [ serverω,ψ(`) ∈ Visω,C(fe(`), I) ]

≤ ε,
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where the second equality follows from the definition of visible address, and the last two inequalities
follows from |I ′| ≤ |I| ≤ θ and (ω,C) being (ε, θ)-balanced.

It then sets t $← {0, 1}d and computes e ← SKE.Enc(K, 0). If b′ = 0, and the operation is a
put operation, it samples a ← ∆(G), otherwise, (if b′ = 1 and irrespective of operation) it samples
a ← ∆(B). In either case, it programs ψ to map t to a, computes N ′ ← server(tj), adds (tj , ej) to
MM[N ′], and executes DHT.Put(t, e)/DHT.Get(t) depending on whether the operation was a put or
a get.

If on the other hand, the label has been used in the past (as deduced from query equality), it
retrieves the bit b′ previously sampled. If b′ = 0, it does nothing. If b′ = 1, it sets t to the d-bit
value previously used and e ← SKE.Enc(K, 0), and executes DHT.Put(t, e)/DHT.Get(t). If b′ = ⊥,
(this occurs for the labels which b was 0 initially but later leave/join occured), it sets t = t′, where
t′

$← MM′[τ‖τ ′], such that opeq(`) ∈ [τ, τ ′], and then removes t′ from MM′[τ‖τ ′]. It finally computes
e← SKE.Enc(K, 0) and executes DHT.Put(t, e)/DHT.Get(t).

Once all of the environment’s operations are processed, the simulator returns whatever the ad-
versary outputs.

It remains to show that the view of the adversary A during the simulation is indistinguishable
from its view in a Real experiment. We do this using a sequence of games.

Game0 : is the same as a RealA,Z(k) experiment.

Game1 : is the same as Game0 except that the encryption of the value v during a Put is replaced by
SKE.Enc(K2, 0).

Game2 : is the same as Game1 except that output of the PRF F is replaced by a truly random string
of d bits.

Game3 : is the same as Game2 except that for each operation op, if op ∈ {(get, `), (put, `, v)}, we
check if the label ` has been seen before. If not, we sample and store a bit b` ← Ber(ε),
else we set b` to the bit previously sampled for `. If b` = 1 and op = (put, `, v), we replace
the Put operation with Sim(put, opeq(`)) and if op = (get, `) we replace the Get operation
with Sim(get, opeq(`)). If however op = (leave, N), we replace the Leave operation with
Sim(leave, N, κ, τ) and set b` = 1 for all the put labels that have been seen in the past.
Similarly if op = (join, N), we replace the Join operation with Sim(join, N, κ, τ) and set
b` = 1 for all the put labels that have been seen in the past.

Game1 is indistinguishable from Game0, otherwise the encryption scheme is not semantically secure.
Game2 is indistinguishable from Game1 because the outputs of pseudorandom functions are indis-
tinguishable from random strings.
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Let (ω,C) be the current overlay. Since DHT is (ε, δ, θ)-balanced, with probability at least 1 − δ,
for all C ⊆ N, (ω,C) will be (ε, θ)-balanced. Furthermore, as shown in Theorem 3.4.2, if it is
(ε, θ)-balanced then p′ ≤ p. It follows then that the simulator aborts with probability at most δ so
for the rest of the proof, we argue indistinguishability assuming (ε, θ)-balanced overlays.

As in the proof of Theorem 3.4.2, we will consider the views of nodes in I ′ for each operation
and show them to be indistinguishable across Game2 and Game3. We will denote this by view2

i(I ′)
and view3

i(I ′) for Game2 and Game3 respectively.

Let op denote the sequence of operations generated by the environment. To prove the indistin-
guishability of views, we divide the operations in op into buckets where the bucket boundaries are
the leave/join operations.

Now consider the first bucket. Since no leaves/joins have yet been simulated, b′i can only be 0
or 1 but not ⊥. Notice that for get and put operations in the bucket, when b′i = 1, the simulator
programs ψ in the same way as the simulator of Theorem 3.4.2. It does some extra bookkeeping in
addition but that does not affect the view of the nodes in set I ′ for that operation. Moreover, for
put operations when b′i = 0, it only programs ψ to addresses not visible to I ′ and does nothing else
which generates any extra view for nodes in I ′. Therefore, using the same argument as in Theorem
3.4.2, we conclude that for get and put operations the views are indistinguishable.

Let opi be the first leave/join operation (boundary of the first bucket) and let t1, . . . , tq be the
distinct labels of put operations in first bucket. Now let Ar be the random variable denoting the
allocation of t1, . . . , tq to addresses in view2. Then, using the law of total probability, we get

Pr
[
view2

i(I ′) = v
]

=
∑

(α1,...,αq)∈Aq

Pr
[
view2

i(I ′) = v |Ar = (α1, . . . , αq)
]
· Pr [Ar = (α1, . . . , αq) ] (3.8)

Similarly, let As be the random variable denoting the allocation of t1, . . . , tq to addresses in view3.
Then,

Pr
[
view3

i(I ′) = v
]

=
∑

(α1,...,αq)∈Aq

Pr
[
view3

i(I ′) = v |As = (α1, . . . , αq)
]
· Pr [As = (α1, . . . , αq) ]

But conditioned on a fixed allocation (α1, . . . , αq) ∈ Aq of labels, during leave/join operations, the
views of the nodes in I ′ will be the same in both the games, since both of them will be re-distributing
the same number of pairs using DHT.Put. Therefore,

Pr
[
view2

i(I ′) = v |Ar = (α1, . . . , αq)
]

= Pr
[
view3

i(I ′) = v |As = (α1, . . . , αq)
]

(3.9)

Next we show that,
Pr [Ar = (α1, . . . , αq) ] = Pr [As = (α1, . . . , αq) ]
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Notice that we can rewrite 3

Pr [Ar = (α1, . . . , αq) ] =
∏
j∈[q]

Pr [ψ(tj) = αj ] =
∏
j∈[q]

Pr [ψ(`) = αj ]

where the last equality follows because ψ is a label-independent allocation function. The allocation
in Game3 is determined by the programmed ψ function. To avoid any confusion with the ψ function
of Game2, we denote by ψP , the programmed allocation function of Game3. Then, we can rewrite,

Pr [As = (α1, . . . , αq) ] =
∏
j∈[q]

Pr [ψP (tj) = αj ]

There are two subcases to consider. In the first case, αj ∈ B. Then,

Pr [ψP (tj) = αj ] = Pr
[
bj = 1 ∧ b′j = 1 ∧ aj = αj

]
where aj ← ∆(B). Now,

Pr
[
bj = 1 ∧ b′j = 1 ∧ aj = αj

]
= ε · Pr [ψ(`) ∈ B ]

ε
· Pr [ψ(`) = αj ]

Pr [ψ(`) ∈ B ]

= Pr [ψ(`) = αj ]

In the second case, αj ∈ A \B = G. Then,

Pr [ψP (tj) = αj ] = Pr [ E1 ] + Pr [ E2 ]

where

Pr [ E1 ] = Pr
[
bj = 1 ∧ b′j = 0 ∧ aj = αj

]
, and

Pr [ E2 ] = Pr [ bj = 0 ∧ aj = αj ]

such that aj ← ∆(G). Then,

Pr [ E1 ] = Pr
[
bj = 1 ∧ b′j = 0 ∧ aj = αj

]
= ε ·

(
1− Pr [ψ(`) ∈ B ]

ε

)
· Pr [ψ(`) = αj ]

Pr [ψ(`) ∈ G ] , and

Pr [ E2 ] = Pr [ bj = 0 ∧ aj = αj ]

= (1− ε) · Pr [ψ(`) = αj ]
Pr [ψ(`) ∈ G ]

3there is an implicit assumption made here that for each label, its allocation to an address is independent of the
previous allocations. However, the proof can be extended when no such assumption is made using the chain rule
of probability.
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Adding the two probabilites, we get,

Pr [ E1 ] + Pr [ E2 ] = Pr [ψ(`) = αj ]
Pr [ψ(`) ∈ G ] ·

(
ε ·
(

1− Pr [ψ(`) ∈ B ]
ε

)
+
(

1− ε
))

= Pr [ψ(`) = αj ]
Pr [ψ(`) ∈ G ] ·

(
1− Pr [ψ(`) ∈ B ]

)
= Pr [ψ(`) = αj ]

Pr [ψ(`) ∈ G ] · Pr [ψ(`) ∈ G ]

= Pr [ψ(`) = αj ]

Hence,
Pr [Ar = (α1, . . . , αq) ] = Pr [As = (α1, . . . , αq) ] (3.10)

Therefore, by substituting Equations 3.9 and 3.10 in Equation 3.8, we conclude that at the first
churn operation,

Pr
[
view2

i(I ′) = v
]

= Pr
[
view3

i(I ′) = v
]

Moreover, since the allocation distribution before the churn operation is the same and both the
games use the same DHT.Put to move the pairs, therefore, the new allocation distribution will also
be the same. Hence using induction on each bucket, we prove that views will be indistinguishable
for all the buckets. The proof follows by noticing that Game3 is same as IdealSim,Z(k) experiment.

Efficiency. The time, round and communication complexities of leave and join operations of the
standard scheme is transient setting are the same as the underlying DHT.

3.7 A Chord-Based EDHT in the Transient Setting

We now describe and analyze how Chord can work in a transient setting. The Chord paper does
not precisely specify how joins and leaves should be handled. More precisely, it describes what the
new destination nodes of the pairs should be but does not describe how exactly the pairs should
get to their new destination nodes. Because of this, we describe here a simple approach based on
“re-hashing”. We note that this is not the most efficient way to handle leaves and joins but it is
correct and our focus is on security rather than efficiency.

Leaves and joins in Chord. When a new node N ∈ N \C joins the network, it is first assigned
an address H1(N) ∈ A. Then, the routing tables of all the other nodes are updated. Finally, all
the label/value pairs stored at succχC(H1(N)) are re-hashed and stored at their new destination (if
necessary). When a node N ∈ C leaves, the routing tables of all the other nodes are updated and
all the label/value pairs stored at N are moved to the succχC(H1(N)).
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3.7.1 Analysis of Chord’s Stability

Recall from the security analysis of the Chord-based EDHT that its leakage was Lε, where ε is
a function of the upper bound on maxareas and where the simulation error δ is a function of the
probability of that bound.

In perpetual setting there is a single configuration corresponding to fixed set of active nodes.
However, in transient setting there are multiple configurations – every time a node leaves/joins,
the configuration changes. Therefore, in transient setting, the parameters ε and δ are functions of
bounds on maxareas and their probabilities of each possible configuration.

We describe here, at a high level, two strategies for computing these parameters, with tradeoffs
between quality of simulation and running time efficiency. The first strategy is efficient but has a δ
which is 1/poly(|N|) while the second has expensive setup but improves δ to negl(k).

Approach #1. In this approach we upper bound the maxareas in the configuration χC via the
maxareas in the configuration χN. The approach relies on two main observations. The first is that
any configuration χC can be expressed as χN \ χN\C which, intuitively, means we can recover χC

by starting with χN (which includes every node in the name space) and removing the nodes N \C.
The second observation is that if we start with a given configuration χC and remove a node N , then
N ’s area becomes visible to some other (currently active) node.

But how exactly can we use these observations to bound the maximum area in χC using the
maximum area in χN? We start with χN and remove the nodes in N \C; but for each node N that
is removed, we assume the worst-case and assign N ’s area to one of the θ nodes with largest arcs.
The resulting area will be an upper bound on the true maximum area. More formally, we have that
maxareas(χC, θ) ≤ maxareas(χN, θ + |N| − |C|).

For our purposes, we will need to show that this bound holds for all large enough C’s so the next
step will be to prove that if |N| − |C| ≤ d, then for all C such that |C| ≥ |N| − d, maxareas(χN, θ+
|N| − |C|) is upper bounded by maxareas(χN, θ + d). But we can bound the latter using Corollary
3.5.4 with probability at least 1−O(1/|N|2).

Approach #2. The limitation of the previous approach is that the bound only holds with prob-
ability 1 − O(1/|N|2) which leads to a O(1/|N|2) error probability for the simulation. Using our
second approach, however, we will reduce the error probability to be negligible.

We do this by using a new overlay algorithm Overlay that works as follows. It runs the old
Overlay algorithm r = O(k/ log |N|) times in the hope of sampling an overlay parameter ω = H1

such that maxareas(χN, 1) is small. We show in Lemma 3.7.4 that Overlay will find such an H1 with
overwhelming probability in k.

Using Overlay, one can find, with overwhelming probability, an overlay with a small maxareas(χN, 1).
This, in turn, gives us a bound on maxareas(χN, θ + d) with overwhelming probability (Corollary
3.5.4) which yields a simulation with negligible error probability. As we will see, the main limitation
of this approach is that Overlay runs in time O(k|N|) as opposed to Overlay which runs in O(1) time.
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We however show experimentally, that the probability of sampling a good hash function in a single
trial is very high (and seems to grow exponentially). Therefore, for practical purposes, it is most
likely enough to use Overlay instead of Overlay.

3.7.2 Approach #1: High Probability Simulation Success

Here, we analyze our first strategy. We start by proving a Lemma that bounds the maximum areas
of all the configurations χC with large enough C.

Lemma 3.7.1. If χN = (H1,N) is a configuration such that

Pr [ maxareas(χN, θ + d) ≤ α ] ≥ 1− β,

then,

Pr

 ∧
C⊆N:|C|≥|N|−d

maxareas(χC, θ) ≤ α

 ≥ 1− β.

Proof. We prove this by contradiction. Suppose that there exists a set of active nodes C∗ and a
subset of nodes S ⊆ C∗ such that |C∗| ≥ |N| − d and that |S| = θ for which area(χC∗ , S) > α. We
then show that there exists a set of nodes D ⊆ N of size θ + d such that area(χN, D) > α.

Consider the set D = S ∪N \C∗ and note that

area(χN, D) = area(χN, S ∪N \C∗) = area(χN, S) + area(χN,N \C∗) (3.11)

We know that for some subset Z ⊆ N \C∗, the following holds:

area(χC∗ , S) = area(χN, S) + area(χN, Z)

≤ area(χN, S) + area(χN,N \C∗), (3.12)

where the equality holds because when nodes in N \ C∗ are removed from χN, their areas might
become visible to nodes in S, and the inequality holds because Z ⊆ N \C∗. From Equations 3.11
and 3.12, we conclude that

area(χN, D) ≥ area(χC∗ , S) > α

where the last inequality follows from our assumption. This, however, is a contradiction.
Since maxareas(χN, θ + d) ≤ α implies the that for all C ⊆ N such that |C| ≥ N − d,

maxareas(χC, θ) ≤ α, if the former occurs with probability at least 1− β then so does the latter.

Stability of Chord. We now turn to proving the stability of Chord.

Theorem 3.7.2. For all θ ≤ |N|/(e log |N|)− d, transient Chord is (ε, δ, θ)-stable for

ε = (θ + d)
|N|

(
log |N|+ 6 log

(
|N|

(θ + d)

))
and δ = 1

|N|2 + (e−
√
|N| · log |N|)
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Proof. From Lemma 3.7.1, we know that if

Pr [ maxareas(χN, θ + d) ≤ α ] ≥ 1− β

then

Pr

 ∧
C⊆N:|C|≥N−d

maxareas(χC, θ) ≤ α

 ≥ 1− β.

But from Corollary 3.5.4, we have that for θ + d ≤ |N|/e,

α = 6|A|(θ + d)
|N| log

(
|N|

(θ + d)

)
, β = 1

|N|2 + (e−
√
|N| · log |N|)

Finally by applying Theorem 3.5.5, we conclude that for θ + d ≤ |N|/e,

Pr

 ∧
C⊆N:|C|≥N−d

(H1,C) is (ε, θ)-balanced

 ≥ 1− δ,

where ε and δ are as defined in theorem statement.

Security of the Chord-based EDHT. In the following Corollary we formally state the security
of the standard EDHT when its underlying DHT is instantiated with transient Chord.

Corollary 3.7.3. If |L| = Θ(2k), |I| ≤ |N|/(e log |N|)−d, and if EDHT+ is instantiated with Chord,
then it is Lε-secure with probability at least 1− 1/|N|2 − (e−

√
|N| · log |N|)− negl(k) in the random

oracle model, where

ε = (|I|+ d)
|N|

(
log |N|+ 6 log

(
|N|
|I|+ d

))
The corollary follows from Theorems 3.6.1 and 3.7.2 and the fact that Chord has non-committing

allocations when H2 is modeled as a random oracle. The proof is the same as the proof of Corollary
3.5.7.

