
Abstract of “Probabilistic approaches for rigorous and efficient analysis of statistical properties of
large datasets” by Lorenzo De Stefani, Ph.D., Brown University, May 2020.

The analysis of the statistical properties of data is a core goal in computer science. The chal-
lenges encountered in this task have evolved through time due to the explosion of the size of the
datasets being considered and to the development of new analysis tools. Rather than computing the
exact quantities of interest, computing high-quality estimates allows for a considerable reduction of
computational effort while retaining meaningful and reliable insight into the statistical properties of
the data.

In this thesis, we study the applications of probabilistic analysis and statistical learning theory to
the analysis of large datasets. Using these concepts allows us to rigorously characterize the relation-
ship between the amount of input training data, the quality, in terms of confidence and precision,
of the approximations achievable for a certain task, and the complexity of the task itself.

In the first part of this work, we study the application of statistical learning tools such as
Rademacher Complexity and VC dimension, to the classical hypothesis testing problem. We intro-
duce RadaBound, a rigorous, efficient, and practical procedure for controlling the generalization
error when using a holdout sample for multiple adaptive testing. Further, in the standard (nonadap-
tive) multiple hypothesis setting, our RadeFWER (resp., RadeFDR) procedure achieves control
of the Family Wise Error Rate -FWER- (resp., False Discovery Rate -FDR-). The statistical power
of our procedures decreases with respect to the actual complexity of the considered hypotheses,
captured in a data-dependent way by estimation of the Rademacher Complexity.

In the second part of this thesis, we study massive dynamic graphs being observed as an adver-
sarial stream of edges insertions and deletions towards counting the number of occurrences of a given
small sub-graph pattern or a “motif ” of interest: we present Trièst, a suite of one-pass stream-
ing algorithms for triangle counting based on reservoir sampling and the random pairing sampling
schemes, and Tiered Sampling, an extension of Trièst which employs multiple reservoir sample
tiers in order to accurately estimate the count of rare and complex patterns.

Probabilistic approaches for rigorous and efficient analysis of statistical properties of large datasets

by
Lorenzo De Stefani

B. S., University of Padova - Italy, 2009
M. S., University of Padova - Italy, 2012

A thesis proposal submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 2020

© Copyright 2020 by Lorenzo De Stefani

This dissertation by Lorenzo De Stefani is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Professor Eli Upfal, Director

Recommended to the Graduate Council

Date
Professor Michael Littman, Reader

(Brown University)

Date
Tim Kraska, Reader

(MIT)

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii

Acknowledgements

I would like to thank my advisor, Professor Eli Upfal, for his patient and inspiring guidance over
these years. I would like to thank Professor Michael Littman and Professor Tim Kraska for being
part of my thesis committee. I would like to thank the Computer Science Department at Brown
University for accepting me in the program, and, in particular, Professor Ugur Centitemel for offering
me the opportunity to teach CS1010.

I would like to thank all my academic siblings, my collaborators and the other talented students
I had the opportunity to meet at Brown. I learn from them more that I can tell. I would like to
thank Professor Gianfranco Bilardi, for encouraging me to pursue graduate studies in the United
States.

I would like to thank my mother, Ivana, and my father, Antonio, for supporting me in this
adventure from afar. Without their encouragement and nurture, I would not have embarked in this
enterprise. Finally, I want to thank my beloved wife, Megumi, without whose support, understanding
and patience I would not be here today.

iv

Contents

List of Tables x

List of Figures xii

1 Introduction 1

I Hypothesis testing and statistical learning 9

2 Family Wise Discovery Rate using Rademacher Complexity uniform convergence
bounds 10
2.1 Introduction . 10
2.2 Standard multi-comparisons control procedures . 12
2.3 Setting . 14
2.4 Uniform bound on generalization error with Rademacher Complexity 15
2.5 Proofs of uniform convergence bounds . 17

2.5.1 Uniform convergence bound based on the Martingale Central Limit Theorem 17
2.5.2 Application of Bernstein’s Inequality for Martingales 19

2.6 FWER control with Rademacher Complexity . 21
2.7 FDR control with Rademacher Complexity . 22
2.8 Experimental analysis . 26

2.8.1 Experiments with synthetic data . 26
2.8.2 Experiments with real data . 30

2.9 Conclusion . 31

3 A Rademacher Complexity Based Method for Controlling Power and Confidence
Level in Adaptive Statistical Analysis 32
3.1 Introduction . 32
3.2 The RadaBound . 35
3.3 Bounding Ψ (Fk, x̄) using Rademacher Complexity 36

3.3.1 Tight bounds on Rademacher Complexity estimate 37

v

3.3.2 Application of the Martingale Central Limit Theorem 41
3.4 Bounding the generalization error using McDiarmid’s inequality 43
3.5 The RADABOUND Algorithm . 45
3.6 Experimental results . 46
3.7 Comparison with methods based on Differential Privacy 49
3.8 Conclusion . 50

II Visual data analysis with quality guarantees 51

4 Towards sustainable insights 52
4.1 Introduction . 52
4.2 The Risk With Today’s Tools . 54

4.2.1 Visual Data Exploration . 54
4.2.2 Visual Recommendations . 57
4.2.3 Automatic Correlation Finders . 59
4.2.4 Automatic Model Finding . 60

4.3 QUDE: A System to Quantify the Uncertainty in Data Exploration 60
4.3.1 Controlling the Exploration Risk . 61
4.3.2 Detecting Common Statistical Pitfalls . 64
4.3.3 Data Quality Issues . 65
4.3.4 Current State of QUDE . 66

4.4 Conclusion . 66

5 Controlling False Discoveries During Interactive Data Exploration 68
5.1 Introduction . 68
5.2 Related Work . 71
5.3 A Motivational Example . 72

5.3.1 Hypothesis Testing . 74
5.3.2 Visualizations as Hypotheses . 74
5.3.3 Heuristics for Visualization Hypotheses . 75
5.3.4 Heuristics Applied to the Example . 76

5.4 The Qude User Interface . 77
5.5 Background . 79

5.5.1 Hold-Out Dataset . 80
5.5.2 Family-Wise Error Rate (FWER) . 81
5.5.3 False Discovery Rate (FDR) . 82
5.5.4 Other Approaches . 83

5.6 Interactive Control . 84
5.6.1 Outline of the Procedure . 84
5.6.2 α-Investing for Data Exploration . 85

vi

5.6.3 β-Farsighted Investing Rule . 86
5.6.4 γ-Fixed Investing Rule . 87
5.6.5 δ-Hopeful Investing Rule . 88
5.6.6 ε-Hybrid Investing Rule . 88
5.6.7 Investment based on Support Population . 89
5.6.8 What Happens If the Wealth is 0? . 89

5.7 Most Important Discoveries . 90
5.8 Limitations and Opportunities . 91
5.9 Experimental Evaluation . 92

5.9.1 Exploration Settings . 92
5.9.2 Targeted Exploration . 93
5.9.3 Free-form Exploration . 95
5.9.4 Uniform Exploration . 95
5.9.5 Real-world Deployment . 95
5.9.6 Discussion . 96

5.10 Supplemental Experiments . 96
5.10.1 Safety against Uncertainty . 97
5.10.2 FDR versus FWER . 97

5.11 Conclusion and Future Work . 98

6 VizRec: a framework for secure data exploration via visual representation 99
6.1 Introduction . 99
6.2 Problem Statement . 102

6.2.1 SeeDB . 102
6.2.2 Problem set-up . 104
6.2.3 Visualizations . 104
6.2.4 Visualization recommendations . 106

6.3 Statistically safe visualizations and recommendations 107
6.3.1 Classical statistical testing . 108
6.3.2 Recommendation validation via estimation 109
6.3.3 Correcting for Adaptive Multi-Comparisons 111

6.4 Statistical Guarantees Via Uniform Convergence Bounds 112
6.4.1 VC dimension . 112
6.4.2 Statistically Valid Visualization through VC dimension 113
6.4.3 The VizRec recommendation validation criteria 115
6.4.4 The VC dimension of the Range Space . 116
6.4.5 Trade-off between query complexity and minimum allowable selectivity . . . 120

6.5 Discussion . 121
6.5.1 Number of hypotheses being tested . 121
6.5.2 Bounding the complexity of the query class 121

vii

6.5.3 Preprocessing heuristics . 122
6.5.4 Modified χ2-test . 122

6.6 Experiments . 122
6.6.1 Anecdotal examples . 123
6.6.2 Random data leads to no discoveries . 125
6.6.3 Statistical Testing vs. VC approach . 126
6.6.4 VC bounds and Chernoff-Hoeffding bounds 128
6.6.5 Restricting the search space . 129

6.7 Conclusion . 129

III Counting sub-graphs in massive dynamic graph streams 130

7 TRÍEST: Counting Triangles in Massive Graph Streams 131
7.1 Introduction . 131
7.2 Preliminaries . 133
7.3 Related work . 134
7.4 Algorithms . 135

7.4.1 A first algorithm – trièst-base . 136
7.4.2 Improved insertion algorithm – TRIÈST-IMPR 149
7.4.3 Fully-dynamic algorithm – TRIÈST-FD . 157
7.4.4 Counting global and local triangles in multigraphs 165
7.4.5 Discussion . 167

7.5 Experimental evaluation . 169
7.5.1 Insertion-only case . 170
7.5.2 Fully-dynamic case . 176
7.5.3 Multigraphs . 179

7.6 Conclusions . 180

8 Tiered Sampling: An Efficient Method for Approximate Counting Sparse Motifs
in Massive Graph Streams 182
8.1 Introduction . 183
8.2 Preliminaries . 186
8.3 Related Work . 188
8.4 TieredSampling application to 4-clique counting 189

8.4.1 Algorithm TS4C1 . 190
8.4.2 Algorithm TS4C2 . 202

8.5 Proofs of technical results regarding TS4C2 . 206
8.6 Comparison with single sample approach . 213

8.6.1 Edge sampling approach - FourEst . 214
8.6.2 Variance comparison . 218

viii

8.6.3 Experimental evaluation over random graphs 219
8.7 Adaptive Tiered Sampling Algorithm . 221
8.8 Experimental Evaluation . 225

8.8.1 Counting 4-Cliques . 225
8.8.2 Adaptive Tiered Sampling . 228

8.9 Generalizing the TieredSampling approach . 231
8.9.1 The TieredSampling framework . 231
8.9.2 Using TieredSampling to count 5-Cliques 234

8.10 Conclusions . 238

9 Reconstructing Hidden Permutations Using the Average-Precision (AP) Corre-
lation Statistic 239
9.1 Introduction . 240
9.2 Related Work . 241
9.3 The AP model . 242
9.4 Generative Process forMAP (β, π) . 244
9.5 Reconstructing the Center Permutation in the AP model 246

9.5.1 Rank-based algorithm for β > 0 . 247
9.5.2 Comparison-Based algorithm for β ∈ Ω(1

n) . 248
9.6 Experimental evaluation . 252

9.6.1 Reconstructing the Hidden Permutation . 252
9.6.2 Experiments with real-data . 253

9.7 Conclusion . 256

10 Conclusion and Future Directions 258

Bibliography 261

ix

List of Tables

2.1 FWER control hypothesis testing on BreastCancer dataset: number of discoveries
for considered procedures. 30

2.2 FDR control hypothesis testing on BreastCancer dataset: number of discoveries
for considered procedures. 31

5.1 Notation Reference . 71
5.2 Parameters for Power-FDR curves in Figure 5.3 . 94

7.1 Comparison with previous contributions . 134
7.2 Properties of the dynamic graph streams analyzed. |V |, |E|, |Eu|, |∆| refer respec-

tively to the number of nodes in the graph, the number of edge addition events, the
number of distinct edges additions, and the maximum number of triangles in the graph
(for Yahoo! Answers and Twitter estimated with trièst-impr with M = 1000000,
otherwise computed exactly with the naïve algorithm). 170

7.3 Global triangle estimation MAPE for trièst and mascot. The rightmost column
shows the reduction in terms of the avg. MAPE obtained by using trièst. Rows with
Y in column “Impr.” refer to improved algorithms (trièst-impr and mascot-i) while
those with N to basic algorithms (trièst-base and mascot-c). 173

7.4 Comparison of the quality of the local triangle estimations between our algorithms
and the state-of-the-art approach in [144]. Rows with Y in column “Impr.” refer
to improved algorithms (trièst-impr and mascot-i) while those with N to basic
algorithms (trièst-base and mascot-c). In virtually all cases we significantly out-
perform mascot using the same amount of memory. 175

7.5 Estimation errors for trièst-fd. 179
7.6 Estimation errors for trièst-fd mass deletion experiment, q = 3,000,000−1 and d =

0.80. 179
7.7 Estimation errors for trièst-base-m and trièst-impr-m – multigraphs. 181

8.1 Notation Table . 187
8.2 Comparison of MAPE of FourEst. TS4C1 and TS4C2 for Barábasi-Albert graphs. 220
8.3 Graphs used in the experiments . 226

x

8.4 Average MAPE of various approaches for all graphs with available memories of 1%,
2% and 5% of the size of the graph. In the TS Change column we report the de-
crease/increase in MAPE of the best performing TieredSampling algorithm among
TS4C1 and TS4C2 compared to the single reservoir algorithm FourEst. 226

8.5 Average update time for all graphs measured in microseconds. 229

9.1 Classification Results. Average precision of the classification algorithm in the human
cancer dataset. The best result for each dataset is highlighted in bold. 256

xi

List of Figures

2.1 Recall comparison between RadeFWER, HB and HOC for different values of FWER
control level δ for synthetic data. In setting (a): |x̄| = 2000, m − m0 = 1000,
bias = 0.05. In setting (b): |x̄| = 3000,m−m0 = 1000, bias = 0.04. 28

2.2 F1 score comparison between RadeFWER, HB and HOC for multiple values of
FDR control level δ on synthetic data. In setting (a): |x̄| = 2000, m − m0 = 100,
bias = 0.05. In setting (b): |x̄| = 3000, m−m0 = 500, bias = 0.04. 29

2.3 Average percentage recall achieved by RadeFWER--BIM and RadeFDR--BIM on
synthetic data: |x̄| = 4000, m−m0 = 1000, bias = 0.06. 29

3.1 No signal. Feature values from N (0, 1). δ = 0.1. 46
3.2 No signal. Feature values from N (0, 2). δ = 0.15. 46
3.3 No signal. Feature values from N (0, 8). δ = 0.2. 46
3.4 Signal. Feature values from N (0, 4), δ = 0.1, bias = 0.5. 48
3.5 Signal. Feature values from N (0, 2), δ = 0.15, bias = 0.5. 48
3.6 Signal. Feature values from N (0, 2), δ = 0.2, bias = 0.25. 48

4.1 Examples of interestingness as defined in [231]. 54
4.2 The risk analysis of false discoveries in SeeDB [231] 56
4.3 An example of SeeDB [231] on survey data. 58
4.4 Data Polygamy [44] on random extreme points. 60
4.5 Storyboard of how a “risk controller” could look like. 60
4.6 Storyboard of a Simpson’s Paradox Warning . 65

5.1 An example Interactive Data Exploration Session . 73
5.2 The Qude User Interface . 78
5.3 The Power-FDR curves with varying parametrization (Table 5.2) in different data

exploration scenarios. 93
5.4 Avg. False Discovery Rate on Random Data . 96
5.5 Avg. Power on Data with Varying Uncertainty . 97

6.1 An example of SeeDB [232] on survey data. 103

xii

6.2 VizRec would not mark any of these visualizations as statistically significant as the
difference computed with respect to the reference is not larger than the uncertainty
of estimating the bars correctly. 123

6.3 VizRec would also recommend the top visualization, but declares the other visualiza-
tions not being statistically significant enough. 124

6.4 VizRec would not recommend the top visualization, but the second ranked one. . . . 125
6.5 Blue dots represent interest scores all evaluated visualizations. The ε̄ curve denotes

the threshold for recommendation using VC dimension = 4 to achieve control at level
δ = 0.05. The lower the VC dimension the more the ε̄ curve takes the form of an “L”.
Since there are no visualizations with scores higher than the ε-curve, no visualizations
get recommended from the generated random data. 126

6.6 Comparing two close distributions that however should not be recommended since
the visual difference criterion according to the VC dimension approach is not met. . 127

6.7 Chi-square distance dχ2 and minimum number of samples nmin required for the χ2-
test to reject the null hypothesis assuming Bonferroni correction with α′ = 0.05 and
106 queries. 128

6.8 Observed estimation error for a single random experiment and bounds obtainable at a
significance level of δ = 0.05. For a VC dimension of d = 1, the bound is only slightly
worse than the Chernoff bound of a single visualization. However, with increasing
number of visualizations Chernoff bounds are more conservative than bounds obtained
via VC. 128

6.9 ε-curves before and after restricting the search space. The distance d∞ needs to be
higher than the uncertainty quantified via ε. 129

7.1 Estimation by trièst-impr of the global number of triangles over time (intended as
number of elements seen on the stream). The max, min, and avg are taken over 10
runs. The curves are indistinguishable on purpose, to highlight the fact that trièst-

impr estimations have very small error and variance. For example, the ground truth
(for graphs for which it is available) is indistinguishable even from the max/min point-
wise estimations over ten runs. For graphs for which the ground truth is not available,
the small deviations from the avg suggest that the estimations are also close to the
true value, given that our algorithms gives unbiased estimations. 171

7.2 Average MAPE and average update time of the various methods on the Patent (Co-
Aut.) graph with p = 0.01 (for mascot, see the main text for how we computed
the space used by the other algorithms) – insertion only. trièst-impr has the lowest
error. Both Pavan et al. and Jha et al. have very high update times compared
to our method and the two mascot variants. 173

xiii

7.3 Accuracy and stability of the estimation of trièst-impr with M = 10000 and of
mascot-i with same expected memory, on LastFM, over 10 runs. trièst-impr has
a smaller standard deviation and moreover the max/min estimation lines are closer
to the ground truth. Average estimations not shown as they are qualitatively similar. 174

7.4 Trade-offs between M and MAPE and average time per update in µs – edge insertion
only. Larger M implies lower errors but generally higher update times. 176

7.5 Average MAPE on Patent (Co-Aut.), with p = 0.01 (for mascot, see the main text
for how we computed the space used by the other algorithms) – insertion only in
Random BFS order and in uniform-at-random order. trièst-impr has the lowest error.176

7.6 Evolution of the global number of triangles in the fully-dynamic case (sliding window
model for edge deletion). The curves are indistinguishable on purpose, to remark the
fact that trièst-fd estimations are extremely accurate and consistent. We comment
on the observed patterns in the text. 177

7.7 Trade-offs between the avg. update time (µs) and M for trièst-fd. 178
7.8 Evolution of the global number of triangles in the insertion-only case on multigraphs

using trièst-impr-m and M = 100,000. The algorithm estimations are consistently
very accurate, and the curves are shown as almost undistinguishable on purpose to
highlight this fact. 180

7.9 Trade-offs between the avg. update time (µs) and M for trièst-impr-m – multigraphs.180

8.1 Detection of 4-clique using triangles . 189
8.2 Cliques sharing one edge. 198
8.3 Cliques sharing three edges. 198
8.4 Average MAPE on Barábasi-Albert random graphs, with n = 20000 and various

values of m. 220
8.5 Comparison of |C(t)

4 | estimates obtained using TS4C1, TS4C2 and FourEst with
M = 5× 105, . 227

8.6 Variance of various approaches for Live Journal with available memories of 1%, 2%
and 5% of the size of the graph. 228

8.7 Variance of various approaches for Twitter with available memory of 5% of the size
of the graph. 229

8.8 |C(t)
4 | estimations for Patent (Cit) using TS4C2 with M = 5 × 105 and different

memory space assignments among tiers. 230
8.9 Comparison of |C(t)

4 | estimates obtained using ATS4C, TS4C2, and FourEst with
M = 5× 105. 230

8.10 Comparison of |C(t)
5 | estimates for the DBLP graph obtained using TS5C and FiveEst

with M = 3× 105. Out of 567,495,440 5-cliques that are present in the DBLP graph,
the single reservoir algorithm FiveEst estimates a number of 153,979,072 and TS5C

estimates of number of 565,173,908 5-cliques. 237

xiv

9.1 Accuracy on synthetic data . 253
9.2 Accuracy vs. # Iterations in K-means with Real Data 253
9.3 Purity vs. Level of Randomization in K-means with Real Data 254

xv

Chapter 1

Introduction

The analysis of the statistical properties of data is a core goal in computer science. The challenges
and approaches to this task have evolved through time due to the explosion of the size of the datasets
being considered and due the development of new analysis tools. Data availability is thus a crucial
driver of the most important challenges in computer science. Analysts are often faced with the
necessity of tackling a wide array of situations: in some cases, they are called to extract insight
while analyzing very limited available data; in other cases, they are tasked to analyze massive,
dynamic datasets towards synthesizing insights. In both cases, the size of the available data shapes
the most critical aspects of the task at hand.

In the case of low data availability, the analyst needs to put in place rigorous analysis in order
to ensure that any insight he/she may infer will be indeed valid for the entire population from
whom the data is drawn, that is, to ensure that observations made on the available data do in fact
generalize to the larger population. Without such careful analysis, the analyst may easily incur
the risk of erroneously attributing statistical relevance to phenomena that are instead only peculiar
to the specific small dataset being used. In practice, this may have very serious consequences: for
example, a financial trader may infer from the short-term behavior of the market a long time trend
which is not adequately supported by historical data and, thus, using such erroneous insight to
commit to a risky investment. Even more critically, outcomes of a clinical trial in which the analyst
does not opportunely correct for the number of patients in the study and the different elements
of the patients’ clinical condition may lead to wrong conclusions, which may, in turn, lead to the
approval of an instead dangerous medication, or, vice versa, the rejection of an actually effective
drug.

While for massive datasets the availability of data does not present challenges regarding the
generalizability or the statistical relevance of possible insight, the analyst must generally face some
computational difficulties: Handling massive datasets is often unpractical, as it requires both high
computation time and high availability of computational resources such as memory, GPA availability,
and cloud storage. While modern computing systems are generally equipped with considerable
storage and computing power, the rate of growth of the technology can not keep up with the

1

2

amount of available data for many aspects of great importance and interest such as social networks,
telecommunication data, market data, consumer information, traffic and supply routes. Further,
even as more efficient storage and computation technology become available, the time, computation
cost, and energy cost of moving data appear unavoidable. This fact is particularly relevant as
data communication is known to be the main bottleneck of algorithmic performance. This trend
appears to be destined to increase as, even as technology approaches physical limitations such as
the maximum number of computational or memory units which can be printed on a unit of surface,
and as the speed of data communication approaches the speed of light, some limitation of the
computational power and minimum latency for data movement appears unavoidable. Vice versa,
data availability is projected to be only ever increasing in both sheer size and complexity at an
unparalleled rate. Further, in many instances, such as the ones previously presented as examples,
the nature of such massive datasets is intrinsically dynamic as the datasets are continuously updated.
This fact poses additional challenges as it makes computationally intensive procedures that require
to be run from scratch each time the dataset is updated particularly unappealing, if not outright
nonsensical. Instead, analysts should pursue algorithmic techniques that allow them to study such
streams of updates and which produce results that can be updated continuously and efficiently.

In this thesis, we study how the application of probabilistic modeling and sampling techniques
may address all the mentioned concerns and challenges in the different possible scenarios of data
analysis. We argue how, rather than computing the exact quantities of interest, computing high-
quality estimates often allows for a considerable reduction in terms of computational effort while
retaining meaningful and reliable insight in the statistical properties of the data. Our solutions aim
to be efficient both in terms of data requirement (for the low data availability scenario) and in terms
of the use of computational resources and effort.

In the most common scenario for the low data availability setting, while the goal of the analysis
is to study the statistical properties of a large underlying population, only a small sample of the
population is available to the analyst. Such limited availability may depend on different factors:
In some scenarios, such as clinical trials, acquiring input points may be very expensive. For the
massive dataset setting, operating on a small sample drawn from the available data is useful in order
to reduce the computational cost of the operations involved in the analysis. While this generally
leads to the loss of the ability of computing exact values for the quantity of interest, trough a rigorous
analysis it is possible to show that, for opportune sampling methods, such loss is guaranteed (with
high probability) to be tolerable without compromising the statistical obtained by analyzing only a
small sample. Therefore, regardless of the circumstance, operating on the sample allows to obtain
estimates and approximations of the quantities of interest for the analysis. In order for such estimates
to be significant, it is desirable that they are representative of the corresponding actual ground truth
values with respect to the entire population. In this thesis, we discuss how, using opportunely chosen
sampling methods and probabilistic modeling for the data generation process, it is possible to ensure
such representativeness.

Both Classical Statistical theory and Learning Theory offer various tools that allow relating

3

quantities and properties evaluated on the sample to the entire population. The popular paradigm
of “data exploration” has however introduced new challenges which manifest themselves in the ne-
cessity to evaluate a very high number of hypotheses or queries using the same sample dataset while
controlling either the number of false positives (in the case of hypotheses) or the distribution of the
errors of the estimates. In the classical setting, the analyst aims to verify whether a certain belief
or hypothesis regarding the distribution is indeed correct. This is generally achieved by evaluating
the given sample dataset with an opportune procedure. However, the paradigm of data exploration
is based on a different setup and objective, which could be summarized as asking “is there anything
interesting that we can detect from the sample? ”. Rather than verifying a small group of given
hypotheses, the goal of data exploration is to uncover possible interesting patterns and relations
with respect to the original underlying distribution by making use of the sample data. While such a
task may appear similar in nature, its actual realization corresponds to evaluating a high number of
possible hypotheses and beliefs and then reporting on those which appear to be of actual statistical
relevance. Such an approach leads to an explosion of the number of properties or hypotheses to be
evaluated: the more thorough the exploration, the higher the number of hypotheses that are to be
evaluated.

This setting is generally referred to in the literature as Multiple Hypothesis Testing or Multi
Comparison Testing. Intuitively, as the number of properties to be tested increases, so does the
probability of one such property exhibiting a peculiar statistical behavior. Without opportune sta-
tistical tools, it is, however, problematic to decide whether such phenomena actually correspond to
statistically sound patterns, or if they are an effect of the randomness and the use of a finite sample
(i.e., they are false positives). The necessity of controlling the likelihood and the number of false
positives in data exploration led to a very rich literature of desired statistical testing procedures
aimed to control, among others, the probability of false discoveries (FWER) and the expected ratio
of false positives (FDR). Despite the richness and variety of such procedures, all appear to suffer
a considerable loss in statistical power as the number of properties being evaluated grows. In our
work, we build on results from probabilistic analysis and statistical learning theory in order to over-
come these challenges. Using these concepts allows us to rigorously characterize the relationship
between the amount of input training data, the quality, in terms of confidence and precision, of the
approximations achievable for a certain task, and the complexity of the task itself. We claim that
by using these results, it is possible to obtain rigorous procedures, which exhibit a much higher
statistical power compared to traditional techniques.

Further, exploratory data analysis is usually executed as an adaptive process, where the choice
of the properties to be considered at a given step may, in general, depend on the outcome of the
analysis in the previous steps. Such a form of adaptive exploration is notorious for easily leading
to overfit. That is a situation for which observations obtained on the sample do not generalize to
the entire population. In this work we build on uniform convergence bound from statistical learning
theory to produce a procedure which allows quantifying the error (i.e., the overfit) accumulated
after a certain number of adaptive exploration steps, and to, therefore, halt the exploration if it is

4

no longer possible to meet the desired guarantees.
Data visualization is a tool of widespread use and great importance in data analysis. Using

histograms, heatmaps, and graph representation of data is useful to provide to analysts and users an
immediate overview of complex phenomena and can highlight interesting relations between features
of the population being observed, or interesting difference in the behavior of sub-populations. Such
tools are particularly useful in the context of the “data exploration” task discussed before as they
provide an intuitive and user-friendly tool to delve into the analysis of otherwise complex data. While
such systems are growing in popularity [231, 43] they do hide some possible threats for inexpert users:
whenever data visualizations are used to extract insight on statistical properties of the data they
should be treated as hypotheses and, thus, treated opportunely in order to avoid erroneous insights
(i.e., False Positives or False Negatives). In our work, we build on the Alpha Investing technique [80]
to obtain procedures to ensure control of the risk of erroneous insights, measured by means of the
marginal False Discovery Rate (mFDR). Such procedures are meant to provide assistance to the
analysis in order to warn him/her on weather a phenomenon being displayed by a visualization may
not be indicative of an actual, statistically significant phenomenon in the overall population. We
develop a number of different procedures suited for different degrees of prior information on the data
from the side of the analyst.

Visualizations are also used to guide data exploration by means of recommendations, that is,
given a starting visualization of some data property (e.g., the distribution of a subpopulation with
respect to the values) a visual recommendation system will suggest other visualizations that are of
interest with respect to the starting visualization. While there is a large degree of freedom in the
definition of interest, in many cases of practical importance, a candidate visualization is it deemed
the more interesting, the more the population distribution it represents differs from that in the
original starting visualization. While the visual appearance of such difference may be useful to
guide the user in the data exploration, it may also lead to erroneous conclusions as in some case the
difference observed between two visualizations may be the consequence of the specific composition
of the data sample being used in the representation (i.e., an overfit to the sample) rather than a
representative of a general statistical phenomenon for the overall population. We develop VizRec

a framework for validating visual data recommendations. Our approach tests each pair of starting
and candidate recommendations, and it determines whether the available data allows us to conclude
that any observed difference is indeed statistically relevant, that is, it corresponds to an actual large
difference with respect to the entire population with high probability. Our procedure estimated the
values of the quantities represented by the visual representation using a sample of the population
and uses such estimates to estimate the level of interest of a candidate recommendation measured
as the difference between the estimates with respect to the values of the starting visualization. To
ensure the significance of the estimates, we characterize the quality of the obtained estimated by
building on uniform convergence bounds based on the notion of Vapnik–Chervonenkis dimension of
the class of predicate functions corresponding to the selection criteria for the data appearing in the
visualization. Our method allows for the control of the Family Wise Error Rate of the probability

5

of recommending visualizations which are not actually of interest with respect to the starting visu-
alization. As our procedure corrects for all possible combinations of parameters corresponding to
possible visualization, it allows for control of probability of error for procedures which adaptively
explore the space of possible visualizations.

In the third part of this thesis, we focus on the use of sampling approaches for the analysis of
massive datasets. As mentioned earlier, in this setting, the main challenges have to do with the
amount of computational effort and resources required to extract insight from massive datasets. We
consider the analysis of massive dynamic networks. Graph models are pervasive in may aspects of
data science. Some notable examples include protein interaction networks [160], Social Networks,
and relations between consumers and products. Further, these graphs are intrinsically dynamic
as new relations (i.e., edges) are continuously added or removed from the network. Such evolving
nature introduces several new challenges: running expensive algorithms based on post-processing
is not possible as there is no end to the graph evolution, re-running onerous algorithms for every
update is unpractical due to the frequencies of updates. Finally, as the size of graphs of interest
may be in the hundreds of billions of edges (e.g., Facebook, Twitter), maintaining the entirety of
such graphs in memory, or making multiple passes over the data. In our work, we focus on the
task of counting the number of occurrences of subgraphs, such as triangles and 4-cliques, in massive
dynamic graphs modeled as a stream of edge updates. We show how by maintaining a sample of
the entire graph and studying the properties of such a sample, it is possible to estimate the number
of triangles and other motifs of interest in the entire graph. Our first approach, TRIÉST, builds
on reservoir sampling to obtain a one-pass, sampling-based method for efficiently estimating the
number of triangles in a graph stream using a fixes memory. Further, we discuss how this approach
can be extended to fully-dynamic edge streams, for which edges can be deleted as well as added.
This extension is achieved by integrating the random pairing sampling scheme, a variation of the
reservoir sampling scheme, into the paradigm of TRIÉST. For all TRIÉST algorithms, we present a
rigorous analysis of the statistical properties of the obtained estimates: we show that the estimates
are unbiased, (i.e., heir value corresponds in expectation to the exact triangle count), we obtain
bounds on the variance of such estimates, and corresponding concentration bounds. The analysis
is made challenging by the fact that while the reservoir sampling scheme ensures that each edge of
the graph is uniformly likely to be included in the sample, the events corresponding to each edge
being included in the sample are not independent. While this may, at first glance, appear to be
a minor complication, it snowballs introducing many additional challenges which require, in some
case, to break down all possible order of arrivals for edges belonging to pairs of triangles sharing an
edge. Regardless, the effort is worthwhile as the TRIÉST algorithms exhibit low variance for many
graphs of real-world interest and with billions of edges while using a sample whose size is less than
0.1% of the size of the graph.

Towards pushing further these results to the task of counting more complex motifs (e.g., 4 and
5-cliques) we develop the Tiered Sampling framework. While edge-only sampling algorithms such

6

as TRIÉST can, in principle, be extended to more complex patterns, they generally exhibit poor
performance as the variance of the obtained estimates tend to increase exponentially with respect to
the number of edges in the pattern of interest. Tiered Sampling addresses this issue by breaking
the task of detecting occurrences of a subgraph of interest in two parts, the detection of a prototype
sub-pattern, and its combination with a few remaining edges to detect a full occurrence of the sub-
graph whose count we are interested in. Thus, the fixed size available memory is correspondingly
divided into two tiers one used to maintain a uniform sample of edges observed on the stream,
and the other used to maintain a sample of the prototype sub-patterns observed so far. Both such
samples are maintained using the reservoir sampling scheme. Tiered Sampling retains many of
the desirable properties of TRIÉST: it is a one-pass algorithm, it yields unbiased estimates, it ex-
hibits low experimental variance, it uses a finite size memory, and it does not require any additional
prior information on the properties of the overall network (e.g., node degrees, degrees distribution,
diameter). The use of multiple tiers does, however, introduce an additional layer of dependence,
which, in turn, further complicates the analysis of the statistical properties of Tiered Sampling

estimates. Finally, discuss how to further generalize this framework by simplifying the analysis using
opportune approximates.

In the last chapter of this thesis, we study the problem of aggregating rankings produced by users.
We establish a probabilistic model for the generation of such rankings for which given a central rank-
ing corresponding to the ground truth, which we aim to reconstruct, other rankings are observed
with a probability which depends on how different those rankings are with respect to the central
ranking. We measure such difference in terms of the AP correlation statistic for which discrepancies
in highest-ranked positions of a pair of rankings are weighted more heavily than discrepancies in
lower positions. This is aimed to model a rather intuitive phenomenon according to whom users
belonging to the same group are most likely to agree on most of the important decisions. We show
how under this probabilistic model, it is possible to reconstruct the central from a sample of the
population whose cardinality depends on the quality of the desires approximation without requiring
any additional knowledge of the ground truth ranking.

All mentioned results share a common foundation given by probabilistic modeling of the popula-
tion, or the phenomena, being observed via the available data. Our methods are based on sampling,
either used as a way to gain insight into a large unavailable population or as a means of handling
massive datasets while containing computational effort. Our methods rely on obtaining estimates
of the quantities of interest from such a sample while rigorously analyzing the quality and reliability
of such estimates building on tools from statistical learning theory and probabilistic analysis. Our
methods aim to be efficient and to provide statistically rigorous guarantees for the insight achievable
through their use.

7

Organization of the presentation of the content of the thesis

In the first part of this work, we study the application of statistical learning tools such as Rademacher
Complexity and VC dimension, to the classical hypothesis testing problem. We explore the applica-
tion of the Rademacher Complexity uniform convergence bounds to the setting of multiple hypothesis
testing. Traditional methods offering control of the Family Wise Error Rate (FWER) do not scale
well as their statistical power considerably decreases as the number of hypotheses being considered
scales the power. In our RadeFWER approach, the statistical power of the procedure decreases
with respect to the actual complexity of the considered hypotheses, captured by a data-dependent
way by estimation of the Rademacher Complexity. We verify the correctness of our approach and
the achieved increase of statistical power compared to classical FWER control procedures experi-
mentally. As an additional result, we introduce RadaBound, a rigorous, efficient, and practical
procedure for controlling the generalization error when using a holdout sample for multiple adaptive
testing. Practical data analysis and machine learning are usually iterative and adaptive processes.
Based on the results of the hypotheses (or models) tested so far, the user selects a new hypothesis
(or model) to test until an adequate model is found. Standard statistical inference techniques and
machine learning generalization bounds assume that tests are run on data selected independently
of the hypotheses. To evaluate the performance of such an iterative analysis process, we need to
quantify the accumulated errors in running a sequence of non-independent tests on the same data.
Our solution is based on a new application of the Rademacher Complexity generalization bounds
adapted to dependent tests. We demonstrate the statistical power and practicality of our method
through extensive simulations and comparisons to alternative approaches.

In the second part of this thesis, we investigate the importance of rigorous statistical control
of multiple hypothesis testing in the context of the visual exploration of large datasets. We argue
that data representation should indeed be considered hypotheses, and the statistical significance
of the observed phenomenon should correspondingly rigorously be ascertained. We build upon the
Alpha Investing testing scheme to obtain a procedure which allows for adaptive visual exploration
while controlling the marginal False Discovery Rate (mFDR), that is the ratio between the expected
number of false positives and the expected number of discoveries. As additional result, we con-
sider the problem commonly referred to as visualization recommendation. In this setting, we aim
to provide the analyst some assistance while recommending data visualizations which may be of
interest. The challenge of this scenario is given by the fact that it often the case that differences
observed in the evaluation of a given sample may not correspond to differences with respect to the
entire population. In this work, we use statistical learning analysis tools in order to both obtain
strong FWER guarantees when validating the recommendations of “interesting” visualization. Our
VizRec system is is based on the analysis of the Vapnik–Chervonenkis (VC) dimension of the class
of queries corresponding to the visualizations being considered.

In the third, and final, part of this proposal, we study massive dynamic graphs being observed

8

ad an adversarial stream of edges insertions and deletions. The goal of our analysis is to count the
number of occurrences of a given small sub-graph pattern or a “motif ” of interest.

We present Trièst, a suite of one-pass streaming algorithms based on reservoir sampling and the
random pairing sampling schemes. Trièst algorithms, which yield high-quality unbiased estimate
of the number of triangle motifs in fully dynamic edges stream while using a small local memory in
which a small and random sample of the edges is maintained. We present a complete analysis of the
variance of the proposed algorithms and corresponding large deviations bounds. We also present
Tiered Sampling, an extension of the Trièst paradigm which employs multiple reservoir sample
tiers in order to accurately estimate the count of rare and complex patterns such as 4 and 5 cliques.
We evaluate the performance of both approaches thought extensive experimental analysis on real
world graphs with up to five billions of edges while maintaining only a small fraction (≤ 0.5%) of
such graphs as a sample.

Part I

Hypothesis testing and statistical

learning

9

Chapter 2

Family Wise Discovery Rate using

Rademacher Complexity uniform

convergence bounds

Modern data analysis tools allow users to easily examine many hypotheses on the same dataset,
significantly increasing the risk of making false discoveries. While this issue, commonly known in
statistics as the “multiple hypothesis testing error ”, is well understood, classical statistical meth-
ods offering control of the Family Wise Error Rate (FWER) or False Discovery Rate (FDR) do
not provide satisfying solutions for large scale data analysis as their statistical power considerably
decreases as the number of hypotheses being considered increases. In this Chapter, we present a
novel approach for addressing this problem, building on applications of statistical learning theory
and Rademacher Complexity to hypotheses testing. In our approaches, the statistical power of the
procedure decreases with respect to the “actual complexity” of the family of hypotheses being tested,
captured in a data-dependent way by estimation of the Rademacher Complexity, rather than to its
sheer cardinality. Our methods do not rely on any assumption on the correlation of the hypothe-
ses being considered. We verify experimentally the correctness of our approach and the achieved
increase of statistical power compared to classical FWER and FDR control

2.1 Introduction

As advances in technology allow for the collection, storage, and analysis of vast amounts of data, the
task of screening and assessing the significance of discoveries is becoming a major challenge in data
analysis applications. In particular, modern technologies allow for easy testing of large numbers of
hypotheses on the same data, increasing the risk of claiming false positive discoveries. While this
issue, commonly known as the multiple hypothesis testing error, is well known, standard frequentist
statistical tests do not provide satisfying solutions for large scale data analysis.

10

11

To appreciate the challenge, consider the following simple data analysis example: We obtain
DNA samples from 100 patients with a common phenotype (disease) and 100 patients in a control
group without the phenotype. The goal is to identify a DNA marker for the phenotype, i.e., a
mutation that increases the likelihood of the phenotype. Assume that we check one DNA location
and observe that it has a mutation in 27 patients with the phenotype and in only 13 patients in the
control group. The probability of such an observation when the occurrences of the mutations are
independent of the phenotype is less than 0.02. Therefore, we can conclude that a mutation at that
location is a valid marker for the phenotype. Now assume that this location was one of 100 different
DNA locations tested for mutations. Even if mutations in all these locations are not related to the
phenotype, we expect to see a discrepancy that is as large (as 14 = 27− 13) or larger in at least two
of the tested locations. Thus, an observation that indicated a good marker when tested in isolation
cannot be considered valid when it is one of a large number of tests. Accurate large scale exploratory
data analysis requires efficient tools for distinguishing between spurious and meaningful discoveries
within a large number of observations.

For concreteness, we focus here on standard hypotheses about expectations of functions or prob-
abilities of events. Given a set of hypotheses evaluated on the same sample, the goal is to avoid
erroneous discoveries (i.e., false positives), while not compromising the statistical power of the test
(i.e., minimizing false negatives). The classic, frequentist statistics, solution for this problem typi-
cally consists of two stages. First, each hypothesis is evaluated in isolation to compute the p-value
of the corresponding observed statistic in the data. Then, a “multi-comparison” control procedure
evaluates the collection of the p-values to select the rejected null hypotheses, satisfying the required
FWER (Family Wise Error Rate) or FDR (False Discovery Rate) bound. A number of multi-
comparisons control methods have been proposed (see Section 2.2) but in general, these approaches
do not scale well to large numbers of hypotheses, rapidly losing statistical power.

In this Chapter, we develop a novel alternative approach for large scale multi-hypotheses testing
problem, building on modern machine learning techniques for uniform convergence bounds. The
statistical power of our procedures scales with respect of the actual complexity (or expressiveness) of
the family of hypotheses being tested, here evaluated in terms of its Rademacher Complexity, rather
than its sheer cardinality. This leads to a substantial improvement in terms of statistical power for
settings in which there are strong correlations between the hypotheses being tested.

Our contributions: We introduce RadeFWER and RadeFDR, a pair of statistical procedures
which achieve control of, respectively, FWER and FDR. Both procedures ensure strong control (i.e.,
not only under the global null hypothesis) and do not require any assumption regarding the inde-
pendence or the type of correlation of the test statistics associated with the hypotheses being con-
sidered. We compare our procedures with classical statistical control procedures (i.e., Holm’s [106]
and Hochberg’s [103] procedures for FWER, and the Benjamini-Hochberg [15] and the Benjamini-
Yakuteli [18] procedures for FDR control), and we show that, in a variety of settings, our novel
approach outperforms the standard methods both on synthetic and real-world data.

Depending on the specific approach used to bound the generalization error, our methods lead

12

to procedures with different guarantees and requirements. In this work, we focus on the use of a
bound obtained using the Central Limit Theorem for Martingales (MCLT) which allows us to obtain
asymptotic bounds (more similar to those obtained in the classical hypotheses testing literature).
Further, we show that by bounding the generalization error using Bernstein’s inequality for mar-
tingales, we can obtain a finite-sample bound which, albeit clearly much more conservative than it
asymptotic counterpart, leads to a procedure with stronger guarantees.

2.2 Standard multi-comparisons control procedures

For a given set H of null hypotheses to be tested, with |H| = m, let m0 denote the number of false
null hypotheses (i.e, true discoveries). Further, let V denote the number of null hypotheses rejected
by a statistical testing procedure Π, and let R (resp., S) denote the number of false (resp., true)
positives. Out of these, only m and V are observable.

Definition 2.0.1 (FWER control). Given δ ∈ (0, 1], a statistical testing procedure ensures Family
Wise Error Rate (FWER) control at level δ if Pr (R > 0) ≤ δ.

Definition 2.0.2 (FDR control). Given δ ∈ (0, 1], a statistical testing procedure ensures False
Discovery Rate (FDR) control at level δ if E

[
R/V

]
≤ δ.

Any procedure which controls FWER at level δ also controls FDR at the same level. FWER
is, in general, a much stricter criterion than FDR, with the latter being introduced mainly in order
to retain statistical power. There is an extremely rich literature on statistical testing procedure
achieving control of FWER and FDR. Here we provide a partial overview, with a focus on the
methods used as direct terms of comparison for our proposed methods.

FWER control procedures: As our proposed RadeFWER control procedure controls FWER
strongly (not only under the global null hypothesis), henceforth we focus on comparisons with pro-
cedures controlling FWER strongly. Holm’s procedure [7] is uniformly more powerful than Bonfer-
roni’s [28] and Tukey’s [228] procedure. While Hommel’s procedure is more powerful than Holm’s,
it holds only under non-negative dependence of the test statistics associated with the hypotheses
being tested. Hommel’s procedure [107] is uniformly more powerful than other procedures which
require the same, or more restrictive, assumptions on the dependence between hypotheses, such as
Šidak’s [212], Holm-Šidak’s, Hochberg’s [103]. Tukey’s and Dunnett’s tests are used only as follow-
up tests to ANOVA and hold assuming that the calculated means of the sets of observations are
independently normally distributed with the same variance.

• Bonferroni - Holm’s FWER control procedure [106]:

– Sort the p-values from lowest to highest as P(1), P(2), . . . , P(m), and let H(i) denote the
null hypothesis associated with the p-value P(i);

– Let k denote the smallest value such that P(k) >
δ

m−k+1 ;

13

– Reject the null hypotheses H(1), . . . ,H(k−1). If k = 1, no null hypothesis is rejected.

• Hochberg’s FWER control procedure [103]:

– Sort the p-values from lowest to highest as P(1), P(2), . . . , P(m), and let H(i) denote the
null hypothesis associated with the p-value P(i);

– Let k denote the highest value such that P(k) ≤ δ
m−k+1 ;

– Reject the null hypotheses H(1), . . . ,H(k). If no value for k satisfies the criteria, no null
hypothesis is rejected.

FDR control procedures: As our RadeFDR technique controls FDR under arbitrary dependence
between the hypotheses, we compare it with the Benjamini–Yekutieli procedure [18] (BY), which
generalizes the Benjamini-Hochberg procedure (BH) (which holds under independence or positive
dependence between hypotheses) to arbitrary dependence.

• Benjamini-Yekutieli FDR control procedure (BY) [18]:

– Sort the p-values from lowest to highest as P(1), P(2), . . . , P(m), and let H(i) denote the
null hypothesis associated with the p-value P(i);

– Let k denote the highest value such that P(k) ≤ δ k
mc(m) ;

– If the tests are independent or positively correlated (as in the Benjamini-Hochberg (BH)
procedure [15]) c (m) = 1. Under arbitrary dependence c (m) =

∑m
i=1 i

−1;

– Reject the null hypotheses H(1), . . . ,H(k−1). If k = 1, no null hypothesis is rejected.

We do not compare our methods with weighted versions of the mentioned procedures as we do
not assume prior knowledge of the hypotheses being tested. Knowledge of the ratio of true nulls
m0/mmay lead to improvement of the mentioned FWER (resp., FDR) control procedures. However,
m0/m is not generally known, and adaptive variations of the previously mentioned procedures for
controlling FWER (resp., FDR), among whom [104] [75][93] [202] (resp., [16][23] [84][201][221]) only
approximately control FWER, or strongly control FWER under additional assumptions such as the
p-values of the true null hypotheses being iid as U(0, 1), or positive dependence.

As our proposed method RadeFWER (resp., RadeFDR) does not require any assumption
on the distribution or the dependence structure of the hypotheses, Holm’s (resp., the Benjamini-
Yakuteli) procedure is a more appropriate term of comparison. To gauge the effectiveness of our
methods, we show however that, in opportune settings, RadeFWER (resp., RadeFDR) achieves
improvements even with comparison to Hochberg’s (resp., the Benjamini-Hochberg) procedure.

All mentioned methods hold under the critical assumption that the p-value of true null hypotheses
are distributed uniformly in [0, 1]. However, in the finite sample setting, such guarantee can only be
achieved asymptotically, thus, such procedures actually provide asymptotic control of the FWER
for |x̄| → ∞. Such an assumption is not required by our methods.

14

We do not compare RadeFWER with resampling procedures for FWER and FDR control, such
as bootstrapping (e.g., Romano and Wolf FWER control [195], and the FDR control of Romano et
al. [194]) and permutations methods (e.g., Westfall and Young method [236]. These methods require
additional assumptions such as subset pivotality [236] (which is itself stronger than the assumption
on p-values being distributed as U(0, 1)), or assumptions regarding the convergence of the estimate of
the unknown distribution obtainable via bootstrap [195][194]. Further, such resampling approaches
appear to be most suited for situations with small samples and a limited number of hypotheses, due
to the conspicuous computational overhead which does not scale for massive amounts of hypotheses,
and the complications in constructing null-invariant permutations [108]. Finally, we do not compare
our procedure with Bayesian approaches as we assume no prior knowledge of the likelihood of
hypotheses being true or false nulls.

2.3 Setting

Let x̄ denote the input dataset with |x̄| = m, we assume that X is composed bym i.i.d. samples from
an unknown distribution D. Assume each x ∈ X to be a tuple of d+ 1 values. For i = 1, . . . , d, we
denote as x[i] the value of the i-th feature of x. We consider families of null hypotheses such that each
null hypothesis corresponds to a statistical counting query (e.g.,“predicate queries”), characterized
by a predicate binary function fh : X → 0, 1:

fh (x) = 1
(
predicate(x)

)
.

As an example, consider the null hypothesis “h = there is no correlation between the sign of
feature j and that of the feature k”. The corresponding predicate function fh would be defined as:

fh (x) = 1
(
sign(x[j]) == sign(x[k])

)
.

In the remainder of the presentation, we discuss how to use our approach as if the individual null
hypotheses being considered are evaluated according to the one-sample student t-test. Our approach
can, however, be extended to variations of this setting such as those for which the expected null-
values are not given, for different types of hypotheses, and for two-sample testing. Regardless of
the specific variation, our approaches do not require knowledge of the variance of the test statistic.
With a slight abuse of notation we denote the average of the evaluations of fh on the points in the
sample dataset x̄ as:

fh (x̄) = |x̄|−1
∑
xi∈x̄

fh (xi)

Clearly, ED
[
fh (x)

]
= EDm

[
fh (x̄)

]
. In the following, we refer to the family of functions correspond-

ing to the family H of hypothesis as FH = fh,∀h ∈ H. Let
pi = ED

[
1

(
sign

(
x[j]

)
== “+”

)]
;

pk = ED
[
1

(
sign

(
x[k]

)
== “−”

)]
.

If, as stated in the null hypothesis h, there is no correlation between the signs of the i-th and the
k-th features, we would have:

ED
[
fh (x)

]
= pipj + (1− pi)(1− pj) = µh,

15

where µh denotes the expected value of fh (x) according to the null hypothesis. In the classic one
sample t-test the value µh would correspond to the population mean specified by the null hypothesis.
Such values may either be specified by the analyst or, for opportune choices of the null hypothesis
(e.g., null hypotheses such as h in the previous example), be automatically estimated from the data.
In the following, in order to simplify the presentation, we assume the values µh to be given.

Rather than relying on the evaluation of the p-values, the core idea of our approach is to use
estimates of the value ED

[
fh (x)

]
obtained from x̄ in order to make decisions regarding whether the

associated hypothesis h should be rejected or not. In particular, given a uniform convergence bound
holding simultaneously for all fh ∈ FH, we can achieve FWER control without any further correction
for the cardinality of H. Further, such a procedure holds for any possible dependence among the
hypotheses in H. Our approach proceeds by characterizing the distribution of the generalization
error for functions in FH:

Ψ (FH, x̄) = sup
fh∈FH

|fh (x̄)− ED
[
fh (x)

]
|. (2.1)

The tighter the bound on the generalization error, the tighter the control of FWER. In the next
section, we discuss how to obtain tight and data dependent bounds on Ψ (FH) based on Rademacher
Complexity theory.

2.4 Uniform bound on generalization error with Rademacher

Complexity

Statistical learning theory offers various tools to characterize the distribution of Ψ (FH, x̄). In this
work, we use generalization bounds based on the Rademacher Complexity of FH, defined as follows.

Definition 2.0.3. [165] Let σ̄ = (σ1, . . . , σm) be a vector of m independent Rademacher random
variables, such that for all i, Pr (σi = 1) = Pr (σi = −1) = 1/2. The Empirical Rademacher Com-
plexity of a class of function F with respect to a sample x̄ = {x1, . . . , xm}, with x̄ ∼ Dm is

R̂m (F , x̄) := Eσ̄

sup
f∈F

1

m

m∑
i=1

f (xi))σi

 .
The Rademacher Complexity of F for samples of size m is defined as

Rm (F) := Ex̄∼Dm
[
RFx̄

]
.

The relation between Ψ (FH, x̄) and the Rademacher Complexity of FH is given by the following
results 1:

Lemma 2.1. [208, Lemma 26.2] Ex̄∼Dm
[
Ψ (FH, x̄)

]
≤ 2Rm (FH).

Lemma 2.2. [165, Theorem 14.21] Assume that for all x ∈ X and f ∈ F we have f(x) ∈ [0, 1],
then, for ε ∈ (0, 1]:

Pr
(
Ψ (FH, x̄)) > 2Rm (FH) + ε

)
≤ e−2mε2 . (2.2)

1In our setting, in order apply the result with absolute value we implicitly assume that for any f ∈ FH we also
have −f ∈ FH, that is, we assume that FH is closed under negation.

16

The result in Lemma 2.2 allows us to characterize the distribution of generalization errors of
all functions in FH as they are bounded by Ψ (FH, x̄) . This leads to confidence intervals holding
simultaneously for all functions in FH. Leveraging this observation, we obtain an FWER control pro-
cedure whose performance scales according to Rm,F rather than to the sheer number of hypotheses
in H.

Rademacher Complexity estimate

In order to actually use the Rademacher Complexity results for FH, it is necessary to estimate
Rm (FH) using the given sample x̄ ∼ Dm. Let σ̄1, . . . , σ̄` be ` independent vectors each composed
by m independent Rademacher random variables (i.e., σ̄j = σj,1σj,2 . . . σj,m). Consider the estimate
of RFHm computed as:

R̂x̄,` (FH) =
1

`

∑̀
j=1

sup
f∈FH

1

m

m∑
i=1

f(xi)σj,i. (2.3)

Clearly, Ex̄,σ̄1,...,σ̄`

[
R̂x̄,` (FH)

]
= Rm (FH)RFH .

Such an estimate can be used to characterize the distribution of Ψ (FH, x̄) . In this work, we
use the following bounds obtained using applications of, respectively, the Martingale Central Limit
Theorem (MCLT) and Bernstein’s Inequality for Martingales.

Lemma 2.3 (MCLT-based bound on Ψ (FH, x̄)). Let Φ(x) denote the cumulative distribution func-
tion for the standard normal distribution. Assume that for all x ∈ X and f ∈ FH, we have
f(x) ∈ [0, 1], then for ε ∈ (0, 1],

lim
m→∞

Pr

Ψ (FH, x̄) − 2R̂x̄,` (FH) > ε

√
`+ 4

√
`+ 20

2
√
`m

< 1− Φ (ε) ,

(2.4)

where Φ(x) denotes the cumulative distribution function for the standard normal distribution.

Lemma 2.4 (BIM-based bound on Ψ (FH, x̄)). Assume that for all x ∈ X and f ∈ FH, we have
f(x) ∈ [0, 1], then for ε ∈ (0, 1],

Pr
(

Ψ (FH, x̄) > 2R̂x̄,` (FH) + ε
)
< e
−ε2

(
`+4
√
`+20

2m` + 4ε
3m

)−1

. (2.5)

While the result in Lemma 2.4 is a finite sample bound, in practical applications, it may be
preferable to use the result based of applying central limit asymptotic bounds such as the one in
Lemma 2.3 as it allows for a less restrictive criterion. Note that using asymptotic statistical tools
is an established tenet of classical hypothesis testing. The standard assumption that p-values are
uniformly distributed between [0, 1] holds only for large datasets, due to the central limit theorem.

17

2.5 Proofs of uniform convergence bounds

Given a sample x̄ ∼ Dn and ` independent Rademacher vectors σ̄1, . . . , σ̄`, each composed of n
independent Rademacher random variables (i.e., σ̄j = σj,1σi,2 . . . σj,n), we estimate RFHn with

R̃FHx̄,` =
1

`

∑̀
j=1

sup
f∈FH

1

n

n∑
i=1

f(xi)σj,i. (2.6)

Clearly, Ex̄,σ̄1,...,σ̄`

[
R̃FHx̄,`

]
= RFHn . To bound the generalization error Ψ (FH, x̄) − 2R̃FHx̄,` , we model

the process as a Doob supermartingale ([165, Chapter 13.1]) as follows:
Ci = E[Ψ (FH, x̄)− 2R̃FHx̄,` | Y1, . . . , Yi] for i = 0, . . . , n(`+ 1),

where the Y1, . . . , Yn(`+1) are the random variables that determinate the value of the estimate R̃FHx̄,` .
The first n variables Yi’s correspond to the values of the sample x̄, i.e. for 1 ≤ i ≤ n, Yi = Xi,
and the remaining n` Yi’s correspond to the Rademacher random variables, Yi = σbi/nc,i−bi/nc. It
is easy to verify that C0 = 0, and Cn(`+1) = RFn − R̃FHx̄,` .

Next, we define a martingale difference sequence Zi = Ci − Ci−1 with respect to the martingale
C0, C1, . . . Cm(`+1), and note that

∑n(`+1)
t=1 Zt = Cn(`+1) = RFHn − R̃FHx̄,` .

2.5.1 Uniform convergence bound based on the Martingale Central Limit
Theorem

We adapt the following version of the MCLT 2:

Theorem 2.5 (Corollary 3.2, [97]). Let Z0, Z1, . . . be a difference martingale with bounded absolute
increments. Assume that (1)

∑n
i=1 Z

2
i

p→ V 2 for a finite V > 0, and (2) E
[
maxi Z

2
i

]
≤ M < ∞,

then
∑n
i=1 Zi/

√∑n
i=1 E

[
Z2
i

]
converges in distribution to N(0, 1).

The proof of Lemma 2.3 relies on the careful analysis of E
[
Z2
i

]
for the martingale difference

sequence Zi = Ci − Ci−1.

