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Extracting and inferring valuable knowledge from raw data requires training in programming and

statistics, and more importantly, domain expertise. Yet domain experts, the people who own and

are most knowledgeable about their data, often lack the technical skills to accomplish common

analysis and prediction tasks themselves. In an effort to democratize data science, researchers have

introduced a variety of tools to empower domain experts to explore and mine their data, and to

build and interpret predictive models on their own. As a result such users are becoming increasingly

sophisticated in their ability to perform data science tasks, in particular on tabular data. However,

despite the fact that time series analysis and forecasting are fundamental tasks in data science, the

HCI and data visualization communities have paid little attention to the problem of designing in-

teractive tools that lower the barrier for non-expert users to perform time-oriented data science tasks.

In this work we investigate visual techniques aimed at addressing open challenges in building solu-

tions for exploring and forecasting time series. We present solutions to four different but related

problems with analyzing time series. First, we propose a sketch-based technique to search large

collections of time series for best matches, and present a method to evaluate the subjective accuracy

of pattern-matching algorithms against human matches. Second, we explore a method to aid the

analysis of correlated events in time series and their associated meta data. Third, we present a

system that facilitates black-box analysis of such time series event detection algorithms, such as

anomaly detectors, to give domain experts a tool to reason about commonalities and differences

among them. Fourth, we develop a system that supports non-expert users in interactively building

and evaluating time series forecasting models. Finally, given the importance of fast response times

when interacting with both time series as well as general tabular data, we present a benchmark for

interactive data exploration, which, contrary to standard synthetic database benchmarks, features

workloads that are based on the traces of real interaction logs and metrics that allow adjustment of

the speed/accuracy trade-off.
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Chapter 1

Introduction

1.1 Thesis Statement

Extracting and inferring knowledge from raw data requires training in programming and statistics,

and more importantly domain expertise. Although recent efforts to democratize data science have

successfully empowered domain experts and citizen analysts to perform common data science tasks

for various different data types, these solutions do not provide adequate support for time-oriented

data. In this work I aim to fill this gap by inventing visual techniques to enable non-expert users in

exploring and forecasting time series data.

1.2 Motivation

Data Science, the ability to take data, to process, visualize, and communicate it in order to extract

value from it continues to be in high demand [139]. Data scientists must master a large spectrum of

skills. Organizations across all industries and academic fields hire people with technical expertise,

who are capable of building complex algorithms to organize and synthesize large amounts of infor-

mation used to answer questions, inform decisions and drive strategies in their organization. They

often possess a strong background in computer science and statistics with focuses on data mining

and machine learning, as well as data visualization.

The specialized knowledge required by data scientists has led to problematic bottlenecks in

organizations: too few people are capable of translating questions to computational procedures whose

results are often crucial in informing and communicating decisions [31]. While this inadvertently

leads to problems such as mis-communications between decision-makers and data scientists, long

1
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turn-around times and iterations, data science restricted to only a narrow group of people poses an

even bigger challenge: the domain expertise of non-scientists cannot be fully leveraged.

Researchers have recently acknowledged this problem and have started to address it. Under the

umbrella of the “democratization of data science”, they have put forward ideas in the domains of

data science systems and algorithms, educational initiatives, and social movements to give a much

broader audience access to data science [30, 76]. Companies have reacted to this trend, too. For

instance, Airbnb recently announced that every one of their employees “should be empowered to

make data informed decisions”. To accomplish this goal they made large investments predominantly

in data science education [52]. Similarly, many colleges and universities now offer basic and advanced

degrees in data science.

Complementary to education in data science, researchers in computer science have invested

heavily in building tools to broaden the access to data analysis, data mining and machine learning.

For example, for years the data visualization community has developed research prototypes tailored

to the needs of non-scientists to solve complex data analysis problems (e.g., exploration of tabular

data [153, 33, 41], event sequence mining [151], time series pattern mining [91], exploration of

graph/network data [42], etc.). Similarly, the database community has built analytical engines

capable of processing huge amounts of data at interactive speeds to power such applications [35,

127, 5, 86]. And finally, the machine learning and HCI community have developed algorithms

capable of solving complex tasks with minimal human intervention, and tools enabling more people

to build ML solutions [108, 124]. However, despite the fact that time series analysis and forecasting

are fundamental tasks in data science, the HCI and data visualization community has only paid little

attention on how to design interactive tools that lower the barrier for non-expert users to perform

time-oriented data science tasks. In this work I investigate visual techniques aimed to address open

challenges in building solutions for exploring and forecasting time series.

Analyzing massive amounts of data is challenging, if not impossible for users who do not possess

the required technical skills. In Chapter 2 I propose by a sketch-based technique to query and sort

large collections of time series, and propose a method to evaluate the subjective accuracy of time

series pattern-matching algorithms.

An ubiquitous task in time series analysis is outlier detection. Humans are remarkably good at

visually detecting outliers when datasets are small but have difficulties doing so with large datasets

due to the loss of fidelity when scaling. A solution to this problem is to assist humans with algo-

rithmic anomaly detectors that are able to automatically spot irregularities. Yet, as the machine

learning community is making advances in anomaly detection by optimizing traditional methods

and introducing new neural net-based ones, characterizing their capabilities and reason about their
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strengths and weaknesses is difficult without adequate visual support. In Chapter 3 I present a sys-

tem that facilitates black-box analysis of time series anomaly detectors through an intuitive visual

user interface that can be used to compare the results of multiple detectors and perform what-if

analysis on arbitrary datasets.

While line graphs have great expressive power, they also come with certain limitations. A big

shortcoming is that they are only suitable for low dimensional time series due to overplotting. Thus,

visually comparing a large number of series quickly becomes intractable. A solution is to model

time series as sequences of discrete events, which can be linked to an arbitrary number of related

entities. The result of this transformation is a heterogeneous network, which despite its utility for

exploration is notoriously hard to navigate when screen real estate is scarce. In Chapter 4 I explore

a method to aid the analysis of multivariate heterogeneous networks on mobile phones. I present a

mobile application, called Orchard, which combines ideas from both faceted search and interactive

network exploration in a visual query language to allow users to collect facets of interest during

exploratory navigation.

In order to explore time-oriented data, in many cases users must specify time as a quantitative

data dimension for queries. In Chapter 5 I present a formal model that can be used to represent

complex time specifications. Our model is the first step in an effort to enhance temporal user

interfaces that enables discrete time specifications through a visual query interface.

Time series forecasting is a common data science procedure used for an abundance of tasks.

However, developing time series forecasting models is technically challenging and requires domain

expertise. In Chapter 6, I present a system that supports an end-to-end forecasting workflow for

non-experts users. It exposes a set of tools that allow users to isolate and explore time series in

regular tabular datasets, and enable them to model solutions for different forecasting problems.

Finally, it has been shown that interactive latency and therefore minimal database response

times when exploring data is crucial for user performance. To that end, in Chapter 7 I present

a benchmark for interactive data exploration, which, contrary to existing database benchmarks,

features workloads that resemble the traces of real interaction logs and metrics that allow adjustment

of the speed/accuracy trade-off.

1.3 Contributions and Summary

In this section I briefly summarize six out of the seven chapters that contain primary research

contributions of which I have been the lead researcher and first author. With the exception of

Chapter 6, all chapters are peer-reviewed and published conference papers containing only minor
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modifications for this thesis. References to these publications can be found below.

Chapter 2: Evaluating Subjective Accuracy in Time Series Pattern-Matching

Using Human-Annotated Rankings

Finding patterns is a common task in time series analysis which has gained a lot of attention across

many fields. A multitude of similarity measures have been introduced to perform pattern searches.

The accuracy of such measures is often evaluated objectively using a one nearest neighbor classifica-

tion (1NN) on labeled time series or through clustering. Prior work often disregards the subjective

similarity of time series which can be pivotal in systems where a user specified pattern is used as

input and a similarity-based ranking is expected as output (query-by-example). In this chapter, I

describe how a human-annotated ranking based on real-world queries and datasets can be created

using simple crowdsourcing tasks and use this ranking as ground-truth to evaluate the perceived

accuracy of existing time series similarity measures. Furthermore, I show how different sampling

strategies and time series representations of pen-drawn queries effect the precision of these similarity

measures and provide a publicly available dataset which can be used to optimize existing and future

similarity search algorithms.

Philipp Eichmann, Emanuel Zgraggen

ACM IUI ’15: Proceedings of the 20th International Conference on Intelligent User Interfaces

Chapter 3: Metro-Viz: Black-Box Analysis of Time Series Anomaly De-

tectors

Millions of time-based data streams (a.k.a., time series) are being recorded every day in a wide-range

of industrial and scientific domains, from healthcare and finance to autonomous driving. Detecting

anomalous behavior in such streams has become a common analysis task for which data scientists

employ complex machine learning models. Analyzing the behavior and performance of these mod-

els is a challenge on its own. While traditional accuracy metrics (e.g., precision/recall) are often

used in practice to measure and compare the performance of different anomaly detectors, such

statistics alone are insufficient to characterize and compare the algorithms in a systematic, human-

interpretable way. In this chapter, I present Metro-Viz, a visual analysis tool to help data scientists

and domain experts reason about commonalities and differences among anomaly detectors, and to

identify their strengths and weaknesses.
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Philipp Eichmann, Franco Solleza, Junjay Tan, Nesime Tatbul, Stan Zdonik

ACM CHI ’19: Conference on Human Factors in Computing Systems

Chapter 4: Orchard: Exploring Multivariate Heterogeneous Networks on

Mobile Phones

People are becoming increasingly sophisticated in their ability to navigate information spaces using

search, hyperlinks, and visualization. But, mobile phones preclude the use of multiple coordinated

views that have proven effective in the desktop environment (e.g., for business intelligence or visual

analytics). In this work, I propose to model information as multivariate heterogeneous networks to

enable greater analytic expression for a range of sensemaking tasks while suggesting a new, list-based

paradigm for gestural navigation of structured information spaces on mobile phones. I also present

a mobile application, called Orchard, which combines ideas from both faceted search and interactive

network exploration in a visual query language to allow users to collect facets of interest during

exploratory navigation. Our study showed that users could collect and combine these facets with

Orchard, specifying network queries and projections that would only have been possible previously

using complex data tools or custom data science.

Philipp Eichmann, Darren Edge, Nathan Evans, Bonghsin Lee, Matthew Brehmer, Chris White

EuroVis ’20: Conference on Human Factors in Computing Systems

Chapter 5: Discrete Time Specifications In Temporal Queries

Analysis, exploration, and visualization of time-oriented data are ubiquitous tasks in various appli-

cation domains, all of which involve the execution of temporal queries. Prior research in interactively

specifying the time component for such queries has been focused on defining temporal relationships

in data, i.e., querying event sequences through ordinal patterns. However, there has been much less

emphasis on how to specify time as a quantitative data dimension in temporal queries. Motivated

by the advent of the Internet of Things (IoT), I present a formal model that can be used to repre-

sent complex time specifications. Our model is the first step in an effort to enhance temporal user

interfaces that enables discrete time specifications through a visual query interface.

Philipp Eichmann, Andrew Crotty, Alex Galakatos, Emanuel Zgraggen

ACM CHI ’19: Conference on Human Factors in Computing Systems
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Chapter 6: Time Series Forecasting for Non-Scientists

Time series forecasting is a common data science procedure used for an abundance of tasks such as

inventory and staff planning, prediction of financial assets, projecting electricity consumption, as well

as anomaly detection. However, developing time series forecasting models is technically challenging

and requires domain expertise. In this chapter, we present a system that facilitates an end-to-end,

mix-initiative forecasting workflow for non-experts users. It exposes a set of tools that allow users to

identify and explore time series in regular tabular datasets, and enables them to quickly specify and

find solutions for common forecasting problems. Users can iteratively add and adjust parameters

such as exogenous regressors, upper and lower bounds, as well important events that may impact the

forecast. Furthermore, users can explore the effect of custom interventions, and inspect the impact

of different variables on any predicted data point.

Chapter 7: IDEBench: A Benchmark for Interactive Data Exploration

In recent years, many query processing techniques have been developed to better support interactive

data exploration (IDE) of large structured datasets. To evaluate and compare database engines in

terms of how well they support such workloads, experimenters have mostly used self-designed evalu-

ation procedures rather than established benchmarks. In this chapter I argue that this is due to the

fact that the workloads and metrics of popular analytical benchmarks such as TPC-H or TPC-DS

were designed for traditional performance reporting scenarios, and do not capture distinctive IDE

characteristics. Guided by the findings of several user studies I present a new benchmark called

IDEBench, designed to evaluate database engines based on common IDE workflows and metrics

that matter to the end-user. I demonstrate the applicability of IDEBench through a number of

experiments with five different database engines, and present and discuss our findings.

Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, Tim Kraska

ACM SIGMOD ’20: International Conference on Management of Data



Chapter 2

Evaluating Subjective Accuracy in

Time Series Pattern-Matching

Using Human-Annotated Rankings

2.1 Abstract

Finding patterns is a common task in time series analysis which has gained a lot of attention

across many fields. A multitude of similarity measures have been introduced to perform pattern

searches. The accuracy of such measures is often evaluated objectively using a one nearest neighbor

classification (1NN) on labeled time series or through clustering. Prior work often disregards the

subjective similarity of time series which can be pivotal in systems where a user specified pattern

is used as input and a similarity-based ranking is expected as output (query-by-example). In this

chapter, we describe how a human-annotated ranking based on real-world queries and datasets can

be created using simple crowdsourcing tasks and use this ranking as ground-truth to evaluate the

perceived accuracy of existing time series similarity measures. Furthermore, we show how different

sampling strategies and time series representations of pen-drawn queries effect the precision of these

similarity measures and provide a publicly available dataset which can be used to optimize existing

and future similarity search algorithms.

7
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2.2 Introduction

Data in the form of time series can be found in any domain. Stock prices, medical data, trajectories of

objects, crime statistics, “Quantified Self” data, temperatures or sales figures can all be represented

as data streams over time and even higher dimensional data are straightforward to visualize using

two-dimensional line graphs. Such visualizations enable humans to interpret and compare time series

data. However, visually identifying patterns within large time series or across multiple time series

is a tedious and error prone task. Since traditional query languages (e.g. SQL) are often not well

suited for this type of temporal pattern search, researchers have published an abundance of papers

introducing pattern-matching algorithms.

Modern hardware, which supports pen and/or touch input allows users to swiftly sketch query

patterns for time series data. Consider a medical researcher who wants to find patients with a specific

disease who have a decreasing platelet count or a stock-trader who wants to find stocks following a

certain trend. While such queries are cumbersome to specify through standard UI controls, drawing

an upward or downward line on a tablet through a pen-stroke or a touch-gesture is simple and

intuitive. These hand-drawn patterns, however, are not exact and therefore, the retrieved results

should be displayed as similarity-based rankings, where the first item is the time series most similar

to the input sketch.

Figure 2.1 shows a screenshot of TimeSketch, a pen and touch-based application that allows

users to query time series through such hand-drawn patterns and displays results as similarity-based

rankings. We implemented this prototype to test and experiment with different time series pattern-

matching algorithms and sampling strategies. Through an informal user evaluation of TimeSketch,

we realized that algorithms oftentimes produce perceivably inaccurate results, as depicted in the

screenshot.

The accuracy of many existing pattern-matching algorithms have been evaluated through nearest

neighbor classification (1NN) with much less attention given to how humans gauge the results of such

similarity searches. This does not come as a surprise; label prediction with no further distinction

within a label group can be sufficient to compare the overall performance of different techniques.

However, in cases where the expected output of a search is a similarity-based ranking, a more detailed

comparison is required. These rankings also need to align with human intuition and a user’s perceived

similarity. “Good” matches, as defined by a distance metric of an algorithm, might not coincide with

the subjective similarity. This is especially important for the top k matches, whereas dissecting time

series which are dissimilar to the query pattern is more difficult and arguably less important to a

user. Due to the lack of datasets that contain hand-drawn patterns and human-annotated similarity

rankings based on those patterns, it is currently hard to understand the type of patterns users draw



9

Figure 2.1: Screenshot of TimeSketch, a pen and touch-based application which allows users to
query time series through pen or touch-drawn query patterns. Different combinations of sampling
strategies and similarity measures (uniform linear downsampling to 80 points and SpADe similarity
measure, in this case) sometimes return a perceivably incorrect ranking of the search results. Result
number 3, for instance, should be clearly ranked first.

as well as to measure the subjective accuracy of existing algorithms for such use-cases.

In this chapter, we present a methodology to create human-annotated rankings of time series

based on the perceived distance to a hand-drawn reference pattern. We then use these rankings to

evaluate the accuracy of existing time series similarity measures, across different sampling strategies

and with varying time series representations. Furthermore, we provide some analysis of our collected

hand-drawn patterns and our evaluation that provide insights for possible future research efforts.

2.3 Preliminaries and Related Work

In this section, we give an overview of research efforts in the areas of query-by-example for time series

data, time series representations, and similarity measures. In addition, we introduce definitions

that we will refer to throughout this chapter. We refer the reader to [38] and [107] for a more

comprehensive summary of time series representations and similarity measures.
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2.3.1 Definitions and Notations

In the upcoming sections will use similar definitions as in [111] and [38]:

Time Series: A time series T is an ordered list T = t1, t2, ..., tn where each ti is a data point in

a d−dimensional space.

Subsequence: A subsequence Ti,k of time series T where i is the starting index in T and k = |Ti,k|

is the length of the subsequence in number of data points.

Query Pattern: A Query Pattern Q is a subsequence used as input for similarity search whose

data points correspond to either a subsequence of an existing time series or to one defined by other

means (e.g. mouse/pen/touch-sketch).

2.3.2 Time Series Representations

An unmodified time series is called a raw representation [38] and its length depends on both, the

time-span of the recorded data and the sampling rate. Typically, before a similarity search is

executed, the two time series are converted to a different representation. This has the advantage of

reducing (or sometimes also increasing) the number of data-points i.e. the dimensionality for reasons

of space and search efficiency, noise reduction or simply scaling both sequences to an equal length.

The GEMINI framework [50], for instance, proposes to find candidate matches by downsampling

the time series to a dimension that works well with index structures. Once all candidate matches

are found, their full-resolution time series is read from disk and compared with the query sequence

using a distance metric such as the Euclidean Distance. This greatly speeds up the pattern-matching

process as opposed to having to sequentially scan all time series.

Time series representations can be categorized as follows: data-adaptive, non-adaptive, model-

based and data-dictated [112]. An overview and description of many representations can be found

in [38, 96]. In previous publications, time series representations have been solely compared to each

other in terms of indexing performance using a metric called Tightness of lower the bound (TLB).

This is the ratio of the estimated distance between two sequences under that representation, over the

true distance between the same two sequences [72]. Interestingly, it has been found that there is very

little difference between different representations in terms of indexing speed [106, 38]. Moreover,

it was claimed that a representation should not be chosen based on its approximation fidelity, but

rather on other features such as the visual appearance. In

, we exploit this fact to choose a suitable segmentation technique in order to project a query

pattern defined by a pen stroke to a time series using different representations. Specifically, we use

variants of Perceptually Important Points (PIP) [53] and Piecewise Linear Segmentation (PLS) [73]
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among two other approaches which we describe in the Method2.4 section.

2.3.3 Similarity Measures

Similarity measures are used to compute a distance between two time series. [38] distinguishes

between lock-step, elastic, threshold-based and pattern-based measures.

The simplest similarity measures are lock-step measures, which compute the distance between

two time series in a one-to-one fashion, where each data point in one time series is only compared

to its direct counterpart in the other. Typically, the Euclidean Distance is used because it penalizes

larger distances more, but other Lp-norms such as the Manhattan Distance fall into this category.

One of the biggest shortcomings of lock-step measures is that they are sensitive to local time shifting

[28], such that even two time series that are perceived to be similar could be separated by a large

distance. This makes the Euclidean Distance unsuitable for our application, as hand-drawn queries

should be invariant to local time shifting and scaling. Nonetheless, we use this measure in our

experiments in order to draw a comparison to other methods.

Elastic measures support shifts and scaling in time-dimension. Most notably Dynamic Time

Warping (DTW), which was recently claimed to be the best measure in terms of speed and accuracy

[111]. It tries to find the optimal alignment between two time series by allowing for local warping

within a certain window. DTW uses the Euclidean Distance as distance measure between two points.

Thus, the Euclidean Distance is essentially a special case of DTW, where the warping window size

is equal to 1. Other edit distance based measures include Longest Common SubSequence (LCSS)

[10, 142], Edit Sequence on Real Sequence (EDR) [141], Swale [100], Edit Distance with Real Penalty

(ERP) [27]. Elastic measures are especially important for human-drawn queries as the query patterns

are never exact. Due to its popularity and recent research efforts, we use DTW in our experiments.