Practical considerations. Similar to the discussion following Corollary 3.5.7 in the perpetual
setting, if we set |I| + d ≤ |N|/(α log |N|), where α ≥ e, then, in expectation, the adversary will
learn the query equality leakage of an O(1/α) fraction of the queries executed between any two
churn operations. One thing to notice here is that the inequality |I| + d ≤ |N|/(e log |N|) implies
that |I|+ |N|− |C| ≤ (e log |N|) which, in turn, implies that |C| ≥ ((e log |N|−1)/e log |N|)|N|+ |I|.
Concretely, this means that at all times, the network must have at least ((e log |N|−1)/e log |N|)|N|+
|I| nodes which bounds how many nodes can ever leave the system.
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3.7.3 Approach #2: Achieving an Overwhelming Bound on Simulation
Success

We now analyze our second strategy which yields an overwhelming bound on the simulation’s success
probability. As discussed above, we do this by using a new overlay algorithm Overlay, which amplifies
the probability that Overlay outputs a good hash function. Overlay takes as input an integer n ≥ 1
and the security parameter k and chooses a hash function by executing H1 ← DHT.Overlay(n) and
checking whether maxareas(χN, 1) ≤ (1 + c1)|A| log |N|/|N|, where χN = (H1,N). If so, it outputs
H1 otherwise it retries for a maximum r = k/(c1 log |N|) times, in which case it fails.

We now turn to analyzing the stability of Chord where the Overlay algorithm has been replaced
by Overlay. Since most of the details are similar to what was in the Approach #1, we keep the
description high level.

We start by showing that with overwhelming probability maxareas(χN, 1) is small. We then use
it to show that with overwhelming probability maxareas(χN, θ + d) is also small.

Lemma 3.7.4. Let H1 be the hash function output by Overlay and let χN = (H1,N) be the config-
uration induced by H1. Then,

Pr
[

maxareas(χN, 1) ≤ (1 + c1)|A| log |N|
|N|

]
≥ 1− negl(k),

where the probability is over the coins of Overlay.

Proof. We call an H1 bad if maxareas(χN, 1) is greater than (1 + c1)|A| log |N|/|N|. Let Ei be the
event that a bad H1 is sampled in the i-th trial. Then the failure probability of Overlay (i.e., of
getting a bad H1 at the end of Overlay) is:

Pr

 ∧
1≤i≤r

Ei

 ≤ 1
|N|c1r

= 1
ec1r log |N| = 1

ek
= negl(k),

where the first inequality follows from Lemma 3.5.2 and from the fact that the Ei’s are independent,
and the last equality follows by setting r = k/(c1 log |N|).

Corollary 3.7.5. Let H1 be the hash function output by Overlay and let χN = (H1,N) be the
configuration induced by H1. If |N| = Ω(k) and θ ≤ |N|/e,

Pr
[

maxareas(χN, θ) ≤
6|A|θ
|N| log |N|

θ

]
≥ 1− negl(k).

The proof is similar to the proof of Corollary 3.5.4. The difference is that the probability p1

that maxareas(χN, 1) is bounded by (3|A| log |N|)/|N| is at most negl(k) (from Lemma 3.7.4). The
Corollary follows by setting p1 = negl(k) and |N| = Ω(k).
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Stability and security. We now turn to the stability and the security of the Chord-based EDHT.

Theorem 3.7.6. If |N| = Ω(k) and θ ≤ |N|/(e log |N|)− d, transient Chord is (ε, δ, θ)-stable for

ε = (θ + d)
|N|

(
log |N|+ 6 log

(
|N|
θ + d

))
and δ = negl(k)

The proof is exactly same as the proof of Theorem 3.7.2 with the exception that that we use
Corollary 3.7.5 to compute β instead of using Corollary 3.5.4.

Corollary 3.7.7. If |L| = Θ(2k), |N| = Ω(k) and |I| ≤ |N|/e − d, and if EDHT+ is instantiated
with Chord, then it is Lε-secure with probability at least 1 − negl(k) in the random oracle model,
where

ε = (|I|+ d)
|N|

(
log |N|+ 6 log

(
|N|
|I|+ d

))

Efficiency of Overlay. Let α = ((1 + c1)|A| log |N|)/|N|. For each sampled hash function, Overlay
checks whether maxareas(χN, 1) ≤ α. To do this, it computes H1(N) for all N ∈ N, sorts all the
H1(N)’s to construct χN and, for all N ∈ N, checks if area(χN, N) ≤ α. Sorting is O(|N| log |N|)
while the remaining steps are O(|N|). Moreover, Overlay takes a maximum of k/(c1 log |N|) samples
so its total running time is O(k|N|).
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Chapter 4

Encrypted Key-Value Stores

4.1 Introduction

A distributed key-value store (KVS) is a distributed storage system that stores label/value 1 pairs
and supports get and put queries. KVSs provide one of the simplest data models but have become
fundamental to modern systems due to their high performance, scalability and availability. For
example, some of the largest social networks, e-commerce websites, cloud services and community
forums depend on key-value stores for their storage needs. Prominent examples of distributed KVSs
include Amazon’s Dynamo [55], Facebook’s Cassandra [82], LinkedIn’s Voldemort [111], Redis [9],
MemcacheDB [7] and Riak [113].

Distributed KVSs are closely related to distributed hash tables (DHT) and, in fact, most are
built on top of a DHT. However, since DHTs do not necessarily guarantee fault-tolerance, KVSs use
various techniques to achieve availability in the face of node failures. The simplest approach is to
replicate each label/value pair on multiple nodes and to use a replica control protocol to guarantee
some form of consistency.

End-to-end encryption in KVSs. As an increasing amount of data is being stored and managed
by KVSs, their security has become an important problem. Encryption is often proposed as a
solution, but encrypting data in transit and at rest and decrypting it before use is not enough since
each decryption exposes the data and increases its likelihood of being stolen. A better way to protect
data is to use end-to-end encryption where a data owner encrypts its data with its own secret key
(that is never shared). End-to-end encryption guarantees that data is encrypted at all times—even
in use—which ensures data confidentiality.

Our contributions. In this work, we formally study the use of end-to-end encryption in KVSs. In
particular, we extend our framework from DHTs to KVSs. We formalize the goals of encryption in

1In this work we use the term label and reserve the term key to denote cryptographic keys.
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KVSs by introducing the notion of an encrypted key-value store (EKVS) and propose formal syntax
and security definitions for these objects. Similar to the standard EDHT scheme, we design an
EKVS that stores label/value pairs (`, v) as (FK1(`),EncK2(v)) in a standard/plaintext KVS, where
F is a pseudo-random function and Enc is a symmetric encryption scheme. The underlying KVS
will then replicate the encrypted pair, store the replicas on different storage nodes, handle routing,
node failures and consistency. Throughout, we will refer to this approach as the standard scheme
and we will use our framework to formally study its security properties. We make the following
contributions:

• formalizing KVSs: we provide an abstraction of KVSs that enables us to isolate and analyze
several important properties of standard/plaintext KVSs that impact the security of the stan-
dard EKVS. More precisely, we find that the way a KVS distributes its data and the extent to
which it load balances have a direct effect on what information an adversary can infer about
a client’s queries.

• distributed leakage analysis: an EKVS can be viewed as a distributed version of an encrypted
dictionary which is a fundamental building block in the design of sub-linear encrypted search
algorithms (ESA). All sub-linear ESAs leak some information—whether they are built from
property-preserving encryption, structured encryption or oblivious RAMs—so our goal is to
identify and prove the leakage profile of the standard scheme. Leakage analysis in the dis-
tributed setting is particularly challenging because the underlying distributed system (in our
case the underlying KVS) can create very subtle correlations between encrypted data items
and queries. As we will see, replication makes this even more challenging. We consider two
cases: the single-user case where the EKVS stores the datasets of multiple clients but each
dataset can only be read and updated by its owner; and the multi-user case where each dataset
can be read and updated by multiple users.

• leakage in the multi-user case: We show that in the multi-user setting, the standard scheme
leaks the operation equality (i.e., if and when get and put operations are for the same label)
over all operations; even operations that are not handled by corrupted nodes. 2 This may
seem surprising since it is not clear a-priori why an adversary would learn anything about data
that it never “sees”.

• leakage in the single-user case: In the single-user scenario, we show that, if the standard
scheme’s underlying KVS achieves read your write (RYW) consistency, then it only leaks the
operation equality over operations that are handled by corrupted nodes. This is particularly
interesting as it suggests that stronger consistency guarantees improve the security of end-to-
end encrypted KVSs.

• comparison with DHTs: As mentioned earlier, the main difference between a DHT and a KVS
is that the latter replicate data on multiple nodes. To ensure a consistent view of this data,

2Note that the operation equality is a common leakage pattern in practical ESAs.
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KVSs need to implement some consistency model. Achieving strong consistency, however, is
very costly so almost all practical systems achieve weaker notions which cannot guarantee that
a unique value will always be associated to a given label. In particular, the value that will be
returned will depend on factors such as network delay, synchronization policy and the ordering
of concurrent operations. Therefore, an adversary that controls one or more of these factors
can affect the outputs of a KVS. It therefore becomes crucial to understand and analyze this
correlation when considering the security of an encrypted KVS. In contrast, this is not needed
in the case of encrypted DHTs since they do not maintain replicas and hence consistency is
not an issue.

• concrete instantiations: We use our framework to study two concrete instantiations of the
standard scheme. The first uses a KVS based on consistent-hashing with zero-hop routing
whereas the second uses a KVS based on consistent hashing with multi-hop routing.

4.2 Related Work

Since we already discussed about encrypted search, structured encyrption, and distributed hash
tables in the previous chapter, we only focus here on the related work on plaintext key-value stores
and consistency guarantees.

Key-value stores. NoSQL databases were developed as an alternative to relational databases to
satisfy the performance and scalability requirements of large Internet complanies. KVSs are the
simplest kind of NoSQL databases. Even though such databases had already existed, they gained
popularity when Amazon developed Dynamo [55], a KVS for its internal use. Since then many
KVSs have been developed both in industry and academia. Most prominent ones are Facebook’s
Cassandra [82], Google’s BigTable [51], LinkedIn’s Voldemort [111], Redis [9], MemcacheDB [7] and
Riak [113]. All of them are eventually consistent but some of them can be tuned to provide strong
consistency [113, 9, 82]. There have also been efforts to develop KVSs with stronger consistency
such as causal consistency [83, 84, 119, 31], and strong consistency [4, 2, 6, 10].

Consistency guarantees. The consistency guarantee of a distributed system specifies the set
of acceptable responses that a read operation can output. There are multiple consistency guar-
antees studied in the literature, including linearizability, sequential consistency, causal consistency
and eventual consistency. Though strong consistency notions like linearizability are desirable, the
Consistency, Availability, and Partition tolerance (CAP) Theorem states that strong consistency
and availability cannot be achieved simultaneously in the presence of network partitions. Therefore,
many practical systems settle for weaker consistency guarantees like sequential consistency, causal
consistency and eventual consistency. We note that all these weaker consistency guarantees—with
the exception of eventual consistency—all satisfy what is known as “Read Your Writes” (RYW)
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consistency which states that all the writes performed by a single client are visible to its subsequent
reads. Many practical systems [9, 83, 84, 4, 2] guarantee RYW consistency.

4.3 Key-Value Stores

Here we extend the formal treatment of encrypted DHTs to key-value stores. A key-value store is a
distributed storage system that provides a key-value interface and that guarantees resiliency against
node failures. It does so by replicating label/value pairs on multiple nodes. Similar to DHTs, there
are two kinds of KVSs: perpetual and transient. Perpetual KVSs are composed of a fixed set of
nodes that are all known at setup time. Transient KVSs, on the other hand, are designed for settings
where nodes are not known a-priori and can join and leave at any time. In this work, we study the
security of pertpetual KVSs.

Since KVSs are closely related to DHTs, in the sense that both of them store and retrieve
label/value pairs, the formalism for KVSs—its syntax, abstraction and security definition—looks
very similar to that of the DHTs. However, unlike DHTs, since KVSs replicate data, we extend
the framework to account for replication. For example, the server mapping which initially mapped
a label to a single address in DHTs, now maps it to multiple addresses where each address is the
address of the replica that stores the label. To avoid any confusion, we call the modified mapping
the replicas mapping.

In this Section, instead of repeating text from previous chapter, we keep concepts high-level and
only describe the modifications needed to adapt them for KVSs.

Perpetual KVSs. Similar to DHTs, we formalize KVSs as a collection of six algorithms KVS =
(Overlay,Alloc,FrontEnd,Daemon,Put,Get). All the algorithms, with the exception of Alloc, are same
as before. Alloc along with ω and n, also takes as input an additional parameter ρ ≥ 1 and outputs
ψ same as before. Intuitively, ρ is the replication parameter and represents the number of nodes a
label/value pair should be allocated to.

Abstracting KVSs. Similar to DHTs, we describe KVSs using a tuple of function families
(addr, replicas, route, fe) that are all paramterized by a subset of {ω, ψ, φ}. These functions are
defined as

addrω : N→ A replicasω,ψ : L→ 2A routeω : A×A→ 2A, feφ : L→ A

where addrω, routeω and feφ are same as before. Since KVSs replicate label/value pairs on multiple
nodes for fault tolerance, we replace the server mapping by replicas. It maps labels from a label
space L to the set of addresses of ρ nodes that store it

Visible addresses. We extend the notion of visibility in a natural way. We say that an address
a ∈ A is visible to a node N , if a label mapped to a is either stored at N or is routed by N . More
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formally, for a fixed overlay (ω,C) and a fixed replication parameter ρ, an address a ∈ A is s-visible
to a node N ∈ C if for a label ` which ψ allocates to a, either: (1) addrω(N) ∈ replicasω,ψ(`); or (2)
addrω(N) ∈ routeω(s, replicasω,ψ(`)).

Front-end and allocation distributions. The notions of front-end distribution captured by
φ(`), allocation distribution captured by ψ(`) remain the same as before. We also assume that both
these distributions are labe independent in the sense that every label’s front-end and allocation
distribution is the same.

Non-committing allocations. As in the case of the EDHTs, the security of the standard EKVS
requires the underlying KVS to have non-committing allocations and be balanced. A KVS is said
to have non-committing allocations if for any label ` and an address a, its allocation parameter ψ
can be programmed to map ` to a, i.e., ψ(`) can be set to a. All the KVSs that we are aware have
hash functions as their allocation parameters, which are programmable in the random oracle model.

Balanced overlays. Recall that this property was related to how well the DHT load balanced
the label/value pairs it stored. Intuitively, it said that an overlay (ω,C) is balanced if for all labels
`, the probability that any set of θ nodes sees ` is not too large. For KVSs, the intuition remains
the same. However, this should hold with any replication parameter ρ.

Definition 4.3.1 (Balanced overlays). Let ω ∈ Ω be an overlay parameter, C ⊆ N be a set of active
nodes, and ρ ≥ 1 be a replication parameter. We say that an overlay (ω,C) is (ε, θ)-balanced if for
all ` ∈ L, and for all S ⊆ C with |S| = θ,

Pr
[

replicasω,ψ(`) ∩ Visω,C,ρ(feφ(`), S) 6= ∅
]
≤ ε,

where the probability is over the coins of Alloc and FrontEnd, and where ε can depend on θ.

Definition 4.3.2 (Balanced KVS). We say that a key-value store KVS = (Overlay,Alloc,FrontEnd,
Daemon,Put,Get) is (ε, δ, θ)-balanced if for all C ⊆ N, the probability that an overlay (ω,C) is
(ε, θ)-balanced is at least 1− δ over the coins of Overlay and where ε and δ can depend on C and θ.

4.4 Encrypted Key-Value Stores

In this Section, we formally define encrypted key-value stores. An EKVS is an end-to-end encrypted
distributed system that instantiates a replicated dictionary data structure.