Lemma 2.3. Consider the Doob supermartingale:
Ci = E

[
Ψ (F , x̄)− 2R̃Fx̄,`|Y1, . . . Yi

]
for i = 0, . . . , n(`+ 1).

Let us define the corresponding martingale difference sequence Zi = Ci − Ci−1. For each i ∈
{1, . . . , n(`+ 1)}, due to linearity of expectation, we have Zi = Ai − 2Bi, where:

Ai = E
[
Ψ (FH, x̄) |Y1, . . . Yi

]
− E

[
Ψ (FH, x̄) |Y1, . . . Yi−1

]
;

Bi = E
[
R̃FHx̄,` |Y1, . . . Yi

]
− E

[
R̃FHx̄,` |Y1, . . . Yi−1

]
.

In order apply the Martingale Central Limit Theorem, we need an upper-bound a ≥ |Zi| for 1 ≤ i ≤
n(`+ 1) and an upper-bound L, such that L ≥∑n(`+1)

i=1 E
[
Z2
i

]
. Given our definition of Zi, we have

that for every i, E [Zi] = E [Ai] = E [Bi] = 0, and thus: E
[
Z2
i

]
= Var [Zi] ≤ Var [Ai] + 4Var [Bi] +

4Cov [Ai, Bi]. From the properties of covariance, we have |Cov [Ai, Bi] | ≤
√

Var [Ai]Var [Bi], and
thus, E

[
Z2
i

]
= Var [Zi] ≤ Var [Ai] + 4Var [Bi] + 4

√
Var [Ai]Var [Bi].

We consider the cases for 1 ≤ i ≤ n and mni ≤ m(`+ 1) separately:
2Formally, the asymptotic is defined on a triangle array, where rows are samples of growing sizes. We also assume
that all expectations are well-defined in the corresponding filtration.

18

• 1 ≤ i ≤ n: In our setting ∀x ∈ X and ∀f ∈ FH, f(x) ∈ [0, 1], changing the value of any of the
n points in x̄ can change f(x̄) by at most 1/n. Therefore, |Ai| ≤ 1/n, and Ai ∈ [α, β] with
β − α ≤ 1/n. From Popoviciu’s Inequality on variance [184], we have that the variance of a
random variable which takes values in [α, β] is bounded from above by (β − α)2/4. Hence, by
applying Popoviciu’s Inequality, we have: Var [Ai] ≤ 1/4n2. For 1 ≤ j ≤ `, let us consider

B
(j)
i = E

 sup
f∈FH

1

n

n∑
i=1

f(xi)σj,i|Y1, . . . Yi

− E

 sup
f∈FH

1

n

n∑
i=1

f(xi)σj,i|Y1, . . . Yi−1

 .
According to our definitions, we have

Bi =
1

`

∑̀
j=1

B
(j)
i .

Since ∀x ∈ X and ∀f ∈ FH, f(x) ∈ [0, 1], changing the value of any of the n points in x̄ can
change supf∈FH

1
n

∑n
i=1 f(xi) by at most 1/n, and thus we have |Bi| ≤ 1/n, and B(j)

i ∈ [α, β]

with β − α ≤ 1/n. By applying Popoviciu’s Inequality, we have that Var
[
B

(j)
i

]
≤ 1/(4n2).

As we are considering the expectation over the unassigned values of the Rademacher ran-
dom variables, and as we are averaging over the values obtained using ` independent and
identically distributed vectors of Rademacher random variables, we can conclude that |Bi| ≤
1
`

∑`
j=1 |B

(j)
i | ≤ 1/n, and Var [Bi] = 1

`2

∑`
j=1 Var

[
Bji

]
≤ 1/(4n2`).

• n < i ≤ n(` + 1): Changing the value of any of the Rademacher random variables does not
change the value of Ψ (FH, x̄). Hence, Var [Ai] = E

[
A2
i

]
= 0.

Given fixed values for the random variables corresponding to the points in x̄, changing the
value of one Rademacher random variable can change the value of R̃FHx̄,` by at most 2/`n.
Thus, |Bi| ≤ 2

`n , and Bi ∈ [α, β] with β − α ≤ 2/`n. By applying Popoviciu’s Inequality, we
have:

Var [Zi] = 4Var [Bi] ≤
4

n2`2
.

We, therefore, have |Zi| ≤ 2
n for all 1 ≤ i ≤ n(`+ 1), and

∑n(`+1)
i=1 E

[
Z2
i

]
≤ `+4

√
`+20

4n` . Applying the

MCLT, we have that as n goes to infinity,
∑n(`+1)
i=1 Zi/

√∑n(`+1)
i=1 E

[
Z2
i

]
converges in distribution

to N(0, 1), and thus:

lim
n→∞

Pr

`(n+1)∑
i=1

Zi

√√√√n(`+1)∑

i=1

E
[
Z2
i

]
−1

> ε

 < 1− Φ (ε) ,

lim
n→∞

Pr

`(n+1)∑
i=1

Zi > ε

√
`+ 4

√
`+ 20

4n`

 < 1− Φ (ε) ,

19

By linearity of expectation, and by applying Theorem 2.1:
`(n+1)∑
i=1

Zi = Ψ (FH, x̄)− E
[
Ψ (FH, x̄)

]
− 2

(
R̃FHx̄,` −RFHn

)
≥ Ψ (FH, x̄)− 2RFHn − 2

(
R̃FHx̄,` −RFHn

)
;

≥ Ψ (FH, x̄)− 2R̃FHx̄,` ;

The statement follows.

Due to its asymptotic nature, it is not possible to compare directly the tightness of the bound in
Theorem 2.3 with that of finite sample bounds such as the one in Theorem 2.4. Still, this bound is of
great interest in many practical scenarios as it allows for a much tighter bound for the generalization
error.

2.5.2 Application of Bernstein’s Inequality for Martingales

We use the following version of Bernstein’s Inequality for Martingales (BIM) due to Freedman [82],
as presented in [63] and adapted to one-sided error.

Theorem 2.6. [63][82] Let Z1, . . . , Zt be a martingale difference sequence with respect to a certain
filtration {Fi}i=0,...,t.

Thus, E
[
Zi|Fi−1

]
= 0 for i = 1, . . . , t. The process

∑t
i=1 Zi is thus a martingale with respect

to this filtration. Further, assume that |Zi| ≤ a for i = 1, . . . , t, and that the conditional variance∑t
i=1 E

[
Z2
i

]
≤ L. For ε ∈ (0, 1), we have:

Pr

 t∑
i=1

Zi > ε

 ≤ e−ε2(2L+2aε/3)
−1

. (2.7)

Note that the bound presented here is slightly different from the one in [82] as for our purposes
we only require a one-sided bound.

A careful analysis of E[Z2
i] in our application allows us to obtain a significantly stronger bound

than the one obtained using McDiarmid’s Inequality [13, 208], which depends on the maximum
variation of the martingale.

Proof. of Lemma 2.4 Consider the Doob supermartingale:
Ci = E

[
Ψ (FH, x̄)− 2R̃FHx̄,` |Y1, . . . Yi

]
for i = 0, . . . , n(`+ 1),

where for 1 ≤ i ≤ m, Yi = Xi, and the remaining Yi correspond to the n` independent Rademacher
random variables in the ` vectors; that is, Yj(n)+i = σj,i for 1 ≤ j ≤ ` and 1 ≤ i ≤ n. It is
easy to verify that Cn(`+1) = Ψ (FH, x̄) − 2R̃FHx̄,` . Further, C0 = E

[
Ψ (FH, x̄)

]
− 2RFHn , and due to

Theorem 2.1, C0 ≤ 0. Let us define the corresponding martingale difference sequence Zi = Ci−Ci−1.
In order apply Bernstein’s Inequality, we need an upper-bound a ≥ |Zi| for 1 ≤ i ≤ n(` + 1)

and an upper-bound L, such that L ≥ ∑n(`+1)
i=1 E

[
Z2
i

]
. Note that the sequence Zi defined here

corresponds to the martingale difference sequence by the same name that we studied in the proof of
Theorem 2.3. Thus, we have

∑n(`+1)
i=1 E

[
Z2
i

]
≤ `+4

√
`+20

4n` , and |Zi| ≤ 2/n for all 1 ≤ i ≤ n(`+ 1).

20

By linearity of expectation, and by applying Theorem 2.1:
`(n+1)∑
i=1

Zi = Ψ (FH, x̄)− E
[
Ψ (FH, x̄)

]
− 2

(
R̃FHx̄,` −RFHn

)
≥ Ψ (FH, x̄)− 2RFHn − 2

(
R̃FHx̄,` −RFHn

)
;

≥ Ψ (FH, x̄)− 2R̃FHx̄,` ;

The statement follows by applying BIM (Theorem 3.3).

This result can be used in RadeFWER or RadeFDR in place of the bound given by Lemma 2.3.

21

2.6 FWER control with Rademacher Complexity

ALGORITHM 1 RadeFWER
Input: x̄ input sample; H class of tested null hypotheses; δ significance threshold;

` number of Rademacher vectors used in Rademacher Complexity estimation.
Output: R set of rejected null hypotheses.
1: procedure RadeFWER(x̄,H,M0, δ, `)
2: for j ∈ {0, 1, . . . , `} do . Initialization Rademacher Complexity Estimate
3: σj ← vector of m iid Rademacher RVs
4: for each hypothesis hi ∈ H do . Main
5: fhi ← predicate function corresponding tohi
6: for j ∈ {1, . . . , `} do . Rademacher Complexity estimation update
7: RFHj ← max{RFHj , 1

m

∑|x̄|
k=1 fhi(xk)σj,k}

8: fhi (x̄)← 1
|x̄|
∑|x̄|
k=1 fhi(xk)

9: R̃FHx̄,` ← 1
`

∑`
j=1R

FH
j

10: ε′ ← Φ−1 (1− δ)
√

`+4
√
`+20

4`m . Control with MCLT
11: for hi ∈ H do
12: if

∣∣fhi (x̄)− µhi
∣∣− 2R̃FHx̄,` > ε′ then . Decision

13: R← R ∪ {hi} . Reject null hi
14: retun R

Our proposed RadeFWER procedure uses the uniform bound on the generalization error for
functions in FH (i.e., Lemma 2.4 or Lemma 2.3) to evaluate the hypotheses in H while controlling
FWER at level δ. Given h ∈ H and the corresponding predicate function fh ∈ FH, let µh be the
expected value of fh according to the null hypothesis h. If the distribution of fh(x̄) corresponds
to the one hypothesized by h with expected value µh, we would have that the discrepancy between
fh (x̄) and the assumed expected value µh (according to the null hypothesis) would be upperbounded
by Ψ (FH, x̄) , whose distribution can be characterized by means of Lemma 2.4 or Lemma 2.3. For
each h ∈ H, RadeFWER computes fh (x̄) and evaluates the deference from expectation according
to the null hypothesis |fh (x̄) − µh|. RadeFWER then determines the likelihood of the difference
|fh(x̄)− µh| being observed just due to noise, as an indication of the fact that E

[
fh(x̄)

]
6= µh, and,

hence, h is not a true null.
Given the desired FWER control level δ, and the estimate of the Rademacher Complexity

of FH computed according to (2.3), RadeFWER computes the maximum value ε′ such that
Pr
(
Ψ (FH, x̄)) > 2Rm (FH) + ε′

)
> δ. That is, ε′ denotes the maximum value of Ψ (FH, x̄)) −

2Rm (FH) which can be observed with probability higher than δ. Hence, the probability of observ-
ing a difference between the empirically evaluated fh (x̄) and its expectation for any fh ∈ FH is at
most δ. The actual computation of ε′ depends on the method used for characterizing the distribution
of Ψ (FH, x̄)). When using the bound in Lemma 2.3 we have:

ε′ = Φ−1 (1− δ)
√(

`+ 4
√
`+ 20

)
/ (4`m). (2.8)

22

When using the bound in Lemma 2.4 we have:

ε′ =

√(
8` ln (δ−1)

)2
+ 4 (6`m) ln (δ−1)

(
3`+ 12

√
`+ 60

)
8 ln

(
δ−1
)

12`m
.

(2.9)

RadeFWER then uses the value ε′ by checking for every function fh ∈ FH whether |fh (x̄) −
µh| > ε′− 2RFHx̄,j . If this is the case, then the probability of the observed phenomenon given the null
hypothesis is below the given FWER control threshold δ, and RadeFWER rejects the corresponding
null hypothesis. Otherwise, the null hypothesis is accepted. This ensures that the probability of
rejecting true null hypotheses is bounded by δ. As the uniform bound being used characterizes
simultaneously the distribution of all fh ∈ FH, we can conclude that RadeFWER does indeed
control FWER for H. These arguments provide a proof of the correctness of RadeFWER, as
stated in the following theorem.

Theorem 2.7 (Correctness of RadeFWER). Let H be a class of hypotheses which can be computed
by using a class of statistical queries FH. Given δ ∈ (0, 1], using RadeFWER to evaluate H ensures
FWER control at level δ.

2.7 FDR control with Rademacher Complexity

As in RadeFWER, for each null hypothesis h ∈ HRadeFDR evaluates the corresponding predicate
function fh(x̄) and computes the absolute difference |fh(x̄) − µh|. The procedure then proceeds in
a number of phases during which null hypotheses from H are rejected with decreasing confidence.
The procedure leverages the fact that a noticeable number of hypotheses may, in fact, be rejected
with higher confidence in order to reject a larger number of hypotheses while controlling the FDR
at level δ. The algorithm is characterized by: (a) a parameter η > 1 such that δ′ = δ/η; (b) an
ordered sequence (θ1, θ2, . . . , θi′) such that (i) θi ∈ [0, 1] for all j = 1, . . . , i′; (ii) for all j = 1, . . . , i′

we have θj ≥ θj+1; and (iii) we have δ′
∑i∗

j=1 θj ≤ δ, where i∗ denotes the index of the last possible
phase. We can always assume such phase exists and that i∗dδ/ηe.

The number of non-zero threshold values θj determines the number of total phases. While
any choice of the threshold values which satisfy the previous criteria is admissible, it is in general
advisable to set the thresholds with low index to high values (i.e., close or equal to 1) and then
chose progressively lower values. In particular, setting θi = 1 for i = 1, 2, . . . , η for η ∈ N, ensures
that RadeFDR marks as discoveries all and only the hypotheses which would be marked as such
by the RadeFWER. Hence, in order to achieve any possible improvement in terms of recall, it will
be necessary to set some of the first η thresholds lower than 1. While in the worst case this may
lead to a lower recall compared to the more restrictive RadeFWER criterion, it allows identifying
as discoveries hypotheses that would not be detected by the RadeFWER procedure.

We present the pseudocode for RadeFDR in Algorithm 2.7. In the i-th phase, for i = 1, 2, . . .,
RadeFDR evaluates which of the hypothesis in H which were not marked as discoveries in the
previous i − 1 phases (except for i = 1) can be rejected with FWER control at level iδ′ while

23

ALGORITHM 2 RadeFDR - False Discovery Rate control with Rademacher Complexity control
Input: x̄ input sample; H class of null hypotheses being tested; δ significance threshold; ` Rademacher
vector used in Rademacher Complexity estimation; η, (θ1, θ2, ..., θi) algorithm parameters
Output: R set of rejected null hypotheses.
1: procedure RadeFDR(x̄,H,M0, δ, `, η)
2: m← |x̄| . Size of the input sample
3: fval← [] . Empty array for hypotheses evaluation
4: D ← ∅ . Empty array for discoveries
5: d← [] . Empty counters for discoveries per phase
6: δ′ ← δ/η . Confidence step used by the algorithm
7: γ ← 0 . Counter for algorithm FDR control
8: for j ∈ {0, 1, . . . , `} do . Initialization estimator for Rademacher Complexity
9: σj ← vector of m iid Rademacher RVs
10: RFHx̄,j ← 0

11: for each hypothesis hi ∈ H do . Main execution body
12: fhi ← predicate function corresponding tohi

13: µhi ← expected value of fhi according to hi

14: for j ∈ {0, 1, . . . , `} do . Rademacher Complexity estimation update
15: RFHx̄,j ← max{RFHx̄,j , 1

m

∑m
k=1 fhi(xk)σj,k}

16: fval[i]←
∣∣ 1
m

∑m
k=1 fhi(xk)− µhi

∣∣
17: R̃FHx̄,` ←

1
`

∑`
j=1 R

FH
x̄,j

18: i← 0
19: D′ ← ∅
20: while |H| > 0 do
21: i← i+ 1

22: α← Φ−1
(
1− iδ′

)√
`+4
√
`+20

4`m
. Control with MCLT

23: for hi ∈ H do
24: if fval[i]− 2R̃FHx̄,` > max{0, α} then . Decision
25: D′ ← D′ ∪ {hi} . Reject null hi

26: H ← H \ {hi} . Accept null hi

27: |di| ← |D′|
28: for j = 1, 2, . . . , i do

29: if
∑i
`=j d[`]∑i
`=1

d[`]
> θj then . Test FDR control

30: retun D . Interruption of the procedure
31: D ← D ∪D′
32: retun D

controlling FWER at level δ′ = δη−1. The procedure used to determine such hypotheses follows the
same steps as RadeFWER. Let Di (resp., Vi) be the random variable whose value corresponds to
the number of null (resp., true null) hypotheses rejected in i-th phase. By Theorem 2.7, we have
Pr (Vi > 0) ≤ iδ′.

For each execution of RadeFDR the values of the Di’s are observable as they depend uniquely
on x̄, the known null expected values µh associated with each null hypothesis, and the values iδ′

(that is not, however, the case for the V ′i s). Let di denote the observed values of a realization of Di.
Let i∗ be the maximum value of i such that either

∑i
`=1 d` = 0, or for all j = 1, 2, . . . , i we have∑i

`=j d`/
∑i
`=1 d` ≤ θj . RadeFDR returns as discoveries all the hypotheses marked as discoveries

during the first i∗ phases.

24

Theorem 2.8 (Correctness of RadeFDR). Let H be a class of hypotheses which can be computed
by using a class of statistical queries FH. Given δ ∈ (0, 1], using RadeFDR to evaluate H ensures
False Discovery Rate control at level δ.

Proof. Let δ be the desired FDR control level. Let η ≥ 1 denote the selected algorithm parameter,
and let δ′ = δ/η. The value δ′ is used by RadeFDR to define its execution phases.

The proof proceeds by partitioning the outcomes of the experiment based on the values of:
ψ = sup

hi∈H0

| 1
n

∑
xi∈x̄

fhi (xi)− µhi |, (2.10)

where 1
n

∑
xi∈x̄ fhi (xi) denotes the empirical average of the values of the function fhi of the function

associated with the hypothesis hi, and µhi denotes the expected value of fhi according to the null
hypothesis.

As, in general, it is not known which of the hypotheses in H belong in H0 rather than H1, we
shall instead consider the quantity:

ψ′ = sup
hi∈H

| 1
n

∑
xi∈x̄

fhi (xi)− µhi |.

As H0 ⊆ H, we clearly have ψ′ ≥ ψ, and thus Pr
(
ψ′ > ε

)
≥ Pr (ψ > ε), for any ε ∈ (0, 1).

As described, RadeFDR proceeds in phases during which RadeFDR verifies whether it is
possible to mark some of the hypotheses as discoveries with decreasing confidence (i.e., in the i-th
phase the confidence level will be iδ′). In particular, in the i-th phase the algorithm determines the
minimum value εi such that

Pr
(
ψ′ ≥ εi + 2R̃FHx̄,`

)
< iδ′, (2.11)

where R̃FHx̄,` denotes the estimation of the Rademacher Complexity of the class of functions FH
computed using the sample x̄.

The algorithm then identifies the functions for which the difference between the measured empir-
ical average 1

n

∑
xi∈x̄ fhi (xi) the expected value according to the null hypothesis is higher than εi.

The corresponding hypotheses are then marked as discoveries, provided that they were not marked
as such during previous phases.

Let Di denote the random variable whose value corresponds to the number of hypotheses marked
as discoveries during the i-th phase, and let Vi denote the random variable whose value corresponds
of false positives rejected during the i-th phase. Clearly Vi ≤ Di. The total number of discoveries
(resp., false positives) is therefore given by D =

∑
Di (resp., V =

∑
Vi).

The goal of the proof is to verify that RadeFDR guarantees:

E
[
V

D
|D > 0

]
Pr (D > 0) ≤ δ.

Consider the events: Ei :=“the first false discovery occurs in the i-th phase” for i = 1, . . . , i∗,
where i∗ denotes the maximum possible index for a phase. We can always assume that such value
exists and that i∗ ≤ dη/δe. Clearly such events are disjoint. Our desired property can be rewritten
as:

E
[
V

D

]
=

i∗∑
i=1

E
[
V

D
|Ei
]
Pr (Ei) (2.12)

25

Let us now consider the events:

E′i :=

ψ − 2R̃FHx̄,` > ε1 for i = 1;

ψ > εi − 2R̃FHx̄,` ∧ ψ − 2R̃FHx̄,` ≤ εi−1 for i > 1;

By the construction of RadeFDR, whenever Ei is verified so is E′i but not vice versa. This
is due to the fact that the algorithm may halt before reaching the i-th phase for a given value of
i. That is, unless the algorithm observes an opportune amount of rejections in the initial, “high
confidence” phases (i.e., the phases whose index i is such that we have iδ′ ≤ δ), it will not mark
hypotheses as discoveries in the later, “ low confidence” phases. Hence, we have Pr

(
E′i
)
≥ Pr (Ei)

for i = 1, . . . , i∗. Thus, we can bound the FDR control as:

E
[
V

D

]
≤

i∗∑
i=1

E
[
V

D
|Ei
]
Pr
(
E′i
)

(2.13)

From the basic property according to which in any given phase the maximum number of false
discoveries correspond to the number of total discoveries in the phase itself, we have:

E
[
V

D
|Ei
]
≤ E

D −∑i−1
j=1Dj

D
|Ei

 (2.14)

We can thus rewrite (2.13) as:

E
[
V

D

]
≤

i∗∑
i=1

E

D −∑i−1
j=1Dj

D
|Ei

Pr
(
E′i
)

(2.15)

Let us now consider the each of the E
[∑i∗

`=j D`
D |Ei

]
terms of the summation. Given any assign-

ment of the random variables D` = d`, by construction RadeFDR ensures that:
i∗∑
`=j

d`/d ≤ θj , (2.16)

for all the values j = 1, 2, . . . , i∗. As the RadeFDR halts at the first i′-th phase for which it is not
possible to guarantee that the condition in (2.16) is verified. Hence we can bound the right-hand
side of (2.15) as :

E
[
V/D

]
≤

i∗∑
i=1

θiPr
(
E′i
)

(2.17)

From (2.11) and by definition of the events E′i we have:

Pr
(
E′i
)

:=

< δ′ for i = 1;

iδ′ −∑i−1
j=1 Pr

(
E′j

)
for i > 1;

By construction, for j = 1, 2, . . . we have that θj ≥ θj+1 As the terms which multiply the Pr
(
E′i
)

increase as i increases , the right hand side of (2.15) is maximized by upper bounding the values
Pr
(
E′i
)
under the constraint that (by construction and by the disjointedness of the E′i events)

Pr
(
E′i
)
< iδ′ −

i−1∑
j=1

Pr
(
E′j

)
.

That is, (2.15) is maximized by upper bounding Pr
(
E′i
)
≤ δ′ for all i = 1, . . . , i∗.

26

We can therefore say:

E
[
V

D

]
≤

i∗∑
i=1

E

D −∑i−1
j=1Dj

D

Pr
(
E′i
)

≤
i∗∑
i=1

E

D −∑i−1
j=1Dj

D

 δ′
≤ δ′

i∗∑
i=1

θi ≤ δ

where the last passage from assumption regarding the choice of the threshold values θ.

RadeFDR (resp., RadeFWER) controls FDR (resp., FWER) under any dependence structure
among the test statistics associated with the hypotheses in H. The choice of the threshold values θ
can heavily influence the performance in terms of recall.

2.8 Experimental analysis

As RadeFWER (resp., RadeFDR) controls FWER (resp., FDR) strongly and for any dependence
structure between the hypotheses, we compare its performance with that of the “Holm-Bonferroni
method ” [106] (HB) (resp., of the “Benjamin-Yekutieli procedure” with correction for arbitrary de-
pendence [18] (BY)), which controls FWER (resp., FDR) under analogous assumptions. To fur-
ther evaluate the power of our approach, we also compare RadeFWER (resp., RadeFDR) with
the “Höchberg step-up procedure” [103] (HOC) (resp., the Benjamini-Hochberg procedure [15] (BH).
While uniformly more powerful than their respective counterpart, these procedures assume non-
negative dependence between the hypotheses being tested. We refer the reader to Section 2.2 for a
brief presentation of these procedures.

In our comparison, we focus on the one sample student t-test setting, for which, as null hypothesis,
it is assumed that the test statistic associated with the hypotheses is distributed according to the
normal distribution with expected value µ0, which we assume to be known. We do not, however,
assume knowledge of the variance.

2.8.1 Experiments with synthetic data

The dataset used in this experiment is composed of n vectors, each composed of m features which
can each take values in {−1, 1}. Each vector is furthermore associated with one additional m+ 1-th
feature which corresponds to the label ` of the record. The values of all the features for all the
points are assigned randomly in such a way that, while there is no actual correlation between the
values of any of the features and the value of the label, there is in fact correlation (either positive
or negative) between the values of the features. To introduce a “signal ” (i.e., a correlation between
the value of the label and the value of certain features), we select m −m0 out of the m features,
and we modify the entries of the dataset corresponding to the selected features: Let c = 1 (resp.,

27

c = −1) for positive (resp., negative) correlation. For all the n records, the values of each entry
corresponding to the m−m0 correlated features is assigned a new value vi such that:

Pr (vi = c`) = 0.5 + bias; Pr (vi = −c`) = 0.5− bias;

where ` denotes the value of the label of the record, and bias ∈ (0, 0.5] denotes the strength of
the correlation between the feature and the label. This setting allows us to compare the statistical
power (resp., verify the correctness) of the testing procedures measured in terms of “recall ” (resp.,
“precision”), that is, as the fraction of true discoveries that are recognized as such by the testing
procedure (resp., the fraction of true positives among the rejected hypotheses). For the remainder,
we refer to the versions of RadeFWER using the MCLT (resp., BIM) bound in Lemma 2.3 (resp.,
Lemma 2.4) as RadeFWER-MCLT (resp., RadeFWER-BIM). We use analogous notation for
RadeFDR.

Correctness of RadeFWER and RadeFDR

We verify the correctness of RadeFWER (resp., RadeFDR) by evaluating over 50 runs using
independently generated random datasets the fraction of executions for which at least one true null
hypothesis is rejected (resp., the average ratio of false positives over number of rejections per each
run). The used synthetic datasets are composed of 3000 points with m = 10i for i = 4, . . . , 7;
m−m0 = 500; and bias = 0.05.

RadeFWER appears to effectively control FWER as in one of the runs (using δ = 0.2) we have
a false rejection when using RadeFWER-MCLT for m = 104. We have no false positives when
using RadeFWER-BIM.

Similarly, RadeFDR appears to effectively control FDR as the average empirical FDR is con-
sistently lower than the prescribed control level. In particular, using RadeFWER-MCLT we have
false positives only when using δ = 0.2 for m = 104 with empirical FDR = 0.001. We have no false
positives when using RadeFWER-BIM. This suggests that despite the asymptotic nature of the
bound in Lemma 2.3, the Rademacher Complexity based analysis of the generalization error gives a
very reliable, albeit conservative, criteria.

Statistical power of RadeFWER and RadeFDR

We evaluate the statistical power of the procedures by comparing their respective recall, that is
the fraction of the true-alternative hypotheses (i.e., the false nulls) marked as discoveries. First,
we compare the performance of RadeFWER-MCLT (resp., RadeFDR-MCLT) with the classical
statistical testing procedure, as they share asymptotic nature and ensure asymptotic FWER (resp.,
FDR) control. We then evaluate the performance RadeFWER-BIM (resp., RadeFDRBIM),
which provide finite-sample guarantees.
Comparison of FWER control procedures: When comparing the performance of FWER controlling
procedures, we average the recall observed over 50 independent runs on synthetic data each weighted
as 1 if no false positive was detected, or 0 otherwise. In Figures 2.1(a) and 2.1(b), we present a
comparison of the performance of HB, HOC and RadeFWER when considering an increasing

28

Figure 2.1: Recall comparison between RadeFWER, HB and HOC for different values
of FWER control level δ for synthetic data. In setting (a): |x̄| = 2000, m −m0 = 1000,
bias = 0.05. In setting (b): |x̄| = 3000,m−m0 = 1000, bias = 0.04.

number of null hypotheses in H. As in these results, the performance of HB and HOC are almost
equivalent for |H| > 2 × 104, we report only the performance of HOC in order to allow for better
graphical representation.

We observe that as the number of hypotheses being tested increases the recall of the Holm and
Hóchberg procedure decreases consistently, albeit with some fluctuations due to the randomness
in the dataset generation. In contrast, the recall of our RadeFWER-MCLT methods decreases
at a much slower pace, as it depends on how the Rademacher complexity of the associated FH
increases rather than the sheer number of hypotheses in H. In particular, the asymptotic bound
provided by RadeFWER-MCLT exhibits improved performances over the classic FWER control
procedures in most both settings for most of the desired control levels δ. The difference between the
performance of the classical methods and RadeFWER is stronger especially when there is a high
correlation between the behaviors of the features being considered. The higher such correlation,
the lower the Rademacher Complexity of FH, and, hence, the tighter the approximation achieved
by our algorithm. While all approaches exhibit an improvement in accuracy given the increase of
the strength of the bias, our approach based on the MCLT application seems to achieve stronger
improvements.

Comparison of FDR control procedures: When comparing the performance of FWER controlling
procedures, we average the recall F1 score observed over 50 independent runs on synthetic data. The
F1 score is a measure of performance which incorporates the precision and the recall of the procedure
as:F1 = 2(Precision×Recall)/(Precision+Recall). In our setting, we have Precision = 1− ˆFDR,
where ˆFDR denotes the observed empirical FDR. In Figure 2.2(a) (resp., Figure 2.2(b)), we present a
comparison of the performance of BY, BH and RadeFDR, when considering an increasing number
of null hypotheses in H. We observe that while the less conservative FDR guarantee allows in
general for greater recall, the performance of BY and BH steadily decrease as the number of tested

29

Figure 2.2: F1 score comparison between RadeFWER, HB and HOC for multiple
values of FDR control level δ on synthetic data. In setting (a): |x̄| = 2000, m−m0 = 100,
bias = 0.05. In setting (b): |x̄| = 3000, m−m0 = 500, bias = 0.04.

Figure 2.3: Average percentage recall achieved by RadeFWER--BIM and RadeFDR-
-BIM on synthetic data: |x̄| = 4000, m−m0 = 1000, bias = 0.06.

null hypotheses increases. RadeFDR performance decreases at a much slower pace, especially for
high values of δ. The comparison with the BY procedure, our most correct term of comparison, is
particularly noticeable as RadeFDR outperforms BY in virtually all the considered settings for |H|
large enough.
Finite sample FWER/FDR control with RadeFWER--BIM and RadeFDR--BIM: We evalu-
ate the performance, in terms of recall3 for our finite-sample procedures RadeFWER--BIM and
RadeFDR--BIM. We report in Figure 2.3 the average performance over 50 independent runs on
synthetic data.

While compared with the asymptotic methods previously evaluated, in the considered settings
our BIM approaches require an input sample of higher size and are able to detect only strong signals,

3As in the experiments RadeFDR--BIM does not reject any false positive, we have that its F1 measure and recall
are identical.

30

Table 2.1: FWER control hypothesis testing on BreastCancer dataset: number of
discoveries for considered procedures.

Order 1 hyp: m = 60 Order 2 hyp.: m = 174000 Order 3 hyp.: m = 3248000

δ HB HOC BER MCLT HB HOC BER MCLT HB HOC BER MCLT

0.025 33 33 4 8 29 29 3 12 3 3 1 7
0.05 37 37 5 10 29 29 5 19 3 3 1 15
0.075 41 41 5 11 32 32 5 27 3 3 1 19
0.1 42 42 5 12 32 32 5 29 3 3 1 23
0.15 45 45 6 14 34 34 6 35 4 4 3 29
0.2 48 48 6 19 35 35 7 40 4 4 3 39

it is important to remark that the methods are not directly comparable as the latter ensures actual
finite sample FWER and FDR control. The experiment confirms that, just as the MCLT version,
the statistical power of our procedures decreases gradually as the complexity of the considered
hypotheses grows, and not as a consequence of the sheer size of H.

2.8.2 Experiments with real data

We evaluate the performance of our methods compares to classical procedures while studying the
correlation between features and labels on the “Breast Cancer Wisconsin (Diagnostic) Data Set”
dataset [222] (obtained from [57]) with n = 569 records. Each record is composed of d = 30 real-
valued features (plus the identifier), which correspond to measured values for gene expressions, and
a binary label which takes value “1” patient associated with the record suffers from breast cancer,
or “0” otherwise.

We construct our queries by partitioning the range of the values of each feature in 20 intervals,
and we then evaluate the relation between the fact that the value of a feature is within an interval and
whether the record corresponds to a parent affected by breast cancer or not. We then construct more
complex hypotheses by considering multiple of such “predicate conditions” (over different features)
and by composing them using the “and” logical operator (any other operator could be used here).
We refer to the queries obtained by composing i such predicate conditions as “order i hypotheses”.

We compare the methods in terms of the number of hypotheses being returned as discoveries.4

As in the previous section, we evaluate the hypotheses by standard t-tests for the classical procedures
and with the corresponding method in Algorithm 1 (resp., Algorithm 2) for FWER (resp., FDR)
control. The null-expected values used in the experiment are computed based on the marginal
frequencies of the labels and of the records satisfying the predicate condition associated with the
hypothesis being tested.

We report in Table 2.1 (resp., Table 2.2) the results for the comparison for FWER (resp., FDR)
controlling procedures for different values of the desired control level δ. As in the synthetic exper-
iments, we see that as the number of hypotheses being considered increases the classical statistic

4We cannot directly compare precision and recall as the information regarding which of the hypotheses being tested
is, in fact, a true alternative is not available.

31

Table 2.2: FDR control hypothesis testing on BreastCancer dataset: number of
discoveries for considered procedures.

Order 1 hyp: m = 60 Order 2 hyp.: m = 174000 Order 3 hyp.: m = 3248000

δ BH BY BER MCLT BH BY BER MCLT BH BY BER MCLT

0.025 65 45 4 9 47 31 4 15 4 3 0 9
0.05 88 49 5 11 49 33 5 25 5 3 1 17
0.075 94 53 5 12 54 35 5 29 6 3 1 22
0.1 107 53 5 13 58 35 6 33 6 3 1 28
0.15 126 59 6 19 63 39 8 41 8 3 2 40
0.2 134 67 7 20 67 41 9 49 9 3 4 54

approaches become extremely conservative, and unable to identify discoveries. This is particularly
evident when considering order 3 queries: while classical procedures are virtually unable to retain
any recall, our procedures are still able to detect some hypothesis as discovery. Further, Rade-

FWER and RadeFDR exhibit a greater relative increase in the number of identified discoveries
when increasing the threshold δ of desired FWER or FDR control compared to the alternative test-
ing procedures. This is of particular interest for this setting, given the small sample size and the
high number of hypotheses being considered.

2.9 Conclusion

We introduced RadeFWER (resp., RadeFDR), a statistical procedure for multiple hypotheses
testing controlling the Family Wise Error Rate (resp., the False Discovery Rate) which builds on
Rademacher Complexity uniform convergence bounds. Our experimental analysis highlights the
benefit of our approaches over classical procedures, especially when a very high number of hypotheses
is being tested. Due to the generality of the approach, it appears amenable to extensions to other
types of statistical tests.

Chapter 3

A Rademacher Complexity Based

Method for Controlling Power and

Confidence Level in Adaptive

Statistical Analysis 1

While standard statistical inference techniques and machine learning generalization bounds assume
that tests are run on data selected independently of the hypotheses, practical data analysis and
machine learning are usually iterative and adaptive processes where the same holdout data is often
used for testing a sequence of hypotheses (or models), which may each depend on the outcome of the
previous tests on the same data. In this Chapter, we present Radabound a rigorous, efficient and
practical procedure for controlling the generalization error when using a holdout sample for multiple
adaptive testing. Our solution is based on a new application of the Rademacher Complexity gener-
alization bounds, adapted to dependent tests. We demonstrate the statistical power and practicality
of our method through extensive simulations and comparisons to alternative approaches.

3.1 Introduction

The goal of data analysis and statistical learning is to model a stochastic process, or distribution,
that explain an observed data. A major risk in statistical learning is overfitting, that is, learning a
model that fits well with the observed data but does not predict new data. The standard practice
in machine learning is to split the data into training and holdout (or testing) sets. A learning
algorithm then learns a model using the training data and tests the model on the holdout set to

1The results presented in this chapter Were published in the proceedings of the 6th IEEE International Conference
on Data Science and Advanced Analytics (DSAA 2019). This is joint work with Professor Eli Upfal.

32

33

obtain a confidence interval for the expected error or for the value of the loss function of the model.
If the process halts after a single iteration, then the statistical analysis is easy. However, in most
cases, the learning process is iterative and adaptive. One uses successive tests for model selection,
feature selection, parameter tuning, etc., and the choice of the tests themselves often depends on
the outcomes of previous tests.

Ideally, each hypothesis should be tested on a fresh data sample. However, it is common practice
to reuse the same holdout data to evaluate a sequence of hypotheses. While widespread, this practice
is known to lead to overfitting ; that is, the learned model becomes representative of the sample rather
than the actual process. Evaluating the accumulated error in testing a sequence of related hypothesis
on the same data set is a major challenge in both machine learning and modern statistics. In machine
learning, the problem of “preventing overfit”, is usually phrased and analyzed in terms of bounding
the generalization error [208]. In inference statistics, the goal is controlling the Family Wise Error
Rate (FWER), or the False Discovery Rate (FDR) of a sequence of hypothesis tests [15].

Our Results: We develop and analyze RadaBound, a rigorous, efficient, and practical procedure
for online evaluation of the accumulated generalization error in a sequence of statistical inferences
applied to the same sample. RadaBound can evaluate fully adaptive sequences of tests. The choice
of a test may depend on the information obtained from previous tests, and the total number of tests
is not fixed in advance.

One way to quantify the risk of overfitting after k queries is by considering the probability of
the condition defined by the results of the first k queries. If the probability of such condition
is close to 1, the results of the queries evaluated so far do not significantly restrict the sample
space, and there is, therefore, no risk of overfitting. Viceversa, if the probability of the observed
condition is small, the sample space defined by the true distribution conditioned on the results of
the queries is noticeably different from the true distribution, and there is thus a significant risk of
overfitting. In general, it is hard to bound the probability of the observed condition as the true
distribution over the samples is unknown. However, in the special case for which the queries being
considered correspond to evaluating the average of functions (such as evaluating the average risk or
loss functions of alternative learning procedures), we can design an adaptive process based on an
empirical estimate of the Rademacher Complexity of the set of queries which correctly bounds this
probability and correspondingly halts the procedure when the risk of overfitting exceeds a certain
threshold fixed by the user.

Our method builds on the concept of Rademacher Complexity [12, 133] that has emerged as a
powerful alternative to VC-dimension and related uniform convergence methods for characterizing
generalization error and sample complexity. A fundamental advantage of the Rademacher Complex-
ity approach in contrast to standard uniform convergence tools, such as VC-dimension, that capture
the complexity with respect the worst case input distribution, is that it yields a data-dependent
bound as it is computed with respect to the input (sample) distribution, and can be efficiently
approximated from the sample.

34

Our solution employs three major components: (1) For a set of functions chosen independent
of the sample, the Rademacher Complexity [12, 133] provides a powerful and efficient bound on
the error in estimating the expectations of all these function using one sample; (2) As long as the
outcome of the sequence of tests does not significantly overfit to the sample, conditioning on these
outcomes has only a minor effect on the distribution; and (3) The Rademacher Complexity of a
sequence of tests can be estimated efficiently form a given sample, requiring similar computation
time as running the actual tests.

To fully utilize our technique, we need computationally efficient methods for rigorously estimating
the Rademacher Complexity from a sample. We introduce two novel methods based on Bernstein’s
inequality for martingales [82] and the Martingale Central Limit Theorem [97]. Our analysis and
extensive experiments prove and demonstrate that our method guarantees statistical validity while
retaining statistical power and practical efficiency.

Related Work: Classic statistics offers a variety of procedures for controlling the Family Wise Er-
ror Rate (FWER), ranging from the simple Bonferroni [28] to Holm’s step-down [106] and Hochberg’s
step-up procedures [103] in the context of multiple hypotheses testing. While controlling the FWER
under weak assumptions about the hypotheses, these methods are too conservative, giving many
false negative results, in particular for large sets of hypotheses. Less conservative procedures, such
as Benjamini and Hochberg [15], which control the False Discovery Rate (FDR) (i.e., the expected
fraction of false discoveries), still do not scale up well for a very large number of hypotheses. How-
ever, all these procedures cannot be applied in the adaptive setting, as they require for the set of
hypotheses to be fixed at the beginning of the testing procedure (i.e., before any data evaluation).

A series of recent papers [58, 59, 60] explored an interesting relation between “Differential Pri-
vacy” [62] and overfit prevention in adaptive analysis. The basic idea is to limit the user access to the
holdout data so that the answers to the sequence of queries is differentially private. A differentially
private access to the holdout data limits the risk of overfitting to that data set. Unfortunately, the
practical application of this elegant mathematics is limited. Differential privacy is achieved through
random perturbation of the data (or the reply to the queries). The higher the number of adaptive
queries, the larger the required perturbation. However, the amount of perturbation is limited by
the need to preserve the actual signal in the data. As a result, rigorous application of this approach
is either limited to a small number of queries or is computationally intractable [60], making it less
useful than alternative methods [100, 218]. Our experiments in Section 5 show that RadaBound

allows orders of magnitude reduction of the required holdout dataset compared to Dwork et al.’s
method [58] while offering the same guarantees. Further, our technique is much simpler as it does
not require any introduction of additional noise. We discuss in detail the advantages of our solu-
tion compared to [58] in Section 3.7. A more practical solution for a restricted setting inspired by
machine learning competitions was presented in [24]. Their solution, “the Ladder ”, provides a loss
estimate only for those that made a significant improvement over the previous best. This restricted
setting allows to sidestep the hardness results discussed in [100, 218].

35

3.2 The RadaBound

The process: For concreteness, we focus on the following setup. We have an holdout sample
composed by m independent observations x̄ = (x1, . . . , xm), each from a distribution D, and param-
eters ε, δ ∈ (0, 1) fixed by the user. In an iterative process, at each step, the user (or an adaptive
algorithm) submits a function f and receives an estimate Ẽx̄ [f] = 1

m

∑m
i=1 f(xi) of the “ground

truth value” ED [f]. The user has no direct access to the sample x̄. That is, he can only acquire
information regarding x̄ from the confidence intervals Ẽx̄ [f] ± ε for the expectation ED [f], which
the testing procedure has returned as answer to the queries considered so far. Let Fk = {f1, . . . , fk}
denote the set of the first k functions evaluated during the adaptive process. The maximum error
in estimating the expectations of the k functions is given by:

Ψ (Fk, x̄) = sup
f∈Fk

| 1
m

m∑
i=1

f(xi)− ED [f] |

= sup
f∈Fk

|Ẽx̄ [f]− ED [f] |.
In this work, we refer as “overfittig” as follows: A given set of functions Fk is said to overfit the
sample x̄ if for any f ∈ F the value Ẽx̄ [f] evaluated on x̄ differs from the true value ED [f] by
more than the user given threshold ε. Our adaptive testing process halts at the first k-th step for
which for which it cannot guarantee that the probability of overfitting is at most δ, that is, when
Pr
(
Ψ (Fk, x̄) ≤ ε

)
≥ 1− δ.

The process is fully adaptive. The choice of the function fk+1 evaluated at the k + 1-th step
may depend on the information obtained during the first k steps. We make no assumptions on the
processes according to which the functions are adaptively chosen to be tested, nor do we require the
total number of tests to be fixed in advance. For simplicity, we assume that all functions are in the
range [0, 1]. More general settings are discussed later in the Chapter.

Bounding the generalization error for the iterative process: The sequence of answers to
the queries, Ẽx̄ [f1]± ε, Ẽx̄ [f2]± ε, . . . , Ẽx̄ [fk]± ε defines a filtration L = {Dk}k≥0, such that

D0 = D and Dk = {D | Ẽx̄ [f1]± ε ∧ · · · ∧ Ẽx̄ [fk]± ε}.
The k-th query is chosen with respect to, and is answered in the filtered distribution Dk−1.

Let Ek denote the event that the answer to the k-th query was within ε of the correct value, that
is, Ek := |Ẽx̄ [f]− ED [fk] | ≤ ε. Then, Pr

(
Ψ (Fk, x̄) ≤ ε

)
= Pr

(
∧ki=1Ek

)
, and thus, in the filtration

process,
PrL

(
Ψ(Fk, x̄) > ε

)
≤ PrD0

(
Ē1

)
+ PrD1

(
Ē2 | E1

)
+ . . .

+ PrDk−1

(
Ēk | ∧k−1

j=1 Ej

)

36

≤
k∑
i=1

Pr
(
Ēi
)

Pr
(
∧i−1
j=1Ej

) ≤ 1− Pr
(
∧kj=1Ej

)
Pr
(
∧k−1
j=1Ej

)
=

1− Pr
(
Ψ (Fk, x̄) ≤ ε

)
Pr
(
Ψ(Fk−1, x̄) ≤ ε

) ,
(3.1)

where Pr () with no subscript refers to probability in the un-filtered distribution D. The fact that
the distribution of the generalization error in the adaptive case, PrL

(
Ψ (Fk, x̄) > ε

)
, is related to the

probability of an error in the non-adaptive case, Pr
(
Ψ (Fk, x̄) > ε

)
, is not surprising. In order to fit

the sample differently than the original distribution D, the process needs to detect a pattern whose
frequency is considerably different in the sample compared to the actual distribution D. However, the
first query that observes such a pattern is chosen when the process has not yet observed a significant
difference between the sample and the distribution. This is due to the fact that the process halts as
soon as such difference is detected. Thus, the probability of overfitting in k queries is related the to
the probability that the sample gives a bad estimate for the correct value of one of the k queries in
the non-adaptive case. The challenge is to compute a tight bound to Pr

(
Ψ (Fk, x̄) ≤ ε

)
. We achieve

this through two novel bounds on estimating the Rademacher Complexity of Fk.

3.3 Bounding Ψ (Fk, x̄) using Rademacher Complexity

Definition 3.0.1. [165] Let σ̄ = (σ1, . . . , σm) be a vector of m independent Rademacher random
variables, such that for all i, Pr (σi = 1) = Pr (σi = −1) = 1/2. The Empirical Rademacher Com-
plexity of a class of function F with respect to a sample x̄ = {x1, . . . , xm}, with x̄ ∼ Dm is

RFx̄ = Eσ̄

sup
f∈F

1

m

m∑
i=1

f(xi)σi

The Rademacher Complexity of F for samples of size m is defined as RFm := Ex̄∼Dm

[
RFx̄
]
.

The relation between Ψ(Fk, x̄) and the Rademacher Complexity of Fk is given by the following
results 2:

Lemma 3.1. [208, Lemma 26.2]

Ex̄∼Dm
[
Ψ(Fk, x̄)

]
= E

 sup
f∈Fk

| 1
m

m∑
i=1

f(xi)− ED[f]|

≤ 2RFkm .

Lemma 3.2. [165, Theorem 14.21] Assume that for all x ∈ X and f ∈ Fk we have f(x) ∈ [0, 1],
then:

Pr
(

Ψ(Fk, x̄) > 2RFkm + ε
)
≤ e−2mε2 . (3.2)

2In our setting, in order apply the result with absolute value we assume that for any f ∈ Fk we also have −f ∈ Fk,
i.e., we assume that Fk is closed under negation.

37

Note that in our context (a) we need a one-sided bound, and (b) for all x ∈ X and f ∈ Fk we
have f(x) ∈ [0, 1].

For algorithmic applications, two important consequences of these result are that: (a) for bounded
functions the generalization error is concentrated around their expectation, and (b) the Rademacher
Complexity can be estimated from the sample. In order for this bound to be actually usable in prac-
tical applications, it is necessary to compute an estimate of the Rademacher Complexity given the
dataset x̄, and to bound its error. In the “textbook ” treatment, the difference between Rademacher
Complexity and its empirical counterpart is bounded using a second application of McDiarmid’s
Inequality [13, 208]. However, this bound is often too loose for practical applications such as ours.

In this work, we propose an alternative, direct, estimate of the Rademacher Complexity and we
develop two novel and tight methods for bounding the estimation error.

3.3.1 Tight bounds on Rademacher Complexity estimate

Given a finite size sample x̄ ∼ Dm and ` independent Rademacher vectors σ̄1, . . . , σ̄`, each composed
of m independent Rademacher random variables (i.e., σ̄j = σj,1σi,2 . . . σj,m), we estimate RFkm with

R̃Fkx̄,` =
1

`

∑̀
j=1

sup
f∈Fk

1

m

m∑
i=1

f(xi)σj,i. (3.3)

Clearly, Ex̄,σ̄1,...,σ̄`

[
R̃Fkx̄,`

]
= RFkm . To bound the error RFkm − R̃Fkx̄,`, we model the process as a Doob

martingale [165, Chapter 13.1] as follows:
Ci = E[RFkm − R̃Fkx̄,` | Y1, . . . , Yi] for i = 0, . . . ,m(`+ 1),

where the Y1, . . . , Ym(`+1) are the random variables that determinate the value of the estimate R̃Fkx̄,`.
The first m variables Yi’s correspond to the values of the sample x̄, i.e. for 1 ≤ i ≤ m, Yi = Xi, and
the remaining m` Yi’s correspond to the Rademacher random variables, Yi = σbi/mc,i−bi/mc. It is
easy to verify that C0 = 0, and Cm(`+1) = RFm − R̃Fkx̄,`.

Next, we define a martingale difference sequence Zi = Ci − Ci−1 with respect to the martingale
C0, C1, . . . Cm(`+1), and note that

∑m(`+1)
t=1 Zt = Cm(`+1) = RFkm − R̃Fkx̄,`.

Our first bound builds on Bernstein’s Inequality for Martingales (BIM). We use the following
version due to Freedman [82], as presented in [63] and adapted to one-sided error.

Theorem 3.3. [63, 82] Let Z1, . . . , Zt be a martingale difference sequence with respect to a certain
filtration {Fi}i=0,...,t. Thus, E

[
Zi|Fi−1

]
= 0 for i = 1, . . . , t. The process

∑t
i=1 Zi is thus a

martingale with respect to this filtration. Further, assume that |Zi| ≤ a for i = 1, . . . , t, and that the
conditional variance

∑t
i=1 E

[
Z2
i

]
≤ L. For ε ∈ (0, 1), we have:

Pr

 t∑
i=1

Zi > ε

 ≤ e− ε2

2L+2aε/3 . (3.4)

A careful analysis of E[Z2
i] in our application allows us to obtain a significantly stronger bound

than the one obtained using McDiarmid’s Inequality [13, 208], which depends on the maximum
variation of the martingale.

38

Theorem 3.4. Given a sample x̄ ∼ Dm, a family of functions Fk which take values in [0, 1], `
independent vectors of Rademacher random variables, and ε, δ ∈ (0, 1), we have:

Pr
(
RFkm − R̃Fkx̄,` > ε

)
≤ e− 6m`ε2

15+8`ε . (3.5)

Proof. Recall that we defined the Doob martingale
Ci = E[RFkm − R̃Fkx̄,` | Y1, . . . , Yi] for i = 0, . . . ,m(`+ 1),

where Yi = Xi for 1 ≤ i ≤ m, and the remaining Yi are the `m independent Rademacher random
variables which compose the ` vectors of Rademacher random variables used to compute the estimate
R̃Fkx̄,` (i.e., Yj(m)+i = σj,i, for 1 ≤ j ≤ ` and 1 ≤ i ≤ m). By the definition of R̃Fkx̄,`, Ci is a function
of the m(`+ 1) independent random variables {Yi}. In the following, we assume ` ≥ 2.

Recall also the definition of the corresponding martingale difference sequence Zi = Ci−Ci−1. By
definition, for every i = 1, . . . ,m(`+ 1), we have E [Zi] = 0, and hence, E

[
Z2
i

]
= Var [Zi]. In order

to apply Bernstein’s Inequality, we need a bound a, such that a ≥ |Zi| for 1 ≤ i ≤ m(`+ 1), and an
upper-bound L to the conditional variance, such that L ≥∑m(`+1)

i=1 E
[
Z2
i

]
=
∑m(`+1)
i=1 Var [Zi].

We consider the cases for 1 ≤ i ≤ m and m < i ≤ m(`+ 1) separately:

• 1 ≤ i ≤ m: For 1 ≤ j ≤ `, let us consider

C
(j)
i = E[RFkm − sup

f∈Fk

1

m

m∑
i=1

f(xi)σj,i | Y1, . . . , Yi],

Z
(j)
i = C

(j)
i − C

(j)
i−1.

According to our definitions, we have

Ci =
1

`

∑̀
j=1

C
(j)
i

Zi =
1

`

∑̀
j=1

Z
(j)
i .

Since ∀x ∈ X and ∀f ∈ Fk, f(x) ∈ [0, 1], changing the value of any of the m points in
x̄ can change supf∈Fk

1
m

∑m
i=1 f(xi) by at most 1/m, and thus we have |Z(j)

i | ≤ 1/m, and
Z

(j)
i ∈ [α, β] with β − α ≤ 1/m.

From Popoviciu’s Inequality on variance [184], we have that the variance of a random vari-
able which takes values in [α, β] is bounded from above by (β − α)2/4. Hence, by applying
Popoviciu’s Inequality to Z(j)

i , we have that Var
[
Z

(j)
i

]
≤ 1/(4m2).

As we are considering the expectation over the unassigned values of the Rademacher ran-
dom variables, and as we are averaging over the values obtained using ` independent and
identically distributed vectors of Rademacher random variables, we can conclude that |Zi| ≤
1
`

∑`
j=1 |Z

(j)
i | ≤ 1/m, and Var [Zi] = 1

`2

∑`
j=1 Var

[
Zji

]
≤ 1/(4m2`).

• m < i ≤ m(` + 1): Changing the value of any of the `m Rademacher random variables can
change the value of R̃Fkx̄,j by at most 2/`m, and thus we have |Zi| ≤ 2/`m ≤ 1/m, and Zi ∈ [α, β]

with β − α ≤ 2/`m. By applying Popoviciu’s Inequality, we thus have Var [Zi] ≤ 1/`2m2.

39

By linearity of expectation,
∑m(`+1)
i=1 Zi = RFkm − R̃Fkx̄,`. Further, we have

∑m(`+1)
i=1 Z2

i ≤ 5/4`m, and
|Zi| < 1/m for all 1 ≤ i ≤ m(`+ 1). The statement follows by applying Theorem 3.3.

Note that for a sufficiently large (constant) `, the term 6ε` dominates the denominator of the
exponent in the right hand side of (3.5), giving a fast rate of convergence for the estimate. Our
estimate fully characterizes the benefit achieved using multiple independent vectors of Rademacher
random variables in estimating R̃Fkx̄,`.

Combining the results of Theorem 3.4, Lemma 3.1, and Lemma 3.2 using the union bound, we
obtain a tight empirical bound on Ψ (Fk, x̄).

Theorem 3.5. Given a sample x̄ ∼ Dm, a family of functions Fk which take values in [0, 1], `
independent vectors of Rademacher random variables, and ε, δ ∈ (0, 1), we have:

Pr
(

Ψ(Fk, x̄) > 2R̃Fkx̄,` + ε
)
< min
α∈(0,ε)

e−2m(ε−α)2

+ e−
3m`α2

30+8`α . (3.6)

Proof. From Lemmas 3.1 and 3.2, we have:
Pr
(

Ψ(Fk, x̄) > 2RFkm + ε1

)
≤ e−2mε21 .

Theorem 3.4 characterizes the quality of the estimate of the Rademacher Complexity given by R̃Fkx̄,`,
computed as specified in (3.3):

Pr
(
RFm − R̃Fkx̄,` > ε2

)
≤ e−

6m`ε22
15+8`ε2 .

Combining the two results, we obtain:

Pr
(

Ψ(Fk, x̄) > 2R̃Fkx̄,` + ε1 + 2ε2

)
≤ e−2mε21 + e−

6m`ε22
15+8`ε2 .

By substituting α = 2ε2 and ε = ε1 + 2ε2 in the previous equation, we have:

Pr
(

Ψ(Fk, x̄) > 2R̃Fkx̄,` + ε
)
≤ e−2m(ε−α)2

+ e−
6m`(α/2)2

15+8`ε2 .

The statement follows.

Alternative bound with single application of Bernstein’s Inequality for Martingales:
We now present an alternative result to the one in Theorem 3.5, which can be achieved with a
single application of BIM. This bound is tighter than the one in Theorem 3.5 when the number of
independent vectors of Rademacher random variables is very high.

Theorem 3.6.

Pr
(

Ψ (Fk, x̄) > 2R̃Fkx̄,` + ε
)
< e
− ε2

`+4
√
`+20

2m`
+ 4ε

3m

Proof. Consider the Doob supermartingale:
Ci = E

[
Ψ (Fk, x̄)− 2R̃Fkx̄,`|Y1, . . . Yi

]
for i = 0, . . . ,m(`+ 1),

where for 1 ≤ i ≤ m, Yi = Xi, and the remaining Yi correspond to the m` independent Rademacher
random variables in the ` vectors; that is, Yj(m)+i = σj,i for 1 ≤ j ≤ ` and 1 ≤ i ≤ m. It is easy to
verify that Cm(`+1) = Ψ (Fk, x̄)−2R̃Fkx̄,`. Further, C0 = E

[
Ψ (Fk, x̄)

]
−2RFkm , and due to Lemma 3.1,

C0 ≤ 0.

40

Let us define the corresponding martingale difference sequence Zi = Ci − Ci−1. For each i ∈
{1, . . . ,m(`+ 1)}, due to linearity of expectation, we have Zi = Ai − 2Bi, where:

Ai = E
[
Ψ (Fk, x̄) |Y1, . . . Yi

]
− E

[
Ψ (Fk, x̄) |Y1, . . . Yi−1

]
;

Bi = E
[
R̃Fkx̄,`|Y1, . . . Yi

]
− E

[
R̃Fkx̄,`|Y1, . . . Yi−1

]
.