SpADe (Spatial Assembly Distance) is a pattern-based measure that promises to handle time/amplitude-

shifting and scaling and noise [28]. It works by computing features over short subsequences of two

time series, called local patterns, finding similar patterns called local pattern matches in both time

series and eventually calculating the shortest distance between all found matches from the start of

the time series to the end. As we consider time and amplitude invariance important characteristics

of similarity measures for human-drawn queries, we also employ SpADe in our experiments.

2.3.4 Pattern-Matching Invariance

Some similarity measures reduce variance in pattern-matching by making the measure flexible to

time-shifting/scaling and amplitude-shifting/scaling, which is important in applications where the
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query pattern is defined by hand. Based on [13], we give a brief overview on how these and other

types of invariance can be implemented.

Even though many subsequences in a dataset may look similar to a query pattern, they may be

defined at different amplitude ranges or they are located at different offsets. Amplitude invariance

can be achieved by normalizing the time series which are compared to each other. It is known that

a z-score normalization follows the original shape of the datapoints more closely than a min/max

normalization [96].

Elastic similarity measures handle local scaling in time-dimension. To fix global scaling, on the other

hand, we have to either test all possible window sizes or define a time range for a query pattern to

eliminate the problem entirely. To tackle phase invariance, we have to test all possible alignments

in time. Moreover, [13] suggests that occlusion invariance, the case where we want to ignore one or

multiple subsequences in a pattern, can be achieve by simply ignoring the distance on those time

intervals.

2.3.5 Defining Query Patterns

The idea of specifying time series queries in a query-by-example fashion has been around for over a

decade. Typically, the goal of a similarity search is to perform a k-NN-search i.e. to return the k

nearest neighbors given an input [144]. Similar to our prototype TimeSketch, QuerySketch lets users

define arbitrary queries by sketching onto an empty graph, where the time scale can be adjusted

by using a zoom function [145]. The Euclidean Distance between the query pattern and the time

series in the dataset is used as similarity measure and each result is labeled with the distance to the

query.

TimeSearcher uses the concept of timeboxes, rectangular regions that can be drawn over a time

series, and uses the containing subsequences as query patterns [63]. Since timeboxes define value-

ranges rather than fix-valued data points, the similarity of the specified query and the time series in

a dataset is determined by an orthogonal range tree algorithm [37]. Counters are used as degree of

similarity by measuring how many data points lie in the specified amplitude and time range. Even

though the bulk of this chapter focuses on query patterns rather then range-queries, TimeSearcher

provides inspiration for further research (see Discussion and Future Work).

[58] presents TimeSearcher: Shape Search Edition (SSE), an extension of TimeSearcher where

query patterns can be defined by shapes such as spikes, sinks, rises, drops, lines, plateaus, valleys

and gaps. The authors describe attributes of these shapes by which they can be identified, compared

and ranked. The similarity measures we used in our evaluation are purely mathematical. However,

as we note in the Discussion and Future Work section, a combination of high and low level similarity
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measures is a promising research direction.

2.3.6 Methods to evaluate time series similarity

Keogh et al. propose two ways to measure the true similarity of two time series [72], subjective

evaluation and objective evaluation. The latter can be carried out by using a 1NN classification to

predict a label for a time series from its nearest neighbor in a training dataset, where the classifier’s

distance measure is the similarity measure in question. A major drawback of this approach when

evaluating similarity is that both, the training and test data must be labeled. Even though there are

publicly available labeled datasets, new and unlabeled datasets cannot be tested. Furthermore, this

method only measures how often the prediction of a label failed or succeeded but fails to provide

a distance of how well it actually matched a query pattern, which is inevitable to create rankings.

Also, it is often unclear who created the labels and based on which decisions.

Subjective evaluation relies on human judgment. A trivial way to evaluate the perceived accuracy

of time series is to simply visualize matching results of different similarity measures and let people

assess the quality of the algorithm. Another commonly used approach is to create a dendrogram of

multiple time series using the single linkage method and let humans determine, if similar time series

are reasonably linked. The authors of [74] and [73] note that the “correct” distance measure depends

on user preference and the data domain. They describe an approach to adjust the similarity metric

by using feedback from users. More specifically, they propose the time series to be represented as

piecewise linear segments (PLS) and a weight vector to describe the relative importance of each

segment. The weights are dynamically updated based on the user’s relevance feedback, which allows

for a custom weighting scheme for each user and domain.

2.4 Method

While existing time series datasets, such as [75], are suitable to benchmark classification and cluster-

ing accuracy, there are currently no datasets that provide a distance-based ranking or other means

to fine-tune a similarity search algorithm which returns an ordered list of results, based on a given

input sequence. The subjective accuracy of a similarity search algorithms depends on the data-

domain and user preference [74, 73]. Therefore, when creating a system similar to TimeSketch, it is

important to evaluate the perceived accuracy on a case-by-case basis. In this section, we show how

human-annotated rankings can be created for any type of time series data based on [64] and using

simple crowdsourcing tasks. Using the help of the crowd is especially advantagous in the absence of

expert annotators or when annontating large amounts of time series data becomes unfeasible.
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In Computer Vision, for instance, the human-perceived accuracy of image classification systems

can be determined by testing the classifier against a human-annotated set of images (ground-truth).

Borrowing this idea, we describe how a ground-truth for selected subsequences in a given dataset can

be created using a crowdsourcing platform and use this ground-truth to compute a similarity-based

ranking over all subsequences.

2.4.1 Creating Human-Annotated Rankings

In order to create a human-annotated ranking for a specific query, we first generate all possible

subsequences in a dataset that match the length of a query pattern. We then create a set of all

unordered pairs of subsequences and use a pairwise comparison between each of the subsequences

to build a global ranking, according to their similarity to the query pattern.

More formally, for a given query pattern q and a dataset d, we generate a set Sq comprising all

subsequences in d of the same length as q, where Sq is the set of all subsequences that will be part of

the similarity ranking. Let USq be the set of all unordered pairs in Sq. For each pair of subsequences

〈a, b〉 in USq, we create a task on a crowdsourcing platform, where the workers’ task is to decide,

which of the two subsequences resembles the query pattern more (binary classification). We let the

same task be answered by n distinct workers, in our case n = 9. The degree of agreement among

all workers i.e. the probability of one subsequence being more similar to the query pattern than

the other, can then be used to compute a global score of similarity. To obtain such a score for any

subsequence a ∈ Sq, we can sum up the probabilities of a being more similar to q then all other

subsequences in Sq.

score(a) =
∑
b∈Sq

p(〈a, b〉) (2.1)

Where p in Equation 2.1 is a function that returns the probability of a being more similar to q

than to the other subsequence b of a pair, according to the number of received votes in the binary

classification task. To create the ranking, Sq can be sorted by the score of its elements.

2.4.2 Comparing Rankings

Computing a ranking from the distances provided by a similarity measure is as simple as ordering

all subsequences based on their distance in ascending order. Once all rankings for all similarity

measures and query pattern representations have been established for a particular query, they can

be compared to the human-annotated ranking to see how well both rankings align. Given a human-

annotated ranking RH and any similarity-measure based ranking RS , we compute the Spearman’s
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ID Dataset Length

1 Daily reported crimes in Chicago 4,748
2 Microsoft Stock Values 5,036
3 NBA Player Scores 930
4 City Temperatures 2,920

Table 2.1: List of all datasets used in survey

rank correlation coefficient

ρ = 1− 6
∑
d2i

n(n2 − 1)
(2.2)

where di is the difference of the ith ranking in RS and RH respectively and n is the total number

of ranks. A Spearman coefficient of 1 or −1 indicates that the two ranking correlation perfectly

(positively or negatively) which means the produced ranking is identical to the human created

one. We use this correlation coefficient as a measure of how well two rankings align because the

distance between two ranks are squared. Thus small differences in ranks (i.e., transpositions) are

less penalized than larger ones.

2.5 Evaluation and Analysis

Using the method described in the previous section, we created 8 different human-annotated rankings

through Amazon Mechanical Turk, using 8 pen-drawn query patterns over 4 different datasets and

compared the accuracy of 3 different similarity measures in conjunction with 4 distinct sampling

strategies.

2.5.1 Datasets

To avoid bias in queries towards a certain domain, we created 4 different datasets with varying

lengths and context, as shown in Table 2.1. Dataset 1 contains daily reported crime incidents in

the city of Chicago from 2001 to 2013. In the second dataset, we listed the Microsoft stock closing

values of all trading days over a period of 10 years (1994-2013). Dataset 3 contains the number

of points former NBA player Michael Jordan scored per game for all season games he had played.

Finally, dataset 4 comprises maximum daily temperatures of 8 different cities in the United States.

2.5.2 Collecting Query Patterns

Instead of merely using a subsequence of a time series as query pattern, we asked 6 users to draw

queries using a pen/touch-based application, which records all strokes and pen-related meta-data.

Before recording a query pattern, we instructed the participants on how to use the tool and which
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Dataset Question

1 Crime rate which fluctuates periodically for a couple of months
1 A period of a year, where the crime rate increased steadily
2 Find the 2008 stock market crash
2 A situation where the stock value dropped and remained low for a while
3 Find a player who started off really well at the beginning of his career, but

had decreasing scores over his entire career
3 Find a period where a player consistently scored more than 20 points per

game
4 Find a place in the United States where it is warmer in Winter than in

Summer
4 Find places with hot months in 2013

Table 2.2: Example questions users tried to answer with a pen/touch-based interface.

dataset their queries should target. For instance, a user was requested to draw an arbitrary number

of queries for a data-set comprising the maximum daily temperature of 8 different cities in the United

States. The user was then asked to define a pattern length in terms of number of data points (e.g. 30

days) and optionally instructed the application to draw guide lines, which some users found helpful

to define their queries more precisely. Also, the participants were able to choose whether or not they

wish to ignore the given minimum and maximum amplitude in their query and to change the size

of the drawing area.

We recorded a total number of 112 pen-drawn queries (shown in Figure 2.8 at the end of

) over the 4 different datasets. The participants of our survey were all graduates students with

no prior experience in time series analysis. For each pattern, we recorded what question the user

wants to answer with her/his query, some of which can be found in Table 2.2.

2.5.3 Creating a Human-Annotated Ranking

After collecting sketches, we proceeded to creating human-annotated rankings based on our method

outlined earlier in the paper. Since the number of required pairwise comparisons becomes very large

for a large number of subsequences, we followed the following procedure: from the set of all recorded

query patterns, we hand-picked eight (two for each dataset) to assure coverage of the most distinct

types of user-drawn queries. Using a window of the size of the pattern length, we then generated

all possible subsequences with step size 1. Next, we assigned each retrieved subsequence to one of

25 clusters using k-means clustering and randomly picked 4 from each cluster. This left us with

100 subsequences to be compared with the query pattern. Since this would still require us to do

44,550 pairwise comparisons (9 ·
(
100
2

)
), we used a two-task crowdsourcing strategy. In a first task,

we displayed the query pattern and a plot of one of the 100 subsequences. The workers’ task was to
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Query Pattern 1
Time Range: 7
Points: 383

Query Pattern 2
Time Range: 365
Points: 571

Query Pattern 3
Time Range: 10
Points: 160

Query Pattern 4
Time Range: 365
Points: 134

Query Pattern 5
Time Range: 365
Points: 331

Query Pattern 6
Time Range: 31
Points: 309

Query Pattern 7
Time Range: 78
Points: 520

Query Pattern 8
Time Range: 12
Points: 15

Figure 2.2: Eight hand-picked query patterns used to create human-annotated rankings.

judge the similarity of two graphs by selecting a value from 1 to 10. We let each comparison between

the query pattern and every subsequence be answered 5 times and then selected the 15 subsequences

that resemble the query pattern most, according to the workers’ median answer. Using these steps,

we were able to reduce the number of required pairwise comparisons for each query pattern to 105.

In a second crowdsourcing task, we employed our method of creating a human-annotated ranking.

We created a set of all unordered pairs of the 15 subsequences and built a binary classification task

where the query pattern is displayed along with the two subsequences of a pair. The workers’ task

was then to select the one subsequence of a pair which resembled the query pattern more. We let

each task be answered 9 times and then computed the score of each subsequence using Equation 2.1.

2.5.4 Evaluating Similarity Search Accuracy

In order to create a similarity measure based ranking for the query pattern, we first need to transform

the sketch into an evenly spaced time series. This is a delicate task, as the strokes provided by

pen/touch hardware consist of a varying number of non-uniformly distributed 2D-points, whereas

the time series in our datasets are evenly spaced. To conduct this transformation, we first order

all points by their time stamp. We then remove all points that are not monotonically spaced in

time. Next, we sample the points to match the length of the query pattern with one of the following

algorithms:

Uniform Linear: A uniform linear sampling stores the values of all points in an array and
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Query Pattern 4
Time Range: 365
Points: 134

(1)

(2)

(3)

(4)

(5)

(6)

(7) (11)

(8)

(10)

(9)

(12)

(13)

(14)

(15)

Figure 2.3: Example of a human-annotated ranking created through crowd-sourcing tasks.

performs up/down-sampling using a linear smoothing kernel. It is naive in the sense that it distorts

the shape of the originally drawn pattern by directly converting an unevenly spaced time series to

an evenly spaced one.

Geometric Linear: A geometric linear sampling maps each point of the resulting time series to a

location between two 2D-points of the input stroke. The value at that location is computed using

linear interpolation.

PLS: PLS sampling performs a piecewise linear segmentation on the input stroke as described in

[73]. The value is then retrieved in the same manner as in the Geometric Linear approach.

PIP: PIP sampling applies the PIP-algorithm on the input stroke as described in [53]. As in PLS,

the value is then retrieved in the same manner as in the Geometric Linear approach.

Once the query pattern is converted to a time series, we can z-normalize both the pattern and

subsequences and use a similarity measure to compute the distance between them. We employ

three different algorithms in our experiments: Euclidean Distance, DTW and SpADe. To avoid
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Query Pattern 1 Query Pattern 2 Query Pattern 3 Query Pattern 4

Query Pattern 5 Query Pattern 6 Query Pattern 7 Query Pattern 8

Figure 2.4: Spearman correlation coefficients of different algorith ms and sampling methods when
compared to human-annotated rankings (1 indicating perfect positive correlation, −1 perfect nega-
tive correlation).

implementation bias, we use the original implementation from [111, 28] respectively. The results

of our comparisons can be seen in Figure 2.4. DTW produces rankings that are closest to the

human-annotated rankings. For short query patterns (1, 3, 6 in Figure 2.2), SpADe was unable to

output meaningful distances. We verified this fact with the author, who confirmed that SpADe does

not work well for very short time series. For larger time series it yields competitive results (query

patterns 2, 4 and 5). The Euclidean Distance expectedly performed worse than DTW or equally

well in some cases. Interestingly, it performed very badly in combination with Geometric Linear and

PIP sampling in some cases (query pattern 3 and 6). We found that, especially for short time range

queries, Geometric Linear and PIP sampling significantly distort the original sketch, which can lead

to a comparitively large Euclidean Distance. DTW, however, manages to remedy a poorly sampled

sketch to a certain extend. The naive uniform linear sampling did surprisingly well. One plausible

reason for its good performance is that even though there are changes in velocity across the drawing

area, as can be seen in Figure 2.5, the smoothing kernel makes up for the non-uniformly distributed

points.

Overall, different sampling strategies do not seem to impact the accuracy of algorithms drastically.

In fact, Geometric Linear, PLS and PIP actually often yield roughly the same results due to their

identical interpolation method and only differ in the way the points are chosen during down-sampling.
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(a) Ink (c) Pressure(b) Velocity

Figure 2.5: Heat-maps visualizing different properties across all query patterns over the normalized
sketching area. Dark-red indicates a higher value.

(a) (b) (c) (d) (e) (f)

Figure 2.6: More involved multi-stroke query patterns that are not supported by tested time series
pattern-matching algorithms.

2.5.5 Query Patterns

In order to get a better understanding of the types of questions users try to answer with the patterns

they draw, we analyzed various properties of the sketches. Figure 2.5 shows some results of that

analysis. (a) depicts the average ink distribution of all queries over a normalized sketching area

(note that users were able to adjust the size of the sketching area). Users tend to focus on patterns

that either target some extrema (corners) or align their patterns within the center region. We also

recorded pen-speed as well as pen-pressure for each pattern. On average, velocity is highest within

the center of the sketching area (b). We explain this through the ease-in/ease-out style that users

tend to draw their patterns with. (c) suggests that there is no clear trend for pen-pressure as it

appears to be uniform across the drawing area.

While most of our 112 pen-drawn query patterns were simple single stroke patterns that were

intended to find subsequences which followed a specific trend, some of our users wanted to search for

more complex relations in the data. Questions like “Find a period where a player consistently scored

more than 20 points per game” were usually drawn with multi-stroke sketches by our users. Figure

2.6 shows some queries with these characteristics. The sketches in (a), (b) and (c) are instances

where users wanted to search for inequalities (e.g., “find everything above / below X”), while (d)
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Figure 2.7: Automatic layout of all query sketches generated by applying PCA to the feature his-
tograms of individual sketches.
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depicts a range query (e.g., “find everything within X and Y”). Query (e) is an example where a

user wanted to find time series which shows periodic fluctuations over a specific time period (“find

all inconsistent basketball players”) . However, our user did not intend to find time series that were

close in shape to her sketch. (f) is a case, where a user annotated the sketch to provide some more

information to the system. It is important to note that current state of the art time series pattern-

matching algorithms, such as the ones we tested, do not support such queries directly. In a future

effort, we aim to collect more hand-drawn sketches and try to extract a common sketching language

that could be used to express other relations such as inequalities, ranges, fuzziness or fluctuations.

2.6 Discussion and Future Work

To get an intuition of the quality of the produced human-annotated rankings we inspected them

visually. Although we agreed on most of the decisions made by the crowd, there were cases where

we felt that a pair of subsequences should have been swapped. It is important to note that apart

from a qualification test, the workers’ answers were not validated or filtered using sentinel tasks or

any other noise reduction technique. Also, with only 9 votes per pairwise comparison, chances are

relatively high that some subsequences receive the same score. Increasing the number of required

votes could help reducing ambiguities in generated rankings. Alternatively, multiple 9-round tasks

could be averaged.

The analysis of the sampling methods used in our evaluation suggests that there are more suitable

sampling methods than the ones used in our experiments. Sampling between two points artificially

distorts the resulting time series. This is especially the case for short-length query pattern with high

complexity. An adaptive sampling method, where the perceivably important points are aligned with

the resulting time series could potentially lead to better results.

To further understand the different types of queries that users draw, we wanted to see if there are

certain categories of patterns that occur across users and across datasets. Just by visually inspecting

Figure 2.8, we can identify that for example straight-line or upward/downward trend patterns are

drawn frequently. We obtain automatic clusters of such sketch categories by applying a similar

approach as discussed in [48]. Each sketch is rendered as an image which we then represent by

using a normalized feature histogram that is computed through a bag-of-words model over densely

sampled local features. Figure 2.7 shows an automatic layout generated by applying dimensionality

reduction (PCA) over these feature histograms. This initial experiment hints at the possibility of

creating an accurate classifier to assign category labels to input sketches. Such labels could in turn

be used to detect different pattern types, such as inequalities, range queries, etc. or to optimize
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algorithms through fast-rejection techniques.

We are planning to conduct a more rigorous study on what type of time series queries users are

interested in. The results of the study could be used to define a visual vocabulary i.e. sketching-

language which supports common types of queries. Because our approach of evaluating the subjective

accuracy in time series pattern-matching can be extended to an entire conceptual query space,

algorithms supporting these kind of queries could then be evaluated using the method proposed

in this chapter. Other possible areas for future research include finding better sampling/alignment

methods for hand-drawn queries (possibly using weighted strokes) and combining high and low-

level similarity measures to improve the perceived accuracy of pattern-searches. For instance, DTW

could be used to retrieve the top n matches while shape attributes described in [58] could be used

to generate a ranking over the n matches.

Our comparison of algorithms and sampling strategies through our 8 collected human-annotated

rankings offers anecdotal evidence that human-rankings can differ drastically from rankings gen-

erated by algorithms. For a better understanding of the different approaches, rigorous statistical

analysis is needed. Such an analysis should cover a wide range of time series from different domains

and queries drawn by experts in these domains. Our method to create human-annotated rankings

can be used to create datasets for different domains that would, over time, allow for such an extensive

analysis.

2.7 Conclusion

In this chapter, we showed why currently available datasets are not suitable for testing the subjective

accuracy of similarity measures and demonstrated how human-annotated rankings can be created

using crowdsourcing tasks. We published a freely available dataset comprising 8 different human-

annotated rankings including the query pattern and 15 subsequences per query. This dataset can

be used to optimize new and existing algorithms and serves as starting point for further research

in this area. Furthermore, we collected 112 different query patterns from different users, analyzed

their meaning and characteristics and proposed future ideas for a visual vocabulary for time series

queries.