4.4.1 Syntax and Security Definitions

Syntax. We formalize EKVSs as a collection of seven algorithms EKVS = (Gen,Overlay,Alloc,
FrontEnd,Daemon,Put,Get). The first algorithm Gen is executed by a client and takes as input a
security parameter 1k and outputs a secret key K. All the other algorithms have the same syntax
as before (See Section 4.3), with the difference that Get and Put also take the secret key K as input.
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Functionality FLKVS

FLKVS stores a dictionary DX initialized to empty and proceeds as follows, running with client C, n
nodes N1, . . . , Nn and a simulator Sim:
• Put(`, v): Upon receiving a label/value pair (`, v) from client C, it sets DX[`] := v, and sends the

leakage L(DX, (put, `, v)) to the simulator Sim.
• Get(`): Upon receiving a label ` from client C, it returns DX[`] to the client C and the leakage
L(DX, (get, `,⊥)) to the simulator Sim.

Figure 4.1: FLKVS : The KVS functionality parameterized with leakage function L.

Security. The definition is a leakage-based security definition and is exactly the same as before
and is based on the real/ideal-world paradigm. We design two probabilistic experiments, Real and
Ideal, where in the former parties interact as per the actual EKVS protocol, while in the latter,
the parties interact with a trusted functionality shown in Figure 4.1. The protocol is secure if no
environment can distinguish between the outputs of these two experiments.

Definition 4.4.1 (L-security). We say that an encrypted key-value store EKVS = (Gen,Overlay,
Alloc,FrontEnd,Daemon,Put,Get) is L-secure, if for all ppt adversaries A and all ppt environments
Z, there exists a ppt simulator Sim such that for all z ∈ {0, 1}∗,

|Pr[RealA,Z(k) = 1]− Pr[IdealSim,Z(k) = 1]| ≤ negl(k).

Discussion on security definition. In the real/ideal-world paradigm, the security of a protocol
is tied to its correctness. It is therefore important that our ideal functionality capture the correctness
of the KVS as well. What this means is that the functionality should produce outputs that follow the
same distribution as the outputs from a KVS. Unfortunately, in a setting with multiple clients sharing
the data, even with the strongest consistency guarantees (e.g., linearizability), there are multiple
possible responses for a read, and the one which the KVS actually outputs depends on behaviour
of the network. Since the network behaviour is non-deterministic, the distribution over the possible
outputs is also non-deterministic and hence the functionality cannot model the distribution over
outputs correctly without modelling the network inside it.

However, if we restrict to a single client setting, RYW property ensures that a Get always outputs
the latest value written to the KVS. Therefore the functionality FKVS models the correct distribution
over the outputs: on a Get(`), it outputs the last value written to DX[`], and on a Put(`, v), it updates
the DX[`] to v.

4.5 The Standard EKVS Scheme in the Single-User Setting

We now repeat the standard scheme from Chapter 3. The difference is that instead of using a DHT
to store encrypted data, we now use a KVS to store encrypted data. This approach relies on simple
cryptographic primitives and a non-committing and balanced KVS.
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Overview. The scheme EKVS = (Gen,Overlay,Alloc,FrontEnd,Daemon,Put,Get) is described in
detail in Figure 4.2 and, at a high level, works as follows. It makes black-box use of a key-value store
KVS = (Overlay,Alloc,FrontEnd,Daemon,Put,Get), a pseudo-random function F and a symmetric-
key encryption scheme SKE = (Gen,Enc,Dec).

The Gen algorithm takes as input a security parameter 1k and uses it to generate a key K1 for the
pseudo-random function F and a key K2 for the symmetric encryption scheme SKE. It then outputs
a key K = (K1,K2). The Overlay, Alloc, FrontEnd and Daemon algorithms respectively execute
KVS.Overlay, KVS.Alloc, KVS.FrontEnd and KVS.Daemon to generate and output the paramters ω,
ψ and φ. The Put algorithm takes as input the secret key K and a label/value pair (`, v). It first
computes t := FK1(`) and e← Enc(K2, v) and then executes KVS.Put(t, e). The Get algorithm takes
as input the secret key K and a label `. It computes t := FK1(`) and executes e ← KVS.Get(t). It
then outputs SKE.Dec(K, e).

Security. We now describe the leakage of EKVS. Intuitively, it reveals to the adversary the times
at which a label is stored or retrieved with some probability. More formally, it is defined with the
following stateful leakage function

• Lε(DX, (op, `, v)) :

1. if ` has never been seen

(a) sample and store b` ← Ber(ε)

2. if b` = 1

(a) if op = put output (put, opeq(`))

(b) else if op = get output (get, opeq(`))

3. else if b` = 0

(a) output ⊥

where opeq is the operation equality pattern which reveals if and when a label was queried or put in
the past.

We now state our main security Theorem and skip its proof because it is exactly the same as the
proof of Theorem 3.4.2.

Theorem 4.5.1. If |I| ≤ θ and if KVS is RYW consistent, (ε, δ, θ)-balanced, has non-committing
allocations and has label-independent allocation and front-end distributions, then EKVS is Lε-secure
with probability at least 1− δ − negl(k).

Efficiency. The standard scheme does not add any overhead to time, round, communication and
storage complexities of the underlying KVS.
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Let KVS = (Overlay,Alloc,FrontEnd,Daemon,Put,Get) be a key-value store, SKE = (Gen,Enc,Dec)
be a symmetric-key encryption scheme and F be a pseudo-random function. Consider the encrypted
key-value store EKVS = (Gen,Overlay,Alloc,FrontEnd,Daemon,Put,Get) that works as follows:
• Gen(1k):

1. sample K1
$← {0, 1}k and compute K2 ← SKE.Gen(1k)

2. output K = (K1,K2)

• Overlay(n):

1. compute and output ω ← KVS.Overlay(n)

• Alloc(n, ω, ρ):

1. compute and output ψ ← KVS.Alloc(n, ω, ρ)

• FrontEnd(n, ω):

1. compute and output φ← KVS.FrontEnd(n, ω)

• Daemon(ω, ψ, ρ, n) :

1. Execute KVS.Daemon(ω, ψ, ρ, n)

• Put(K, `, v) :

1. Parse K as (K1,K2)
2. compute t := FK1 (`)
3. compute e← SKE.Enc(K2, v)
4. execute KVS.Put(t, e)

• Get(K, `):

1. Parse K as (K1,K2)
2. Initialise v := ⊥
3. compute t := FK1 (`)
4. execute e← KVS.Get(t)
5. if e 6= ⊥, compute and output v ← SKE.Dec(K2, e)

Figure 4.2: The Standard EKVS Scheme

4.6 A Concrete Instantiation Based on Consistent Hashing

In this section, we analyze the security of the standard EKVS when its underlying KVS is instantiated
with a consistent hashing based KVS (CH-KVS). We first give a brief overview of consistent hashing
and then show that: (1) it has non-committing allocations in the random oracle model; and (2) it
is balanced under two commonly used routing protocols.

Since Chord, a DHT we analyzed in the Chapter 3, is also based on consistent hashing, we will
use a lot of machinery we developed for it to analyze CH-KVSs.

Setting up a CH-KVS. The setup of a CH-KVS is similar to that of Chord. A CH-KVS also
arranges all 2m addresses in its address space A in a ring and assigns to each active node N ∈ C an
address H1(N) on the ring. The only difference is the way it computes the replicas for a label– like
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Chord, it maps every label ` to H2(`) but unlike Chord, instead of storing ` at a single successor
node of H2(`), it stores ` at ρ successor nodes of H2(`).

Formally, addrω = H1 and feφ = H3 as before, however, replicasω,ψ = (succχC ◦H2, . . . , succρχC
◦

H2). Recall that χC, called a configuration, contains a sequence {H1(N1), . . . ,H1(Nn)} of addressees
assigned to active nodes in C, and succχC is the successor function that assigns each address in A
to its least upper bound in χC.

Routing protocols. There are two common routing protocols with CH-KVSs; each with trade-offs
in storage and efficiency.

• Multi-hop routing. Based on H1, the Daemon algorithm constructs a routing table by storing
the addresses of the node’s 2ith successors where 0 ≤ i ≤ logn (we refer the reader to [110]
for more details). Note that a routing table contains at most logn other nodes. The routing
protocol is fairly simple: given a message destined to a node Nd, a node N checks if N = Nd.
If not, the node forwards the message to the node N ′ in its routing table with an address
closest to Nd. Note that the routeω map is deterministic given a fixed set of active nodes and
it guarantees that any two nodes have a path of length at most logn.

• Zero-hop routing. Based on H1, the Daemon algorithm constructs a routing table by storing
the addresses of all the other nodes in the routing table. Routing is then straightforward:
given a message for Nd, simply forward it to the address of Nd. In short, for any two addresses
s and d, routeω(s, d) = {s, d}.

Storing and retrieving. When a client wants to execute a Get/Put operation on a label `, it
forwards the operation to the front-end node of `. The front-end node executes the operation on
the client’s behalf as follows. It computes replicas(`) and forwards the operation to one of them.
This replica is called the coordinator node. The coordinator then sends the operation to all (or a
subset) the other replicas which then either update their state (on Put) or return a response back
to the coordinator (on Get). In case more than one value is returned to the coordinator, it decides
which value(s) is to be returned to the front-end. The choice of the coordinator node for a label `
varies from KVS to KVS. It can be a fixed node or a different node between requests for label `.
Either way, it is always a node chosen from the set of replicas. This guarantees that the visibility
of a label (and hence the leakage) does not change between requests. KVSs also employ different
synchronization mechanisms, like Merkle trees and read repairs to synchronize divergent replicas.

Non-committing allocation. Given a label ` and an address a, the allocation (H2,K) can be
changed by programming the random oracle H2 to output a when it is queried on `.

Allocation distribution. We now describe the allocation distribution of CH-KVSs. Since CH-
KVSs assign labels to addresses using a random oracle H2, it follows that for all overlays (H1,C),
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all labels ` ∈ L and addresses a ∈ A,

fH2(a) = Pr [H2(`) = a ] = 1
|A| ,

which implies that CH-KVSs have label-independent allocations. From this it also follows that ∆(S)
has a probability mass function

f∆(S)(a) = fψ(a)∑
a∈S fψ(a) = 1

|A|

(
|S|
|A|

)−1
= 1
|S|

.

Before describing the visibility of nodes in CH-KVSs and analyzing their balance under zero-hop
and multi-hop routing protocols, we define notation that will be useful in our analysis.

Notation. Recall that the arc of a node N is the set of addresses in A between N ’s predecessor
and itself. More formally, we write arcχ(N) = (predχ(H1(N)), . . . ,H1(N)], where predχ(N) is the
predecessor function which assigns each address in A to its largest lower bound in χ. We extend
the notion of arc of a node to ρ-arcs of a node. A ρ-arc of a node N is the set of addresses between
N ’s ρth predecessor and itself. More formally, we write arcρχ(N) = (predρχ(H1(N)), . . . ,H1(N)],
where predρχ(H1(N)) represents the predecessor function applied ρ times on H1(N). Intuitively, if
H2 hashes a label ` anywhere in ρ-arc of N , then N becomes one of the ρ replicas of `. We denote
by maxareas(χ, x), the sum of the lengths (sizes) of x largest arcs in configuration χ. The maximum
area of a configuration χ is equal to maxareas(χ, ρθ). As we will later see, the maximum area is
central to analyzing the balance of CH-KVSs.

4.6.1 Zero-hop CH-KVSs

In this section, we analyse the visibility and balance of zero-hop CH-KVSs.

Visible addresses. Given a fixed overlay (H1,C), an address s ∈ A and a node N ∈ C, if the
starting address is s = H1(N), then VisχC(s,N) = A. This is because H1(N) lies on routeχC(s, a)
for all a ∈ A. Now for an address s ∈ A such that s 6= H1(N), we have

VisχC(s,N) =
{

arcρχC
(N ′) : H1(N) ∈ routeχC(s,H1(N ′))

} ⋃
arcρχC

(N)

=
{

arcρχC
(N ′) : H1(N) ∈ {s,H1(N ′)}

} ⋃
arcρχC

(N)

=
{

arcρχC
(N ′) : H1(N) = H1(N ′)

} ⋃
arcρχC

(N)

= arcρχC
(N)

where the second equality follows from the fact that routeχC(s,H1(N ′)) = {s,H1(N ′)}, the third fol-
lows from the assumption that H1(N) 6= s, and the fourth from the fact that arcρχC

(N) = arcρχC
(N ′)

if H1(N) = H1(N ′). Finally, for any set S ⊆ C, Visω,C(s, S) = ∪N∈SVisω,C(s,N).
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Balance of zero-hop CH-KVSs. We are now ready to analyze the balance of zero-hop CH-KVSs.

Theorem 4.6.1. Let C ⊆ N be a set of active nodes. If maxareas(χC, ρθ) ≤ λ, then χC is (ε, θ)-
balanced with

ε = θ

|C| + λ

|A|

Proof. Let n = |C| and S be a set of addresses of at most θ nodes in C. For all ` ∈ L, we define E1
as the event that address of at least one of the replicas of ` is in S and E2 as the event that at least
one of the addresses in S is on the path to a replica of `. Precisely,

E1 = {S ∩ replicas(`) 6= ∅}, E2 = {S ∩ route(fe(`), replicas(`)) 6= ∅}

where for visual clarity, we represent ∪N∈replicas(`)route(fe(`), N) by route(fe(`), replicas(`)). For CH-
KVS, we then have that,

Pr
[

replicasχC
(`) ∩ VisχC(fe(`), S) 6= ∅

]
= Pr [ E1 ∨ E2 ] = Pr [ E2 ], (4.1)

where the second equality is because E1 is contained in E2. This is true because the last node on the
paths to the replicas is a replica itself. We now look at event E2.

Pr [ E2 ] ≤ Pr [S ∩ {fe(`), replicas(`)} 6= ∅ ]

= Pr
[

fe(`) ∈ S
∨
S ∩ replicas(`) 6= ∅

]
≤ Pr [ fe(`) ∈ S ] + Pr [S ∩ replicas(`) 6= ∅ ] (4.2)

where the first inequality follows from the fact that, when using zero-hop routing, route(fe(`), replicas(`))
= {fe(`), replicas(`)}. We now compute the probability that one of the addresses in S is the front-end
of `.

Pr [ fe(`) ∈ S ] ≤
∑
a∈S

Pr [ fe(`) = a ] =
∑
a∈S

Pr [H3(`) = a ] =
∑
a∈S

1
n
≤ θ

n
, (4.3)

where the first inequality follows from the union bound and the last inequality follows from the fact
that H3 is a uniform random function over the addresses of active nodes. We now compute the
probability that an address in S is the address of a replica of `.

Pr [S ∩ replicas(`) 6= ∅ ] = Pr
[
H2(`) ∈ ∪N :H1(N)∈SarcρχC

(N)
]

=
| ∪N :H1(N)∈S arcρχC

(N)|
|A|

≤ λ

|A| , (4.4)

where the first equality follows from the fact that an address in S is the address of one of the ρ
replicas of ` only if H2 maps ` in its ρ-arc, and the inequality follows from the assumption of the
theorem. Finally, the Theorem follows by plugging Eqs. 4.3 and 4.4 into Eqn. 4.2.
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Corollary 4.6.2. Let C be a set of active nodes. For all ρθ ≤ |C|/e, a zero-hop CH-KVS is
(ε, δ, θ)-balanced for

ε = θ

|C|

(
1 + 6ρ log

(
|C|
ρθ

))
and δ = 1

|C|2 + (e−
√
|C| · log |C|)

Proof. Recall that Lemma 3.5.4 upper bounds the sum of the lengths of the x largest arcs in a
configuration χ in Chord. The sum is denoted by maxareas(χ, x). Since Chord is also based on
consistent hashing, we use the lemma to bound the maximum area of CH-KVSs by substituting
x = ρθ. Substituting x = ρθ in Corollary 3.5.4, we know that for ρθ ≤ |C|/e,

Pr [ maxareas(χC, ρθ) ≤ λ ] ≥ 1− δ for λ = 6|A|ρθ
|C| log |C|

ρθ

and δ as stated in the Theorem statement. Therefore, by Theorem 4.6.1, we conclude that for
ρθ ≤ |C|/e,

Pr [ (H1,C) is (ε, θ)-balanced ] ≥ 1− δ for ε = θ

|C| + λ

|A| .

The Corollary follows by substituting the value of λ in the last equation.

Remark. It follows from Corollary 4.6.2 that

ε = O

(
ρθ

|C| log
(
|C|
ρθ

))
and δ = O(1/|C|2). Note that assigning labels uniformly at random to ρ nodes would achieve
ε = ρθ/|C| so zero-hop CH-KVSs balance data fairly well.

The Security of a Zero-Hop CH-KVS based EKVS. In the following Corollary, we formally
state the security of the standard scheme when its underlying KVS is instantiated with a zero-hop
CH-KVS.