In order apply Bernstein’s Inequality, we need an upper-bound a ≥ |Zi| for 1 ≤ i ≤ m(`+ 1) and an
upper-bound L, such that L ≥∑m(`+1)

i=1 E
[
Z2
i

]
.

Given our definition of Zi, we have that for every i, E [Zi] = E [Ai] = E [Bi] = 0, and thus:
E
[
Z2
i

]
= Var [Zi] ≤ Var [Ai] + 4Var [Bi] + 4Cov [Ai, Bi]. From the properties of covariance, we

have |Cov [Ai, Bi] | ≤
√

Var [Ai]Var [Bi], and thus, E
[
Z2
i

]
= Var [Zi] ≤ Var [Ai] + 4Var [Bi] +

4
√

Var [Ai]Var [Bi].
We consider the cases for 1 ≤ i ≤ m and m < i ≤ m(`+ 1) separately:

• 1 ≤ i ≤ m: In our setting ∀x ∈ X and ∀f ∈ F , f(x) ∈ [0, 1], changing the value of any of the
m points in x̄ can change f(x̄) by at most 1/m. Therefore, |Ai| ≤ 1/m, and Ai ∈ [α, β] with
β − α ≤ 1/m. By applying Popoviciu’s Inequality, we have: Var [Ai] ≤ 1/4m2.

The analysis for Var [Bi] follows the same reasoning discussed in the proof of Theorem 3.4 for
bounding Var [Zi] in the case 1 ≤ i ≤ m, and thus Var [Bi] ≤ 1/(4m2`). We can thus conclude:

E
[
Z2
i

]
= Var [Zi] ≤

1

4m2
+

4

4`m2
+ 4

√
1

4m2

1

4`m2

≤ `+ 4 + 4
√
`

4m2`
;

|Zi| ≤
2

m
.

• m < i ≤ m(` + 1): Changing the value of any of the Rademacher random variables does not
change the value of Ψ (Fk, x̄). Hence, Var [Ai] = E

[
A2
i

]
= 0.

Given fixed values for the random variables corresponding to the points in x̄, changing the
value of one Rademacher random variable can change the value of R̃Fkx̄,` by at most 2/`m.
Thus, |Bi| ≤ 2

`m , and Bi ∈ [α, β] with β − α ≤ 2/`m. By applying Popoviciu’s Inequality, we
have:

Var [Zi] = 4Var [Bi] ≤
4

m2`2
.

We, therefore, have |Zi| ≤ 2
m for all 1 ≤ i ≤ m(`+ 1), and

∑m(`+1)
i=1 E

[
Z2
i

]
≤ `+4

√
`+20

4m` . By linearity
of expectation, and by applying Lemma 3.1:

`(m+1)∑
i=1

Zi = Ψ (Fk, x̄)− E
[
Ψ (Fk, x̄)

]
− 2

(
R̃Fkx̄,` −RFkm

)
≥ Ψ (Fk, x̄)− 2RFkm − 2

(
R̃Fkx̄,` −RFkm

)
;

≥ Ψ (Fk, x̄)− 2R̃Fkx̄,`;

The statement follows by applying BIM (Theorem 3.3).

41

This result can be used in RadaBound in place of the bound given by Theorem 3.5. Note that
with this result, it is easier to compute the bound on the probability of overfitting (denoted as δ′ in
line 11: of Algorithm 1).

3.3.2 Application of the Martingale Central Limit Theorem

In practical applications, one may prefer the standard practice in statistics of applying central limit
asymptotic bounds. We develop here a bound based on the Martingale Central Limit Theorem
(MCLT). Our experimental results in Section 3.6 show that the bound obtained using the MCLT is
more powerful while still preserving statistical validity.

We adapt the following version of the MCLT 3:

Theorem 3.7. [97, Corollary 3.2] Let Z0, Z1, . . . be a difference martingale with bounded absolute
increments. Assume that (1)

∑n
i=1 Z

2
i

p→ V 2 for a finite V > 0, and (2) E
[
maxi Z

2
i

]
≤ M < ∞,

then
∑n
i=1 Zi/

√∑n
i=1 E

[
Z2
i

]
converges in distribution to N(0, 1).

When applying the MCLT, there is no advantage in bounding separately Ψ (Fk, x̄)− 2RFkm and
2RFkm − 2R̃Fkx̄,`. Instead, we compute a bound on the distribution of Ψ (Fk, x̄) − 2R̃Fkx̄,` by analyzing
the Doob supermartingale

Ci = E[Ψ (Fk, x̄)− 2R̃Fkx̄,` | Y1, . . . , Yi]

for i = 0, . . . ,m(`+ 1), with respect to the same Y1, . . . , Ym(`+1) defined as in Section 3.1.
As in the finite sample case, the following theorem relies on a careful analysis of E

[
Z2
i

]
for the

martingale difference sequence Zi = Ci − Ci−1.

Theorem 3.8. Given a sample x̄ ∼ Dm, a family of functions Fk which take values in [0, 1], `
independent vectors of Rademacher random variables, and ε, δ ∈ (0, 1), we have:

lim
m→∞

Pr

Ψ (Fk, x̄)− 2R̃Fkx̄,` > ε

√
`+ 4

√
`+ 20

2
√
`m

 < 1− Φ (ε) .

Where Φ(x) denotes the cumulative distribution function for the standard normal distribution.

Due to its asymptotic nature, it is not possible to compare directly the tightness of the bound in
Theorem 3.8 with that of finite sample bounds such as the one in Theorem 3.5. Still, this bound is of
great interest in many practical scenarios as it allows for a much tighter bound for the generalization
error.

Proof of Theorem 3.8. The proof closely follows the steps of the proof of Theorem 3.6. Consider the
Doob supermartingale for the function Ψ (Fk, x̄)− 2R̃Fkx̄,`:

Ci = E
[
Ψ (Fk, x̄)− 2R̃Fkx̄,`|Y1, . . . Yi

]
for i = 0, . . . ,m(`+ 1),

3Formally, the asymptotic is defined on a triangle array, where rows are samples of growing sizes. We also assume
that all expectations are well-defined in the corresponding filtration.

42

where for 1 ≤ i ≤ m, Yi = Xi, and the remaining Yi correspond to the m` independent Rademacher
random variables in the ` vectors. That is, Yj(m)+i = σj,i, for 1 ≤ j ≤ ` and 1 ≤ i ≤ m. Further, let
us define the corresponding martingale difference sequence Zi = Ci − Ci−1.

In order to apply the MCLT, we need to bound
∑m(`+1)
i=1 E

[
Z2
i

]
from above, and we need to

verify that |Zi| is bounded.
Note that the sequence Zi defined here corresponds to the martingale difference sequence by the

same name that we studied in the proof of Theorem 3.6. As shown in the proof of Theorem 3.6, we
have

∑m(`+1)
i=1 E

[
Z2
i

]
≤ `+4

√
`+20

4m` , and |Zi| ≤ 2/m for all 1 ≤ i ≤ m(`+ 1).

Applying the MCLT, we have that asm goes to infinity,
∑m(`+1)
i=1 Zi/

√∑m(`+1)
i=1 E

[
Z2
i

]
converges

in distribution to N(0, 1), and thus:

lim
m→∞

Pr

`(m+1)∑
i=1

Zi

√√√√m(`+1)∑

i=1

E
[
Z2
i

]
−1

> ε

 < 1− Φ (ε) ,

lim
m→∞

Pr

`(m+1)∑
i=1

Zi > ε

√
`+ 4

√
`+ 20

4m`

 < 1− Φ (ε) ,

By linearity of expectation, and by applying Lemma 3.1:
`(m+1)∑
i=1

Zi = Ψ (Fk, x̄)− E
[
Ψ (Fk, x̄)

]
− 2

(
R̃Fkx̄,` −RFkm

)
≥ Ψ (Fk, x̄)− 2RFkm − 2

(
R̃Fkx̄,` −RFkm

)
;

≥ Ψ (Fk, x̄)− 2R̃Fkx̄,`;

The statement follows.

Two step application of the Martingale Central Limit Theorem: It is possible to
break the result in Theorem 3.8 into two parts: (1) a bound on the the generalization error
Pr
(

Ψ(Fk, x̄)− E
[
Ψ(Fk, x̄)

]
> ε
)
, and (2) a bound on the tightness of the proposed approxima-

tion of the Rademacher Complexity, that is Pr
(
RFkm − R̃Fkx̄,` > ε

)
.

Lemma 3.9.
lim
m→∞

Pr
(

Ψ(Fk, x̄)− E
[
Ψ(Fk, x̄)

]
>

ε

2
√
m

)
≤ 1− Φ(ε).

Proof. Let us consider the Doob martingale for the function Ψ (Fk, x̄)

Ci = E
[
Ψ (Fk, x̄) |X1, . . . , Xi

]
i = 0, . . . ,m, (3.7)

which is defined with respect to the random variables X1, . . . , Xm, which correspond each to one of
the elements in the sample x̄. Let Zi = Ci − Ci−1, for 1 ≤ i ≤ m, be the corresponding martingale
difference sequence.

In our setting ∀x ∈ X and ∀f ∈ Fk, f(x) ∈ [0, 1], changing the value of any of the m points in x̄
can change f(x̄) by at most 1/m. Therefore, |Zi| ≤ 1/m, and Zi ∈ [α, β] with β − α ≤ 1/m. Given

43

our definition of the difference martingale Zi, we have that for every i, E [Zi] = 0, and hence, by
applying Popoviciu’s Inequality, we have:

E
[
Z2
i

]
= Var [Zi] ≤

1

4m2
.

By linearity of expectation,
∑m
i=1 Zi = Ψ(Fk, x̄) − E

[
Ψ(Fk, x̄)

]
. Further, we have

∑m
i=1 Z

2
i ≤

1/4m. By applying the MCLT we therefore have that 2
√
m
(

Ψ(Fk, x̄)− E
[
Ψ(Fk, x̄)

])
converges in

distribution to N(0, 1) as m goes to infinity. The lemma follows.

We now show an application of the MCLT which allows to characterize the distribution of RFkm −
R̃Fkx̄ .

Lemma 3.10.

lim
m→∞

Pr

(
RFkm − R̃Fkx̄,` >

√
5ε

2
√
`m

)
≤ 1− Φ(ε). (3.8)

Proof. The proof closely follows the steps of the proof of Theorem 3.4. In the following we assume
` ≥ 2. Consider the Doob martingale Ci and the martingale difference sequence Zi defined as in the
proof of Theorem 3.4.

As shown in the proof of Theorem 3.4, we have
∑m(`+1)
i=1 Z2

i ≤ 5/4`m, and that |Zi| < 1/m for
all 1 ≤ i ≤ m(`+ 1). By linearity of expectation,

∑`(m+1)
i=1 Zi = RFkm − R̃Fkx̄,`.

By applying the MCLT, we therefore have that 2
√

`m
5

(
RFkm − R̃Fkx̄,`

)
converges in distribution to

N(0, 1). The lemma follows.

3.4 Bounding the generalization error using McDiarmid’s in-

equality

McDiarmid’s inequality is a useful variation of the more general Azuma-Hoeffding inequality [165].
In the theory literature, McDiarmid’s inequality is used to obtain bounds on both the generalization
error (i.e., Lemma 3.2) and the difference between the Rademacher Complexity and the Empirical
Rademacher Complexity for a given sample x̄ [208].An additional error is occurred in estimating the
empirical Rademacher complexity using a finite number of Rademacher vectors.

Our proposed method eliminates this additional passage by estimating directly the Rademacher
Complexity using as R̃Fx̄,`, computed according to equation (3.3).

In [13] (Theorem 11), Bartlett et al. present a bound on the quality of the approximation
of the Rademacher Complexity achievable using a single vector of Rademacher random variables.
Instead, the result presented here is a one-sided bound. Further, we achieve an improvement of the
exponential term in the right-hand side of the bound by taking into considerations that the functions
being considered are non-negative and take values in [0, 1], and, crucially, by using multiple vectors
of Rademacher random variables.

44

Lemma 3.11.
Pr
(
RFkm − R̃Fkx̄,` > ε

)
≤ e−2m`ε2/(`+4). (3.9)

Proof. Clearly R̃Fkx̄,` is a function of m(` + 1) independent Random variables Yi. For the simplicity
purposes, assume Yi = Xi for 1 ≤ i ≤ m, and the remaining Yi are the `m independent Rademacher
random variables which compose the ` vectors of Rademacher random variables. In order to apply
McDiarmid’s inequality we need to carefully bound the maximum change of the the value of the
function R̃Fkx̄,` when changing the the value of the i-th random variable Yi, denoted as ci.

• 1 ≤ i ≤ m: as is our setting ∀x ∈ X and ∀f ∈ Fk, f(x) ∈ [0, 1], changing the value of any
of the m points in x̄ can change f(x̄) by at most 1/m. As we are considering the maximum
deviation in expectation with respect to the value of the m` Rademacher random variables we
can conclude ci ≤ 1/m.

• m + 1 ≤ i ≤ m(` + 1): changing the value of one of the Rademacher random variables can
change the value of R̃Fkx̄,` by at most 2

`m , hence, we have ci ≤ 2
`m .

We therefore have:
m(`+1)∑
i=1

c2i =

m∑
i=1

c2i +

m(`+1)∑
i=m+1

c2i =
1

m
+

4

`m
=
`+ 4

`m
.

The lemma follows by applying McDiarmid’s inequality.

Note that for high values of `, the right hand side of equation (3.9), is close to e−2kmε2 . In a
natural tradeoff, while using multiple vectors of Rademacher random variables does indeed allow to
obtain a higher quality estimate of the Rademacher Complexity, it also introduces a higher overhead
time in the computation of the estimate.

In order to improve both the time and memory space requirements of our algorithm, we can
obtain an estimation of the Rademacher Complexity RFkm using a single vector of m Rademacher
random variables. In this case, we can obtain a slightly better guarantee on the accuracy of R̃Fkx̄,`
than the one implied by (3.9):

Lemma 3.12.
Pr
(
RFkm > R̃Fkx̄,1 + ε

)
≤ e−mε2/2.

The proof of this lemma mostly follows the same steps as the one for Lemma 3.11: the sharper
bound is obtained by observing that R̃Fkx̄,1 can be characterized as a function of just m independent
and identically distributed random variables yi = xiσi from the product distribution D × σ.

Using the union bound we can combine the results of Theorem 3.2 and Lemma 3.11 (or
Lemma 3.12) and obtain:

Theorem 3.13.
Pr
(

Ψ(Fk, x̄) > 2R̃Fkm + ε1 + 2ε2

)
≤ e−2mε21 + e−2m`ε2/(`+4). (3.10)

45

3.5 The RADABOUND Algorithm

The algorithm starts by drawing ` independent vectors of Rademacher variables. These vectors are
fixed throughout the execution of the algorithm. The advantage of fixing the Rademacher vectors
is that (1) we deal with a nested sequence of events, Fk−1 ⊆ Fk, and (2) the actual computation of
the Rademacher complexity estimate is simple and efficient.

Computing the estimate: At the end of each round k, the algorithm stores for each of the
Rademacher vectors j = 1, . . . , `, the value M̃Fkx̄,j = maxf∈Fk

1
|x̄|
∑|x̄|
i=1 f(xi)σi,j . To update these

values, at iteration k + 1, the algorithm computes

M̃
Fk+1

x̄,j ← max{M̃Fkx̄,j ,
1

|x̄|
m∑
i=1

fk+1(xi)σi,j}, j = 1, . . . , `.

The estimate of the Rademacher Complexity at round k+1 is then given by R̃Fk+1

x̄ = 1
`

∑`
j=1 M̃

Fk+1

x̄,j .

ALGORITHM 3 RADABOUND - Adaptive data analysis with Rademacher Complexity control

1: procedure RADABOUND(x̄, ε, δ, `)
2: m← |x̄| . Size of the input sample

. Initialization estimator for Rademacher Complexity
3: for j ∈ {0, 1, . . . , `} do
4: σj ← vector of m iid Rademacher RVs
5: RF0

x̄,j ← 0

. Main execution body
6: while new k-th query fk from the stream do
7: Fk+1 ← Fk ∪ {fk}

. Rademacher Average estimation update
8: for j ∈ {0, 1, . . . , `} do
9: R

Fk+1

x̄,j ← max{RFkx̄,j , 1
m

∑m
i=1 fk(xi)σj,i}

10: R̃
Fk+1

x̄,` ← 1
`

∑`
j=1R

Fk+1

x̄,j

. Control with BIM
11: δ′ ← min

ε′∈
(

0,ε−2R̃
Fk
x̄,`/2

) e−2(ε−2R̃
Fk+1
x̄,` −2ε′)2m + e

6m`ε′2
15+8`ε′

. Control with MCLT- Alternative to 11:
12: or δ′ ← 1− Φ

(
max{0, ε− 2R̃

Fk+1

x̄,` }
√

4`m
`+4
√
`+20

)
. Overfit control test

13: if δ′ ≤ δ(1− δ) then
14: return 1

m

∑
x∈x̄ f(x)

15: else
16: Halt: Cannot guarantee the statistical

validity of further queries.

Stopping rule: Given real values ε, δ ∈ (0, 1), the procedure halts at the first k-th step for which
it cannot guarantee that PrL

(
Ψ(Fk+1, x̄) > ε

)
≤ δ. Recall from (3.1) that

PrL
(
Ψ(Fk, x̄) > ε

)
≤ Pr

(
Ψ(Fk, x̄) > ε

)
Pr
(
Ψ(Fk−1, x̄) ≤ ε

) . (3.11)

46

Since Pr(Ψ(Fk, x̄) > ε) ≥ Pr(Ψ(Fk−1, x̄) > ε), it is sufficient to require Pr
(
Ψ(Fk, x̄) > ε

)
< δ(1− δ)

to have PrL
(
Ψ(Fk, x̄) > ε

)
≤ δ, and we can use the bounds obtained in Theorem 3.5 or Theorem 3.8.

Thus, we prove

Theorem 3.14. Given a sample x̄ ∼ Dm, let Fk denote the set of functions adaptively selected
during the first k steps. If RadaBound has not halted at step k, then

PrL
(
Ψ(Fk, x̄) ≤ ε

)
> 1− δ.

The bound in Theorem 3.8 based on the MCLT can be used in RadaBound as an alternative
to the bound in Theorem 3.5 (lines 11-12 in Algorithm 1). In Section 5, we present an experimental
comparison of performance of RadaBound when using the two methods.

3.6 Experimental results

25 50 75 100 125 150 175 200
num queries

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

fresh
holdout

 0.03 until query 5
 0.035 until query 9
 0.04 until query 17
 0.045 until query 33
 0.05 until query 115

(a) Bernstein bound

25 50 75 100 125 150 175 200
num queries

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

fresh
holdout

 0.02 until query 7
 0.025 until query 13
 0.03 until query 27
 0.035 until query 67

(b) MCLT

Figure 3.1: No signal. Fea-
ture values from N (0, 1).
δ = 0.1.

100 200 300 400
num queries

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

fresh
holdout

 0.025 until query 6
 0.03 until query 8
 0.035 until query 14
 0.04 until query 36
 0.045 until query 152

(a) Bernstein bound

100 200 300 400
num queries

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

fresh
holdout

 0.02 until query 10
 0.025 until query 14
 0.03 until query 78
 0.035 until query 226

(b) MCLT bound

Figure 3.2: No signal. Fea-
ture values from N (0, 2).
δ = 0.15.

100 200 300 400
num queries

0.35

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

fresh
holdout

 0.03 until query 5
 0.035 until query 7
 0.04 until query 9
 0.045 until query 19
 0.05 until query 79

(a) Bernstein bound

100 200 300 400
num queries

0.35

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

fresh
holdout

 0.02 until query 5
 0.025 until query 7
 0.03 until query 11
 0.035 until query 59
 0.04 until query 271

(b) MCLT bound

Figure 3.3: No signal. Fea-
ture values from N (0, 8).
δ = 0.2.

We demonstrate the power and efficiency of our technique through a variety of experiments. Our
experimental setup is similar to the one used in [58], except that all our reported results are for
ranges of parameters for which we actually have provable statistical guarantees.

We consider a learning task of classifying vectors composed by d features to the classes “-1” or
“1”. We consider only linear classifier vectors w ∈ {−1, 0, 1}d, assigning vector x to class h(x) =

sign (w · x). The goal of the learning algorithm is to find a classifier with minimum expected loss
for the 0, 1 hard loss function (0 for correct classification, 1 otherwise). To model a typical learning
scenario, the learning algorithm is given two independent datasets. A training set XT and an holdout

47

set XH . We then evaluate the performance of the learning algorithm using a third, independent
fresh set.

Our learning algorithm works as follows: In the first phase, the algorithm evaluates the correlation
between the values of the features and the labels of the vectors using only the training dataset XT as
ci = 1

m

∑
x∈XT x[i]l(x). The features are then sorted (in descending order) according to the absolute

values of their correlations |ci| to the labels.
The actual adaptive analysis of the data occurs in the second phase of the algorithm using

the holdout data XH . The algorithm starts with a classifier w = 0. It then considers features
according to the order computed in the first phase. Using the holdout set XH , the algorithm tests,
for each feature, whether assigning weight -1 or 1 to it improves the performance of the current best
classifier. If that is the case, the classifier is updated with the new value for the feature; otherwise,
the feature is left with weight zero. Each newly tested classifier is added to the class function Fk.
RadaBound then computes a new estimate R̃Fkm of the Rademacher Complexity of Fk, and uses
it to determinate whether the total accumulated error is below ε with probability at least 1 − δ as
discussed in Section 3.5.

Each figure above corresponds to several runs of an experiment with the same parameters but
different values of ε (the error bound). The blue line gives the accuracy of the best classifier computed
after running the corresponding number of queries on the holdout set XH . The red line gives the
accuracy of the same classifier on fresh data. The vertical bars give the computed stopping time for
each value of ε. The shaded green area corresponds to ±ε values around the “true accuracy” of the
classifier (the red line), for the ε value of the next vertical bar. The green shaded area beyond the
last bar uses the same ε as the last bar. In a correct execution of RadaBound, the blue line does
not exit the green shaded area before the last vertical bar. The power of RadaBound is measured
by how close is the last bar to the first time the green line exit the shaded area.

In all the experiments |XT | = |XH | = 4000. Each vector in the dataset has 500 features. The
estimation of the Rademacher Complexity R̃Fx̄,` is computed according to (3.3) using ` = 32 vectors
of Rademacher random variables. We report results using (a) Bernstein’s Inequality (Section 3.3.1)
and, (b) the MCLT (Section 3.3.2). We consider the two following scenarios:

No signal in the data: In this setting, each point x ∈ XH is assigned a label independently
and uniformly at random. The feature values are taken independently from a normal distribution
with expectation 0 and various variance values. Thus, there is no correlation between the labels and
the values of the features. We report the results in Figures 3.1-3.3.

Signal in the data: In this setting the ‘’‘strength” of the correlation between some features
and the labels is characterized by two parameters: n, the number of the queries whose value is
correlated to the label, and (positive or negative) bias which defines the strength and sign of the
correlation. We first generate datasets with no signal, like in the previous setting. We then fix a set
of 50 features to be correlated with the label of their vectors. Letting l(x) be the label of vector x,
the 50 correlated features of x are modified by adding bias× l(x) to their original value. We report
the results in Figures 3.4-3.6.

48

100 200 300 400
num queries

0.40

0.45

0.50

0.55

0.60

0.65

0.70

ac
cu

ra
cy

fresh
holdout

 0.035 until query 8
 0.04 until query 12
 0.045 until query 18
 0.05 until query 38
 0.055 until query 306

(a) Bernstein bound

100 200 300 400
num queries

0.40

0.45

0.50

0.55

0.60

0.65

0.70

ac
cu

ra
cy

fresh
holdout

 0.02 until query 8
 0.025 until query 10
 0.03 until query 14
 0.035 until query 24
 0.04 until query 88

(b) MCLT bound

Figure 3.4: Signal. Feature
values from N (0, 4), δ = 0.1,
bias = 0.5.

100 200 300 400
num queries

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

fresh
holdout

 0.025 until query 8
 0.03 until query 10
 0.035 until query 16
 0.04 until query 34
 0.045 until query 104

(a) Bernstein bound

100 200 300 400
num queries

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

fresh
holdout

 0.02 until query 10
 0.025 until query 16
 0.03 until query 36
 0.035 until query 106

(b) MCLT bound

Figure 3.5: Signal. Feature
values from N (0, 2), δ = 0.15,
bias = 0.5.

25 50 75 100 125 150 175 200
num queries

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

fresh
holdout

 0.03 until query 8
 0.035 until query 12
 0.04 until query 20
 0.045 until query 44
 0.05 until query 162

(a) Bernstein bound

25 50 75 100 125 150 175 200
num queries

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

fresh
holdout

 0.02 until query 10
 0.025 until query 18
 0.03 until query 36
 0.035 until query 96

(b) MCLT bound

Figure 3.6: Signal. Feature
values from N (0, 2), δ = 0.2,
bias = 0.25.

The results demonstrate that RadaBound successfully halts the sequence of tests before overfit-
ting for the various values of ε, as the green line corresponding to the values of the function evaluated
on the holdout does not exit the green shaded area before the corresponding vertical bar. The statis-
tical power of the procedure is highlighted in particular by the result of experiments for which there
is actual correlation between the labels and the value of the features as the overfit control ensured
by RadaBound is not achieved at the expense of detecting the signal in the data.

In several scenarios, RadaBound halts its execution very close to the first iteration for which
overfit (with respect to the value of ε) actually occurs. RadaBound does not appear to be influenced
by the distribution D over the data, but rather it behaves differently depending on the actual family
of functions being tested.

For similar ε, δ parameters, the state-of-the-art Thresholdout algorithm [58] would require an
holdout dataset of size ∼ 4 × 106 to provide answers to just 10 queries (details in Section 3.7). In
contrast, our experiments show that RadaBound can provably handle such parameters with an
holdout set of just 4000 samples, thus with an improvement of almost three orders of magnitude in
terms of sample complexity. The comparison is further discussed in Section 3.7.

Using the MCLT leads to a tight analysis of Ψ (Fk, x̄), which in turn allows to test a higher
number of adaptively chosen classifiers before halting and without overfitting (Figures 3.1b - 3.6b),
compared to the stopping points obtained using the BIM (Figures 3.1a - 3.6a)4.

Finally, the fact that even when using the bounds obtained using the MCLT, the procedure halts
4Using bounds obtained using McDiarmid’s Inequality in RadaBound leads to stopping points considerably more
conservative than those obtained using the BIM for the same parameters.

49

correctly, further suggests that, despite their “asymptotic” nature, these are actually highly reliable
even when dealing with an input sample of relatively small dimension.

3.7 Comparison with methods based on Differential Privacy

The Thresholdout algorithm [58] provides guarantees similar to those of RadaBound.
Thresholdout operates using two datasets: a public dataset and a private holdout dataset. Ev-
ery time a new query is received the algorithm evaluates its value on both the public and the private
dataset. If their absolute difference is within a given threshold, Thresholdout returns to the user the
value observed on the public dataset after perturbing it with some noise. Viceversa, if the absolute
difference is higher than a certain threshold, the algorithm detects that the query being considered
is overfitting on the public dataset. In this case, Thresholdout may instead provide the value com-
puted on the private dataset after perturbing it with noise. As this last operation effectively “ leaks”
information regarding the holdout it can be executed up to B times, where B must be fixed prior
to the execution of the algorithm.

To characterize the number of queries for which algorithm Thresholdout provides provable
statistical guarantees we apply Theorem 25 in [58] 5. The theorem states that when testing up to k
queries, with up to B = 1 of those being answered using the private “Holdout set”, the size of the
holdout set must be at least:

n ≥ 96ε−2 ln
(

4kδ−1
)

min{80
√
B ln(1/εδ)}, 16B}

Thus, for k = 10, B = 1, ε = 0.5, and δ = 0.1: the required sample size is at least
n ≥ 400× 96× ln(400) min{80

√
ln(200), 16} ≥ 3.7× 106.

Therefore, even when requesting such, fairly loose, guarantees, Thresholdout requires an extremely
high sample size in order to provide reliable answer to a handful of queries.

In contrast, we showed in Section 3.6 that RadaBound can provably handle problems with
these, and better, parameters while using an holdout set composed by just 4000 samples. Thus
RadaBound achieves an improvement of almost three orders of magnitude in terms of sample
complexity compared to Thresholdout.

Further, Thresholdout requires that the user specifies before the execution the number of queries
k which are going to be adaptively chosen to be tested, and the number B of maximum times
that the algorithm can tolerate overfit on the public dataset by revealing information from the
private “holdout” dataset. These requirements limit the adaptiveness of the process. In contrast
RadaBound uses the holdout dataset as much as possible without a fixed maximum number of
queries. Finally, using Rademacher Complexity in evaluating the stopping criterion of the adaptive
testing procedure allows RadaBound to evaluate the properties of the actual family of functions

5A careful reader will notice that Figures 1-3 in [58] (the same figure appears as Figures 1 and 2 in [59]) represent
an idealized illustration rather than statistically valid results. For the sample size used in these figures, the bound
on the error probability of the threshold algorithm is not smaller than 1. Furthermore, the results crucially depend
on a preprocessing of the two data sets (lines 95-97 in the “runClassifier” procedure in the python code in the
supporting materials) that is not discussed in the paper.

50

tested so far (i.e., their expressiveness), rather than just its cardinality, in order to provide guarantees
on the quality of the evaluations obtained in the adaptive analysis.

3.8 Conclusion

We presented a rigorous, efficient and practical method for bounding the generalization error in an
adaptive sequence of queries tested on the same dataset. While the standard “rule of thumb” for
responsible data analysis and machine learning is to use a test set only once, our results demonstrate
that, with an appropriate control mechanism, it may be possible to use the same test set more than
once without significantly reducing the validity of the results.

For concreteness, we focused here on the problem of evaluating the expectations of a set of func-
tions in the range [0, 1]. This problem corresponds to the basic machine learning task of evaluating
the correctness of classifiers with bounded [0, 1] loss functions. We note that our methods can be
extended to a more general setting, for example using new concentration bounds on sub-exponential
distributions [134], and self-bounding functions [170].

Part II

Visual data analysis with quality

guarantees

51

Chapter 4

Towards sustainable insights1

Have you ever been in a sauna? If yes, according to our recent survey conducted on Amazon
Mechanical Turk, people who go to saunas are more likely to know that Mike Stonebraker is not a
character in “The Simpsons”. While this result clearly makes no sense, recently proposed tools to
automatically suggest visualizations, correlations, or perform visual data exploration, significantly
increase the chance that a user makes a false discovery like this one. In this Chapter, we first show
how current tools mislead users to consider random fluctuations as significant discoveries. We then
describe our vision and early results for QUDE, a new system for automatically controlling the
various risk factors during the data exploration process.

4.1 Introduction

“A new study shows that drinking a glass of wine is just as good as spending an hour at the gym”
[Fox News, 02/15]. “A new study shows how sugar might fuel the growth of cancer” [Today, 01/16].
“A new study shows late night snacking could damage the part of your brain that creates and stores
memories” [Fox News, 05/16].

Over the last years we have seen an explosion of data-driven discoveries like the ones mentioned
above. While several of these are indeed legit, there has also been an increase of more and more
questionable findings [113]. Albeit the reasons behind this trend are manifold, we recently observed
that the research community started to develop tools, like Vizdom/IDEA [48], SeeDB [231] or
Data Polygamy [44], that are likely to considerably increase the number of false discoveries from
data analysis. For instance, visual data exploration tools, such as Vizdom/IDEA [48] or Tableau,
significantly simplify data exploration for domain experts and, more importantly, novice users. These
tools allow to discover complex correlations and to test hypotheses and differences between various
populations in an entirely visual manner with just a few clicks, unfortunately, often ignoring even the

1The results presented in this chapter were presented in the 7th biennial Conference on Innovative Data Systems
Research (CIDR 2017). This is joint work with Professor Carsten Binnig, Professor Tim Kraska, Professor Eli Upfal,
Emanuel Zgraggen and Zheguang Zhao.

52

53

most basic statistical rules. For example, in a recent user study that we performed, we have asked
people to explore a dataset containing information about different wines and report their findings.
Using histograms showing American vs. French wines, most subjects came to the conclusion, that
French wines earn higher critic ratings on average. At the same time, almost none of the participants
used a statistical method to test if the visually observed difference from the histogram is actually
meaningful. Similar, none of the participants, even the more statistically savvy ones, did consider
that the arbitrary exploration and attempts to find interesting facts actually increases their chance
to find random occurrences of seemingly significant correlations.

While these concerns are often waived under arguments such as “scientists are in desperate need
for better tools, so any help is better than none”, it is often not recognized that these tools not only
greatly increase the likelihood of spurious discoveries but in many cases, make it also impossible to
control the number of false discoveries later on. For example, recent visual recommendation systems,
such as SeeDB [231] or Data Polygamy [44], are potentially checking thousands of hypotheses in just
a few seconds and are smoking guns hiding as water pistols. SeeDB tries for example to find
interesting visualizations and while a visualization per se does not seem like a hypothesis test, it
should be treated as one. Why otherwise should a visualization be considered interesting, if the
effect shown by the visualization is not relevant?

As a result, by testing thousands of visualizations it is almost guaranteed that the system will
find something “interesting” regardless of whether the observed phenomenon is actually statistically
relevant or not. Similar, Data Polygamy tries to find interesting correlations between time series data.
Hypothesis tests are therefore actually performed using MC-methods relying on a fixed threshold for
the p-values, without providing a correction for multiple hypotheses. Even more astonishingly, while
the authors do discuss p-value adjustments using the Bonferroni correction, they then – surprisingly
– disregard it. Let us assume the system has to test 100 potential correlations, 10 of them being
true. Assuming a p-value of 0.05 (as suggested in [44]), and that our test has a statistical power of
0.8 (common values for a single statistical test), Data Polygamy on average will find 13 correlations
of which 5 (≈ 40%) are “bogus” (i.e., they are false positives). Even worse, without knowing how
exactly the system tried to find the “interesting” correlations and how many correlations it tested, it
is later on impossible for the user to determine what the expected false discovery rate will be across
the whole data exploration session.

In this Chapter, we outline our vision and initial results for QUDE, the first system to Quanti-
fying the Uncertainty in Data Exploration, which is part of Brown’s Interactive Data Exploration
Stack (BIDES). In order to better quantify the severity of the problem, we analyze existing visual
recommendation systems, namely SeeDB and Data Polygamy, and discuss how they are prone to
find wrong insights using simulated and real-world data. We further quantify the risk for data ex-
ploration systems like Vizdom/IDEA, which is not as severe as for automatic insight finders, but
still persists because of its capability to quickly test many different hypotheses. Afterwards, we
discuss QUDE and how it achieves a more sustainable data discovery process based on techniques
for controlling the False Discovery Rate (FDR) [17]. Furthermore, we also show how QUDE tries

54

col1
0

0.2

0.4

0.6

0.8
no

rm
al

iz
ed

 a
gg

r(
co

l2
)

Reference Target

(a) Interesting visualization

col1
0

0.2

0.4

0.6

no
rm

al
iz

ed
 a

gg
r(

co
l2

)

Reference Target

(b) Uninteresting visualization

Figure 4.1: Examples of interestingness as defined in [231].

to automatically infer the tested hypotheses based on the user interactions, and how we plan to
incorporate user feedback, as well as, warn the user about potential risk factors. While QUDE is
designed mainly to avoid the risk of multi-hypothesis testing, it also includes techniques to tackle
other risk factors such as missing data or visually misleading results (e.g., Simpson paradox).

Our main contribution is twofold: first, we demonstrate the risk of false discoveries by using
three example systems, Vizdom/IDEA [49, 48], SeeDB [231], and Data Polygamy [44] (Section 4.2).
However, the insights gained from these systems apply to a large range of commercial (e.g. [98])
and research prototypes (e.g. [231]). Secondly, in Section 4.3, we present our vision of QUDE and
initial techniques we use to control the amount of false discoveries.

4.2 The Risk With Today’s Tools

Modern tools for interactive data exploration enable domain experts and novice users alike to ef-
ficiently analyze large amounts of data. At the same time, if not used carefully, these tools can
significantly increase the risk of making spurious discoveries. In this section, we analyze different
tools for data exploration and discuss how these tools amplify the risk of false discoveries. Later,
in Section 4.3, we present techniques based on a statistical concept called “False Discovery Rate”
(FDR) and how we adopt these techniques for data exploration to control the risk factors.

4.2.1 Visual Data Exploration

Visualizations are arguably the most important tool to explore, understand and find insights in data.
As part of interactive data exploration, visualizations are used to skim through the data and look
for interesting patterns. It comes therefore at no surprise that the database research community
over the last few years focused on developing techniques (e.g., adaptive indexing, approximate query
processing) to better support interactive exploratory workloads [111]. Visualization systems such as
Vizdom [48] are capable of visualizing large-scale data with interactive speed. While interactivity is

55

key to the usability of advanced analytical tools [148], using them unfortunately also significantly
increases the risk of making spurious discoveries. Such risk has two aspects:

(1) The statistical significance of the visualized results is unclear.

(2) The growing number of hypotheses being tested during exploration increases with every single
visualization.

The first aspect of risk is important because visualizations have the power to influence human
perception and understanding by the rich information they may carry. Suppose that a salesperson
of an ice cream company is exploring a data set about the sales. As the first step, she wants to get
a yearly distribution of the sales figures. So she compares the sales of the last five years using a
histogram of sales per year. In the second step, she is interested in learning if the the sales differ
significantly across different states. She thus compares sales per state over the last five years.

Suppose the histogram shows that sales in Vermont were higher than in Rhode Island. Consider
how tempting it is for an unsophisticated user to conclude that Vermonters buy more ice cream
just based on the visualization. Although a statistically inclined user would formally analyze this
observation by using hypothesis testing, she would have to redirect her attention to work with a
different statistical tool (e.g. R [81]) before proceeding to the next data exploration step. After such
efforts on context-switching, the insight might turn out completely due to random noise. At scale,
the division of labor between data exploration and hypothesis testing will cause even more waste of
human efforts on such spurious insights. Thus, if a visualization provides any insight, the insights
should be immediately tested for their significance. If that would not be the case, the value of the
visualization would be very limited as the user would not be allowed to make any conclusions based
on the visualization. Thus if we consider a visualization as something more than a pretty picture
presented to the user (i.e., more than just a listing of facts), we should always test the insight
the user gains from the visualization for its significance and inform the user about it. A central
challenge is of our work is the understanding of the hypothesis derived by the user given a certain
data visualization. With respect to the previous example, the hypothesis derived by the user could
be: (1) Vermonters buy more ice cream than Rhode Islanders, (2) Rhode Islanders buy more than
Vermonters, or (3) they buy ice cream in the same amount.

The second aspect of risk is arguably even more severe. With every additional hypothesis test
the chance of finding a false discovery increases. This problem is known as the “multiple comparisons
problem” and has been studied extensively in the statistics literature [28, 15, 91, 130]. While only
a decade ago it was an art left to experts, data analytics has become more and more accessible to
a broader range of users with the advent of open-source data analysis systems. What has clearly
changed is how easy it has become to test an hypothesis. For instance, if ten years ago it took a
scientist one day to do a single test (including determining the right test statistic, collecting and
cleaning data, etc.), it is now very easy to do 20 or more in a few minutes on a system such as
Vizdom [48]. Assuming a significance level of 5%, for 20 tests the risk to falsely reject at least one
true null hypothesis increases to 1− (1− 0.05)20 = 64%.

56

2 3 4 5 6 7 8 9 10
Filter cardinality

0

0.5

1
C

on
d.

 p
ro

ba
bi

lit
y

False Discovery vs Filter Cardinality

Ref. view=base table; dev.>0.28

(a) Multiple Target Queries

0 0.2 0.4 0.6 0.8 1
Target query selectivity

0

0.5

1

C
on

d.
 p

ro
ba

bi
lit

y

False Discovery vs Target Query Selectivity

Ref. view=base table; dev.>0.28; card.=6

(b) Single Target Query

Figure 4.2: The risk analysis of false discoveries in SeeDB [231]

Data exploration on systems such as Vizdom [48] not only increase the risk of false discovery, but
also change the way how statistical tests are applied. Suppose in the previous example the salesperson
explores various relationships in the sales dataset through visualizations until she sees a visualization
that she deems useful (e.g. significantly more ice cream sales to males in Massachusetts compared
to California). With some statistics background, she validates this insight by using an appropriate
test with a significance level of 5%. Suppose the observed p-value is below the significance level, she
rejects the null hypothesis and believes that there is only a 5% chance that she incorrectly rejected
the null hypothesis in case it was true. However, this way of applying statistical test is wrong. What
the user ignores is that before she did the test she had already searched through the dataset for
a while, and had observed different insights and implicitly their corresponding hypotheses, albeit
untested. Thus, by the time the user applied the statistical test, she was already inadvertently
trapped into the multiple comparisons problem, because the data exploration tool provided her the
illusion that data exploration was not a sequence of hypotheses.

To conclude, without considering the risk of false discoveries, current interactive data exploration
tools have the propensity to significantly exacerbate the problem of considering random occurrences
as insights. Rather than limiting data exploration exclusively to statisticians, we believe in empow-
ering both unsophisticated and advanced users with more intelligent systems with automatic risk
control, where data-driven insights can be drawn both efficiently and safely. While it is clearly not
the tool’s fault that false discoveries happen, in the end it is the user’s, tools like Vizdom, Tableau
and many others purposefully target a broader audience of users. That is, more users without a
sufficient statistic background will be using these tools and not understand the risk factors. Fur-
thermore, even trained statisticians struggle to fully control the multi-hypothesis problem, which in
theory requires keep track of every single insight every user ever made over a given dataset.

Therefore, with QUDE we plan to build a system which actively makes the user aware of these
problems during the data exploration process and controls the risk of false discoveries automatically.
Unfortunately, traditional techniques for multi-hypothesis testing, such as the Bonferroni correction,
are both too pessimistic and require the system to know the number of hypotheses the user can
explore upfront, which make them inadequate for data exploration.

57

4.2.2 Visual Recommendations

To automate data-driven discoveries at scale, visualization recommender systems such as Scagnos-
tics [168], SeeDB [231], VizDeck [127], or Voyager [237] have been proposed. None of them however
considers the risk of false discovery.

In a nutshell, visualization recommendation systems automate two dimensions of the visual data
exploration process: (1) Recommend new visualizations with the goal to provide new insights (2)
provide better representations for a given visualization. We focus on the first type of recommen-
dation systems as they are similar to the systems discussed in Section 4.2.1, except for the fact
that the system itself becomes the explorer of the data and is capable of checking thousands of
hypotheses in just a few seconds. Without controlling the risk of false discoveries, these systems
systematically increase the risk of spurious discoveries at scale. For the remainder of the discussion
we use SeeDB [231] as an example, though similar observations can be made for other systems.

SeeDB considers the current query and according visualization of the user (i.e., the reference
query) and offers recommendation (i.e., the target query) by adding/changing filtering and group-by
attributes etc. To rank the recommendations, SeeDB recommends to the user the most interesting
target queries based on the deviations from the given reference query. SeeDB assumes a larger
deviation indicates a more interesting target query. Figure 4.1a and Figure 4.1b show examples of
“interesting” and “uninteresting” target views. Furthermore, SeeDB truncates uninteresting visual-
izations if the deviation value is below a certain threshold.

Unfortunately, the deviation in SeeDB may just result from random noise, and thus carries no
statistical significance. In [231], the authors report that the discovery rate for interesting visualiza-
tions with SeeDB is three times higher than for manual exploration tools such as Tableau [98] or
Vizdom [48]. This increase of efficiency is troubling because the false discoveries also increase in an
uncontrolled manner.

False Discoveries on Random Data

As a first step to show how visual recommendation systems such as SeeDB [231] suffer from false
discoveries, we use a probabilistic model to analyze how likely it is that SeeDB finds a large devi-
ation from the reference view on random data without any real correlations. We focus on SeeDB’s
capability of adding and changing a single filtering condition to the reference query. We ignore
more advanced variations (e.g. multiple filter conditions, adding group-by’s, etc.), as all of these
would further increase the chance of false discoveries. For simplicity our model makes the following
assumptions: (a) the aggregate function is SUM, the aggregate column has zero variance and the
group-by column has uniformly distributed binary values; (b) the filter column is a sequence of
Bernoulli trials; (c) the selectivity of attribute values on the filter column is drawn from a multi-
nomial distribution; (d) all columns are independent; (e) we used the same deviation distance as
in [231] for the recommendation threshold.

Figure 4.2 shows the risk of the SeeDB model making recommendations based on the random
effects. The first simulation in Figure 4.2a varies the number of unique values in the filtering attribute

58

Startup Corporation
Filter: All

0

0.2

0.4

0.6

0.8
%

 C
he

dd
ar

 &
 S

ou
r

C
re

am Potato Chips vs Workspace Preference

(a) Reference View

Startup Corporation
Filter: Belief in Alien Existence

0

0.5

1

%
 C

he
dd

ar
 &

 S
ou

r
C

re
am Potato Chips vs Workspace Preference

(b) Recommended View 1

Startup Corporation
Filter: Disbelief in Alien Existence

0

0.2

0.4

0.6

0.8

%
 C

he
dd

ar
 &

 S
ou

r
C

re
am Potato Chips vs Workspace Preference

(c) Recommended View 2

Startup Corporation
Filter: Prefer Blow Hair Drying

0

0.1

0.2

0.3

0.4

%
 C

he
dd

ar
 &

 S
ou

r
C

re
am Potato Chips vs Workspace Preference

(d) Recommended View 3

Figure 4.3: An example of SeeDB [231] on survey data.

(called filter cardinality), which corresponds to the number of target queries per reference query.
The support size (i.e., number of selected tuples) of each target query is kept constant at 100. Given
higher filter cardinality, more target queries are compared against the reference query, and thus the
risk of false discovery increases. The second simulation in Figure 4.2b uses 1000 records, keeps the
filter cardinality constant at 6 but varies the selectivity of the predicate and with it the support
size. The figure shows — not surprisingly — that the lower the selectivity, the higher the chance of
a false discovery because of the reduced support size.

False Discoveries on Survey Data

As a second step to verify what spurious recommendations SeeDB would make, we collected 104

answers for 69 (mostly unrelated) multiple-choice and 17 fill-in-the-blank questions on Amazon
Mechanical Turk [112]. Questions range from Who is Mike Stonebraker? to What is your eye color?
and Have you ever been in a Sauna?. Each answer is treated as an attribute.

We implemented the SeeDB recommendation algorithm, and used simple queries with one ag-
gregated and one group-by attribute but without any filtering condition as the reference views. The
deviation threshold was set according to the example in [231]’s Figure 1. As a result, our SeeDB
implementation generated 2, 078, 608 target views (i.e., potential recommendations) based on 9, 996

reference views, among which a stunning 708, 109 were recommended, though many of which are

59

statistically insignificant.
Figures 4.3a-4.3d show example spurious recommendations. Suppose the user analyzes the pref-

erence of Potato Chips (Cheddar vs. Sour Cream) based on the Workspace Preference using the
reference view in Figure 4.3a, which is already a questionable finding on its own. Still SeeDB rec-
ommends three of the top-ranked target views shown in Figure 4.3b-4.3d (ranked by the deviation
beyond the threshold as in [231]’s example), which are even more questionable and do not hold up
in our statistical test. For instance, the recommendation in Figure 4.3c shows that the disbelief
in aliens reverts the trend compared to the reference view, though the correlation between disbe-
lief in aliens and preference of potato chips is insignificant (p-value of 0.59). On the other hand,
SeeDB also recommends views based on statistically significant yet questionable correlations, such
as the correlation between Saunas and Stonebraker from the abstract, which even passes our post
mortem statistical test (p-value of 0.036). Thus, even if the user would perform a statistical test
after seeing the visualization, she might wrongly assume that the insight is significant as she would
certainly never consider the risk the visualization recommendation system introduced by searching
for an “interesting” visualization.

4.2.3 Automatic Correlation Finders

As a last class of system, we analyze recent recommendation engines, which not just suggest visu-
alizations but try to automatically find insights through automatic hypothesis testing. One of such
systems is Data Polygamy [44], which searches for statistically significant correlations in temporal-
spatial datasets. Such correlations may exist at certain time or location. For example, the wind
speed may not correlate with the number of taxi trips during the year, but it may when the hurri-
cane strikes. Data Polygamy first identifies extreme data points, then uses the F1 score to measure
the relationship strength, and performs Monte Carlo permutation test to determine the statistical
significance given a predefined significance level [44].

Unfortunately, Data Polygamy ignores the problem of multiple comparisons and therefore its
method is only sensible for a single compared relationship. Suppose there are two datasets of 5
attributes each, resulting in 25 pairwise relationships to test. With a significance level of 0.05, on
average at least about one such relationships would pass the significance criteria even on random
input. However, data variety, on the other hand, is increasing quickly. The NYC Urban data
collection has 228 features on weather monitoring, and over 1,300 data sets in the span of two years
have been collected by the government agencies in NYC [44] [83]. Thus recommendation systems
without controlling for multiple comparisons are not suitable for real-world datasets.

We downloaded the code of Data Polygamy and studied the number of false discoveries over
random data with randomly introduced extreme data points, as summarized in Figure 4.4. Each
extreme data point was sampled independently with 20% probability from a distinct uniform dis-
tribution than the normal data. With 100 records and 11 attributes per dataset, Data Polygamy
found a total of 43 “bogus” relationships in 50 independent trials. Thus, without considering the risk
of multiple comparisons, Data “Polygamy can be bad for you”; it is literally an automatic p-hacking

60

Records 100
Attributes 11
Datasets 2

Extreme data prob. 20%

(a) Random input

Trials 50
Significance level 0.05

Incorrect rejection 43
Correct acceptance 7

(b) False discoveries

Figure 4.4: Data Polygamy [44] on random extreme points.

system.

gender

co
un

t

male female

P6maleUN=Np6femaleUH0 risk

5B
P6maleUN<>Np6femaleUH1

gender

co
un

t

male female

blood

co
un

t

Yes No

blood

Yes No

0v011

p
risk

5B

P6maleUN=Np6femaleUH0

P6maleUN<>Np6femaleUH10v011

p

co
un

t

P6blood|maleUN=Np6blood|femaleUH0

H10v211

p
P6blood|maleUN<>Np6blood|femaleU

A B

blood

co
un

t

Yes No

risk

5B

P6maleUN=Np6femaleUH0

P6maleUN<>Np6femaleUH10v211

p

P6blood|maleUN=Np6blood|femaleUH0

H10v011

p
P6blood|maleUN<>Np6blood|femaleU

C

autoNclassification

F1 61B

AUC 59B

label

pNM1=N
5B

0v011
pNM2=N0v021

pNM3=N0v028 pNvalueNdistribution

1 2
0v01 1v00

Figure 4.5: Storyboard of how a “risk controller” could look like.

4.2.4 Automatic Model Finding

Finally, systems for automatic model building and tuning in data mining or machine learning (e.g.
MLBase [135]) are also victim of the risk of multiple comparisons. To demonstrate the complexity
of this problem, suppose that we evaluate a sequence of 20 possible models M1,M2, . . . ,M20 for
our observed data. We test each model using cross validation on different holdout sets, and accept
a model if its estimation (prediction) error satisfies our requirement with significance level ≤ 0.05

(i.e., the probability that the model achieved that smaller level of estimation error on a random data
is bounded by 0.05). However, this also implies that at least one such model on average would pass
our criteria even on random data.

4.3 QUDE: A System to Quantify the Uncertainty in Data

Exploration

As discussed in the previous section, the multi-hypothesis pitfall is a core problem affecting many
recent systems for interactive data exploration, recommendations for visualizations and insights,
as well as, automatic model building. With QUDE (pronounced “cute”) we are building the first
system to automatically Quantify the Uncertainty in Data Exploration. QUDE is part of Brown’s
Interactive Data Exploration Stack (BIDES) and consist of a risk assessment engine as well as a user
facing component integrated into Vizdom, BIDES’ user interface. While the main focus of QUDE is
on the control of the risk of false discoveries due to the testing of multiple hypotheses, QUDE will
also be able to detect other risk factors as explained at the end of this section.

61

4.3.1 Controlling the Exploration Risk

When a user is exploring a larger number of hypotheses based on the data, either explicitly, indirectly
through visualizations, or automatically through recommendation engines, there is a growing risk
of flagging a random (i.e., non “statistically significant”) fluctuation in the data as a significant
discovery. Any sustainable data exploration system should therefore effectively control the risk of
such “false discoveries”.

Multi-Hypothesis Evaluation

The risk of false discovery is known as the problem of multiple comparisons, or multi-hypothesis
evaluation Two main fundamental challenges arise when attempting to automatically quantify the
risk: (1) the traditional techniques do either not scale well with the number of hypothesis or can
not be used in an interactive environment and (2) in many cases it is not clear which hypothesis is
currently being tested through a visualization by the user (i.e., the “user intent”). In the following,
we describe various multiple-hypothesis control techniques and how well they work to address the
first challenge, whereas in Section 4.3.1 we discuss how we plan to address the user intent challenge.

Family Wise Error Rate (FWER): Traditionally, frequentist methods for multiple hypothesis
testing focus on correcting for modest numbers of comparisons. A natural generalization of the
significance level to multi-hypothesis testing is the Family Wise Error Rate (FWER), which is the
probability of incurring at least one Type I error (i.e., false positive: the null hypothesis is true, but
is rejected) in any of the individual tests. The Bonferroni correction [28] was proposed to control
FWER for m hypothesis tests at an upper bound α. The Bonferroni correction tests each null
hypothesis with significance level α/m. However, this method is too conservative in that the power
of the test is too low (i.e., the accepted significance level becomes extremely small) when m is large,
resulting in many false negatives. Several methods have been proposed to improve the average power
of the Bonferroni method for small to modest m; but for large number of hypotheses, all of these
techniques lead to tests with low power. A review of these techniques is given in [207].

False Discovery Rate (FDR): The False Discovery Rate (FDR) was introduced by Benjamini
and Hochberg [15] as an alternative and less conservative approach to control errors in multiple
hypothesis tests. Let V be the number of Type I errors in the individual tests, and let R be the
total number of null hypotheses rejected by the multiple test. FDR is defined as the expected
ratio of erroneous rejections among all rejections, namely FDR = E[V/R], with V/R = 0 when
R = 0. Designing a statistical test that controls FDR is not simple as the FDR is a function
of two random variables that depend both on the set of null hypotheses and the set of alternative
hypotheses. Building on the work in [15], Benjamini and Yekutieli [17] developed a general technique
for controlling the FDR in multi-hypothesis tests. Furthermore, for entirely random data, FDR
controls the same error rate as FWER. That is, FDR and FWER result in the same expected
number of mistakes over random data. This property makes FDR easy to explain to users (though,
admittedly understanding the differences between FWER and FDR is harder in the presence of real
correlations). Most importantly, recent work by Foster and Stine [80] allow to incrementally run

62

the hypothesis tests and thus provide a starting point for controlling the risk in interactive data
exploration.

Uniform Convergence and (Structural) Risk Minimization: The uniform convergence
paradigm is often used to control the risk in model selection (i.e., machine learning) and is a great
candidate technique to control the risk for automatic recommendations (e.g., visualizations as in
SeeDB or correlations as in Data Polygamy) and model tuning (e.g., as in MLBase). In this approach
the complexity of the predefined class of all possible hypotheses under consideration is analyzed,
and based on this complexity it is possible to compute an upper bound to the sample size that is
sufficiently large to simultaneously evaluate the expected error of all hypotheses in the class. The
approach was first proposed by [229] as the theoretical foundation for statistical learning, but it has
been shown to provide practical solutions to some important data analysis problems [191, 192, 193].
The method of structural risk minimization prioritizes less complex models by assigning weights
to different hypothesis classes (model) corresponding to the user’s preferences. We say that a set
of functions has the uniform convergence property if we can use one finite sample to estimate the
expectation of all the functions in the set, with a uniform bound on the gap between the empirical
mean and the true expectation that hold simultaneously over all the functions in the set. Formally,
a set of functions F has the uniform convergence property with respect to a domain Z if there is a
function m(ε, δ) such that for any ε, δ > 0, m(ε, δ) <∞, and for any distribution D on Z, a sample
z1, . . . , zm of sizem = m(ε, δ), drawn independently & identically distributed (i.i.d.) from D satisfies

Pr(sup
f∈F
| 1
m

m∑
i=1

f(zi)− ED[f]| ≤ ε) ≥ 1− δ.

Other Approaches: An alternative to the previous methods is a hold-out dataset, i.e., randomly
dividing the dataset into an exploration D1 and a validation D2 dataset [245]. While a feasible
approach for very large datasets, it can be shown that this approach significantly lowers the power
(i.e., the chance of finding a real insight) especially for smaller datasets or subsets of the data. For
example, if the user tries to find what distinguishes her top 100 customers from the rest, this method
leads to significantly more false negatives. Permutation tests [89] can also be used to achieve similar
control for multi-hypothesis testing. While well suited for small datasets, permutation tests on large
datasets are usually too computationally intensive to be executed interactively.

Automatic Risk Control in QUDE

Our goal is to provide the user with accurate risk estimates for different types of interactions in
data exploration. Our work as in QUDE is built upon the line of research on efficient FDR bounds
for massive data explorations and the application of uniform convergence [130, 191, 192]. The core
idea of QUDE is to assume a standard null hypothesis for any exploration the user performs, while
allowing the user to customize the null hypothesis with her domain-specific prior knowledge. We are
therefore currently developing a heuristic based on our user study to determine the intention of the
user. For example, when the user observes that there are an equal number of men and women in the
database, but the distribution of men and women is unbalanced when considering only individuals

63

with income over 50k, QUDE assumes the user executes a test to evaluate the significance of this
difference. At the same time, QUDE’s interface presents this standard hypothesis to the user and
allows to overwrite the null hypothesis, if the user chooses to adjust the null hypothesis. Our
assumption is that it is not crucial to be always correct with the default hypothesis, but rather
that the default hypothesis is used to actively make the user aware that the insight he might have
gotten should be tested for significance and to actively seek the user’s feedback. Then, as the user
continues exploring the data set, the system continuously calculates the risk of false discovery based
on the FDR method. If a shown difference is not significant, the user is automatically warned about
it. Furthermore, if the user trains a model or uses a visualization recommendation, we apply the
same principle by providing an upper bound on the expected number of false recommendations using
Uniform Convergence and (Structural) Risk Minimization.

While with our current QUDE we are already able to quantify the risk factors for simple work-
flows, we also discovered several challenges which we still need to address. Most importantly, for
each interaction we need to identify the appropriate null hypothesis to compute the corresponding
p-value. Besides using a default hypothesis and allowing the user to overwrite it, we plan to explore
alternative approaches such as (1) asking the user what information she is looking for; (2) learning
from past action of users on similar data; and (3) apply a precalculated upper bound on the number
of different hypothesis answered by a given chart (otherwise a histogram with 20 bars would create
over 190 tests).