All queries and human-annotated rankings are available on

http://cs.brown.edu/~peichmann/timeseries/
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Figure 2.8: 112 Pen-drawn query patterns collected from 6 different users.
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Figure 2.9: A human-annotated ranking for query pattern 2 and three different rankings produced by
DTW, ED, and SpAde similarity measure using PIP sampling. The algorithms produce reasonable
results according to the Spearman coefficient (SpC). Note that even the crowd sometimes fails to
agree upon a most similiar shape (see rank 3 in the human-annotated ranking).



Chapter 3

Metro-Viz: Black-Box Analysis of

Time Series Anomaly Detectors

3.1 Abstract

Millions of time-based data streams (a.k.a., time series) are being recorded every day in a wide-

range of industrial and scientific domains, from healthcare and finance to autonomous driving.

Detecting anomalous behavior in such streams has become a common analysis task for which data

scientists employ complex machine learning models. Analyzing the behavior and performance of

these models is a challenge on its own. While traditional accuracy metrics (e.g., precision/recall)

are often used in practice to measure and compare the performance of different anomaly detectors,

such statistics alone are insufficient to characterize and compare the algorithms in a systematic,

human-interpretable way. In this extended abstract, we present Metro-Viz, a visual analysis tool to

help data scientists and domain experts reason about commonalities and differences among anomaly

detectors, and to identify their strengths and weaknesses.

3.2 Motivation

When tasked to perform time series anomaly detection (i.e., finding unusual data points or patterns)

on a new data source [23], data scientists see themselves confronted with questions like: which

anomaly detection systems work best for this specific task, where do these algorithms fall short,

and why. Similar questions arise in virtually any classification domain. In machine learning, the

performance of classifiers is typically evaluated using summary statistics such as precision, recall,

26
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Prefix

Anomaly
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Amplitude
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Suffix

Figure 3.1: Example of implicit time series anomaly properties.

or F-score. In a recent paper, we introduced a scoring model that is based on these statistics,

specifically tailored to time series classification systems [132]. Yet, while these metrics are useful for

benchmarking and to get a sense of overall model performance, more involved questions that would

lead to actionable insights for model improvements, such as the ones above, cannot be answered by

any of these summary statistics directly [40].

To address this issue for tabular and image data, researchers have built tools like ModelTracker

[9], Squares[113], and Google’s What-If Tool [55], which allow users to inspect and understand

correct and false predictions of a single machine learning model. However, these tools lack support

for time series classification tasks. In this extended abstract, we introduce Metro-Viz, a system

that aims to narrow this gap by providing a set of tools that are specifically designed for users who

want to analyze the results of time series anomaly detectors in a systematic way. Through our work

on building practical tools and systems for enabling next-generation time series anomaly detection

solutions [131], as well as through closely collaborating with machine learning experts, we identified

a set of functional requirements. We summarize these requirements in terms of four core challenges

that we aim to address with Metro-Viz:

• Challenge 1: Ambiguity. What constitutes an anomaly depends on the application domain and

context. For example, whether or not a sudden change in value or an irregular pattern should

be considered as an anomaly might depend on factors such as the dataset and the task, the

time of occurrence, periodicity, what happened before and after the anomaly occurred, as well

as global trends (see Figure 3.1 for an example). Furthermore, anomalous patterns may evolve

over time; what may have been anomalous a year ago might not be now. Exposing meta-data

of anomalies helps data scientists to characterize how anomaly detectors behave under such

conditions.
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Figure 3.2: Users can inspect statistics, e.g., the length of all anomalies, in a box plot, showing the
minimum, maximum, median, and interquartile range (IQR) per detector.

• Challenge 2: Comparing Multiple Models. We learned that many anomaly detection system de-

velopers struggle to compare multiple different models in a rigorous and systematic way, which

goes beyond using simple summary statistics. This is mostly due to the overhead of having

to create plots of success and failure cases, creating a mapping between the same anomalies

detected by different detectors, or even more pragmatically, “seeing the data”. Streamlining

this process is crucial for a more efficient analysis.

• Challenge 3: Time Granularity. Anomalies might only become visible at certain time granu-

larities or aggregation levels. Depending on how raw data is aggregated, e.g., by computing

the average or maximum value for fixed time intervals like days or seconds, anomalous data

points might get smoothed-out or accentuated. Understanding the impact of sampling and ag-

gregation on time series anomaly detector performance is important when tweaking a detector

for a specific use case.

• Challenge 4: Missing and Unknown Labels. Anomalies are, by definition, rare or unique

events. This makes it difficult to determine ground-truth for certain problems. Captured

training datasets therefore often only exhibit a small and incomplete set of possible anomalous

patterns. As a result, classifiers might be misguided during the training process, requiring

careful human testing and probing before deployment. Furthermore, it is infeasible to train

anomaly detection algorithms for every possible scenario. Thus, functionality to modify input

data and test hypothetical scenarios can help users to evaluate a model, even when training/test

data is scarce.
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Figure 3.3: The consensus slider can be used to filter anomalies displayed in the time series viewer
to ones that are detected by at least a certain number of detectors (5 out of 7 in this example).

Figure 3.4: A screenshot of Metro-Viz’s user interface: A) Main menu, B) Time series viewer, C)
Time axis showing the full time range, D) Anomaly properties of a currently selected anomaly, E)
The consensus slider that can be used to limit the shown anomalies to those detected by a minimum
number of detectors, F) The set operation widget that can be used to define and query anomaly
sets, G) Summary statistics for all anomaly detectors selected in the menu.
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3.3 Metro-Viz

Metro-Viz is a web application that runs in any modern web-browser, with an accompanying backend

written in Python. It features a set of default anomaly detectors and allows users to plug in

custom detectors by implementing an API that Metro-Viz uses to communicate with the detector.

This enables Metro-Viz to be used with a diverse set of off-the-shelf or newly developed anomaly

detectors, irrespective of the programming language in which they are written. Data can be loaded

into Metro-Viz either by specifying a CSV file or by implementing a database adapter.

3.3.1 Features

In the following we describe the core functionality we built into Metro-Viz to address the challenges

outlined in the previous section.

Visual Anomaly Analysis

To address Challenge 1, we developed tools to browse through time series data and analyze the

detected anomalies. In Metro-Viz, a time series is displayed as a line graph in the time series viewer

(Figure 3.4B), when selected from the main menu (Figure 3.4A). The time series viewer shows a

window of a customizable number of data points. Users can pan to slide the window across the time

axis (Figure 3.4C), or alternatively zoom into a subsequence of interest by using a drag-and-drop

gesture. To trigger anomaly detection on the current time series, one or more anomaly detectors

can be selected from the menu on the left. Found anomalies are highlighted in the line graph, color-

coded by set membership (see Figure 3.4F). Hovering over the line graph displays different anomaly

properties in a separate view below (Figure 3.4D). Furthermore, users can identify anomalies that

are more likely to be true anomalies (those that are detected by more than just a single detector),

by adjusting the consensus value through a slider (see Figure 3.3 and Figure 3.4E).

Comparing Multiple Detectors

Metro-Viz provides functionality to answer questions like: which anomalies were detected by both

algorithm A and algorithm B, by algorithm A but not by algorithm B, and vice-versa (Challenge

2). Users can assign detectors to either one of two sets, and click on the desired portions in a Venn

Diagram (Figure 3.4F and Figure 3.5) to select the anomalies displayed in the time series viewer.

By default, two anomalous ranges are defined to be equal if they share at least one data point. The

amount of overlap required for the system to consider two subsequences as equal can be configured

in the settings.
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Figure 3.5: Anomaly detectors can be assigned to either set A or set B. This allows users to selectively
display anomalies, e.g., only anomalies detected by detectors in set A but not in set B, by clicking
on the corresponding portion in the Venn diagram.

Figure 3.6: Metro-Viz allows users to erase arbitrary portions of a time series and replace them with
a sketch in order to probe anomaly detectors with a pattern not present in the data.

Aggregating across Time

To address Challenge 3, time series can be aggregated across different time scales/granularities

(Figure 3.4A), e.g., day, hour, minute, using four different aggregation functions (sum, avg, min, max).

Time series data that is not explicitly time-stamped, but has an implicit order can be aggregated

using a set of configurable sampling methods.

Interactive Hypothesis/What-If Testing

We address Challenge 4 by enabling data scientists and domain experts to simulate and understand

the behavior of anomaly detectors thorough patterns not present in the data. For example, users

can test scenarios like: Would detector A still classify this peak as an anomaly, if its amplitude were

lower or if its prefix were different? Metro-Viz provides features to modify a time series displayed

in the time series viewer. Data points can be selected through a gestural interface, as proposed

by [46]. Once selected, these points can be moved along the vertical axis, changing the amplitude

of the selected subsequence. Furthermore, similar to functionality introduced in TimeSketch [47]

or Qetch [91], users can select a subsequence in the time series viewer and replace it with a hand-

drawn sketch (see Figure 3.6). A modification to the original time series will automatically re-run
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all selected detectors. Immediate responses from the backend allow the user to engage in a back-

and-forth dialog with the system when probing detectors.

3.4 Future Work and Conclusion

Detector-Guided Labeling

With the increasing variety of streaming data, users become data curators in addition to analysts [3].

While Metro-Viz has proven useful within a small group of test subjects to analyze anomaly detection

algorithms, our pilot users expressed that in many cases they would have liked to mark anomalies

as false positives or false negatives, i.e., adding or refining ground-truth labels while analyzing the

results. Based on this feedback, we are currently extending Metro-Viz with functionality to perform

what we refer to as detector-guided labeling. This means that, instead of having users manually scan

a time series to annotate anomalous ranges, Metro-Viz will guide users to anomalous time series

ranges discovered by a set of pre-trained detectors, and ask users to classify them as false, true, or

partially true by correcting the anomalous range. Given that multiple pre-trained detectors are used,

every anomaly can be assigned a probability (confidence) of it being a true anomaly, analogous to

the consensus feature outline above. Our hope is that users will experience the task of labeling time

series as less daunting and will be more efficient, as anomaly verification can be done iteratively,

starting from the ones with high confidence to the ones with low confidence.

Scalable Data Backend

Motivated by the scale of the data that we received from our collaborators in healthcare and computer

networking sectors, the database experts on our team are currently architecting a data management

system that will allow users to scalably perform Metro-Viz style interactive analysis on large datasets.

Conclusion

In this extended abstract, we presented an early design of Metro-Viz, a tool that allows data scientists

and domain experts to analyze the behavior and results of time series anomaly detectors. Further

information about this work is available on our project website 1.
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Chapter 4

Orchard: Exploring Multivariate

Heterogeneous Networks

on Mobile Phones

People are becoming increasingly sophisticated in their ability to navigate information spaces using

search, hyperlinks, and visualization. But, mobile phones preclude the use of multiple coordinated

views that have proven effective in the desktop environment (e.g., for business intelligence or visual

analytics). In this work, we propose to model information as multivariate heterogeneous networks

to enable greater analytic expression for a range of sensemaking tasks while suggesting a new, list-

based paradigm with gestural navigation of structured information spaces on mobile phones. We

also present a mobile application, called Orchard, which combines ideas from both faceted search

and interactive network exploration in a visual query language to allow users to collect facets of

interest during exploratory navigation. Our study showed that users could collect and combine

these facets with Orchard, specifying network queries and projections that would only have been

possible previously using complex data tools or custom data science.

4.1 Introduction

People regularly interact with complex information networks that model the attributes and relation-

ships of real-world entities. Whether through browsing hyperlinked networks or the ranked lists of

search results, navigating between related pages, people, products, and media is a universal quality

of the online experience. At the same time as the search, list, and link paradigm is expanding

33
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to ever more information seeking experiences, the trend towards integrating analytic sensemaking

capabilities in consumer experiences such as video games and fantasy sports is driving the adoption

of business-like dashboards beyond the business context [95].

The representation and analysis of complex information networks has rich history in the fields

of information visualization and visual analytics, with the analysis of social networks (e.g., [17])

and citation networks (e.g., [81, 69, 25, 156]) featuring prominently. Additional use cases include

exploratory analysis of data published by governments (e.g., migration flows [137]) or businesses

(e.g., company-investor networks [25]), as well as investigative analysis of potential impropriety or

illegality (e.g., in Enron email communications [121], Panama Papers documentation [78], or “open

secrets” interactions between politicians and lobbyists[2]).

What is less well examined in the literature, however, is how such information networks may be

explored on mobile devices. We posit that there are potentially significant latent demands across

many everyday activities increasingly performed on mobile phones. These include sports and gaming

analysis (including fantasy sports and e-sports), media consumption (e.g., music, books, films and

videos, news), and personal research into major life decisions (e.g., jobs, houses, schools, cars,

vacations). In this work, we present a new interaction paradigm for exploring such information on

mobile phones.

We draw design inspiration from faceted approaches to search, browsing, and analysis in which

users select from prefabricated filters. These filters are automatically extracted from multiple or-

thogonal data dimensions and their application has the effect of progressively reducing the number

of matching entities to a meaningful and manageable subset. Notable examples of this approach

from the literature include FacetLens [85] and Immense [88], which present multiple coordinated

views in a fixed 2D layout, and GraphTrail [42] and PanoramicData [153] that provide freeform

2D canvases on which to compose queries and inspect results. Business Intelligence dashboards in

general-purpose tools like Tableau, Qlik, and Power BI may also be constructed in a faceted style

(e.g., to allow browsing of news and social media “documents” [45]).

We note that all such faceted interfaces have deficiencies when applied to multivariate heteroge-

neous networks on mobile phones. First, faceted interfaces do not convey the underlying heteroge-

neous network structure. They do not present how facets of nodes in a network or nodes themselves

relate to one other, making it difficult for users to grasp the concept of pivoting between different

node types. Second, faceted interfaces as developed in the literature do not translate well to mobile

phones, where space is limited. While it is technically feasible to employ such interfaces within

mobile applications, they would likely impair the user experience. For example, navigating between

views in 2D layouts would require users to pan and zoom excessively (analogous to when browsing
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non-mobile-optimized websites).

To address these issues, we present Orchard, a solution that applies faceted search concepts

to the exploratory analysis of multivariate heterogeneous networks on mobile phones. Our design

draws on the familiar concept of keyword search and result listing, a paradigm that has already

established itself as the dominant form of mobile information seeking. With Orchard, users can

explore aggregated node and edge attributes through sortable list-based views that simultaneously

function as horizontal bar charts for aggregate values. Orchard combines faceted search on these

views with lateral pivoting (following links across one or many hops) that automatically “collects”

the ensuing facet trail for future use.

Orchard pivoting extends prior work on interactive network exploration by allowing free naviga-

tion between nodes of any type, whether or not they are connected directly in the data model. By

inferring a full graph query specification from any partial query, demand for additional user input

is minimized and the result is an uninterrupted pivoting experience. Orchard also introduces the

notion of reflective pivoting, i.e., pivoting from/to the same node type. While reflective pivoting is

usually considered a no-op, Orchard fills this semantic gap by interpreting commands to pivot nodes

onto themselves as a command to project the nodes into homogeneous network in which nodes are

connected based on shared connections to nodes of another type (as selected by users). This allows

users to seamlessly transform and view any subset of a heterogeneous network as a homogeneous

network, while collecting more expressive facets in the process (such as pairs of nodes connected by

highly-weighted links).

In summary, our contributions are:

• We introduce and motivate the concept of interacting with multivariate heterogeneous networks

on mobile phones.

• We present a novel query specification model for multivariate heterogeneous networks called

Pivot Trails that is particularly suitable to be implemented on small screen devices, requiring

minimal user input to formulate network queries.

• We design and implement Orchard, a mobile application that uses Pivot Trails to support casual

exploratory workflows over multivariate heterogeneous networks using a list-based paradigm

with gestural navigation.

• We report a qualitative evaluation of the design of Orchard with 12 participants. Initial results

show that users quickly understand Orchard’s data and query model, and that they are able

to accomplish common exploratory network tasks.
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4.2 Background and Related Work

Orchard relates to prior work on supporting information exploration in heterogeneous information

networks, and is inspired by work on exploratory search [92, 147]. An information network represents

an abstraction of the real world, focusing on the objects (nodes) and their attributes, and interactions

(links) between the objects [129]. In multivariate heterogeneous networks, multivariate refers to the

fact that each node or link in a network can have multiple attributes, and heterogeneous indicates

that there are multiple node or link types in a network.

4.2.1 Core Concepts

There is a large body of prior work on facilitating exploration and analysis of multivariate heteroge-

neous networks, including the development of taxonomies describing the nature of tasks associated

with such networks [83, 6, 110]. We have identified five core concepts (CC1-5) that capture the

characteristics of prior network exploration systems.

CC1: Faceted Search. To allow iterative and incremental filtering of large information networks

down to a few items of interest, a common solution is to provide keyword search functionality

and the means to apply filters based on a facet type, facet value, and facet count. For example,

in faceted search of a movies dataset, one facet type might be “Genre”, its values might include

“Drama,” “Comedy,” and “Sci-Fi,” and each of these values may be accompanied by the count

of movies in the dataset matching that facet value. Early approaches to faceted search, such as

Flamenco [149], presented clickable facets that could be progressively applied as filters to “drill

down” into a target dataset. Similarly, FaThumb [70] was the first to introduce faceted search

on mobile devices. Visualizations have also been introduced to the faceted search experience as

an aid navigation. For instance, PaperLens [81] features multiple views to formulate a limited

set of publication data-oriented questions, such as the relationships between authors or frequently

referenced papers. FacetMap [126] is a domain-agnostic generalization of PaperLens that supports

simple searching and browsing tasks using a tree-map that scales with display size. FacetLens [85]

extends this line of work further by exposing facet values as visualizations such as bar charts whose

elements can be selected directly.

Our approach with Orchard extends the functionality of these systems in several important

ways. First, facet values are shown in a list-based view, allowing users to sort either alphabetically

by facet value or numerically by facet count and other aggregations. Second, users can select

multiple facet values from such lists and choose to match either any or all of these values. Third,
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by incorporating network projection into the analysis of heterogeneous networks, users can retrieve

potentially interesting combinations of facet values more easily and systematically.

CC2: Topological Search. Researchers have devised various visual query languages to express

network queries (e.g., [18, 21, 24]). A recent example of such a system is Visage [109], a visual graph

querying approach in which users iteratively refine attribute and topological constraints on a 2D

layout. The system populates user-defined patterns with examples and allows them to browse other

possible matches.

Unlike Visage, Orchard does not require users to define topological constraints by specifying a

graph, but instead lets them explore aggregated nodes simply by following links.

CC3: Node and Link Aggregation. A common issue when dealing with node-link represen-

tations of multivariate networks is space and legibility – such representations can easily turn into

undifferentiated hairballs for large, dense networks [44]. To visualize arbitrarily-sized networks com-

pactly, nodes and edges can be aggregated rather than represented individually. Aggregation is

typically applied on the attribute level, e.g., meta-nodes representing all nodes with a given cate-

gorical attribute value or numeric attribute range. For example, PivotGraph [146] aggregates and

positions nodes based on their attributes in a grid, encoding the relationship between node aggre-

gates by the thickness of visual links. Similarly, OntoVis [120] uses information in the ontology

associated with a network to semantically prune a large, heterogeneous network. Juniper [103] lets

users explore the relationships of nodes in selected sub-networks using tree visualization, where ag-

gregated nodes can be collapsed and expanded. Finally, both GraphTrails [42] and work by Van

den Elzen & Van Wijk [137] use common data visualizations such as bar charts and tag clouds to

summarize subsets of nodes.

Orchard’s approach to aggregation is similar to GraphTrails’ in that users can choose how facet

values of a particular node type are grouped and aggregated. However, in addition to showing count

of nodes per group, Orchard provides additional metrics, such as the count of nodes of a linked node

type, that users can sort by.

CC4: Pivoting to Linked Nodes. Pivoting is complementary to searching and filtering as it

expands, rather than reduces, the options for onward navigation. Given a subset of nodes, users

can choose to “pivot” to view linked nodes, e.g., those of a specified type. Various styles of pivoting

between node types have been proposed in the literature. FacetLens [85] provides a one-to-many

pivot mechanism by displaying pivot options for a selected node. In PivotSlice [156], users can
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configure a 3-by-4 multiple focus view that sub-divides and visualizes network data based on user-

defined facets. PivotPaths [39] enables pivoting between partially overlapping sets of resources and

facet values, and attempts to make pivots more comprehensible by using animated transition to

highlight the overlap in elements between successive views. GraphTrails [42] introduces a many-

to-many pivot mechanism that allows users to pivot from a subset of nodes to the set of directly

connected nodes, providing a freeform canvas on which users can lay out multiple pivot paths in 2D

space.

Orchard adopts a similar kind of many-to-many pivoting as GraphTrails. However, in Orchard

users can freely navigate from a set of nodes of a particular type to directly or indirectly linked

nodes of any other node type in the network, preventing them from having to fully understand the

underlying network structure and from getting stuck in leaf nodes.