Corollary 4.6.3. If |L| = Θ(2k), |I| ≤ |C|/(ρe), and if EKVS is instantiated with a RYW zero-hop
CH-KVS, then it is Lε-secure with probability at least 1− 1/|C|2− (e−

√
|C| · log |C|)− negl(k) in the

random oracle model, where

ε = |I|
|C|

(
1 + 6ρ log

(
|C|
ρ|I|

))
.

The corollary follows from Theorem 4.5.1, Corollary 4.6.2 and the fact that CH-KVS has non-
committing allocations when H2 is modeled as a random oracle.
From the discussion of Corollary 4.6.2, we know,

ε = O

(
ρ|I|
|C| log

(
|C|
ρ|I|

))
and δ = O(1/|C|2). Setting |I| = |C|/(ρα), for some α ≥ e, we have ε = O(log(α)/α). Recall
that, on each query, the leakage function leaks the operation equality with probability at most
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ε. So intuitively this means that the adversary can expect to learn the operation equality of an
O(log(α)/α) fraction of client operations if ρ|I| = |C|/α. Note that this confirms the intuition that
distributing data suppresses its leakage.

4.6.2 Multi-hop CH-KVSs

In this section, we analyse the visibility and balance of multi-hop CH-KVSs. Since most of the
details are similar to what was in the last section, we keep the description high level.

Visible addresses. Given a fixed overlay (H1,C), an address s ∈ A and a node N ∈ C, if the
starting address is s = H1(N), then VisχC(s,N) = A. For an address s ∈ A such that s 6= H1(N),
we have

VisχC(s,N) =
{

arcρχC
(N ′) : H1(N) ∈ routeχC(s,H1(N ′))

} ⋃
arcρχC

(N)

Finally, for any set S ⊆ C, Visω,C(s, S) = ∪N∈SVisω,C(s,N).

Balance of multi-hop CH-KVSs. We now analyze the balance of multi-hop CH-KVSs.

Theorem 4.6.4. Let C ⊆ N be a set of active nodes. If maxareas(χC, ρθ) ≤ λ, then χC is (ε, θ)-
balanced with

ε = ρθ log |C|
|C| + λ

|A|
Proof. Let n = |C| and let S be a set of addresses of at most θ nodes in C. For all ` ∈ L, we define
E1 as the event that the address of at least one of the replicas of ` is in S and E2 as the event that
at least one of the addresses in S is on the path to a replica of `. Precisely,

E1 = {S ∩ replicas(`) 6= ∅}, E2 = {S ∩ route(fe(`), replicas(`)) 6= ∅}

where for visual clarity, we represent ∪N∈replicas(`)route(fe(`), N) by route(fe(`), replicas(`)). For CH-
KVS, we then have that,

Pr
[

replicasχC
(`) ∩ VisχC(fe(`), S) 6= ∅

]
= Pr [ E1 ∨ E2 ] ≤ Pr [ E1 ] + Pr [ E2 ], (4.5)

We first bound the probability of E1,

Pr [ E1 ] = Pr [S ∩ replicas(`) 6= ∅ ] = Pr
[
H2(`) ∈ ∪N :H1(N)∈SarcρχC

(N)
]
≤ λ

|A| (4.6)

This is the same as Equation 4.4 of Theorem 4.6.1. We now bound E2. By the union bound and the
law of total probability, we have that,

Pr [ E2 ] = Pr [S ∩ route(fe(`), replicas(`)) 6= ∅ ]

≤
∑
N∈S

Pr [N ∈ route(fe(`), replicas(`)) ]

=
∑
N∈S

∑
R∈Cρ

Pr [N ∈ route(fe(`), R) | replicas(`) = R ] · Pr [ replicas(`) = R ] (4.7)
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But note that,

Pr [N ∈ route(fe(`), R) | replicas(`) = R ] ≤
∑
r∈R

Pr [N ∈ route(fe(`), r) ] ≤
∑
r∈R

logn
n

= ρ logn
n

where the last inequality follows from the fact that path lengths in multi-hop CH-KVS are at most
logn. Substituting this in Eq. (4.7) we get,

Pr [ E2 ] ≤
∑
N∈S

∑
R∈Cρ

ρ logn
n

· Pr [ replicas(`) = R ]

=
∑
N∈S

ρ logn
n

∑
N ′∈Cρ

Pr [ replicas(`) = R ]

=
∑
N∈S

ρ logn
n

= ρθ logn
n

(4.8)

Finally, the Theorem follows by plugging Eqs. (4.6) and (4.8) into Eq. (4.5).

Corollary 4.6.5. Let C be a set of active nodes. For all ρθ ≤ |C|/(e log |C|), a multi-hop CH-KVS
is (ε, δ, θ)-balanced for

ε = ρθ

|C|

(
log |C|+ 6 log

(
|C|
ρθ

))
and δ = 1

|C|2 + (e−
√
|C| · log |C|)

The Corollary follows directly from Corollary 3.5.4 and Theorem 4.6.4.
Notice that multi-hop CH-KVSs are not only less balanced than zero-hop CH-KVSs but also tolerate
a lesser number of corruptions. This is the case because in a multi-hop CH-KVS there is a higher
chance that an adversary sees a label since the routes are larger.

Remark. It follows from Corollary 4.6.5 that

ε = O

(
ρθ

|C| log |C|
)

and δ = O(1/|C|2). As discussed earlier, the optimal balance is ε = ρθ/|C|, which is achieved when
labels are assigned uniformly at random to ρ nodes. Note that balance of multi-hop CH-KVSs is
only log |C| factor away from optimal balance which is very good given that the optimal balance is
achieved with no routing at all.

The Security of a Multi-Hop CH-KVS based EKVS. In the following Corollary, we formally
state the security of the standard scheme when its underlying KVS is instantiated with a multi-hop
CH-KVS.
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Functionality FLmKVS

FLmKVS stores a dictionary DX initialized to empty, a time counter τ initialized to 0 and proceeds as
follows, running with c clients C1, . . . , Cc, n nodes N1, . . . , Nn and a simulator Sim:
• Put(`, v): Upon receiving a label/value pair (`, v) from some client Ci, it increments τ by 1, sets

DX[` || τ ] := v, and sends the leakage L(DX, (put, `, v)) to the simulator Sim.
• Get(`): Upon receiving a label ` from the client Ci, it increments τ by 1, sends the leakage
L(DX, (get, `,⊥)) to the simulator Sim, and when it receives a message τ ′ from the simulator,
it returns DX[` || τ ′] to Ci.

Figure 4.3: FLmKVS : The ideal multi-user KVS functionality parameterized with leakage function L.

Corollary 4.6.6. If |L| = Θ(2k), |I| ≤ |C|/(ρe log |C|), and if EKVS is instantiated with a RYW
multi-hop CH-KVS, then it is Lε-secure with probability at least 1−1/|C|2−(e−

√
|C|·log |C|)−negl(k)

in the random oracle model, where

ε = ρ|I|
|C|

(
log |C|+ 6 log

(
|C|
ρ|I|

))
.

From the discussion of Theorem 4.6.5, we know that,

ε = O

(
ρ|I|
|C| log |C|

)
and δ = O(1/|C|2). Setting |I| = |C|/(ρα log |C|), for some α ≥ e, we have ε = O(1/α), which
intuitively means that the adversary can expect to learn the operation equality of an O(1/α) fraction
of client operations.

4.7 The Standard EKVS Scheme in the Multi-User Setting

We now analyze the security of the standard scheme in a more general setting, i.e., where we no
longer require the underlying KVS to satisfy RYW and where we no longer assume that a single client
operates on the data. We call this setting the multi-user setting where multiple clients operate on
the same data concurrently. We start by extending our security definition to the multi-user setting
and then analyze the security of the standard scheme (from Figure 4.2) in this new setting.

The ideal multi-user KVS functionality. The ideal multi-user KVS functionality FLmKVS is
described in Figure 4.3. The functionality stores all the values that were ever written to a label.
It also associates a time τ with every value indicating when the value was written. On a Get
operation, it sends leakage to the simulator which returns a time τ ′. The functionality then returns
the value associated with τ ′ to the client. Notice that, unlike single-user ideal functionality FLKVS,
the multi-user ideal functionality can be influenced by the simulator.

Security definition. The real and ideal experiments are the same as in Section 3.4.1 with the
following differences. First, the experiments are executed not with a single client but with c clients
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C1 . . . Cc; second, the environment adaptively sends operations to all these clients; and third, the
ideal functionality of Figure 3.1 is replaced with the ideal functionality described in Figure 4.3.

4.7.1 Security of the Standard Scheme

We now analyze the security of the standard scheme when its underlying KVS is instantiated with a
KVS that does not necessarily satisfy RYW consistency. We start by describing its stateful leakage
function.

• L(DX, (op, `, v)) :

1. if op = put output (put, opeq(`))

2. else if op = get output (get, opeq(`))

where opeq is the operation equality pattern which reveals if and when a label was queried or put
in the past.

Single-user vs. multi-user leakage. Notice that the leakage profile achieved in the multi-user
setting is a function of all the labels whereas the leakage profile achieved in the single-user setting
was only a function of the labels that were (exclusively) stored and routed by the corrupted nodes.
In particular, this implies that the multi-user leakage is worse than the single-user leakage and
equivalent to the leakage achieved by standard (non-distributed) schemes. In following, we will refer
to the labels stored and routed exclusively by honest nodes as “honest labels” and to all the other
labels as “corrupted labels”.

The reason that the single-user leakage is independent of the honest labels is because of the
RYW consistency of the underlying KVS. More precisely, RYW consistency guarantees that for a
given label, the user will read the latest value that it stored. This implies that the value it reads
will be independent of any other label, including the corrupted labels. This is not the case, however,
in the multi-user setting where RYW consistency does not guarantee that the honest labels will
be independent of the corrupted labels. To see why, consider the following example. Let `1 be a
corrupted label and let `2 be an honest label. Assume that both `1 and `2 initially have the value
0. Now consider the two sequences of operations executed by clients C1 and C2 shown in Figure
4.4. Notice that both sequences are RYW consistent (this is the case because they satisfy a stronger
consistency guarantee called sequential consistency). However, in sequence 1, Get(`2) can output
both 0 or 1 whereas, in sequence 2, if Get(`1) outputs a 0, then Get(`2) can only output 1. This
example points out that operations on corrupted labels can impact operations on honest labels.
Capturing exactly how operations on one label can effect operations on other labels for different
consistency guarantees is challenging but might be helpful in designing solutions with better leakage
profiles. We leave this as an open problem. Alternatively, it would be interesting to know if there is
some consistency notion one could assume (in the multi-user setting) under which a better leakage
profile could be achieved.
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Figure 4.4: Sequence 1 is on the left and Sequence 2 is on the right.

Security. We now state our security theorem.

Theorem 4.7.1. EKVS is L-secure with probability at least 1− negl(k).

4.8 Conclusions and Future Work

In this work, we study end-to-end encryption in the context of KVSs. We formalize the security
properties of the standard scheme in both the single-user and multi-user settings. We then use our
framework to analyze the security of the standard scheme when its underlying KVS is instantiated
with consistent hashing based KVS (with zero-hop and multi-hop routing). We see our work as
an important step towards designing provably-secure end-to-end encrypted distributed systems like
off-chain networks, distributed storage systems, distributed databases and distributed caches.

Our work motivates several open problems and directions for future work.

Relationship between consistency guarantees and leakage. Recall that the standard scheme
leaks the operation equality of all the labels in the multi-user setting (with no assumption on the
consistency guarantees). However, if the underlying KVS satisfies RYW consistency, the scheme only
leaks the operation equality of a subset of labels but in a single-user setting. The most immediate
question is whether the leakage can be improved in the multi-user setting by assuming a stronger
consistency guarantee.

We however believe that even assuming linearizability, which is much stronger than RYW con-
sistency, the standard scheme would still leak more in the multi-user setting than what it would in
the single-user setting with RYW consistency. The question then is to find a lower bound on leakage
in the multi-user setting.

Beyond CH-KVS. Another direction is to study the security of the standard EKVS when it is
instantiated with a KVS that is not based on consistent hashing or on the two routing schemes
that we described. Instantiations based on Kademlia [88] and Koorde [70] would be particularly
interesting due to the former’s popularity in practice and the latter’s theoretical efficiency. Because
Koorde uses consistent hashing in its structure (though its routing is different and based on De
Bruijn graphs) the bounds we introduce in this work to study CH-KVS’s balance might find use in
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analyzing Koorde. Kademlia, on the other hand, has a very different structure than CH-KVSs so it
is likely that new custom techniques and bounds are needed to analyze its balance.

New EKVS constructions. A third direction is to design new EKVS schemes with better leakage
profiles. Here, a “better” profile could be the same profile Lε achieved in this work but with a smaller
ε than what we show. Alternatively, it could be a completely different leakage profile. This might be
done, for example, by using more sophisticated techniques from structured encryption and oblivious
RAMs.

EKVSs in the transient setting. Another important direction of immediate practical interest
is to study the security of EKVSs in the transient setting. As mentioned in Section 4.3, in transient
setting, nodes are not known a-priori and can join and leave at any time. This setting is particularly
suited to peer-to-peer networks and permissionless blockchains. Agarwal and Kamara [24] study
DHTs in the transient setting and it would be intersting to extend their work to transient KVSs as
well.

Stronger adversarial models. Our security definitions are in the standalone model and against
an adversary that makes static corruptions. Extending our work to handle arbitrary compositions
(e.g., using universal composability [46]) and adaptive corruptions would be very interesting.
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Chapter 5

Encrypted Blockchain Databases

5.1 Introduction

Blockchains are decentralized tamper-proof append-only data stores. Since their introduction by
Nakamoto in the context of crypto-currencies [93], blockchains have received a lot of attention
from research and industry due to their potential use tamper-proof distributed storage platforms.
An emerging and important class of blockchain technologies are blockchain databases. These are
blockchain-like in the sense that they are decentralized and tamper-proof but database-like in the
sense that they store complex data types, provide (relatively) low latency, and support complex
queries. Blockchain databases are a crucial technology for the development of non-trivial smart con-
tracts, distributed applications and marketplaces. Examples of commercial and research blockchain
databases include Bigchain DB [89], Bluzelle [14] and [94].

As blockchain databases gain wider adoption, concerns over the confidentiality of the data they
manage will increase. Already, several projects aim to use blockchains to store sensitive data like
electronic healthcare and financial records, legal documents (e.g., wills) and customer data. But
the decentralized nature of blockchains—where data is highly replicated and stored on untrusted
nodes—makes it a particularly poor solution for storing sensitive data.

Encrypted blockchain DBs. In this work, we consider the problem of end-to-end encrypted
blockchain databases. With such a system, a client can encrypt its database before storing it on
the blockchain. To query it, the client uses its secret key and executes a query protocol with
the blockchain. Encrypted blockchain DBs are a form of encrypted database as studied in the
encrypted search literature. In theory they could be designed using various cryptographic primitives
each of which achieve different tradeoffs between query efficiency, storage overhead, communication
complexity, leakage and query expressiveness.

Encrypted multi-maps. A multi-map (MM) is a data structure that stores label/tuple pairs and
supports get and put operations. Gets take as input a label and return the associated tuple and
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puts take as input a label/tuple pair and stores it. Multi-maps are generalization of dictionaries
which only store label/value pairs. MMs capture the functionalities of important data structures like
inverted indices but can also be used to represent NoSQL databases like key-value stores (e.g., Dy-
namoDB) and document stores (e.g., MongoDB). An encrypted multi-map (EMM) is an end-to-end
encrypted multi-map data structure that supports puts and gets over encrypted data. EMMs have
have received a lot of attention in the encrypted search literature because they enable sub-linear
search on encrypted data [53], encrypted graph databases [52] and encrypted relational databases
[72]. We note that an encrypted NoSQL blockchain database can be trivially constructed from a de-
centralized/blockchain EMM since both key-value stores and document databases can be represented
as dictionaries. Because of this, in this work, we focus on the problem of designing of blockchain
EMMs.

Custom vs. legacy-friendly designs. There are two approaches one could take to design a
blockchain EMM. The first is to build a custom system from the ground up. The advantage of this
approach is that the blockchain and the encrypted search techniques can be co-designed to optimize
performance. Another approach is to design a solution that is legacy-friendly in the sense that it
can be used on top of pre-existing blockchains. The advantage of this approach is that the resulting
system can benefit from the underlying blockchain’s network in terms of size and adoption. The
disadvantage of this approach is that it introduces several technical challenges.