Similarly, we found that current FDR methods are still not well suited for the iterative process
of data exploration. The standard FDR control methods evaluate all the null hypothesis and select
a subset to reject. In the iterative process instead we want a stopping criteria that depends only on
the actual hypothesis evaluated by the user. There has been some preliminary work towards this
direction [91, 80]. Our work builds upon [80] to provide incremental and interactive risk control of
data exploration.

A last challenge is to identify classes of hypothesis (e.g., for recommending certain visualization)
for which we can compute practical and efficient bounds on their sample complexity using structural
risk techniques, as in our recent work [191, 192, 193] for controlling the risk in frequent itemsets
mining. The idea is to group sets of primitive hypothesis into classes, and evaluate the total error
with respect of the number of different classes used by the users.

QUDE User Interface

Integrating the user feedback in the data exploration process is a key factor towards avoiding false
discoveries: (1) the system needs to understand the user intents to better quantify the risk and (2) the
system needs to adequately warn the user about potential risk factors so that the user understands
the risk of her actions. The core idea of our approach is to use an automatically derived default null
hypothesis in order to obtain user feedback and (potentially) as a pessimistic lower bound. Figure 4.5
shows a storyboard of QUDE’s way to to convey the risk factors to the users. In this example, (A)
Eve drags out a histogram and the system immediately displays a“risk controller ” on the left-hand

64

side where the results of a default hypothesis test for this histogram are displayed: rejected null
hypotheses highlighted in green, accepted null hypotheses highlighted in red. It confirms what Eve
intuitively observed from the visualization: there seems to be a significant difference between the
number of female and male patients in this dataset. (1) Tapping on this default hypothesis allows
Eve to manual adjust and correct what’s being tested (e.g., she might want to change from two-sided
to one-sided). (2) Eve can also use the “risk ” slider to change the amount of false discoveries she is
willing to accept. (B) Eve adds more histograms and connects them to the previous one and the
system again automatically runs the appropriate hypothesis tests. Again this confirms what Eve
sees visually, the chances of having a blood disease does not seem to be dependent on the gender
of a person. (C) Afterwards, Eve decides to build a classifier that predicts if someone has a blood
disease. Our system’s risk controller automatically adds an entry in the risk list, which allows Eve to
define a false discovery rate budget for the model search and which is then, for example, controlled
with the structural risk minimization technique. Furthermore, Eve can see the p-values of the top 3
models as well as the distribution of p-values for all models that have been tested.

4.3.2 Detecting Common Statistical Pitfalls

While our main goal of QUDE is to control the multiple hypothesis error, we are also planning to
implement tools to detect other common statistical errors/mistakes. In the following, we discuss
some of these pitfalls and initial ideas of how to make users aware of them.

Simpson’s Paradox

A well-known phenomenon in statistics is the Simpson’s Paradox [128] in which a trend reverts
when splitting a data set into multiple subgroups. One of the most famous examples is the gender
bias among graduate school admissions to University of California, Berkeley. The overall admission
figures of 1973 showed that men were more likely to be admitted than women. However, when
looking at the largest departments the trend actually reverted for the majority of departments.

For QUDE, we therefore integrated algorithms that detect a Simpson’s Paradox online as the
user explores a data set. Figure 4.6 shows a storyboard of how a exploration session of QUDE looks
like: Eve already has filtered down her dataset to look at patients from a particular demographic
and with certain types of blood testing result values. Eve is now interested to see percentages of
such patients that have blood diseases grouped by age groups (kids and adults). From looking at
the histogram in (A) it seems like kids are more prone for these types of diseases. Afterwards,
Eve however notices that the system displays a warning (yellow box). (B) By dragging out the
warning, the system presents a set of visualizations showing that when accounting for the lurking
variable “digestive disease” the trend reverses (i.e., kids are less prone for blood diseases for both,
with digestive diseases and without).

Testing a dataset for the Simpson’s Paradox is quite challenging as it requires to test many
different attribute combinations while controlling the risk of finding a Simpson’s Paradox by chance.
For dealing with both these issues, we are currently developing techniques based on novel index

65

age group

%
 m

et
ab

ol
ic

Adults Kids

A
digestive

digestive

co
un

t

Yes No

age group
%

 m
et

ab
ol

ic
Adults Kids

age group

%
 m

et
ab

ol
ic

Adults Kids

age group

co
un

t

Adults Kids

B

Figure 4.6: Storyboard of a Simpson’s Paradox Warning

structures and the FDR method.

Other Hypothesis Testing Issues

So far we only focused our attention on Type I error on homogeneous data. However, the Type II
error can be as important and (if possible) should be quantified as well. Furthermore, many test
can fail on non-homogeneous data and ideally, QUDE should warn the user in those cases or suggest
different types of tests. In the context of ML, similar issues, such as the Base Rate Fallacy or the
Imbalance of Labels, can significantly disturb the result if the system/user does not control for it.
Similar, Pseudoreplication, a very common problem with data collected in life-sciences, may lead to
detect a false statistical significance. While it is not possible to automatically detect all of these
issues as they might depend on the semantics of the data itself, it might be possible to derive some
of the issues automatically based on the schema, analyzing the general data statistics (e.g., for the
base rate fallacy), or testing for correlations.

4.3.3 Data Quality Issues

Finally, many issues can also arise from dirty data in form of missing, duplicate, or inconsistent
records. Unfortunately, all data cleaning techniques are expensive, in both time and money (e.g., to
pay humans to correct errors) [155], are often not adequate for interactive data exploration, and in
almost all cases it is unrealistic to assume that a data-set is perfectly cleaned upfront.

Estimating Remaining Errors

For data exploration it is often more important to understand how many errors a dataset contains
and whether these errors are systematic or random rather than trying to correct all errors. This
would allows an analyst greater insight on the both the data set and the potential risk factors. While
a simple question at first, it is actually extremely challenging to define data quality without knowing
the ground truth [182, 41, 70, 72, 125].

66

A naïve approach would be to “perfectly” clean a small sample as the gold-standard data (as
in [235]) and extrapolate the insight of the cleaning process to the entire data set. For example, if
we found 10 new errors in a sample of 1000 records out of 1M records, we would assume that the
total data set contains 10000 total errors. A very small sample of cleaned data may however not be
representative of the entire dataset. Further, how can the analyst determinate whether the sample
itself is actually perfectly clean without a quality metric? As part of QUDE, we have therefore
started to develop alternative methods to the naïve estimator, which consider the entire data set –
albeit when it is imperfectly cleaned. Our core insight is that almost any cleaning technique has
diminishing returns, that is, every additional error is more difficult to detect.

Automatically Repairing Errors

As a second step, we are exploring the possibility of using our insight for the remaining errors in order
to automatically correct query answers and models. For example, in previous work [46] we developed
and analyzed techniques to estimate the impact of the missing data (a.k.a., “unknown unknowns”)
on simple aggregate queries. The key idea is that the overlap between different data sources enables
us to estimate the number and values of the missing data items. Our main techniques are parameter-
free and do not assume prior knowledge about the distribution. For future work, we plan to develop
similar techniques to correct for a broader range of analytical queries and to learn repair procedures
for other errors based on the history of user interactions as well as data characteristics that can
either be applied automatically or simply suggested to the user during exploration.

4.3.4 Current State of QUDE

QUDE currently performs risk evaluations using default hypotheses for simple workflows. We im-
plemented QUDE as part of Vizdom and currently evaluate different types of user feedback and
warnings as outlined in our storyboards. We also already developed techniques for quantifying the
impact of the unknown unknowns [46], currently evaluate the data quality metrics with several real
world use cases, and developed new approximation algorithms for detecting the Simpson’s Paradox.
However, by no means do we claim that we solved all open issues. Rather, we believe that QUDE is
just a first step towards a potential new research area focused on the control of various risk factors
in all type of analytics.

4.4 Conclusion

We demonstrated that recent recommendation systems such as SeeDB [231] and Data Polygamy
[44] significantly increase the risk of making false discoveries. We further presented our vision and
initial ideas for QUDE, a system for automatically controlling the various risk factors in interactive
data exploration, automatic model building, and insight recommendation. The goal of this work is,
on one hand, to point out that the risk of false discoveries can not be ignored, and on the other, to

67

outline possible solutions with the hope to foster a new line of research around tools for sustainable
insights.

Chapter 5

Controlling False Discoveries During

Interactive Data Exploration1

Recent tools for interactive data exploration significantly increase the chance that users make false
discoveries. They allow users to (visually) examine many hypotheses and make inference with simple
interactions, and thus incur the issue commonly known in statistics as the “multiple hypothesis testing
error.” In this Chapter, we propose a solution to integrate the control of multiple hypothesis testing
into interactive data exploration systems. A key insight is that existing methods for controlling the
False Discovery Rate (i.e., FDR) are not directly applicable to interactive data exploration. We
therefore discuss a set of new control procedures that are better suited for this task and integrate
them in our system, QUDE. Via extensive experiments on both real-world and synthetic data sets we
demonstrate how QUDE can help experts and novice users alike to efficiently control false discoveries.

5.1 Introduction

“Beer is good for you: study finds that suds contain anti-viral powers” [DailyNews 10/12]. “Secret
to winning a Nobel Prize? Eat more chocolate” [Time, 10/12]. “Scientists find the secret of longer
life for men (the bad news: Castration is the key)” [Daily Mail UK, 09/12]. “A new study shows
that drinking a glass of wine is just as good as spending an hour at the gym” [Fox News, 02/15].

In recent years there has been an explosion of data-driven discoveries as the ones cited above.
While some of these are likely to be legitimate, there is an increasing concern that a large amount
of current published research findings may actually be false [113].

In this Chapter, we make the case that the rise of interactive data exploration (IDE) tools has
the potential to worsen this situation further. Commercial systems such as Tableau or research
prototypes such as Vizdom [48], Dice [122] or imMens [149], aim to empower domain experts and

1The results presented in this chapter were presented in the 38th ACM SIGMOD International Conference on
Management of Data (SIGMOD/PODS 2017). This is joint work with Professor Carsten Binnig, Professor Tim
Kraska, Professor Eli Upfal, Emanuel Zgraggen and Zheguang Zhao.

68

69

novice users alike to discover complex relationships and trends from data in an entirely visual manner.
Unfortunately these systems often ignore even the most basic statistical rules. We recently performed
a user study and asked people to explore the U.S. Census data [143] using such an interactive data
exploration tool.2 Within minutes, all participants were able to derive multiple insights, such as
“people with a Ph.D. earn more than people with a lower educational degree.” However, none of the
participants used a statistical procedure to determinate whether the visually observable differences
in the histogram is actually meaningful (i.e., “statistically significant”). Further, none of the users
considered that the data exploration consisting of multiple attempts to find interesting insights
would considerably increase the risk of observing seemingly significant results by chance.

This problem is well known in the statistics community and referred to as the “multiple compar-
isons problem” or “multiple hypothesis error ” and it states that the more hypothesis tests an analysts
performs, the higher is the chance that apparently significant phenomenon (i.e., a “discovery”) is
actually observed just by chance. Let us assume an analyst tests 100 potential correlations each
with significance level α = 0.05. Assume further that 10 of the correlation are in fact true, and
that our test has a statistical power (i.e, the likelihood to discover a real correlation) of 0.8; all very
common values for a statistical testing. In this setting, the user would find ≈ 13 correlations of
which 5 (≈ 40%) are “bogus.”

One way to lower the probability of incurring any false discovery among all the tests — known as
the family-wise error rate (FWER) — is to use a multiple hypothesis correction procedure such as
the Bonferroni correction [28]. Unfortunately, a well-known drawback of the Bonferroni correction
and of may others FWER control procedures is that they lead to a significant decrease of the
statistical power; the chance to detect truly significant phenomenons. Furthermore, in the context
of interactive data exploration we need to cope with the ulterior complication that the hypotheses are
generally unknown upfront, hence rendering any static procedures, such as the Bonferroni, correction
unsuitable.

Another crucial challenge in modeling data exploration lies in the fundamental question of “what
should be considered as a hypothesis test when users interactively explore the data.” Suppose a user
sees a visualization, which shows no difference in salaries between men and women based on their
education, and then decides based on this insight to look at salary differences between married men
and women. Should the first, the second or both visualization be considered as a hypothesis test?
The answer in most cases is both, as the analyst probably implicitly made a conclusion based on the
first visualization, which then led to her next exploration step.

However, if she considers this visualization just as a descriptive statistic of the current dataset,
and makes no inference based on it (i.e. it did not influence the decision process and no inference
is made by it), then it should not be considered as a hypothesis test. The difference is subtle and
usually very hard to understand for non-expert users, while it might have a profound impact on the
false discovery a user makes.

2The results were gathered by analyzing (in retrospective) the think-aloud protocols of various user studies including
the study described in [242] and entailed in total over 50 participants.

70

In this Chapter, we present the first end-to-end system, Qude (short for Quantifying Uncertainty
in Data Exploration), to automatically control the risk of false discovery for visual, interactive data
exploration. We propose a user interface and an initial set of meaningful default hypotheses, i.e.,
the “null hypotheses,” to control the ratio of false discoveries without interrupting the exploration
process (Section 5.4). In Section 5.5 we discuss the control procedures based on the family-wise error
rate (FWER), and explain why they are too pessimistic for interactive data exploration, and why the
more modern criterion of controlling the false discovery rate (FDR) is better suited. The challenge of
FDR, however, is that the standard techniques, such as the Benjamini-Hochberg procedure [15], are
not incremental and require computing the p-values of all the hypotheses a priori before determining
which hypotheses are significant. This clearly constitutes a problem for interactive data exploration
where hypotheses are created incrementally. The recent α-investing technique [80] proposes an
incremental procedure to control a variant of FDR, the marginal FDR (mFDR), together with
a special-case investing strategy, Best Foot Forward. However, our experiment shows that this
technique does not work well in interactive data exploration, because it was designed for a rather
limited scenario where hypotheses are clustered. Thus, in Section 5 we propose new α-investing
techniques that are designed specifically for interactive data exploration. Finally, we implement
these ideas in Qude and demonstrate how the system controls false discovery for experts and novice
users alike using generated and real-world data.

It should be noted, that multiple hypothesis control is perhaps one of the most difficult and thorny
issues facing modern statistics. Despite extensive work that explored a variety of approaches and
techniques, there is no single perfect solution, thus neither do we claim one in this work. Instead, our
main contribution is to combine and extend recent advances in statistics to build the first functional
system which automatically assists the users in recognizing and controlling the false discovery during
interactive data exploration. In summary, we make the following detailed contributions:

• We establish a connection between data visualizations and multiple hypothesis testing. We
point out the risk of incurring a high number of false discoveries unless visual exploration
systems employ corrections for multiple hypothesis testing.

• We propose a model of setting default (i.e., null) hypotheses during the interactive data ex-
ploration.

• We present Qude, a novel system which automatically controls the multiple hypothesis error
in visual data exploration.

• We discuss inadequacies of the existing multiple hypothesis control methods for interactive
data exploration;

• Based on these observations, we develop new α-investing rules to control the marginalized false
discovery rate (mFDR) that are designed specifically for interactive data exploration.

• We use Markov chain simulation and real-world datasets and workflows to show that our

71

methods indeed achieve automatic control of false discovery and have significantly higher power
than other techniques.

Chapter organization and notation

The presentation of the contents of this Chapter is structured as follows: we discuss contributions
in the literature related to ours in in Section 5.2, in Section 5.3 we discuss, by means of an example,
why some visualizations should be considered hypothesis tests and what are the main challenges
encountered when testing hypotheses for the IDE setting. In Section 5.4 we present Qude’s user
interface and discuss how to automatically track hypotheses and how to integrate the user feedback
into tracking the hypothesis. In Section 5.5 we discuss multiple hypothesis testing techniques known
in literature and show how well they fit in the IDE setting. In Section 5.6 we then propose new
multiple hypothesis testing procedures for IDE based on the α-investing procedure. Afterwards, in
Section 5.9, we present the result of our experimental evaluation using both real-world and synthetic
data. Finally, in Section 5.11, we discuss related work and present our conclusions. Table 5.1
summarizes the important symbols and notations used in this chapter.

H The set {H1, . . . ,Hm} of null hypotheses.
H The set {H1, , . . . ,Hm} of corresponding alternative

hypotheses.
R The number of null hypotheses rejected by the testing

procedure (i.e., the discoveries).
V The number of erroneously rejected null hypotheses

(i.e., false discoveries, false positives, Type I errors).
S The number of correctly rejected null hypotheses

(i.e., true discoveries, true positives,).
R(j) The number of discoveries after j tested hypotheses.
V (j) The number of false discoveries after j tested hypotheses.
S(j) The number of false discoveries after j tested hypotheses.
m The number of tested hypotheses.
pj The p-valuecorresponding to the null hypothesis Hj .
W (0) Initial wealth for the α-investing procedures.
W (j) Wealth of the α-investing procedures after j tests.
α Significance level for the test with α ∈ (0, 1).
η Bias in the denominator for mFDRη.

Table 5.1: Notation Reference

5.2 Related Work

There has been surprisingly little work in controlling the number of false discoveries during data
exploration even. This is especially astonishing as the same type of false discovery can also happen
with traditional analytical SQL-queries. To our knowledge this is the first work to achieve an
automatic control in tracking the user steps.

72

Most related to this work are all the various statistical methods for significance testing and
multiple hypotheses control. Early works tried to improve the power of the Family Wide Error
Rate using adaptive Bonferroni procedures such as Šidák [212], Holm [106], Hochberg [103], and
Simes [213]. However, all these methods lack power in large scale multi-comparison tests.

The alternative False Discovery Rate measure was first proposed by Benjamini and Hochberg [15],
and soon became the statistical criteria of choice in the statical literature and in large scale data
exploration analysis for genomic data [156].

In the original FDR method, all hypotheses have to be collected and sorted by their p-values
before determining the significance of each test. The Sequential FDR procedure [91] does not
require the sorting of all the hypotheses, but still require to calculate all the tests before their
corresponding significance can finalize. These procedures cannot determine the final significance of
each test incrementally and hence are not applicable to interactive data exploration. The interactive
data exploration motivated the study of interactive and adaptive techniques, such as α-investing [80],
which can be applied in scenarios where hypotheses arrive sequentially and the testing procedure
needs to decide "on the fly" whether to accept or reject each of the hypotheses before testing the
next one, while maintaining a bound on the FDR.

Depending on the observed order of hypotheses, Sequential FDR can overturn previously accepted
hypotheses into rejections based on the subsequent hypotheses.

α-investing procedure also has revisiting policies that can potentially overturn previous decisions.
The implication is that these procedures are incremental but non-interactive, because they require
observing all the hypotheses before finalizing the decisions. However, it is often infeasible to obtain
all the possible hypotheses a priori. Therefore our work concerns α-investing procedure with policies
that are both incremental and interactive. In addition, none of the work addresses the issue on how
to automatically integrate these techniques as part of an data exploration tool.

In a recent paper [60], Dwork et al. introduce a new adaptive testing procedure for streams of
hypotheses which exploits concepts and techniques from differential privacy. Although this technique
can reliably test up to m adaptively chosen hypotheses it has also several practical drawbacks: the
computationally efficient version of the procedure requires the size of the available sample to be
proportional to

√
m and knowledge of the amount of hypotheses being tested is required.

In [24] Blum and Hardt presented “the Ladder ”, an algorithmic test procedure that, given a
training dataset, reliably evaluates the quality of different versions a model by adaptively tuning
the parameters. While this approach does not address the general issue raised in [15, 91, 80, 60], it
shows good performance in the practical context of parameter tuning for machine learning.

5.3 A Motivational Example

To motivate the various aspects of multi-hypothesis control during data exploration we present a use
case that is inspired by Vizdom [48]. Similar workflows however can be achieved with other systems
like Tableau [98], imMens [149] or Dice [122].

73

gender

co
un

t

Male Female Other

A

salary over 50k

co
un

t

True False
gender

co
un

t

Male Female Other

gender

co
un

t

Male Other

salary over 50k

co
un

t

True False

gender

co
un

t

Male Female Other

B C

education

co
un

t

HS Bachelor Master PhD

marital status

co
un

t

Married Never
Married

Not
Married

Widowed

Female

salary over 50k

co
un

t
True False

education

co
un

t

HS Bachelor Master PhD

marital status

co
un

t

Married Never
Married

Not
Married

Widowed

age

co
un

t

10 20 30 50 60 7040 9080

age

co
un

t

10 20 30 50 60 7040 9080

0.011p

t-test

D

E F

salary over 50k

co
un

t

True False

education

co
un

t

HS Bachelor Master PhD

marital status

co
un

t

Married Never
Married

Not
Married

Widowed

Figure 5.1: An example Interactive Data Exploration Session

Suppose Eve is a researcher at a non-profit organization and is working on a project relevant to
a specific country. She obtained a new dataset containing census information and is interested in
getting an overview of this data and extracting new insights.

She first considers the “gender ” attribute and observes that the dataset contains the same number
of records for men and women (Figure 5.1 A). She then moves on to a second visualization, displaying
the distribution of people who earn above or below $50k a year. Eve links the two charts so that
selections in the “salary” visualization filter the “gender ” attribute. She notices that for salaries
above $50k, the “gender ” distribution is skewed towards men, and infers that men have higher
salaries than women (B). After creating a third visualization for “gender ” with, conversely, salaries
lower than $50k (dashed line indicates inversion of selection), she confirms her finding “Women are
predominately earning less than $50k ” (C).

Eve now wants to understand what influences salaries and creates a chain of visualizations for
people who have PhD degrees and are not married (D). Extending this chain using “salary” appears
to suggest that this sub-population contains many high-earners (E). By selecting the high-earners and
extending the chain with two “age” visualizations, she compares the age distribution of unmarried
PhDs earning more than $50k to those making less. To verify that the observed visual difference is
actually statistically significant she performs a t-test by dragging the two charts close to each other
(F).

While the example contains only one hypothesis test explicitly initiated by the user, we argue
that without accounting for other implicit hypothesis tests there is a significant increase of risk that
the user may observe a false phenomenon during similar scenarios of data exploration. This opens up
new important questions: why and when should visualizations be considered statistical hypothesis
tests? How should these tests be formulated?

74

5.3.1 Hypothesis Testing

In this Chapter, we focus on the widely used frequentist approach. That is, to determine whether
the relationship between two observations formalized as a “research hypothesis” or “alternative hy-
pothesis’ H is statistically relevant (i.e., not a product of data noise) we analyze its corresponding
“null hypothesis” H which states no such relationship. The testing procedure will then calculate the
p-value, which denotes the probability of observing an outcome at least as extreme as the one that
was actually observed in the data, under the assumption that the null hypothesis H is true. If the
p-valueassociated to the null hypothesis H is less than or equal to a priori chosen significance level
α (commonly 0.05 or 0.01), the test suggests that the observed data is inconsistent with the null
hypothesis which must thus be rejected. Respectively, if the p-valueis larger than the significance
level, the null hypothesis H is accepted. This procedure guarantees for a single test, that the prob-
ability of a “false discovery” (also known as “false positive” or “Type I error ”) – wrongly rejecting
the null hypothesis of no effect – is at most α. This does not imply that the alternative hypothesis
is true; it just states that the observed data has the likelihood of p ≤ α if the null hypothesis is true.
In contrast, the statistical power is the probability that the test correctly rejects the null hypothesis
H.

While the frequentist approach to hypothesis testing has been criticized [115, 167] and there has
been work in developing alternative approaches, such as Bayesian tests [19], it is still widely used
in practice and we consider it a good first choice to build a system which automatically controls
the multiple hypothesis error as it has two advantages: (1) Novice users are more likely to have
experience with standard hypothesis testing than the more demanding Bayesian testing paradigm.
(2) The frequentist inference approach does not require to set a sometimes hard-to-determine prior
as it is the case with Bayesian tests.

5.3.2 Visualizations as Hypotheses

A visualization per-se shows a descriptive statistic (e.g., the count of women or the count of men)
of the dataset and is not a hypothesis. It is reasonable to assume that in step A of Figure 5.1
the user just looks at the gender distribution and simply acknowledges that the census surveys
roughly the same amount of women and men. However, it becomes a hypothesis if the user draws a
conclusion/inference based on the information. For example, if the user assumed that there should
be more men than women in the data and therefore considering the fact that there is an equal
amount as an insight. The notion of a visualization being considered as a hypothesis becomes even
clearer in step (B) and (C) of the example workflow. When looking at the visualization in (B) in
isolation, it just depicts a descriptive statistic. But once the user makes any inference and/or bases
further exploration on an insight extracted from this visualisation, then it should be considered
an hypothesis. We believe that user inference in data exploration is ubiquitous and important.
First, the human analytical reasoning and sense-making process is inherently non-linear [183, 211].
The future actions are influenced by new knowledge the user discovered in previous observations.

75

Second, while susceptible to certain types of biases [56], the human visual system is highly optimized
at registering differences in visual signals and detecting patterns [36]. An average user is very likely
drawn to the changes between the gender distribution of step (A) and step (B) and might therefore
infer that women earn less than men and potentially flag this as an interesting insight that deserves
more investigation. This is illustrated in step (C) where the user now further drills down and
visually compares the distribution of gender filtered by salary. We qualitatively confirmed this
notion through a formative user study where we manually coded user-reported insights, following
a think-aloud protocol similar to the one proposed in [92]. In this study we observed that users
tend to pick up on even slight differences in visualizations and regard them as insights and users
predominantly base future exploration paths on previously inferred insights.

We conclude two things: (1) most of the time users indeed treat visualizations as hypotheses,
though there are exceptions, and (2) they often (wrongly) assume that what they see is statistical
significant. The latter is particularly true if the users do not carefully check the axis on the actual
count. For example, if a user starts to analyze the outliers of a billion record dataset and makes
the conclusion that mainly uneducated whites are causing the outliers, the subset of the data she
is referring to might be comparable small and the chance of randomness might be much higher. As
part of visual data exploration tools, users often explore sub-populations, and while the original
dataset might be large, the sub-population might be small. Thus, we argue that every visualization
as part of a interactive data exploration tool should be treated as a hypothesis and that users should
be informed about the significance of the insights they gain from the visualization. At the same
time, a user should have the choice to declare a visualization as just descriptive.

5.3.3 Heuristics for Visualization Hypotheses

A core question remains: what should the hypothesis for a visualization be. Ideally, users would tell
the system every single time what they are thinking so that the hypothesis is adjusted based on their
assumed insight(s) they gain from the visualization. However, this is disruptive to any interactive
data exploration session. We rather argue that the system should use a good default hypothesis,
the user can modify (or even delete) if she so desires. For the purpose of this work, we mainly focus
on histograms as shown in Figure 5.1 and acknowledge that there exist many other visualizations,
which we consider as future work. We derived the following heuristics from two separate user studies
where we observed over 50 participants using a IDE tool to explore various datasets.

1. Every visualization without any filter conditions is not a hypothesis (e.g., step A in Figure 5.1)
unless the user makes it one. This is reasonable, as users usually first gain a general high-level
impression of the data. Furthermore, in order to make it an hypothesis, the user would need to
provide some prior knowledge/expectation, for example as discussed before, that he expected
more men than women in the dataset.

2. Every visualization with a filter condition is a hypothesis with the null hypothesis that the
filter condition makes no difference compared to the distribution of the whole dataset. For

76

example, in step B of Figure 5.1 the null hypothesis for the distribution of men vs. women
given the high salary class of over $50k would be that there is no difference compared to the
equal distribution of men vs. women over the entire dataset (the visualization in step A).
This is again a reasonable assumption as the distribution of an attribute given others is only
interesting, if it shows some different effect compared to looking at the whole dataset.

3. If two visualization with the same but some negated filter conditions are put next to each
other, it is a test with the null hypothesis that there is no difference between the two visualized
distributions, which supersedes the previous hypothesis. This is the case in step C: given that
the user looks explicitly at the distribution of males vs females given a salary over and under
$50k is a strong hint from the user, that he wants to compare these two distributions.

As with every heuristic it is important to note, that the heuristic can be wrong. Therefore
it is extremely important to allow the user to overwrite the default hypothesis as well as delete
default hypothesis if one really just acted as a descriptive statistic or was just generated as part
to a bigger hypothesis test. Furthermore, there exist of course other potential null hypothesis. For
example, in our workflow we assume by default that the user aims to compare distributions, which
requires a χ2-test. However, maybe in some scenarios comparing the means (i.e., a t-test) might be
more appropriate as the default test. Yet, studying in detail what a good default null hypothesis is
dependent on the data properties and domain, is beyond the scope of this work.

5.3.4 Heuristics Applied to the Example

For our example in Figure 5.1 the resulting hypothesis could be as follows: Step A is not an hypothesis
based on rule 1 as it just visualizes the distribution of a single attribute over the whole dataset.
Step B is the hypothesis m1 if the distribution of gender is different given a salary over $50k. Step C
supersedes the previous hypothesis and replaces it with an hypothesis m′1 if the gender distribution
between a salary over and under $50k is different, which is a sightly different question. Step D creates
a hypothesism2 if the marital status for people with PhDs is different compared to the entire dataset,
whereas step-E generates a hypothesis m3 if there is a different salary distribution given not married
people with a PhD. By studying the age distribution in step F the system first generated a default
hypothesis m4 that the distribution of the ages is different given a PhD and being not married for
different salary classes. However, the user overwrites immediately the default hypothesis with an
hypothesis m′4 about the average age. Furthermore, as the previous visualizations in step D and
E might just have been stepping stones towards creating m′4 the user might or might not delete
hypothesis m2 and m3. However, if the insights our user gained from viewing the marital status,
etc., influenced her to look at the age distribution, she might want to keep them as hypothesis.

While this is clearly a simple example, it succeeds in highlighting the general issue. Not every
insight the user gains (e.g., the insight that women earn less) is explicitly expressed as a test. At
the same time, the more the user explores the data the higher the chance that she finds something
which looks interesting, but is actually just effect of noise in the data. In the example above, by

77

the time the user actually performs its first test (step F), she implicitly already tested at least
one other hypothesis and potentially even four others. Assuming a targeted p-valueof α = 0.05,
the chance of a false discovery therefore increased to 1 − (1 − α)2 = 0.098 for two hypothesis and
up to 1 − (1 − α)4 = 0.185 for four hypothesis. While the question of what should count as an
hypothesis is highly dependent on the user and can never be fully controlled by any system, we can
however, enable the system to make good suggestions and help users to track the risk of making false
discoveries by chance. Furthermore, this short workflow also demonstrates that hypotheses are built
by adding but also by removing attributes. As we will discuss later, there exist no good method so
far to control the risk of making false discoveries for incremental sessions like the ones created by
interactive data exploration systems. We present new methods for interactive data exploration in
Section 5.6.

Finally, it should be noted, that the same problems also exist with exploratory analysis using
SQL or other tools. However, we argue that the situation is becoming worse by the up-rise of visual
exploration tools, like Tableau, which allow to test more hypothesis in a shorter amount of time.

5.4 The Qude User Interface

As argued in the previous section, user feedback is essential in determining, tracking and controlling
the right hypothesis during the data exploration process. With QUDE we created a system that
applies our heuristic automatically to all visualizations. We designed QUDE ’s user interface with
a few goals in mind.

First, the user should be able to see the hypotheses the system assumed so far, their p-values, ef-
fect sizes and if they are considered significant and should be able to change, add or delete hypotheses
at any given stage of the exploration.

Second, hypotheses rejection decisions should never change based on future user actions unless
the user explicitly asks for it. We therefore require an incremental procedure to control the multiple
hypothesis risk that does not change its rejection decisions even if more hypothesis tests are executed.
For example, the system should not state that their is a significant age difference for not married
highly educated people, and then later on revoke its assessment just because the user did more tests.
More formally, if the system determined which hypotheses m1...mn are significant (i.e., it rejects the
null) or not and the user changes the last hypothesis or adds an hypothesis mn+1, which should be
the most common cases, the significance of hypotheses m1..mn should not change. However, if the
user might change, delete, or add hypothesis k ∈ 1, .., n, depending on the used procedure we might
allow that the significance of hypotheses mk+1 to mn might have to change as well.

Third, individual hypothesis descriptions should be augmented with information about how much
data nH1 the user has to add, under the assumption that the new data will follow the current ob-
served distribution of the data, to make an hypothesis significant. While sounding counter-intuitive,
as one might (wrongly) imply, it is possible to make any hypothesis true by adding more data, calcu-
lating this value is in some fields already common practice. For example, in genetics scientist often

78

alpha
2.5%

5%

salary | education <> salaryH1

0.027
t-test

salary | education = salaryH0

cohen's d 0.5

H1

0.001
t-test H0

cohen's d 0.8
age | {chain} <> age | {chain-1}

H1

0.011
t-test

age | {chain} = age | {chain-1}

H0

cohen's d 0.5

gender | marital = genderH1

0.621
chi square

gender | marital = genderH0

cohen's d 0.01

A
B

C
D

E salary | {chain-1} <> salary

salary | {chain-1} = salary

Figure 5.2: The Qude User Interface

search (automatically) for correlations between genes and high-level effects (like cancer). If such a
correlation is found, often because of the multiple hypothesis error the chance of a true discovery
is tiny (i.e., the p-valueis too high). In that case the scientist works backwards and estimates how
much more genes she has to to sequence in order to make the hypothesis relevant, expecting that
the new data (e.g., gene sequences) follow the same distribution of the data the scientist already
has. However, if the effect was just produced by chance, the new data will be more similar to the
distribution of the null hypothesis and the null will not be rejected. The required value is generally
easy to calculate or approximate, and are highly valuable for the end-user. A small value for nH1 in
relation to the number of totally tested hypotheses might be an indication that the power (i.e., the
chance to accept a true alternative hypothesis) of the test was not sufficiently large.

Finally, users should be able to bookmark important hypotheses. As our system uses default
hypotheses, there might be more hypotheses generated by the system than those that the user
actually intends to test. It may be too cumbersome for the user to correct every time to convey
his true intentions. Further, some hypotheses might be more important than others; (e.g. the
hypotheses the user would like to include in a presentation or show to her boss).

A key question is what is the expected number of false discoveries among those important discov-
eries. Figure 5.2 shows the current interface design of Qude with a risk controller, which incorporates
the above ideas, running on a tablet. The user interface features an unbounded 2D canvas where
chains of visualizations (such as the one shown in Figure 5.1) can be laid out in a free form fashion.
A “risk-gauge” on the right-hand side of the display (Figure 5.2 (A)) serves two purposes: it gives
users a summary of the underlying procedure (e.g., the budget for the false discovery rate set to

79

5% with current remaining wealth of 2.5%; both explained in the next two sections) and it provides
access to a scrollable list of all the hypothesis tests (implicit and explicit) that have been execute
so far. Each list entry displays details about one test and its results. Textual labels describe the
null and alternative hypothesis and color coded p-valuesindicate if the null hypothesis was rejected
or accepted (green for rejected, red for accepted). Furthermore, it visualizes the distribution of null
hypothesis and alternative hypothesis and shows its difference, included an indication of its color
coded effect size (D). Tap gestures on a specific item allow users to change things like the default
hypothesis or the type of test. Additionally other information such as an estimation of the size of
an additional data nH1 that could make the observation significant can be displayed in each item.
In the example this information is encoded through a set of small squares (B, C) where each square
indicates the amount of data that is in the corresponding distribution. In (B) the five red squares
tells us that we need 5x the amount of data from the distribution under null to flip this test form
rejected to accepted or conversely in (C) 11.5x the amount of data from the alternative-distribution
to rejected this hypothesis. Finally, we allow to mark important hypotheses by tapping the “star”
icons (E).

5.5 Background

The previous section described how we convey the multiple hypothesis error to the user and ask for
user feedback to derive the right hypothesis to be considered. In this section we describe different
techniques that allow to control the risk of incurring in false discoveries and we discuss they ap-
propriateness for the IDE setting. The notation used through this Chapter is summarized in Table
5.1.

We consider a setting, in which we evaluate the statistical relevance of hypotheses from a set H =

H1,H2, . . . ,Hm, created incrementally by an IDE system in a streaming fashion. In order to verify
whether any such hypothesis Hj corresponds to an actually statistically significant phenomenon,
we consider its corresponding null hypothesis Hj . Using the appropriate statistical test (e.g., the
t-test or the X 2-test), we evaluate p-valueof Hj . Our testing procedure the uses this value to
determinate whether to accept (resp., reject) a null hypothesis Hj which in turn corresponds to
rejecting (resp., accepting) the corresponding alternative hypothesis (or research hypothesis) H|.
The hypothesis according to which all null hypotheses are true is referred as the “complete” or
“global ” null hypothesis.

The set of null hypotheses rejected by a statistical test is called “discoveries”and is denoted as
R. Among these we distinguish the set of true discoveries S, and the set of false discoveries or false
positives V where |V |+ |S| = |R|. False discoveries are commonly referred to as Type 1 errors. Null
hypotheses corresponding to true discoveries are called false null hypotheses, whereas the others are
referred as true null hypotheses.

80

5.5.1 Hold-Out Dataset

A plausible method to handle the multiple hypothesis error is to split the original dataset D into an
exploration D1 and a validation D2 dataset [245]. D1 is then used for the data exploration process,
while the validation dataset is used to re-test all hypotheses in order to validate the results of the
first phase. Next we provide examples to clarify why, albeit useful, the hold-out approach does not
provide a solution for the multiple hypothesis testing problem.

Let us consider a null hypothesis H, and let pD denote its associated p-valuewhen H is evaluated
with respect of the entire dataset D. Lets assume we perform a test with significance-level α.
In this case the probability of wrongly rejecting H is at most α Suppose now that we randomly
split the dataset into two datasets D1 and D2. For the same null hypothesis H we evaluate the
p-valuespD1

and pD2
each obtained by evaluating H on D1 or D2 respectively. We then run a test

with significance-level α (like the one discussed above) for each of the datasets. We then decide to
reject H if it has been rejected by both the testing procedures operating on the datasets D1 and D2.
Given that both the procedures operating on D1 and D2 have significance-level α, the probability
that the overall procedure ends up rejecting H is at most α2.

For the common value of α = 0.05, the chance of a Type I error is thus reduced to pD = 0.0025,
which is good news. Rather than fully handling the multiple hypothesis problem, we have however
only just lowered of the threshold for rejecting the null hypothesis (i.e., the significance level of the
test).

This fact appears clearly in the following scenario. Suppose that the user wants to evaluate
multiple hypotheses (e.g., 25) rather than just one. Assuming that these hypotheses, and their
p-valuesare independent, the probability of observing at least one erroneous rejection using the test
technique based on the use of the holdout dataset would be: pf = 1 − (1 − pD)25 ≈ 0.06, which is
higher than the desired α significance level. If the user would re-test 100 hypotheses on the validation
dataset, pf increases to ≈ 0.22. As it can be seen by the examples, the hold-out dataset helps to
reduce the chance of a false discovery as it lowers the chance of a false positive, but does not control
the multi-hypothesis error.

Unfortunately, this technique also significantly reduces the power of the testing procedure. Con-
sider the following example scenario in which we aim to compare the means M1 and M2 of two
samples one drawn from a population with expected value µ1 = 0 and the other from a population
with µ2 = 1, both having standard deviation σ = 4. In order to determinate weather the observed
difference between M1 an M2 is actually statistically significant, we test the null hypothesis “there
is no significant difference between µ1 and µ2” using the one-sided t-test and a sample composed by
500 records from each population. Given the properties of the t-test (see [77]), the statistical power
of our test would be 0.99, and the probability of erroneously accepting the null hypothesis would be
at most 0.01.

Suppose now that we divide the original dataset into a training dataset for exploration and one
for validation each composed by 250 records. The statistical power for each of the individual t-test
executed on the two dataset is now lowered to 0.87, due to the reduction of the amount of data being

81

used in the individual tests. Further, recall that the procedure based on the holdout set rejects a
null hypothesis only if said hypothesis is rejected by both sub-tests. This implies that the actual
overall power of the testing procedure is 0.87 · 0.87 ≈ 0.76, which is significantly lower than the 0.99

achieved by the test which uses the entire data.
In general, approaches based on hold-out datasets are considered inferior compared to testing over

the entire dataset. In some scenarios, such as building machine learning models, hold-out datasets
might even be the only possibility to test a model or tune parameters. In those cases, a hold-out
approach (e.g., “k-fold cross-validation”) should be considered as test on its own and, as recent
work suggests [53, 131, 189], should be controlled for the multiple hypothesis error. It is however
important to remark that in our work we aim to predict guarantees on the statistical significance of
the statistical predictors which are instead not achievable using prediction-driven approaches such
as cross-validation.

5.5.2 Family-Wise Error Rate (FWER)

Traditionally, frequentist methods for multiple comparisons testing focus on correcting for modest
numbers of comparisons. A natural generalization of the significance level to multiple hypothesis
testing is given by the Family Wise Error Rate (FWER). Given a family of hypotheses, the FWER
denotes the is the probability of making at least one type I error when rejecting the corresponding
null hypotheses:

FWER = Pr(V ≥ 1) = 1− Pr(V = 0) (5.1)
If FWER ≤ α, that is the FWER is controlled at level α, we have that the probability of even

one Type I error in evaluating a family of hypotheses is at most α.
We say that a procedure controls the FWER in the weak sense, if the FWER control at level α is

guaranteed only when all null hypotheses are true (i.e. when the complete null hypothesis is true).
We say that a procedure controls the FWER in the strong sense, if the FWER control at level α
is guaranteed for any configuration of true and non-true null hypotheses (including the global null
hypothesis).

Bonferroni Correction: The Bonferroni correction is simple test procedure that allows to
control FWER over multiple hypotheses [28]. Let α be the critical threshold for the test. The value
of α is usually selected at 0.01 or 0.05.

Let pi the p-valuestatistic associated with the null hypothesis Hi. When testing m distinct null
hypotheses using the Bonferroni correction, a null hypothesis Hi is rejected if pi ≤ α/m. The
Bonferroni procedure thus achieves control of the FWER at level α.

Using the Bonferroni correction requires knowledge of the total number of hypotheses being
evaluated. This constraint make it not applicable in our IDE setting where the set of hypotheses
is incrementally generated by the user over multiple data exploration steps. A possible alternative
approach would be to use a variation of the Bonferroni correction, according to which the j-th null
hypothesis Hj is rejected if pj ≤ α · 2−j . It is possible to show that this procedure indeed controls

82

FWER at level α as j → ∞ while not requiring knowledge of m. The crucial drawback of this
approach is however given by the fact that the acceptance threshold decreases exponentially with
respect to the number of hypotheses, thus resulting in a high number of false negatives.

The main common issue with all FWER techniques is that the power of the test significantly
decreases as m increases due to the corresponding decrease in the acceptance threshold (α/m in the
original Bonferroni or α/2i in the sequential variant). While some alternative testing procedures
such as those of Vǐdák [212], Holm [106], Hochberg [103], and Simes [213] offer more power while
controlling FWER, the achieved improvements are generally minor (see [207] for a review of several
of these techniques).

5.5.3 False Discovery Rate (FDR)

In [15] Benjamini and Hochberg proposed the notion of False Discovery Rate (FDR) as a less
conservative approach to control errors in multiple hypotheses tests which achieves a substantial
increase in the power of the testing procedure.

FDR-controlling procedures are designed to control the expected ratio of false discoveries among
all discoveries returned by a procedure. In particular, the FDR of a statistical procedure is defined
as:

FDR = E [Q] = E

[
V

R
|R > 0

]
P (R > 0). (5.2)

If we define FDR to be zero when R = 0, we can simplify 5.2 to:

FDR = E

[
V

R

]
(5.3)

We say that a testing procedure controls FDR at level α if we have FDR ≤ α. Designing a
statistical test that controls for FDR is not simple, as the FDR is a function of two random variables
that depend both on the set of null hypotheses and the set of alternative hypotheses. The standard
technique to control the FDR is the Benjamini-Hochberg procedure(BH), which operates as follows:
let p1 ≤ p2 ≤ . . . ≤ pm be the sorted order of the the p-valuesfor the m tested null hypotheses.
To control FDR at level α (for independent null p-values) determine the maximum k for which
pk ≤ k

m · α, and reject the null hypotheses corresponding to the p-valuesp1, p2, . . . , pk.
Interestingly, under the complete null hypothesis, controlling the FDR at level α guarantees also

“weak control ” over the FWER: FWER = P (V ≥ 1) = E
(
V
R

)
= FDR ≤ α. This follows from the

fact that the event of rejecting at least one true null hypothesis V ≥ 1 is exactly the event V/R = 1,
and the event V = 0 is exactly the event V/R = 0 (recall V/R = 0 when V = R = 0). The concept
of FDR control is thus relatively easy to convey to the user as under complete random data, the
chance of one or more false discoveries is at most α as in FWER. However, FDR does not ensure
control of the FWER if there are some true discoveries to be made (i.e., it does not ensure “strong
control ” of the FWER). In Appendix 5.10 we provide experimental comparison between FDR and
FWER.

83

Because of its increased power, FDR appears to be a better candidate than FWER in the context
interactive data exploration, where usually a larger number of hypotheses are to be considered.
Unfortunately, both the original Benjamini-Hochberg procedure and its variation for dealing with
dependent hypotheses [17] are not incremental as they require knowledge of the total number of
hypotheses being tested (similar to what was discussed for the Bonferroni correction) and of the
sorted list of all the p-valuescorresponding to each null hypothesis being evaluated.

An adaptation of the FDR technique to a setting for which an unspecified number of null hy-
potheses are observed incrementally was recently presented in [91]. The main idea behind the
Sequential FDR procedure is to convert the arbitrary sequence of p-valuescorresponding to the null
hypotheses observed on the stream into an sequence of increasing p-values akin to the one generated
by the classical Benjamini-Hochberg procedure. The natural application for this technique is the
progressive refinement of a model by considering additional features. That is, it starts constructing
a model for the data with something known and general. The user then proceeds to refine the model
by determining the most significant features.

One drawback of the Sequential FDR method, is given by the fact that the order according to
which the hypotheses are observed on the stream heavily influences the outcome of the procedure.
For example, if an hypothesis with high p-valueis observed among the first in the stream, this will
harm the ability of the procedure of rejecting following null hypotheses, even if they have low p-
value(see discussion in [91]). This aspect makes Sequential FDR not applicable for data exploration
system for which the user is likely to explore different “avenues” of discovery rather than focusing
on the specialization of a model.

5.5.4 Other Approaches

Although for most practical applications, FDR controlling procedures constitute the standard de
facto for multiple hypothesis testing [65], many other techniques have been presented in the liter-
ature. Among them, Bayesian techniques are particularly noteworthy. Alternative solutions based
on decision theory using “Bayesian FDR” are discussed in [19]. However, as often the case with
Bayesian approaches, the computational cost for these procedures when applied to large datasets
are significant, and the results are highly dependent on the prior model assumptions.

Another approach is correcting for the multiplicity through simulations (e.g., the permutation
test [204]) in order to experimentally evaluate the probability of an observation in the null distribu-
tion. This approach is also not practical in large datasets because of the large number of different
possible observations and the need to evaluate very small p-values for each of these distributions [120].

In this work, we elect to use a family of multiple hypothesis testing procedures know as α-
investing introduced in [80] and then generalized in [1]. These procedures are especially interesting
for the incremental and interactive nature of interactive data exploration. The details of α-investing
and its application to our setting is extensively discussed in the next section.

84

5.6 Interactive Control

One drawback of the Sequential FDR procedure [91] and any adaptation of the FWER controlling
techniques to the streaming setting lies in the fact that decisions regarding the rejection or acceptance
of previously considered null hypotheses could potentially be overturned in latter stages due to new
hypotheses being considered. Although statistically sound, this fact could appear counter intuitive
and confusing to the user. The only way to adopt the Sequential FDR procedure to data exploration
would be to batch all the hypotheses and only present the final decisions after the exploration halts.
Thus although it is incremental, Sequential FDR is not suited for interactive data exploration.

In order to have both incremental and interactive multiple hypothesis control, we consider a
different approach for multiple hypothesis testing based on the “α-investing ” testing procedure
originally introduced by Foster and Stine in [80]. Similarly to Sequential-FDR , this procedure does
not require explicit knowledge of the total number of hypotheses being tested and can therefore be
applied in the hypothesis streaming setting. α-investing presents however several crucial differences
with respect to both traditional and sequential FDR control procedures.

In the following, we first introduce the general outline of the procedure as presented in [80], then
we discuss several strategies (called policies) that we have developed for interactive data exploration.

5.6.1 Outline of the Procedure

In α-investing , the quantity being controlled is not the classic FDR but rather an alternative
quantity called “marginal FDR” (mFDR):

mFDRη(j) =
E
[
V (j)

]
E
[
R(j)

]
+ η

(5.4)

where j denotes the total number of tests which have been executed, while V (j) (resp., R(j)) denote
the number of false (resp., total) discoveries after j tests using the α-investing procedure.

We say that a testing procedure controls mFDRη at level α if mFDRη(j) ≤ α. The parameter
η is introduced in order to weight the impact of cases for which the number of discoveries is limited.
Common choices for η are 1, (1−α), whereas the procedure appears to lose in power for values of η
close to 0 [80].

Under the complete null hypothesis we have V (j) = R(j) hence mFDRη(j) ≤ α implies that
E
[
V (j)

]
≤ αη/ (1− α). If we chose η = 1 − α then E

[
V (j)

]
≤ α, and we can thus conclude

that control of the mFDR1−α at level α implies weak control fo the FWER at level α [80]. We
refer the reader to the original paper of Foster and Stine [80] for an extensive discussion on the
relationship between mFDR and the classic FDR. A generalization of the α-investing procedure
was later introduced in [1]. The α-investing procedure does not in general require any assumption
regarding the independence of the hypotheses being tested, although opportune corrections are
necessary in order to deal with possible dependencies. In our analysis, we however assume that all
the hypotheses and the corresponding p-valuesare indeed independent (see also Section 5.8).

85

Intuitively the α-investing procedure works by assigning to each hypothesis test a budget α′

from an initial “α-wealth.” If the p-valueof the null hypothesis being considered is above α′ the null
hypothesis is accepted and some budget is lost, otherwise it is rejected and some exploration budget
is gained. More formally, we denote as W (0) the initial α-wealth assigned to the testing procedure.
If the goal of the testing procedure is to control mFDRη at level α, then we shall set W (0) = α · η.
Here, η is commonly set to (1− α). We denote as W (j) the amount of “available α-wealth” after j
tests have being executed.

Each time a null hypothesis Hj is being tested, it is assigned a budget αj > 0. Let pj denote
the p-valueassociated with the null hypothesis Hj . This hypothesis is rejected if pj ≤ αj . If Hj is
rejected than the testing procedure obtains a “return” on its investment ω ≤ α. Instead, if the null
hypothesis Hj is accepted, αj/(1− αj) alpha wealth is deducted from the available α-wealth:

W (t)−W (t− 1) =

ω if pj ≤ αj ,
− αj

1−αj if pj > αj
(5.5)

The testing procedure halts when the available α-wealth reaches 0. At that point in time, the user
should stop exploring to guarantee that mFDR ≤ α. This is obviously something not desirable
from the perspective of the user. We discuss this problem and potential solutions in Section 5.6.8.

The budget αj which can be assigned to a test must be such that regardless of the outcome
of the test, the available α-wealth available after the test is not negative W (j) ≥ 0, hence αj ≤
W (j−1)/

(
1−W (j − 1)

)
. Further we impose that αj < 1. While this constraint was not explicated

in [80], it is indeed necessary for the correct functioning of the procedure. Setting αj = 1 would lead
to the potential deduction of an infinite amount of α-wealth, violating the non negativity of W (j).
Setting αj > 1 would instead lead to having a positive increase of the available α-wealth regardless
of the outcome of the test. In our analysis we will however assume that all the hypotheses being
considered are indeed independent and their associated p-valuesare independent as well.

We refer as “α-investing rule” to the policy according to which available budget is assigned to the
hypotheses that needs to be tested. Furthermore, in [80] it was shown that any α-investing policy
for which W (0) = η ·α, ω = α, and which obeys the rule in (5.5), controls the mFDR at level α, for
α, η ∈ [0, 1]. The freedom of assigning to each hypothesis a specific level of significance independent of
the order, and the possibility of “re-investing” the wealth obtained by previous rejections constitute
great advantages with respect to the Sequential FDR procedure.

5.6.2 α-Investing for Data Exploration

While it is relatively straightforward to devise investing rules, it is difficult determinate a priori the
“best way to invest” the available alpha-wealth. If αj budged assigned to the hypothesis is too low,
the statistical power of every test is greatly reduced and there is a high chance of losing the invested
budget even if the null hypothesis being considered is indeed false. On the other hand, if the αj
assigned is too high, the entire α wealth might be quickly exhausted and the testing procedure has

86

to halt. A policy is most likely to be successful if it can exploit some knowledge of the actual data
distribution and the data exploration setting.

Another complication involves the statistical analysis of the individual tests that provide the
p-values. To show that a testing procedure controls mFDR, we require that conditionally on the
prior j - 1 outcomes (denoted as Ri), the level of the test of Hj must not exceed αj :

P (Rj = 1|Rj−1, Rj−2, ..., R1) ≤ αj . (5.6)
Note that the tests do not need to be independent, though independence is the easiest setting

that satisfies (5.6). Furthermore, the condition is only on the outcome of the previous tests, not on
the values of their statistic (see discussion in Section 5.8).

In [80] a specialized strategy, Best Foot Forward, is designed for a specific situation where true
discoveries are highly clustered. However for interactive data exploration we need to consider wider
situations where the structure of true discoveries may not always be clustered but have other prop-
erties. We further model these general exploration settings in Section 5.9.

In the remainder of this section we propose different α-investing policies particularly suited for
interactive data exploration. Each policy captures a different exploration strategy and aims to
exploit different possible properties of the data and the exploration settings.

All our policies assign to each hypothesis a strictly positive budget αj > 0 as long as any α-wealth
is available. If pj ≤ αj , the null hypothesis Hj is rejected (i.e., it is considered a discovery). Vice
versa, if pj > αj is accepted. The current α-wealth W (j) is then updated according to the rule in
(5.5) and because of it controls mFDR at level α as shown in [80].

5.6.3 β-Farsighted Investing Rule

Like with real investment, the question is if one should invest short or long-term. β-farsighted
policies are aimed at preserving wealth wealth over long exploration sessions, while effectively using
the available α-wealth for the evaluation of new hypotheses. Given β ∈ [0, 1), we say that a policy
is β-farsighted if it ensures that regardless of the outcome of the j-th test at least a fraction β of
the current α-wealth W (j − 1) is preserved for future tests, that is for j = 1, 2, . . .:

W (j) ≥ βW (j − 1),

W (j)−W (j − 1) ≥ (β − 1)W (j − 1)
(5.7)

An example of β-farsighted is given in Investing Rule 4. Indeed, this procedure achieves control
of the mFDRη at level α.

Different choices for the parameter β ∈ [0, 1) characterize how conservative the investing policy
is. If there is high confidence on the first observed hypotheses being true discoveries, small values
of beta (i.e., 0.25) would be more effective. Vice versa, high values of β (i.e. 0.9) ensure that even
if the first hypotheses are true null, a large part of the α-wealth is preserved.

We say that an α investing policy is “thrifty” if it never fully commits its available α-wealth. The
described β-farsighted is indeed thrifty. While the procedure will never halt due to the available

87

ALGORITHM 4 β-farsighted

1: W (0) = ηα
2: for j = 1, 2, ... do
3: αj = min

(
α, W (j−1)(1−β)

1+W (j−1)(1−β)

)
4: if p(Hj) < αj then
5: W (j) = W (j − 1) + ω
6: else
7: W (j) = W (j − 1)− αj

1−αj = βW (j − 1)

ALGORITHM 5 γ-fixed

1: W (0) = ηα

2: α∗ = W (0)
γ+W (0)

3: while W (j − 1)− α∗

1−α∗ ≥ 0, for j = 1, 2, . . . do
4: if p(Hj) < α∗ then
5: W (j) = W (j − 1) + ω
6: else
7: W (j) = W (j − 1)− α∗

1−α∗ = W (j − 1)− W (0)
γ

α-wealth reaching zero, after a long series of acceptance of null hypotheses the available budget may
be reduced so much that it will be effectively impossible to reject any more null hypotheses.

Although these policies may appear wasteful as there is no reward for wealth which has not
been invested, they are aimed to preserve some of their current budget for future tests in case the
hypotheses considered in the beginning of the testing procedure are not particularly trustworthy.

This investing rule is therefore particular suited for scenarios were the total number of false
discoveries in long exploration sessions, potentially across multiple users, should be controlled.

While β-farsighted, is a generalization of the “Best-foot-forward policy” in [80], different values
of β allow for higher flexibility.

5.6.4 γ-Fixed Investing Rule

A different non-thrifty procedure assigns to each hypothesis the same budget α∗. We call γ-fixed a
procedure that assigns to each null hypothesis a fixed budget αj equal to a fraction of the initial
α-wealth W (0), that is α∗ = W (0)/

(
W (0) + γ

)
, as long as any α-wealth is available.

The details of the γ-fixed procedure controlling mFDRη at level α can be found in the procedure
for Investing Rule 5. Note that we define α∗ asW (0)/(γ+W (0)) to ensure that the subtraction of the
wealth is constantly W (0)/γ. Different choices for the parameter γ characterize how conservative
the investing policy is. If there is high confidence on the first observed hypotheses being actual
discoveries small values of γ (i.e. 5,10,20) would make more sense. Vice versa a high value of γ,
e.g., 50, 100, ensures that even if the first hypotheses are true null, a large part of the α wealth is
preserved.

88

ALGORITHM 6 δ-hopeful

1: W (0) = ηα

2: α∗ = W (0)
δ+W (0)

3: k∗ = 0
4: while W (j − 1)− α∗

1−α∗ ≥ 0, for j = 1, 2, . . . do
5: if p(Hj) < α∗ then
6: W (j) = W (j − 1) + ω

7: α∗ = min
(
α, W (j)

δ+W (j)

)
8: k∗ = j
9: else
10: W (j) = W (j − 1)− α∗

1−α∗ = W (j − 1)− W (k∗)
α∗

5.6.5 δ-Hopeful Investing Rule

In a slight variation of the γ-fixed investing rule, we say that a policy is δ-hopeful if the budget
is assigned to each hypothesis “hoping” that at least one of the next δ hypotheses will be rejected.
Each time a null hypothesis is rejected the budget obtained from the rejection is re-invested when
assigning budget over the next δ null hypotheses. γ-fixed and δ-hopeful operate by spreading the
amount of α-wealth over a fixed number of hypotheses (either γ or δ), δ-hopeful is however “ less
conservative” than γ-fixed as it always operates by investing all currently available α-wealth over
the next δ hypotheses. The details of the δ-fixed procedure controlling mFDRη at level α can be
found in the procedure for Investing Rule 6.