CC5: Projections of Sub-networks. Given a sub-network, it is often insightful to analyze

interactions between the nodes of a particular type as a homogeneous network. A commonly used

technique is to “project” a heterogeneous network to a homogeneous one by connecting two nodes

of the same type if both are connected to the same node of a different type [77]. Systems such as

Orion [60] and Ploceus [90] are built to support users in formulating such transformations as a pre-

processing step: users can map tabular data to a network structure, by defining the semantics of links

between nodes. Such projections are more readily interpretable as node-link representations than

the full heterogeneous network. Typical analyses of homogeneous networks include the extraction

of connected components and communities of nodes that are preferentially attached to one another.

Orchard does not make this assumption, but instead promotes on-demand projection of any

node subset to homogeneous networks, all as part of an exploratory workflow rather than as a

pre-processing step.

4.2.2 Data Exploration on Touch-Enabled Devices

Designing visual interfaces for exploring data on touch-enabled devices is becoming an increasingly

important topic within the information visualization community [82, 79, 29, 80]. For example,

PanoramicData [153], Vizdom [33], and SketchInsight [84] featured a pen and touch interface for

visual data exploration on large interactive displays. Tangraphe [134] proposed a set of single hand,

multi-touch gestures for interactive exploration of network visualizations, while Schmidt et al. pre-

sented a set of multi-touch interactions for network visualizations, focusing on edge interactions [118].

Prior work has also focused on smaller tablet devices. For example, TouchWave presented a set of

multi-touch gestures to interact with a stream graph on tablet devices [15]. Kinetica employed



39

physics-based affordances with multi-touch interaction for multivariate data exploration on a scat-

terplot [116]. TouchViz evaluated a gestural interface for choosing, filtering, and sorting data in

familiar charts on tablet devices [41]. Sadana and Stasko [117] have also explored challenges in

creating multiple coordinated views in data visualization systems for tablet computers. Finally,

TouchPivot [66] proposed a pen-and-touch user interface that aids visual data exploration on tablet

devices, targeting novice users.

Orchard builds on this trend towards touch-enabled data exploration, focusing on single-touch

gestures on mobile phones for the simplest and more broadly applicable interaction style for casual

everyday activities.

4.3 Design Goals

Our research focuses on the casual exploration of multivariate heterogeneous networks, specifically in

the context of mobile phones. We set out by designing and implementing various prototypes to sup-

port individual low-level tasks applicable to heterogeneous networks (Table 4.1), and by combining

them to support end-to-end exploratory workflows. To derive a set of design goals we presented and

tested early designs for solving these tasks on mobile phones with invited test users and colleagues at

our research institution. We prepared various test datasets ranging from movie databases to social

news feeds, academic publication databases, and publicly available communication networks. The

challenges we faced while iterating on the designs with our test users can be broadly categorized

into representational and functional challenges. On the one hand we sought to find suitable mobile-

friendly representations for techniques that have been proposed in the literature in the context of

network analysis for larger displays. On the other hand, we learned that in some cases users were

interrupted in their flow due to missing functionality that has not been explored in prior research

multivariate heterogeneous networks. Guided by these findings we identified two representational

(DG1 and DG2) and two functional design goals (DG3 and DG4) that we address in this paper.

DG1: Introduce mobile-friendly list-based representation. Views and operations to explore

networks should be exposed through a design suitable for the targeted form factor. With Orchard

we aim to support casual exploration scenarios through a simple user interface design reminiscent

of that of other information retrieval applications for mobile phones. Our goal is to introduce a new

list-based paradigm with gestural navigation of large multivariate heterogeneous networks.

DG2: Support lightweight gestural navigation. Transitioning between different node types

plays an important role in analyzing heterogeneous networks [42]. However, understanding which
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ID Low-Level Task

L1 Determine the attributes and values associated with
nodes

L2 Find the nodes with specific attribute values

L3 Find a derived property of a set of nodes with specific
attribute values

L4 Find the set of entities adjacent to or accessible from an
entity

L5 Find a derived property of the entities adjacent to or
accessible from an entity

L6 Find the entity with the maximum/minimum number
of adjacent entities

L7 Common connection: Given a set of entities, find a set
of entities that are connected to all of them

L8 Follow path

L9 Revisit an entity and infer further knowledge

L10 Characterize sets of nodes as belonging to different
groups, based on node attributes

Table 4.1: A set of low-level tasks from Pretorious et al. [110] that are applicable to heterogeneous
networks.

nodes can be pivoted to and deciding on which nodes to pivot to places extra cognitive load on users.

To promote free-form exploration, we aim to make pivoting a lightweight, single-touch operation that

can easily be reverted, allowing users to quickly explore multiple pathways.

DG3: Consolidate drill-down filtering and lateral pivoting. During testing of early proto-

types of Orchard we observed that users often select facets of interest of different node types while

pivoting through the network, until at some point they want to apply multiple previously selected

facets to the current set of nodes. Drill-down filtering in the style of faceted search can be used to

quickly narrow down a collection of data items to a smaller subset, whereas lateral pivoting allows

users to move between sets of nodes related through multiple hops. Our goal is to consolidate these

complementary mechanisms by allowing users to turn a sequence of lateral pivot operations into

facets that can be applied as filters, or vice versa.

DG4: Integrate network projections into exploratory analysis. Although heterogeneous

and homogeneous networks can hardly be explored in the same view, we postulate that users benefit

from on-demand network transformations as part of a regular network exploratory workflow. Being

able to project arbitrary sub-networks of interest to homogeneous ones allows users to gain insights

about such sub-networks from a different, customized perspective, in ways that can inform decisions

on what to explore next in a heterogeneous context.
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4.4 Pivot Trails

To retrieve the data necessary to render network nodes in a list-based visualization (DG1) users

must be able to specify aggregation queries for subsets of nodes satisfying topological and attribute

constraints. In this section, we introduce a query specification model called pivot trails, designed to

capture common queries for nodes in multivariate heterogeneous networks, and capable of consoli-

dating drill-down filtering and lateral pivoting (DG3).

4.4.1 Data Assumptions

Our pivot trails model relies on three assumptions on the data.

First, every node instance of a node type in a heterogeneous network can have an arbitrary

number of attributes/facets.

Second, the network is multi-partite (k-partite), meaning that it can be divided into k indepen-

dent sets, such that no link connects two nodes of the same type. Consider, for instance, Figure 4.1

showing how different entities in a film dataset and the relationships between them are represented

in a k-partite network.

Third, links are homogeneous and univariate, meaning that there exists one link type only, with

no associated attributes. Instead, a heterogeneous relationship is modeled by association to new

node type. Consider, for instance, the relationship between Person, Role, and Film in Figure 4.1.

An alternative schema could model Role as an attribute of a link connecting Person and Film. Yet,

promoting heterogeneous relationships to their own node type obviates the need for the concept of

links in a user interface, without the loss of any of the link semantics.

Furthermore, because the network is k-partite any set of nodes containing nodes of two different

types can be projected to a homogeneous network. In Figure 4.1, for instance, the sub-network

containing topics and films can be projected onto two different homogeneous networks: a film ↔

film network, where two films are connected by a weighted link representing the count of common

topics, or a topic↔ topic network, where two topics are connected by a weighted link representing

the count of films about the two topics.

4.4.2 Query Specification Model

A typical aggregate network query consist of the following components [42]:

• A set of topological and node attribute constraints that describe how to arrive at a subset of

nodes of interest;
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Topic

Character Name

Role Name
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Year of Birth
Year of Death

Topic Category
Name
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Name

Film Title
Release Year
Revenue
Runtime
Rating

Figure 4.1: The schema of a multivariate heterogeneous network containing information about films,
actors, and so on, as well as the attributes for every node type.

• A grouping strategy for the attribute of interest in the retrieved subset of nodes; and

• An aggregation strategy that defines which metric should be calculated for each bin.

With pivot trails we introduce a convenient way to model network queries as topological and

node attribute constraints, applicable to a wide range of network exploration scenarios. Intuitively

a pivot trail defines the order in which to traverse, filter, and combine nodes in a heterogeneous

network to a set of nodes of interest, i.e., a query result. Pivot trails are directed graphs that can

easily be translated to graph query languages such as Cypher, or even SQL.

Formally, assume a k-partite heterogeneous network H where each node is of a node type tm

where m ∈ {0, 1, . . . , k−1} (Figure 4.2a). A pivot trail is a directed acyclic graph. Each node Pi in a

pivot trail (pivot node) has a node type T (Pi), a set of node-attribute constraints (filter predicates)

C(Pi), and a set operation O(Pi). A pivot trail contains exactly one target node Pn, where T (Pn)

is the node type of interest.

A pivot trail defines how nodes in H of a particular type are retrieved. The pivot trail shown in

Figure 4.2b, for instance, translates to the following query: retrieve all nodes in H of type T (P0).

For all nodes that satisfy constraints C(P0) traverse their links leading to a set of nodes of type

T (P1). For all nodes that satisfy constraints C(P1) traverse their links leading to a set of nodes of

type T (P2), and so on, until the target pivot node is reached.

Pivot Trails are designed to express both lateral pivoting (navigating from a subset of nodes of

type a to a set of linked nodes of type b, where a 6= b) and drill down filter operations (navigating
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T(P0) = t2

C(P0) = {...} C(P1) = {...}
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t4
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U

Figure 4.2: a) An example schema of a heterogeneous network with node types t0 - t4; b) a pivot
trail representing a lateral pivoting operation; and c) a pivot trail where all pivot nodes are directly
linked to the target pivot, representing a drill down operation (set operations for pivot nodes with
one or no incoming links were omitted)

.
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to a set of nodes that are linked to m other sets of nodes, where m > 1), or combinations thereof.

Figure 4.2b, for instance, represents a sequence of lateral pivot operations. Conversely, this pivot

trail can be re-structured to a drill down operation by linking any or all n− 1 pivot nodes directly

to the final pivot node Pn and setting its set operation O(Pn) to ∩, as shown in Figure 4.2c.

A pivot trail graph does not need to be fully specified, but can be inferred from a partial

specification (at the minimum a target pivot node must be given). In contrast to traditional query

models proposed in the literature, which only consider adjacent nodes as valid pivot paths, this

allows users to formulate queries in a more flexible way. For instance, given the schema in Figure

4.1, people can be directly related to genres or topics, without the need to specify intermediate hops.

Figure 4.3 shows a number of concrete examples of user-defined pivot trails and how full pivot trails

are inferred from partial ones using the schema in Figure 4.1.

4.5 Orchard

Guided by the four design goals (DG1-4) presented in Section 4.3 we built a research prototype,

called Orchard. To inform the design of a visual exploration user interface that incorporates the five

core concepts (CC1-5) of network exploration outlined in Section 4.2.1, we carried out an iterative

design process (Section 4.3). In this section, we present the final design of Orchard.

4.5.1 Implementation

Orchard is a mobile application written in TypeScript and HTML/CSS, built to run on all modern

mobile phones. It uses a dynamic layout that fits the screen of the phone and is designed to be used

in portrait mode. Orchard is backed by a C#-based implementation of the query model we propose

in Section 4.4.

4.5.2 Attribute Exploration

The Attribute Exploration View (Figure 4.4), Orchard’s default view, is to browse aggregates of

nodes in a network. Every item in the list represents an aggregate (a category for a categorical

attribute or a range for a numerical attribute) defined by the grouping and aggregation strategy

(Figure 4.4a,b). List items contain a bar whose length encodes the aggregated value per bin, such as

the count of all nodes linked to the nodes in a bin, the average of one of their numerical attributes,

etc. Tapping on one of the list items reveals more details about the nodes in that group. By tapping

the grouping strategy (Figure 4.4a), users can switch the node type of the current pivot node and
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Figure 4.3: Examples of pivot trails. a) find all topics; b) find all films associated with a topic whose
name includes ‘MI6’; c) of films related to a topic containing ‘MI6’ in its name, find all people linked
to the films containing ‘Dr. No’ (note that the intermediate nodes required to reach Person from
Film are not explicitly specified, but inferred from the network schema); and d) find all the films
that are linked to person nodes containing ‘Judi Dench’ in their name, which are linked to a topic
containing ‘MI6’ in their name.
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a b

d
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f

c

Figure 4.4: Orchard’s facet exploration view and swipe-based pivot mechanism. Users can configure
how nodes are grouped (a), aggregated (b), and then visualized in the bar chart-like list (c). The
pivot bar (d) displays all node types of a dataset as tabs along the right edge of the application.
Starting a swipe-left gesture on one of these node types moves the current view to the left and pivots
to all nodes in the network that are linked to nodes in the selected group (films linked to characters
named “James Bond”). Upon completion of the gesture, a new instance of the swiped node type
is added to the pivot trail (e) and the result list is updated. Since the first pivot node is always
directly connected to the target pivot node when there are only two nodes in the pivot trail, the link
between them is activated (f).
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pick a facet of interest. Similarly, the aggregation strategy can be changed by tapping on the second

column (Figure 4.4b). There are two types of aggregate values that can be computed:

1. The count of distinct linked nodes of a certain type (e.g., the number of films per actor name,

how many films have the same title or a rating between 90 and 100).

2. The min/mean/max of linked numeric node attributes (e.g., the mean revenue of all “Alice in

Wonderland” films, the average age of all people per film).

A default grouping and aggregation strategy can be configured per attribute per node type. For

instance, users can choose to always display the count of associated films when looking at genre, or

the count of associated people when looking at characters. Furthermore, lists can be sorted by the

facet value (Figure 4.4a) or by the aggregated value (Figure 4.4b).

4.5.3 Visual Query Interface

To support network exploration we designed a visual query interface that implements the pivot trail

model. Orchard exposes a visual representation of a pivot trail as horizontal list at the top of the

screen. On start up, a single pivot node of a configurable default node type is shown in the pivot

trail, which corresponds to the data visualized in the Attribute Exploration View. The pivot bar

on the right of the screen shows all pivot node options, and scrolls vertically if the number of pivot

nodes exceeds the height of the screen. Users can add a pivot node to the end of the pivot trail

(Figure 4.4d) by performing a “swipe left” gesture on the pivot node. As the finger slides across the

display while swiping, the current list moves to the left and visual feedback indicates which type of

pivot node users are about to add to the pivot trail (Figure 4.4).

In open-ended browsing sessions, we observed that users often select facets of interest of different

node types while pivoting through the network, until at some point they want to apply multiple

previously selected facets to the current set of nodes. Orchard supports this browsing behavior

(DG3 ), allowing users to choose between lateral pivoting and drill down filtering by changing how

nodes in the pivot trail are linked. By default, all nodes in a trail are linked sequentially, analogous

to the depiction in Figure 4.2b. To switch from lateral pivoting to drill down filtering, users can link

individual pivot nodes to the target pivot node by pressing the link icon to the right of each pivot

node. An activated link indicates the corresponding pivot node is linked directly to the target pivot

node, a de-activated link indicates that the pivot node is linked to its successor in the trail.

By pivoting from subsets of nodes to new subsets, users keep adding pivot nodes to the pivot

trail. They can navigate back and forth in the pivot trail by swiping left or right, analogous to

traversing an undo/redo stack. They can also jump to or remove a specific node, or start a new trail



48

from an existing pivot node by using the context menu that appears when tapping a node in the

pivot trail. Furthermore, users can constrain the subset of nodes from which to pivot by selecting

list items, and select whether all or any of the selected items should be matched via the context

menu. Pivoting from a list of nodes where no selection has been made is treated as if all items were

selected.

4.5.4 Keyword Search

A common strategy to explore large graphs is a bottom-up approach, where the analysis begins

with a search and more context is added as needed [138, 143]. Orchards provides keyword search

functionality where partial matches of node attributes are displayed in a list (Figure 4.5A). Users

can navigate to the matched nodes by tapping on one of the results, which initializes the pivot trail

with the required pivot node and constraints.

4.5.5 Reflective Pivots

A special type of pivot operation are reflective pivots, i.e., pivoting from/to the same node type. As

there are no self-referential nodes in k-partite networks, this interaction is, in theory, meaningless.

With Orchard we address this semantic gap by treating two consecutive pivot nodes with the same

type as an instruction to project their matching nodes to a homogeneous network (DG4 ). Such a

projection generates a link between any pair of matched nodes, if they are linked to the same node of

another node type specified by users. The assigned link weight between such a pair of nodes is defined

by the number of distinct nodes to which the pair is connected in their heterogeneous context. Since

network projections are computationally expensive, Orchard computes the results in a progressive

fashion, giving users the ability to refresh the results on demand. The result of a projection is

displayed as a link list comprising pairs of facets values and counts indicating how frequently that

combination occurs (the link’s weight). The link semantics can be changed by changing the node

type used in the aggregation strategy, allowing users to create arbitrary projections of interest. For

example, as Figures 4.5D-F illustrate, a repeated swipe on Character leads to a projected network

shown as an edge list in Figure 4.5E. Changing the aggregate pivot, for instance, to Topic, will

re-project the current sub-network, creating pairs of Character nodes if they are connected to the

same topic. The edge list behaves analogously to the node list; items are sorted based on the link

weights, and pairs of node attributes can be selected as constraints, i.e., filter predicates.
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4.6 Applicability

Orchard’s design facilitates domain-agnostic, casual exploratory workflows of multivariate heteroge-

neous networks. To demonstrate its broad applicability, we tested Orchard on a number different

datasets, ranging from politics, social media, to sports and cooking. In this section, we briefly

highlight three exploration examples and detail the steps of a fictional usage scenario using a movie

dataset (also depicted in the supplementary video).

4.6.1 Usage Scenarios

Given a dataset containing political lobbying information of the city of Chicago [1], our users found

answers to questions such as: who are prolific or unsuccessful congress members? Who do they work

with? What are common topics in the bills they endorse? Who endorses similar bills? Is there bias

in different committees?

Using “likes”-data from Facebook [115], we set out to enable users to explore how different artists

and public figures relate to companies, food, sport and TV shows. We annotated the data with

additional information through public knowledge graph APIs. For example, we added descriptions

such as singer/songwriter for Taylor Swift or Fast-Food company for McDonald’s. Browsing this

dataset, users were able to quickly identify unexpected and entertaining commonalities between

celebrities.

Finally, from a publicly available soccer dataset [93] we extracted information about entities such

as players, matches, leagues, and teams. Our users were interested in answering questions such as:

which players have played against each other most frequently? How many teams have they played

for? Have these players ever played on the same team? Which leagues transfer most players among

each other?

4.6.2 Film Dataset Use Case

Emily - a film enthusiast - heard rumors about a new James Bond film being released soon. Knowing

that Daniel Craig will be starring in the new Bond film, she is curious to learn more about other

Bond films, associated actors and actresses, their roles, and so on. On her commute back from work

Emily launches Orchard on her mobile phone and selects a dataset containing information about

films and TV shows, such as title, release year, ratings, associated people, characters, and topics

(see Figure 4.3 for more details).

What film characters are named “James Bond”? Emily first uses keyword search for “James

Bond” and sees multiple potential facet types in which to search for a match (Figure 4.5A). She
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Figure 4.5: Different views in Orchard. (A) Keyword search with result listing; (B) The context menu
of a pivot node in the pivot trail; (C) An example of customizable detail view for a specific node,
in this case the Wikipedia page of an actor; (D,E) Shows an example of a reflective pivot: swiping
from Character to Character projects a subset of network nodes shown in (D) to a homogeneous
Character ↔ Character network (E). The result of this operation is a list showing a selected
attribute (character name) of pairs of nodes (E). Each pair shares one or more linked nodes of a
selected type (Film in this case). Selecting a pair of nodes in this view is equivalent to selecting
both nodes individually such that they can be used as facets for subsequent views (F).
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decides to match against characters named “James Bond,” and then find all associated films. To do

so, she selects the Character node type from the search results (Figure 4.5A) and picks the exact

match, which also has the greatest number of associated Film node types (Figure 4.4). To pivot

to all films associated with the James Bond character, she touches the Film tab on the right and

swipes left to reveal the results.

Which James Bond film has the highest rating? Emily changes the aggregation strategy, setting

it to Film.Rating. She then sorts the results in descending order by tapping the sort icon next to

the aggregate arrow next to the aggregation strategy.

What topics are associated with James Bond films? Curious about the topics associated with

any of these films, she swipes left from the Topic tab. While scrolling through the list of James

Bond film topics, she finds that there are three different kinds of “Aston Martin” topics, with 1, 2,

and 1 linked films, respectively (Figure 4.5B). But how many of them are James Bond films? She

swipes left from the Film tab to see all films associated with these topics. She then taps the link

icon next to the prior “James Bond” Character selection to add this facet to the current filter. As

a result, all non-Bond films are removed from the results list.

Which actors played James Bond in these films? Emily swipes left again from Person to get

a list of actors. She knows Pierce Brosnan, Roger Moore, and Sean Connery, but who is George

Lazenby? To find out she taps on the “Details” button at the bottom, which takes her to a detail

view, in this case George Lazenby’s Wikipedia page (Figure 4.5C).