Challenges. The first challenge is simply to find a way to store the encrypted database on a
blockchain. Most existing blockchains were designed to store financial transactions or the state of
smart contracts but not databases and the data structures that support them. The second challenge
is in achieving dynamism; that is, adding, deleting and editing data. One of the core properties
of blockchains is that they are tamper-proof which makes database deletion operations particularly
difficult. The third challenge is to achieve efficiency both with respect to queries and updates.

5.1.1 Our Contributions

In this work, we show how to design practical legacy-friendly encrypted blockchain databases. We
make several contributions.

Append-only data stores. Our blockchain EMM constructions can work on any blockchain. To
achieve this level of generality, we use a simple abstraction called an append-only data store (ADS)
that captures the properties and functionality of blockchains that we need. At a high level, an
ADS stores address/entry pairs but where the address is determined by the structure—as opposed
to a dictionary where the label is chosen. ADSs are append-only so they only support get and
put operations. By designing EMMs based on ADSs we ensure that our constructions can be
implemented and used on any blockchain. An alternative approach would be to store an entire
EMM as the state of a smart contract and to implement the query and update operations as a smart
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contract. There are two limitations to this approach. First, it is not general-purpose since: (1)
many blockchains do not support smart contracts; and (2) many smart contract platforms do not
maintain state across transactions. The second limitation is that it is expensive since smart contract
platforms require payment not only for storing data and code but also for executing code (and the
more complex the code is, the higher the cost). Our approach, on the other hand, is general and
lower cost since we can store ADS entries in transactions as opposed to smart contracts 1 and don’t
need to execute any code on the blockchain.

A list-based construction. Our first construction, LSX, stores every element of a multi-map in
the ADS but super-imposes a virtual linked list for each tuple. Given a tuple (v1, . . . , vn) associated
to a label `, the values are first stored in blocks (B(1), . . . , B(m)). Block B(i) is then concatenated
with the address of B(i−1), encrypted and stored in the ADS. The address of B(m) is then stored
locally by the client. To query the EMM on a label `, the client recovers the address of the tail block
and queries the ADS for it. This results in the client learning B(n) and the address of B(n−1) which
can now be queried; and so on and so forth. To achieve dynamism, the scheme uses lazy deletion:
all the added and deleted values are marked as added or deleted and deletion is only performed at
query time by removing the values marked as deleted from the output. This scheme has several
shortcomings including query complexity that is linear in the number of deleted items and a put
operation that requires a linear number of rounds (in the size of the tuple). The latter is particularly
costly when the ADS is instantiated with a blockchain because the latency of a round is equivalent
to the time it takes for a transaction to stabilize, which can be very high.

Like any encrypted search solution, our schemes achieve tradeoffs between efficiency and leakage.
We formally analyze the security of our constructions and prove that they achieve standard leakage
profiles. More precisely, LSX’s query leakage reveals if and when the queried label has been edited
in the past. Its add and delete leakages, on the other hand, reveal only the size of the tuple, which
implies that LSX is forward-private [108, 39].

A tree-based construction. Our second construction, TRX, improves on LSX’s round complexity
for puts. It does this by super-imposing a binary tree instead of a list. Roughly speaking, given blocks
(B(1), . . . , B(m)), each block is concatenated with the addresses of a left and a right block. These
blocks can be any two blocks that have been previously stored but not linked to. For dynamism, the
scheme also uses lazy deletes. The advantage of this scheme is that put operations now require only
a logarithmic number of rounds since all the blocks at a given tree depth can be inserted into the
ADS in parallel (since their children have already been inserted and their addresses are now known).
TRX achieves the same leakage profile as LSX.

A patched construction. Our third construction, PAX, improves on the asymptotic query com-
plexity of LSX. It does this by super-imposing additional (virtual) structures on the ADS. The first

1 On Ethereum, it costs around 2, 200 gas to store a 32 bytes in a transaction whereas it costs around 20, 000 gas
to store it in a smart contract.
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are what we refer to as patches. These are address pairs that allow the query algorithm to skip
values that are deleted. To guarantee correctness and to achieve optimal query complexity, these
patches have to be used and managed very carefully. We achieve this by super-imposing a binary
search tree on the patches themselves that allows us to find patches quickly and introduce a set of
techniques to manage this patch tree.

PAX’s leakage profile is slightly worse than LSX’s and TRX’s. Its query leakage reveals if and
when an addition was made to the label and its add leakage reveals only the size of the tuple. In
particular, this means PAX’s adds are forward private. Its deletions, however, are not and they
reveal if and when the label was added to, and if and when the tuple values were added in the
past. Another limitation of PAX is that it does not support packing so, even though its asymptotic
query complexity is optimal, its concrete efficiency is only moderate (as our experiments reveal).
Nonetheless, we believe that PAX is an interesting construction due to the techniques it introduces
and its asymptotic optimality. Furthermore, if it can be extended to handle packing it would be
very efficient in practice.

Blockchain instantiations of ADSs. We show how to use the Ethereum and Algorand blockchains
to instantiate an ADS. At a high-level, we store a value v by creating a transaction that stores v
and sending it to the blockchain so that it gets mined into a block. In the context of blockchains,
the address of a value can be instantiated in one of two ways: (1) as a transaction hash, which the
client can compute before the block is mined; or (2) as the block number (along with a transaction
hash) which the client can only use after the transaction has been mined and the block is stable.
Using transaction hashes as addresses is more efficient but, in some cases, infeasible because some
nodes might not support transaction lookups by hash. Because of this, we also study how choosing
one instantiation over the other effects the efficiency of our schemes.

Empirical evaluation. We implemented our schemes on the Algorand testnet and evaluated them
under a variety of different settings. We varied the sizes of the multi-maps and the querying and
deletion patterns. We instantiated the ADS addresses using transaction hashes and block numbers.
At a high level, we found that TRX performs better than LSX when addresses are instantiated with
block numbers. However, if transaction hashes are used, we found no difference between the two.
We also found that, as expected, for workloads with a lot of delete operations, PAX outperforms the
other schemes. For other workloads, however, PAX performs worse than the other schemes due to
its inability to pack multiple values in a single transaction. 2

2We implemented our schemes for the Ethereum testnet as well but could not run any experiments due to what
we believe is an DDoS or anti-spam mechanism. We contacted the Ethereum foundation about it but never heard
back. We expect, however, to see similar trends as our results from the Algorand testnet.
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5.2 Related Work

Blockchain databases. Recently, database and blockchain technologies have mutually influenced
each other. Some databases have adopted blockchain features such as decentralization, tamper-
resistance and auditability [95, 18, 15, 89, 19, 104], while some blockchains have adopted database
features like low latency and expressive queries [67, 27, 59, 114, 112, 34, 81]. The latter, (i.e.,
blockchain DBs) work by either storing data in traditional database and using blockchains for book-
keeping purposes [114, 112, 34, 81]; or by introducing an additional database layer on top of an
existing blockchain [67, 27, 59].

Privacy in blockchains. Blockchains are being designed for a variety of uses and domains such as
government, health and IoT [36, 30, 115, 103]. Since many blockchains are public and store sensitive
data, privacy has always been a concern. This has led to the adoption of various cryptographic
techniques like zero-knowledge proofs, [91, 105], secure multi-party computation [112, 79, 12], secret
sharing [32, 12], encryption [86, 27, 80], commitment schemes [41, 11, 87] and access controls [27,
96, 97] to blockchains. We refer the readers to [102, 116] for a comprehensive survey.

Recently, Benhamouda et al. [35] considered the problem of storing and using a secret on
blockchain. We note the goal of our work is different from theirs but complimentary. In this work,
we are concerned with storing and querying a database of sensitive information whereas in [35] the
goal is to store and use a secret like an encryption or a signing key. The two approaches could be
combined as follows. Suppose we had two blockchains bc1 and bc2. Our blockchain EMMs could be
used to store and manage a database on bc1 while the techniques from [35] could be used to store
the blockchain EMM’s secret key on bc2 and to execute the query, add and delete operations.

Verifiable SSE via blockchains. Blockchains have also been used in the context of encrypted
search. Several works [44, 43, 68, 120] propose to use blockchains to desgin verifiable searchable
symmetric encryption (VSSE) schemes. A VSSE scheme is a searchable encryption scheme where
the client can verify the correctness of the query results. Traditional VSSE constructions rely on
cryptographic primitives like message authentication codes (MAC) and digital signatures. These
works replace the server by a smart contract and rely on the consensus mechanism of the latter to
provide a guarantee of correctness.

5.3 Preliminaries

Append-only data stores. An append-only data store ADS is a special case of a dictionary
data structure in which every inserted label/value pair cannot be removed without impacting the
integrity of the entire structure. That is, the structure can insert new label/value pairs, but the
existing ones are immutable and cannot be modified. We provide below a formal description of this
data structure.
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Definition 5.3.1 (Append-only data store). An append-only data store ΣADS = (Init,Get,Put)
consists of three algorithms that work as follows:

• ADS← Init(λ) is an algorithm that takes as input a public parameter λ, and outputs an empty
append-only data store ADS.

• v ← Get(ADS, r) is an algorithm that takes as input an append-only data store ADS and an
address r and outputs a response v that corresponds to the value stored at address r.

• (ADS′, r) ← Put(ADS, v) is an algorithm that takes as input an append-only data store ADS
and a value v, and outputs an address r and an updated append-only data store ADS′.

ADS[r] denotes the value stored at location r and addr(v) to denote the address at which v is
stored in ADS.

5.4 LSX: A List-Based Scheme

In this section, we describe our first construction LSX. This is a multi-map encryption scheme
that makes use of an append-only data store. There are two main technical challenges that occur
when designing such a scheme. The first is handling delete operations since ADS’s do not have the
ability to modify or delete entries. The second is supporting the insertion of variable-length tuples
efficiently. To solve these issues, we use three techniques: (1) linking, where we super-impose a
linked list structure on top of the underlying ADS; (2) lazy deletion, where items are only marked
for deletion at delete time and removed from the output at query time; and (3) packing, where we
store multiple tuple values in one ADS entry.

Overview. At a high-level our scheme works as follows. Given a label/tuple pair that needs to be
added or deleted, the client encrypts and stores the tuple values into the ADS maintained by the
server. But, to differentiate between added and deleted values, it first concatenates a flag to each
value: ADD for added values and mathsfDEL for deleted values. At query time, the client reads
all the values and outputs the ones that were added but not deleted.

Linking. Recall that in order to retrieve a value from an append-only data store ADS, one needs
to know the address at which it is stored and this address cannot be computed or known a-priori by
the client. To support search, a naive approach would be to require the client to store the addresses
of all the values that it ever stored in the data store; which is obviously very space inefficient. To
improve this, the client will super-impose in the ADS a virtual linked list over the values associated
to a label ` and store locally only the address of the tail of the list. More precisely, it works as
follows: for each label `, and each value in `’s tuple, the client concatenates to the value the address
of the previous value that was stored in ADS. It then stores the address of the last value in the
tuple. Overall, the client only needs to keep a state that is linear in the number of labels in the
multi-map. Notice that it is possible to achieve constant size state by super-imposing a single list
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over the values of all labels but we dismissed this approach since the query time would be linear in
the number of values of all labels.

Packing. Depending on how big the tuple values are, it is possible to pack multiple values in one
entry of the data store. This trivially makes the construction more efficient since queries will require
a fewer number of interactions with the ADS. Let λ be a data-store-specific parameter that denotes
the maximum number of bits that can be stored in an entry of the ADS. The client then packs the
maximum number of values in what we call a value-block such that the total size of the value-block
(including the flag and the address) is at most λ. It then stores the value-block as an entry of the
data store.

5.4.1 Details

The LSX scheme makes a black-box use of a private key encryption scheme SKE = (Gen,Enc,Dec)
and an append-only data store ΣADS = (Init,Get,Put). LSX is described in detail in Figure 5.1 and
we provide below a high level overview on how it works.

Init. During initialization, given a security parameter 1k as input, the client generates an encryp-
tion key K and initializes a dictionary DX, while the server initializes its append-only data store
ADS using ΣADS.Init(1k,⊥). The client uses dictionary DX to store addresses of the values it stores
in ADS. More precisely, ADS[`] is the address of the last value stored in ADS associated with label
`.

Edit+. To add a tuple v to an (exisiting) label `, the client chops v into value-blocks B(1), . . . B(t),
such that the size (in bits) of each encrypted value-block appended with an address and an ADD flag
is at most λ. It then does the following for each i ∈ [t]: it first encrypts (B(i) || ADD || ri−1), where
r(i−1) is the address of the previous block stored in ADS(i−1) for `,3 and then stores the encrypted
value e in ADS(i−1) and computes new address r(i) where (ri,ADS(i))← ΣADS.Put(ADS(i−1), e). The
client finally updates DX[`] = r(|v|), so that it can correctly extend the chain on next Edit+/Edit−

operation.

Edit−. Deletion is same as addition with the difference that value-blocks are now concatenated
with mathsfDEL flag instead of ADD flag.

Query. To compute MM[`], the client sends to the server the address r = DX[`], which the server
uses to retrieve and return e = ADS[r]. The client then decrypts e to recover a value block B, a
flag flag and an address r′. If flag = ADD, it adds B to a set V or else it adds it to Vd. It then sets
r = r′ and checks if r = ⊥. If r = ⊥, it has retrieved all the values that were ever added/deleted

3Note that the first added value of any label ` is concatenated with ⊥ in order to be able to identify the end of a
label’s chain.
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to/from `, and if not, it repeats. Finally, it outputs the set of values in V \ Vd, which intuitively
represent the values that were added but not yet deleted.

Let λ ≥ 0 be a public parameter, let SKE = (Gen,Enc,Dec) be a private-key encryption scheme and
ΣADS = (Init,Get,Put) be an append-only data store. Consider the dynamic encrypted multi-map
LSX = (Init,Query,Edit+,Edit−) defined as follows:
• Init(1k;⊥) :

1. C generates K ← SKE.Gen(1k);
2. C initializes an empty dictionary DX;
3. S initializes an empty append-only data store ADS← ΣADS.Init(λ);
4. C outputs a state st = DX and a key K, whereas S outputs ADS.

• Edit+(st,K, `,v; ADS) :

1. C parses st as DX and sets ADS to ADS(0);
2. C sets r(0) ← DX[`];
3. C chops v into maximal sized value-blocks B(1), . . . , B(t) such that for each i ∈ [t],
|SKE.EncK(B(i) || r(0) || ADD)| ≤ λ;

4. for each i ∈ [t] :
(a) C computes e← SKE.EncK(B(i) || r(i−1) || ADD);
(b) C sends e to the server S;
(c) S computes (ADS(i), r(i))← ΣADS.Put(ADS(i−1), e);
(d) S returns r(i) to C;

5. C sets DX[`] = r(t).

• Edit−(st,K, `,v; ADS) :

1. It is the same as Edit+, except that at line 3a, C concatenates the mathsfDEL flag instead
of ADD flag.

• Query(st,K, `; ADS) :

1. C parses st as DX;
2. C sets r = DX[`] and initializes two empty sets V and Vd;
3. while r 6= ⊥,

(a) C sends r to S;
(b) S computes e← ΣADS.Get(ADS, r) and sends e to C;
(c) C computes (B || r′ || flag)← SKE.DecK(e);
(d) if flag = ADD, C appends B to V ;
(e) otherwise if flag = mathsfDEL, C appends B to Vd;
(f) C sets r = r′.

4. C outputs V \ Vd.

Figure 5.1: The LSX scheme.
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Security. We now describe the leakage profile of the LSX scheme. The initialization leakage is
equal to

LI(⊥) = ⊥.

The query leakage is equal to
LQ(MM, `) = ueq(`),

where ueq(`) is the update equality pattern which reveals if and when the label ` edit had occurred.
More formally, it is defined as a bit string of length equal to the number of operations performed
until now where the ith bit is set to 1 if the ith operation was an Edit+/Edit− on `, and 0 otherwise.

The add/delete leakage is equal

LE+(MM, (Edit+, `,v)) = LE−(MM, (Edit−, `,v)) = |v|,

where |v| denotes the number of values being added/deleted from the multi-map.

Theorem 5.4.1. If SKE is RCPA secure, then LSX is a (LI,LQ,LE+ ,LE−)-secure multi-map en-
cryption scheme.