5.6.6 ε-Hybrid Investing Rule

Because α-investing allows contextual information to be incorporated, the power of the resulting
procedure is related to how well the design heuristic fits the actual data exploration scenario. For
example, when the data exhibits more randomness, the γ-fixed rule tends to have more power than
the δ-hopeful rule. Intuitively, the α-wealth decreases when testing a true null hypothesis, because
the expectation of the change of wealth is negative when the p-value is uniformly distributed on
[0, 1]. Thus the initial α-wealth is on average larger than the α-wealth available at subsequent steps.
Furthermore, since the γ-fixed rule invests a constant fraction of the initial wealth, the power tends
to be larger than δ-hopeful. Vice versa, when the data is less random, we expect the power of
the γ-fixed rule to become lower than that of the δ-hopeful rule. This is due to the fact that in
this setting more significant discoveries tend to keep the subsequent α-wealth high, potentially even
higher than the initial wealth. We further study this difference in Section 5.9.

In order to have a robust performance in terms of power and false discovery rate, we design
ε-hybrid investing rule that adjust the αj assigned to the various tests based on the estimated data
randomness. Our estimation of the randomness of the data is based on the ratio of rejected null
hypotheses over a sliding window Hd constituted by the last d null hypotheses observed on a stream.
We then compare this ratio with a “randomness threshold ” ε ∈ (0, 1) and we conclude whether the

89

ALGORITHM 7 ε-hybrid

1: W (0) = ηα
2: k∗ = 0
3: Hd = [] // Sliding window of size d
4: while W (j − 1) > 0, for j = 1, 2, . . . do
5: if Rejected(Hd) ≤ |Hd|ε then
6: αj = W (0)

γ+W (0)

7: else
8: αj = min

(
α, W (k∗)

δ+W (k∗)

)
9: if W (j − 1)− αj

1−αj ≥ 0 then
10: if p(Hj) < αj then
11: W (j) = W (j − 1) + ω
12: k∗ = j
13: Hd[j] = Rj = 1
14: else
15: W (j) = W (j − 1)− αj

1−αj
16: Hd[j] = Rj = 0

data exhibits high randomness or not. The procedures is outlined in Investing Rule 7.

5.6.7 Investment based on Support Population

An important intuition relative to the computation of the p-valuesis that is most likely to observe
high p-valuesfor hypotheses which rely on a small number of data points, that is for hypothesis with
low “support population.” It is thus only natural to pursue a strategy which adjusts the budget of
each hypothesis based on its support population, assigning lower α-wealth budget to hypotheses
which are more likely to exhibit higher p-value. In this section we discuss how to bias the amount
budget assigned to each hypothesis so that hypotheses with more support data receive more “trust”
(in terms of budget) from the procedure.

Let us denote as |n| the total amount of data being used and by |j| the available data for testing
the j-th null hypothesis Ht. A simple way of correcting the assignment of the budget αj in any of
the previously mentioned hypothesis is to assign to the test of the hypothesis αjf(|j||n|). Depending
on the choice of f(·) the impact of the correction may be more or less severe. Some possible choices

for f(·) would be f(|t||n|) =
(
|t|
|n|

)ψ
for possible values of ψ = 1, 2/3, 1/2, 1/3, Note, that this

support-size dependent bias idea can be used with any of the previously described strategies. In the
following, we show the ψ-support policy applied to the γ-fixed rule in Investing Rule 8.

5.6.8 What Happens If the Wealth is 0?

Among all our proposed investing policies, only β-farsighted is “thrifty” in that it never fully commits
all of the available α-wealth. Still, the available wealth for β-farsighted could eventually become
extremely small, to the point that hypotheses can be harder to reject. All the remaining procedures

90

ALGORITHM 8 ψ-support

1: W (0) = ηα
2: α∗ is set by an α-investing rule
3: while W (j − 1) > 0, for j = 1, 2, . . . do

4: αj = α∗
(
|t|
|n|

) 1
2

5: if W (j − 1)− αj
1−αj ≥ 0 then

6: if p(Hj) < αj then
7: W (j) = W (j − 1) + ω
8: else
9: W (j) = W (j − 1)− αj

1−αj

are “non-thrifty” and can thus reach zero α-wealth, in which case the user should stop exploring
because no more hypotheses can be rejected.

Theoretically, a vanishing α-wealth indicates higher uncertainty from the current data and hy-
potheses, and thus it is reasonable to restrain further exploration. On the other hand, it is only
natural to wonder if it would be possible for the user to “recover ” some of the lost α-wealth and
thus continuing the testing procedure. One possible way would require the user to reconsider and
possibly overturn some of the previous decisions on whether to reject or accept some null hypotheses
using alternative testing procedures (i.e., the Benjamini-Hochberg procedure). There are however
several challenges to be faced when pursuing this strategy: 1) great care has to be put on haw to
combine results from different testing procedures (i.e., control of FDR for a subsets of hypotheses
and control of mFDR for a distinct subset of hypotheses) and 2) testing hypotheses for a second time
given the outcomes of other test implies a clear (and strong) dependence between the outcome of
the tests and the p-valueassociated with the null hypotheses being considered. Therefore, depending
on the context such control could only be achieved given additional assumptions about the level of
control or would require adding additional data or the use of a hold-out dataset. We aim to study
this problem in detail as part of future work.

5.7 Most Important Discoveries

In Section 5.4 we argued that the user should be able to “mark the important hypotheses (e.g., the
ones she wants to include in a publication). This is particularly important as Qude uses default
hypotheses, which the user might consider as less important. In the following we show that if these
“important discoveries” are selected from all the discoveries given by a testing procedure that controls
FDR at level α independently of their p-values, then the FDR for the set of important discoveries is
controlled at level α as well.

Theorem 5.1. Assume that we executed a collection of hypothesis tests with a rejection rule that
controls the FDR at α. Assume that the procedure rejected a nonempty set of null hypotheses R, and
let V ⊆ R be the set of false discoveries. If the hypothesis tests are independent then for any subset

91

R′ ⊆ R we have E[|V ∩R′|/|R′|] ≤ α.

Proof. Let p1, . . . , p|R| be the p-valuesof the rejected hypotheses. Since the rejection rule controls
the FDR at α we have

|R|∑
i=1

i

|R|P (|V | = i | P1 = p1, . . . , Pr = pr) ≤ α (5.8)

Assume that |V | = i. The p-valuesof true null hypotheses in V are i.i.d. uniformly distributed
in [0, 1]. The set V is uniformly distributed among all the i-subsets of R. Let pVi , . . . pV|V | be the
p-valuesof V , and let p′1, . . . , p′|R′| be the p-valuesof a subset of rejected hypotheses R′ ⊆ R, then:

E[|V ∩R′| | |V | = i] = E[|{p′1, . . . , p′|R′|} ∩ {pV1 . . . PV|V |}| | |V | = i] = i
|R′|
|R| . (5.9)

Combining equations (5.8) and (5.9) we get:

E

[|V ∩R′|
|R′|

]
=

|R|∑
i=1

E

[
|V ∩R′|
|R′|

∣∣∣∣ |V | = i

]
P (|V | = i | P1 = p1, . . . , Pr = pr)

=

|R|∑
i=1

1

|R′| i
|R′|
|R| P (|V | = i | P1 = p1, . . . , Pr = pr) ≤ α

(5.10)

Consider a set R′ of important discoveries selected independently of the p-valuesof the corre-
sponding tests from a larger set of discoveries R for which then mFDR is controlled at level α.
Using a proof similar to the one discussed in Theorem 5.1 it is possible to show that the mFDR of
R′ is controlled at level α as well. This is an important result, as it implies that the user can select
the important discoveries from a larger pool of discoveries while maintaining the control of FDR (or
mFDR) at level α.

5.8 Limitations and Opportunities

Qude is the first system that automatically controls the multiple hypothesis error during visual
data exploration and as such, it is important to understand the assumptions and limitations of our
current approach and the opportunities for future work.

Visualizations: Currently we only automatically derive a null-hypothesis for histograms.
While we believe that many other visualizations (e.g., line charts, heatmaps, etc.) have natural
null-hypothesis associated to them, exploring them remains future work.

Sequential Dependencies: As formulated in Section 5.6.2, our α-investing procedures assume
that the p-value of each test is computed in the sample space conditioned on the outcome of previous
tests. How restrictive is this assumption? Significant part of any exploration process is done in a
sequential process, in which features, or variables, are selected one at a time. Once we selected the
first k − 1 features, we test for the significance of adding the k feature to the current model. This

92

process, which corresponds to testing nested hypothesis, trivially satisfies the condition formulated by
(5.6). When not testing for nested hypothesis we need to be more careful with sequential dependency.
Ideally, we want to test mutually independent features, or correct for the dependencies, but this may
not be feasible. In practice, features have to be highly correlated to significantly distort the outcome
of the process, and we can identify highly correlated features by computing the correlation coefficient
in the data (with no testing). While modern statistics does not provide a fully analytical solution for
the problem, our experiments show that independence assumption is a reasonable approximation for
non-adversarial users and provides a best-effort attempt considering that often the only alternative
is to leave the user in the dark.

Is it Possible to “Game” the System? For example, could a user boost her α-wealth for risky
test by testing trivial hypothesis first ? While the short answer is “yes”, it is not really gaming the
system. mFDR controls the ratio of false over all discoveries and adding more trivial true hypotheses
simply increases the denominator.

5.9 Experimental Evaluation

In this section, we evaluate Qude in different data exploration settings to answer the following
questions: (1) how the different α-investing rules perform in different exploration scenarios, (2) how
different parameters change the performance of the rules, and (3) how to select the parameters.

5.9.1 Exploration Settings

The data exploration process can vary significantly depending on how the hypotheses are structured.
For example, in some settings the explorer may not start with any particular set of questions as
target, but gradually develops interests in certain aspect of the data. Such settings are predominant
in interactive data exploration. On the other hand, the exploration may be structured around a clear
subject, such as understanding gravity, and the exploration tends to progress from easier questions
towards harder questions. Such cases arise frequently in data-driven scientific studies. In other cases
the mining of insights might usually less structured.

To account for varying structures of the data exploration, we formulate three different data
exploration scenarios, namely, the targeted exploration, the free-form exploration, and the uniform
exploration. We use Markov processes to simulate the data exploration process under these models
as a stream of hypotheses, and identify the suitability of different α-investing rules.

We model the data exploration as divided into two phases of different distributions of random
noise. Concretely, we construct two two-state Markov chains, Xa and Xb, where the states corre-
spond to ground truth labels, namely true or false null hypotheses. The two Markov chains have
stationary distributions πa and πb. We start the process at one chain and then switch to the other
chain at a preset time. If the Markov chain generates a significant hypothesis, it draws data points
from two normal random variables with different means (the difference is sampled from the intervals

93

00.020.040.06

FDR

0

0.2

0.4

0.6
P
o
w
er

Targeted Exploration

(a) Targeted Exploration

00.020.040.06

FDR

0

0.2

0.4

0.6

P
o
w
er

Free-form Exploration

(b) Free-form Exploration

00.020.040.06

FDR

0

0.2

0.4

0.6

P
o
w
er

Uniform Exploration

(c) Uniform Exploration

0.040.060.080.10.12

FDR

0

0.2

0.4

0.6

0.8

P
o
w
er

U.S. Census Exploration

(d) Real-world Deployment
00.010.020.030.040.050.060.07

FDR

0

0.2

0.4

0.6

P
ow

er

Free-form Exploration

Best foot forward (baseline) β-farsighted γ-fixed δ-hopeful ϵ-hybrid β-farsighted+ψ-support

Figure 5.3: The Power-FDR curves with varying parametrization (Table 5.2) in differ-
ent data exploration scenarios.

with boundaries 5/4, 5/2, 15/4, 5), whereas for an insignificant hypothesis (i.e. true null), it sam-
ples from two zero-mean random variables. The hypothesis tests are all t-tests. Afterwards, another
uniform random variable is used to determine the number of records used per test, which simulates
the selectivity of a histogram filter chain such as in Figure 5.1.

Finally, to demonstrate real-world applicability, we deploy the α-investing rules with the param-
eters obtained from the models to U.S. Census dataset [143] using an authentic user workflow [242].

5.9.2 Targeted Exploration

The user in the target exploration may have a well-defined set of questions to ask, and thus explores
the data in a more structured manner. She starts with simpler questions such as “is there a salary
difference between men and women,” perhaps for confirmatory purposes. As data conforms to her
initial questions, she dives deeper into the more complicated questions such as “does the state impact
the salary between men and women.” Note that the structure of the hypotheses progresses in such a
way that the significant insights tend to cluster more from the beginning than towards the end. Thus

94

Rule Parameter Aggressive ←→ Conservative
β-farsighted β 0.1, 0.3, 0.5, 0.7, 0.9, 0.99
γ-fixed γ 8, 16, 32, 64, 128
δ-hopeful δ 8, 16, 32, 64, 128
ε-hybrid ε 0.1, 0.3, 0.5, 0.7, 0.9
ψ-support ψ 1/2, 1/4, 1/6, 1/8, 1/10

Table 5.2: Parameters for Power-FDR curves in Figure 5.3

in the corresponding Markov process, we set the first phase of exploration with lower distribution of
random noise than the second phase. Concretely, the stationary distributions of the true nulls are
set to πa(0) = 0.25 and πb(0) = 0.75. The switching time is set to 30% of the process.

Figure 5.3 shows the performance power vs. realized FDR of the different α-investing rules in
this setting. Notice, that we plot FDR in decreasing order. Thus, in general the top-right corner
means better: more true discoveries (i.e., power) with fewer false discoveries (i.e., realized FDR). For
each rule we vary the parameters according to Table 5.2 from more aggressive to more conservative
settings, resulting in the Power-FDR curve. For the ε-hybrid and ψ-support strategies we keep
δ = γ = 64 and β = 0.9. We implement the Best foot forward [80] as a baseline; it does not allow
for parametrization and is thus a single point.

Figure 5.3a shows that all proposed α-investing rules can outperform the original Best foot
forward rule by achieving more power. Which policy to use depends on the context information from
the user. For the thrifty policies, i.e., policies which allow an unbounded number of exploration steps,
β-farsighted at β = 0.9 achieves 1.9x higher power than the baseline Best foot forward, while having
slightly higher but still bounded error rate at 0.05. For a more conservative approach, increasing β
to 0.99 reduces error by more than 50% while still having 1.3x (second to the top data point) higher
power than the Best foot forward. Varying ψ-support shows very little impact and its augmented
version of β-farsighted achieves the highest power at lower realized FDR than other thrifty strategies.

If the exploration steps are known or can be approximated a priori, non-thrifty policies can be
used to further reduce the error rates. Among the non-thrifty policies, δ-hopeful is ideal if the user
has an understanding on how many exploration steps she expects in the targeted exploration. It
achieves up to 2x the power of Best foot forward and never drops below it. The δ-hopeful also nicely
visualizes the impact of being too optimistic versus too pessimistic. For example, δ = 8 and δ = 128

achieve similar power but δ = 128 has a much lower FDR.
ε-hybrid offers the best combination of power and error rate with sharp drop of FDR while

maintaining the power within 10% of its peak. It offers similar error rate as the baseline Best foot
forward, but has 1.7x higher power. This shows the appealing aspect of ε-hybrid that it combines
the high power of δ-hopeful and the low error of γ-fixed.

95

5.9.3 Free-form Exploration

In free-form exploration, the explorer does not start with a specific set of questions in mind, but
rather starting with creating an initial understanding by exploring different aspects of the dataset
before narrowing down to certain aspect that is interesting. In terms of hypothesis testing, the
fraction of significance insights tends to be lower at the beginning, but increases towards the end
because hypotheses become more based upon the previously discovered as “interesting” findings. To
simulate this effect, we set the first phase of the Markov process with higher distribution of random
noise (πa(0) = 0.75) than the second phase (πb(0) = 0.25) with a total of 128 hypotheses and
switching time at 70% of the process.

In this scenario the non-thrifty policies do not perform as well if the parameters are set too lower
than the number of expected exploration steps. However, if set correctly, e.g., at about half of the
number of expected steps as δ = 64, δ-hopeful has a similar power as Best foot forward but with a
much lower error rate.

For unbounded exploration, β-farsighted with β = 0.9 achieves 1.18x power over Best foot
forward, while adding ψ-support reduces its error rate by 20%, making it the overall best strategy.

5.9.4 Uniform Exploration

The last data exploration model does not build upon how the hypotheses are structured or or-
dered, and therefore represents an average case. Specifically, the significant insights during the data
exploration process are observed uniformly at random.

Interestingly, the Power-FDR curves of the policies in Figure 5.3(c) look similar to the ones in the
free-form exploration in (b). One difference is that the baseline Best foot forward performs worse,
having similar power but almost 2x the error rate at close to 0.05. This demonstrates the downside
of having a specialized policy as Best foot forward, which optimizes for a special case where the
significant insights are highly clustered.

For an exploration with or without known expected length, our α-investing rules have
parametrization that outperform the baseline Best foot forward in error rate. As for power, the
β-farsighted with ψ-support offers the highest power. With information of expected exploration
length, the ε-hybrid achieves almost the same power but has 60% lower error rate than the baseline
Best foot forward, making it the most balanced strategy.

5.9.5 Real-world Deployment

To test the applicability of the optimal parameters in the models, we use the U.S. Census dataset [143]
with 10,000 records and derived a real exploration workflow from the user study in [242]. The
workflow contains 117 hypotheses, similar to the configuration of our models. To generate ground
truth labels, we run Bonferroni procedure [28] with family-wise error rate set to 10−20 on the Census
dataset as the population. We then sample 10% of the Census dataset to run the user workflow with
α = 0.05.

96

0

0.2

0.4

0.6
Avg. FDR

ǫ-hybrid

β-farsighted+ψ-support

Bonferroni

BHFDR

No Control

Figure 5.4: Avg. False Discovery Rate on Random Data

We do not vary the parameters for this experiment , but instead pick the best overall settings
from the Markov simulation with β = 0.9, δ = 64, γ = 64, ε = 0.5, ψ = 1/4.

Figure 5.3(d) shows a similar trend: our proposed α-investing rules achieves lower error rate than
the baseline Best foot forward. If the expected exploration length is unknown, the β-farsighted with
ψ-support is better. Otherwise with known expected exploration length, the non-thrifty policies
such as γ-fixed, δ-hopeful and ε-hybrid achieve significantly less error than the thrifty policy β-
farsighted. The ε-hybrid combines the higher power of δ-hopeful and lower error rate of γ-fixed and
is the best-balanced strategy.

Finally, note that the Best foot forward overachieves on the real-world dataset than the simulation
because of the way we generate the ground truth; the Bonferroni procedure creates a more benign
setting for this strategy (note that statisticians usually only use simulations to eliminate this bias).

5.9.6 Discussion

To conclude, if the expected number of hypotheses can be estimated a priori, ε-hybrid provides high
power with significantly lower error rate than the baseline Best Foot Forward. Otherwise if the
exploration is unbounded, β-farsighted is the best policy. Overall the β-farsighted with ψ-support
achieves the highest power often at a lower realized FDR and presents a good choice independent of
the exploration scenario.

Finally, it should be noted that while some of the power/FDR improvements appear to be minor,
they can have profound statistical impact in practice, such as determining which discoveries can be
deemed scientific, how much more data has to be collected, or what exploration path the user takes.

In Section 5.10 we further compare Qude’s dynamic scheme against the static FDR method [15],
the FWER control procedure [28], and the scheme without multiple hypotheses control to illustrate
Qude’s overall safety and efficiency.

5.10 Supplemental Experiments

We provide additional experimental results to illustrate the improved safety QUDE provides over
the scheme without any multiple comparisons control, and the higher power over the static control

97

25% 50% 75%
% True Null Hypotheses

0.4

0.6

0.8

Avg. Power

ǫ-hybrid

β-farsighted +

ψ-support

Bonferroni

BHFDR

No Control

Figure 5.5: Avg. Power on Data with Varying Uncertainty

methods, including the false discovery rate (FDR) control procedure such as Benjamini-Hochberg
(BHFDR) [15], and the family-wise error rate (FWER) control procedure such as Bonferroni [28].
In the following experiments we use the exploration settings as in 5.9.1 with 64 user observations,
but with varying ratio of randomness.

5.10.1 Safety against Uncertainty

We further discuss the impact of false discovery on completely random data to show that in this
worst case QUDE guarantees the bounded error rate, providing the same guarantee as the static
FDR control procedure BHFDR and the FWER control procedure Bonferroni. On the other hand,
the scheme without multiple comparison control is highly error-prone.

We use t-tests on all true null hypotheses generated from normal random variables with the
same mean. The average FDR is based on 1000 repetitions, where for each repetition the realized
FDR is either 1 or 0. As shown in Figure 5.4, the scheme without control results in as high as 60%
false insights for a moderate number of 64 user observations. By contrast, methods with multiple
hypotheses control achieve the guaranteed error rate as low as 5%.

5.10.2 FDR versus FWER

We compare the two multiple hypothesis control targets, FDR and FWER, to show that FDR (and
its variant mFDR) provides the best trade-off in that it has much higher statistical power while
having the same worst-case error bound than the FWER. This comparison motivates our choice of
FDR as the control target for interactive data exploration.

On completely random data, controlling FDR also implies controlling FWER [15]. This can be
seen in Figure 5.4 that both of our representative thrifty and non-thrifty α-investing rules achieve
the same error rate as the Bonferroni at 0.05.

With varying degree of uncertainty as in Figure 5.5, the power of the Bonferroni remains only
as low as 40%, whereas the power of the (m)FDR control procedures all achieve significantly higher
power. With less randomness, i.e. lower fraction of true null hypotheses, both of QUDE’s repre-
sentative thrifty and non-thrifty α-investing rules achieve close to the static FDR control method

98

BHFDR and the scheme without control.
As the uncertainty increases, the power of our α-investing rules maintain higher than the FWER

control procedure. The static method BHFDR has slightly better power than our α-investing rules
because it operates offline where it collects and sorts all hypotheses based on their final p-values,
which however limits its usability on dynamic settings; whereas our α-investing rules removes this
limitation to support interactive data exploration without significant loss of power while with the
similar guarantee on the error rate.

Finally, although the scheme without control achieves slightly higher power, it is at the expense
of much higher error rates, such as about 100X on random data. By contrast, QUDE represents the
optimal trade-off between the power and the risk.

5.11 Conclusion and Future Work

In this Chapter, we presented the first automatic approach to controlling the multiple hypothesis
problem during data exploration. We showed how the Qude systems integrates user feedback and
presented several multiple hypothesis control techniques based on α-investing, which control mFDR,
and are especially suited for controlling the error for interactive data exploration sessions. Finally,
our evaluation showed that the techniques are indeed capable of controlling the number of false
discoveries using synthetic and real world datasets. We consider this work as an important first
step towards more sustainable discoveries in a time where the importance of data analysis is more
pervasive than ever. We strongly believe that our work constitutes a departing point for a wealth
of important research topics such as creating and evaluating other types of default hypothesis,
developing new testing procedures (e.g., for interactive Bayesian tests) and investigating techniques
to recover from cases where the testing procedure runs out of α-wealth.

Chapter 6

VizRec: a framework for secure data

exploration via visual representation1

Visual representations of data (visualizations) are tools of great importance and widespread use in
data analytic as they provide users visual insight to patterns in the observed data in a simple and
effective way. However, since visualizations tools are applied to sample data, there is a a risk of
visualizing random fluctuations in the sample rather than a true pattern in the data. This problem
is even more significant when visualization is used to identify interesting patterns among many
possible possibilities, or to identify an interesting deviation in pair of observations among many
possible pairs, as commonly done in visual recommendation systems.

In this Chapter, we present VizRec, a framework for improving the performance of visual recom-
mendation systems by quantifying the statistical significance of recommended visualizations. The
proposed methodology allows to control the probability of misleading visual recommendations using
both classical statistical testing procedures and a novel application of the Vapnik Chervonenkis (VC)
dimension method which is a fundamental concept in statistical learning theory.

6.1 Introduction

Visual recommendation engines, such as SeeDB [232], Voyager2 [238], Rank-By-Feature [206], Show
Me [152], MuVE [66], VizDeck [127], DeepEye [187], or Draco-Learn [166], aim to help users to more
quickly explore a dataset and find interesting insights. To achieve that goal they use widely different
approaches and techniques. For example, SeeDB [232] makes recommendations based on a reference
view; it tries to find a visualization which is very different from the one the user has currently on
the screen. In contrast, DeepEye [187] tries to generally recommend a good visualization for a given
dataset based on previously generated visualizations.

1The results presented in this chapter are currently submitted to the 40th ACM SIGMOD International Conference
on Management of Data (SIGMOD 2019). This is joint work with Leonhard Spielberg, Professor Tim Kraska, and
Professor Eli Upfal.

99

100

However, all these systems do have in common that they can significantly increase the risk of
finding false insights. This happens in the moment a visualization is not just a pretty picture
but a tool presenting facts about the data to the user. For example, consider a user exploring a
dataset containing information about different wines. After browsing the data for a bit, she creates
a visualization of ranking by origin showing that wines from France are higher rated. If her only
takeaway from the visual is, that in this particular dataset wines from France have a higher rating,
there is no risk of false insight. Essentially, in this case no inference happens as she is completely
aware that the next dataset could look entirely different. However, it is neither in the nature of
users to constraint themselves to such thinking [243], nor would in many cases such a visualization
be very insightful. Rather, based on the visualization she most likely would infer that French wines
are generally rated higher; generalizing her visualization insight to general datasets and thus creating
an actually interesting insight. Statistically savvy users will now test this insight on whether this
generalization is actually statistically valid using the appropriate test. Even more technically savvy
users will also consider other hypothesis they tried and adjust the statistical testing procedure to
account for the multiple comparisons problem. This is important as every additional hypothesis,
explicitly expressed as a test or implicitly observed through a visualization, increases the risk of
finding insights which are just spurious effects.

However, what happens when the visualization recommendations are generated by one of the
above systems? First and most importantly, the user does not know if the effect shown by the
visualization is actually significant or not. Even worse, she can not use a standard statistical method
and “simply” test the effect shown in the visualization for significance. Visual recommendation
engines are potentially checking thousands of visualizations for their interesting-factor (e.g., in case
of SeeDB how different the visualization is to the current one) in just a few seconds. As a result,
by testing thousands of visualizations it is almost guaranteed that the system will find something
“interesting” regardless of whether the observed phenomenon is actually statistically valid or not. A
test for significance for the recommended visualization should therefore consider the whole history
of tests done by the recommendation engine.

Advocates of visual recommendation engines usually argue that visual recommendations systems
are meant to be as hypothesis generation engines, which should always be validated on a separate
hold-out dataset. While this is a valid method to control false discoveries, it is also important to
understand its implications: (1) None, really none, of the found insights from the exploration dataset
should be regarded as an actual insight before they are validated. This is clearly problematic if one
observation may steer towards another during the exploration. (2) Splitting a dataset into an
exploration and a hold-out set can significantly reduce the power (i.e., the chance to find actual true
phenomena). (3) The hold-out needs to be controlled for the multi-hypothesis problem unless the
user only wants to use it exactly once for a single test.

In this Chapter, we present an alternative approach, called VizRec, a framework to make visual
recommendation engines “safe”. We focus on the visual recommendation technique proposed by
SeeDB as it uses a clear semantic for what “interesting” means. However, our techniques can be

101

adjusted to other visualization frameworks or even hypothesis generation tools, like Data Polygamy,
as long as the “interesting” criterion can be expressed as a statistical test. The core idea of VizRec is
that it not only evaluates the interesting-factor using a statistical test, but also that it automatically
adjusts the significance value based on the search space of the recommendation engine to avoid the
multiple-hypothesis pitfall. We make the following contributions:

• We formalize the process of making visualization recommendations as statistical hypothesis
testing.

• We discuss how different possible approaches to make visualization recommendation engines
safe based on classical statistical testing, and on the use of Chernoff-type large deviation
bounds. We further discuss how the performance of both these approaches decreases due to
the necessity of accounting for a high number of potentially adaptively chosen tests.

• We propose a method based on the use of VC dimension, which allows controlling the proba-
bility of observing fake discoveries during the visualization recommendation process. VizRec
allows control of the Family Wise Error Rate (FWER) at a given level δ.

• We evaluate the performance of our system, in comparison with SeeDB via extensive experi-
mental analysis.

Related work: [190] introduced the VC approach to provide ε-approximations for the selectivity
of queries. Whereas they also consider joins in addition to multi-attribute selection queries, by
restricting to AND conjunctions over multiple attributes as used naturally in OLAP and visual
recommender systems we were able to lower the required VC dimension.

When comparing continuous aggregates for visualizations using e.g. kernel-density estimation for
distribution plots other statistical testing procedures like the Kolmogorov-Smirnov test can be used.
Also a viable alternative to goodness-of-fit tests like Fisher’s exact test, χ2-test or the Kolmogorov-
Smirnov test independence tests like Kendall’s tau or Spearman’s rank correlation test may be used.
A combination of multiple tests also accounting for differences in shape as detailed in [185] can
strengthen statistical guarantees on visualizations being different. Indeed, this is quite similar to
hypothesis based feature extraction and selection approaches as in [45][219].

Recent work [199] introduced the problem of group-by queries leading to wrong interpretations,
specifically in the case when AVG aggregates are used. To remedy this, the notion of a biased query
is introduced. However, they do not account for the multiple comparison problem and also have no
significant distance notion.

[22] introduced various control techniques for interactive data exploration scenarios. Whereas
it accounts for the multiple comparison problem, it does not solve the problem of pointing out a
statistical different enough distance between two visualizations.

[232] provides an approach to effectively compute visualizations over an exponential search space
by using reuse of previous results and approximate queries. Visualizations are recommended by
treating group-by results as normalized probability distributions and using various distance measures

102

between two probability distributions to yield a ranking in order to recommend top-k interesting
visualizations. The authors found that the actual choice of the distance did not really alter results,
which does not come at a great surprise given their relations as pointed out in [87].

As described in [210] zooming into particular interesting regions of the data is a key task per-
formed by many users in the setting of data exploration. Our technique provides a simple and
effective methodology which can be applied to a wide range of data. For example, an user may be
given a geospatial dataset characterizing purchase power and want to have assistance in exploring
interesting sub-regions. We believe our VC dimension-based approach can be easily extended to
allow for more complicated query types such as these.

Chapter structure The remainder of this Chapter is organized as follows: In Section 6.2 we
give a definition of the visualization recommendation problem in rigorous probabilistic terms. In
Section 6.3 we discuss possible approaches for the visualization recommendation problems, and why
highlight how they both suffer due to the necessity of accounting for a high number of statistical
tests. In Section 6.4 we introduce our VizRec approach based on VC dimension and we argue how it
allows to overcome the problems discussed in Section 6.3. In Section 6.5, we discuss some guidelines
of practical interest for implementation, while in Section 6.6 we present an extensive experimental
evaluation of the effectiveness of VizRec.

6.2 Problem Statement

In this section we first describe informally how SeeDB [232] makes visual recommendations, and
then formalize the problem of providing statistically valid visualization recommendations.

6.2.1 SeeDB

SeeDB makes recommendations based on the currently shown visualization, and the corresponding
reference query. SeeDB explores possible recommendations (target queries) by most commonly
adding/changing the composition of the reference query. To rank the recommendations, SeeDB
recommends to the user the most interesting target queries based on the deviations. Thus, SeeDB
assumes a larger deviation indicates a more interesting target query. SeeDB can use different types
of measures to quantify the difference between reference and target visualization. However, earth-
mover distance or KL-divergence are prevalently used. Furthermore, SeeDB truncates uninteresting
visualizations if the deviation value (e.g., KL-divergence) is below a certain threshold, which can be
seen as a minimum visual distance.

To showcase how SeeDB can recommend spurious correlations, we used a survey conducted
on Amazon Mechanical Turk [22] with 2, 644 answers for 35 (mostly unrelated) multiple-choice
questions. Questions range from Would you rather drive an electric car or a gas-powered car? to
What is your highest achieved education level? and Do you play Pokemon Go?.

103

Democrats Republicans0

20

40

60

80

100

62.3%
37.7%

If there were US elections tomorrow,
which party would you support?

(a) Reference View

Democrats Republicans0

20

40

60

80

100

26.6%
73.4%

Do you think global warming is mainly
 caused by human activity? == No

(b) Recommended View 1

Democrats Republicans0

20

40

60

80

100

40.0%
60.0%

What is your preferred
music genre? == Country / Folk

(c) Recommended View 2

Democrats Republicans0

20

40

60

80

100

46.4% 53.6%

Do you think marijuana consumption
 should be legalized? == No

(d) Recommended View 3

Figure 6.1: An example of SeeDB [232] on survey data.

Suppose the user analyzes U.S. voting trends over this data set as shown in Figure 6.1a. Based
on this reference view created by the user, the actual SeeDB algorithm over our data set would
recommend Figures 6.1b-6.1d as visualizations (settings of SeeDB are similar to the ones in [232]’s
Figure 1). All of the recommended visualizations by SeeDB seem first to be interesting as they
clearly indicate a trend reversal and a correlation between certain beliefs and voting behavior.
However, these trends could also be solely a random discovery in the way the visualization is just
produced because for some reason the dataset by chance just produced such bar graphs for these
queries. Indeed, in 6.6.1 we show that some of these recommendations are not statistically safe
recommendations.

Having a larger dataset may help an analyst to be more certain that the recommendations are
actually significant. However, considering the total number of samples used for these visualizations
bears the fundamental question, how big the data actually needs to be in order to guarantee that
there are no false discoveries. Further, when automatically exploring the dataset at some point
with enough filtering as done by SeeDB every dataset becomes “too small” to guarantee anything.
In the following, we now formalize the recommendation process of SeeDB, introduce the visual
recommendation problem and its relation to hypothesis testing.

104

6.2.2 Problem set-up

Let Ω denote the global sample space, that is the set comprised of the records of the entire population
of interest (e.g., the records of US citizens). We can imagine Ω in the form of a two-dimensional,
relational table with N rows and m columns, where each column represents a feature or attribute of
the records.

In many practical scenarios the analyst is in possession of a sample D, D ⊂ Ω, composed by a
much smaller number of records n << N , and aims to estimate the properties of Ω by analyzing
the properties of the smaller dataset.

In this work we assume that the input to the recommendation engine is a dataset, D, consists
of n records chosen uniformly at random and independently from the universe Ω (e.g., our survey
data). We refer to D as the sample dataset or the training dataset and denote by FD the probability
distribution that generated the sample D. Alternatively, one can consider D as a sample of size n
from a distribution FD that corresponds to a possibly infinite domain.

As discussed in Section 6.1, rather than enabling users to only interpret visualizations for some
particular data set, we want to make sure that when they try to generalize results a system provides
them with statistical guarantees. Hence, we consider the input D not as a universal but as a random
sample of the universe, and we focus on observation in D that apply to the entire universe. For
example prices in city centers are higher than in neighboring districts instead of prices in the city
center for apartments A, B, C, ... in Manhattan are higher than for apartments X, Y, Z, ... in the
Bronx, Queens and Brooklyn neighboring districts for the data collected in 2017 on July 21st.

We divide the features (or attributes) of the records in Ω, and hence D, into four groups:

1. binary features, taking values in {0, 1} (e.g., unit has AC).

2. discrete features with a total order(e.g., #bedrooms, #bathrooms).

3. continuous features with a total order, (e.g., price of the unit).

4. categorical features, taking values in a finite unordered domain (e.g., city, zipcode).

We assume that each feature is equipped with a natural metric. This is achieved, by mapping the
values of a feature to a real number (e.g., for a boolean feature by mapping the value True to 0, and
False to 1).

6.2.3 Visualizations

A common form of visualization used in the dice-and-slice exploration setting of an OLAP (On-
Line Analytical Processing) data cube is a bar graph. We formalize the type of visualizations we
investigate in our approach in the following way:

Definition 6.0.1. A visualization V is a tuple(
D, F,X, Y,AGG

)
which can be represented as a bar graph and which describes the result of a query of the form

105

SELECT X, COUNT(Y) FROM D WHERE F GROUP BY X

with the aggregate COUNT, represented on the y axis, being partitioned according to the values of a
discrete feature X, after restricting the records of the input dataset D being considered to a subset for
which the filter predicate F holds.

The support of a visualization V is the number of records of D which satisfy the predicate F ,
and is denoted as |V |. The selectivity of a visualization V , denoted as γV , is defined as the fraction
of records which satisfy F , that is

γV :=
|D|F |
|D| . (6.1)

Note that if the group-by attribute X being selected is not discrete, it will also be necessary to
determinate a finite set ranges for its value, or “buckets”, to be used in the visualization.
The aggregate COUNT(Y) counts of records which satisfy the query predicate grouped according to
the values of the feature X, henceforth referred as the group-by feature.

While in this work we focus on the aggregate COUNT(Y), our approach can be extended with
minor modifications to the average AVG(Y) aggregate, which is given by the average of the values
of the records which satisfy the query predicate grouped according to the values of the group-by
feature.

Though other aggregates like MIN(Y),MAX(Y),SUM(Y) are used in systems like SeeDB [232]
we believe that they do not add value over COUNT(Y) or AVG(Y) aggregates. Even worse, they
may lead to misleading visualizations. MIN(Y),MAX(Y) aggregates are inherently not suited to
represent statistically significant behavior of distributions. Rather than using MIN(Y) or MAX(Y)

aggregates, a user should consider conditional expectations (e.g., aggregates in the form Y |Y > c

for some constant c ∈ R) to explore extreme values following the concepts of extreme-value theory
as described in [88, 73]. While our results can be easily generalized to other types of visualizations
(e.g., heat maps), for the sake of applicability, in this work we focus on the type captured by
Definition 6.0.1.

Visualizations as distributions: When considering the COUNT aggregate, it is possible to
interpret the data distribution represented by a histogram visualization V as representative of
the probability mass function (pmf) of the discrete random variable X which takes the values
of the group by feature X, each with probability corresponding count of the records for each
column normalized according to the support of the visualization V1. Such distribution, does
indeed correspond to the distribution of the values of the group-by feature X with respect to the
distribution D after conditioning (or filtering) with respect to the predicate F associated with
V . Such correspondence between visualizations and distributions provides us a natural criteria to
compare visualizations by evaluating their statistical difference.

106

6.2.4 Visualization recommendations

Following the paradigm of SeeDB [232], given a first “starting visualization V1 we aim to identify
other “interesting” visualizations to be recommended. In particular, this follows the widespread
mantra of Overview first, zoom and filter, then details-on-demand [210] where a visualization system
ideally lets the user first pick an interesting reference visualization and helps him then to automate
the zoom, filter and details-on-demand tasks.

In this work we define a visualization V2 to be interesting with respect to a starting visualization
V1 if V2 and V1 are different, that is, if they represent a different statistical behavior (i.e., different
distribution) of the common group-by feature X under the predicates associated with V1 and V2,
respectively. Consistently, the greater the difference between the reference V1 and the candidate V2,
the higher the interest of V2 as a candidate recommendation for V1.

Note that the constraint according to which possible recommended visualization must share the
same group-by feature as the starting visualization is a simple consequence of the fact that we are
interested in the study of how different filter predicate conditions do influence the behaviors of the
same feature X. In the absence of such constraint, the analyst may consider how different features
behave, thus leading to observations of questionable interest.

Whereas the general problem of recommending interesting visualizations can come either in the
way of anomaly detection or as according to the mantra of [210] we want to focus on the latter in
this work. That is, we say that a candidate recommendation visualization V2 is interesting with
respect to a reference visualization V1 if the two are “different enough”. That is is their distance
reaches a threshold ε according to some distance measure d.

V2 interesting w.r.t V1 ⇐⇒ d(V1, V2) > ε.

In its simplest form, ε may be zero. However it makes more sense to define ε in terms of a minimum
visual distance εV required by a user to spot a difference[220] when shown both the reference and a
visualization of interest.

While there is a high degree of generality in the selection of the notion of difference between
visualizations to be used, in this work, we leverage the correspondence between visualizations which
corresponds to Definition 6.0.1 and the pmf of the group-by feature condition on the filter of the
visualization, and we measure the difference between visualizations based on the difference between
the associated pmfs.

In this work, we use the “Chebyschev distance” to quantify the difference between visualizations.
Given two pmfs D1 and D2 over the same support set X = {x1, x2, . . . , xn}, the Chebyscev distance
between D1 and D2 is given by:

d (D1, D2) = max
x∈X
|PrD1 (x)− PrD2 (x) |, (6.2)

where PrD1
(x) (resp., PrD2

(x)) denotes the probability of a random variable taking value x according
to the distribution PrD1

(x) (resp., PrD2
(x)).

This choice of difference metric is particularly appropriate when comparing visualizations as it
highlights the maximum difference between the relative frequency of a certain value of the group-by

107

feature in according to the conditional distribution given by the filter predicate of the two vi-
sualizations being considered. In other words, when comparing two histogram visualizations the
Chebyschev distance captures the maximum difference between pairs of corresponding columns of
the histograms.

6.3 Statistically safe visualizations and recommendations

While the statistical pitfalls of exploratory data analysis are well understood and documented (in
scholarly papers [196, 224], "surprising statistical" discoveries [217, 94], and even a famous car-
toon [239]), the connection to visualizations, and specifically visual recommendations engines, have
only recently begun to be rigorously studied [244, 129, 40]. In this section, we formulate the statis-
tical problem in the visual recommendation context and explore simple probabilistic techniques to
solve it. A more powerful method, based on statistical learning theory is presented in the Section 6.4.
While, for concreteness, in our presentation we focus on the SeeDB paradigms, the proposed model
and techniques can be used for other recommendation systems too (e.g., Data Polygamy [43]).

A first crucial observation is that a system that provides visual representation of data and aims to
highlight an interesting relationship between visualizations should provide tools to allow the analyst
to ascertain that the phenomena being observed are actually statistically relevant. A recommender
system should ensure that visualized result displays characteristics that are non-random and visually
intelligible. That is a user looking at two visualizations should both be able to understand that they
are different and why they are different without worrying whether visual features are due to missing
support or random noise.

Recall that a dataset D available to our visualization decision algorithm is a sample from an
underlying distribution FD. Assume that a particular visualization is interesting with respect to D.
The question we are trying to answer is, how likely it is that the visualization is also interesting with
respect to the underlying distribution FD.

In probabilistic terms, each query with a filter predicate F corresponds to an event E over Ω. For
concreteness consider a visualization of a histogram of a (discrete and finite) variable X conditioned
on an event E 6= ∅, denoted X|E.

The true values (in FD) for k ∈ domX are given by

pk := P(X = k|E) =
P (X = k,E)

P(E)
.

We estimate these values in a dataset {X1, . . . , Xn} ⊆ D of size n by

p̂k :=

∑n
i=1 1{Xi=k, Xi∈E}∑n

i=1 1{Xi∈E}
. (6.3)

If in D the histogram of X|E is visually different from the histogram of X, what can we rigorously
predict about the difference between the histograms in FD?

Therefore, we say that the difference between two visualizations V1 and V2 is statistically sig-
nificant if and only if the difference observed between the two in the finite sample D is due to an

108

actual difference between the two histograms with respect to the distribution FD.The recommen-
dation problem thus becomes in its general form to recommend a candidate visualization V2 for a
reference V1 only if their corresponding histograms are statistically different with respect to the true
underlying distribution FD.

Our goal is to verify that interesting visualization flagged by our algorithm with respect to D
generalize to interesting visualizations with respect to FD.

6.3.1 Classical statistical testing

In the classical statistical testing setting, our problem could be framed in two ways: Either it could
be formulated as a goodness-of-fit test or as a homogeneity test. In a goodness-of-fit-test for a given
starting reference visualization V1 and a candidate visualization recommendation V2 a hypothesis is
considered in the form of whether certain statistical attributes of the reference visualization (i.e. the
expected attributes) fit the corresponding observed attributes from the candidate query. Classical
tests include the single test χ2-test for discrete distributions or the Kolmogorov-Smirnov test for
continuous random variables. In the visualization context thus a candidate query would be selected
as interesting when the null hypothesis of the attributes being similar is rejected. A homogeneity-
test on the other hand tests the hypothesis that two samples were generated by the same underlying
distribution, which may be unknown. This is done, for example, by a two samples χ2-test, or a
t-test comparing one column in two histograms. A system based on homogeneity-tests would then
select a candidate query as interesting iff the sample corresponding to V2 is not homogeneous with
the underlying data distribution of the reference query V1.

However, there are major difficulties in applying standard statistical tests to the visualization
problem. First, depending on the input data the correct test needs to be selected. For example,
when using a χ2-test over discrete attributes, each bucket must not be empty. A general rule of
thumb to make sure estimates are reliable is to have at least 5 samples per bucket. Further, there
should be enough samples to actually use the χ2-test. Else, Fisher’s exact test should be used for
small sample sizes. In addition to each test being only applicable to certain input data, they all
do guarantee a different notion of interest. A user that is presented with the test results of one or
multiple tests usually will not be able to immediately connect the results to the notion of a significant
visual difference as described in Section 6.2.4. This brings up the problem on how comparable results
of e.g a t-test against a χ2-test actually are in terms of visual difference.

Second, when blindly throwing statistical tests at the visualization problem to deal with different
types of input data and different sample sizes queries return, the question is whether the hypothesis
being tested are not too simple for recognizing visual difference in a meaningful way. Consider for
this a t-test that essentially compares whether the observed mean resembled the expected mean.
Naturally, a consequence is that if they differ the candidate query should get recommended. This
may however lead to many wrong recommendations merely because the null hypothesis used is too
simple and gets rejected too often. The solution could be to use a test better suited for the problem,
e.g. in the form of a χ2-test. However, as we show in Section 6.6.3 a χ2-test is not suited best to

109

spot a notion of statistical significant visual difference and comes with its own problems as pointed
out in [52]. There is no free lunch and thus no universal single test that solves the visualization
recommendation in general.

Third, most tests only offer merely asymptotic guarantees because of the test statistic they
use. Especially for skewed distributions or queries that return only a small number of rows this is
problematic. Consider once again a χ2-test and a heavily skewed distribution over e.g. 20 buckets.
It is then very unlikely that the test statistic for the number of samples used in a visualization
setting is already χ2-distributed.

Fourth, recommendations based on tests are not necessarily symmetric in the sense that if the
candidate query was used as reference query, the old reference query would not get necessarily
recommended at all. This is especially true for the χ2-test.

Lastly, one might be tempted to simply combine statistical testing with a magical cutoff or
subsequent selection of visualizations based on the distance measure introduced in Section 6.2.
I.e., an algorithm could be to first apply statistical testing to get a candidate set of potentially
interesting visualizations, rank them after the distance measure and then select all visualizations as
interesting that have a distance higher than εS with respect to the reference visualization. However,
this approach merely delays the problem of potentially making false discoveries: Though according
to the tests the visualizations may be indeed different according to the difference guarantees the
employed tests offer, they do not necessarily need to be significantly different enough. This again
can be shown using the example in Section 6.6.3.

6.3.2 Recommendation validation via estimation

The goal of VizRec is to provide an efficient and rigorous way to verify that two visualizations are
indeed statistically different with “finite-sample” guarantees.

In VizRec we use the sample dataset D, and the visualizations obtained from it, in order to
obtain approximations of the visualization according to the entire global sample space Ω using the
Chernoff bound and later VC dimensions.

Consider a single histogram visualization V1, and assume it is comprised of K bars, one for each
of the K possible values of the chosen group-by feature X. Let pV1(x1), . . . , pV1(xk), denote the
normalized bars corresponding to V1. Note that such bars denote the probability of a randomly
chosen record from Ω being such that X = xi conditioned on the fact that such record satisfies the
predicate associated with V1.

Using the sample set D we compute an approximation for the pV1(xi), which we denote as p̂V1(xi),
following (6.3). As only these approximations can be computed from the available data, any choice
regarding which visualizations should be recommended may depend only on such approximations.

In order to argue guarantees regarding the reliability of such decisions, it is necessary to bound the
maximum difference between the correct and estimated sizes of bars in the normalized histograms.

In particular for a given δ (i.e., our level of control for false positive recommendations) we want

110

to compute the minimum value ε ∈ (0, 1)

PrD
(
|pV1

(xi)− p̂V1
(xi)| > ε

)
< δ.

Such value ε would in turn quantify the accuracy of the estimation of the pV1(xi)’s obtained by
means of their empirical counterpart p̂V1

(xi)’s.
Let F denote the predicate associated with our visualization V1. We denote as Ω|F (resp., D|F)

the subset of Ω (resp., D) which is composed by those records that satisfy the predicate F . Given a
choice of group-by attribute X the value pV1(xi) (resp., p̂V1(xi)) corresponds to (resp., is computed
as) the relative frequency of records such that X = xi in Ω|F (resp., D|F).

Fact 6.1. Let D be an uniform random sample of Ω composed by m records. For any choice of
predicate, as specified in Definition 6.0.1, the subset D|F is a uniform random sample of Ω|F of size
|D|F |.

Fact 6.1 is a straightforward consequence of the fact that D is an uniform sample of Ω.
From Fact 6.1 and from the definitions of the pV1(xi)’s and of the p̂V1(xi)’s, clearly follows that

the p̂V1
(xi)’s are unbiased estimators for the pV1

(xi)’s. That is for, every value of the group-by
feature we have:

ED
[
p̂V1

(xi)
]

= pV1
(xi). (6.4)

In order to bound the estimation error |pV1(xi) − p̂V1(xi)| is therefore sufficient to bound the
deviation from expectation (i.e., pV1

(xi)) of the empirical estimate (i.e., p̂V1
(xi)|).

Chernoff-Bounds [163], allows to obtain such bounds as:
PrD

(
|pV1

(xi)− p̂V1
(xi)| > ε

)
≤ e−2|D|F |ε2 (6.5)

Recall our definition of selectivity of a visualization as γV1 = |D|F |
D , we can then rewrite (6.5) as:

PrD
(
|pV1

(xi)− p̂V1
(xi)| > ε

)
≤ e−2γV1

nε2 , (6.6)
where n = |D|. A clear consequence of (6.6), is that the higher (resp., the lower) the selectivity

of a visualization, the higher (resp., the lower) the quality of the estimate.
In [129], the authors use the same kind of bounds to develop a sampling algorithm which ensures

the visual property of relative ordering. That is, for any pairs of vars corresponding to two possible
values x1 and x2 of the same group-by feature X, if p̂V1

(x1) > p̂V1
(x2), then, with high probability,

pV1(x1) > pV1(x2) holds as well.
While the method previously described based on an application of the Chernoff bound appears

to be very useful and practical, it is important to remark that in a single application it may only
offer guarantees on the quality of the approximation of one bar from a single visualization.

While it is in general possible to combine multiple applications of the Chernoff bound, the
required correction leads to a quick and marked decrease of the quality of the bound. As an example
if our visualization V1 is composed by K bars, a bound on the quality of the approximation of all of
the bars will result in:

PrD
(

max
i=1,...,K

|pV1(xi)− p̂V1(xi)| > ε

)
≤ Ke−2γV1

nε2 .

This bound is obtained using the union bound [163]. While potentially tolerable for a small value
of K, for large values the performance decrease can possibly lead to a complete loss of significance
of the bound itself.

111

6.3.3 Correcting for Adaptive Multi-Comparisons

The previous section showed how we can evaluate the interest of a single visualization as a statistical
test. However, this does not yet control the multiple comparisons problem which is inherent in the
recommendation system process that explores many possible visualizations. Clearly, if we let a
recommendation system explore an unlimited number of possible visualizations, it will eventually
find an “interesting” one, even in random data. How do distinguish real interesting visualization
from spurious ones that are the results of random fluctuation in the sample?

The simplest and safest method to avoid the problem is to test every visualization recommenda-
tion on an independent sample not used during the exploration process that led to this recommen-
dation. While easy and safe, this method is clearly not practical for a process that explores many
possible visualizations. Data is limited, and we cannot set aside a holdout sample for each possible
test. The process needs access to as much data as possible in the exploration process in order to
discover all interesting insights. Can we control the generalization error when computing a number
of visualizations based on one set of data?

Assume that in our exploration of possible interesting visualizations we tried ` different visualiza-
tion patterns, and we computed for each of these patterns a bound hi, i = 1, . . . , `, on the probability
that the corresponding observation in the sample D does not generalize to the distribution with re-
spect to the entire global sample space Ω. It is tempting to conclude that the probability that any
of the ` visualizations does not generalized is bounded by

∑`
i=1 hi. Unfortunately, this probability

is actually much larger when the choice of the tested visualization depends of the outcome of prior
tests.

This phenomenon is often referred to as Freedman’s paradox [] and the only known practical
approach to correct for it is to sum the error probability of all possible tests, not only the tests
actually executed 2. Note that standard statistical techniques for controlling the Family-Wise-
Error-Rate (FWER) or the False Discovery Rate (FDR) require that the collection of tests is fixed
independent of the data and therefore do not apply to the adaptive exploration scenario.

In the visualization setting, we could decide a-priory that we only consider visualizations of a
particular set of patterns, say conditioning on no more than k features. Such restriction defines
a bound on the total size of the search space, say M . If we now explore the search space and
recommend visualization that pass the individual visualization test with confidence level ≤ α/M we
are guaranteed that the probability that any of our recommendations does not generalize is bounded
by α. As we show in the experiments section this method is only effective for relatively small search
space. Next, we present a novel technique that is significantly more powerful in large and more
complex search spaces.

2Theoretical methods, such as differential privacy [59] claim to offer an alternative method to address this issue.
In practice however, the signal is lost in the added randomization before it becomes practical.

112

6.4 Statistical Guarantees Via Uniform Convergence Bounds

We now present a powerful alternative approach, providing strong and practical statistical guarantees
through a novel application of VC-dimension theory.

VC-dimension is usually considered a highly theoretical concept, with limited practical applica-
tions, mostly because of the difficulty in estimating the value of the VC-dimension of interesting
learning concept class.

Surprisingly, we develop a simple and effective method to compute the VC-dimension of a class of
predicate queries which are used to generate the visualizations according to Definition 6.0.1, which
leads to a practical and efficient solution to our problem. We start with a brief overview of the
VC theory and its application to sample complexity. We then discuss its specific application to our
visualization problem, emphasizing a simple, efficient, and easy to compute reduction of the theory
to practical applications.

6.4.1 VC dimension

The Vapnik-Chernovenkis (VC) dimension is a measure of the complexity or expressiveness of a
family of indicator functions (or equivalently a family of subsets) [230]. Formally, VC-dimension is
defined on range spaces:

Definition 6.1.1. A range space is a pair (X,R) where X is a (finite or infinite) set and R is a
(finite or infinite) family of subsets of X. The members of X are called points and those of R are
called ranges.

Note that both X and R can be infinite. Consider now a projection of the ranges into a finite
set of points A:

Definition 6.1.2. Let (X,R) be a range space and let A ⊂ X be a finite set of points in X.

1. The projection of R on A is defined as
PR(A) = {r ∩A : r ∈ R}.

2. If PR(A) = 2|A|, then A is said to be shattered by R.

The VC-dimension of a range space is the cardinality of the largest set shattered by the space:

Definition 6.1.3. Let (X,R) be a range space. The VC-dimension of (X,R), denoted VC(X,R) is
the maximum cardinality of a shattered subset of X. If there are arbitrary large shattered subsets,
then VC(X,R) =∞.

Note that a range space (X,R) with an arbitrarily large (or infinite) set of points X and an
arbitrary large family of ranges R can have bounded VC-dimension (see section 6.4.2).

A simple example is the family of closed intervals in R, where X = R, and R corresponds to the
(infinite) set of all possible closed intervals intervals [a, b], such that ∀a, b ∈ R we have 0 ≤ a ≤ b ≤ 1).
Let A = {x, y, z} be any subset of R such that x ≤ y ≤ z. No interval in R can define the subset

113

{x, z} so the VC-dimension of this range space is < 3. This observation is generalized in the well
known result:

Lemma 6.2. The VC-Dimension of the union of d closed intervals in R equals 2d.

VC-dimension, allows to characterize the sample complexity of a learning problem, that is it
allows to obtain a tradeoff between the number of sample points being observed by a learning
algorithm and the performances achievable by the algorithm itself.

Consider a range space (X,R), and a fixed range r ∈ R. If we sample uniformly at random a
set S ⊂ X of size m := |S| we know that the fraction |S∩r||S| rapidly converges to the frequency of
elements of r in X. Furthermore, there are standard bounds (Chernoff, Hoeffding []) for evaluating
the quality of this approximation. The question becomes much harder when we want to estimate
simultaneously the sizes or frequencies of all ranges in R using one sample of m elements. A finite
VC-dimension implies an explicit upper bound on the number of random samples needed to achieve
that within pre-defined error bounds (the uniform convergence property).

For a formal definition we need to distinguish between finite X, where we case estimate the sizes
r, and infinite X, where we estimate Pr(r), the frequency of r in a uniform distribution over X.

Definition 6.2.1 (Absolute approximation). Let (X,R) be a range space and let 0 ≤ ε ≤ 1. A
subset S ⊂ X is an absolute ε-approximation for X iff for all r ∈ R we have that for finite S ⊆ X,∣∣∣∣ |r||X| − |S ∩ r||S|

∣∣∣∣ ≤ ε. (6.7)

In [99] show an interesting connection between the VC dimension of a range space (X,R) and
the number of samples which are necessaries in order to obtain absolute ε-approximations of X itself

Theorem 6.3 (Sample complexity [99]). Let (X,R) be a range-space of VC-dimension at most d,
and let and 0 < ε, δ < 1. Then, there exists an absolute positive constant c such that any random
subset S ⊆ X of cardinality

|S| ≥ c

ε2

(
d+ log2 δ

−1
)

(6.8)
is an ε-approximation for X with probability at least 1− δ.

The constant c was shown experimentally [150] to be at most 0.53.

6.4.2 Statistically Valid Visualization through VC dimension

To apply the uniform convergence method via VC dimension to the visualization setup, we consider
a range space (Ω, R), where Ω is global domain, and R consists of all the possible subsets of X that
can be selected by visualizations predicates. That is, R includes all the subsets that correspond to
any bar for any visualization which can be selected using the appropriate predicate filter. Given
a choice of possible allowed predicates, we refer to the associate set of ranges as the “query range
space” and we denote it Q.

3Indeed, we use c = 0.5 in our experimental evaluation.