Which Bond characters frequently appear together? Emily goes back to the previous view by

swiping right, and then swipes left from Character to see all characters associated with Bond films

(Figure 4.5D). To learn which of these characters frequently co-occur in the same film, she swipes

left from Character again to project the current heterogeneous sub-network (Character ↔ Film)

to a homogeneous network (Character ↔ Character). She finds that James Bond and Blofeld are

the most frequently occurring pair, co-occurring in three different Bond films (Figure 4.5F).

4.7 Evaluation

To assess the utility of Orchard, to learn how quickly users are able to grasp how to formulate

common network queries, and to uncover potential usability issues in Orchard, we conducted a lab

study with 12 participants (4 females). All participants were graduate students and all except one

reported to be at least “slightly interested” in films and TV shows.
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ID User Study Task Low-Level Tasks

T1 In which year was the film “The Shaw-
shank Redemption” released”?

L1, L2

T2 Which people were involved with this
film?

L3, L7, L8

T3 Of the people involved with this film,
who contributed most to other films?

L4, L5, L6

T4 Of the people involved with this film,
who contributed to the most distinct
genres?

L4, L5, L6

T5 How many writers contributed to the
film?

L6, L8

T6 Who were these writers? L3, L4, L5, L8

T7 Which other films have these writers
worked on together?

L3, L4, L5

T8 Which two people associated with this
film are the strongest collaborators?

L9, L10

Table 4.2: Eight tasks we asked used in our user study, and their corresponding low-level tasks
(shown in Table 4.1).

4.7.1 Dataset and Tasks

We designed our study based on similar experiments carried out in prior work [156]. As most people

have at least some familiarity with films or TV shows, we decided to create a custom movie dataset

containing data from IMDB (www.imdb.com/interfaces) joined with with topics extracted using our

own algorithms from film plots in the CMU Movie Summary Corpus [12]. We then developed a

series of tasks for evaluating Orchard. The tasks are inspired by Pretorious et al.’s task taxonomy

for multivariate network analysis [110] which is based on work by Lee et al. [83] and Amar et al.

[6]. We considered only those tasks that are equally applicable to homogeneous and heterogeneous

networks alike (Table 4.2).

4.7.2 Procedure

We began with a five-minute demonstration of the features of Orchard by walking the participants

through a scenario similar to the introductory use case described in Section 4.6.2. The demonstration

included knowledge required to accomplish the eight tasks we created for this evaluation. Following

the introduction we handed the mobile phone over to the participants and asked them to repeat the

same or a similar sequence of steps. The participants were encouraged to ask questions during this

initial phase. In the second part of the study we instructed participants to complete eight tasks we

prepared (Table 4.2). They were given two minutes to solve each task without any help. If they

were not able to find an answer in two minutes, we showed them how to get to the solution. In
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the third part of the study we asked participants to freely explore the dataset. During this process,

participants were encouraged to think-aloud, i.e., to narrate their actions, intentions, and reactions.

Finally, we gave participants a questionnaire and conducted semi-structured interviews to collect

their feedback. Each session lasted approximately 50 minutes.

4.7.3 Results

In the second part of the study the majority of our participants were able to complete all eight

tasks quickly (Figure 4.6), given that they had only gone through approximately ten minutes of

introduction and training that covered a total of 14 operations to prepare them for the tasks. More

than a half (56.3%) of all tasks were completed in less than 30 seconds, and 21.8% in less than 10

seconds. In only 14.6% of all cases, participants exceeded the two-minute limit and were offered

assistance. In T1, for instance, some participants struggled to find the keyword search or the button

to get to the details of the selected film(s). In T3, some participants forgot how to change the

aggregation strategy to configure what is being shown in the bar chart. However, once they found

out they were able to complete a similar task much faster (T4). A task of similar complexity was

T5, which required participants to use and configure three pivot nodes, as well as the aggregation

strategy. Out of all twelve participants, only one was unable to correctly apply facets such that

the count of writers was restricted in the manner directed. Similarly, only one participant needed

assistance in T6 because he did not remember he could swipe left on person to see the people’s

names associated with a selected role. In T7, some participants forgot how to change the boolean

operator from matching any selections, to match all selections. Finally, most participants did not

immediately recall how to create pair-wise combinations, but were able to figure it out in less than

a minute.

In the third part of the study we asked participants to freely explore the dataset. We made the

following key observations:

• Intuitive swiping: Participants were immediately comfortable navigating back/forth by swiping

left or right. Swiping on a related entity to pivot was reported to feel natural and intuitive.

• Long pivot trails: The number of nodes in a pivot trail during exploration can grow rapidly.

Various participants pointed out that it would be helpful to be able to store intermediate

results by collapsing a (sub)-trail into a named pivot node.

• Difficulty in distinguishing between lateral pivoting and drill-down filtering: Although most

participants were able to understand the semantics of Orchard quickly through trial-and-error,
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Figure 4.6: Task completion time for each task.

we observed that it was not immediately obvious to participants which facets were applied to

the current view, i.e., how activating links in the trail affect the result in the current view.

• Opportunity in exposing the computational path on demand : While our query model hides

the complexity of queries that involve multiple hops, some participants mentioned that expos-

ing the computational path on demand would help users gain a better understanding of the

network’s topology.

• Configurable defaults: In some cases users would have preferred different defaults (e.g., the

default aggregation strategy per node type, the order of node types in the swiper).

When completing a questionnaire of five questions using a 7-point Likert scale (1: “Strongly dis-

agree” to 7: “Strongly agree”; Figure 4.7), despite the minimal training, most participants indicated

that Orchard was easy to learn and use (Q1 and Q2). Participants also indicated that Orchard

helped them find new and re-discover previously known insights (Q3 and Q4), and that swiping

aided orientation while navigating through the network (Q5).

In addition, we overall received encouraging feedback: “Once I got used to the defaults it started

to become very intuitive.”; “I liked the trails because it was very visual, you can think about everything

as a line, everything is like a chain.”; “Swiping to navigate felt very intuitive.”; “Exploration was

easy, you get where you want to.”; and “I see this broadly applied to other datasets.”
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Q1 Q2 Q3 Q4 Q5

Question / Statement

1

2

3

4

5

6

7

Strongly
agree

Strongly
disagree

Q1: The system was easy to learn
Q2: The system was easy to use
Q3: The system helped me find insights I didn't know about before
Q4: The system helped me confirm/re-discover things I knew before
Q5: Swiping left/right was helpful for orientation

Figure 4.7: Results of our post-study questionnaire.

4.8 Future Work

While we have received encouraging feedback, there are a number of intriguing opportunities for

extensions and improvements. Orchard currently supports on-demand network projections for any

pair of node types, for any sub-network. Although our prototype shows weighted links for any

combination of two nodes aggregates, we believe that users would benefit from a tighter integration

with homogeneous projections. More specifically, Orchard could extract entire groups of nodes

from projected (sub-)networks, i.e., by computing clusters/communities, connected components,

etc. Homogeneous projections also open up new possibilities to add meta-data to nodes that could

be used for actions like sorting. For instance, users could sort a list of nodes by common metrics

used in network analysis, such as degree- or betweenness centrality, rather than just an aggregated

facet value or facet count. However, blending-in concepts from homogeneous networks in workflows

for exploring heterogeneous networks also poses challenges: how can we better communicate what

projected networks represent, and how can we convey what complex networks metrics indicate in

a way that non-expert users can understand? These questions would be useful to pursue in future

design iterations.
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4.9 Conclusion

We have presented Orchard, a mobile application that uses a novel query model to facilitate a

simple user interface design to explore multivariate heterogeneous networks. Using our approach,

minimal user input is required to formulate common network queries. With Orchard, users can

fluidly navigate through multivariate heterogeneous networks, using gesture-based mechanisms to

create facet trails, to pivot to entities of interest, and to collect and apply facets as part of an

exploratory workflow. Given the ubiquity of information networks and the encouraging feedback we

received from experts and lay users, we see great potential in providing a mobile solution for casual

browsing of richly associated datasets.



Chapter 5

Discrete Time Specifications In

Temporal Queries

5.1 Abstract

Analysis, exploration, and visualization of time-oriented data are ubiquitous tasks in various appli-

cation domains, all of which involve the execution of temporal queries. Prior research in interactively

specifying the time component for such queries has been focused on defining temporal relationships

in data, i.e., querying event sequences through ordinal patterns. However, there has been much less

emphasis on how to specify time as a quantitative data dimension in temporal queries. Motivated

by the advent of the Internet of Things (IoT), we present a formal model that can be used to repre-

sent complex time specifications. Our model is the first step in an effort to enhance temporal user

interfaces that enables discrete time specifications through a visual query interface.

5.2 Introduction

Various research efforts have identified and formulated both goals and tasks for information vi-

sualization, many of which include interaction in addition to visual tasks. Shneiderman [123], for

instance, defined a task by data type taxonomy that comprises interaction tasks such as zoom, filter,

and extract. Similarly, Yi et al [150] derived categories of interaction tasks, including “show me a

different arrangement,” “show me a different representation,” and “show me something condition-

ally.” While many interactive data exploration systems [34, 43] have built features to support these

kinds of tasks for various data types, most offer only limited support for performing such tasks on

57
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time-oriented data.

An exception to this observation is the large body of work in the area of event sequence analysis,

which has produced user interfaces that overcome the limited expressiveness of ordinal time specifi-

cation techniques (e.g., [151, 98, 99, 148, 57]). However, such systems mainly focus on ordinal time,

i.e., the relationship between events. Other applications treat discrete time as a regular, linear, and

quantitative data dimension, where interactive parametrization is often limited to defining the start

and end point of a time interval. Motivated by an IoT scenario, we argue that such systems are not

suitable to express queries that exceed the complexity of simple interval- or calendar-based filters,

since they either lack expressiveness or have a steep learning curve due to dialog-heavy interfaces or

complex query languages.

As part of our endeavor to create a gestural interface for specifying time for temporal queries while

also encouraging iterative and fluid exploration, this paper investigates a compact and expressive

structure to parametrize discrete time using the basic time building blocks instants, intervals, and

spans.

5.3 Motivating Examples

Our work is motivated by a recent experiment we conducted in the computer science building

at Brown University. Throughout the building, we installed a number of IoT devices that record

measurements and events, such as the current energy consumption of printers and vending machines,

as well as motion in classrooms and when doors are opened or closed. An example of recorded data

can be found in Table 5.1. In the following, we provide use cases to illustrate the importance of

temporal interfaces that enable users to specify complex queries.

5.3.1 Example 1

The facilities department is responsible for management, maintenance, and scheduling of the build-

ing. In regular intervals, a facilities manager opens a web-based monitoring application, which

displays information for all motion and temperature sensors as well as energy monitoring devices

installed in the building. He is interested in finding anomalies in the recorded temperatures of all

rooms in the building. While the application displays a linearly re-sampled representation of all

temperature time series so they visually fit on the screen, he wants to zoom into last week’s records

in order to look at a more fine-grained resolution and detect unusual patterns.



59

Time Type Value Dev Id Dev Type

1483030839180 open NULL d1:front door
1483030842534 watts 669 v1:coke outlet
1483030843573 closed NULL d2:front door
1483030844573 watts 669.7 v1:coke outlet
1483030852564 watts 668.7 v1:coke outlet
1483030853525 watts 669.2 v1:coke outlet
1483030857530 watts 668.2 v1:coke outlet
1483030858033 open NULL d1:front door
1483030858549 watts 669.1 v1:coke outlet
1483030861628 watts 668.4 v1:coke outlet
1483030863981 closed NULL d1:front door
1483030866552 watts 669.4 v1:coke outlet
1483030867478 watts 668.8 v1:coke outlet
1483030873516 watts 667.7 v1:coke outlet
1483030874589 watts 668.2 v1:coke outlet
1483030876625 watts 667.7 v1:coke outlet
1483030878471 watts 666.4 v1:coke outlet

Table 5.1: A sample from our IoT dataset showing measurements made for two doors (d1,d2) and
a vending machine (v1).

5.3.2 Example 2

The facilities manager notices that the energy consumption of one of two co-located vending machines

has remained steady over the course of the past 24 hours, indicating that no sales have been recorded.

Since this is abnormal, he then decides to manually examine the machine and determines that there

is indeed a technical issue. Because repair work on either vending machine can disrupt the service

of the other, he wants to find suitable time slots for scheduling a repairman at times where the

working vending machine is used the least. Knowing that repair work typically takes a maximum

of two hours, he wants to find times on workdays between 9am and 3pm with low vending machine

usage (i.e., low energy consumption). Based on the visualization shown in Figure 5.1, he schedules

an appointment with the repairman.

5.4 Background

The goal of our work is to provide a formal description of a structure that can be used to parameterize

time as an argument for temporal queries. We first recapitulate important time modeling design

aspects that are typically considered when visualizing time-oriented data. We then give a brief

description of a few selected systems that support data selection by time, before formally defining

our model in the next section.
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Figure 5.1: A sample visualization where a facilities manager executed a query to find time slots of
two hours in length where the usage of a vending machine is below some threshold (shown in green).

5.4.1 Time Modeling

A wide variety of models have been proposed in past research. In the following, we provide a brief

overview (based on [7] and [56]) of time-related objects and the properties most relevant to our work.

Time Domain Time can be categorized into either an ordinal, discrete, or continuous domain.

Ordinal time only defines relative order relations, such as before and after. Continuous time most

closely models physical time, where an infinite number of points in time exist between any other

two points. Discrete time uses a discrete time unit (e.g., a UNIX timestamp denoting the number

of elapsed seconds since January 1, 1970).

Time Primitives Time Primitives are the building blocks of a time model. We distinguish

between instants, intervals, and spans. An instant refers to a point in time with finite precision

in the discrete time domain and infinite precision in the continuous time domain. We define

an interval as a closed interval between two instants. Both instants and intervals are anchored,

meaning that they have a fixed position in time. Spans represent a duration of time (e.g., three

seconds) and are, therefore, unanchored.

Granularity Time can be represented at different levels of granularity. The granularity

of time determines how temporal primitives are transformed to other conceptual units of time.

For instance, the Gregorian calendaric elements Saturday and Sunday can be summarized as a

weekend, or a day can be represented as 24 hours.

Rind et al. presented similar work on a software library called TimeBench [114], that provides
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data structures and algorithms for visual analytics of time-oriented data. In particular, they devel-

oped a data model that captures the complexity of time-oriented data by mapping data objects to

a set of time primitives and vice-versa. Our work, in turn, focuses on a more formal and expressive

notation for time specifications that parametrize time as an argument for temporal queries.

5.4.2 Time Specification Techniques

A common technique to drill down in time series data (used by systems such as ChronoLenses [155]

and KronoMiner [154]) is to select regions of interest using rubber band selections. In both systems,

selected time ranges can be shifted using a drag-and-drop gesture. With KronoMiner, start and

end values can be adjusted precisely using a pop-up dialog. TimeSearcher [62] uses a concept called

timeboxes, which are similarl to the rubber band selection. Timeboxes are rectangles that can be

drawn directly on a line graph visualization of a time series. While the extent of a timebox along

the horizontal axis defines the time range of interest, the location on the vertical axis and height

of the rectangle specifies the desired amplitude range. Queries can be refined in either dimension

using range sliders. A more recent example of an application that allows users to explore time-

oriented data and offers similar basic operations is LiveRAC [94], a system tailored to the visual

analysis of large collections of system management time series. Tableau [130] offers a way to create

parametrization controls, which can be applied as filters. A parameter (e.g., a start date) can be

defined with a minimum and maximum value as well as a step size. An interactive slider control can

then be used to set the parameter.

5.5 Time Specifications

In this section, we introduce a model that can be used to parametrize temporal queries, such as the

ones outlined in the previous section. Because time in information technology is usually represented

in the discrete domain, we will assume discrete time for all primitives.

We first describe a time-oriented query function Q that we aim to parametrize.

Q({ts0, ..., tsn}, λ, d) (5.1)

Queries on time-oriented data are typically defined by temporal and non-temporal parameters,

{ts0, ..., tsn} and λ, respectively, as well as the data d for which the query is defined. We call each ts

a Time Specification. A Time Specification is a set of Time Primitives that each can represent an

instant, interval, or span, as we will show. More formally, we define a Time Primitive tp as a tuple

〈S, δ, σ〉, where the start time S and duration δ represent a time interval [S, S + δ). σ indicates a
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stride or time step that we will use to support temporal partitioning. All values in ts are defined

in a time unit (e.g, milliseconds or ticks). Typically, S is defined in N, δ is in Z, and σ can be set

to either a value in N+ or to ∞. The non-temporal argument λ is defined as a function that takes

in a finite set of data satisfying the temporal constraint given by all ts. This could be an aggregate

function, such as an average for a particular data attribute. Conceptually, Q first partitions the

data based on the temporal specifications given by t and then applies λ to each partition.

With tp, an instant can expressed by setting S to the timestamp of the instant, the duration δ

to zero, and the stride σ to ∞. To describe intervals, we set S to the start time, δ to the difference

between the start and end times, and σ to∞. By definition, spans are unanchored, i.e., they are not

specified by a start time and end time, but rather only by duration. However, spans are typically

used to parametrize windowed functions in order to extract intervals of a given span duration (time

span) at discrete steps (temporal partitioning). This is reflected in our model by the stride parameter

σ. Setting a stride to infinity, as done for instants and intervals, means that λ is only applied to a

single partition of data (an instant or interval). Conversely, setting a stride to a positive integer σ,

can lead to one or many potentially overlapping partitions, which can be seen as defining multiple

Time Primitives at once, each of duration δ but with varying start times. We formally define tp as

〈S, δ, σ〉 =

n−1⋃
i=0

〈S + i · σ, δ,∞〉 (5.2)

where

n =

floor( δσ ), if σ 6=∞

1, otherwise

(5.3)

To illustrate the applicability of Time Specifications, we provide a number of examples that

show how both simple and more complex time constraints can be represented using our model. For

simplicity and readability, we do not use a particular time unit in the following specifications.

5.5.1 Examples

11am, January 1st, 2017

↓

{〈11am, January 1st, 2017, 0,∞〉}

A single instant can be represented by a Time Specification with a single time primitive.

January 1st and January 3rd, 2017

↓
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{〈January 1st, 2017, 0,∞〉}

∪

{〈January 3rd, 2017, 0,∞〉}

Consequently, n non-consecutive instants are represented by n time primitives.

10am to 2pm, February 20st, 2017

↓

{〈February 20st 10am, 4h,∞〉}

An single interval is represented by setting the duration. Analogous to the previous example,

non-consecutive intervals can be expressed by defining multiple time primitives.

Past hour

↓

{〈Current time, -1h,∞〉}

Negative durations can be used to specify an interval from S − δ to S.

All weekends

↓

{〈First Saturday 1970 in Unix Time, 2d, 7d〉}

A span is defined by setting the stride to a positive integer, in this case seven days. Since “all

weekends” does not constrain the time range in which weekend intervals are to be queried, the start

time of this specification is set to the first occurrence of a Saturday in the given time unit.

All 24h windows with stride of 1h in the past week

↓

{〈Current Time, -7d,∞〉}

∩

{〈First Unix day, 24h, 1h〉 }

In this example, the user is looking for a span (24h) within a certain interval (past week). Since

the query has to satisfy each of the time constraints imposed by a time specification, we can limit the

temporal search space for a span by adding an additional interval primitive to the time specification.

5.6 Discussion and Future Work

Time Specifications compactly describe discrete time instants and intervals as well as periodic in-

tervals and can easily be translated into queries over data (e.g., using SQL). Their expressiveness

has been particularly useful to formulate sample queries, which we used to determine and compare
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Su Mo WeTu Th Fr Sa

29 30 131 2 3 4

5 6 87 9 10 11

12 13 1514 16 17 18

19 20 2221 23 24 25

26 27 128 2 3 4

Mo WeTu Th Fr

Februrary 2017

Figure 5.2: Depicts a possible scenario of how a time primitive can be turned into a new time
specification. In this case, an interval (Mo, Feb 20 to Fr, Feb 24) is dragged out of its original
context (the calendar) and thereby converted to all weekdays (query-by-example).

Mo WeTu Th Fr

Query

9am 5pm

Figure 5.3: Shows two time specifications (Mo-Fr and 9am-5pm) that fully specify the temporal
argument of a query.
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the capabilities of existing interactive data exploration systems that support time-based data. Con-

sider our motivational examples: a possible time specification for last week in Example 1 could be

〈Current time, -7d,∞〉. The time constraints in Example 2 could be described by first specifying

weekdays as 〈First Monday in Unix Time, 5d, 7d〉 and then intersecting it with the daily time range

〈First Unix day 9am, 8h, 1d〉.