Proof. Consider the simulator Sim that works as follows. It simulates the adversary A and first
generates a symmetric key K ← SKE.Gen(1k).

• Simulating Edit+: On receiving LE+(MM, `,v) = |v|, Sim sets r(0) = ⊥, creates a vector v with
random |v| values, chops v into maximal sized value-blocks B(1)

, . . . , B
(t) such that for each

j ∈ [t], |SKE.Enc(B(j) || r(0) || ADD)| ≤ λ, and repeats the following t times, i.e. for i ∈ [t],
it generates ei ← SKE.EncK(B(i) || r(i−1) || ADD), sends ei to A, waits for A to return a new
r(i) and then it repeats. It also associates and stores r(t) with current time.

• Simulating Edit−: It is exactly same as simulation of Edit+.

• Simulating Query: Given LQ(MM, `) = ueq(`), Sim first sorts the update times in descending
order and stores the sorted times in tuple u. For each u ∈ u, it then uses the address r
associated with u, sends r to A, waits for A to return e, decrypts e to compute next r and
repeats until r = ⊥.

It remains to show that for all ppt adversaries A, the probability that Real(k) outputs 1 is negligibly
close to the probability that Ideal(k) outputs 1. This can be done with the following sequence of
games:

Game0 : is the same as a RealA,Z(k) experiment.

Game1 : is the same as Game0 except that the encryptions of (B || r || flag) during Edit+ and Edit−

are replaced by encryptions of (B || r || flag), where B is created by chopping a vector v of
random values.
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Game2 : is the same as Game1 except for the following. On an Edit+ or Edit−, we initialize r(0) to
⊥ instead of initializing it to DX[`]. We also associate and store r(t) with the current time.
Then, on a query, we sort the update times of `, and use the addresses associated with the
sorted update times to query the server.

Note that Game0 and Game1 are indistinguishable because otherwise the encryption scheme is not
RCPA secure – on Edit+ and Edit−, the vector v of Game0 is replaced with a random vector v in
Game1. Game1 and Game2 are also indistinguishable because the encryption is RCPA secure – on
Edit+ and Edit−, r(0) of Game1 is replaced with ⊥ in Game2. The Query protocol remains the same
from the adversary’s perspective as it receives the same set of r values as it would in Game1. Proof
concludes by noticing that Game2 is Ideal(k) experiment.

Efficiency. We evaluate our scheme (as well as the next two schemes) based on three parameters:
(1) time complexity, time, which is the amount of work done by the server; (2) round complexity
for reads, roundsr, which is the number of communication rounds that take place between the client
and the server for reads; and (3) round complexity for writes, roundsw, which is the number of
communication rounds that take place between the client and the server for writes. We evaluate
the round complexity of our schemes separately for reads and writes because when the underlying
ADS is instantiated with a blockchain, writes can take much longer than reads. When the ADS is
a blockchain, we sometimes use the term stabilization complexity, which we denote stbl, to refer to
the round complexity of writes. This is because the time it takes to write a value/transaction to a
blockchain depends on the time it takes the transaction to become stable. We summarize in Table
5.1 the time and stabilization complexities of LSX along with our two protocols described in the
subsequent sections, and we give a detailed analysis below.

• Query. Since the query protocol requires reading all the value-blocks that were ever added
or deleted from `, its time complexity time is O(|u|), where u is the sequence of all update
operations. The round complexity for reads roundsr is O(u) where u =

∑|u|
i=1 |vi|/λ, where

vi is the tuple to the ith update operation in u. This holds as the the address of the value-
block B(i) cannot be computed until the value-block B(i+1) is read. Note that since nothing
is written to the server during query time, the stabilization complexity stbl is not relevant.

• Edit+ and Edit−. Since |v| values are written in total, the time complexity is equal to O(|v|)
independently of the packing factor. The stabilization complexity, however, i O(|v|/λ) since
the value-block B(i) cannot be written unless B(i−1) has been written. Since nothing is read
from the server, roundsr is not relevant.
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Edit+(`,vi) Query(`) Edit−(`,vi)

time roundsw time roundsr time roundsr roundsw

LSX O(|vi|) O(|vi|/λ) O(|ui|) O(ui) O(|vi|) - O(|vi|/λ)

TRX O(|vi|) O(log(|vi|/λ)) O(|ui|) O(ti) O(|vi|) - O(log(|vi|/λ))

PAX O(|vi|) O(|vi|) O(|MMi[`]|) O(|MMi[`]|) O(|MMi−1[`]|+
|vi| log(|MMi−1[`]|)) O(|MMi−1[`]|) O(log(|MMi−1[`]|))

Table 5.1: We denote by time the time complexity, by roundsr the round complexity for reads, and by roundsw the
round complexity for writes. We denote by λ > 0 the packing parameter. The efficiency complexities are calculated
for the ith add/delete operation. The sequence of updates ui is composed of i add/delete operations. We denote by
ui =

∑|ui|
j=1 |vj |/λ and by ti =

∑|ui|
j=1 log(|vj |/λ)).

5.5 TRX: Improving Stabilization Complexity

The round complexity of LSX for writes is linear in the length of the inserted or deleted tuple which
means that its stabilization complexity when instantiated over a blockchain is also linear. More
precisely, will be O(|v|/λ), where v is the tuple to be added and λ is the size of an entry in the
underlying ADS. As we will see in our evaluation section, from a practical standpoint this leads to a
non-trivial bottleneck for latency. To address this we propose a new scheme, TRX, with write round
complexity O(log(|v|/λ)) and the same time complexity and client storage as LSX.

Overview. Recall that the Edit+ and Edit− protocols in LSX append to each value-block the
address of the previous value-block stored in the ADS. This means that a value-block cannot be
stored until the address of the previous value-block is available or, in the context of a blockchain,
stable. Since both Edit+ and Edit− protocols link |v|/λ value-blocks linearly, the client must wait
for |v|/λ value-blocks in total to become stable. Therefore, the write round complexity is O(|v|/λ).
In TRX, we modify the way the value-blocks are organized with the goal of reducing the number
of addresses needed before storing a value-blocks. Instead of using a linked list, we super-impose
a complete binary tree which allows us to parallelize the insertions of multiple value-blocks. This
approach helps reduce the number of rounds required for writes and, in the context of blockchains,
decrease the stabilization complexity to be logarithmic instead of linear in the size of the tuple.

The tree structure. The TRX scheme super-imposes a complete binary tree structure over the
value-blocks of v so that all the nodes on a level can be inserted in parallel. This is possible since
storing a value-block only requires knowing the address of its parent. To do this, TRX concatenates
two addresses, lp and rp, to every value-block B of the tuple. Here, lp and rp are the addresses of
other value-blocks that were stored before B, i.e., that are at a lower level in the tree. lp represents
the address of B’s left child and rp the address of its right child.

Note that the tree structure is only created for value-blocks that belong to the same update
operation. A valid question is how one could link value-blocks added across multiple Edit operations.
For this, we simply link the roots of the trees together in a linear fashion similar to the LSX scheme.
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5.5.1 Details

The TRX scheme makes black-box use of a private key encryption scheme SKE = (Gen,Enc,Dec)
and an append-only data store ΣADS = (Init,Get,Put). TRX is described in detail in Figure 5.2 and
we provide a high level overview of how it works below.

Init. The initialization protocol is similar to the one of LSX.

Edit+. To add the tuple v to a label `, the client first creates its value-blocks B(1), . . . , B(t). For
each B(i), the client then sets its lp to be the address of B(2i) and its rp to be the address of
B(2i+1). The value-blocks on the last level of the logical tree have their lp and rp set to ⊥. More
precisely value-blocks B(d(t/2)+1)e to B(t) have their lp and rp set to ⊥. Notice that this creates a
tree structure among the value-blocks of v. The client starts by storing value-blocks of v in reverse
order so that when it stores B(i), the addresses of B(2i) and B(2i+1) have already been obtained.
As before, it appends an ADD flag, encrypts (B(i) || lp || rp || ADD), and sends the encryption e(i)

to the server. The server stores e(i) and returns the address r(i) back to the client. In order to link
different tree structures belonging to the same label `, the client also appends the address of the
root of the last tree to the value-block stored at the root of the current tree. More precisely, the
client also concatenates DX[`] to (B(1) || lp || rp || ADD) before encryption, refer to line 5b in Figure
5.2. Finally, the client updates DX[`] with the address of the root of the current tree.

Edit−. This protocol is the same as Edit+ with the difference that value-blocks are now concate-
nated with a mathsfDEL flag instead of an ADD flag.

Query. The Query protocol is similar to the protocol of LSX with the difference that the client
now traverses multiple trees. It sends to the server rroot = DX[`] which is the root of the last tree
stored in ADS. When the server returns e = ADS[rroot], the client decrypts it to retrieve the address
r′root of the root of the next tree and the addresses of the two child nodes. It puts the addresses of
the children on a stack S and uses the stack to do a depth-first search on the tree to retrieve all the
value-blocks stored in that tree; refer to line 2h to 2(h)vi in Figure 5.2. As in LSX, if the retrieved
value-block has an ADD flag, the client adds the value-block to a set V If not, the client adds it a
set Vd. Finally it outputs V \ Vd.

Security. Since the only difference between TRX and LSX is how they represent the values logically
in ADS (LSX represents them as a list whereas TRX represents them as list of trees) their leakage
profiles as and their security proofs are the same. We therefore simply state the security theorem
without giving its proof.

Theorem 5.5.1. If SKE is RCPA-secure, then TRX is (LI,LQ,LE+ ,LE−)-secure multi-map encryp-
tion scheme.
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Let λ ≥ 0 be a public parameter, let SKE = (Gen,Enc,Dec) be a private-key encryption scheme and
ΣADS = (Init,Get,Put) be an append-only data store. Consider the dynamic encrypted multi-map
LSX = (Init,Query,Edit+,Edit−) defined as follows:
• Init(1k;⊥) : same as Init protocol in Figure 5.1.
• Edit+(st,K, `,v; ADS) :

1. C parses st as DX and sets ADS as ADS(0);
2. C chops v into maximal sized value-blocks B(1), . . . , B(t) such that for each j ∈ [t],
|SKE.EncK(B(j) || r(0) || r(0) || ADD)| ≤ λ;

3. C creates a new vector r of size (2t+ 1) where r(i) denotes the address of B(i);
4. C initializes all r(i) in r to ⊥;
5. for each i from t to 1,

(a) C sets lp = r(2i) and rp = r(2i+1);
(b) if i = 1, C computes and sends to S

e(i) ← SKE.EncK(B(i) || lp || rp || DX[`] || ADD);

(c) otherwise if i 6= 1, C computes and sends to S

e(i) ← SKE.EncK(B(i) || lp || rp || ADD);

(d) S computes (ADS(i), r(i))← ΣADS.Put(ADS(i−1), e(i));
(e) S returns r(i) to C who updates r;

6. C sets DX[`] = r(1).

• Edit−(st,K, `,v; ADS) :

1. It is the same as Edit+, except that at lines 5b and 5c, C concatenates the mathsfDEL flag
instead of the ADD flag.

• Query(st,K, `; ADS) :

1. C parses st as DX and sets rroot = DX[`];
2. while rroot 6= ⊥,

(a) C sends rroot to S;
(b) S computes and sends e← ΣADS.Get(ADS, rroot) to C;
(c) C computes (B || lp || rp || r′root || flag)← SKE.DecK(e);
(d) if flag = ADD, then C appends B to V ;
(e) otherwise if flag = mathsfDEL, then C appends B to Vd;
(f) C sets rroot = r′root;
(g) C initializes a stack S and pushes lp and rp in it;
(h) while S is not empty,

i. C sends r ← S.pop() to S;
ii. S computes and sends e← ΣADS.Get(ADS, r) to C;

iii. C computes (B || lp || rp || flag)← SKE.DecK(e)
iv. if flag = ADD, then C appends B to V ;
v. otherwise if flag = mathsfDEL, then C appends B to Vd;

vi. C computes S.push(lp) and S.push(rp) if they are not equal to ⊥;
3. C outputs V \ Vd.

Figure 5.2: The TRX scheme.
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Efficiency. The efficiency of LSX is summarized in Table 5.1. We give a detailed analysis below.

• Edit+ and Edit−. Since |v| values are written in total, the time complexity time is O(|v|),
independently of the packing factor λ. However, the stabilization complexity stbl is equal to
O(log(|v|/λ)) because all value-blocks at the same level of the logical tree can be written in
parallel.

• Query. Since the query protocol requires reading all the value-blocks that were ever added
or deleted from `, its time complexity time is O(|u|), where u is the sequence of all update
operations. The round complexity for reads is equal to t =

∑|u|
i=1 log(|vi|/λ), where vi is the

tuple of the ith update operation. Note that this holds true as all value-blocks at the same
level can be read in parallel. Moreover, since nothing is written to the server during query
time, the stabilization complexity stbl is not relevant.

5.6 PAX: Improving Query Efficiency

Both LSX and TRX have time complexities that are linear in the number of updates |u| ever made
to a label `; including the delete operations. This is because both schemes use lazy deletion with no
rebuilds protocol as is the case for [60, 26]. As an example, if after |u| updates the client deletes all
but one value of a tuple, the client and server still need to do a linear amount of work in the number
of updates. In this section, we describe a new scheme, PAX, that achieves optimal time complexity
at the cost of making delete operations slightly more expensive. PAX is based on a novel technique
we call patching.

Overview. Like LSX, PAX stores added values in a single list. Unlike LSX, however, it does not
use packing. Generalizing PAX to work support packing is left as open problem. At a high level,
when a delete operation is executed, a set of patches are created and stored in the ADS. A patch
is a pair of addresses s and d that will help traverse the lists without reading the deleted values.
Now, a query operation will use the set of patches to skip over the deleted values and only read the
required values. It is important to note, however, that to achieve time optimality, the number of
patches has to be smaller than the number of values left. Achieving this is non-trivial, however, and
requires us to organize the patches themselves in a tree structure.

5.6.1 Overview of Patching

A patch is a pair of addresses s and d, denoted (s → d), where s is the starting address and d the
destination address. We first explain how delete operations trigger the creation of patches and then
how the query operations use them. As a first step, assume that the client stores all the patches
locally in a dictionary DXPT. In this case, a patch (s→ p) is stored as DXPT[s] = p. We later explain
how, instead of storing them locally, they can be stored in the ADS.
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Patch creation. Each value v stored in the ADS has an implicit predecessor address and an
implicit successor address. More formally, the predecessor is the address of the value that was
added before v and is not yet deleted while the successor is the address of the value that was added
after v and is not yet deleted. When v is deleted, a patch (succ(v) → pred(v)) is created, where
succ(v) is the address of v’s successor and pred(v) is the address of v’s predecessor.

Querying using patches. Querying with patching works as follows. Upon querying ADS[succ(v)],
the client recovers addr(v) and is then supposed to query the ADS for v. With patching, however,
it can check its local dictionary DXPT to see if a patch

(
succ(v) → pred(v)

)
exists. If so, it can

skip querying the ADS on addr(v) and directly jump to querying on pred(v). Intuitively, a patch(
succ(v)→ pred(v)

)
provides a way to retrieve pred(v) without reading addr(v).

Storing patches. Of course, storing patches locally would require too much client storage. In
fact, as we will see, the number of patches needed in the worst-case is size of the entire encrypted
multi-map. Fortunately, we can overcome this by storing the patches in the ADS. The patches will
themselves need to be linked (so that we can find them) but, unlike the tuple values, they will be
linked using a tree structure (the reason will be explained below). To create a tree structure, we
concatenate two addresses lp and rp to every patch p = (s → d), where lp and rp are addresses of
other patches that were stored before p. lp is the address of the left child and rp the address of the
right child. The keys of the binary search tree are the starting address of the patches, i.e., the order
of the patches is determined by their starting addresses s. We refer to this tree as the patch tree.
As is done for the linked list structures, the client stores the address of the patch at the root of the
tree.

Storing a new patch. When we store a new patch P = (s → p) in the data store, we need to
make sure that we maintain the virtual binary search tree. This can be done using the following
steps:

• (patch creation). Since P is a new patch, it is going to be a leaf in the tree. The client first
concatenates to P its two child pointers lp = ⊥ and rp = ⊥, i.e., it has the following form

P =
(

(s→ p) || ⊥ || ⊥
)
.

It then sends P to the server who stores it in ADS and returns its address rP to the client.