114

The VC dimension of a query range class is a function of the type of select operators (i.e., >,<,≥
,≤,=, 6=) and the number of (non-redundant) operators allowed on each feature in the construction
of the allowed predicates. Note that depending on the domain of the selected features and the
complexity according to which the predicate filters can be constructed, the number of possible
predicates may be infinite. In order to use the VC-approach it is however sufficient to efficiently
compute a finite upper bound of the VC-dimension of the set of allowed predicates. We discuss an
efficient method for bounding the VC-dimension of a query range space in the next subsection (See
Subsection 6.4.2).

In order to deploy the general results from the previous section, we have to verify that the sample
D provides an ε-approximation for the values pV for all the visualizations considered in the query
range space Q.

To this end, it is useful to introduce the following, well known, property of VC dimension:

Fact 6.4. Let (X,R) be a range space of VC dimension d. For any X ′ ⊆ X, the VC-dimension of
(X ′, R) is bounded by d.

Using this fact in conjunction with Theorem 6.3 we have:

Lemma 6.5. Let (Ω, Q) denote the range space of the queries being considered with VC dimension
bounded by d, and let δ ∈ (0, 1). Let D be a random subset of Ω. Then there exists a constant c,
such that with probability at least 1− δ for any filter F defined in Q we have that the subset D|F is
an εF -approximation of Ω|F with:

εF ≥
√

c

|D|F | (d+ log2 δ
−1).

Proof. Fact 6.1 ensures that given the dataset D, for any choice of a predicate F we have that D|F
is a random sample of Ω|F . Therefore regardless of the specific choice of the predicate, we have that
the VC dimension of the reduced range (Ω|F,Q) is bounded by d. From Theorem 6.3 we have that
if:

|D| ≥ c

ε̄

(
d+ log2 δ

−1
)

(6.9)
then D|F is an ε̄ approximation for the respective set Ω|F .

Lemma 6.5 provides us an efficient tool to evaluate the quality of our estimations p̂V of the actual
ground truth values pV for any choice of predicate associated with the visualization. In particular,
Lemma 6.5 verifies that the quality decreases gradually the more selective the predicate associated
with a visualization is. That is, the smaller the cardinality of |D|F |, the higher the uncertainty

¯epsilon of the estimate is.

Corollary 6.6. Let D be a random sample from Ω, and let Q be a query range space with VC
dimension bounded from above by d. For any visualization with V ∈ Q and for any value δ ∈ (0, 1)

we have that
Pr{
∣∣∣pV(X = xi)− p̂V(X=Xi)

∣∣∣ ≥ ε̄} < δ, (6.10)

115

where
ε̄ ≥ c

|D|F |
(
d+ log2 δ

−1
)
, (6.11)

F denotes the predicate associated with the visualization V and and X denotes the group-by feature
being considered.

6.4.3 The VizRec recommendation validation criteria

Consider now a given reference visualization V1 and a candidate recommendation V2, both using X
as the group-by feature, were the the domain of X has K values (i.e., dom(X) = {x1, . . . , xK}).
From Lemma 6.5, we have that with probability 1 − δ the empirical estimates of the normalized
columns are accurate within ε̄, which depends on the size of the subset of the sample dataset D used
for the reconstruction of V2.

As argued in Section 6.3, we consider a candidate visualization worth of being recommended if it
represents a different statistical behavior of the group-by feature with respect to the reference query.

Our VizRec strategy operated by comparing the values p̂V1
(xi) and p̂V2

xi for all values xi in
the domain of the chosen group-by feature. Let ε̄1 (resp., ε̄2) denote the uncertainty such that with
probability at least 1 − δ we have ‖pV1(xi) − p̂V1(xi)‖ ≤ ε̄1 and ‖pV2(xi) − p̂V2(xi)‖ ≤ ε̄2 accoding
to Lemma 6.5. If it is the case that |p̂V1

(xi) − p̂V2
(xi)| > ε̄1 + ε̄2 then we can conclude that with

probability at least 1− δ we have pV1
(xi) 6= pV2

(xi).
That is VizRec recognizes as statistically different (and hence, interesting) only pairs of visual-

izations for which the most different pair of corresponding columns differs by more than the error
in the estimations from the sample. If that is the case, it is possible to guarantee that V1 and V2

are indeed according to the Chebyschev measure. Due to the uniform convergence bound ensured
by the application of VC dimension, we can have that the probabilistic guarantees of this control
hold simultaneously for all possible pairs of reference and candidate recommendation visualizations.
The advantage of this approach compared to the use of multiple Chernoff bounds is discussed in
Appendix 6.6.4. Further, our VC dimension approach is agnostic to the adaptive nature of the
testing as it accounts preventively for all possible evaluations of pairs of visualizations. Threrefore,
we have:

Theorem 6.7. For any given δ ∈ (0, 1), VizRec ensures FWER control at level δ while offering
visual recommendations.

This criteria can be strengthened by imposing a higher threshold of difference between two
visualization in order for a candidate visualization to be considered interesting. As an example, in
Section 3.2, we discuss the possible use of a threshold εV denoting visual discernability. When using
this, more restrictive constraint, VizRec would accept a candidate visualization as interesting only
if

max
xi∈dom(X)

|p̂V1
(xi)− p̂V2

(xi)| > max{ε̄1 + ε̄2, εV}.
We present a simplified psudocode of our VizRec procedure in Algorithm 9.

116

ALGORITHM 9 VizRec: Visual Recommendations with VC dimension
1: procedure VizRec
Input: Starting visualization V1 , query space Q, sample dataset D, FWER target control level
δ ∈ (0, 1).
Output: A set of Y statistically safe recommendations sorted according to decreasing interest.

2: Y ← [] . Empty list of recommendations
3: X ← the group-by feature being considered.
4: FV1

← the predicate associated with V1.
5: ε̄1 ← d+log2 δ

−1

2|D|FV1
| . Uncertainty in V1 approx.

6: for all V ′ ∈ Q do
7: FV′ ← the predicate associated with V ′.
8: ε̄′ ← d+log2 δ

−1

2|D|FV′ |
9: dist← maxxi∈dom(X) |p̂V1(xi)− p̂V2(xi)|
10: interest← dist− (ε̄1 + ε̄2)
11: if dist ≥ ε̄1 + ε̄2 then
12: Y.append([V ′, interest]
13: or if stricter criteria with εV
14: if dist ≥ max{ε̄1 + ε̄2, εV } then
15: Y.append([V ′, interest]
16: return sort Y according to the interest value.

Our VizRec approach operates as the equivalent of a two-sample test, in the sense that we assume
that in general there is uncertainty in the reconstruction of both the reference visualization V1 and
of the candidate V2. In some scenarios, it may be possible to assume that the reference visualization
is given as exact. In such case in order for the candidate V2 to be recommended it would be sufficient
that

max
xi∈dom(X)

|p̂V1(xi)− p̂V2(xi)| > ε̄2.

After identifying as set of recommendations whose interest is guaranteed with probability at
least 1 − δ, VizRec ranks them according to the difference between their “empirical interest” (i.e.,
maxxi∈dom(X) |p̂V1(xi)−p̂V2(xi)|) and the uncertainty of the evaluation of such measure (i.e., ε̄1+ ε̄2).
While somewhat arbitrary, we chose this heuristic as it allows to emphasize the intrinsic value of
visualizations with large support over those with small support.

6.4.4 The VC dimension of the Range Space

In order to actually deploy the VC dimension bounds previously discussed it is necessary to bound
the VC dimension of the class of queries being considered. While challenging in general, we develop
here a simple and effective bound on the VC dimension of the class of queries being considered based
on the complexity of the constraints defining the predicates.

As discussed in Section 6.2.2, we assume that the values of the features can be mapped to real
numbers. Hence constraint of values of a certain feature formalized using the operators ≥,≤,= and
6= correspond to selecting intervals (either open or close) of the possible values of a feature. For
each feature, the various clauses are connected by means of “or” operators. We characterize the

117

complexity of such connection by the minimum number of non-redundant open and close intervals
of the value. In particular we say that a connection of intervals is non-redundant is there is no
connection of fewer intervals that selects the same values.

The VC dimension of a class of queries can then be characterized according to the number of
non-redundant constraints applied to the various features.

Lemma 6.8. Let Q denote the class of query functions such that each query is a conjunction of
connections of clauses on the value of distinct features. The VC dimension of Q is:

V C (Q) =

m∑
i=1

2αi + βi, (6.12)

where αi (resp., βi) denotes the maximum number of non-redundant closed (resp., open) intervals
of values corresponding to the connection of constraints regarding the value of the i-th feature, for
1 ≤ i ≤ m.

Proof. The proof is by induction on i: in the base case we have i = 1. In this case, the VC dimension
of Q corresponds to the VC dimension of the union of α1 closed intervals and β1 open intervals on
the line. By a simple modification of the result of Lemma 6.2, we have that it has VC dimension
at most 2α1 + β1. Let us now inductively assume that the statement holds for i > 1. In order to
conclude the proof we shall verify that it holds for i+ 1 as well.

Assume towards contradiction that there exists a set X of
∑i+1
j=1 2αj + βj points that can be

shattered by Q. From the inductive hypothesis, we have that for any subset of X with more than∑i
j=1 2αj + βj cannot be shattered by the family of query functions which can express constraints

only on the features 1, 2, . . . , i. Without loss of generality let X ′ denote one of the maximal subsets
of X which can be shattered using only the constraints on the features 1, 2, . . . , i. The following fact
is important for our argument

Fact 1: Recall that the queries in Q are constituted by logical conjunctions (i.e., “and”) of
connections (i.e.,“or” statement) of constraints on a feature. Hence, for any function in Q if any of
the i + 1 connections are such that they assume value “false”, then the query will not select such
point regardless of the value of the remaining i connections being conjuncted.

Consider any assignment π of {0, 1} to the points in X ′ and let rπ the range which realizes such
shattering.

If rπ would assign to any point in X \X ′ value “0”, then, according to the structure of the queries,
no constraint on the (i+ 1)-th feature would allow to assign to it value “1”, and, hence, it would not
be possible to shatter X.

Note that for any assignment π of {0, 1} to the points in X ′, there may may not exists two ranges
r1 and r2 such that based solely on constraints on the first i features, on would assign “0” to a point
in X \X ′ and the other would assign “1” to the same point. If that would be the case, then i would
be possible to shatter

∑i
j=1 2αj + βj points using just constraints on the first i features and this

would violate the inductive hypothesis.
Without loss of generality, in the following we can therefore assume that for any assignment π of

{0, 1} to the points in X ′ the ranges that realize such assignment just based on the first i features

118

would assign “1” to all the points in X \X ′. This implies that the shattering of the points in X \X ′
relies solely on the constraints on the values of the i+ 1-th feature.

Consider now the points in X \ X ′, according to our assumption |X \ X ′| = 2αi+1 + βi+1. As
discusses in the base of the induction, it is not possible to shatter 2αi+1 + βi+1 points using just
αi+1 (resp., βi+1) closed (resp., open) intervals on the (i+ 1)-th dimension.

Hence it is not possible to shatter X and we have a contradiction.

The proof for Lemma 6.8, proceeds by induction of the number of features which can be used in
constructing the queries, and builds on known results on the VC dimension of a class of functions
constituted by the union of a finite number of closed intervals on R.

119

ALGORITHM 10 Reduction to non-redundant intervals
1: procedure ReduceIntervals

Input: A conjunction of k clauses expressed as open or closed intervals
Output: An equivalent non-redundant conjunction of clauses

2: C ← False . Initialization non redundant intervals
3: if Any constraints of the kind “c ≤ ai” given as input then
4: l≤ → max ai such that c ≤ ai is clause;
5: else
6: r≥ → min ai such that c ≥ ai is clause;
7: l< → max ai such that c 6= ai is clause;
8: r> → min ai such that c 6= ai is clause;
9: I ← list of closed intervals (ai ≤ c ≤ bi) sorted according to the values of the ai increasingly.

10: opl =≤
11: if ∃(ai, bi) ∈ I|ai ≤ max{l≤, l<} then
12: l′ ← max{bi|(ai, bi) ∈ I and ai ≤ max{l≤, l<}};
13: else
14: l′ ← max{l≤, l<};
15: if l′ 6= l≤ then
16: opl ←<
17: opr =≥
18: if ∃(ai, bi) ∈ I|bi ≥ min{r≥, r>} then
19: r′ ← min{ai|(ai, bi) ∈ I and bi ≥ min{r≥, r>}};
20: else
21: r′ ← min{r≥, r>};
22: if r′ 6= r≥ then
23: opr ←>
24: if l′ > r′ then
25: return C ← True
26: else if l′ = r′ and

(
(opl =≤) or (opr =≥)

)
then

27: return C ← True
28: else
29: C ← (c opl l

′) ∨ (c opr r
′)

30: Update I by removing all intervals (ai, bi) such that bi ≤ l′ or ai ≥ r′;
31: I ′ ← ∅
32: while I 6= ∅ do . Remove intervals contained in larger intervals
33: a← min{ai|(ai, bi) ∈ I}
34: b← max{bi|(a, bi) ∈ I}
35: I ′ ← I ′ ∪ {(a, b)}
36: I ← I \ {(ai, bi)|ai ≥ a and bi ≤ b}
37: while I ′ 6= ∅ do . Merge intervals with superpositions
38: a← min{ai|(ai, bi) ∈ I ′}
39: b← b|(a, b) ∈ I ′)
40: if ∃bi|(ai, bi) ∈ I ′ and ai ≤ b then
41: b′ ← max{bi|(ai, bi) ∈ I ′ and ai ≤ b}
42: I ← I \ {(ai, bi)|ai ≥ a and bi ≤ b′}
43: I ′ ← I ′ ∪ {(a, b′)}
44: else
45: I ′ ← I ′ ∪ {(a, b)}
46: C ← C ∨ (a ≤ c ≤ b)
47: return C . Output non-redundant constraints

120

Bounding the VC dimension of a given query class

The following Algorithm 10 outlines a procedure which reduces an input query class Q to an equiv-
alent non-redundant version and computed a bound on its VC dimension. Algorithm 10 operates
“consolidating” redundant clauses in and equivalent minimal set. Such consolidation is achieved
by first (lines 2-10) determining the minimal open intervals for each feature, and then by merging
overlapping closed intervals whenever possible. Note that given a specific choice of a query class,
Algorithm 10, needs to be run just once to bound its VC dimension.

6.4.5 Trade-off between query complexity and minimum allowable selec-
tivity

Consider exploring the space of possible recommendations by constructing the filter condition one
clause at a time. Note that as the filter condition grows in its complexity (i.e., multiple non-
trivial clauses are added) the number of records selected by the predicate, and hence, it selectivity,
will decrease. It appears therefore reasonable to start evaluating simpler predicate filters and then
proceed depth-first by adding more and more clauses. While reasonable, such procedure will possibly
lead to explore large number of queries. However, most of the filters obtained by composing a high
number of filters will likely lead to visualizations supported by very little sample points, and, hence,
intrinsically unreliable.

Our VC dimension approach allows the system to recognize this fact and to use it in order to
limit the search space. As discussed in Section 6.4.5, the lower the selectivity γ of the filter condition
F of a given visualization, the higher the uncertainty ε̄,

ε̄ ≥
√
d+ log2 δ

−1

2n
γ−1

In order for the difference between a candidate and the starting visualization to be deemed sta-
tistically relevant their Chebyshev distance has to be higher than ε̄. The Chebyshev norm distance,
and, hence, the maximum interest of a candidate visualization is one. This clearly implies that all
visualizations whose selectivity γ is such that

γ ≤ d+ log2 δ
−1

2n
(6.13)

are not going to be interesting according to our procedure, and, hence, when exploring the space
of possible recommendations, we can stop refining the queries once the selectivity of the candidate
visualization drops below the threshold given by (6.13). This allows to prune the search space
by eliminating from the exploration queries which are “not worth to be considered ” as possible
recommendations.

While this may appear as a weakness of our approach, it is instead consistent with the basic
principle of distinguishing statistically relevant phenomena from effects of the noise introduced by
the sampling process. While visualizations which involve just a very limited number of sample
points may appear to represent a very interesting distribution of a subset of the data, they are more

121

likely to represent random fluctuation in the selection of the input sample than a true phenomenon
in the global domain.

By taking into consideration the selectivity of candidate visualizations, our method automatically
adjusts the threshold of interest for candidate visualization.

6.5 Discussion

In this section, we discuss and motivate some guidelines to help the analyst determine which of the
discussed tools are better suited for her actual setting.

6.5.1 Number of hypotheses being tested

Consider a scenario for which the system is limited to the analysis of a small number of possible
visualizations. In this case, it is possible to evaluate which of these candidate visualizations are
actually interesting with respect to the starting visualization V1 by applying the χ2 testing with
opportune correction for the number of hypotheses being tested, which in this case would correspond
to the number of candidate visualizations.

Further, if in the same exploration session the analyst wants also to evaluate which of the vi-
sualizations are interesting with respect to a different starting visualization V2, this would require
to treat all the additional candidate recommendations as additional hypotheses. In order to obtain
FWER it will be necessary to correct for the number of hypotheses being tested, thus resulting in
a loss of statistical power. Even though some FWER corrections such as the Holm or the Höchberg
procedure allows to reduce the effect of the multiple hypotheses correction, compared to the the
simple Bonferroni procedure, there is still a considerable decrease in the statistical power, in par-
ticular for settings for which only a low fraction of the hypotheses being tested have low p-values.
Therefore the χ2 testing approach appears to be more suitable for settings with a limited number
of candidate recommendations being evaluated.

6.5.2 Bounding the complexity of the query class

The properties of our method can also be used to determine a bound the VC-dimension of the query
range space being considered when looking to ensure that any candidate recommendation who differs
from the reference visualization by at least θ is actually marked as a safe recommendation.

Let V1 (resp., V2) denote the reference (resp., a candidate) visualization, and let γ1 (resp., γ2) is
selectivity.

Given the size of the available dataset |D|, and the desired FWER control level δ ∈ (0, 1), the
maximum VC dimension which guarantees to meet these requirements can be obtained from (6.13)
as:

d ≤ θ2 min{γ1, γ2}n− log2(δ−1).

This bound can be used as a guideline to limit the structure of the queries being considered. That
is, it offers indications on the number of different features which can be considered when building

122

the queries, and indications on their complexity, intended as the number of clauses being used in
their construction (as discussed in Section 6.4.4).

6.5.3 Preprocessing heuristics

In this section we outline some preprocessing heuristics which allow to improve the effectiveness of
our control procedures.

I. Removal of constant features: Features which assume the same value in all the records of
the sample can be safely ignored.

II. Removal of identifier-type features: Features which assign a different unique value to
each of the record can be removed. This is generally the case for identifier features (e.g.,“Street
address” for real estate dataset). This appears justified as, due to the uniqueness of their values,
they are not useful in constructing predicate conditions, nor they should be used as the “group-by”
attribute (i.e., the attribute in the x-axis). All these heuristics share the fact that they allow to
ignore some of the features (or columns) of the records. This will in turn impact both the search
space and will allow to reduce the VC dimension of the query class being considered.

6.5.4 Modified χ2-test

As described in [90] by modifying the χ2-test to test a more complex null hypothesis

H0 :

K∑
k=1

(pk − p̂k)
2

pk
< εχ2 (6.14)

together with the corresponding test statistic

T = nγ

K∑
k=1

(pk − p̂k)
2

pk

following a non-central χ2 distribution with K − 1 degrees of freedom and non-locality parameter
λnc = nγεχ2 = mεχ2 .

The distance guaranteed then is the χ2-distance dχ2 . In fact, this testing procedure can be further
generalized to use other distances that belong to the family of f-divergences like the total variation
distance or Kullback-Leibler divergence via an suitable transformation or by using non-parametric
models to estimate the distance measures before comparing them via statistical testing as in described
in more detail in [123].

6.6 Experiments

In this section, we want to show how our framework can be applied towards both real data (i.e.
the collected survey data) and synthetic data. We start by demonstrating different, problematic
scenarios with our real dataset.

123

Agree Disagree Neither agree
nor disagree

0

20

40

60

80

100

45.7% 28.7% 25.7%

Obesity is a disease

(a) Reference View

Agree Disagree Neither agree
nor disagree

0

20

40

60

80

100

62.3%

18.2% 19.5%

What flavor of potato chips
 do you prefer? == Cheese

(b) SeeDB View 1

Agree Disagree Neither agree
nor disagree

0

20

40

60

80

100

58.6%
19.3% 22.1%

Which seat do you prefer
 on a flight? == Middle

(c) SeeDB View 2

Agree Disagree Neither agree
nor disagree

0

20

40

60

80

100

33.9% 35.9% 30.2%

Do you think global warming is mainly
 caused by human activity? == No

(d) SeeDB View 3

Figure 6.2: VizRec would not mark any of these visualizations as statistically signif-
icant as the difference computed with respect to the reference is not larger than the
uncertainty of estimating the bars correctly.

6.6.1 Anecdotal examples

Our first example shows that a system without statistical control may trick the user to believe in
insights that are actually not valid and merely random. For this, assume the user wants to explore
whether there is a subpopulation that believes differently from the overall population when it comes
to whether obesity is a disease or not.

As depicted in Section 6.2 a user may falsely believe that people who prefer potato chips with
Cheese flavor are more likely to believe that obesity is a disease. Though people that consume
potato chips may lean more towards a view that obesity is a disease, the insight that in particular
people who prefer the Cheese flavor are the most interesting subpopulation is questionable.
Since for all the other flavors in our study4 no visualization is within the top results, picking
particularly the Cheese flavour as a belief changer looks like a potential false discovery. The next
recommended result seems even more random: An automatic recommender system would imply
to the user that persons who prefer the middle seat are more likely to believe that obesity is a

4BBQ, Sea Salt & Vinegar, Sour Cream and Onion, Jalapeno, Cheddar and Sour Cream, Original/Plain, I don’t
eat chips

124

Democrats Republicans0

20

40

60

80

100

62.3%
37.7%

If there were US elections tomorrow,
which party would you support?

(a) Reference View

Democrats Republicans0

20

40

60

80

100

26.6%
73.4%

Do you think global warming is mainly
 caused by human activity? == No

(b) SeeDB View 1

Democrats Republicans0

20

40

60

80

100

40.0%
60.0%

What is your preferred
music genre? == Country / Folk

(c) SeeDB View 2

Democrats Republicans0

20

40

60

80

100

46.4% 53.6%

Do you think marijuana consumption
 should be legalized? == No

(d) SeeDB View 3

Figure 6.3: VizRec would also recommend the top visualization, but declares the other
visualizations not being statistically significant enough.

disease. This seems hard to understand and more like some random result that the system produced.

In our second example, we want to show that VizRec may identify correctly the top SeeDB
recommendation(s) as being statistically valid.

Here, the user was interested in finding out whether there is a subpopulation that has a different
voting behavior for the two main parties in the United States (cf., Figure 6.3). The recommended
top visualization coincides with the top SeeDB result and seems sound. However, VizRec prevents
the user to attribute a preference towards the Republican party for persons who prefer to listen to
Country and Folk music.

Finally, it can also be the case that SeeDB recommends something as the top result which
the VizRec framework would rule out as being not significant at all. As depicted in Figure 6.4 again
a questionable relation between people who prefer Cheese flavored potato chips and those who belief
in Astrology would get recommended. However, this is actually a false discovery and not backed
statistically. On the contrary, VizRec deemed a relation between smokers and a belief in Astrology
statistically sound. In this example another interesting problem is demonstrated: Though the

125

No Yes0

20

40

60

80

100

55.4% 44.6%

Do you believe in Astrology?

(a) Reference View

No Yes0

20

40

60

80

100

34.0%
66.0%

What flavor of potato chips
 do you prefer? == Cheese

(b) SeeDB View 1

No Yes0

20

40

60

80

100

34.6%
65.4%

Do you smoke? == Yes

(c) SeeDB View 2

No Yes0

20

40

60

80

100

75.6%

24.4%

Which category below
 includes your age? == 65+

(d) SeeDB View 3

Figure 6.4: VizRec would not recommend the top visualization, but the second ranked
one.

interestingness scores of the top results are pretty close to each other (e.g. here d∞ ≈ 0.21), the score
d∞ itself is not sufficient to determine statistical relevance. Particularly, employing a simple cutoff
may lead to false discoveries. Besides the complexity of the exploration space, the number of sam-
ples used to estimate both the reference query and the candidate query need to be accounted for too.

These anecdotal examples demonstrate that without any statistical control the user is likely
to run into making false discoveries. Our VC approach does not only account for the number
of samples but also for the complexity of the data exploration and is thus a well-suited tool for
avoiding false discoveries in a visual recommendation system.

6.6.2 Random data leads to no discoveries

A meaningful baseline for any safe visual recommendation system is to make sure that random data
does not lead to any recommendations. To demonstrate that the VC approach will not recommend
any false positives, we generated a synthetic dataset with uniformly distributed data. 100, 000

samples were generated in total with the first column being selected as aggregate and the other

126

3 columns as features. The aggregate is uniformly distributed over {1, 2, 3, 4} and each of the 3

features are uniformly distributed over {1, ..., 9}.
With simple predicates (i.e. a queries formed from ≤ clauses solely) there are 1331 visualizations

to be explored (a dummy value of +∞ was used in the queries to make a feature active or not. E.g.
consider a query of the form (X1 ≤ 8) ∧ (X2 ≤ +∞) ∧ (X3 ≤ 3). In this query, feature X2 has no
effect on the rows returned since (X1 ≤ 8) ∧ (X2 ≤ +∞) ∧ (X3 ≤ 3) ≡ (X1 ≤ 8) ∧ (X3 ≤ 3). Note
that using +∞-values in the clauses does not change the VC dimension.). As a reference, a uniform
distribution over {1, 2, 3, 4} was chosen. This means, that the expected support of any visualization
is at least 105/93 samples which is a fair amount to estimate 4 bars. When not accounting for the

0.0 0.2 0.4 0.6 0.8 1.0
selectivity

0.00

0.01

0.02

0.03

0.04

0.05

in
te

re
st

in
gn

es
s s

co
re

 d

Figure 6.5: Blue dots represent interest scores all evaluated visualizations. The ε̄ curve
denotes the threshold for recommendation using VC dimension = 4 to achieve control
at level δ = 0.05. The lower the VC dimension the more the ε̄ curve takes the form
of an “L”. Since there are no visualizations with scores higher than the ε-curve, no
visualizations get recommended from the generated random data.

multiple comparison problem p-values below the threshold of α = 0.05 occur inevitably. A system
without FWER guarantees would classify them thus as false positives. Using Bonferroni (or other
comparable corrections) remedies this while, however, incurring a noticeable loss in statistical power.

In comparison, the lowest ε the VC approach guarantees is εmin = 0.0059. As discussed in
6.4.2 the required threshold ε to be met by the Chebychev norm induced distance measure d∞
depends on the selectivity γ of the query. The necessity of this can be observed in Figure 6.5 too.
With the interestingness scores(distances) being lower than the curve defined by ε for all queries
in Figure 6.5 the VC approach does not recommend any false positives in this experiment. Using
different distributions instead of the uniform one showed comparable results.

6.6.3 Statistical Testing vs. VC approach

We now show that while statistical testing in the form of a χ2-test is in general not a wrong ingredient
for building a VRS, in some situations it is unable to spot meaningful visual differences which would
however be opportunely recognized by our VizRec approach.

Assume we had a query that yieldedm = 1, 200 out of n = 10, 000 samples and a perfect estimator

127

0 2 4 6 8 10 12 14 160.0

0.1

0.2

0.3

0.4

0.5

0.6 observed
expected

Figure 6.6: Comparing two close distributions that however should not be recom-
mended since the visual difference criterion according to the VC dimension approach
is not met.

for the true distribution function of the reference and the query distribution. These distributions shall
be distributed as in Figure 6.6. Thus, the χ2-test would yield a p-value of of 2.54 · 10−5 implying
that they are different when no more than 1967 visualizations under Bonferroni’s correction are
tested. However, at a VC dimension of 10 (δ = 0.05) the required ε must be at least 0.22 which
is nearly twice as high as the 0.1 difference at the first bar as shown in Figure 6.6. Thus, the VC
approach would not select this visualization as being significantly different enough given the modest
sample size. Using the χ2 test would recommend this visualization since it only spots that there is
a difference but not whether the difference is significant enough.

In practice, scenarios like the one presented here occur especially due to outliers in the data.
I.e. it could happen that for one feature value there are only 1-5 samples that would lead without
any correction to a positive recommendation. Though a heuristic may ignore visualizations with
less than 5 samples, this would come at the cost of ignoring rare phenomena and by using some
magic number to define the threshold. I.e. when ignoring visualizations with less than b samples
per bin, easily an example with b+ 1 samples for some bin could be found where χ2 would pick up
a non-visually significant visualization.

This underscores that a VRS using the χ2-test would correctly identify two visualizations
being different but can not guarantee a meaningful difference in terms of a distance which is
crucial to build usable systems without luring the user into a false sense of security. One may
argue that filtering out visualizations after having performed statistical testing would remedy
this(which may work in practice when the interestingness score is high enough), but then there
was no guarantee that the distances observed is statistically guaranteed. Whereas the question
is dependent on the scenario (i.e. which query and which guarantees a system needs to fulfill)
we want to point out, that there is a simple way to use the χ2-test to control significant distance too.

Furthermore we want to underscore the point that the Chi-squared test is indeed a very
powerful test but that the correct estimation of the distribution dominates the selectivity. I.e.,
when we guarantee that the estimates for the probability mass function are close enough to the
true values, a testing procedure like χ2-test will even under a million possible hypothesis only need
a small number of samples to spot a difference between two distributions. We thereby define the

128

required number of point estimates to be in the range of 2 ≤ K ≤ 100 bars as meaningful. In

0 2 4 6 8 10 12 14 16
d2

0

50

100

150

200

250

n m
in

K = 2 bars
K = 100 bars

Figure 6.7: Chi-square distance dχ2 and minimum number of samples nmin required for
the χ2-test to reject the null hypothesis assuming Bonferroni correction with α′ = 0.05
and 106 queries.

Figure 6.7 it is shown that even low values for the χ2-distance d2
χ only require queries with hundreds

of samples to be identified correctly.

6.6.4 VC bounds and Chernoff-Hoeffding bounds

When only a single visualization needs to be recommended, using Chernoff-Hoeffding bounds is
both easier and yields a better guarantee than a VC-based bound. However, when testing multiple
visualizations on the same data, the VC approach dominates Chernoff-Hoeffding bounds.

1000 2000 3000 4000 5000 6000 7000 8000
number of samples n

0.00

0.02

0.04

0.06

0.08

0.10

ab
so

lu
te

 e
st

im
at

io
n

er
ro

r Chernoff bound for a single visualization at = 0.05
Chernoff bound for 1000 visualizations at = 0.05
VC bound with = 0.05 and dimension = 5
distance d to true value

Figure 6.8: Observed estimation error for a single random experiment and bounds
obtainable at a significance level of δ = 0.05. For a VC dimension of d = 1, the bound
is only slightly worse than the Chernoff bound of a single visualization. However,
with increasing number of visualizations Chernoff bounds are more conservative than
bounds obtained via VC.

To demonstrate this, random data was generated to estimate the probability mass function of
a biased Binomial distributed according to ∼ Bin(10, 0.3). In Figure 6.8 a sample path is shown
together with the theoretical bounds for a setup with a VC dimension of 5. Comparing to a Chernoff-
Hoeffding bound of a single visualization, the VC approach outperforms Chernoff-Hoeffding bounds
when learning multiple visualizations at once.

129

6.6.5 Restricting the search space

In this experiment we show that without restriction of the search space, it is likely that only few
visualizations get recommended. For this, we took again the survey dataset and removed constants
and identifier alike columns. To make it visually more distinct, we also added some artificial columns
like a running identifier.

Figure 6.9: ε-curves before and after restricting the search space. The distance d∞
needs to be higher than the uncertainty quantified via ε.

As shown in Figure 6.9, restricting the search space leads to more discoveries. I.e. the goal is to
not be over-conservative and apply meaningful preprocessing or feature selection by the user first.

6.7 Conclusion

In this work, we demonstrated why users should build visualization recommendation systems with
mechanisms to ensure statistical guarantees in order to prevent users from making false discoveries
or regarding noisy data as relevant. As a novel way which supplements classical statistical testing as
in [244] we introduced a technique based on statistical learning comparable in its power to [190]. We
demonstrated various trade-offs and problems to consider when using either technique and provided
a simple heuristic on how to explore the vast search space more efficiently by pruning it through
different preprocessing steps.

Part III

Counting sub-graphs in massive

dynamic graph streams

130

Chapter 7

TRÍEST: Counting Triangles in

Massive Graph Streams1

In this Chapter, we present trièst, a suite of one-pass streaming algorithms to compute unbiased,
low-variance, high-quality approximations of the global and local (i.e., incident to each vertex)
number of triangles in a fully-dynamic graph represented as an adversarial stream of edge insertions
and deletions.

Our algorithms use reservoir sampling and its variants to exploit the user-specified memory space
at all times. This is in contrast with previous approaches, which require hard-to-choose parameters
(e.g., a fixed sampling probability) and offer no guarantees on the amount of memory they use. We
analyze the variance of the estimations and show novel concentration bounds for these quantities.

Our experimental results on very large graphs demonstrate that trièst outperforms state-of-
the-art approaches in accuracy and exhibits a small update time.

7.1 Introduction

Exact computation of characteristic quantities of Web-scale networks is often impractical or even
infeasible due to the humongous size of these graphs. It is natural in these cases to resort to efficient-
to-compute approximations of these quantities that, when of sufficiently high quality, can be used as
proxies for the exact values.

In addition to being huge, many interesting networks are fully-dynamic and can be represented
as a stream whose elements are edges/nodes insertions and deletions which occur in an arbitrary
(even adversarial) order. Characteristic quantities in these graphs are intrinsically volatile, hence

1The work presented in this chapter appeared in the ACM Transactions on Knowledge Discovery from Data -
(TKDD) in the August 2017. A preliminary version of these results appeared in the technical program of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016). The paper received
the Best Student Paper Award for the Research Track. This is joint work with Alessandro Epasto, Professor Matteo
Riondato and Professor Eli Upfal.

131

132

there is limited added value in maintaining them exactly. The goal is rather to keep track, at all
times, of a high-quality approximation of these quantities. For efficiency, the algorithms should aim
at exploiting the available memory space as much as possible and they should require only one pass
over the stream.

We introduce trièst, a suite of sampling-based, one-pass algorithms for adversarial fully-dynamic
streams to approximate the global number of triangles and the local number of triangles incident to
each vertex. Mining local and global triangles is a fundamental primitive with many applications
(e.g., community detection [20], topic mining [64], spam/anomaly detection [14, 144], ego-networks
mining [67] and protein interaction networks analysis [160].)

Many previous works on triangle estimation in streams also employ sampling (see Sect. 7.3), but
they usually require the user to specify in advance an edge sampling probability p that is fixed for
the entire stream. This approach presents several significant drawbacks. First, choosing a p that
allows to obtain the desired approximation quality requires to know or guess a number of properties
of the input (e.g., the size of the stream). Second, a fixed p implies that the sample size grows
with the size of the stream, which is problematic when the stream size is not known in advance:
if the user specifies a large p, the algorithm may run out of memory, while for a smaller p it will
provide a suboptimal estimation. Third, even assuming to be able to compute a p that ensures (in
expectation) full use of the available space, the memory would be fully utilized only at the end of
the stream, and the estimations computed throughout the execution would be suboptimal.

Contributions We address all the above issues by taking a significant departure from the fixed-
probability, independent edge sampling approach taken even by state-of-the-art methods [144].
Specifically:

• We introduce trièst (TRI angle E stimation from ST reams), a suite of one-pass streaming
algorithms to approximate, at each time instant, the global and local number of triangles in a
fully-dynamic graph stream (i.e., a sequence of edges additions and deletions in arbitrary order)
using a fixed amount of memory. This is the first contribution that enjoys all these properties.
trièst only requires the user to specify the amount of available memory, an interpretable
parameter that is definitively known to the user.

• Our algorithms maintain a sample of edges: they use the reservoir sampling [234] and random
pairing [86] sampling schemes to exploit the available memory as much as possible. To the
best of our knowledge, ours is the first application of these techniques to subgraph counting in
fully-dynamic, arbitrarily long, adversarially ordered streams. We present an analysis of the
unbiasedness and of the variance of our estimators, and establish strong concentration results
for them. The use of reservoir sampling and random pairing requires additional sophistication
in the analysis, as the presence of an edge in the sample is not independent from the concurrent
presence of another edge. Hence, in our proofs we must consider the complex dependencies in
events involving sets of edges. The gain is worth the effort: we prove that the variance of our

133

algorithms is smaller than that of state-of-the-art methods [144], and this is confirmed by our
experiments.

• We conduct an extensive experimental evaluation of trièst on very large graphs, some with
billions of edges, comparing the performances of our algorithms to those of existing state-
of-the-art contributions [144, 116, 180]. Our algorithms significantly and consistently reduce
the average estimation error by up to 90% w.r.t. the state of the art, both in the global and
local estimation problems, while using the same amount of memory. Our algorithms are also
extremely scalable, showing update times in the order of hundreds of microseconds for graphs
with billions of edges.

Chapter organization We formally introduce the settings and the problem in Sect. 7.2. In
Sect. 7.3 we discuss related works. We present and analyze trièst and discuss our design choices
in Sect. 7.4. The results of our experimental evaluation are presented in Sect. 7.5. We draw our
conclusions in Sect. 7.6. Towards improving readability, we defer some of the longer proofs to the
end of the chapter.

7.2 Preliminaries

We study the problem of counting global and local triangles in a fully-dynamic undirected graph as
an arbitrary (adversarial) stream of edge insertions and deletions.

Formally, for any (discrete) time instant t ≥ 0, let G(t) = (V (t), E(t)) be the graph observed up
to and including time t. At time t = 0 we have V (t) = E(t) = ∅. For any t > 0, at time t + 1

we receive an element et+1 = (•, (u, v)) from a stream, where • ∈ {+,−} and u, v are two distinct
vertices. The graph G(t+1) = (V (t+1), E(t+1)) is obtained by inserting a new edge or deleting an
existing edge as follows:

E(t+1) =

 E(t) ∪ {(u, v)} if • = “ + ”
E(t) \ {(u, v)} if • = “ − ”

.

If u or v do not belong to V (t), they are added to V (t+1). Nodes are deleted from V (t) when they
have degree zero.

Edges can be added and deleted in the graph in an arbitrary adversarial order, i.e., as to cause
the worst outcome for the algorithm, but we assume that the adversary has no access to the random
bits used by the algorithm. We assume that all operations have effect : if e ∈ E(t) (resp. e 6∈ E(t)),
(+, e) (resp. (−, e)) can not be on the stream at time t+ 1.

Given a graph G(t) = (V (t), E(t)), a triangle in G(t) is a set of three edges {(u, v), (v, w), (w, u)} ⊆
E(t), with u, v, and w being three distinct vertices. We refer to {u, v, w} ⊆ V (t) as the corners of
the triangle. We denote with ∆(t) the set of all triangles in G(t), and, for any vertex u ∈ V (t), with
∆

(t)
u the subset of ∆(t) containing all and only the triangles that have u as a corner.
Problem definition. We study the Global (resp. Local) Triangle Counting Problem in Fully-

dynamic Streams, which requires to compute, at each time t ≥ 0 an estimation of |∆(t)| (resp. for

134

each u ∈ V an estimation of |∆(t)
u |).

Multigraphs Our approach can be further extended to count the number of global and local
triangles on a multigraph represented as a stream of edges. Using a formalization analogous to that
discussed for graphs, for any (discrete) time instant t ≥ 0, let G(t) = (V (t), E(t)) be the multigraph
observed up to and including time t, where E(t) is now a bag of edges between vertices of V (t). The
multigraph evolves through a series of edges additions and deletions according to almost the same
process described for graphs, with the exception that now all operations must have effect on the bag
of edges E(t). Thus, for example, we may have (+, e) on the stream at time t and again (+, e) at time
t+ 1. Some additional modifications to the model are needed to handle deletions appropriately and
we outline them in Sect. 7.4.4. The definition of triangle in a multigraph is the same as in a graph.
As before we denote with ∆(t) the set of all triangles in G(t), but now this set may contain multiple
triangles with the same set of vertices, although each of these triangles will be a different set of three
edges among those vertices, i.e., a different subset of the bag E(t). For any vertex u ∈ V (t), we still
denote with ∆

(t)
u the subset of ∆(t) containing all and only the triangles that have u as a corner,

with a similar caveat as ∆(t). The problems of global and local triangle counting in multigraph edge
streams are defined exactly in the same way as for graph edge streams.

7.3 Related work

The literature on exact and approximate triangle counting is extremely rich, including exact al-
gorithms, graph sparsifiers [226, 227], complex-valued sketches [154, 124], and MapReduce algo-
rithms [223, 171, 175, 178, 177]. Here we restrict the discussion to the works most related to ours,
i.e., to those presenting algorithms for counting or approximating the number of triangles from
data streams. We refer to the survey by [140] for an in-depth discussion of other works. Table 7.1
presents a summary of the comparison, in terms of desirable properties, between this work and
relevant previous contributions.

Table 7.1: Comparison with previous contributions

Work
Single
pass

Fixed
space

Local
counts

Global
counts

Fully-dynamic
streams

[14] 7 3/7a 3 7 7
[132] 7 7 7 3 7
[180] 3 3 7 3 7
[116] 3 3 7 3 7
[2] 3 7 7 3 7

[144] 3 7 3 7/3b 7
This work 3 3 3 3 3

aThe required space is O(|V (t)|), which, although not dependent on the number of
triangles or on the number of edges, is not fixed, in the sense that it cannot be fixed a-priori.

bGlobal triangle counting is not mentioned in the article, but the extension is straightforward.

135

Many authors presented algorithms for more restricted (i.e., less generic) settings than ours, or
for which the constraints on the computation are more lax [10, 37, 121, 137]. For example, [14]
and [132] present algorithms for approximate triangle counting from static graphs by performing
multiple passes over the data. [180] and [116] propose algorithms for approximating only the global
number of triangles from edge-insertion-only streams. [35] present a one-pass algorithm for fully-
dynamic graphs, but the triangle count estimation is (expensively) computed only at the end of the
stream and the algorithm requires, in the worst case, more memory than what is needed to store the
entire graph. [2] apply the sampling-and-hold approach to insertion-only graph stream mining to
obtain, only at the end of the stream and using non-constant space, an estimation of many network
measures including triangles.

None of these works has all the features offered by trièst: performs a single pass over the data,
handles fully-dynamic streams, uses a fixed amount of memory space, requires a single interpretable
parameter, and returns an estimation at each time instant. Furthermore, our experimental results
show that we outperform the algorithms from [180, 116] on insertion-only streams.

[144] present an algorithm for insertion-only streams that is based on independent edge sampling
with a fixed probability: for each edge on the stream, a coin with a user-specified fixed tails probabil-
ity p is flipped, and, if the outcome is tails, the edge is added to the stored sample and the estimation
of local triangles is updated. Since the memory is not fully utilized during most of the stream, the
variance of the estimate is large. Our approach handles fully-dynamic streams and makes better use
of the available memory space at each time instant, resulting in a better estimation, as shown by
our analytical and experimental results.

[234] presents a detailed analysis of the reservoir sampling scheme and discusses methods to
speed up the algorithm by reducing the number of calls to the random number generator. Random
Pairing [86] is an extension of reservoir sampling to handle fully-dynamic streams with insertions and
deletions. [47] generalize and extend the Random Pairing approach to the case where the elements
on the stream are key-value pairs, where the value may be negative (and less than −1). In our
settings, where the value is not less than −1 (for an edge deletion), these generalizations do not
apply and the algorithm presented by [47] reduces essentially to Random Pairing.

7.4 Algorithms

We present trièst, a suite of three novel algorithms for approximate global and local triangle
counting from edge streams. The first two work on insertion-only streams, while the third can
handle fully-dynamic streams where edge deletions are allowed. We defer the discussion of the
multigraph case to Sect. 7.4.4.

Parameters Our algorithms keep an edge sample S containing up to M edges from the stream,
where M is a positive integer parameter. For ease of presentation, we realistically assume M ≥ 6.
In Sect. 7.1 we motivated the design choice of only requiring M as a parameter and remarked on

136

its advantages over using a fixed sampling probability p. Our algorithms are designed to use the
available space as much as possible.

Counters trièst algorithms keep counters to compute the estimations of the global and local
number of triangles. They always keep one global counter τ for the estimation of the global number
of triangles. Only the global counter is needed to estimate the total triangle count. To estimate
the local triangle counts, the algorithms keep a set of local counters τu for a subset of the nodes
u ∈ V (t). The local counters are created on the fly as needed, and always destroyed as soon as they
have a value of 0. Hence our algorithms use O(M) space (with one exception, see Sect. 7.4.2).

Notation For any t ≥ 0, let GS = (V S , ES) be the subgraph of G(t) containing all and only the
edges in the current sample S. We denote with NSu the neighborhood of u in GS : NSu = {v ∈
V (t) : (u, v) ∈ S} and with NSu,v = NSu ∩N Sv the shared neighborhood of u and v in GS .

Presentation We only present the analysis of our algorithms for the problem of global triangle
counting. For each presented result involving the estimation of the global triangle count (e.g.,
unbiasedness, bound on variance, concentration bound) and potentially using other global quantities
(e.g., the number of pairs of triangles in ∆(t) sharing an edge), it is straightforward to derive the
correspondent variant for the estimation of the local triangle count, using similarly defined local
quantities (e.g., the number of pairs of triangles in ∆

(t)
u sharing an edge.)

7.4.1 A first algorithm – trièst-base

We first present trièst-base, which works on insertion-only streams and uses standard reservoir
sampling [234] to maintain the edge sample S:

• If t ≤M , then the edge et = (u, v) on the stream at time t is deterministically inserted in S.

• If t > M , trièst-base flips a biased coin with heads probabilityM/t. If the outcome is heads,
it chooses an edge (w, z) ∈ S uniformly at random, removes (w, z) from S, and inserts (u, v)

in S. Otherwise, S is not modified.

After each insertion (resp. removal) of an edge (u, v) from S, trièst-base calls the procedure
UpdateCounters that increments (resp. decrements) τ , τu and τv by |NSu,v|, and τc by one, for
each c ∈ NSu,v.

The pseudocode for trièst-base is presented in Alg. 11.

Estimation

For any pair of positive integers a and b such that a ≤ min{M, b} let

ξa,b =

1 if b ≤M(

b

M

)/(b− a
M − a

)
=

a−1∏
i=0

b− i
M − i otherwise

.

137

ALGORITHM 11 trièst-base
Input: Insertion-only edge stream Σ, integer M ≥ 6

1: S ← ∅, t← 0, τ ← 0
2: t← 0 . number of edges so far
3: W ← 0 . total weight of edges so far
4: for each element (+, (u, v), w) from Σ do
5: t← t+ 1
6: W ←W + w
7: if SampleEdge((u, v), t) then
8: S ← S ∪ {(u, v)}
9: UpdateCounters(+, (u, v))

10: function SampleEdge((u, v), t)
11: if t ≤M then
12: return True
13: else if FlipBiasedCoin(M

t
) = heads then

14: (u′, v′)← random edge from S
15: S ← S \ {(u′, v′)}
16: UpdateCounters(−, (u′, v′))
17: return True
18: return False

19: function UpdateCounters((•, (u, v)))
20: NSu,v ← NSu ∩NSv
21: for all c ∈ NSu,v do
22: τ ← τ • 1
23: τc ← τc • 1
24: τu ← τu • 1
25: τv ← τv • 1

As shown in the following lemma, ξ−1
k,t is the probability that k edges of G(t) are all in S at time t,

i.e., the k-th order inclusion probability of the reservoir sampling scheme.

Lemma 7.1. For any time step t and any positive integer k ≤ t, let B be any subset of E(t) of size
|B| = k ≤ t. Then, at the end of time step t,

Pr(B ⊆ S) =

 0 if k > M

ξ−1
k,t otherwise

.

Before proving Lemma 7.1, we need to introduce the following lemma, which states a well known
property of the reservoir sampling scheme.

Lemma 7.2 ([234, Sect. 2]). For any t > M , let A be any subset of E(t) of size |A| = M . Then, at
the end of time step t,

Pr(S = A) =
1(|E(t)|
M

) =
1(
t
M

) ,
i.e., the set of edges in S at the end of time t is a subset of E(t) of size M chosen uniformly at
random from all subsets of E(t) of the same size.

Proof of Lemma 7.1. If k > min{M, t}, we have Pr(B ⊆ S) = 0 because it is impossible for B to be
equal to S in these cases. From now on we then assume k ≤ min{M, t}.

138

If t ≤M , then E(t) ⊆ S and Pr(B ⊆ S) = 1 = ξ−1
k,t .

Assume instead that t > M , and let B be the family of subsets of E(t) that 1. have size M , and
2. contain B:

B = {C ⊂ E(t) : |C| = M,B ⊆ C} .
We have

|B| =
(|E(t)| − k

M − k

)
=

(
t− k
M − k

)
. (7.1)

From this and and Lemma 7.2 we then have
Pr(B ⊆ S) = Pr(S ∈ B) =

∑
C∈B

Pr(S = C)

=

(
t−k
M−k

)(
t
M

) =

(
t−k
M−k

)(
t−k
M−k

)∏k−1
i=0

t−i
M−i

=

k−1∏
i=0

M − i
t− i = ξ−1

k,t .

We make use of this lemma in the analysis of trièst-base.
Let, for any t ≥ 0, ξ(t) = ξ3,t and let τ (t) (resp. τ (t)

u) be the value of the counter τ at the end
of time step t (i.e., after the edge on the stream at time t has been processed by trièst-base)
(resp. the value of the counter τu at the end of time step t if there is such a counter, 0 otherwise).
When queried at the end of time t, trièst-base returns ξ(t)τ (t) (resp. ξ(t)τ

(t)
u) as the estimation

for the global (resp. local for u ∈ V (t)) triangle count.

Analysis

We now present the analysis of the estimations computed by trièst-base. Specifically, we prove
their unbiasedness (and their exactness for t ≤ M) and then show an exact derivation of their
variance and a concentration result. We show the results for the global counts, but results analogous
to those in Thms. 7.3, 7.5, and 7.6 hold for the local triangle count for any u ∈ V (t), replacing the
global quantities with the corresponding local ones. We also compare, theoretically, the variance of
trièst-base with that of a fixed-probability edge sampling approach [144], showing that trièst-

base has smaller variance for the vast majority of the stream.

Expectation:

We have the following result about the estimations computed by trièst-base.

Theorem 7.3. We have
ξ(t)τ (t) = τ (t) = |∆(t)| if t ≤M

E
[
ξ(t)τ (t)

]
= |∆(t)| if t > M .

The trièst-base estimations are not only unbiased in all cases, but actually exact for t ≤ M ,
i.e., for t ≤M , they are the true global/local number of triangles in G(t).

We denote with ∆S the set of triangles in GS . To prove Thm. 7.3, we need to first introduce the
folowing technical lemma:

139

Lemma 7.4. After each call to UpdateCounters, we have τ = |∆S | and τv = |∆Sv | for any
v ∈ VS s.t. |∆Sv | ≥ 1.

Proof. We only show the proof for τ , as the proof for the local counters follows the same steps.
The proof proceeds by induction. The thesis is true after the first call to UpdateCounters

at time t = 1. Since only one edge is in S at this point, we have ∆S = 0, and NSu,v = ∅, so
UpdateCounters does not modify τ , which was initialized to 0. Hence τ = 0 = ∆S .

Assume now that the thesis is true for any subsequent call to UpdateCounters up to some
point in the execution of the algorithm where an edge (u, v) is inserted or removed from S. We now
show that the thesis is still true after the call to UpdateCounters that follows this change in S.
Assume that (u, v) was inserted in S (the proof for the case of an edge being removed from S follows
the same steps). Let Sb = S \{(u, v)} and τb be the value of τ before the call to UpdateCounters

and, for any w ∈ VSb , let τb
w be the value of τw before the call to UpdateCounters. Let ∆Su,v

be the set of triangles in GS that have u and v as corners. We need to show that, after the call,
τ = |∆S |. Clearly we have ∆S = ∆S

b ∪∆Su,v and ∆S
b ∩∆Su,v = ∅, so

|∆S | = |∆Sb |+ |∆Su,v|
We have |∆Su,v| = |NSu,v,| and, by the inductive hypothesis, we have that τb = |∆Sb |. Since Up-

dateCounters increments τ by |NSu,v,|, the value of τ after UpdateCounters has completed is
exactly |∆S |.

From here, the proof of Thm. 7.3 is a straightforward application of Lemma 7.4 for the case
t ≤M and of that lemma, the definition of expectation, and Lemma 7.1 otherwise.

Proof of Thm. 7.3. We prove the statement for the estimation of global triangle count. The proof
for the local triangle counts follows the same steps.

If t ≤M , we have GS = G(t) and from Lemma 7.4 we have τ (t) = |∆S | = |∆(t)|, hence the thesis
holds.

Assume now that t > M , and assume that |∆(t)| > 0, otherwise, from Lemma 7.4, we have
τ (t) = |∆S | = 0 and trièst-base estimation is deterministically correct. Let λ = (a, b, c) ∈ ∆(t),
(where a, b, c are edges in E(t)) and let δ(t)

λ be a random variable that takes value ξ(t) if λ ∈ ∆S (i.e.,
{a, b, c} ⊆ S) at the end of the step instant t, and 0 otherwise. From Lemma 7.1, we have that

E
[
δ

(t)
λ

]
= ξ(t) Pr({a, b, c} ⊆ S) = ξ(t) 1

ξ3,t
= ξ(t) 1

ξ(t)
= 1 . (7.2)

We can write
ξ(t)τ (t) =

∑
λ∈∆(t)

δ
(t)
λ

and from this, (7.2), and linearity of expectation, we have
E
[
ξ(t)τ (t)

]
=

∑
λ∈∆(t)

E
[
δ

(t)
λ

]
= |∆(t)| .

140

Variance

We now analyze the variance of the estimation returned by trièst-base for t > M (the variance is
0 for t ≤M .)

Let r(t) be the total number of unordered pairs of distinct triangles from ∆(t) sharing an edge,2

and w(t) =
(|∆(t)|

2

)
− r(t) be the number of unordered pairs of distinct triangles that do not share

any edge.

Theorem 7.5. For any t > M , let f(t) = ξ(t) − 1,

g(t) = ξ(t) (M − 3)(M − 4)

(t− 3)(t− 4)
− 1

and
h(t) = ξ(t) (M − 3)(M − 4)(M − 5)

(t− 3)(t− 4)(t− 5)
− 1 (≤ 0).

We have:
Var

[
ξ(t)τ (t)

]
= |∆(t)|f(t) + r(t)g(t) + w(t)h(t). (7.3)

In our proofs, we carefully account for the fact that, as we use reservoir sampling [234], the
presence of an edge a in S is not independent from the concurrent presence of another edge b in
S. This is not the case for samples built using fixed-probability independent edge sampling, such
as mascot [144]. When computing the variance, we must consider not only pairs of triangles that
share an edge, as in the case for independent edge sampling approaches, but also pairs of triangles
sharing no edge, since their respective presences in the sample are not independent events. The gain
is worth the additional sophistication needed in the analysis, as the contribution to the variance by
triangles no sharing edges is non-positive (h(t) ≤ 0), i.e., it reduces the variance. A comparison of
the variance of our estimator with that obtained with a fixed-probability independent edge sampling
approach, is discussed in Sect. 7.4.1.

Proof of Thm. 7.5. Assume |∆(t)| > 0, otherwise the estimation is deterministically correct and has
variance 0 and the thesis holds. Let λ ∈ ∆(t) and δ

(t)
λ be as in the proof of Thm. 7.3. We have

2Two distinct triangles can share at most one edge.

141

Var[δ
(t)
λ] = ξ(t) − 1 and from this and the definition of variance and covariance we obtain

Var
[
ξ(t)τ (t)

]
= Var

 ∑
λ∈∆(t)

δ
(t)
λ

 =
∑

λ∈∆(t)

∑
γ∈∆(t)

Cov
[
δ

(t)
λ , δ(t)

γ

]
=

∑
λ∈∆(t)

Var
[
δ

(t)
λ

]
+

∑
λ,γ∈∆(t)

λ 6=γ

Cov
[
δ

(t)
λ , δ(t)

γ

]

= |∆(t)|(ξ(t) − 1) +
∑

λ,γ∈∆(t)

λ6=γ

Cov
[
δ

(t)
λ , δ(t)

γ

]

= |∆(t)|(ξ(t) − 1) +
∑

λ,γ∈∆(t)

λ6=γ

(
E
[
δ

(t)
λ δ(t)

γ

]
− E

[
δ

(t)
λ

]
E
[
δ(t)
γ

])

= |∆(t)|(ξ(t) − 1) +
∑

λ,γ∈∆(t)

λ6=γ

(
E
[
δ

(t)
λ δ(t)

γ

]
− 1

)
. (7.4)

Assume now |∆(t)| ≥ 2, otherwise we have r(t) = w(t) = 0 and the thesis holds as the second
term on the r.h.s. of (7.4) is 0. Let λ and γ be two distinct triangles in ∆(t). If λ and γ do not share
an edge, we have δ(t)

λ δ
(t)
γ = ξ(t)ξ(t) = ξ2

3,t if all six edges composing λ and γ are in S at the end of
time step t, and δ(t)

λ δ
(t)
γ = 0 otherwise. From Lemma 7.1 we then have that

E
[
δ

(t)
λ δ(t)

γ

]
= ξ2

3,t Pr
(
δ

(t)
λ δ(t)

γ = ξ2
3,t

)
= ξ2

3,t

1

ξ6,t
= ξ3,t

5∏
j=3

M − j
t− j

= ξ(t) (M − 3)(M − 4)(M − 5)

(t− 3)(t− 4)(t− 5)
. (7.5)

If instead λ and γ share exactly an edge we have δ(t)
λ δ

(t)
γ = ξ2

3,t if all five edges composing λ and γ
are in S at the end of time step t, and δ(t)

λ δ
(t)
γ = 0 otherwise. From Lemma 7.1 we then have that

E
[
δ

(t)
λ δ(t)

γ

]
= ξ2

3,t Pr
(
δ

(t)
λ δ(t)

γ = ξ2
3,t

)
= ξ2

3,t

1

ξ5,t
= ξ3,t

4∏
j=3

M − j
t− j

= ξ(t) (M − 3)(M − 4)

(t− 3)(t− 4)
. (7.6)

The thesis follows by combining (7.4), (7.5), (7.6), recalling the definitions of r(t) and w(t), and
slightly reorganizing the terms.