Although our model makes it easy to reason about and express time-dependant queries, there

are many open questions that must be answered so that users can easily and naturally express

queries in a visual interface. While we showed that a wide set of time-based constraints can be

specified using just three parameters, a remaining challenge is to determine how users can define the

parameters to construct a time specification in a user interface, and which operations they can use

to derive parameters from existing specifications. A key aspect thereof is the notion of granularity,

since humans use abstractions when they talk about time. The parameters in the example time

specifications shown in the previous section are defined in different time units such as hours, days,

weekends, and years. Although many systems provide mappings from higher level granularities to a

discrete time domain (e.g., Unix time and vice versa), many support only a fixed set of pre-defined

granularities, as Rind et al. [114] point out. While useful in some some cases, we believe that

an expressive visual query language should facilitate intuitive ways to define, modify, and derive

the parameters used in our model at both pre-defined as well as custom granularities. Figure 5.2

schematically depicts a case where an anchored interval can be turned into a span by moving it out

of its original context.

Based on this work, we are currently designing a novel gestural interface that allows for incre-

mental specifications of time-oriented queries. We envision an iterative query building workflow that

resembles the iterative build-up of formal specifications. As described in the previous paragraph,

a user with the intention to constrain a temporal query to hours 9am - 5pm on weekdays would

split up the query into (1) specifying weekdays, (2) specifying the hours, and (3) connecting the

two specifications to fully define the temporal arguments of the query. Figure 5.3 schematically

illustrates such a scenario.



Chapter 6

Forecasting for Non-Experts

6.1 Abstract

Time series forecasting is a common data science procedure used for an abundance of tasks such as

inventory and staff planning, prediction of financial assets, projecting electricity consumption, as well

as anomaly detection. However, developing time series forecasting models is technically challenging

and requires domain expertise. In this chapter, we present a system that facilitates an end-to-end,

mix-initiative forecasting workflow for non-experts users. It exposes a set of tools that allow users to

identify and explore time series in regular tabular datasets, and enables them to quickly specify and

find solutions for common forecasting problems. Users can iteratively add and adjust parameters

such as exogenous regressors, upper and lower bounds, as well important events that may impact the

forecast. Furthermore, users can explore the effect of custom interventions, and inspect the impact

of different variables on any predicted data point.

6.2 Introductory Use Case

Time series forecasting is complex and requires domain expertise to develop high-quality models. To

provide some intuition of the complexity of the steps involved in an end-to-end time series forecasting

workflow, consider the following fictional use case.

Emily is a crypto-currency enthusiast. To optimize her gains she wants to see if she can develop

a price forecasting model that will help her optimize her trading strategy. She downloads a dataset

containing historic real-time Ether prices. The dataset contains two variables: a UNIX timestamp,

and the price of 1 Ether in US Dollars. As a first step, she must concisely define the problem she
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wants to solve. She decides that she wants to predict daily closing values, using a week worth of

hourly closing prices. However, the raw data is not isochronous, i.e., does not occur at equal time

intervals, and was recorded at a much finer grained resolution (multiple times per second). She

therefore needs to prepare the data accordingly, which includes aggregating the data per hour and

day using an aggregation function such as the average or median. She then decides to start off with

a basic autogressive integrated moving average (ARIMA) model. As a trained statistician, Emily

knows that ARIMA requires the input time series to be stationary (a time series that does not have

trend or seasonal effects). Yet, given its recent upward trend and the obvious daily periodicity,

Ether prices clearly exhibit non-stationary characteristics. To make it stationary, Emily decides to

reformulate the problem. Rather than predicting the price, she now wants to predict the difference

of the price at time t vs. t − 1. She then performs a statistical test called Dickey-Fuller test to

validate that the transformed time series is indeed stationary. To see how well her model performs,

Emily decides to use a Walk-forward validation, i.e. to re-train the model after each prediction step,

and to use root mean squared error RMSE as error metric. Based on her first model she decides to

train a new one but using a different set of hyper-parameters. Success: the new model leads to a

slightly lower RMSE. But is this model statistically superior than her first one? To find out Emily

applies the Diebold-Mariano test statistic, which is commonly used to compare the forecast accuracy

of two forecast methods. Finally, knowing that model 2 does not perform significantly better than

model 1, Emily wants to train a new model, but this time with more input data than just historic

price values. Specifically, she hypothesizes that adding prices of other crypto-currencies, as well as

stock prices to the training set might lead to better forecasts. However, because ARIMA cannot

be used for multivariate time series forecasting problems, she decides to use Vector Autoregression

algorithms, Long-Short-Term-Memory (LSTM) models, etc.

6.3 Desiderata

6.3.1 Tasks

To assist non-scientists in scenarios such as the one described above, we break down the forecasting

process into the following tasks:

• Problem Definition: What is the forecasting target? A single variable, multiple variable, single

time steps, multiple time steps? What are alternate definitions of the problem?

• Training data selection: Which data should I use for my predictions? Historical values of

univariate time series, or multivariate time series? Is the data in the right format, e.g., is it
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isochronous? With which datasets can I augment my training data?

• Model Selection: Which models are suitable candidates for my problem? Which models work

well for my data size? Are there model-specific assumptions on the data?

• Evaluation: What is a reasonable train/test split? Which metric should I use? How should I

interpret the metric? How can I determine which forecast is better?

Although some of these steps can be automated, the role of domain experts is crucial for incor-

porating useful assumptions and heuristics [133]. For instance, they can formulate and re-formulate

forecasting problems to facilitate automated search for solutions. They can add hints to make it

easier for AutoML components to find solutions faster. For instance, many time series exhibit trend

changes, seasonality dependent value increases or decreases. Domain experts are able to articulate

such phenomena in advance. They are also aware of calendar-based events that may affect the tra-

jectory of a time series, such as holidays, product launches, political events, etc. Finally, they know

what other variables might be a useful in predicting the variable they want to forecast, or can define

reasonable lower and upper bounds for their predictions.

6.4 Exploring Time Series in Tabular Datasets

6.4.1 Time Series Characteristics

While there various different kinds of time series, such as high-frequency sensor readings, or low

frequency census updates, in this chapter we particularly focus on what Tylor and Lethman refer to

has business time series [133]; time series that are generated by human action. According to their

analysis, such time series have a number of common characteristics. On one hand, they typically

exhibit one or many seasonal effects, e.g., daily or weekly cycles. On the other hand such time series

contain one or many segments with a visible trend. And finally, the often contain outliers.

6.4.2 Time Series Cardinality

In their simplest form, time series are series of tuples containing a time and a numerical value.

Consider, for instance, Table 6.1, showing one-dimensional time series of total sales per month.

In most real-world use cases, however, a single table contains multiple series. For example, assume

that a single table contains multiple numerical measurements, each of which has a number of tags

such as the branch in which the sales was recorded, the sales person, product category, product

name, etc. (Table 6.2). In database terms, the number of possible tag combinations is referred to
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Date/Time Total Sales
2019-01-01 266.0k
2019-02-01 145.9k
2019-03-01 183.1k
2019-04-01 119.3k
2019-05-01 180.3k
2019-06-01 168.5k
2019-07-01 231.8k
2019-08-01 224.5k
2019-09-01 192.8k
2019-10-01 224.5k
2019-11-01 192.8k
2019-12-01 165.9k

Table 6.1: An example time series containing the total sales per month in 2019.

Date/Time Price Branch Employee ID Product ID
2019-01-01 8:02:21 3.50 Boston D291 P201
2019-01-01 8:02:21 1.10 New York D509 P371
2019-01-01 8:02:22 34.30 Atlanta D008 P746
2019-01-01 8:02:47 8.70 Boston D048 P847
2019-01-01 8:02:47 9.00 Boston D048 P746
2019-01-01 8:02:48 1.20 Atlanta D834 P371
2019-01-01 8:02:49 2.90 Atlanta D732 P201
2019-01-01 8:03:11 2.45 Atlanta D981 P913
2019-01-01 8:03:13 7.65 New York D416 P821
2019-01-01 8:03:14 3.05 Boston D948 P991
2019-01-01 8:03:14 6.40 New York D487 P334
2019-01-01 8:03:14 1.10 Boston D691 P872

. . . . . . . . . . . .

Table 6.2: An example time series containing the total sales per month in 2019.

as the series cardinality of a dataset. However, the number of series is not limited by the tags. In

many cases datasets grow so big that individual recordings become less important than aggregates

thereof, such as a monthly sum as shown in Table 6.1. This means that the series cardinality of

a single datatable is defined by the number of combinations of all tags, as well as all aggregation

possibilities. Given the large space of different possibilities, it is key to provide tools that make it

easy to isolate and explore these different series.

6.4.3 Exploring Time Series

In Northstar, a data science platform we built as part of a DARPA’s D3m program, we added a set

of tools facilitate the exploration of the many time series that may be present in a tabular dataset.

When loading a new dataset, the system shows all attributes (columns) in the menu on the left
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Figure 6.1: Shows the user interface of Northstar and a time series plot showing the number of
records in the current dataset per year.

hand side (Figure 6.1). To visualize any time-based attribute, users can drag them out and drop

them onto the workspace. Doing so adds a linegraph to the workspace, which, by default, depicts

the number of records (rows) in the dataset for a given time step (year in the case of figure 6.1). To

replace the count of rows with a different measurement, users can drag and drop any other numeric

attribute on the y-axis (Figure 6.2). By default, the system chooses a suitable time granularity

given the space constraints of the visualization. In Figure 6.2, for example, the system decided that

aggregating the data on a per-month basis would lead to too many data points given the size of

the visualization. Therefore, it uses a yearly aggregation level instead. The time granularity can

be configured by the user and they can choose how data is aggregated across time by picking an

aggregate function. For instance, in 6.2 a user might be interested in plotting the total, i.e. the sum

of all crop production values, rather than an average or count.

In Northstar, any plot can be used as an interactive filter to perform visual linking and brushing.

Figure 6.3, for instance, shows how the plot from Figure 6.2 can be constrained to only visualize

the total production of “Cereals” in the “Amhara” region of Ethiopia: a user first drags out the

“category” and “region” attribute, for which the system creates an interactive bar chart, by default.

The user visually connects the two plots, and selects the relevant tags directly in the plot. Optionally,
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Figure 6.2: A time series plot showing how the total crop production in Ethiopia has developed over
time. The aggregation function (sum, in this case) can be changed through the menu on the left.

the logical boolean operator that defines how these two sets are merged can be configured by tapping

on the icon where the links meet.

Similarly, any time series plot can be “brushed”, i.e. selected portions in surrounding plots

are highlighted in different colors. In Figure 6.4, for instance, a user compares the production

development for two different crop categories, cereals and root crops, which are highlighted with

their respective color.

6.5 Forecasting

6.5.1 Univariate Forecast

The forecasting process works as follows: First, users use the exploration tools introduced above to

identify a time series of interest. From the operators menu on the left, they drag and drop a forecast

operator onto the workspace. To initiate a forecast, users can then connect the time series plot to

the forecasting operator, making that time series the target of the operator. When pressing the play

button in the bottom left, the system computes a univariate forecast based on all historical values.

Our system uses the algorithm proposed by Taylor and Letham [133], a decomposable time series

model using the following three components: trend, seasonality, and (possibly irregular calendar-

based events that may affect the time series and its forecast. The algorithm is a generative additive

model defined as:
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Figure 6.3: Users can isolate arbitrary time series in a dataset by applying filters to a time series
plot. In this example, two tag constraints are applied to the time series at the bottom.

y(t) = g(t) + s(t) + h(t) + εt (6.1)

where g(t) models non-periodic trends, s(t) models periodic changes, and h(t) models any other,

possibly irregular events such as holidays.

The results of the forecast are displayed as a continuation of the input time series (Figure 6.5.

By default the operator predicts the next 15 data points, spaced by then currently selected time

granularity (e.g., days, or months).

The horizon can be manually configured by the user; by dragging the vertical bars they can

choose to perform a forecast in a out-of-sample or in-sample fashion, or a mix of the two.

Each prediction can be inspected by hovering over it. When doing so, a pop-up appears showing

the predicted value as well as the decomposed trend and seasonal terms leading to this prediction.

Furthermore, to give users a sense of the confidence for each prediction, our system also shows

the confidence boundaries in gray.
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Figure 6.4: Time series can be brushed, i.e. highlighted with color, to put them in context. In this
example, a user compares the development of total crop production levels of two crop categories.

Figure 6.5: A univariate forecast of the average crop production levels in Ethiopia, with a horizon
of 15 years

6.5.2 Multivariate Forecast

In many cases, forecasts can be improved by adding additional time series data that might be

indicative of the progression of some other time series. Northstar allows users to add an arbitrary

number of such independent variables, i.e. regressors through the user interface. To do so, users can

define other time series using the steps described in the previous section. They can connect them

to the “regressor” input and then re-run the operator (Figure 6.6. Formally, an additional regressor

r(t) extends the model introduced in the previous section as follows:

y(t) = g(t) + s(t) + h(t) + r(t) + εt (6.2)

This change has an important implication on the forecasting process: Predicting y(t) requires a
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value of r at point t, which in it of itself is a forecasting problem. Our system resolves this prediction

order problem by first performing a univariate forecast on r named ˆr(t) it to solve for y(t) instead:

y(t) = g(t) + s(t) + h(t) + r̂(t) + εt (6.3)

Figure 6.6: To improve a forecast users can add an exogenous regressors.

6.5.3 Visual Intervention Analysis

In many cases it is helpful for users to understand the effect of certain interventions. Imagine the

crop dataset contained additional data such as weather information and fertilization recordings.

Users might ask themselves: how would an increase in precipitation or decrease in the amount of

applied fertilizer affect the yield and the production of crops? Similarly, when including exogenous

regressors in a forecast, there is a chance that domain experts have access to a more accurate model

than a simple univariate forecast on that regressor. To perform this kind of what-if analysis, users

can directly modify the forecasts of any regressor by sketching (Figure 6.7.



75

Figure 6.7: Shows the original data points (blue) and the model (red) for a regressor. In this case
the user replaced the forecast for the regressor with their own hand-drawn progression of the time
series (right-hand portion of the plot.

6.5.4 Related Work

A related system is TimeFork [11], which uses a mixed-initiative approach to perform time series

forecasting using pre-trained models. In TimeFork users are presented with multiple possible out-

comes of a prediction, allowing the users to iteratively perform a forecast with increasingly large

horizons. TimeFork assumes that the time series and models used are pre-defined, i.e., it only sup-

ports users in the actual prediction step of an end-to-end forecasting workflow. Another system,

TimOvA [19], is a visual analytics tool for time series model selection that was build to help domain

experts build ARIMA and Seasonal ARIMA models by enabling them to tweak the parameters

and inspect residual plots. However, TimOvA has several limitations: it only supports two basic

statistical models (no machine learning algorithms), the skills required to manually optimize the

parameters of these two models clearly exceed the ability of domain experts.



Chapter 7

IDEBench: A Benchmark for

Interactive Data Exploration

7.1 IDEBench: A Benchmark for Interactive

Data Exploration

n recent years, many query processing techniques have been developed to better support interactive

data exploration (IDE) of large structured datasets. To evaluate and compare database engines

in terms of how well they support such workloads, experimenters have mostly used self-designed

evaluation procedures rather than established benchmarks. In this paper we argue that this is due

to the fact that the workloads and metrics of popular analytical benchmarks such as TPC-H or TPC-

DS were designed for traditional performance reporting scenarios, and do not capture distinctive IDE

characteristics. Guided by the findings of several user studies we present a new benchmark called

IDEBench, designed to evaluate database engines based on common IDE workflows and metrics

that matter to the end-user. We demonstrate the applicability of IDEBench through a number of

experiments with five different database engines, and present and discuss our findings.

7.2 Introduction

Interactive data exploration (IDE), i.e., user-guided exploration of a database is an important task

in data analysis. IDE tools such as Tableau assist users in exploring databases by allowing them to

filter, group, and aggregate data through a visual user interface. The speed of computation when
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performing such operations is crucial. A study by Liu et. al. [87] showed that latencies greater

than 500ms can have a significant negative impact on user performance. Thus, relational DBMSs

are challenged to provide responses at interactive speeds for ad-hoc queries that users issue as they

explore data through a visual user interface. However, traditional analytical DBMSs, such as Mon-

etDB [97] or SAP HANA [51], often take seconds or even minutes to compute results on increasingly

large databases. To mitigate this problem various query processing techniques have been proposed

for DBMSs [5, 86, 34, 35, 89, 65, 127]. Examples include re-using previously computed results

[35, 54, 49, 32], employing specialized data structures, on-demand creation of stratified samples [35],

or performing speculative pre-computation based on previous interactions [68].

As the space of such techniques grows rapidly, comparing and evaluating their utility in the

context of IDE becomes increasingly important. Yet, the workload used in traditional analytical SQL

benchmarks such as TPC-H [136], TPC-DS [135], or the Star Schema Benchmark (SSB) [105] are

not representative of the unique characteristics of IDE, and their metrics are not primarily intended

to capture what matters to the end-user, rendering them unsuitable for IDE benchmarking. Our

analysis of IDE user behavior shows that workloads are typically composed of sequences of related

queries that are separated by time gaps. Users incrementally refine filters and visualize subsets of

data using multiple plots for different attributes and aggregate functions. Conversely, queries found

in existing benchmark are largely independent and unrelated, and meant to be executed back-to-

back. Furthermore, metrics used in existing benchmarks are unable to fully capture aspects that

are important to the end-user. They do not take into account different execution models, such as

blocking execution, where exact results are returned once all data is processed, and approximate

and progressive models, which can be configured to balance the trade-off between result quality and

query run-time. Moreover, the time a system takes to start up is largely neglected even though some

engines heavily rely on pre-processing (e.g. to create samples offline).

We argue that an IDE benchmark must not be solely based on the end-to-end run-time of individ-

ual queries. Instead it should report on metrics that reflect that trade-off between speed and quality,

as well as on the time it takes to pre-process data. Such metrics enable benchmark users and systems

builders to answer questions like, “can a system provide responses within interactive latencies”, “at

what cost in terms of quality of the result”, “at which data-size would a traditional column-store

like MonetDB outperform an approximate engine?”, “how much overhead do approximate query

processing techniques introduce?”, etc.

In this paper we present IDEBench, a new benchmark to facilitate comparison of database

engines tested under common IDE conditions. The design of IDEBench is driven by the findings

of five user studies we have conducted over the course of the past few years. First, contrary to



78

existing benchmarks, IDEBench generates and uses time-spaced sequences of aggregate queries as

its workload, which are representative of common query patterns we observed in the logs of our user

studies. Our goal is not to accurately simulate users, which is arguably impossible, but instead to

focus on a common denominator of IDE query patterns in query workloads that result from IDE

systems. Second, IDEBench uses real-world data. This is crucial since reporting the quality of

approximated results, i.e., accuracy and completeness, using synthetic uniformly distributed data,

for instance, would be meaningless. To that end, we built a data generator that can be used to

scale real-world datasets to any size while maintaining the original characteristics. Third, inspired

by prior work of the data visualization community IDEBench reports on metrics that capture the

trade-off between quality of results and query run-time. Finally, our benchmark is designed in an

extensible way that enables users to add custom datasets and generate workflows that match their

IDE use case.

In summary, the main contributions of this paper are: (1) We report on the results of an extensive

workload analysis of five user studies. (2) We present the design of IDEBench, an extensible bench-

mark that facilitates the evaluation and comparison of different database engines for IDE workloads.

The source-code of IDEBench is made available to the research community1. (3) We evaluated five

different database engines using IDEBench and present and discuss their results: two commercial

database engines, two research prototypes (IDEA, approXimateDB/XDB), as well as MonetDB.

7.3 Interactive Data Exploration

In this section we first describe an IDE scenario that exemplifies how users visually explore data

using IDE tools such as Tableau and Power BI. We then define the scope of our benchmark and

present a selection of DBMSs that are within this scope.

7.3.1 An IDE Example

Jean, a research staff member at a major hospital, wants to get an overview of the hospital’s patient

population and their health problems. To do so, she looks at electronic health records from the

past 20 years. Jean starts out by examining demographic information of patients and, for example,

finds that patients ages are normally distributed. She then continues to look for interesting patterns

in admission times and dates. Jean creates a query that shows the number of new admits per

hour of the day. The result reveals that most admissions are during business hours, but there is

an interesting bump from 7 to 10 pm. She filters down to admits from the emergency center and

1http://github.com/IDEBench/IDEBench-public
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Figure 7.1: A dashboard created by one of our user study participants using Tableau. She laid out
multiple visualization in a coordinated view (the dashboard), where all visualizations are implicitly
linked. In this example she selects a range of data points using a mouse gesture, filtering the three
linked visualizations (shown by the grey dashed arrows). This selection results in three concurrent
database queries.
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notices that most of the admissions between 7 and 10 pm were recorded there. Is this trend identical

on all days of the week? She refines her query to display admits on weekends and sees that the

bump shifted towards 10 to 12 pm. Who are these patients? Jean filters her previous age query

by patients admitted on weekends between 10 and 12 pm. She finds that patients ranging from 20

to 35 are over-represented in this subset when compared to the overall age distribution. Now Jean

wants to see which health problems are common among this sub-population. She finds that head

traumas occur frequently and decides to check with the administration if the hospital’s duty rota

accommodates for this by making sure a trauma specialist is on call during weekend nights.