• (patch position). To find the patch’s insertion location in the tree, the client sends to the
server the address of the root of the patch tree. The server reads and returns the patch
Proot = (sroot → Proot) || lproot || rproot. The client then checks if s < sroot. If so, it sends lproot

to the server otherwise it sends rproot. The client continues this process until it retrieves a
patch

Pparent = (sparent → pparent) || lpparent || rpparent

where P needs to be inserted.
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• (path modification). At this point, the normal binary search tree insertion operation just
involves changing one of the two addresses lpparent or rpparent to the address rP of the parent P .
However, since Pparent is stored in an append-only data store, Pparent cannot be changed. The
client, therefore, creates a new node P ′parent, sets the patch content in P ′parent to be the same as
the patch content in Pparent, changes one of the addresses lpparent or rpparent to rP . It then sends
P ′parent to the server who stores it in ADS and returns an address rP ′parent

. Unfortunately this
requires an address in parent of Pparent to be changed to rP ′parent

, which cannot be done since it
is stored in append-only data store. So a new node for the parent of Pparent is created. This
process propagates up to the root and every node on the path from P to the root is replaced
by a new node. When the server returns the address of the new root node, the client updates
its copy of the root address.

Also, since every addition to the patch tree triggers the creation of as many nodes as its height, we
keep the tree balanced for efficiency reasons. Balancing the tree follows the same approach detailed
above so we omit the details from this version of the paper.

Cleaning up a patch tree. Cleaning up the patch tree is the process of deleting some patches to
achieve both time optimality and correctness. Let us start with an example to illustrate when and
why a cleanup might be required. Assume that the unencrypted contents of the data store ADS are:
ADS[r1] = (v1 || ⊥), ADS[r2] = (v2 || r1), ADS[r3] = (v3 || r2), and ADS[r4] = (v4 || r3). Then, when
v3 is deleted, a patch (r4 → r2) is created. However, if v2 is deleted next, the creation of a new
patch (r4 → r1) means we have two patches with the same starting address r4. It is therefore not
clear which patch is the right one. Moreover, the number of patches in the patch tree will then be
equal to the number of values deleted, which means that searching for a patch in the patch tree is as
expensive as employing the lazy deletion approach. To avoid these issues, we need a way to delete
old patches. In the example above, suppose we want to delete r4 → r2 and add r4 → r1. Deletion
from a patch tree is similar to an addition: we first find the node P to be deleted, replace it with
the appropriate descendant node P ′ by replacing nodes on path from P to the root with new nodes
with appropriate pointer changes.

5.6.2 Details

The PAX scheme makes black-box use of a private key encryption scheme SKE = (Gen,Enc,Dec)
and an append-only data store ΣADS = (Init,Get,Put). PAX is described in detail in Figure 5.3 and
we provide below a high level overview of how it works.

Init. The initialization of PAX is similar to the one of LSX with the difference that now the client
also initializes an empty dictionary DXRoot to store the addresses of the roots of the patch trees.

Edit+. Edit+ is also similar to the one of LSX but with the following differences: (1) it no longer
concatenates the ADD flag to the values that it stores in ADS; (2) it no longer packs values in
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value-blocks; and (3) it stores the values in v in a random order in ADS.

Query. As a first step, the client reads all the patches in the patch tree using the root of the patch
tree DXRoot[`]. It stores them in a local dictionary DXPT by storing a patch (s→ d) as DXPT[s] = d.
To compute MM[`], it sends the address r = DX[`] to the server who uses it to retrieve and return
e = ADS[r]. The client decrypts e to recover a value v and an address r′. It adds v to a set V and
checks if there exists a patch starting at r by checking if there exists an entry corresponding to r in
DXPT. If so, it sets r = DXPT[r], else it sets r = r′. It repeats this process until r = ⊥, at which
point it has retrieved all the values that are currently in MM[`]. Finally it outputs the set V .

Edit−. As first step, the client reads all the patches and stores them locally in DXPT. It then
starts reading all the values stored in ADS one-by-one. While reading, it also skips over the deleted
values using the downloaded patches as it does during query. The aim of this traversal is to compute
patches for values that are to be deleted. Recall that a patch for a value is its successor and
predecessor addresses. Therefore, during traversal, when the client reads a value v ∈ v, it stores
(succ(v) → pred(v)) in a set P and addr(v) in a set C. There is a subtlety here though: the client
has to be careful when creating these successor-predecessor pairs. For example, if two consecutive
values are being deleted then they should share the same successor-predecessor pair. Once the client
collects all the new patches in P , it needs to add all of them to the patch tree. But before it does
so, it checks if there is some cleanup needed to the patch tree.

Security. We now describe the leakage profile of PAX. The initialization leakage is LI(⊥) = ⊥.
The query leakage is

LQ(MM, `) = aeq(`),

where aeq is the add equality pattern which reveals if and when additions were made to the label.
The add leakage is

LE+(MM, `,v) = |v|,

where |v| is the number of values being added. The delete leakage is

LE−(MM, `,v) =
(
aeq(`), {vad(`, v)}v∈v

)
,

where aeq is the add equality pattern, and vad is the value addition pattern of all the values that
are being deleted, where vad represents if and when a value was added to a label.

Theorem 5.6.1. If SKE is RCPA-secure, then PAX is a (LI,LQ,LE+ ,LE−)-secure multi-map en-
cryption scheme.

Proof. Consider the simulator Sim that works as follows. It simulates the adversary A and first
generates a symmetric key K ← SKE.Gen(1k).

• Simulating Edit+: On receiving LE+(MM, `,v) = |v|, Sim sets r0 = ⊥, and repeats the following
|v| times: for i ∈ [|v|], it generates ei ← SKE.EncK(0|vi| || ri−1), sends ei to A, waits for A to
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Let SKE = (Gen,Enc,Dec) be a private-key encryption scheme and ΣADS = (Init,Get,Put) be an
append-only data store. Consider the dynamic encrypted multi-map PAX = (Init,Query,Edit+,Edit−)
defined as follows:
• Init(1k;⊥) : Same as in Figure 5.1, with the difference that client also initializes an extra

dictionary DXRoot.

• Edit+(st,K, `,v; ADS) :

1. C parses st as (DX,DXRoot) and sets r(0) ← DX[`]
2. S lets ADS(0) = ADS;
3. for each i ∈ [|v|] in random order,

(a) C computes and sends e← SKE.EncK(v(i) || r(i−1)) to S;
(b) S computes (ADS(i), r(i)) = ΣADS.Put(ADS(i−1), e) and sends r(i) to C;

4. C sets DX[`] = r(|v|).

• Query(st,K, `; ADS) :

1. C parses st as (DX,DXRoot);
2. Starting from DXRoot[`], C reads all patches and stores them into a local dictionary DXPT,

where patch (s→ d) is stored as DXPT[s] = d;
3. C sets r = DX[`];
4. while r 6= ⊥,

(a) C sends r to S
(b) S computes and sends e← ΣADS.Get(ADS, r) to C;
(c) C computes (v || r′)← SKE.DecK(e) and appends v to V ;
(d) if r ∈ DXPT, then C sets r = DXPT[r]
(e) otherwise if r /∈ DXPT, then C sets r = r′;

5. C outputs V .

• Edit−(st,K, `,v; ADS) :

1. C parses st as (DX,DXRoot);
2. Starting from DXRoot[`], C reads all patches and stores them into a local dictionary DXPT,

where patch (s→ d) is stored as DXPT[s] = d;
3. Starting from DX[`], C reads all values in the chain and computes the following two sets,

P = {succ(v)→ pred(v) | v ∈ v} C = {addr(v) | v ∈ v};

4. for all c ∈ C,
(a) if there exists a patch (c→ d) in DXPT, then C deletes (c→ d) from ADSRoot;

5. for all (s→ p) ∈ P :
(a) if there exists a patch (s → p′) in DXPT, then C replaces (s → p′) with (s → p) in

ADSRoot;
(b) otherwise, C adds (s→ p) in ADSRoot.

Figure 5.3: The PAX scheme.
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return a new ri and then it continues. It also associates and stores r|v| with the current time
t. We denote r|v| by headt. Sim also stores all the addresses ri in a set Rt.

• Simulating Edit−: On receiving

LE−(MM, `,v) = (aeq(`), {vad(`, v)}v∈v),

Sim first downloads the patch tree using the root stored in DXroot[min(aeq(`))]. Note that the
simulator is only given as leakage the time vad(`, v) which is the time at which v was added.
But there can be multiple values that were added at the same time as v. Therefore for each
t ∈ {vad(`, v)}v∈v, Sim selects rt

$← Rt, adds it to a set C and removes rt from Rt. Set C
intuitively represents the set of addresses to be deleted. Sim then computes the predecessor
and successor pairs of addresses in C by using heads in {headt | t ∈ aeq(t)} and the patch tree
(this is similar to how P is computed in Line 3 of Figure 5.3). Sim then follows Lines 4 and
5 of Figure 5.3 to update the patch tree. Finally, it updates DXroot[min(aeq(`))] to store the
new root of the patch tree.

• Simulating Query: Given LQ(MM, `) = aeq(`), Sim first downloads the patch tree using the
root in DXroot[min(aeq(`))]. It finally traverses the list by using heads in {headt | t ∈ aeq(`)}
and the patch tree.

It remains to show that for all ppt adversaries A, the probability that Real(k) outputs 1 is negligibly
close to the probability that Ideal(k) outputs 1. This can be done with the following sequence of
games:

Game0 : is the same as a RealA,Z(k) experiment.

Game1 : is the same as Game0 except that the encryption of node (v || r) during Edit+ and Edit− is
replaced by SKE.EncK(0|v| || r).

Game2 : is the same as Game1 except the following. On an Edit+, we initialize r0 to ⊥ instead of
initializing it to DX[`]. We also set and store headt = r|v| where t is the current time. Then,
on Query and Edit−, to read the chain of values, we sort the add equality pattern aeq of `, and
use headt associated with t ∈ aeq(`) to read the values from the server. Moreover, on Edit−,
for all v ∈ v, instead of deleting v, we select and delete an un-deleted random value from the
set vad(`, v).

Note that Game0 and Game1 are indistinguishable because otherwise the encryption scheme is not
RCPA-secure. Game1 and Game2 are also indistinguishable because the encryption is RCPA-secure
– on Edit+, r0 of Game1 is replaced with ⊥ in Game2. The Query protocol remains the same from
the adversary’s perspective as it receives the same set of r values as it would in Game1. The Edit−

protocols are also indistinguishable because the Edit+ protocol adds values in random order and thus
the adversary cannot distinguish whether actually v ∈ v is getting deleted or some other value that
was added at the same time as v. Proof concludes by noticing that Game2 is Ideal(k) experiment.
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Size of the patch tree. To assess the efficiency of PAX, we first need to bound the size of the
patch tree. We do this in the following Theorem.

Theorem 5.6.2. If T be the patch tree of a label `, then |T | ≤ |MM[`]|.

Proof. One can see by construction that for all patches (s→ p) in T , if v = ADS[s] then v ∈ MM[`].
Therefore the number of patches cannot be more than |MM[`]|, provided that multiple patches
starting at s are not stored in T . On the other had, notice that for any two patches (s1 → p1)
and (s2 → p2), s1 6= s2. That is, given an address s, there exists a unique patch that starts at s.
Therefore, the number of patches is at most |MM[`]|.

Efficiency. The efficiency of PAX is summarized in Table 5.1. We give a detailed analysis below.

• Edit+. Since |v| values are written in total, the time complexity time isO(|v|). The stabilization
complexity stbl is also O(|v|) because the ith value v(i) in v cannot be written unless v(i−1)

has been already written.

• Query. Let MM(i−1) be the state of the multi-map after the (i − 1)th operation has been
completed and let i be the current operation. Since the number of nodes in the patch tree are
at most |MMi−1[`]|, refer to Theorem 5.6.2, it takes at most |MMi−1[`]| time to download it.
Once it is downloaded, finding patches onwards has a constant time in the size of the patch
tree. Since the Query protocol only reads the un-deleted values, the time complexity time is
O(|MMi−1[`]|). The roundsr is also O(|MMi−1[`]|) because the un-deleted values can only be
read sequentially.

• Edit−. As explained for Query, downloading the patch structure and traversing the chain
of un-deleted values to compute the new patches incurs a time and round complexity of
O(|MMi−1[`]|). There are no more reads that Edit− does, therefore roundsr is O(|MMi−1[`]|).
Since the patch tree is balanced, any addition/deletion to the tree updates constant number of
logarithmic sized paths in the tree. Since there are at most |v| additions/deletions made, they
together account for O(|v| log(|MMi−1[`]|)) time. Combining this time with the time taken by
a traversal, the time complexity is O(|MMi−1[`]|+ |v| log(|MMi−1[`]|)). Even though up to |v|
logarithmic sized paths in the patch tree are updated, the updates to one level of the tree can
be made in parallel. Therefore, the stabilization complexitystbl is O(log(|MMi−1[`]|)).

5.7 Instantiating Append-only Data Stores with Blockchains

As discussed in Section 5.1, append-only data stores are an abstraction of blockchains and designing
our schemes based on this abstraction means that our constructions can be used on any blockchain.
The specifics of the underlying blockchain, however, have an impact on performance which we study
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in Section 5.8. Here, we show concretely how two blockchains, Ethereum and Algorand, instantiate
ADSs.

Overview. At a high level, an ADS can be instantiated with a blockchain as follows. The Init
protocol creates a blockchain wallet for the client with some initial funds. The wallet also has a
public address and a private key associated with it. The public address is only used to buy funds for
the wallet while the private key is used to sign transactions. The Put(ADS, v) protocol stores v in a
transaction, signs it using the private key, and sends it to the blockchain. The address r of the value
varies from one blockchain to another. For some, it is the transaction hash and for others it will be
the transaction hash along with the transaction’s block number after it is mined. The Get(ADS, r)
protocol communicates with one or more nodes to retrieve the transaction corresponding to address
r and then retrieves the value v stored in that transaction.

We now discuss some practical implications of using a transaction hash over a block number
(along with a transaction hash) as the address.

5.7.1 Instantiating Addresses

Both transaction hashes and block numbers (along with a transaction hash) are valid choices to
instantiate ADS addresses. Which one should be used depends on: (1) how efficiently blockchain
nodes create them at add time; and (2) how efficiently nodes can lookup transactions using them at
query time.

Transaction hash. Using transaction hashes addresses can be very efficient at add time because
these hashes can be computed locally by the client without needing to interact with the blockchain.
Because of this, the client does not have to wait for older transactions to become stable before
creating new ones. In this case, the stabilization complexity of LSX and TRX is independent of
|v| which means that TRX’s asymptotic advantage over LSX in terms of stabilization complexity
disappears.

However, it is not always possible to use transaction hashes as addresses. In fact, due the storage
overhead involved, many blockchains do not mandate that nodes support lookup by transaction
hash. This is the case, for example, for Bitcoin, Ethereum, and Algorand. Of course some nodes—
especially third party hosted nodes—might choose to implement lookup by transaction hash but this
is not mandatory.

Block number. Using the block number along with the transaction hash as the address is a
safer approach that guarantees that clients will be able to retrieve their data from the blockchain
EMM. Unfortunately, using block numbers leads to higher stabilization complexity since the client
has to wait for transactions to be mined and to become stable before it can use the address. For
example, in Bitcoin, block numbers are only reliable after the block has reached a certain depth in
the blockchain.
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5.7.2 Using Ethereum

Ethereum is a proof-of-work based public blockchain that supports smart contracts. A smart contract
is a program that is stored as a special transaction and executed by the blockchain. Each contract
has some memory associated with it which is the state of the contract. The state can be changed by
calling the functions of the program through transactions. The states of all contracts form the state
of the blockchain which can then be seen as a state transition machine, where transactions stored
in the blockchain specify how the state changes.

Details. We used Ethereum’s web3 API package [21] to interact with the Ethereum network. In
particular, we instantiate each of the ADS protocols as follows:

• Init(⊥): We use Metamask [17] to create a wallet. Metamask automatically creates the public
address and private key for the wallet. We then fund the wallet using the Metamask testnet
faucet.

• Put(ADS, v): We create and sign transactions using web3’s method call signTransaction().
signTransaction takes as input a dictionary with multiple fields (labels), one of which is
called data. Traditionally, the data field is set to the bytecode of the function to be called
followed by the function’s arguments. However, it is also possible to provide custom input of
up to 98KB. We use this field to store our values. signTransaction outputs a transaction
that is signed by the private key but not yet submitted to the network. We then call web3’s
sendRawTransaction() method which takes as input the signed transaction and sends it to
the Ethereum network. It also outputs the hash r of the transaction which we use later to
retrieve the transaction.