Concentration

We have the following concentration result on the estimation returned by trièst-base. Let h(t)

denote the maximum number of triangles sharing a single edge in G(t).

Theorem 7.6. Let t ≥ 0 and assume |∆(t)| > 0.3 For any ε, δ ∈ (0, 1), let

Φ = 3

√√√√8ε−2
3h(t) + 1

|∆(t)| ln

(
(3h(t) + 1)e

δ

)
.

3If |∆(t)| = 0, our algorithms correctly estimate 0 triangles.

142

If

M ≥ max

{
tΦ

(
1 +

1

2
ln2/3 (tΦ)

)
, 12ε−1 + e2, 25

}
,

then |ξ(t)τ (t) − |∆(t)|| < ε|∆(t)| with probability > 1− δ.

The roadmap to proving Thm. 7.6 is the following:

1. we first define two simpler algorithms, named indep and mix. The algorithms use, respectively,
fixed-probability independent sampling of edges and reservoir sampling (but with a different
estimator than the one used by trièst-base);

2. we then prove concentration results on the estimators of indep and mix. Specifically, the
concentration result for indep uses a result by [95] on graph coloring, while the one for mix

will depend on the concentration result for indep and on a Poisson-approximation-like tech-
nical result stating that probabilities of events when using reservoir sampling are close to the
probabilities of those events when using fixed-probability independent sampling;

3. we then show that the estimates returned by trièst-base are close to the estimates returned
by mix;

4. finally, we combine the above results and show that, if M is large enough, then the estimation
provided by mix is likely to be close to |∆(t)| and since the estimation computed by trièst-

base is close to that of mix, then it must also be close to |∆(t)|.

Note: for ease of presentation, in the following we use φ(t) to denote the estimation returned by
trièst-base, i.e., φ(t) = ξ(t)τ (t).

The indep algorithm The indep algorithm works as follows: it creates a sample Sin by sampling
edges in E(t) independently with a fixed probability p. It estimates the global number of triangles
in G(t) as

φ
(t)
in =

τ
(t)
in

p3
,

where τ (t)
in is the number of triangles in Sin. This is for example the approach taken by mascot-

c [144].

The mix algorithm The mix algorithm works as follows: it uses reservoir sampling (like trièst-

base) to create a sample Smix of M edges from E(t), but uses a different estimator than the one
used by trièst-base. Specifically, mix uses

φ
(t)
mix =

(
t

M

)3

τ (t)

as an estimator for |∆(t)|, where τ (t) is, as in trièst-base, the number of triangles in GS (trièst-

base uses φ(t) = t(t−1)(t−2)
M(M−1)(M−2)τ

(t) as an estimator.)
We call this algorithm mix because it uses reservoir sampling to create the sample, but computes

the estimate as if it used fixed-probability independent sampling, hence in some sense it “mixes” the
two approaches.

143

Concentration results for indep and mix We now show a concentration result for indep.
Then we show a technical lemma (Lemma 7.8) relating the probabilities of events when using reser-
voir sampling to the probabilities of those events when using fixed-probability independent sam-
pling. Finally, we use these results to show that the estimator used by mix is also concentrated
(Lemma 7.10).

Lemma 7.7. Let t ≥ 0 and assume |∆(t)| > 0.4 For any ε, δ ∈ (0, 1), if

p ≥ 3

√√√√2ε−2 ln

(
3h(t) + 1

δ

)
3h(t) + 1

|∆(t)| (7.7)

then
Pr
(
|φ(t)

in −∆(t)|| < ε|∆(t)|
)
> 1− δ .

Proof. Let H be a graph built as follows: H has one node for each triangle in G(t) and there is
an edge between two nodes in H if the corresponding triangles in G(t) share an edge. By this
construction, the maximum degree in H is 3h(t). Hence by the Hajanal-Szeméredi’s theorem [95]
there is a proper coloring of H with at most 3h(t) + 1 colors such that for each color there are at
least L = |∆(t)|

3h(t)+1
nodes with that color.

Assign an arbitrary numbering to the triangles of G(t) (and, therefore, to the nodes of H) and let
Xi be a Bernoulli random variable, indicating whether the triangle i in G(t) is in the sample at time
t. From the properties of independent sampling of edges we have Pr(Xi = 1) = p3 for any triangle
i. For any color c of the coloring of H, let Xc be the set of r.v.’s Xi such that the node i in H has
color c. Since the coloring of H which we are considering is proper, the r.v.’s in Xc are independent,
as they correspond to triangles which do not share any edge and edges are sampled independent
of each other. Let Yc be the sum of the r.v.’s in Xc. The r.v. Yc has a binomial distribution with
parameters |Xc| and p3

t . By the Chernoff bound for binomial r.v.’s, we have that
Pr
(
|p−3Yc − |Xc|| > ε|Xc|

)
< 2 exp

(
−ε2p3|Xc|/2

)
< 2 exp

(
−ε2p3L/2

)
≤ δ

3h(t) + 1
,

where the last step comes from the requirement in (7.7).Then by applying the union bound over all
the (at most) 3h(t) + 1 colors we get

Pr(∃ color c s.t. |p−3Yc − |Xc|| > ε|Xc|) < δ .

Since φin(t) = p−3
∑

color c

Yc, from the above equation we have that, with probability at least 1− δ,

|φ(t)
in − |∆(t)|| ≤

∣∣∣∣∣ ∑
color c

p−3Yc −
∑

color c

|Xc|
∣∣∣∣∣

≤
∑

color c

|p−3Yc − |Xc|| ≤
∑

color c

ε|Xc| ≤ ε|∆(t)| .

4For |∆(t)| = 0, indep correctly and deterministically returns 0 as the estimation.

144

The above result is of independent interest and can be used, for example, to give concentration
bounds to the estimation computed by mascot-c [144].

We remark that we can not use the same approach from Lemma 7.7 to show a concentration
result for trièst-base because it uses reservoir sampling, hence the event of having a triangle a in
S and the event of having another triangle b in S are not independent.

We can however show the following general result, similar in spirit to the well-know Poisson
approximation of balls-and-bins processes [164].

Fix the parameter M and a time t > M . Let Smix be a sample of M edges from E(t) obtained
through reservoir sampling (as mix would do), and let Sin be a sample of the edges in E(t) obtained
by sampling edges independently with probability M/t (as indep would do). We remark that the
size of Sin is in [0, t] but not necessarily M .

Lemma 7.8. Let f : 2E
(t) → {0, 1} be an arbitrary binary function from the powerset of E(t) to

{0, 1} . We have
Pr
(
f(Smix) = 1

)
≤ e
√
M Pr

(
f(Sin) = 1

)
.

Proof. Using the law of total probability, we have

Pr
(
f(Sin) = 1

)
=

t∑
k=0

Pr
(
f(Sin) = 1

∣∣ |Sin| = k
)

Pr(|Sin| = k)

≥ Pr
(
f(Sin) = 1

∣∣ |Sin| = M
)

Pr(|Sin| = M)

≥ Pr
(
f(Smix) = 1

)
Pr
(
|Sin| = M

)
, (7.8)

where the last inequality comes from Lemma 7.2: the set of edges included in Smix is a uniformly-
at-random subset of M edges from E(t), and the same holds for Sin when conditioning its size being
M .

Using the Stirling approximation
√

2πn(ne)n ≤ n! ≤ e√n(ne)n for any positive integer n, we have

Pr
(
|Sin| = M

)
=

(
t

M

)(
M

t

)M (
t−M
t

)t−M
≥ tt

√
t
√

2πe−t

e2
√
M
√
t−Me−tMM (t−M)t−M

MM (t−M)t−M

tt

≥ 1

e
√
M

.

Plugging this into (7.8) concludes the proof.

We now use the above two lemmas to show that the estimator φ(t)
mix computed by mix is concen-

trated. We will first need the following technical fact.

Fact 7.9. For any x ≥ 5, we have
ln
(
x(1 + ln2/3 x)

)
≤ ln2 x .

Lemma 7.10. Let t ≥ 0 and assume |∆(t)| < 0. For any ε, δ ∈ (0, 1), let

Ψ = 2ε−2 3h(t) + 1

|∆(t)| ln

(
e

3h(t) + 1

δ

)
.

145

If

M ≥ max

{
t

3
√

Ψ

(
1 +

1

2
ln2/3

(
t

3
√

Ψ
))

, 25

}
then

Pr
(
|φ(t)

mix − |∆(t)|| < ε|∆(t)|
)
≥ 1− δ .

Proof. For any S ⊆ E(t) let τ(S) be the number of triangles in S, i.e., the number of triplets of
edges in S that compose a triangle in G(t). Define the function g : 2E

(t) → R as

g(S) =

(
t

M

)3

τ(S) .

Assume that we run indep with p = M/t, and let Sin ⊆ E(t) be the sample built by indep (through
independent sampling with fixed probability p). Assume also that we run mix with parameter M ,
and let Smix be the sample built by mix (through reservoir sampling with a reservoir of size M). We
have that φ(t)

in = g(Sin) and φ(t)
mix = g(Smix). Define now the binary function f : 2E

(t) → {0, 1} as

f(S) =

 1 if |g(S)− |∆(t)|| > ε|∆(t)|
0 otherwise

.

We now show that, for M as in the hypothesis, we have

p ≥ 3

√√√√2ε−2
3h(t) + 1

|∆(t)| ln

(
e
√
M

3h(t) + 1

δ

)
. (7.9)

Assume for now that the above is true. From this, using Lemma 7.7 and the above fact about g we
get that

Pr
(
|φ(t)

in − |∆(t)|| > ε|∆(t)|
)

= Pr
(
f(Sin) = 1

)
<

δ

e
√
M

.

From this and Lemma 7.8, we get that
Pr
(
f(Smix) = 1

)
≤ δ

which, from the definition of f and the properties of g, is equivalent to
Pr
(
|φ(t)

mix − |∆(t)|| > ε|∆(t)|
)
≤ δ

and the proof is complete. All that is left is to show that (7.9) holds for M as in the hypothesis.
Since p = M/t, we have that (7.9) holds for

M3 ≥ t32ε−2 3h(t) + 1

|∆(t)| ln

(
√
Me

3h(t) + 1

δ

)

= t32ε−2 3h(t) + 1

|∆(t)|

ln

(
e

3h(t) + 1

δ

)
+

1

2
lnM

 . (7.10)

We now show that (7.10) holds.
Let A = t 3

√
Ψ and let B = t 3

√
Ψ ln2/3

(
t 3
√

Ψ
)
. We now show that A3 + B3 is greater or equal

to the r.h.s. of (7.10), hence M3 = (A + B)3 > A3 + B3 must also be greater or equal to the
r.h.s. of (7.10), i.e., (7.10) holds. This really reduces to show that

B3 ≥ t32ε−2 3h(t) + 1

|∆(t)|
1

2
lnM (7.11)

as the r.h.s.of (7.10) can be written as

A3 + t32ε−2 3h(t) + 1

|∆(t)|
1

2
lnM .

146

We actually show that
B3 ≥ t3Ψ

1

2
lnM (7.12)

which implies (7.11) which, as discussed, in turn implies (7.10). Consider the ratio
B3

t3Ψ 1
2 lnM

=
1
2 t

3Ψ ln2(t 3
√

Ψ)

t3Ψ 1
2 lnM

=
ln2(t 3

√
Ψ)

lnM
≥ ln2(t 3

√
Ψ)

ln

(
t 3
√

Ψ

(
1 + ln2/3

(
t 3
√

Ψ
))) . (7.13)

We now show that t 3
√

Ψ ≥ 5. By the assumptions t > M ≥ 25 and by
t

3
√

Ψ ≥ t
3
√
|∆(t)|

≥
√
t

which holds because |∆(t)| ≤ t3/2 (in a graph with t edges there can not be more than t3/2 triangles)
we have that t 3

√
Ψ ≥ 5. Hence Fact 7.9 holds and we can write, from (7.13):

ln2(t 3
√

Ψ)

ln

(
t 3
√

Ψ

(
1 + ln2/3

(
t 3
√

Ψ
))) ≥ ln2(t 3

√
Ψ)

ln2
(
t 3
√

Ψ
) ≥ 1,

which proves (7.12), and in cascade (7.11), (7.10), (7.9), and the thesis.

Relationship between trièst-base and mix When both trièst-base and mix use a sample
of size M , their respective estimators φ(t) and φ(t

mix are related as discussed in the following resul:

Lemma 7.11. For any t > M we have∣∣∣φ(t) − φ(t)
mix

∣∣∣ ≤ φ(t)
mix

4

M − 2
.

Proof. We start by stating the following fact:

Fact 7.12. For any x > 2, we have
x2

(x− 1)(x− 2)
≤ 1 +

4

x− 2
.

Let us now consider the ratio between t(t−1)(t−2)
M(M−1)(M−2) and (t/M)3. We have:

1 ≤ t(t− 1)(t− 2)

M(M − 1)(M − 2)

(
M

t

)3

=
M2

(M − 1)(M − 2)

(t− 1)(t− 2)

t2

≤ M2

(M − 1)(M − 2)

≤ 1 +
4

M − 2
where the last step follows from Fact 7.12. Using this, we obtain∣∣∣φ(t) − φ(t)

mix

∣∣∣ =

∣∣∣∣∣τ (t) t(t− 1)(t− 2)

M(M − 1)(M − 2)
− τ (t)

(
t

M

)3
∣∣∣∣∣

=

∣∣∣∣∣∣τ (t)

(
t

M

)3
(

t(t− 1)(t− 2)

M(M − 1)(M − 2)

(
M

t

)3

− 1

)∣∣∣∣∣∣
≤ τ (t)

(
t

M

)3
4

M − 2

= φ
(t)
mix

4

M − 2
.

147

Tying everything together Finally we can use the previous lemmas to prove our concentration
result for trièst-base.

Proof of Thm. 7.6. For M as in the hypothesis we have, from Lemma 7.10, that
Pr
(
φ

(t)
mix ≤ (1 + ε/2)|∆(t)|

)
≥ 1− δ .

Suppose the event φ(t)
mix ≤ (1 + ε/2)|∆(t)| (i.e., |φ(t)

mix − |∆(t)|| ≤ ε|∆(t)|/2) is indeed verified. From
this and Lemma 7.11 we have

|φ(t) − φ(t)
mix| ≤

(
1 +

ε

2

)
|∆(t)| 4

M − 2
≤ |∆(t)| 6

M − 2
,

where the last inequality follows from the fact that ε < 1. Hence, given that M ≥ 12ε−1 + e2 ≥
12ε−1 + 2, we have

|φ(t) − φ(t)
mix| ≤ |∆(t)|ε

2
.

Using the above, we can then write:
|φ(t) − |∆(t)|| = |φ(t) − φ(t)

mix + φ
(t)
mix − |∆(t)||

≤ |φ(t) − φ(t)
mix|+ |φ(t)

mix − |∆(t)||

≤ ε

2
|∆(t)|+ ε

2
|∆(t)| = ε|∆(t)|

which completes the proof.

Comparison with fixed-probability approaches

We now compare the variance of trièst-base to the variance of the fixed probability sampling
approach mascot-c [144], which samples edges independently with a fixed probability p and uses
p−3|∆S | as the estimate for the global number of triangles at time t. As shown by [144, Lemma 2],
the variance of this estimator is

Var[p−3|∆S |] = |∆(t)|f̄(p) + r(t)ḡ(p),

where f̄(p) = p−3 − 1 and ḡ(p) = p−1 − 1.
Assume that we give mascot-c the additional information that the stream has finite length T ,

and assume we run mascot-c with p = M/T so that the expected sample size at the end of the
stream is M .5 Let V(t)

fix be the resulting variance of the mascot-c estimator at time t, and let V(t)

be the variance of our estimator at time t (see (7.3)). For t ≤M , V(t) = 0, hence V(t) ≤ V(t)
fix .

For M < t < T , we can show the following result:

Lemma 7.13. Let 0 < α < 1 be a constant. For any constant M > max(8α
1−α , 42) and any t ≤ αT

we have V(t) < V(t)
fix .

Proof. We start by stating the following fact:

Fact 7.14. For any x > 42, we have
x2

(x− 3)(x− 4)
≤ 1 +

8

x
.

5We are giving mascot-c a significant advantage: if only space M were available, we should run mascot-c with
a sufficiently smaller p′ < p, otherwise there would be a constant probability that mascot-c would run out of
memory.

148

We focus on t > M > 42 otherwise the theorem is immediate. We show that for such conditions
f(M, t) < f̄(M/T) and g(M, t) < ḡ(M/T). Using the fact that t ≤ αT and Fact 7.12, we have

f(M, t)− f̄(M/T) =
t(t− 1)(t− 2)

M(M − 1)(M − 2)
− T 3

M3

<
α3T 3

M3

M2

(M − 1)(M − 2)
− T 3

M3

≤ α3T 3

M3

(
1 +

4

M − 2

)
− T 3

M3

≤ T 3

M3

(
α3 +

4α3

M − 2
− 1

)
. (7.14)

Given that T and M are ≥ 42, the r.h.s. of (7.14) is non-positive iff

α3 +
4α3

M − 2
− 1 ≤ 0 .

Solving for M we have that the above is verified when M ≥ 4α3

1−α3 + 2. This is always true given our
assumption that M > max(8α

1−α , 42): for any 0 < α < 0.6, we have 4α3

1−α3 + 2 < 42 ≤M and for any
0.6 ≤ α < 1 we have 4α3

1−α3 + 2 < 8α
1−α ≤M . Hence the r.h.s. of (7.14) is ≤ 0 and f(M, t) < f̄(M/T).

We also have:
g(M, t)− ḡ(M/T) =

t(t− 1)(t− 2)(M − 3)(M − 4)

(t− 3)(t− 4)M(M − 1)(M − 2)
− T

M

<
t

M

t2

(t− 3)(t− 4)
− T

M

≤ t

M

(
1 +

8

t

)
− T

M
, (7.15)

where the last inequality follow from Fact 7.14, since t > M > 42. Now, from (7.15) since t ≤ αT

and t > M , we can write:

g(M, t)− ḡ(M/T) <
T

M

(
α+

8α

M
− 1

)
.

The r.h.s. of this equation is non-positive given the assumption M > 8α
1−α , hence g(M, t) < ḡ(M/T).

For example, if we set α = 0.99 and run trièst-base with M ≥ 400 and mascot-c with
p = M/T , we have that trièst-base has strictly smaller variance than mascot-c for 99% of the
stream.

What about t = T? The difference between the definitions of V(t)
fix and V(t) is in the presence of

f̄(M/T) instead of f(t) (resp. ḡ(M/T) instead of g(t)) as well as the additional term w(t)h(M, t) ≤ 0

in our V(t). Let M(T) be an arbitrary slowly increasing function of T . For T → ∞ we can show
that limT→∞

f̄(M(T)/T)
f(T) = limT→∞

ḡ(M(T)/T)
g(T) = 1, hence, informally, V(T) → V(T)

fix , for T →∞.
A similar discussion also holds for the method we present in Sect. 7.4.2, and explains the results

of our experimental evaluations, which shows that our algorithms have strictly lower (empirical)
variance than fixed probability approaches for most of the stream.

149

Update time

The time to process an element of the stream is dominated by the computation of the shared
neighborhood Nu,v in UpdateCounters. A Mergesort-based algorithm for the intersection
requires O

(
deg(u) + deg(v)

)
time, where the degrees are w.r.t. the graph GS . By storing the

neighborhood of each vertex in a Hash Table (resp. an AVL tree), the update time can be reduced to
O(min{deg(v),deg(u)}) (resp. amortized time O(min{deg(v),deg(u)}+ log max{deg(v),deg(u)})).

7.4.2 Improved insertion algorithm – trièst-impr

trièst-impr trièst-impr is a variant of trièst-base with small modifications that result in higher-
quality (i.e., lower variance) estimations. The changes are:

1. UpdateCounters is called unconditionally for each element on the stream, before the algo-
rithm decides whether or not to insert the edge into S. W.r.t. the pseudocode in Alg. 11, this
change corresponds to moving the call to UpdateCounters on line 6 to before the if block.
mascot [144] uses a similar idea, but trièst-impr is significantly different as trièst-impr

allows edges to be removed from the sample, since it uses reservoir sampling.

2. trièst-impr never decrements the counters when an edge is removed from S. W.r.t. the
pseudocode in Alg. 11, we remove the call to UpdateCounters on line 13.

3. UpdateCounters performs a weighted increase of the counters using η(t) = max{1, (t−1)(t−
2)/(M(M − 1))} as weight. W.r.t. the pseudocode in Alg. 11, we replace “1” with η(t) on lines
19–22 (given change 2 above, all the calls to UpdateCounters have • = +).

The resulting pseudocode for trièst-impr is presented in Alg. 12.

Counters If we are interested only in estimating the global number of triangles in G(t), trièst-

impr needs to maintain only the counter τ and the edge sample S of sizeM , so it still requires space
O(M). If instead we are interested in estimating the local triangle counts, at any time t trièst-impr

maintains (non-zero) local counters only for the nodes u such that at least one triangle with a corner
u has been detected by the algorithm up until time t. The number of such nodes may be greater
than O(M), but this is the price to pay to obtain estimations with lower variance (Thm. 7.16).

Estimation

When queried for an estimation, trièst-impr returns the value of the corresponding counter, un-
modified.

Analysis

We now present the analysis of the estimations computed by trièst-impr, showing results involv-
ing their unbiasedness, their variance, and their concentration around their expectation. Results

150

ALGORITHM 12 trièst-impr
Input: Insertion-only edge stream Σ, integer M ≥ 6

1: S ← ∅, t← 0, τ ← 0
2: for each element (+, (u, v)) from Σ do
3: t← t+ 1
4: UpdateCounters(u, v)
5: if SampleEdge((u, v), t) then
6: S ← S ∪ {(u, v)}

7: function SampleEdge((u, v), t)
8: if t ≤M then
9: return True

10: else if FlipBiasedCoin(M
t

) = heads then
11: (u′, v′)← random edge from S
12: S ← S \ {(u′, v′)}
13: return True
14: return False

15: function UpdateCounters(u, v)
16: NSu,v ← NSu ∩NSv
17: η = max{1, (t− 1)(t− 2)/(M(M − 1))}
18: for all c ∈ NSu,v do
19: τ ← τ + η
20: τc ← τc + η
21: τu ← τu + η
22: τv ← τv + η

analogous to those in Thms. 7.15, 7.16, and 7.18 hold for the local triangle count for any u ∈ V (t),
replacing the global quantities with the corresponding local ones.

Expectation

As in trièst-base, the estimations by trièst-impr are exact at time t ≤ M and unbiased for
t > M . The proof of the following theorem follows steps similar to those in the proof of Thm 7.3:

Theorem 7.15. We have τ (t) = |∆(t)| if t ≤M and E
[
τ (t)
]

= |∆(t)| if t > M .

Proof. If t ≤ M trièst-impr behaves exactly like trièst-base, and the statement follows from
Lemma 7.3.

Assume now t > M and assume that |∆(t)| > 0, otherwise, the algorithm deterministically
returns 0 as an estimation and the thesis follows. Let λ ∈ ∆(t) and denote with a, b, and c the
edges of λ and assume, w.l.o.g., that they appear in this order (not necessarily consecutively) on the
stream. Let tλ be the time step at which c is on the stream. Let δλ be a random variable that takes
value ξ2,tλ−1 if a and b are in S at the end of time step tλ − 1, and 0 otherwise. Since it must be
tλ − 1 ≥ 2, from Lemma 7.1 we have that

Pr
(
δλ = ξ2,tλ−1

)
=

1

ξ2,tλ−1
. (7.16)

When c = (u, v) is on the stream, i.e., at time tλ, trièst-impr calls UpdateCounters and
increments the counter τ by |NSu,v|ξ2,tλ−1, where |NSu,v| is the number of triangles with (u, v) as an

151

edge in ∆S∪{c}. All these triangles have the corresponding random variables taking the same value
ξ2,tλ−1. This means that the random variable τ (t) can be expressed as

τ (t) =
∑

λ∈∆(t)

δλ .

From this, linearity of expectation, and (7.16), we get

E
[
τ (t)
]

=
∑

λ∈∆(t)

E[δλ] =
∑

λ∈∆(t)

ξ2,tλ−1 Pr
(
δλ = ξ2,tλ−1

)
=

∑
λ∈∆(t)

ξ2,tλ−1
1

ξ2,tλ−1
= |∆(t)| .

Variance

We now show an upper bound to the variance of the trièst-impr estimations for t > M . The proof
relies on a very careful analysis of the covariance of two triangles which depends on the order of
arrival of the edges in the stream (which we assume to be adversarial). For any λ ∈ ∆(t) we denote
as tλ the time at which the last edge of λ is observed on the stream. Let z(t) be the number of
unordered pairs (λ, γ) of distinct triangles in G(t) that share an edge g and are such that:

1. g is neither the last edge of λ nor γ on the stream; and

2. min{tλ, tγ} > M + 1.

Theorem 7.16. Then, for any time t > M , we have
Var

[
τ (t)
]
≤ |∆(t)|(η(t) − 1) + z(t) t− 1−M

M
. (7.17)

The bound to the variance presented in (7.17) is rather pessimistic and loose. Specifically, it does
not contain the negative contribution to the variance given by the

(|∆(t)|
2

)
− z(t) triangles that do

not satisfy the requirements in the definition of z(t). Among these pairs there are, for example, all
pairs of triangles not sharing any edge, but also many pairs of triangles that share an edge, as the
definition of z(t) consider only a subsets of these. All these pairs would give a negative contribution
to the variance, i.e., decrease the r.h.s. of (7.17), whose more correct form would be

|∆(t)|(η(t) − 1) + z(t) t− 1−M
M

+

((|∆(t)|
2

)
− z(t)

)
ωM,t

where ωM,t is (an upper bound to) the minimum negative contribution of a pair of triangles that do
not satisfy the requirements in the definition of z(t). Sadly, computing informative upper bounds to
ωM,t is not straightforward, even in the restricted setting where only pairs of triangles not sharing
any edge are considered.

To prove Thm. 7.16 we first need Lemma 7.17: For any time step t and any edge e ∈ E(t), we
denote with te the time step at which e is on the stream. For any λ ∈ ∆(t), let λ = (`1, `2, `3), where
the edges are numbered in order of appearance on the stream. We define the event Dλ as the event
that `1 and `2 are both in the edge sample S at the end of time step tλ − 1.

Lemma 7.17. Let λ = (`1, `2, `3) and γ = (g1, g2, g3) be two disjoint triangles, where the edges are
numbered in order of appearance on the stream, and assume, w.l.o.g., that the last edge of λ is on
the stream before the last edge of γ. Then

Pr(Dγ | Dλ) ≤ Pr(Dγ) .

152

Proof. Consider first the case where all edges of λ appear on the stream before any edge of γ, i.e.,
t`1 < t`2 < t`3 < tg1

< tg2
< tg3

.

The presence or absence of either or both `1 and `2 in S at the beginning of time step t`3 (i.e.,
whether Dλ happens or not) has no effect whatsoever on the probability that g1 and g2 are in the
sample S at the beginning of time step tg3

. Hence in this case,
Pr(Dγ | Dλ) = Pr(Dγ) .

Consider now the case where, for any i ∈ {1, 2}, the edges g1, . . . , gi appear on the stream before `3
does. Define now the events

• Ai: “the edges g1, . . . , gi are in the sample S at the beginning of time step t`3 .”

• Bi: if i = 1, this is the event “the edge g2 is inserted in the sample S during time step tg2
.” If

i = 2, this event is the whole event space, i.e., the event that happens with probability 1.

• C: “neither g1 nor g2 were among the edges removed from S between the beginning of time
step t`3 and the beginning of time step tg3 .”

We can rewrite Dγ as
Dγ = Ai ∩Bi ∩ C .

Hence
Pr(Dγ | Dλ) = Pr

(
Ai ∩Bi ∩ C | Dλ

)
= Pr

(
Ai | Dλ

)
Pr
(
Bi ∩ C | Ai ∩Dλ

)
. (7.18)

We now show that
Pr
(
Ai | Dλ

)
≤ Pr (Ai) .

If we assume that t`3 ≤M+1, then all the edges that appeared on the stream up until the beginning
of t`3 are in S. Therefore,

Pr
(
Ai | Dλ

)
= Pr(Ai) = 1 .

Assume instead that t`3 > M +1. Among the
(t`3−1

M

)
subsets of E(t`3−1) of sizeM , there are

(t`3−3
M−2

)
that contain `1 and `2. From Lemma 7.2, we have that at the beginning of time t`3 , S is a subset of
sizeM of E(t`3−1) chosen uniformly at random. Hence, if we condition on the fact that {`1, `2} ⊂ S,
we have that S is chosen uniformly at random from the

(t`3−3
M−2

)
subsets of E(t`3−1) of size M that

contain `1 and `2. Among these, there are
(t`3−3−i
M−2−i

)
that also contain g1, . . . , gi. Therefore,

Pr(Ai | Dλ) =

(t`3−3−i
M−2−i

)(t`3−3
M−2

) =

i−1∏
j=0

M − 2− j
t`3 − 3− j .

From Lemma 7.1 we have

Pr(Ai) =
1

ξi,t`3−1
=

i−1∏
j=0

M − j
t`3 − 1− j ,

where the last equality comes from the assumption t`3 > M + 1. From the same assumption and
from the fact that for any j ≥ 0 and any y ≥ x > j it holds x−j

y−j ≤ x
y , then we have

Pr(Ai | Dλ) ≤ Pr(Ai) .

This implies, from (7.18), that
Pr(Dγ | Dλ) ≤ Pr(Ai) Pr(Bi ∩ C | Ai ∩Dλ) . (7.19)

153

Consider now the events Bi and C. When conditioned on Ai, these event are both independent
from Dλ: if the edges g1, . . . , gi are in S at the beginning of time t`3 , the fact that the edges `1
and `2 were also in S at the beginning of time t`3 has no influence whatsoever on the actions of the
algorithm (i.e., whether an edge is inserted in or removed from S). Thus,

Pr(Ai) Pr(Bi ∩ C | Ai ∩Dλ) = Pr(Ai) Pr(Bi ∩ C | Ai) .

Putting this together with (7.19), we obtain
Pr(Dγ | Dλ) ≤ Pr(Ai) Pr(Bi ∩ C | Ai) ≤ Pr(Ai ∩Bi ∩ C) ≤ Pr(Dγ) ,

where the last inequality follows from the fact that Dγ = Ai ∩Bi ∩ C by definition.

We can now prove Thm. 7.16.

Proof of Thm. 7.16. Assume |∆(t)| > 0, otherwise trièst-impr estimation is deterministically cor-
rect and has variance 0 and the thesis holds. Let λ ∈ ∆(t) and let δλ be a random variable that
takes value ξ2,tλ−1 if both `1 and `2 are in S at the end of time step tλ − 1, and 0 otherwise. Since

Var [δλ] = ξ2,tλ−1 − 1 ≤ ξ2,t−1,

we have:

Var
[
τ (t)
]

= Var

 ∑
λ∈∆(t)

δλ

 =
∑

λ∈∆(t)

∑
γ∈∆(t)

Cov
[
δλ, δγ

]
=

∑
λ∈∆(t)

Var [δλ] +
∑

λ,γ∈∆(t)

λ 6=γ

Cov
[
δλ, δγ

]
≤ |∆(t)|(ξ2,t−1 − 1) +

∑
λ,γ∈∆(t)

λ 6=γ

(
E[δλδγ]− E[δλ]E[δγ]

)
≤ |∆(t)|(ξ2,t−1 − 1) +

∑
λ,γ∈∆(t)

λ 6=γ

(
E[δλδγ]− 1

)
. (7.20)

For any λ ∈ ∆(t) define qλ = ξ2,tλ−1. Assume now |∆(t)| ≥ 2, otherwise we have r(t) = w(t) = 0

and the thesis holds as the second term on the r.h.s. of (7.20) is 0. Let now λ and γ be two distinct
triangles in ∆(t) (hence t ≥ 5). We have

E
[
δλδγ

]
= qλqγ Pr

(
δλδγ = qλqγ

)
The event “δλδγ = qλqγ” is the intersection of events Dλ ∩ Dγ , where Dλ is the event that the
first two edges of λ are in S at the end of time step tλ − 1, and similarly for Dγ . We now look at
Pr(Dλ ∩Dγ) in the various possible cases.

Assume that λ and γ do not share any edge, and, w.l.o.g., that the third (and last) edge of λ
appears on the stream before the third (and last) edge of γ, i.e., tλ < tγ . From Lemma 7.17 and
Lemma 7.1 we then have

Pr(Dλ ∩Dγ) = Pr(Dγ |Dλ) Pr(Dλ) ≤ Pr(Dγ) Pr(Dλ) ≤ 1

qλqγ
.

Consider now the case where λ and γ share an edge g. W.l.o.g., let us assume that tλ ≤ tγ (since
the shared edge may be the last on the stream both for λ and for γ, we may have tλ = tγ). There
are the following possible sub-cases :

154

g is the last on the stream among all the edges of λ and γ In this case we have tλ = tγ .
The event “Dλ ∩Dγ” happens if and only if the four edges that, together with g, compose λ
and γ are all in S at the end of time step tλ − 1. Then, from Lemma 7.1 we have

Pr(Dλ ∩Dγ) =
1

ξ4,tλ−1
≤ 1

qλ

(M − 2)(M − 3)

(tλ − 3)(tλ − 4)
≤ 1

qλ

M(M − 1)

(tλ − 1)(tλ − 2)
≤ 1

qλqγ
.

g is the last on the stream among all the edges of λ and the first among all the edges of γ
In this case, we have that Dλ and Dγ are independent. Indeed the fact that the first two
edges of λ (neither of which is g) are in S when g arrives on the stream has no influence on
the probability that g and the second edge of γ are inserted in S and are not evicted until the
third edge of γ is on the stream. Hence we have

Pr(Dλ ∩Dγ) = Pr(Dγ) Pr(Dλ) =
1

qλqγ
.

g is the last on the stream among all the edges of λ and the second among all the edges of γ
In this case we can follow an approach similar to the one in the proof for Lemma 7.17 and
have that

Pr(Dλ ∩Dγ) ≤ Pr(Dγ) Pr(Dλ) ≤ 1

qλqγ
.

The intuition behind this is that if the first two edges of λ are in S when g is on the stream,
their presence lowers the probability that the first edge of γ is in S at the same time, and
hence that the first edge of γ and g are in S when the last edge of γ is on the stream.

g is not the last on the stream among all the edges of λ There are two situations to con-
sider, or better, one situation and all other possibilities. The situation we consider is that

1. g is the first edge of γ on the stream; and

2. the second edge of γ to be on the stream is on the stream at time t2 > tλ.

Suppose this is the case. Recall that if Dλ is verified, than we know that g is in S at the
beginning of time step tλ. Define the following events:

• E1: “the set of edges evicted from S between the beginning of time step tλ and the
beginning of time step t2 does not contain g.”

• E2: “the second edge of γ, which is on the stream at time t2, is inserted in S and the edge
that is evicted is not g.”

• E3: “the set of edges evicted from S between the beginning of time step t2 + 1 and the
beginning of time step tγ does not contain either g or the second edge of γ.”

We can then write
Pr(Dγ | Dλ) = Pr(E1 | Dλ) Pr(E2 | E1 ∩Dλ) Pr(E3 | E2 ∩ E1 ∩Dλ) .

155

We now compute the probabilities on the r.h.s., where we denote with 1t2>M (1) the function
that has value 1 if t2 > M , and value 0 otherwise:

Pr(E1 | Dλ) =

t2−1∏
j=max{tλ,M+1}

((
1− M

j

)
+
M

j

(
M − 1

M

))

=

t2−1∏
j=max{tλ,M+1}

j − 1

j
=

max{tλ − 1,M}
max{M, t2 − 1} ;

Pr(E2 | E1 ∩Dλ) =
M

max{t2,M}
M − 1t2>M (1)

M
=
M − 1t2>M (1)

max{t2,M}
;

Pr(E3 | E2 ∩ E1 ∩Dλ) =

tγ−1∏
j=max{t2+1,M+1}

((
1− M

j

)
+
M

j

(
M − 2

M

))

=

tγ−1∏
j=max{t2+1,M+1}

j − 2

j
=

max{t2,M}max{t2 − 1,M − 1}
max{tγ − 2,M − 1}max{tγ − 1,M} .

Hence, we have

Pr(Dγ | Dλ) =
max{tλ − 1,M}(M − 1t2>M (1)) max{t2 − 1,M − 1}

max{M, t2 − 1}max{(tγ − 2)(tγ − 1),M(M − 1)} .

With a (somewhat tedious) case analysis we can verify that

Pr(Dγ | Dλ) ≤ 1

qγ

max{M, tλ − 1}
M

.

Consider now the complement of the situation we just analyzed. In this case, two edges of γ,
that is, g and another edge h are on the stream before time tλ, in some non-relevant order (i.e.,
g could be the first or the second edge of γ on the stream). Define now the following events:

• E1: “h and g are both in S at the beginning of time step tλ.”

• E2: “the set of edges evicted from S between the beginning of time step tλ and the
beginning of time step tγ does not contain either g or h.”

We can then write
Pr(Dγ | Dλ) = Pr(E1 | Dλ) Pr(E2 | E1 ∩Dλ) .

If tλ ≤ M + 1, we have that Pr(E1 | Dλ) = 1. Consider instead the case tλ > M + 1. If Dλ

is verified, then both g and the other edge of λ are in S at the beginning of time step tλ. At
this time, all subsets of E(tλ−1) of size M and containing both g and the other edge of λ have
an equal probability of being S, from Lemma 7.2. There are

(
tλ−3
M−2

)
such sets. Among these,

there are
(
tλ−4
M−3

)
sets that also contain h. Therefore, if tλ > M + 1, we have

Pr(E1 | Dλ) =

(
tλ−4
M−3

)(
tλ−3
M−2

) =
M − 2

tλ − 3
.

Considering what we said before for the case tλ ≤M + 1, we then have

Pr(E1 | Dλ) = min

{
1,
M − 2

tλ − 3

}
.

We also have

Pr(E2 | E1 ∩Dλ) =

tγ−1∏
j=max{tλ,M+1}

j − 2

j
=

max{(tλ − 2)(tλ − 1),M(M − 1)}
max{(tγ − 2)(tγ − 1),M(M − 1)} .

156

Therefore,

Pr(Dγ | Dλ) = min

{
1,
M − 2

tλ − 3

}
max{(tλ − 2)(tλ − 1),M(M − 1)}
max{(tγ − 2)(tγ − 1),M(M − 1)} .

With a case analysis, one can show that

Pr(Dγ | Dλ) ≤ 1

qγ

max{M, tλ − 1}
M

.

To recap we have the following two scenarios when considering two distinct triangles γ and λ:

1. if λ and γ share an edge and, assuming w.l.o.g. that the third edge of λ is on the stream no
later than the third edge of γ, and the shared edge is neither the last among all edges of λ to
appear on the stream nor the last among all edges of γ to appear on the stream, then we have

Cov[δλ, δγ] ≤ E[δλδγ]− 1 = qλqγ Pr(δλδγ = qλqγ)− 1

≤ qλqγ
1

qλqγ

max{M, tλ − 1}
M

− 1 ≤ max{M, tλ − 1}
M

− 1 ≤ t− 1−M
M

;

where the last inequality follows from the fact that tλ ≤ t and t− 1 ≥M .

For the pairs (λ, γ) such that tλ ≤ M + 1, we have max{M, tλ − 1}/M = 1 and therefore
Cov[δλ, δγ] ≤ 0. We should therefore only consider the pairs for which tλ > M + 1. Their
number is given by z(t).

2. in all other cases, including when γ and λ do not share an edge, we have E[δλδγ] ≤ 1, and
since E[δλ]E[δγ] = 1, we have

Cov[δλ, δγ] ≤ 0 .

Hence, we can bound ∑
λ,γ∈∆(t)

λ6=γ

Cov[δλ, δγ] ≤ z(t) t− 1−M
M

and the thesis follows by combining this into (7.20).

Concentration

We now show a concentration result on the estimation of trièst-impr, which relies on Chebyshev’s
inequality [164, Thm. 3.6] and Thm. 7.16.

Theorem 7.18. Let t ≥ 0 and assume |∆(t)| > 0. For any ε, δ ∈ (0, 1), if

M > max

√

2(t− 1)(t− 2)

δε2|∆(t)|+ 2
+

1

4
+

1

2
,

2z(t)(t− 1)

δε2|∆(t)|2 + 2z(t)

then |τ (t) − |∆(t)|| < ε|∆(t)| with probability > 1− δ.

Proof. By Chebyshev’s inequality it is sufficient to prove that
Var[τ (t)]

ε2|∆(t)|2 < δ .

We can write
Var[τ (t)]

ε2|∆(t)|2 ≤
1

ε2|∆(t)|

(
(η(t)− 1) + z(t) t− 1−M

M |∆(t)|

)
.

Hence it is sufficient to impose the following two conditions:

157

Condition 1
δ

2
>
η(t)− 1

ε2|∆(t)| (7.21)

>
1

ε2|∆(t)|
(t− 1)(t− 2)−M(M − 1)

M(M − 1)
,

which is verified for:
M(M − 1) >

2(t− 1)(t− 2)

δε2|∆(t)|+ 2
.

As t > M , we have 2(t−1)(t−2)
δε2|∆(t)|+2

> 0. The condition in (7.21) is thus verified for:

M >
1

2

√4
2(t− 1)(t− 2)

δε2|∆(t)|+ 2
+ 1 + 1

Condition 2

δ

2
> z(t) t− 1−M

Mε2|∆(t)|2 ,
which is verified for:

M >
2z(t)(t− 1)

δε2|∆(t)|2 + 2z(t)
.

The theorem follows.

In Thms. 7.16 and 7.18, it is possible to replace the value z(t) with the more interpretable r(t),
which is agnostic to the order of the edges on the stream but gives a looser upper bound to the
variance.

7.4.3 Fully-dynamic algorithm – trièst-fd

trièst-fd trièst-fd computes unbiased estimates of the global and local triangle counts in a
fully-dynamic stream where edges are inserted/deleted in any arbitrary, adversarial order. It is
based on random pairing (RP) [86], a sampling scheme that extends reservoir sampling and can
handle deletions. The idea behind the RP scheme is that edge deletions seen on the stream will be
“compensated” by future edge insertions. Following RP, trièst-fd keeps a counter di (resp. do) to
keep track of the number of uncompensated edge deletions involving an edge e that was (resp. was
not) in S at the time the deletion for e was on the stream.

When an edge deletion for an edge e ∈ E(t−1) is on the stream at the beginning of time step
t, then, if e ∈ S at this time, trièst-fd removes e from S (effectively decreasing the number of
edges stored in the sample by one) and increases di by one. Otherwise, it just increases do by one.
When an edge insertion for an edge e 6∈ E(t−1) is on the stream at the beginning of time step t,
if di + do = 0, then trièst-fd follows the standard reservoir sampling scheme. If |S| < M , then
e is deterministically inserted in S without removing any edge from S already in S, otherwise it
is inserted in S with probability M/t, replacing an uniformly-chosen edge already in S. If instead
di + do > 0, then e is inserted in S with probability di/(di + do); since it must be di > 0, then it
must be |S| < M and no edge already in S needs to be removed. In any case, after having handled
the eventual insertion of e into S, the algorithm decreases di by 1 if e was inserted in S, otherwise
it decreases do by 1. trièst-fd also keeps track of s(t) = |E(t)| by appropriately incrementing or

158

ALGORITHM 13 trièst-fd
Input: Fully-dynamic edge stream Σ, integer M ≥ 6

1: S ← ∅, di ← 0, do ← 0, t← 0, s← 0
2: for each element

(
•, (u, v)

)
from Σ do

3: t← t+ 1
4: s← s • 1
5: if • = + then
6: if SampleEdge (u, v) then
7: UpdateCounters

(
+, (u, v)

)
. UpdateCounters is defined as in Alg. 11.

8: else if (u, v) ∈ S then
9: UpdateCounters

(
−, (u, v)

)
10: S ← S \ {(u, v)}
11: di ← di + 1
12: else do ← do + 1

13: function SampleEdge(u, v)
14: if do + di = 0 then
15: if |S| < M then
16: S ← S ∪ {(u, v)}
17: return True
18: else if FlipBiasedCoin(M

t
) = heads then

19: Select (z, w) uniformly at random from S
20: UpdateCounters

(
−, (z, w)

)
21: S ←

(
S \ {(z, w)}

)
∪ {(u, v)}

22: return True
23: else if FlipBiasedCoin

(
di

di+do

)
= heads then

24: S ← S ∪ {(u, v)}
25: di ← di − 1
26: return True
27: else
28: do ← do − 1
29: return False

decrementing a counter by 1 depending on whether the element on the stream is an edge insertion
or deletion. The pseudocode for trièst-fd is presented in Alg. 13 where the UpdateCounters

procedure is the one from Alg. 11.

Estimation

We denote as M (t) the size of S at the end of time t (we always have M (t) ≤ M). For any time
t, let d(t)

i and d(t)
o be the value of the counters di and do at the end of time t respectively, and let

ω(t) = min{M, s(t) + d
(t)
i + d

(t)
o }. Define

κ(t) = 1−
2∑
j=0

(
s(t)

j

)(
d

(t)
i + d

(t)
o

ω(t) − j

)/(
s(t) + d

(t)
i + d

(t)
o

ω(t)

)
. (7.22)

For any three positive integers a, b, c s.t. a ≤ b ≤ c, define6

ψa,b,c =

(
c

b

)/(c− a
b− a

)
=

a−1∏
i=0

c− i
b− i .

6We follow the convention that
(0
0

)
= 1.

159

When queried at the end of time t, for an estimation of the global number of triangles, trièst-fd

returns

ρ(t) =

 0 if M (t) < 3
τ(t)

κ(t)ψ3,M(t),s(t) = τ(t)

κ(t)

s(t)(s(t)−1)(s(t)−2)
M(t)(M(t)−1)(M(t)−2)

othw.

trièst-fd can keep track of κ(t) during the execution, each update of κ(t) taking time O(1). Hence
the time to return the estimations is still O(1).

Analysis

We now present the analysis of the estimations computed by trièst-impr, showing results involv-
ing their unbiasedness, their variance, and their concentration around their expectation. Results
analogous to those in Thms. 7.19, 7.25, and 7.30 hold for the local triangle count for any u ∈ V (t),
replacing the global quantities with the corresponding local ones.

Expectation

Let t∗ be the first t ≥M+1 such that |E(t)| = M+1, if such a time step exists (otherwise t∗ = +∞).

Theorem 7.19. We have ρ(t) = |∆(t)| for all t < t∗, and E
[
ρ(t)
]

= |∆(t)| for t ≥ t∗.

The proof, relies on properties of RP and on the definitions of κ(t) and ρ(t). Specifically, it uses
Lemma 7.22, which is the correspondent of Lemma 7.1 but for RP, and some additional technical
lemmas (including an equivalent of Lemma 7.4 but for RP) and combine them using the law of
total expectation by conditioning on the value of M (t).

Before proving Thm. 7.19 we need the following technical lemmas.
The following is a corollary of [86, Thm. 1].

Lemma 7.20. For any t > 0, and any j, 0 ≤ j ≤ s(t), let B(t) be the collection of subsets of E(t) of
size j. For any B ∈ B(t) it holds

Pr
(
S = B | M (t) = j

)
=

1(|E(t)|
j

) .

That is, conditioned on its size at the end of time step t, S is equally likely to be, at the end of time
step t, any of the subsets of E(t) of that size.

The next lemma is an immediate corollary of [86, Thm. 2].

Lemma 7.21. Recall the definition of κ(t) from (7.22). We have
κ(t) = Pr(M (t) ≥ 3) .

The next lemma follows from Lemma 7.20 in the same way as Lemma 7.1 follows from Lemma 7.2.

Lemma 7.22. For any time step t and any j, 0 ≤ j ≤ s(t), let B be any subset of E(t) of size
|B| = k ≤ s(t). Then, at the end of time step t,

Pr
(
B ⊆ S | M (t) = j

)
=

0 if k > j
1

ψk,j,s(t)
otherwise

.

160

The next two lemmas discuss properties of trièst-fd for t < t∗, where t∗ is the first time that
|E(t)| had size M + 1 (t∗ ≥M + 1).

Lemma 7.23. For all t < t∗, we have:

1. d(t)
o = 0; and

2. S = E(t); and

3. M (t) = s(t).

Proof. Since the third point in the thesis follows immediately from the second, we focus on the first
two points.

The proof is by induction on t. In the base base for t = 1: the element on the stream must be
an insertion, and the algorithm deterministically inserts the edge in S. Assume now that it is true
for all time steps up to (but excluding) some t ≤ t∗ − 1. We now show that it is also true for t.

Assume the element on the stream at time t is a deletion. The corresponding edge must be in
S, from the inductive hypothesis. Hence trièst-fd removes it from S and increments the counter
di by 1. Thus it is still true that S = E(t) and d(t)

o = 0, and the thesis holds.
Assume now that the element on the stream at time t is an insertion. From the inductive

hypothesis we have that the current value of the counter do is 0.
If the counter di has currently value 0 as well, then, because of the hypothesis that t < t∗, it

must be that |S| = M (t−1) = s(t−1) < M . Therefore trièst-fd always inserts the edge in S. Thus
it is still true that S = E(t) and d(t)

o = 0, and the thesis holds.
If otherwise di > 0, then trièst-fd flips a biased coin with probability of heads equal to

di

di + do
=
di

di
= 1,

therefore trièst-fd always inserts the edge in S and decrements di by one. Thus it is still true that
S = E(t) and d(t)

o = 0, and the thesis holds.

The following result is an immediate consequence of Lemma 7.21 and Lemma 7.23.

Lemma 7.24. For all t < t∗ such that s(t) ≥ 3, we have κ(t) = 1.

We can now prove Thm. 7.19.

Proof of Thm. 7.19. Assume for now that t < t∗. From Lemma 7.23, we have that s(t) = M (t). If
M (t) < 3, then it must be s(t) < 3, hence |∆(t)| = 0 and indeed the algorithm returns ρ(t) = 0 in
this case. If instead M (t) = s(t) ≥ 3, then we have

ρ(t) =
τ (t)

κ(t)
.

From Lemma 7.24 we have that κ(t) = 1 for all t < t∗, hence ρ(t) = τ (t) in these cases. Since (an
identical version of) Lemma 7.4 also holds for trièst-fd, we have τ (t) = |∆S | = |∆(t)|, where the
last equality comes from the fact that S = E(t) (Lemma 7.23). Hence ρ(t) = |∆(t)| for any t ≤ t∗,
as in the thesis.

161

Assume now that t ≥ t∗. Using the law of total expectation, we can write

E
[
ρ(t)
]

=

min{s(t),M}∑
j=0

E
[
ρ(t) | M (t) = j

]
Pr
(
M (t) = j

)
. (7.23)

Assume that |∆(t)| > 0, otherwise, the algorithm deterministically returns 0 as an estimation
and the thesis follows. Let λ be a triangle in ∆(t), and let δ(t)

λ be a random variable that takes value
ψ3,M(t),s(t)

κ(t)
=

s(t)(s(t) − 2)(s(t) − 2)

M (t)(M (t) − 1)(M (t) − 2)

1

κ(t)

if all edges of λ are in S at the end of the time instant t, and 0 otherwise. Since (an identical version
of) Lemma 7.4 also holds for trièst-fd, we can write

ρ(t) =
∑

λ∈∆(t)

δ
(t)
λ .

Then, using Lemma 7.21 and Lemma 7.22, we have, for 3 ≤ j ≤ min{M, s(t)},

E
[
ρ(t) | M (t) = j

]
=

∑
λ∈∆(t)

ψ3,j,s(t)

κ(t)
Pr

(
δ

(t)
λ =

ψ3,j,s(t)

κ(t)
| M (t) = j

)

= |∆(t)|ψ3,j,s(t)

κ(t)

1

ψ3,j,s(t)
=

1

κ(t)
|∆(t)|, (7.24)

and
E
[
ρ(t) | M (t) = j

]
= 0, if 0 ≤ j ≤ 2. (7.25)

Plugging this into (7.23), and using Lemma 7.21, we have

E
[
ρ(t)
]

= |∆(t)| 1

κ(t)

min{s(t),M}∑
j=3

Pr(M (t) = j) = |∆(t)| .

Variance

Theorem 7.25. Let t > t∗ s.t. |∆(t)| > 0 and s(t) ≥M . Suppose we have d(t) = d
(t)
o + d

(t)
i ≤ αs(t)

total unpaired deletions at time t, with 0 ≤ α < 1. If M ≥ 1
2
√
α′−α7 ln s(t) for some α < α′ < 1, we

have:
Var

[
ρ(t)
]
≤ (κ(t))−2|∆(t)|

(
ψ3,M(1−α′),s(t) − 1

)
+ (κ(t))−22

+ (κ(t))−2r(t)
(
ψ2

3,M(1−α′),s(t)ψ
−1
5,M(1−α′),s(t) − 1

)
The proof of Thm. 7.25 uses two results on the variance of ρ(t) conditioned on a specific value of

M (t) (Lemmas 7.26 and 7.27), and an analysis of the probability distribution of M (t) (Lemma 7.28
and Corollary 7.29). These results are then combined using the law of total variance.

Lemma 7.26. For any time t ≥ t∗, and any j, 3 ≤ j ≤ min{s(t),M}, we have:

Var
[
ρ(t)|M (t) = j

]
= (κ(t))−2

(
|∆(t)|

(
ψ3,j,s(t) − 1

)
+ r(t)

(
ψ2

3,j,s(t)ψ
−1
5,j,s(t)

− 1
)

+w(t)
(
ψ2

3,j,s(t)ψ
−1
6,j,s(t)

− 1
))

(7.26)

An analogous result holds for any u ∈ V (t), replacing the global quantities with the corresponding
local ones.

162

Proof. The proof is analogous to that of Theorem 7.5, using j in place ofM , s(t) in place of t, ψa,j,s(t)
in place of ξa,t, and using Lemma 7.22 instead of Lemma 7.1. The additional (k(t))−2 multiplicative
term comes from the (k(t))−1 term used in the definition of ρ(t).

The term w(t)
(
ψ2

3,j,s(t)
ψ−1

6,j,s(t)
− 1
)
is non-positive.

Lemma 7.27. For any time t ≥ t∗, and any j, 6 < j ≤ min{s(t),M}, if s(t) ≥M we have:

Var
[
ρ(t)|M (t) = i

]
≤ (κ(t))−2

(
|∆(t)|

(
ψ3,j,s(t) − 1

)
+ r(t)

(
ψ2

3,j,s(t)ψ
−1
5,j,s(t)

− 1
))

, for i ≥ j

Var
[
ρ(t)|M (t) = i

]
≤ (κ(t))−2

(
|∆(t)|

(
ψ3,3,s(t) − 1

)
+ r(t)

(
ψ2

3,5,s(t)ψ
−1
5,5,s(t)

− 1
))

, for i < j

An analogous result holds for any u ∈ V (t), replacing the global quantities with the corresponding
local ones.

Proof. The proof follows by observing that the term w(t)
(
ψ2

3,j,s(t)
ψ−1

6,j,s(t)
− 1
)
is non-positive, and

that (7.26) is a non-increasing function of the sample size.

The following lemma deals with properties of the r.v. M (t).

Lemma 7.28. Let t > t∗, with s(t) ≥M . Let d(t) = d
(t)
o + d

(t)
i denote the total number of unpaired

deletions at time t.7 The sample size M (t) follows the hypergeometric distribution:8

Pr
(
M (t) = j

)
=

(
s(t)

j

)(
d(t)

M−j
)/(

s(t)+d(t)

M

)
for max{M − d(t), 0} ≤ j ≤M

0 otherwise
. (7.27)

We have

E
[
M (t)

]
= M

s(t)

s(t) + d(t)
, (7.28)

and for any 0 < c < 1

Pr

(
M (t) > E

[
M (t)

]
− cM

)
≥ 1− 1

e2c2M
. (7.29)

Proof. Since t > t∗, from the definition of t∗ we have that the M (t) has reached size M at least
once (at t∗). From this and the definition of d(t) (number of uncompensated deletion), we have that
M (t) can not be less than M − d(t). The rest of the proof for (7.27) and for (7.28) follows from [86,
Thm. 2].

The concentration bound in (7.29) follows from the properties of the hypergeometric distribution
discussed by [214].

The following is an immediate corollary from Lemma 7.28.

Corollary 7.29. Consider the execution of trièst-fd at time t > t∗. Suppose we have d(t) ≤ αs(t),
with 0 ≤ α < 1 and s(t) ≥M . If M ≥ 1

2
√
α′−αc

′ ln s(t) for α < α′ < 1, we have:

Pr
(
M (t) ≥M(1− α′)

)
> 1− 1(

s(t)
)c′ .

7While both d(t)
o and d(t)

i are r.v.s, their sum is not.
8We use here the convention that

(0
0

)
= 1, and

(k
0

)
= 1.

163

We can now prove Thm. 7.25.

Proof of Thm. 7.25. From the law of total variance we have:

Var
[
ρ(t)
]

=

M∑
j=0

Var
[
ρ(t)|M (t) = j

]
Pr
(
M (t) = j

)

+

M∑
j=0

E
[
ρ(t)|M (t) = j

]2
(1− Pr

(
M (t) = j

)
) Pr

(
M (t) = j

)

− 2

M∑
j=1

j−1∑
i=0

E
[
ρ(t)|M (t) = j

]
Pr
(
M (t) = j

)
E
[
ρ(t)|M (t) = i

]
Pr
(
M (t) = i

)
.

As shown in (7.24) and (7.25), for any j = 0, 1, . . . ,M we have E
[
ρ(t)|M (t) = j

]
≥ 0. This in turn

implies:

Var
[
ρ(t)
]
≤

M∑
j=0

Var
[
ρ(t)|M (t) = j

]
Pr
(
M (t) = j

)

+

M∑
j=0

E
[
ρ(t)|M (t) = j

]2
(1− Pr

(
M (t) = j

)
) Pr

(
M (t) = j

)
. (7.30)

Let us consider separately the two main components of (7.30). From Lemma 7.27 we have:
M∑
j=0

Var
[
ρ(t)|M (t) = j

]
Pr
(
M (t) = j

)
= (7.31)

M∑
j≥M(1−α′)

Var
[
ρ(t)|M (t) = j

]
Pr
(
M (t) = j)

)
+

M(1−α′)∑
j=0

Var
[
ρ(t)|M (t) = j

]
Pr
(
M (t) = j

)
≤ (κ(t))−2

(
|∆(t)|

(
ψ3,j,s(t) − 1

)
+ r(t)

(
ψ2

3,j,s(t)ψ
−1
5,j,s(t)

− 1
))
× Pr

(
M (t) > M(1− α′)

)

≤ (κ(t))−2

|∆(t)|

(
s(t)
)3

6
+ r(t) s

(t)

6

Pr
(
M (t) ≤M(1− α′)

)
(7.32)

According to our hypothesis M ≥ 1
2
√
α′−α7 ln s(t), thus we have, from Corollary 7.29:

Pr
(
M (t) ≤M(1− α′))

)
≤ 1

(s(t))7
.