7.3.2 Scope of Benchmark

The above scenario illustrates a visual data exploration paradigm, which is commonly referred to as

the Visual Information Seeking Mantra: “Overview first, zoom and filter, then details-on-demand”

[123]. Modern IDE tools such as Tableau and Power BI are built to support this paradigm. On

demand, users can create visualizations of attributes of interest, look at the distribution of associated

values, and zoom into subsets of interest before inspecting specific instances.

Often visualizations can be turned into active filters; a technique known as linking. Most modern

IDE tools can be configured to interpret selections of value ranges in a plot as filter that is sub-

sequently applied to other plots presented to the user. As a result, visualizations can be used to

conveniently slice and dice data, and to examine sub-populations.

Unlike traditional dashboards, in which all plots are pre-defined and (implicitly) linked [89],

modern IDE tools like Tableau and Power BI allow users to create custom dashboards, where plots

can be arbitrarily added, removed, modified and linked. Interactions such as creating, modifying

and linking plots, as well as selecting value ranges on an existing plot (filtering), trigger database

queries. For instance, a user selection on a plot that is linked to n other plots might results in n

concurrent queries. This paper focuses on IDE scenarios in which interactions like the ones outlined

above are supported, and on structured (i.e., relational) datasets that are too large to be processed

by a DBMS within interactive thresholds.

7.3.3 Database Landscape

Several commercial and academic DBMSs are either specifically built for IDE workloads, or can be

used to support them. In the following, we summarize this landscape through three categories and

provide examples for each.
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Analytical DBMSs This category represents database systems that efficiently execute SQL

queries in an exact manner. It includes column-stores and main-memory systems such as MonetDB

[97], SAP HANA [51], Hyper [71] as well as database management systems that are designed for

online analytical processing (OLAP) type workloads [26]. Their execution model cannot guarantee

interactive response times on large datasets.

Approximate DBMSs Contrary to analytical DBMSs, approximate DBMSs use either offline or

online sampling techniques to compute approximate answers. Most systems allow users to configure

the trade-off between computation time and the quality of the result through a time or quality

constraint as part of a SQL query. Examples include AQUA [4], VerdictDB [140], BlinkDB [5], as

well as approXimateDB [86].

Specialized IDE DBMSs Prominent commercial examples of this category include Tableau [130]

and its research predecessor Polaris [128], whose middle-layers are optimized for IDE workloads.

ImMens [89] uses pre-computation over the entire query space to keep query run-times at a minimum.

IDEA [54] is a middleware that provides interactive query execution on top of existing DBMSs

such as Postgres or raw data sources such as CSV files. IDEA uses an online aggregation-based

execution scheme to progressively compute and push query results to subscribers. Finally, DICE

[65] is optimized for exploratory cube analysis and leverages interaction delays (i.e., “think-times”)

and a user interaction model to predict future queries.

7.4 The Need for an IDE Benchmark

Although there are a number of existing analytical database benchmarks, this section highlights why

they should not be used for IDE, why a new benchmark for IDE is needed, and which requirements

it must meet.

7.4.1 Existing Analytical Benchmarks

Traditional analytical database benchmarks (TPC-H, TPC-DS, SSB) define a data-warehouse based

workload with a fixed set of pre-defined SQL queries: TPC-H consists of 22 business oriented SQL

queries, with a schema containing 8 tables (1 fact and 7 dimensions tables). TPC-DS comes with a

much more complex schema containing 24 tables (7 fact and 17 dimensions tables) and 99 queries.

SSB is based on TPC-H and re-organizes the database as a star schema with 5 tables (1 fact and 4

dimensions tables). SSB features 13 different queries, only some of which resemble TPC-H queries.

Yet, as we explain in the next section, none of these benchmarks are representative of IDE workloads.
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0

(a) Selectivity (b) Think-Times

Figure 7.2: a) Shows the selectivity for all queries of user study participants. b) shows the
distribution of think-times of all user study participants.

7.4.2 IDE Workload Analysis

To evaluate the applicability of existing analytical benchmarks, and to define benchmark require-

ments for IDE workloads, we draw on five independent user studies conducted with tools that are

representative of what we outlined in Section 7.3.2. The five studies were conducted with 109 partic-

ipants in total. Each study followed an open-ended (not tasked-based) protocol where participants

were asked to explore real-world and synthetic datasets, and instructed to think-aloud and report

insights that were noted down during the study. The only exception is user study 5, where we did

not have the ability to create think-aloud protocols. However, we were able to use the interaction

logs and query traces of the user study as basis of our analysis.

User Study 1 : Interactive Data Exploration Accelerators (IDEAs) For this study 35

participants were recruited to explore a subset of the 1994 US census, using a visual IDE system

called Vizdom that supports progressive visualizations using a pen-and-touch interface. Its frontend

was designed to interactively explore data by arranging 1D or 2D aggregate plots of attributes on

an unbounded canvas. Plots in the tool are interactive, meaning that users can link plots and select

arbitrary bin ranges to create filter chains, and apply boolean operations (AND, OR, NOT) to

combine multiple filters, etc.

User Study 2: Tableau / Star-Schema Benchmark In this study, conducted as part of this

paper, we invited 12 participants – all graduate students in computer science – to explore a dataset

using Tableau. We used the SSB benchmark schema and generated a database with a scale factor of

0.1 (1̃00MB) to ensure that query results could be computed near-instantaneously. The goal of this

study was to find out what whether the queries in SSB are representative of the traces that real users
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generate, and whether these traces overlap with the ones from study 1-3. Of the 12 participants,

8 stated to have some experience with data analysis, 4 reported to be advanced with data analysis

(e.g., they have used Tableau, Power BI, or a similar visual exploration frontends multiple times).

Each test subject was first given an overview of the database schema and a brief overview of the

basic functionality of Tableau, e.g., how data can be plotted, filtered, and how multiple visualizations

can be arranged in interactive dashboard views. The experimenter acted as a mediator between the

participant and the software, i.e., the participants instructed the experimenter on what to do with

the tool. We decided not to let the participants operate Tableau themselves as most pilot users

struggled to remember the somewhat involved steps required to create plots, filters and dashboards.

User Study 3: Effect of Progressive Visualizations The goal of this study was to investigate

how progressive visualizations affect users during exploratory data analysis. The authors recruited

24 participants from a research university, all of whom had prior experience in data exploration or

analysis tools (e.g., Excel, R, Pandas). The authors created a dashboard-like user interface with

four visualization slots, that users can configure by assigning them any attribute from a dataset.

All visualization are 1D/2D aggregate plots with configurable aggregate functions (count, min, max,

avg). The four visualizations were implicitly linked; selecting values ranges in one visualization

would filter/brush the other visualizations.

User Study 4: Multiple Comparisons Problem (MCP) in Visual Analysis The aim of

this work was to investigate the effect of MCP in visual analysis by evaluating the accuracy of user

reported insights when exploring a dataset. This study required users to broadly explore datasets

since they were explicitly asked to find interesting correlations in the data. All 28 participants were

students who had some experience with data exploration or analysis tools (e.g., Tableau, Pandas,

R) and have taken at least introductory college-level statistics and probability classes.

User Study 5: DARPA Competitions As part of a larger DARPA program, we participated

with our own data exploration tool in a competition where 10 government data analysts were asked to

explore new datasets. We gathered and analyzed the query traces that resulted from the exploration

sessions.

Workload Analysis Given the results of user studies 1-5, we were interested to see (1) how users

interact with IDE systems to make sense of data, how these interactions translate to SQL queries for

a DBMS, and (2) if the workloads of existing benchmarks are representative of these queries. Our

method involved analyzing multiple days worth of video and audio recordings, as well as the analysis
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d)       N:N e)

Figure 7.3: Illustrates five different dependency patterns (see 7.5.1 for details) we observed during
the IDE workload analysis of five user studies. a) Independent: four independent visualizations,
changing the specification of any of the visualizations does not affect the others as there are no
dependencies. b,c,d and e) an arrow represents a dependency from source to target. For instance, if
a selection in the visualization on the left in b) changes, all N visualizations on the right need to be
updated.

of query logs from the underlying DBMSs. In the following, we discuss our main observations (O1

- O6).

O1: User actions that trigger database queries User actions that trigger database queries

can be grouped into three abstract categories (independent of the IDE tool being used): 1) creat-

ing/modifying visualizations: the creation and modification of a plot involves settings parameters,

such as the attributes that are being visualized, filters to apply to the data that is being visualized,

as well as instructions on how to group/bin and aggregate the data. 2) linking visualizations:

defining dependencies between plots so that they can be used as interactive filters 3) selecting bins:

selecting a subset of the visualized data to filter linked plots.

O2: Aggregation dominates. Visualizing large datasets inevitably leads to over-plotting,

which overwhelms users’ perceptual and cognitive capacities. Aggregating data is the only practically

reasonable way to support visual exploration of big data [89].

O3: Selectivity varies significantly. Queries formulated by study participants strongly varied

in selectivity. We summarize the query selectivity of all queries from user study 3 in Figure 7.2,

showing that approximately 30% of all queries either have a selectivity of 0 − 10% while another

30% have a selectivity of 90− 100% respectively. Similar distributions emerged in user study 1.

O4: Queries are built incrementally. Users explore data and answer questions incremen-

tally. Intermediate visualizations are used to inform further exploration steps. In all studies this

was manifested by users either replacing parameters of an existing plot (e.g., the attribute being

visualized), applying filters, etc. In user study 1, for instance, we noticed that the selections on plots

were modified 6.91 times on average (σ = 9) to change a filter. In some cases users even changed
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the filter up to 50 times, trying to find interesting correlations for multiple minutes. In addition,

we found that the number of attributes used to specify a query ranged from 1 to 5 different at-

tributes (composed by AND and OR operators). We observed 5 different patterns of how the study

participants used links to define dependencies between visualizations (see Figure 7.3):

• Independent (Figure 7.3a), where a user explores data by creating visualizations using individual

queries and applying filters that only affect a single visualization at a time, as well as by altering

the aggregation function (e.g., switching from SUM to AVG). This pattern was often used as a first

step to browse through different attributes in a dataset.

• 1:N (Figure 7.3b), where selecting bins one visualization triggers N other queries for all depen-

dent plots. This pattern, as well as the N:1 and N:N, typically apply after using independent

visualizations to see how slicing and dicing the data affects previously plotted data.

• N:1 (Figure 7.3c), where a user links N visualizations to a single visualization. Selecting value

ranges in any of the N plots adds a filter predicate to the linked plot, forcing it to update.

• N:N (Figure 7.3d), where all visualizations are inter-linked. This pattern is typically found in

interactive dashboards, where every visualization is implicitly linked with all other plots.

• Sequential (Figure 7.3e), is a browsing pattern where users create multiple visualizations that are

sequentially linked. This pattern was often used when users drill down (zoom in) into subsets of

the data by building increasingly selective filter expressions, while keeping track of intermediate

results.

O5: Single interactions can lead to multiple concurrent queries. Linked visualizations

can lead to multiple concurrent queries. When users were free to arbitrarily create and link plots,

they created dependency chains of up to 5 links (see Figure 7.3e, for example), meaning that a

selection change on one plot would trigger up to 5 concurrent queries. Similarly, in user study 3,

users were interacting with a pre-defined N:N dependency pattern between four visualizations in

total. A selection in one plot led to an update in the other three visualizations.

O6: Think-Time between interactions.

We observed time gaps between user interactions (think-time) with high variance, ranging from

just a few hundred milliseconds up to over 200 seconds in individual cases. Figure 7.2b shows the

think-times recorded in user study 1 (outliers of more 60s were omitted). Most think-times were

between 0 and 10s (mean=8.08s, σ = 13.97), which could be leveraged by DBMSs to speculatively
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execute SQL queries to prepare for the next user interaction.

O7: Real-data matters. Users are less interested in actual values, but more in the distribution

of values and/or irregularities/outliers that can only be found in real datasets. Similar observations

were made by Amar et al. in a related study [8]. This became especially apparent in user study

2 and 4 where synthetic data was used. With synthetic data, users found it difficult to formulate

meaningful queries as all attribute values were uniformly distributed.

TPC-H TPC-DS SSB IDEBench

Schema snowflake snowflake star star (default)

Data Origin synthetic synthetic synthetic real-world

Data Distributions uniform skewed uniform real-world

Data Scaling yes yes yes yes

Iterative Query
Formulation

no 4 out of 99 no yes

Multi-Query Execu-
tion

no no no yes

Think Time no no no yes

Metrics Time-based Time-based Time-based Quality, Time

Table 7.1: A comparison of traditional analytical database benchmarks and IDEBench

Using these observations we derived a set of key requirements (R1 - R8) for an IDE benchmark.

The list of requirements are an attempt to capture crucial aspects of measuring performance of a data

engine in the context of interactive data exploration, and goes beyond what traditional benchmarks

are designed for.

Workload A benchmark for IDE should feature queries that resemble common IDE patterns.

First, we note that based on O2 and O3, queries for aggregated plots have a common structure

involving bins (group-bys), aggregated values (COUNT, AVG, etc.) as well as a set of filter predi-

cates. For example, consider a dataset containing flight delays of domestic flights in the US [104].

A query for a plot showing the average flight delay per airport for flights originating in California

can be structured as shown in Figure 7.4.

Second, it is pivotal that the benchmark not only runs individual queries in isolation (as done

by TPC-H, TPC-DS, and SSB). Instead, as described in O4, the workload should contain time-

spaced sequences of related queries mapping to the addition or modification of plots or selections
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SELECT AVG(DELAY) AS VALUE , AIRPORT AS BIN_AIRPORT ,
FROM FLIGHTS_DELAYS
WHERE ORIGIN = ’CA’
GROUP BY BIN_AIRPORT

Figure 7.4: An example query for a plot showing the average flight delay per airport for flights
originating in California.

therein (R1). Third, based on O5 the workload should representative of the fact that a single user

interaction can lead to multiple concurrent queries (R2). Fourth, as stated in O6 and unlike TPC-H,

TPC-DS, and SSB, a benchmark for IDE must honor that fact that there are think-times between

user interactions, which data engines can leverage for speculative execution or other tasks (R3).

Data Contrary to existing benchmarks, a benchmark for IDE should use a real-world dataset with

outliers (O7). The benchmark must provide tools to scale the data while maintaining correlations

and outliers (R4). Finally, as some data engines (e.g., BlinkDB [5] or IDEA [35]) only support single-

table schemas, it is important that the data is available in both normalized and de-normalized form

(R5).

Metrics It is crucial that metrics go beyond measuring end-to-end runtimes of queries, and capture

what matters to the end-user. Prior research suggests that there are two main factors that directly

impact human performance in interactive data exploration: response time and accuracy. [61, 59,

20, 16, 119, 102, 22, 122]. For instance, Liu et. al. [87], showed that even response times of more

than 500ms could lead to poor user performance. Researchers have also found evidence that poor

accuracy or incomplete results (e.g., those of approximate and progressive systems) can lead to poor

user performance [152] and false conclusions [36, 67]. Therefore, it is important that the metrics

used in a benchmark for IDE reflect the trade-off between processing speed and the quality of the

returned results: measures of responsiveness (R6), as well as measures of accuracy (R7).

Customizablity Like traditional analytical database benchmarks, an IDE benchmark must define

a default configuration for workload and dataset. However, as there is no one-size-fits-all solution

for all parameters of a benchmark, we argue that it is important to provide the ability to customize

the workload and data to match different IDE usage scenarios (R8). While some may argue that

the ability to customize workloads, datasets and other parameters is undesirable as it hinders com-

parability, we, like [14] believe that customizability is crucial for adoption by different communities.

Being able to configure such settings in a benchmark allows users to publish their configurations

along with the benchmark results, and enable others to reason about the applicability, benefits and
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drawbacks of database designs and processing techniques in particular usage scenarios.

7.5 The IDEBench Design

To address the shortcomings of existing benchmarks we designed IDEBench, a collection of tools that

can be used to evaluate the performance of databases on generated workloads that closely resemble

the ones we observed in the logs of various different user studies (see Section 7.4.2).

7.5.1 Workflow Generator

Inspired by the observations we made when users visually explore data, we propose a customizable

workload generator capable of generating series of common time-spaced user actions in IDE (work-

flows) which, directly or indirectly, trigger database queries. The workflow generator simulates user

actions to create/modify and link visualizations (O1). The set of visualizations and actions used by

the generator are abstract specifications that are independent of a concrete visualization tool.

Visualization Specification (VizSpec)

A VizSpec is an abstract definition of a visualization, and is identified by an id. For instance, every

visualization created in a Tableau can be thought of being specified by a VizSpec. It determines how

data is grouped (binning) using one or many data dimensions and details how to perform numerical

binning, e.g., using a bin width or list of numerical boundaries. Using the aggregates attribute,

an arbitrary number of aggregates per bin (e.g., the average of a numerical column and the total

count of item in a bin) can be defined. The selection attribute specifies which data ranges have

been selected on a visualization. The depends-on attribute specifies a dependency on selections of

other visualizations. Finally, the time of execution of a VizSpec can be specified using the time

attribute, (e.g., the time of a plot creation or modification). The time is specified in milliseconds

relative to the start time of a workflow to simulate users’ think-time.

User Actions

Based on observation O1 (Section 7.4.2), the workflow generator defines the following user actions.

• Create/Modify: An action to either create a new or modify an existing visualization. Each action

is defined by a full VizSpec for creating a new visualization or a partial VizSpec for modifying a

visualization (see Figure 7.5 and 7.8) respectively.
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Visualization:
id: (string)
time: (number)
binning: (BinningDimension [])
aggregates: (Aggregate [])
selection: (string)
depends -on: (string)

BinningDimension:
column: (string)
width: (optional number)
boundaries: (optional number [])

Aggregate:
type: (enum COUNT|DCOUNT|AVG|SUM|MIN|MAX)
dimension: (string)

Figure 7.5: A Visualization Specification

• Link: An action to link two existing visualizations, i.e. to establish a dependency from one

visualization to another. It can be expressed by a partial VizSpec containing an id and one or

more ids of visualizations it depends on (depends-on).

• Select: An action to select a subset of the data in a visualization can be expressed by partial

VizSpec containing its id and a set of selection predicates as a selection string.

Query Model

Any VizSpec v can be mapped to a database query Q(v) as shown in Figure 7.6 which is an abstract

specification of SPJA queries. A query uses v’s bin (group-by) and aggregates specification, and

its filter attribute is recursively computed as union of all selections of visualizations v depends

on. The filter attribute can be thought of as the WHERE clause of a SQL statement, comprising

all relevant filter predicates. Joins between tables are implicitly defined in our query model by

the attributes which are selected; i.e., we create equi-joins between those tables based on the given

database schema of our data generator (see Section 7.5.2).

Query:
binning: (BinningDimension [])
aggregates: (Aggregate [])
filter: (string)
time: (number)

Figure 7.6: IDEBench’s Query Model

Using such an abstract query specification, a concrete database driver of our benchmark renders

an executable query. For example, if the database provides a SQL-like interface we generate queries

as shown in Figure 7.8.
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Creating Workflows by Simulating User Actions

Our workflow generator is designed to model interactive data exploration workflows, i.e. actions to

create new and modify existing visualizations (R1). It uses as a Markov chain comprising three user

actions: create/modify, link, and select bins (see Figure 7.7). We derived the transition probabilities

between any pair of these actions empirically through the analysis of the study logs described in

Section 7.4. The workload generator comes with pre-configured but customizable (R8) transition

probabilities that can be used to generate variants of workflows mimicking the five dependency pat-

terns shown in Figure 7.3 (an independent workflow, for example, has zero transition probability

from create/modify to either link or select bins). To create a new workflow, the workflow generator

samples n actions from the Markov chain and adds a fixed inter-query pause (think-time) to consec-

utive actions by setting the time attribute of a VizSpec (R3) accordingly. We use fixed rather than

dynamic think-times to be able to measure its effect on the accuracy of query results, as we shall

see in the Section 7.7.4. An example workflow that was created by our generator for a 1:N workflow

type is shown in Figure 7.8.

Link Select

Create/Modify

.4

.4

.4.4

.2

.4

.2 .4

.2

Figure 7.7: Example of a Markov Chain used for 1:N workflows.

Every user action exposes a set of parameters that are drawn randomly from a set of configurable

probability distributions when creating a workflow (R8):

• Create/Modify : the number and types of binning dimensions (e.g., whether is a 1D or 2D plot), the

bin width (i.e., the group-by granularity) or bin boundaries (i.e., minimum and maximum value

used for each dimension), as well as the number and types of aggregates to use in the visualization.

• Link : linking strategy (none, 1:N, N:1, etc.).

• Select Bins: the bins to be selected as filter predicates.

Analogous to the transition probabilities between any of these actions, the defaults for the prob-

ability distributions of these parameters were informed by findings in the empirical analysis our user
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study logs.