To compute the block number, we execute the method call waitForTransactionReceipt()
which takes as input a transaction hash, waits for the transaction specified by the hash to be
mined, and returns the transaction’s receipt. The receipt is an object which contains the block
number in which the transaction is mined.

• Get(ADS, r): We call web3’s getTransaction() method which takes as input the hash r of a
transaction and outputs the associated transaction. We then read the data field to retrieve
the value v.

To retrieve the transaction by block number, we execute the getBlock() method, which takes
as input the block number and outputs the block information. The block information contains
a list of transactions which we scan to find our transaction.

5.7.3 Using Algorand

Algorand is a pure proof-of-stake public blockchain that provides high scalability and security with-
out forking. We describe how an ADS can be implemented with Algorand. We used Algorand’s
algosdk [13] Python package for interacting with the Algorand network.
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• Init(⊥): We use the algosdk’s account.generate account() method to create a wallet. generate account

outputs a private key and account address for the wallet. We then fund the wallet using Al-
gorand’s testnet faucet.

• Put(ADS, v): We create a transaction using the method called transaction.PaymentTxn(). It
takes as input multiple parameters, one of which is called note. We write our data in the note

field, which allows for up to 1KB of data. PaymentTxn outputs an unsigned transaction which
we sign using the sign() method. We then call the AlgodClient.send transaction() method
which takes as input the signed transaction, sends it to the blockchain network and outputs
the hash r of the transaction. To compute the block number containing the transaction with
hash r, we call the AlgodClient.transaction info() method. It returns multiple pieces of
the confirmed transaction information, one of which is the block number.

• Get(ADS, r): To retrieve the transaction by hash, we call the AlgodClient.transaction by id()
method which takes as input the transaction hash r and outputs the corresponding transaction.
We then read the note field and retrieve the value v. However, to retrieve the transaction
by block number, we execute the AlgodClient.block info() method, which takes as input
the block number and outputs the block information. The block information contains a list of
transactions which we scan to find our transaction.

5.8 Empirical Evaluation

To evaluate and compare the efficiency of our schemes, we implemented and evaluated them empir-
ically. All the experiments were run on a MacBook Pro 2.8 GHz Intel Core i7 with 16GB of RAM.
We implemented symmetric encryption with the pycryptodome library’s AES implementation using
a 128-bit key

Experimental setup for Ethereum. We used Metamask [17] to create a client wallet and con-
nect it to a full node hosted by Infura [16]. We interact with the full node using Ethereum’s web3 API
package [21] which is written in Python. Since running experiments on the mainnet is expensive,
we did all of our experiments on Ethereum’s Ropsten testnet and funded our wallet using Ropsten’s
faucet.

Experimental setup for Algorand. We used Algorand’s algosdk [13] Python package to create
a client wallet and connect it to a full node hosted by Purestake [20]. We interact with the full node
using the same algosdk package. As for the Ethereum experiments, we ran them on Algorand’s
testnet and funded our wallet using the testnet’s faucet.

Experimental data. We generated the experimental data synthetically. We created multi-maps
that hold a single randomly-generated label/tuple pair. We created a single tuple because, for all
our schemes, processing one label does not affect processing of any other labels. For example, in

85



LSX, the values associated with different labels are stored in different virtual lists so the query and
update times for one label are not affected by query and update times of other labels. This is also
true for TRX and PAX.

5.8.1 Experiments

We now describe our experiments and our findings. In all the experiments for LSX and TRX, we
set λ to be 1KB for both Algorand and Ethereum.4 We considered two ways to instantiate ADS
addresses: (1) as transaction hashes; and (2) as block numbers (along with the transaction hash).
Our goal was to evaluate the following characteristics of our schemes:

• (add time): time to add a label/tuple pair as a function of tuple size;

• (delete time): time to delete a label/tuple pair as a function of the tuple size. In particular,
we are interested in three different delete modes: sparse, dense, and random deletes.

• (query time): time to query a label ` as a function of its tuple size. In particular, we measure
the query time before and after delete operations.

Before describing the experiments, we discuss the problem of spam filtering that we faced during
our experiments.

A note on DDoS protection. During our experiments on the Algorand testnet, our put and
get requests failed every few operations which meant we had to wait for a non-deterministic amount
of time before re-starting the experiments. We believe this occurred because the testnet is using a
form of DDoS protection mechanism. The wait time was in seconds and is included in the times we
report for both queries and updates.

We found that Ethereum was also employing a DDoS protection mechanism. In this case, how-
ever, the wait times were on the order of minutes which made our experiments infeasible.

Measuring Edit+. We measure the time our schemes take to add a label/tuple pair to the multi-
map. For this, we create random label/tuple pairs (`,v), with a number of values that increase from
1 to 1, 500. We then execute the Edit+ to store them on the blockchain.

Figure 5.4 shows that instantiating addresses with block numbers (along with transaction hashes)
is always more expensive than with transaction hashes. This is because transaction hashes can be
computed locally even before the transaction is mined while block numbers are only known after
the transaction is mined and can only be used after stabilization. We also noticed that TRX is
much faster than LSX when we use block numbers as addresses. This is expected since TRX has
logarithmic stabilization complexity while LSX has a linear stabilization complexity. When using
transaction hashes, adding a label with a tuple of 400 values takes 18.53, 18.97, and 3416.56 seconds
for LSX, TRX and PAX, respectively. PAX has the worst add time since it cannot pack multiple
values in a transaction.

4Note that 1KB is the maximum packing factor for Algorand but not for Ethereum.
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Figure 5.4: Edit+ complexity for Algorand

Measuring Edit−. To measure deletion time, we considered three different patterns. For each
one, we first store a label/tuple pair (`,v) on the blockchain, then delete half of the values in the
tuple. In the first mode, which we call sparse deletes, we delete every alternate value in v. In the
second mode, which we call dense deletes, we delete the first half of the values in v. And in the third
mode, which we call random deletes, we delete half of the values in v chosen uniformly at random.

Figure 5.5 shows that the delete time for LSX and TRX have a similar trend across all modes.
They also have a similar trend as their add times (see Figure 5.4). This is expected since LSX and
TRX need to add values during deletion. Moreover, we also see that the time LSX and TRX take
to delete values is almost the same across all three modes which shows that their performance on
deletes is independent of the mode. More precisely, to delete 200 values in the sparse setting, it
takes 18.31 and 21.17 seconds for LSX and TRX.

Finally, we see PAX takes longer than the other schemes for sparse deletes. This is expected since
PAX spends a non-trivial amount of time creating and storing |v|/2 patches in the patch tree. In the
case of dense deletes, however, it only creates a single patch and we observe that PAX outperforms
LSX and TRX when the number of values is smaller than 50 for the case of dense deletes.

Measuring Query. To measure the time to query a label, we conducted two experiments. The
first measures query time after addition whereas the second measures query time after deletion. For
the first experiment, we store a label/tuple pair and then query it. The second experiment consists
of four sub-experiments, where we measure the query time after a sparse delete, a dense delete, a
random delete, and an all-but-one delete. This last mode deletes all the values in the tuple except
for one.

Figure 5.6 shows that using block numbers as addresses slows all the schemes down slightly
compared to using transaction hashes. This is because, when block numbers are used, entire blocks
need to be retrieved and scanned to find the transaction. This is clearly more expensive than
retrieving the transaction directly. However, we did not notice a large gap between the two since
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Figure 5.5: Edit− complexity for Algorand
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all the blocks contained only 1 or 2 transactions. Before deletions, the query time was 1.16, 1.08,
144.57 seconds for LSX, TRX and PAX, respectively. On the other hand, after dense deletes, PAX
had slightly better query time of 66.19 seconds for 200 values. The query time for both LSX and
TRX remains similar to the pre-deletion times. Finally, we observe that PAX outperforms the other
two schemes when all the values of a tuple are deleted except for one. In this case, the query time is
0.64 seconds. This aligns with our theoretical results since the query protocol only needs to retrieve
two transactions whereas it needs to retrieve hundreds of transactions in the other two schemes.

Block size. When the address is instantiated with block numbers, it is clear that the size of a
block will affect the query time. We wanted to assess this impact experimentally but could not due
to the anti-DDoS measures of the testnets so we carried out a simulation. Note that measuring the
query time with a block size of 1 or 2 transactions and multiplying that by x to estimate the query
time with block size of x or 2x would not work because our measured query times include wait times
due to the anti-DDoS measures.

To address this, we carried out a separate experiment to estimate the average processing time of
a block as a function of the number of transactions, where the processing time refers to the time it
takes to download and scan the block to find the transaction, including the time wait time due to the
anti-DDoS measures. We inspected the block explorer of Algorand and found blocks with a number
of transactions ranging from 1 to 7 (which was the largest block that we could find throughout the
entire experiment). We then processed each block 1000 times and computed the average processing
time. We then ran a regression on these 7 points to estimate the line

γ = 0.0006306x+ 0.3003

which gives the average processing time γ as a function of the number number of transactions x.
We then computed the number of blocks needed to store a fixed number of values and multiplied

that by the average processing time to get an estimate. In Figure 5.6, we set x to 10 and show
the simulated results in dashed lines. We can see that the slope of the dotted lines is more than
the original line which indicates that the query time of the schemes (when using block numbers as
addresses) depend on the block size.

5.8.2 Storage Complexity

We now estimate the storage complexity of our schemes on Ethereum and Algorand. We compute
the number of transactions needed and multiply that with the space taken by each transaction. We
estimate the storage cost under three scenarios: (1) before any deletes; (2) after sparse deletes; and
(3) after dense deletes. We further subdivide each scenario into two: (1) separate-updates; and (2)
bulk-updates. In the former, we assume all the values are added (deleted) using separate Edit+

(Edit−) calls, and in the latter we assume all are added (deleted) in a single Edit+ (Edit−) call.
The former measures the maximum space overhead while the latter measures the minimum space
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(c) Query after sparse deletes

0 50 100 150 200 250 300 350 400
Number of values

0

10

20

30

40

50

60

70
Ti

m
e 

(s
)

LSX block
LSX block (ex)
LSX tx
PAX block
PAX block (ex)
PAX tx
TRX block
TRX block (ex)
TRX tx

(d) Query after dense deletes

0 100 200 300 400 500 600 700 800
Number of values

0

20

40

60

80

100

Ti
m

e 
(s

)

LSX block
LSX tx
PAX block
PAX tx
TRX block
TRX tx

(e) Query after random deletes

0 50 100 150 200 250 300 350 400
Number of values

0

2

4

6

8

10

12

Ti
m

e 
(s

)

LSX block
LSX block (ex)
LSX tx
PAX block
PAX block (ex)
PAX tx
TRX block
TRX block (ex)
TRX tx

(f) Query after all-but-one deletes

Figure 5.6: Query complexity for Algorand before and after different forms of deletes. The dashed
lines plot the simulated data assuming blocks contain 10 transactions each.
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overhead. We detail our results in Tables 5.2 and 5.3 to store 1MB and 100MB of data on Ethereum
and Algorand blockchains respectively.

Notation. Let V be the initial number of label/value pairs in the multi-map. For simplicity, we
assume each value is 1B long.5. Therefore, in total, the size of the multi-map is V bytes. Further
let f be the size of the fixed fields in a transaction and λ be the maximum size of the variable-sized
data field in a transaction (both in bytes).

LSX. Before any deletions and if all values are added in a single transaction, LSX takes at least⌈
V

λ− r

⌉
·
(
f + λ

)
bytes to store a V -byte multi-map. This is because the number of transactions needed to store
V bytes is at least dV/(λ− r)e and each transaction takes (f + λ) bytes of storage. If the values
are added separately (i.e., in different transactions), LSX creates V separate transactions, where
each transaction store an r-byte long pointer to the previous transaction and 1B long value. LSX,
therefore, takes at most V (f + r + 1) bytes to store a V -byte multi-map.

Since LSX handles deletions through additions, deleting a value is equivalent to adding a value.
Therefore, deleting V/2 values is equivalent to adding V/2 values to the already existing V values.
Moreover, since LSX treats both sparse and dense deletes similarly, the min and max values are the
same. More precisely, LSX takes in total at least⌈

3V
2(λ− r)

⌉
·
(
f + λ

)
bytes and at most 3V (f + r + 1)/2 bytes after both sparse and dense deletes.

TRX. The analysis is exactly the same as for LSX with the difference that we store two addresses
in each transaction instead of one and therefore all r’s in the expressions are replaced with 2r.

PAX. Before any deletions, PAX takes V (f + r + 1) bytes to store a V -byte multi-map. This is
because PAX stores all the values in separate transactions with each transaction storing a single
value and a single address. There is also no patch structure at this point.

Recall that a patch contains a left pointer, a right pointer and data of the form (s → p)‖lp‖rp.
All four quantities are addresses so patch is 4r bytes long. After sparse deletes, PAX requires

V

2 (f + r + 1) + V

2 (f + 4r) = V

2 (2f + 5r + 1)

bytes of space. This is because there are V/2 transactions with un-deleted values, each of which is
(f + r + 1) bytes long, and there are V/2 transactions for patches in the patch tree, each of which
is (f + 4r) bytes long. After dense deletes PAX takes

V

2 (f + r + 1) + (f + 4r)

5The estimates can be trivially extended to use a different value size.
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Before deletes After sparse deletes After dense deletes

min max min max min max

Eth: LSX 1.0 159.0 1.5 238.5 1.5 238.5

Eth: TRX 1.0 191.0 1.5 286.5 1.5 286.5

Eth: PAX 159.0 159.0 206.5 206.5 79.5 79.5

Algo: LSX 1.25 237.0 1.87 355.5 1.87 355.5

Algo: TRX 1.32 289.0 1.98 433.5 1.98 433.5

Algo: PAX 237.0 237.0 314.5 314.5 118.5 118.5

Table 5.2: Storage Estimates (in MBs) for Ethereum and Algorand blockchains for storing 1 MB of
data. For Ethereum: V = 1 MB, f = 126 B, λ = 98 KBs, r = 66 B. For Algorand: V = 1 MB,
f = 184 B, λ = 1 KB, r = 52 B.

bytes since the patch tree only contains a single patch. Since PAX does not pack multiple values in
one transaction, its storage overhead is independent of whether updated are done individually or all
in one transaction. Therefore, all the min and max values are the same for PAX.

Storage estimates for Ethereum and Algorand. We estimated the storage overhead for stor-
ing 1MB and 100MB of data on Ethereum and Algorand. That is, we set V = 1MB and V = 100MBs.

For Ethereum, we analysed the fields of its transactions and estimated that a transaction takes
126 bytes (excluding the variable data) so we f = 126 bytes. We also set λ = 98KB, which is the
maximum amount of data that can be stored in an Ethereum transaction (since the current gas
limit per Ethereum block is 4.7 million gas). Finally, we set r = 32 bytes, which is the size of a
transaction hash. We did a similar analysis for Algorand and set f = 184 bytes, λ = 1 KB, and
r = 52 bytes6. The storage overhead estimates are summarised in Tables 5.2 and 5.3.

As expected, in the best case LSX and TRX do much better than PAX. This is because, due to
packing, they create a smaller number of transactions and can amortize some of the storage costs
of transactions. Also, in the worst case, when clients make individual updates, LSX and TRX are
unable to pack and hence perform approximately the same PAX. However, if deletes are dense, PAX
maintains only a single patch in the patch tree, whereas both LSX and TRX maintain a long history
of deleted values which makes their storage much larger.

6We point out that for Algorand the address is not really the hash but a transaction id which they compute by
encoding the signed transaction in Base64.
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Before deletes After sparse deletes After dense deletes

min max min max min max

Eth: LSX 0.1 15.9 0.15 23.85 0.15 23.85

Eth: TRX 0.1 19.1 0.15 28.65 0.15 28.65

Eth: PAX 15.9 15.9 20.65 20.65 7.95 7.95

Algo: LSX 0.12 23.7 0.19 35.55 0.19 35.55

Algo: TRX 0.13 28.9 0.2 43.35 0.2 43.35

Algo: PAX 23.7 23.7 31.45 31.45 11.85 11.85

Table 5.3: For Ethereum: V = 1 MB, f = 126 B, λ = 98 KBs, r = 66 B. For Algorand: V = 1 MB,
f = 184 B, λ = 1 KB, r = 52 B.
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