When simulating an action the workflow generator re-computes the filter attribute for all

affected queries and schedules affected queries for execution by setting the time attribute. To that

end it keeps track of all VizSpecs or modifications thereof, by maintaining a directed dependency

graph G = (V,E). A directed edge in G defines a dependency (link) between two visualizations,

e.g., v1 → v2 indicates that Q(v1) must be re-executed when the specification of v2, in particular its

selection attribute is modified (R2).

7.5.2 Data Generator

Using real-world datasets in a benchmark for IDE is important as non-synthetic distributions make

it harder for DBMSs to retrieve a representative sample, which consequently affects the quality of the

results. Currently, IDEBench uses the U.S. domestic flight delay dataset [104] as default. However,

users can customize the benchmark and plug in custom datasets.

To scale a dataset to different sizes, IDEBench comes with a data generator that can resize

a given dataset to any size (R4). The generator tries to maintain distributions in the data and

relationships between attributes when scaling by simulating a Gaussian Copula [101]. The intuition

behind this procedure is that every multivariate joint distribution can be expressed in terms of its

marginal distributions and a function (the copula) which describes their relationship [125]. This

decomposition allows for the creation (simulation) of new correlated samples.

In order to simplify the resizing process, IDEBench requires that the dataset is provided in a star

schema-like format, in de-normalized form. This, however, is no limitation since typical IDE queries

(i.e., SPJA queries) are natively supported on a star-schema. The algorithm to scale a dataset works

as follows:

1. First, we draw a random sample from the dataset.

2. Second, we compute the covariance matrix Σ and perform a Cholesky decomposition on Σ =

ATA.

3. Finally, we resize the data. To create a new tuple, we generate a vector X ∼ N (0, 1) of random

normal variables and induce correlation by computing X̃ = AX. Furthermore, we transform

X̃ to a uniform distribution and finally use the CDF from the sample to transform the uniform

variables to a correlated tuple.

Optionally, as a last step the data generator can split the generated data into multiple tables

(fact and dimensions) based on the user-provided schema (R5).
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id: "A"
time: 0
binning:
    dimension: "CARRIER"
aggregates:
    type: "avg"
    dimension: "DEP_DELAY"

SELECT
    CARRIER,
    AVG(DEP_DELAY)
FROM
    FLIGHTS
GROUP BY
    CARRIER

id: "B"
time: 2000
binning:
    dimension: "CARRIER"
aggregates:
    type: "avg"
    dimension: "DEP_DELAY"

SELECT
    CARRIER,
    AVG(DEP_DELAY)
FROM
    FLIGHTS
GROUP BY
    CARRIER

id: "C"
time: 4500
binning:
    dimension: "CARRIER"
aggregates:
    type: "avg"
    dimension: "DEP_DELAY"

SELECT
    CARRIER,
    AVG(DEP_DELAY)
FROM
    FLIGHTS
GROUP BY
    CARRIER

id: "C"
time: 11000
depends_on: "A"

[no query]

id: "A"
time: 13300
selection: 
    "CARRIER = ‘AA’ OR
    CARRIER = ‘DL’ OR
    CARRIER = ‘UA’"

SELECT
    ORIGIN_STATE,
    COUNT(*)
FROM
    FLIGHTS
GROUP BY
    CARRIER
WHERE
    CARRIER = 'AA' OR
    CARRIER = 'UA'
    

SELECT
    FLOOR(ARR_DELAY/30)
    AS BIN_ARR_DELAY,
    AVG(DEP_DELAY)
FROM
    FLIGHTS
GROUP BY
    BIN_ARR_DELAY
WHERE
    CARRIER = 'AA' OR
    CARRIER = 'UA'

id: "B"
time: 8000
depends_on: "A"

[no query]

vA

vA

vB

vA

vB

vC

vA

vB

vC

vA

vB

vC

vA

vB

vCvC

vC

Figure 7.8: An example of a generated 1:N workflow (Figure 7.3c.), the corresponding VizSpecs and
translations to SQL. The highlighted item in the query graph corresponds to the current user action.
Note that the final interaction triggers two SQL queries.
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FLIGHT
YEAR

CARRIER_ID

ORIGIN_ID

DESTINATION_ID

DEP_DELAY

TAXI_OUT

TAXI_IN

ARR_DELAY

AIR_TIME

DISTANCE

AIRPORT

ID

CODE

NAME

STATE

CARRIER

ID

CODE

NAME

Figure 7.9: The schema of IDEBench’s default dataset.

7.5.3 Main Metrics

IDEBench computes metrics that capture the trade of between the runtime of a query and the

quality/usefulness of the results.

Data Preparation Time In IDEBench users are required to report on all actions taken to prepare

for a benchmark run (called “data preparation time” in our report). This includes the time it takes

to copy the dataset into the system, to create sample tables/views offline, perform pre-processing,

execute warm-up queries, etc.

Then, for every query, we compute the following metrics:

Time Requirement Violations In IDEBench we measure the responsiveness of a DBMS using

Time Requirements (TR). TR Violated is a boolean value indicating whether a query exceeded

the time requirement specified in the settings (see Section 7.6.4). TR is violated if time TR after

initiating the query no result is present or can be fetched. In practice, this means, that for batch-

processing and AQP systems, TR is violated if the run-time of a query is greater than TR, and no

intermediate result is present. For progressive systems, TR is violated if time TR after initiating

a query no result can be fetched. Because IDEBench focuses on interactivity, it does not measure

the actual query duration, i.e. it does not wait for query results to return if the computation takes

longer than TR. If a query exceeds TR, database drivers can abort the query.

Mean Relative Error (MRE) Approximate and progressive results deviate from the ground-

truth. To understand how much they deviate we measure the error between the latest result of an
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aggregate query and its ground-truth by computing the relative error, i.e., the ratio between the

difference of the latest estimated result for a query Fi and the actual result Ai (R7).

MRE =
1

n

n∑
i=1

|Fi −Ai|
|Ai|

Missing Bins/Groups Missing Bins/Groups is the percentage of all bins missing in the latest

result for query. It is a measure of completeness for an aggregate query result, irrespective of the

number of tuples processed by a system. The intuition is that the faster a system can enumerate all

groups, the more insightful this will be to a user (R7).

Missing Bins =
|bins missing|

|bins in groundtruth|

Missing bins are reported for exact and non-exact systems. While for exact systems the percent-

age of missing bins is either 0% or 100% (depending on whether or not a result was present in time),

for non-exact systems we use the latest result that was returned within the given time-threshold.

The mean relative error is only computed for results of non-exact systems.

Cosine Distance Based on the observation that often users are more interested in characterizing

data by its distribution rather than by the exact aggregated values [8], we additionally measure the

cosine distance to test how much the “shape” of an aggregate result deviates from the shape of the

ground-truth.

7.6 The IDEBench Implementation

IDEBench comprises two main components: a benchmark driver, which is responsible for simulating

previously generated workflows, and database adapters which translate and delegate instructions

from the benchmark driver to a database.

7.6.1 Benchmark Driver

The core of IDEBench is the benchmark driver, a command line application configured to load and

simulate workflows created by the workflow generator. Given a workflow, the driver reads VizSpecs

and builds and modifies an internal query graph structure, delegating queries and query updates

to a database adapter (cf. Section 7.6.2). The database adapter then translates the VizSpecs from

their JSON specification to the query language supported by the DBMS (e.g. SQL).
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Listing 7.1: A stub for a database adapter.

class SampleAdapter:

def workflow_start(self):

# called before a benchmark run starts

# do pre -processing , if applicable

def run_query(self , viz_spec , result_queue ):

# 1. translate viz_spec into query

# 2. execute query

def workflow_end(self):

# do clean -up , if applicable

7.6.2 Database Adapters

In order to benchmark an IDE system using IDEBench, a database adapter must be implemented,

which acts as a proxy between the benchmark and the system that is being tested. The benchmark

driver delegates changes made to the query graph to a database adapter, which then translates

them into queries supported by the database (e.g., SQL). There are three core methods that must

be implemented by a database adapter: workflow start, which can be used to run pre-processing

tasks before a workflow starts, run query to initiate new or update existing VizSpecs (e.g., when

adding a filter, see Listing 7.1), and workflow end which is called once the workflow has ended,

allowing the database adapter to perform clean-up tasks.

7.6.3 Benchmark Defaults

By default IDEBench uses 10 generated workflows using a mix of the four query graph patterns de-

scribed in Section 7.5.1. Table 7.2 shows a summary of the most important parameters of IDEBench

and their defaults, which we defined based on findings in our user studies. It uses the flight delay

dataset (introduced in Section 7.5.2) scaled to 500M tuples in de-normalized form (i.e., only one large

fact table). It also sets the time requirement TR for each query to 0.5 seconds, uses a think-time of

3 seconds between each user interaction, and a confidence level of 95%.

Upon completion of a benchmark run, IDEBench generates two reports: (1) An aggregated

summary report listing how frequently the time requirement was violated, how many bins are missing

on average, and the distribution of mean relative errors for all queries which did not violate the time

requirement. Figure 7.10 shows an example of such a summary report. (2) A detailed report listing



96

Setting Description Default
Workflows The workflows to run in the benchmark 10
Time Requirement (TR) The maximum execution duration for a query 0.5s
Dataset and Size The dataset to run the benchmark on and the num-

ber of rows in the fact table
Flights
500M

Think Time The delay between two consecutive interactions 3s
Using Joins Whether a star schema is used where dimension ta-

bles are pre-joined to fact table
False

Confidence Level The confidence level at which an AQP/progressive
systems return confidence intervals

95%

Table 7.2: Benchmark Settings

all settings and metrics on a per-query basis.

7.6.4 Customizing the Benchmark

For the sake of comparability, we encourage users of IDEBench to use the default configuration.

However, all parameters can be modified so that users of IDEBench can test their database systems

with settings that match a specific target use-case. For instance, some DBMS might be specifically

optimized for data exhibiting certain distributions, for very low latencies, or for a workload that

only supports specific types of queries.

7.7 An Experimental Study

To demonstrate the applicability of IDEBench and show the effects on the different classes of query

processing engines (7.3), we conducted an experimental study using following DBMSs:

(1) MonetDB: a state-of-the-art open-source analytical DBMS, which uses a blocking query

execution model that requires users to wait until an exact query result is computed. Thus, upon

initiating a query, the run-time of a query is unknown. (2) approXimateDB/XDB: a PostgreSQL-

based DBMS that supports online aggregation using the wander join algorithm [86]. It allows for a

maximum run-time to be set in SQL. In addition, a “report interval” can be set so that intermediate

results can be retrieved at fixed time intervals. XDB has some limitations in terms of query support,

which we describe in detail in Section 7.7.2. (3) IDEA: a system that supports online aggregation

and uses a fully progressive computation model; after initiating a query, results can be polled at any

point in time. (4) System X: a commercial in-memory AQP engine operating on stratified sample

tables that are created offline. The run-time of queries cannot be specified explicitly but must be

indirectly adjusted by varying the size of samples tables. (5) System Y: a commercial specialized
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Figure 7.10: Shows the aggregated benchmark results for four systems in a summary report. The
benchmark was run for five time requirements on a dataset with 500M rows. It shows the mean
percentage of time violations and missing bins, as well as a CDF of the mean relative errors (MREs)
truncated to errors less or equal to 100%. Thus, the greater the proportion of small errors, the
smaller the area above the curve (shown as percentage above the CDF).

SQL engine for IDE that uses a blocking execution model, which is designed as an in-memory

optimization layer on top of various different DBMSs.

In the remainder of this section, we describe the configuration and setup of our experiments, and

discuss the results and findings.

7.7.1 Configuration and Setup

Configuration We used the default flight delay dataset (see Section 7.5.2), with S=100 million,

M=500 million (default), and L=1 billion tuples in de-normalized form (i.e., a single pre-joined

table). Furthermore, we used five different time requirements (TR) 0.5s, 1s, 3s (default), 5s, and

10s, and a fixed confidence level of 95% (default). While various Human-Computer-Interaction

studies recommend time requirements of less than 1s (see Section 7.4), we also included larger ones

to get a better sense of how fast results converge. Because none of the systems use speculative query

execution in their default configuration, we set the think-time to a fixed value of 1s; we analyze the

effect of varying the think-times in a separate experiment (see Section 7.7.4).

Setup We ran IDEBench on MonetDB, approXimateDB, IDEA and System X, but were unable

to run the full benchmark on System Y due to the absence of an API that could be used in a
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Figure 7.11: a, b, and c) show how the ratio of TR violations, the median of the mean relative
margins, and the cosine distance behave for increasing time requirements. d) Compares how the
percentage of missing bins differs depending on which system and workflow type is used. e) A
comparison of the percentage of violated time requirements for MonetDB and approXimateDB, using
a normalized and de-normalized dataset of size 500M. f) Shows the effect of varying think-times on
missing bins for IDEA.

database adapter. However, we executed selected queries of our benchmark manually through its

user interface in a separate experiment (see Section 7.7.5). All experiments were conducted on a

computer with two Intel E5-2660 CPUs (2.2GHz, 10 cores, 25MB cache) and 256GB RAM. We used

the default parameters for all DBMSs without hand-tuning them and did not tweak or optimize any

of the system parameters.

7.7.2 Exp. 1: Overall Results

In our main experiment (Figure 7.10 and 7.11) we analyzed how the four systems behave with respect

to different time requirements (see Figure 7.10). We show the results for 10 workflows of the default

configuration, a data size of 500M tuples, de-normalized schema, and a confidence level of 95%.

Data Pre-Processing In MonetDB data stored in a CSV file can be loaded into the database

through an SQL interface, which takes approximately 19 minutes for 500M records. IDEA expects

data in a single randomized CSV file. On start-up the system loads a configurable number of tuples

into main memory, which took approximately 3min in our experiment. With System X data stored

in a CSV file can be loaded into the database through a SQL interface. In order to be able to execute

approximate queries, stratified sample tables have to be created offline. We used a sample size of 1%

of the dataset size. System X further requires that each connection executes a warm-up query when
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the system is restarted. For 500M records, we measured a data preparation time of 27min. Finally,

approXimateDB took 130min to load and prepare the data. While this system provides support to

pre-load relations and indexes into the database buffer in main memory, we did not make use of this

feature for our experiments.

Speed and Quality Metrics As expected for an exact execution model, MonetDB ’s TR viola-

tions decrease roughly linearly with the time requirement, and so does the percentage of missing bins

(see also Figure 7.11a). On the contrary, approXimateDB never violates the TR as the query run-

time can be specified accordingly. However, it is important to note that this system only supports

online aggregation for COUNT and SUM, but does not support AVG and multiple aggregates in a single

query. Therefore, we excluded all unsupported queries (34% of all queries) for approXimateDB. For

comparison, running the experiment for all queries (falling back to regular Postgres for unsupported

queries) leads to TR violations of 66% for all TRs, i.e., all non-approximate queries exceeded TR.

With System X more than 60% of all queries violate TR=0.5s. Interestingly, for TR=1s only

5% are violated, and for TR=3s all query results are returned on time. The percentage where TR

is violated is therefore a good indicator of how large a sample table needs to be, if speed is more

important than result quality. IDEA does not violate any TR, with the exception of 1% of all queries

for TR=0.5. The authors confirmed that this is due a slightly higher overhead for the first query after

a restart of the system. IDEA also starts off with significantly less missing bins (37%) for TR=0.5

than any other system, but achieves similar performance as System X for TR¿=1s. Furthermore,

IDEA manages to perform better than other systems in terms of mean relative error of all returned

results. The median of all mean relative errors is significantly less than approXimateDB ’s and

System X.

Another interesting fact can be observed by inspecting the cumulative distribution of mean rela-

tive errors. In Figure 7.10 (column Error), approXimateDB ’s “area above the curve” is significantly

greater than the one of IDEA and System X, indicating that high mean relative errors occur more

frequently. A similar conclusion can be drawn by looking at the end of the curve. For instance,

approXimateDB ’s curve ends, below 50%, indicating that more than 50% of all mean relative errors

are greater than 100%.

Figure 7.11b and 7.11c show how the median of the mean relative margins, and the cosine distance

changes for the different DBMSs with increasing time requirements. Again, approXimateDB has

significantly greater relative margins than both IDEA and System X. Moreover, while System X ’s

median is close to 120% for TR=0.5s and drops to approximately 20% for TR=1s, IDEA’s median

remains constant around zero for all TRs. Finally, Figure 7.11d compares how the proportion of
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missing bins differs based on the system and query graph patterns. As none of the systems we used

in the evaluation use speculative execution by default, there are only few notable differences per

column. For instance, MonetDB has fewer missing bins on average for “independent browsing” and

N:1 patterns, which may be attributed to the fact that interactions of these workflows only trigger

a single query.

7.7.3 Exp. 2: Varying Schema Complexity

In this experiment, we compare the performance of MonetDB and approXimateDB using a normal-

ized and de-normalized schema. Contrary to experiment 1, we set up approXimateDB so that any

query that cannot be executed online will fall back to a regular Postgres query. We exclude IDEA

and System X as they do not support joins. Using the data generator we created two datasets of

100M and 500M tuples and normalized the data so that the fact table holds foreign keys to two di-

mension tables (airports and carriers). Interestingly, as can be seen in Figure 7.11e, both MonetDB

and approXimateDB perform slightly better in terms of time requirement violations with a normal-

ized schema since the overall scan volume of data significantly decreases. MonetDB ’s proportion of

TR violations grows with the size of the normalized dataset, while approXimateDB ’s TR violations

remain steady due its ability to perform joins online.

7.7.4 Exp. 3: Varying Think-Time

In this experiment, we evaluated the impact of increasing think times between interactions (see

Figure 7.11f). We used an experimental extension of IDEA that speculatively executes queries when

two visualizations are linked. For this experiment, we used a fixed data size of 500M tuples, a

time requirement of 3 seconds, and created a custom workflow comprising two linked visualizations.

Internally, IDEA uses a simple speculative execution procedure. While user think IDEA starts

queries for every possible single bin selection in the source visualization. If too many bins exist,

it selects only the k visually most dominant ones. If upon the next interaction one of the bins is

selected, IDEA can return a potentially better estimate of the results, as the query was given more

processing time. Figure 7.11f shows the results of this experiment with the proportion of missing

bins for ten different think times (1s - 10s).

7.7.5 Exp. 4: Experiment with System Y

In the last experiment, we manually executed a selected subset of our workflows in a commercial

IDE System Y and used MonetDB as a backend. We used a fixed data size of 500M and performed
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three variants of the 1:N workflow type. In particular, we were interested to see whether System

X ’s middle layer that pre-fetches and pre-computes query results leads to significant benefits over

using a vanilla MonetDB setup. However, we did not find this to be the case. System Y renders

and updates the visualizations in the workload roughly at the same speed as if MonetDB is used

directly.

7.7.6 Discussion

Our experiments with IDEBench and five systems have shown that the performance on IDE work-

loads in terms of data preparation time, responsiveness as well as the quality of the results can vary

significantly, and thus these systems are not equally suitable for IDE.

Preparation Time Creating representatives samples offline is challenging: users need to find a

suitable sample size to balance the trade-off between processing speed and quality of the results.

Although the time overhead of offline-sampling approaches can be reduced by employing online

sampling instead, systems using online sampling such as approXimateDB may still require much

time to load data into the DBMS. IDEA, for instance, bypasses the loading problem by reading

samples from disk at runtime. The system, however, requires the data to be randomized prior to

ingestion.

Time Violations We found that progressive and AQP systems like IDEA and System X were able

to keep time violations at a minimum while maintaining low error rates with increasing data sizes

and time requirements. This is in stark contrast to traditional analytical databases represented by

MonetDB where time violations increase for larger datasets and time requirements. We also found

that approXimateDB can only execute a subset of the queries in our workload online. It has to revert

to executing a significant number of queries in a blocking fashion, which leads to notably more TR

violations. Finally, given the log of queries that a user executes during an exploration workflow,

systems can leverage think-times to speculatively execute queries in order to provide faster responses

upon the next user interaction.

Error Metrics Progressive systems progressively refine results and therefore lower the errors and

confidence intervals over time, converging to an exact result. AQP systems that create sample

tables offline, on the other hand, have constants error rates and confidence intervals, irrespective of

the time requirement. To optimize the error rates for such systems, users must find representative

sample that is small enough not to violate the time requirement, which can be challenging. Finally,
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we observed weak completeness scores, i.e. high missing-bin values for low time requirements and

in workflows containing concurrent queries (such as sequential or 1:N).

7.8 Conclusion

In this chapter, we presented IDEBench, a new benchmark designed to evaluate systems for in-

teractive data exploration (IDE). Unlike traditional analytical database benchmarks, IDEBench’s

workloads and metrics are inspired by the requirements and usage patterns of real IDE systems

that were derived through a number of different user studies. Using our benchmark we conducted

an evaluation that included five different DBMSs (approximateDB, IDEA, MonetDB as well as

two commercial systems) representing three different system categories (traditional exact DBMSs,

approximate/progressive DBMSs, as well as specialized engines for IDE). The results showed that

especially for low latency requirements approximate and progressive query processing engines out-

perform traditional databases.
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