As r(t) < |∆(t)|2 and |∆(t)| ≤ (s(t))3 we have:

(κ(t))−2

|∆(t)|

(
s(t)
)3

6
+ r(t) s

(t)

6

Pr
(
M (t) ≤M(1− α′)

)
≤ (κ(t))−2

We can therefore rewrite (7.32) as:
M∑
j=0

Var
[
ρ(t)|M (t) = j

]
Pr
(
M (t) = j

)
≤ (κ(t))−2

(
|∆(t)|

(
ψ3,M(1−α′),s(t) − 1

))

+ (κ(t))−2

(
r(t)

(
ψ2

3,M(1−α′),s(t)ψ
−1
5,M(1−α′),s(t) − 1

)
+ 1

)
.

(7.33)

164

Let us now consider the term
∑M
j=0 E

[
ρ(t)|M (t) = j

]2
(1−Pr

(
M (t) = j

)
) Pr

(
M (t) = j

)
. Recall

that, from (7.24) and (7.25), we have E
[
ρ(t)|M (t) = j

]
= |∆(t)|(κ(t))−1 for j = 3, . . . ,M , and

E
[
ρ(t)|M (t) = j

]
= 0 for j = 0, 1, 2. From Corollary 7.29 we have that for j ≤ (1 − α′)M and

M ≥ 1
2
√
α′−α7 ln s(t)

Pr
(
M (t) = j

)
≤ Pr

(
M (t) ≤ (1− α′)M

)
≤ 1(

s(t)
)7 ,

and thus:
(1−α′)M∑
j=0

E
[
ρ(t)|M (t) = j

]2
(1− Pr

(
M (t) = j

)
) Pr

(
M (t) = j

)
≤ (1− α′)M |∆(t)|2(κ(t))−2(

s(t)
)7

≤ (1− α′)(κ(t))−2, (7.34)
where the last passage follows since, by hypothesis, M ≤ s(t).

Let us now consider the values j > (1− α′)M , we have:
M∑

j>(1−α′)M

E
[
ρ(t)|M (t) = j

]2
(1− Pr

(
M (t) = j

)
) Pr

(
M (t) = j

)

≤ α′M |∆(t)|2(κ(t))−2

1−
M∑

j>(1−α′)M

Pr
(
M (t) = j

)
≤ α′M |∆(t)|2(κ(t))−2

(
1− Pr

(
M (t) > (1− α′)M

))
≤ α′M |∆(t)|2(κ(t))−2(

s(t)
)7

≤ α′(κ(t))−2, (7.35)
where the last passage follows since, by hypothesis, M ≤ s(t).

The theorem follows from composing the upper bounds obtained in (7.33), (7.34) and (7.35)
according to (7.30).

Concentration

The following result relies on Chebyshev’s inequality and on Thm. 7.25, and the proof follows the
steps similar to those in the proof for Thm. 7.16.

Theorem 7.30. Let t ≥ t∗ s.t. |∆(t)| > 0 and s(t) ≥ M . Let d(t) = d
(t)
o + d

(t)
i ≤ αs(t) for some

0 ≤ α < 1. For any ε, δ ∈ (0, 1), if for some α < α′ < 1

M >max

{
1√

a′ − α7 ln s(t),

(1− α′)−1

 3

√√√√ 2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

+ 2

 ,

(1− α′)−1

3

(
r(t)s(t)

δε2|∆(t)|2(κ(t))−2 + 2r(t)

)}
then |ρ(t) − |∆(t)|| < ε|∆(t)| with probability > 1− δ.

165

Proof. By Chebyshev’s inequality it is sufficient to prove that
Var[ρ(t)]

ε2|∆(t)|2 < δ .

From Lemma 7.25, for M ≥ 1√
a′−α7 ln s(t) we have:

Var
[
ρ(t)
]
≤ (κ(t))−2|∆(t)|

(
ψ3,M(1−α′),s(t) − 1

)
+ (κ(t))−2r(t)

(
ψ2

3,M(1−α′),s(t)ψ
−1
5,M(1−α′),s(t) − 1

)
+ (κ(t))−22

Let M ′ = (1−α′)M . In order to verify that the lemma holds, it is sufficient to impose the following
two conditions:

Condition (1)

δ

2
>

(κ(t))−2

(
|∆(t)|

(
ψ3,M(1−α′),s(t) − 1

)
+ 2

)
ε2|∆(t)|2 .

As by hypothesis |∆(t)| > 0, we can rewrite this condition as:

δ

2
>

(κ(t))−2

(
ψ3,M(1−α′),s(t) − (|∆

(t)|−2
|∆(t)|

)
ε2|∆(t)|

which is verified for:

M ′(M ′ − 1)(M ′ − 2) >
2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

,

M ′ > 3

√√√√ 2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

+ 2,

M > (1− α′)−1

 3

√√√√ 2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

+ 2

 .

Condition (2)
δ

2
>

(κ(t))−2

ε2|∆(t)|2 r
(t)
(
ψ2

3,M(1−α′),s(t)ψ
−1
5,M(1−α′),s(t) − 1

)
. (7.36)

As we have:

(κ(t))−2r(t)
(
ψ2

3,M(1−α′),s(t)ψ
−1
5,M(1−α′),s(t) − 1

)
≤ (κ(t))−2r(t)

(
s(t)

6M(1− α′) − 1

)
The condition (7.36) is verified for:

M >
(1− α′)−1

3

(
r(t)s(t)

δε2|∆(t)|2(κ(t))−2 + 2r(t)

)
.

The theorem follows.

7.4.4 Counting global and local triangles in multigraphs

We now discuss how to extend trièst to approximate the local and global triangle counts in multi-
graphs.

166

TRIÈST-BASE on multigraphs

trièst-base can be adapted to work on multigraphs as follows. First of all, the sample S should
be considered a bag, i.e., it may contain multiple copies of the same edge. Secondly, the function
UpdateCounters must be changed as presented in Alg. 14, to take into account the fact that
inserting or removing an edge (u, v) from S respectively increases or decreases the global number of
triangles in GS by a quantity that depends on the product of the number of edges (c, u) ∈ S and
(c, v) ∈ S, for c in the shared neighborhood (in GS) of u and v (and similarly for the local number
of triangles incidents to c).

ALGORITHM 14 UpdateCounters function for trièst-base on multigraphs

1: function UpdateCounters((•, (u, v)))
2: NSu,v ← NSu ∩NSv
3: for all c ∈ NSu,v do
4: yc,u ← number of edges between c and u in S
5: yc,v ← number of edges between c and v in S
6: yc ← yc,u · yc,v
7: τ ← τ • yc
8: τc ← τc • yc
9: τu ← τu • yc

10: τv ← τv • yc

For this modified version of trièst-base, that we call trièst-base-m, an equivalent version of
Lemma 7.4 holds. Therefore, we can prove a result on the unbiasedness of trièst-base-m equivalent
(i.e., with the same statement) as Thm. 7.3. The proof of such result is also the same as the one for
Thm. 7.3.

To analyze the variance of trièst-base-m, we need to take into consideration the fact that, in a
multigraph, a pair of triangles may share two edges, and the variance depends (also) on the number
of such pairs. Let r(t)

1 be the number of unordered pairs of distinct triangles from ∆(t) sharing an
edge and let r(t)

2 be the number of unordered pairs of distinct triangles from ∆(t) sharing two edges
(such pairs may exist in a multigraph, but not in a simple graph). Let q(t) =

(|∆(t)|
2

)
− r(t)

1 − r
(t)
2 be

the number of unordered pairs of distinct triangles that do not share any edge.

Theorem 7.31. For any t > M , let f(t) = ξ(t) − 1,

g(t) = ξ(t) (M − 3)(M − 4)

(t− 3)(t− 4)
− 1

and
h(t) = ξ(t) (M − 3)(M − 4)(M − 5)

(t− 3)(t− 4)(t− 5)
− 1 (≤ 0),

and
j(t) = ξ(t)M − 3

t− 3
− 1 .

We have:
Var

[
ξ(t)τ (t)

]
= |∆(t)|f(t) + r

(t)
1 g(t) + r

(t)
2 j(t) + q(t)h(t).

The proof follows the same lines as the one for Thm. 7.5, with the additional steps needed to
take into account the contribution of the r(t)

2 pairs of triangles in G(t) sharing two edges.

167

TRIÈST-IMPR on multigraphs

A variant trièst-impr-m of trièst-impr for multigraphs can be obtained by using the function
UpdateCounters defined in Alg. 14, modified to increment9 the counters by η(t)y

(t)
c , rather than

y
(t)
c , where η(t) = max{1, (t− 1)(t− 2)/(M(M − 1))}. The result stated in Thm. 7.15 holds also for
the estimations computed by trièst-impr-m. An upper bound to the variance of the estimations,
similar to the one presented in Thm. 7.16 for trièst-impr, could potentially be obtained, but its
derivation would involve a high number of special cases, as we have to take into consideration the
order of the edges in the stream.

TRIÈST-FD on multigraphs

trièst-fd can be modified in order to provide an approximation of the number of global and
local triangles on multigraphs observed as a stream of edge deletions and deletions. It is however
necessary to clearly state the data model. We assume that for all pairs of vertices u, v ∈ V (t), each
edge connecting u and v is assigned a label that is unique among the edges connecting u and v. An
edge is therefore uniquely identified by its endpoints and its label as ((u, v), label). Elements of the
stream are now in the form (•, (u, v), label), where • is either + or −. This assumption, somewhat
strong, is necessary in order to apply the random pairing sampling scheme [86] to fully-dynamic
multigraph edge streams.

Within this model, we can obtain an algorithm trièst-fd-m for multigraphs by adapting trièst-

fd as follows. The sample S is a set of elements ((u, v), label). When a deletion (−, (u, v), label) is
on the stream, the sample S is modified if and only if ((u, v), label) belongs to S. This change can
be implemented in the pseudocode from Alg. 13 by modifying line 8 to be

“else if ((u, v), label) ∈ S then” .
Additionally, the function UpdateCounters to be used is the one presented in Alg. 14.

We can prove a result on the unbiasedness of trièst-fd-m equivalent (i.e., with the same state-
ment) as Thm. 7.19. The proof of such result is also the same as the one for Thm. 7.19. An upper
bound to the variance of the estimations, similar to the one presented in Thm. 7.25 for trièst-fd,
could be obtained by considering the fact that in a multigraph two triangles can share two edges, in
a fashion similar to what we discussed in Thm. 7.31.

7.4.5 Discussion

We now briefly discuss over the algorithms we just presented, the techniques they use, and the
theoretical results we obtained for trièst, in order to highlight advantages, disadvantages, and
limitations of our approach.

On reservoir sampling Our approach of using reservoir sampling to keep a random sample of
edges can be extended to many other graph mining problems, including approximate counting of

9As in trièst-impr, all calls to UpdateCounters in trièst-impr-m have • = +. See also Alg. 12.

168

other subgraphs more or less complex than triangles (e.g., squares, trees with a specific structure,
wedges, cliques, and so on). The estimations of such counts would still be unbiased, but as the
number of edges composing the subgraph(s) of interest increases, the variance of the estimators also
increases, because the probability that all edges composing a subgraph are in the sample (or all but
the last one when the last one arrives, as in the case of trièst-impr), decreases as their number
increases. Other works in the triangle counting literature [180, 116] use samples of wedges, rather
than edges. They perform worse than trièst in both accuracy and runtime (see Sect. 7.5), but the
idea of sampling and storing more complex structures rather than simple edges could be a potential
direction for approximate counting of larger subgraphs.

On the analysis of the variance We showed an exact analysis of the variance of trièst-base

but for the other algorithms we presented upper bounds to the variance of the estimates. These
bounds can still be improved as they are not currently tight. For example, we already commented
on the fact that the bound in (7.17) does not include a number of negative terms that would tighten
it (i.e., decrease the bound), and that could potentially be no smaller than the term depending on
z(t). The absence of such terms is due to the fact that it seems very challenging to obtain non-trivial
upper bounds to them that are valid for every t > M . Our proof for this bound uses a careful
case-by-case analysis, considering the different situations for pair of triangles (e.g., sharing or not
sharing an edge, and considering the order of edges on the stream). It may be possible to obtain
tighter bounds to the variance by following a more holistic approach that takes into account the fact
that the sizes of the different classes of triangle pairs are highly dependent on each other.

Another issue with the bound to the variance from (7.17) is that the quantity z(t) depends on the
order of edges on the stream. As already discussed, the bound can be made independent of the order
by loosening it even more. Very recent developments in the sampling theory literature [54] presented
sampling schemes and estimators whose second-order sampling probabilities do not depend on the
order of the stream, so it should be possible to obtain such bounds also for the triangle counting
problem, but a sampling scheme different than reservoir sampling would have to be used, and a
careful analysis is needed to establish its net advantages in terms of performances and scalability to
billion-edges graphs.

On the trade-off between speed and accuracy We concluded both previous paragraphs in this
subsection by mentioning techniques different than reservoir sampling of edges as potential directions
to improve and extend our results. In both cases these techniques are more complex not only in their
analysis but also computationally. Given that the main goal of algorithms like trièst is to make it
possible to analyze graphs with billions (and possibly more) nodes, the gain in accuracy need to be
weighted against expected slowdowns in execution. As we show in our experimental evaluation in
the next section, trièst, especially in the trièst-impr variant, actually seems to strike the right
balance between accuracy and tradeoff, when compared with existing contributions.

169

7.5 Experimental evaluation

We evaluated trièst on several real-world graphs with up to a billion edges. The algorithms were
implemented in C++,and ran on the Brown University CS department cluster.10 Each run employed
a single core and used at most 4 GB of RAM. The code is available from http://bigdata.cs.

brown.edu/triangles.html. Most of this section is related to experiments on graphs, while results
for multigraphs are described in Sect 7.5.3.

Datasets We created the streams from the following publicly available graphs (properties in Ta-
ble 7.2).

Patent (Co-Aut.) and Patent (Cit.) The Patent (Co-Aut.) and Patent (Cit.) graphs are ob-
tained from a dataset of ≈ 2 million U.S. patents granted between ’75 and ’99 [96]. In Patent
(Co-Aut.), the nodes represent inventors and there is an edge with timestamp t between two
co-inventors of a patent if the patent was granted in year t. In Patent (Cit.), nodes are patents
and there is an edge (a, b) with timestamp t if patent a cites b and a was granted in year t.

LastFm The LastFm graph is based on a dataset [38, 225] of ≈ 20 million last.fm song listenings,
≈ 1 million songs and ≈ 1000 users. There is a node for each song and an edge between two
songs if ≥ 3 users listened to both on day t.

Yahoo!-Answers The Yahoo! Answers graph is obtained from a sample of ≈ 160 million answers
to ≈ 25 millions questions posted on Yahoo! Answers [50]. An edge connects two users at time
max(t1, t2) if they both answered the same question at times t1, t2 respectively. We removed
6 outliers questions with more than 5000 answers.

Twitter This is a snapshot [139, 25] of the Twitter followers/following network with ≈ 41 million
nodes and ≈ 1.5 billions edges. We do not have time information for the edges, hence we assign
a random timestamp to the edges (of which we ignore the direction).

Ground truth To evaluate the accuracy of our algorithms, we computed the ground truth for
our smaller graphs (i.e., the exact number of global and local triangles for each time step), using an
exact algorithm. The entire current graph is stored in memory and when an edge u, v is inserted (or
deleted) we update the current count of local and global triangles by checking how many triangles
are completed (or broken). As exact algorithms are not scalable, computing the exact triangle count
is feasible only for small graphs such as Patent (Co-Aut.), Patent (Cit.) and LastFm. Table 7.2
reports the exact total number of triangles at the end of the stream for those graphs (and an estimate
for the larger ones using trièst-impr with M = 1000000).

10https://cs.brown.edu/about/system/services/hpc/grid/

http://bigdata.cs.brown.edu/triangles.html
http://bigdata.cs.brown.edu/triangles.html
last.fm
https://cs.brown.edu/about/system/services/hpc/grid/

170

Graph |V | |E| |Eu| |∆|
Patent (Co-Aut.) 1,162,227 3,660,945 2,724,036 3.53× 106

Patent (Cit.) 2,745,762 13,965,410 13,965,132 6.91× 106

LastFm 681,387 43,518,693 30,311,117 1.13× 109

Yahoo! Answers 2,432,573 1.21× 109 1.08× 109 7.86× 1010

Twitter 41,652,230 1.47× 109 1.20× 109 3.46× 1010

Table 7.2: Properties of the dynamic graph streams analyzed. |V |, |E|, |Eu|, |∆| refer
respectively to the number of nodes in the graph, the number of edge addition events,
the number of distinct edges additions, and the maximum number of triangles in the
graph (for Yahoo! Answers and Twitter estimated with trièst-impr with M = 1000000,
otherwise computed exactly with the naïve algorithm).

7.5.1 Insertion-only case

We now evaluate trièst on insertion-only streams and compare its performances with those of
state-of-the-art approaches [144, 116, 180], showing that trièst has an average estimation error
significantly smaller than these methods both for the global and local estimation problems, while
using the same amount of memory.

Estimation of the global number of triangles Starting from an empty graph we add one edge
at a time, in timestamp order. Figure 7.1 illustrates the evolution, over time, of the estimation
computed by trièst-impr with M = 1,000,000. For smaller graphs for which the ground truth can
be computed exactly, the curve of the exact count is practically indistinguishable from trièst-impr

estimation, showing the precision of the method. The estimations have very small variance even on
the very large Yahoo! Answers and Twitter graphs (point-wise max/min estimation over ten runs
is almost coincident with the average estimation). These results show that trièst-impr is very
accurate even when storing less than a 0.001 fraction of the total edges of the graph.

Comparison with the state of the art We compare quantitatively with three state-of-the-art
methods: mascot [144], Jha et al. [116] and Pavan et al. [180]. mascot is a suite of local
triangle counting methods (but provides also a global estimation). The other two are global triangle
counting approaches. None of these can handle fully-dynamic streams, in contrast with trièst-fd.
We first compare the three methods to trièst for the global triangle counting estimation. mascot

comes in two memory efficient variants: the basic mascot-c variant and an improved mascot-i

variant.11 Both variants sample edges with fixed probability p, so there is no guarantee on the
amount of memory used during the execution. To ensure fairness of comparison, we devised the
following experiment. First, we run both mascot-c and mascot-i for ` = 10 times with a fixed

11In the original work [144], this variant had no suffix and was simply called mascot. We add the -i suffix to avoid
confusion. Another variant mascot-A can be forced to store the entire graph with probability 1 by appropriately
selecting the edge order (which we assume to be adversarial) so we do not consider it here.

171

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 0 2x10 6

 4x10 6

 6x10 6

 8x10 6

 1x10 7

 1.2x10 7

 1.4x10 7

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

ground truth
max est.
min est.
avg est.

(a) Patent (Cit.)

 0

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

 1.2x10
9

 0 5x10 6

 1x10 7

 1.5x10 7

 2x10 7

 2.5x10 7

 3x10 7

 3.5x10 7

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

ground truth
max est.
min est.
avg est.

(b) LastFM

 0

 1x10
10

 2x10
10

 3x10
10

 4x10
10

 5x10
10

 6x10
10

 7x10
10

 8x10
10

 0 2x10 8

 4x10 8

 6x10 8

 8x10 8

 1x10 9

 1.2x10 9

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

max est.
min est.
avg est.

(c) Yahoo! Answers

 0

 5x10
9

 1x10
10

 1.5x10
10

 2x10
10

 2.5x10
10

 3x10
10

 3.5x10
10

 4x10
10

 0 2x10 8

 4x10 8

 6x10 8

 8x10 8

 1x10 9

 1.2x10 9

 1.4x10 9

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

max est.
min est.
avg est.

(d) Twitter

Figure 7.1: Estimation by trièst-impr of the global number of triangles over time
(intended as number of elements seen on the stream). The max, min, and avg are
taken over 10 runs. The curves are indistinguishable on purpose, to highlight the fact
that trièst-impr estimations have very small error and variance. For example, the
ground truth (for graphs for which it is available) is indistinguishable even from the
max/min point-wise estimations over ten runs. For graphs for which the ground truth
is not available, the small deviations from the avg suggest that the estimations are also
close to the true value, given that our algorithms gives unbiased estimations.

p using the same random bits for the two algorithms run-by-run (i.e. the same coin tosses used to
select the edges) measuring each time the number of edges M ′i stored in the sample at the end of
the stream (by construction this the is same for the two variants run-by-run). Then, we run our
algorithms using M = M ′i (for i ∈ [`]). We do the same to fix the size of the edge memory for Jha

et al. [116] and Pavan et al. [180].12 This way, all algorithms use the same amount of memory
for storing edges (run-by-run).

12More precisely, we use M ′i/2 estimators in Pavan et al. as each estimator stores two edges. For Jha et al. we
set the two reservoirs in the algorithm to have each size M ′i/2. This way, all algorithms use M ′i cells for storing
(w)edges.

172

We use the MAPE (Mean Average Percentage Error) to assess the accuracy of the global tri-
angle estimators over time. The MAPE measures the average percentage of the prediction er-
ror with respect to the ground truth, and is widely used in the prediction literature [109]. For
t = 1, . . . , T , let ∆

(t)
be the estimator of the number of triangles at time t, the MAPE is defined as

1
T

∑T
t=1

∣∣∣∣ |∆(t)|−∆
(t)

|∆(t)|

∣∣∣∣.13
In Fig. 7.2a, we compare the average MAPE of trièst-base and trièst-impr as well as the

two mascot variants and the other two streaming algorithms for the Patent (Co-Aut.) graph, fixing
p = 0.01. trièst-impr has the smallest error of all the algorithms compared.

We now turn our attention to the efficiency of the methods. Whenever we refer to one operation,
we mean handling one element on the stream, either one edge addition or one edge deletion. The
average update time per operation is obtained by dividing the total time required to process the
entire stream by the number of operations (i.e., elements on the streams).

Figure 7.2b shows the average update time per operation in Patent (Co-Aut.) graph, fixing
p = 0.01. Both Jha et al. [116] and Pavan et al. [180] are up to ≈ 3 orders of magnitude
slower than the mascot variants and trièst. This is expected as both algorithms have an update
complexity of Ω(M) (they have to go through the entire reservoir graph at each step), while both
mascot algorithms and trièst need only to access the neighborhood of the nodes involved in the
edge addition.14 This allows both algorithms to efficiently exploit larger memory sizes. We can
use efficiently M up to 1 million edges in our experiments, which only requires few megabytes of
RAM.15 mascot is one order of magnitude faster than trièst (which runs in ≈ 28 micros/op),
because it does not have to handle edge removal from the sample, as it offers no guarantees on the
used memory. As we will show, trièst has much higher precision and scales well on billion-edges
graphs.

Given the slow execution of the other algorithms on the larger datasets we compare in details
trièst only with mascot.16 Table 7.3 shows the average MAPE of the two approaches. The
results confirm the pattern observed in Figure 7.2a: trièst-base and trièst-impr both have an
average error significantly smaller than that of the basic mascot-c and improved mascot variant
respectively. We achieve up to a 91% (i.e., 9-fold) reduction in the MAPE while using the same
amount of memory. This experiment confirms the theory: reservoir sampling has overall lower or
equal variance in all steps for the same expected total number of sampled edges.

To further validate this observation we run trièst-impr and the improved mascot-i variant
using the same (expected memory) M = 10000. Figure 7.3 shows the max-min estimation over 10

13The MAPE is not defined for t s.t. ∆(t) = 0 so we compute it only for t s.t. |∆(t)| > 0. All algorithms we consider
are guaranteed to output the correct answer for t s.t. |∆(t)| = 0.

14We observe that Pavan et al. [180] would be more efficient with batch updates. However, we want to estimate
the triangles continuously at each update. In their experiments they use batch sizes of million of updates for
efficiency.

15The experiments by [116] use M in the order of 103, and in those by [180], large M values require large batches
for efficiency.

16We attempted to run the other two algorithms but they did not complete after 12 hours for the larger datasets
in Table 7.3 with the prescribed p parameter setting.

173

Max. MAPE Avg. MAPE

Graph Impr. p mascot trièst mascot trièst Change

Patent (Cit.)

N 0.01 0.9231 0.2583 0.6517 0.1811 -72.2%
Y 0.01 0.1907 0.0363 0.1149 0.0213 -81.4%
N 0.1 0.0839 0.0124 0.0605 0.0070 -88.5%
Y 0.1 0.0317 0.0037 0.0245 0.0022 -91.1%

Patent (Co-aut.)

N 0.01 2.3017 0.3029 0.8055 0.1820 -77.4%
Y 0.01 0.1741 0.0261 0.1063 0.0177 -83.4%
N 0.1 0.0648 0.0175 0.0390 0.0079 -79.8%
Y 0.1 0.0225 0.0034 0.0174 0.0022 -87.2%

LastFm

N 0.01 0.1525 0.0185 0.0627 0.0118 -81.2%
Y 0.01 0.0273 0.0046 0.0141 0.0034 -76.2%
N 0.1 0.0075 0.0028 0.0047 0.0015 -68.1%
Y 0.1 0.0048 0.0013 0.0031 0.0009 -72.1%

Table 7.3: Global triangle estimation MAPE for trièst and mascot. The rightmost
column shows the reduction in terms of the avg. MAPE obtained by using trièst. Rows
with Y in column “Impr.” refer to improved algorithms (trièst-impr and mascot-i)
while those with N to basic algorithms (trièst-base and mascot-c).

 0.01

 0.1

 1

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g
.
M

a
p

e

(a) MAPE

 1

 10

 100

 1000

 10000

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g
.
m

ic
ro

s
e
c
s
 p

e
r

u
p
d
a
te

(b) Update Time

Figure 7.2: Average MAPE and average update time of the various methods on the
Patent (Co-Aut.) graph with p = 0.01 (for mascot, see the main text for how we
computed the space used by the other algorithms) – insertion only. trièst-impr has
the lowest error. Both Pavan et al. and Jha et al. have very high update times
compared to our method and the two mascot variants.

runs and the standard deviation of the estimation over those runs. trièst-impr shows significantly
lower standard deviation (hence variance) over the evolution of the stream, and the max and min
lines are also closer to the ground truth. This confirms our theoretical observations in the previous
sections. Even with very low M (about 2/10000 of the size of the graph) trièst gives high-quality
estimations.

174

 0

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

 1.2x10
9

 1.4x10
9

 0 5x10 6

 1x10 7

 1.5x10 7

 2x10 7

 2.5x10 7

 3x10 7

 3.5x10 7

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

ground truth
max est. TRIEST-IMPR
min est. TRIEST-IMPR

max est. MASCOT-I
min est. MASCOT-I

(a) Ground truth, max, and min

 0

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

 0 5
x1

0 6

 1
x1

0 7

 1
.5

x1
0 7

 2
x1

0 7

 2
.5

x1
0 7

 3
x1

0 7

 3
.5

x1
0 7

S
td

.
d

e
v
.

o
f

th
e

 e
s
ti
m

a
ti
o

n

Time t

std dev TRIEST-IMPR

std dev MASCOT-I

(b) Standard deviation

Figure 7.3: Accuracy and stability of the estimation of trièst-impr with M = 10000
and of mascot-i with same expected memory, on LastFM, over 10 runs. trièst-impr
has a smaller standard deviation and moreover the max/min estimation lines are closer
to the ground truth. Average estimations not shown as they are qualitatively similar.

Local triangle counting We compare the precision in local triangle count estimation of trièst

with that of mascot [144] using the same approach of the previous experiment. We can not compare
with Jha et al. and Pavan et al. algorithms as they provide only global estimation. As in [144],
we measure the Pearson coefficient and the average ε error (see [144] for definitions). In Table 7.4
we report the Pearson coefficient and average ε error over all timestamps for the smaller graphs.17

trièst (significantly) improves (i.e., has higher correlation and lower error) over the state-of-the-art
mascot, using the same amount of memory.

Trade-offs between memory and accuracy We study the trade-offs between the sample size
M , the running time, and the accuracy of the estimators. Figure 7.4a shows the trade-offs between
the accuracy of the estimation (as MAPE) and the size M for the smaller graphs for which the
ground truth number of triangles can be computed exactly using the naïve algorithm. Even with
smallM , trièst-impr achieves very low MAPE value. As expected, largerM corresponds to higher
accuracy and for the same M trièst-impr outperforms trièst-base.

Figure 7.4b shows the average time per update in microseconds (µs) for trièst-impr as function
of M . Some considerations on the running time are in order. First, a larger edge sample (larger M)
generally requires longer average update times per operation. This is expected as a larger sample
corresponds to a larger sample graph on which to count triangles. Second, on average a few hundreds
microseconds are sufficient for handling any update even in very large graphs with billions of edges.
Our algorithms can handle hundreds of thousands of edge updates (stream elements) per second,
with very small error (Fig. 7.4a), and therefore trièst can be used efficiently and effectively in
high-velocity contexts. The larger average time per update for Patent (Co-Auth.) can be explained
by the fact that the graph is relatively dense and has a small size (compared to the larger Yahoo!

17For efficiency, in this test we evaluate the local number of triangles of all nodes every 1000 edge updates.

175

Avg. Pearson Avg. ε Err.

Graph Impr. p mascot trièst Change mascot trièst Change

LastFm

Y
0.1 0.99 1.00 +1.18% 0.79 0.30 -62.02%
0.05 0.97 1.00 +2.48% 0.99 0.47 -52.79%
0.01 0.85 0.98 +14.28% 1.35 0.89 -34.24%

N
0.1 0.97 0.99 +2.04% 1.08 0.70 -35.65%
0.05 0.92 0.98 +6.61% 1.32 0.97 -26.53%
0.01 0.32 0.70 +117.74% 1.48 1.34 -9.16%

Patent (Cit.)

Y
0.1 0.41 0.82 +99.09% 0.62 0.37 -39.15%
0.05 0.24 0.61 +156.30% 0.65 0.51 -20.78%
0.01 0.05 0.18 +233.05% 0.65 0.64 -1.68%

N
0.1 0.16 0.48 +191.85% 0.66 0.60 -8.22%
0.05 0.06 0.24 +300.46% 0.67 0.65 -3.21%
0.01 0.00 0.003 +922.02% 0.86 0.68 -21.02%

Patent (Co-aut.)

Y
0.1 0.55 0.87 +58.40% 0.86 0.45 -47.91%
0.05 0.34 0.71 +108.80% 0.91 0.63 -31.12%
0.01 0.08 0.26 +222.84% 0.96 0.88 -8.31%

N
0.1 0.25 0.52 +112.40% 0.92 0.83 -10.18%
0.05 0.09 0.28 +204.98% 0.92 0.92 0.10%
0.01 0.01 0.03 +191.46% 0.70 0.84 20.06%

Table 7.4: Comparison of the quality of the local triangle estimations between our algo-
rithms and the state-of-the-art approach in [144]. Rows with Y in column “Impr.” refer
to improved algorithms (trièst-impr and mascot-i) while those with N to basic algo-
rithms (trièst-base and mascot-c). In virtually all cases we significantly outperform
mascot using the same amount of memory.

and Twitter graphs). More precisely, the average time per update (for a fixed M) depends on two
main factors: the average degree and the length of the stream. The denser the graph is, the higher
the update time as more operations are needed to update the triangle count every time the sample
is modified. On the other hand, the longer the stream, for a fixed M , the lower is the frequency
of updates to the reservoir (it can be show that the expected number of updates to the reservoir
is O(M(1 + log(t

M))) which grows sub-linearly in the size of the stream t). This explains why the
average update time for the large and dense Yahoo! and Twitter graphs is so small, allowing the
algorithm to scale to billions of updates.

Alternative edge orders In all previous experiments the edges are added in their natural order
(i.e., in order of their appearance).18 While the natural order is the most important use case, we
have assessed the impact of other ordering on the accuracy of the algorithms. We experiment with
both the uniform-at-random (u.a.r.) order of the edges and the random BFS order: until all the
graph is explored a BFS is started from a u.a.r. unvisited node and edges are added in order of their

18Excluding Twitter for which we used the random order, given the lack of timestamps.

176

 0.001

 0.01

 0.1

 1

patent-cit

lastfm

M
A

P
E

M=100000 Base
M=500000 Base

M=1000000 Base
M=100000 Impr
M=500000 Impr

M=1000000 Impr

(a) Trade-off between M and MAPE

 1

 10

 100

 1000

 10000

patent-cit

patent-coaut

lastfm

tw
itter

yahoo

A
v
g

.
m

ic
ro

s
e

c
s
 p

e
r

u
p

d
a

te M=100000 Impr
M=500000 Impr

M=1000000 Impr

(b) Trade-off bewtween M and average time
per update (trièst-impr)

Figure 7.4: Trade-offs between M and MAPE and average time per update in µs – edge
insertion only. Larger M implies lower errors but generally higher update times.

visit (neighbors are explored in u.a.r. order). The results for the random BFS order and u.a.r. order
(Fig. 7.5) confirm that trièst has the lowest error and is very scalable in every tested ordering.

 0.01

 0.1

 1

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g
.
M

A
P

E

(a) BFS order

 0.01

 0.1

 1

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g
.
M

A
P

E

(b) Uniform-at-random order

Figure 7.5: Average MAPE on Patent (Co-Aut.), with p = 0.01 (for mascot, see the
main text for how we computed the space used by the other algorithms) – insertion
only in Random BFS order and in uniform-at-random order. trièst-impr has the
lowest error.

7.5.2 Fully-dynamic case

We evaluate trièst-fd on fully-dynamic streams. We cannot compare trièst-fd with the algo-
rithms previously used [116, 180, 144] as they only handle insertion-only streams.

In the first set of experiments we model deletions using the widely used sliding window model,
where a sliding window of the most recent edges defines the current graph. The sliding window

177

model is of practical interest as it allows to observe recent trends in the stream. For Patent (Co-
Aut.) & (Cit.) we keep in the sliding window the edges generated in the last 5 years, while for
LastFm we keep the edges generated in the last 30 days. For Yahoo! Answers we keep the last 100

millions edges in the window19.
Figure 7.6 shows the evolution of the global number of triangles in the sliding window model

using trièst-fd using M = 200,000 (M = 1,000,000 for Yahoo! Answers). The sliding window
scenario is significantly more challenging than the addition-only case (very often the entire sample
of edges is flushed away) but trièst-fd maintains good variance and scalability even when, as for
LastFm and Yahoo! Answers, the global number of triangles varies quickly.

-200000

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 0 1x10 6

 2x10 6

 3x10 6

 4x10 6

 5x10 6

 6x10 6

G
lo

b
a

l
tr

ia
n

g
le

 c
o
u
n
t

Time t

ground truth
avg est.+std dev
avg est.-std dev

avg est.

(a) Patent (Co-Aut.)

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 1.6x10
6

 0 5x10 6

 1x10 7

 1.5x10 7

 2x10 7

 2.5x10 7

 3x10 7

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

ground truth
avg est.+std dev
avg est.-std dev

avg est.

(b) Patent (Cit.)

 0

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

 0 1x10 7

 2x10 7

 3x10 7

 4x10 7

 5x10 7

 6x10 7

 7x10 7

 8x10 7

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

ground truth
avg est.+std dev
avg est.-std dev

avg est.

(c) LastFM

-5x10
9

 0

 5x10
9

 1x10
10

 1.5x10
10

 2x10
10

 2.5x10
10

 0 5x10 8

 1x10 9

 1.5x10 9

 2x10 9

 2.5x10 9

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

avg est.+std dev
avg est.-std dev

avg est.

(d) Yahoo! Answers

Figure 7.6: Evolution of the global number of triangles in the fully-dynamic case (sliding
window model for edge deletion). The curves are indistinguishable on purpose, to
remark the fact that trièst-fd estimations are extremely accurate and consistent. We
comment on the observed patterns in the text.

Continuous monitoring of triangle counts with trièst-fd allows to detect patterns that would
otherwise be difficult to notice. For LastFm (Fig. 7.6(c)) we observe a sudden spike of several order
of magnitudes. The dataset is anonymized so we cannot establish which songs are responsible for

19The sliding window model is not interesting for the Twitter dataset as edges have random timestamps. We omit
the results for Twitter but trièst-fd is fast and has low variance.

178

this spike. In Yahoo! Answers (Fig. 7.6(d)) a popular topic can create a sudden (and shortly lived)
increase in the number of triangles, while the evolution of the Patent co-authorship and co-citation
networks is slower, as the creation of an edge requires filing a patent (Fig. 7.6(a) and (b)). The
almost constant increase over time20 of the number of triangles in Patent graphs is consistent with
previous observations of densification in collaboration networks as in the case of nodes’ degrees [141]
and the observations on the density of the densest subgraph [68].

 1

 10

 100

 1000

 10000

patent-cit

patent-coaut

lastfm

yahoo

A
v
g
.
m

ic
ro

s
e
c
s
 p

e
r

u
p
d
a
te

M=200000
M=500000

M=1000000

Figure 7.7: Trade-offs between the avg. update time (µs) and M for trièst-fd.

Table 7.5 shows the results for both the local and global triangle counting estimation provided by
trièst-fd. In this case we can not compare with previous works, as they only handle insertions. It
is evident that precision improves with M values, and even relatively small M values result in a low
MAPE (global estimation), high Pearson correlation and low ε error (local estimation). Figure 7.7
shows the tradeoffs between memory (i.e., accuracy) and time. In all cases our algorithm is very
fast and it presents update times in the order of hundreds of microseconds for datasets with billions
of updates (Yahoo! Answers).

Alternative models for deletion We evaluate trièst-fd using other models for deletions than
the sliding window model. To assess the resilience of the algorithm to massive deletions we run the
following experiments. We added edges in their natural order but each edge addition is followed
with probability q by a mass deletion event where each edge currently in the the graph is deleted
with probability d independently. We run experiments with q = 3,000,000−1 (i.e., a mass deletion
expected every 3 millions edges) and d = 0.80 (in expectation 80% of edges are deleted). The results
are shown in Table 7.6.

We observe that trièst-fd maintains a good accuracy and scalability even in face of a massive
20The decline at the end is due to the removal of the last edges from the sliding window after there are no more
edge additions.

179

Avg. Global Avg. Local

Graph M MAPE Pearson ε Err.

LastFM 200000 0.005 0.980 0.020
1000000 0.002 0.999 0.001

Patent (Co-Aut.) 200000 0.010 0.660 0.300
1000000 0.001 0.990 0.006

Patent (Cit.) 200000 0.170 0.090 0.160
1000000 0.040 0.600 0.130

Table 7.5: Estimation errors for trièst-fd.

Avg. Global Avg. Local

Graph M MAPE Pearson ε Err.

LastFM 200000 0.040 0.620 0.53
1000000 0.006 0.950 0.33

Patent (Co-Aut.) 200000 0.060 0.278 0.50
1000000 0.006 0.790 0.21

Patent (Cit.) 200000 0.280 0.068 0.06
1000000 0.026 0.510 0.04

Table 7.6: Estimation errors for trièst-fd mass deletion experiment, q = 3,000,000−1

and d = 0.80.

(and unlikely) deletions of the vast majority of the edges: e.g., for LastFM with M = 200000 (resp.
M = 1,000,000) we observe 0.04 (resp. 0.006) Avg. MAPE.

7.5.3 Multigraphs

We now evaluate our algorithms designed for multigraphs. We obtained multigraph versions of
Patent (Co-Auth.) (resp. LastFM) by allowing multiple edges to be placed between pairs of authors
(resp. songs) at multiple time steps (i.e., edges with different timestamps) if the two authors co-
author multiple papers (resp. the songs are co-listened in different dates). We ran our insertion-only
algorithms on these multigraphs and report the results in the next paragraphs.

Figure 7.8 shows the evolution of the number of triangles in the two datasets as estimated by our
trièst-impr-m algorithm using M = 100,000. For these smaller datasets we are able to compute
the exact number of triangles. Our algorithm is very precise with average, min and max estimations
close to the ground truth. The overall observations made for the simple graph case also hold for
the multigraph case: our suite of algorithms allows precise and efficient estimation of the number of
triangles with limited memory.

Figure 7.9 shows the average update time in microseconds using trièst-impr-m algorithm in our
multigraph datasets: few microseconds are sufficient on average to update the triangle estimation,
consistently with the results of the previous section.

180

 0

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

 3x10
8

 3.5x10
8

 0 500000

 1x10 6

 1.5x10 6

 2x10 6

 2.5x10 6

 3x10 6

 3.5x10 6

 4x10 6

 4.5x10

G
lo

b
a
l
tr

ia
n
g
le

 c
o
u
n
t

Time t

ground truth
max est.
min est.
avg est.

(a) Patent (Co-Aut.)

 0

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

 0 1x10 7

 2x10 7

 3x10 7

 4x10 7

 5x10 7

 6x10 7

 7x10 7

 8x10 7

G
lo

b
a

l
tr

ia
n

g
le

 c
o

u
n

t

Time t

ground truth
avg est.+std dev
avg est.-std dev

avg est.

(b) LastFM

Figure 7.8: Evolution of the global number of triangles in the insertion-only case on
multigraphs using trièst-impr-m and M = 100,000. The algorithm estimations are
consistently very accurate, and the curves are shown as almost undistinguishable on
purpose to highlight this fact.

 1

 10

 100

 1000

patent-coaut

lastfm

A
v
g
.
m

ic
ro

s
e
c
s
 p

e
r

u
p
d
a
te M=100000 Impr

M=1000000 Impr

Figure 7.9: Trade-offs between the avg. update time (µs) and M for trièst-impr-m –
multigraphs.

Finally we evaluate the accuracy of the estimation using our trièst-base-m and trièst-impr-m

algorithms. The results are shown in Table 7.7. We observe that trièst-base-m and trièst-impr-

m maintain a good accuracy with performance comparable to the one observed for the insertion-only
stream.

7.6 Conclusions

We presented trièst, the first suite of algorithms that use reservoir sampling and its variants to
continuously maintain unbiased, low-variance estimates of the local and global number of triangles

181

Global Error trièst-base-m Global Error trièst-impr-m

Graph M Avg. MAPE Max MAPE Avg. MAPE Max MAPE

LastFM 100000 0.015 0.024 0.008 0.015
1000000 0.006 0.012 0.003 0.008

Paten (Co-Aut.) 100000 0.068 0.141 0.023 0.049
1000000 0.011 0.017 0.003 0.006

Table 7.7: Estimation errors for trièst-base-m and trièst-impr-m – multigraphs.

in fully-dynamic graphs streams of arbitrary edge/vertex insertions and deletions using a fixed,
user-specified amount of space. Our experimental evaluation shows that trièst outperforms state-
of-the-art approaches and achieves high accuracy on real-world datasets with more than one billion
of edges, with update times of hundreds of microseconds.

Chapter 8

Tiered Sampling: An Efficient

Method for Approximate Counting

Sparse Motifs in Massive Graph

Streams1

In this Chapter, we introduce Tiered Sampling, a further development of the techniques discussed
for TRIÉST for estimating the count of sparse motifs in massive graphs whose edges are observed
in a stream. Our technique requires only a single pass on the data and uses a memory of fixed size
M , which can be magnitudes smaller than the number of edges.

Our methods address the challenging task of counting sparse motifs - sub-graph patterns that
have low probability of appearing in a sample of M edges in the graph, which is the maximum
amount of data available to the algorithms in each step. To obtain an unbiased and low variance
estimate of the count we partition the available memory to tiers (layers) of reservoir samples. While
the base layer is a standard reservoir sample of edges, other layers are reservoir samples of sub-
structures of the desired motif. By storing more frequent sub-structures of the motif, we increase
the probability of detecting an occurrence of the sparse motif we are counting, thus decreasing the
variance and error of the estimate.

While we focus on the designing and analysis of algorithms for counting 4-cliques, we present
a method which allows generalizing Tiered Sampling to obtain high-quality estimates for the
number of occurrence of any sub-graph of interest, while reducing the analysis effort due to specific
properties of the pattern of interest.

We demonstrate the advantage of our method in the specific applications of counting sparse
1A preliminary version of the results presented in this chapter appeared in the proceedings of the 5-th IEEE

International Conference on Big Data (BigData 17). This is joint work with Erisa Terolli and Professor Eli Upfal.

182

183

4-cliques and 5-cliques in massive graphs. We present a complete analytical analysis and extensive
experimental results using both synthetic and real-world data. Our results demonstrate the advan-
tage of our method in obtaining high-quality approximations for the number of 4 and 5-cliques for
large graphs using a very limited amount of memory, significantly outperforming the single edge
sample approach for counting sparse motifs in large scale graphs.

8.1 Introduction

Counting motifs (sub-graphs with a given pattern) in large graphs is a fundamental primitive in graph
mining with numerous practical applications including link prediction and recommendation [142],
community detection [20], topic mining [64], spam and anomaly detection [14, 145, 69], protein
interaction networks analysis [161], and analysis of temporal patterns [146].

Computing the exact count of motifs in massive, Web-scale networks is often impractical or
even infeasible. Furthermore, many interesting networks, such as social networks, are continuously
growing. Hence, there is limited value in maintaining an exact count. Rather, the goal is to have, at
any time, a high-quality approximation of the quantity of interest. To obtain a scalable and efficient
solution for massive size graphs we focus on the well-studied model of one-pass stream computing.
Our algorithms use a memory of fixed size M , where M is significantly smaller than the size of
the input graph. The input graph is observed as a stream of edges in an arbitrary order, and the
algorithm has only one pass on the input. The goal of the algorithm is to compute, at any given
time, an unbiased and low-variance estimate of the count of motif occurrences in the graph observed
up to that time.

Given its theoretical and practical importance, the problem of counting motifs in graph streams
has received a lot of attention in the literature, with particular emphasis on the approximation of
the number of 3-cliques (triangles) [51, 179, 138]. A standard approach to this problem is to sample
up toM edges uniformly at random, using a fixed sampling probability or, more efficiently, reservoir
sampling. A count of the number of motifs in the sample, extrapolated (normalized) appropriately,
gives an unbiased estimate for the number of occurrences in the entire graph. The variance (and
error) of this method depends on the expected number of occurrences in the sample. In particular,
for sparse motifs that are unlikely to appear many times in the sample, this method exhibits high
variance (higher than the actual count), which makes it useless for counting. Note that when the
input graph is significantly larger than the memory size M , a motif that is unlikely to appear in a
random sample of M edges may still have a large count in the graph. Also, as we attempt to count
larger structures than triangles, these structures are more likely to be sparse in the graph. It is
therefore important to obtain efficient methods for counting sparser motifs in massive-scale graph
streams.

In this Chapter, we introduce the concept of Tiered Sampling in stream computing. To obtain
an unbiased and low variance estimate for the amount of sparse motif in massive-scale graphs we
partition the available memory to tiers (layers) of reservoir samples. The base tier is a standard

184

reservoir sample of individual edges, while other tiers are reservoir samples of sub-structures of the
desired motif. This strategy significantly improves the probability of detecting occurrences of the
motif.

Assume that we count motifs with k edges. If all the available memory is used to store a sample
of the edges, we would need k − 1 of the motif’s edges to be in the sample when the last edge of
the motif is observed on the stream. The probability of this event decreases exponentially in k.
Assume now that we use part of the available memory to store a sample of the observed occurrences
of a fixed “prototype” sub-motif with k/2 edges. We are more likely to observe such motifs (we only
need k/2− 1 of their edges to be in the edge sample when the last edge is observed in the stream),
and they are more likely to stay in the second reservoir sample since they are still relatively sparse.
We now observe a full motif when the current edge in the stream completes an occurrence of the
motif with edges and with a prototype sub-motifs in the two reservoirs. For an appropriate choice
of parameters, and with fixed total memory size, this event has a significantly higher probability
than observing the k−1 edges in the edge sample. To obtain an unbiased estimate of the count, the
number of observed occurrences needs to be carefully normalized by the probabilities of observing
each of the components.

In this work, we make the following main contributions:

• We introduce theTiered Sampling framework for counting sparse motifs in large scale graph
streams using multi-layer reservoir samples.

• We develop and fully analyze two algorithms for counting the number of 4-cliques in a graph
using two-tier reservoir sampling.

• For the purpose of comparison, we analyze a standard (single-tier) reservoir sample algorithm
for 4-cliques counting problem.

• We verify the advantage of our multi-layer algorithms by analytically comparing their perfor-
mance to a standard (single-tier) reservoir sample algorithm for 4-cliques counting problem on
random Barábasi-Albert graphs.

• We develop the ATS4C technique, which allows to adaptively adjust the sub-division of mem-
ory space among the two tiers according to the properties of the graph being considered.

• We conduct an extensive experimental evaluation of our algorithms for counting 4-cliques on
massive graphs with up to hundreds of millions of edges. We show the quality of the achieved
estimations by comparing them with the actual ground truth value. Our algorithms are also
extremely scalable, showing update times in the order of hundreds of microseconds for graphs
with billions of edges. Further, we show that our methods consistently outperform alternative
approaches based on edge sampling.

• We present a sequence of steps which allows to generalize the TieredSampling approach
to count any arbitrary sub-graph of interest. We show how to greatly simplify the analysis

185

while retaining high-quality estimates. As an example, we obtain TS5C, which estimates the
number of 5-cliques in a graph stream using an edge reservoir sample and a second reservoir
sample of the 4-cliques observed on the stream.

Chapter organization: In Section 8.2 we introduce the notation used in the presentation and
some fundamental concepts used in this work. In Section 5.2 we discuss methods and result re-
lated to our work from the literature. In Section 8.4 we introduce the TieredSampling approach
and its application to the problem of counting 4-cliques in a graph steam. In Section 8.4.1 (resp.,
Section 8.4.2) we present algorithm TS4C1 (resp., TS4C2) and we study its statistical properties.
In Section 8.6 we delve into the comparison of the methods based on the TieredSampling ap-
proach with methods for counting 4-cliques using a single reservoir sample of edges observed on the
stream, such as algorithm FourEst which we present and analyze in Section 8.6.1. We compare
analytically the variance of the proposed methods (Section 8.6.2), and their performance for random
Barábasi-Albert graphs [8] (Section 8.6.3). In Section 8.7, we introduce a variation of the previous
TieredSampling algorithms, in which the partition of the memory among the two samples (tiers)
being used can be adjusted dynamically to adapt to the properties of the graph of interest. We
showcase the quality of the estimators provide by TieredSampling algorithms and their benefit
with respect to edge-sampling approaches in Section 7.5 via extensive experimental evaluation on
many real-world graphs of size ranging from millions to several hundred million edges. Finally, in
Section 8.9 we discuss how to generalize the TieredSampling to any sub-graph of interest. In
particular, we show how an opportune simplified analysis may ease such generalization by reducing
the effort of the analysis. As an example, we present and evaluate algorithm TS5C which yields
estimates the count of 5-cliques in a graph stream.

In this work we make the following main contributions:

• We introduce the concept of Tiered Sampling for counting sparse concepts in large scale graph
stream using multi-layer reservoir samples.

• We develop and fully analyze two algorithms for counting the number of 4-cliques in a graph
using two tier reservoir sampling.

• For comparison purpose we analyze a standard (one tier) reservoir sample algorithm for 4-
cliques counting problem.

• We verify the advantage of our multi-layer algorithms by analytically comparing their perfor-
mance to a standard (one tier) reservoir sample algorithm for 4-cliques counting problem on
random Barábasi-Albert graphs.

• We develop the ATS4C technique, which allows to adaptively adjust the sub-division of mem-
ory space among the two tiers according to the properties of the graph being considered.

• We conduct an extensive experimental evaluation of the 4-clique algorithms on massive graphs
with up to hundreds of millions of edges. We show the quality of the achieved estimations

186

by comparing them with the actual ground truth value. Our algorithms are also extremely
scalable, showing update times in the order of hundreds of microseconds for graphs with billions
of edges.

• We demonstrate the generality of our approach through a second application of the two-tier
method, estimating the number of 5-cliques in a graph stream using a second reservoir sample
of the 4-cliques observed on the stream.

To the best of our knowledge these are the first fully analyzed, one pass stream algorithms for the
4 and 5-cliques counting problem.

8.2 Preliminaries

The notation used in this chapter is similar to that used in Chapter 7, albeit with some minor
differences. For any (discrete) time step t ≥ 0, we denote the graph observed up to and including
time t as G(t) = (V (t), E(t)), where V (t) (resp., E(t)) denotes the set of vertices (resp., edges) of
G(t). At time t = 0 we have V (t) = E(t) = ∅. For any t > 0, at time t+ 1 we receive one single edge
et+1 = (u, v) from a stream, where u, v are two distinct vertices. G(t+1) is thus obtained by inserting
the new edge: E(t+1) = E(t) ∪ {(u, v)}; if either u or v do not belong to V (t), they are added to
V (t+1). Edges can be added just once (we discuss a generalization for multigraphs at the end of
Section 8.2) in an arbitrary adversarial order, i.e., as to cause the worst outcome for the algorithm.
We, however, assume that the adversary has no access to the random bits used by the algorithm.

This work explores the idea of storing a sample of prototype sub-motifs in order to enhance the
count of a sparse motif. For concreteness we focus on estimating the counts of 4-cliques and 5-cliques.
Given a graph G(t) = (V (t), E(t)), a k-clique in G(t) is a set of

(
k
2

)
(distinct) edges connecting a set

of k (distinct) vertices.
Problem definition. We study the 4-Clique Counting Problem in Graph Edges Streams, which

requires to compute, at each time t ≥ 0 an estimation of |C((t))
k | . We denote by C(t)

k the set of all
k-cliques in G(t).

Reservoir Sampling: Our work makes use of the reservoir sampling scheme [234]. Consider a
stream of elements ei observed in discretized time steps. Given a fixed sample size M > 0, for any
time step t the reservoir sampling scheme allows to maintain a uniform sample S of size min{M, t}
of the t elements observed on the stream:

• If t ≤ M , then the element et = (u, v) on the stream at time t is deterministically inserted in
S.

• If t > M , then the sampling mechanism flips a biased coin with heads probability M/t. If the
outcome is “heads”, it chooses an element ei uniformly at random from those currently in S to
be replaced by et. Otherwise, S is not modified.

187

Symbol Explanation

Σ Edge stream
t Time Step, i.e., number of edges observed up to step t (included)
t∆ Number of triangles observed up to now
G(t) Graph observed up to time t (included)
et Edge observed in the stream at time t.
C(t)
k Set of k-cliques in G(t)

κ(t) Estimation of number of 4-cliques at time t
Se Uniform sample of edges
S(t)
e Content of Se at the beginning of time t
S∆ Sample of observed triangles
S(t)

∆ Content of S∆ at the beginning of time t
M Memory Size
Me Edge sample memory size
M∆ Triangle sample memory size
τ (t) Number of triangles seen by TS4C1 (TS4C2) up to time t

NS
(t)
e

u Neighborhood of u with respect to edges in S(t)
e

NSu,v Common neighbors of u and v
α Splitting coefficient

Table 8.1: Notation Table

When using reservoir sampling for estimating the number of occurrences of a sub-graph of interest
it is necessary to compute the probability of multiple edges elements being in S at the same time.

Lemma 8.1 (Lemma 4.1 [51]). For any time step t and any positive integer k ≤ t, let B be any
subset of size |B| = k ≤ min{M, t} of the element observed on the stream. Then, at the end of
time step t (i.e., after updating the sample at time t), we have Pr(B ⊆ S) = 1 if t ≤ M , and
Pr(B ⊆ S) =

∏k−1
i=0

M−i
t−i otherwise.

Evaluation: In our experimental analysis (Sections 8.6.3 and 7.5) we measure the accuracy of the
obtained estimator through the evolution of the graph in terms of their Mean Average Percentage
Error (MAPE) [110]. The MAPE measures the relative error of an estimator (in this case, κ(t))
with respect to the ground truth (in this case, |C(t)

k |) averaged over t time steps, that is:

MAPE =
1

t

t∑
i=1

|κ(t) − |C(t)
k ||

|C(t)
k |.

Multigraphs: Our approach can be extended to count the number of subgraphs on a multigraph
represented as a stream of edges. Using a formalization analogous to that discussed for graphs,
for any (discrete) time instant t ≥ 0, let G(t) = (V (t), E(t)) be the multigraph observed up to and

188

including time t, where E(t) is now a bag of edges between vertices of V (t). The multigraph evolves
through a series of edges additions according to a process similar to the one described for graphs.
The definition of the occurrence of a sub-graph (e.g., a 3,4 or 5-clique) in a multigraph is the same
as in a graph. As before we denote with C(t)

k the set of all k-cliques in G(t), but now this set may
contain multiple k-cliques with the same set of vertices, although each of these triangles will be a
different set of edges among those vertices, i.e., subset of the bag E(t) which differ by at least one
element. The problem of 4-clique counting in multigraph edge streams is defined exactly in the same
way as for graph edge streams. For the sake of simplicity, in the remainder of the presentation we
focus on the analysis of graph edges streams.

8.3 Related Work

Counting subgraphs in large networks is a well-studied problem in data mining which was originally
brought to attention in the seminal work of Milo et al. [161] on the analysis of protein interaction
networks. In particular, many contributions in the literature have focused on the triangle counting
problem, that is, the counting of the number of 3-cliques, including exact algorithms, MapReduce
algorithms [172, 176], and streaming algorithms [51, 3, 117, 179].

Previous works in the literature on counting graph motifs [188, 6] can also be used to estimate the
number of cliques in large graphs. Other recent works on graphlets (i.e., small subgraphs) counting
introduced randomized [114, 173] and MapReduce [76] algorithms. These require however prior
information on the graph such as its degeneracy (for [114]) or the vertex degree ordering (for [76]) or
the vertex degrees [173]. In [32] Bressan et al. present and compare Monte Carlo and Color Coding
approaches for obtaining estimates of the count of graphlets with five or more vertices in the static
setting. These approaches are not, however, used in the streaming setting.

The idea of using sub-structures of a graph motif in order to improve the estimation of its
frequency in a massive graph has been previously explored in literature. In [29], Bordino et al.
proposed a data stream algorithm that estimates the number of occurrences of a given subgraph
by sampling its “prototypes” (i.e., sub-structures). While this approach is shown to be effective in
estimating the number of occurrences of motifs with three and four edges, it requires multiple passes
through the graph stream and further knowledge on the properties of the graph. In [118], Jha et al.
proposed an algorithm that effectively and efficiently approximates the frequencies of all 4-vertex
subgraphs by sampling paths of length three. However, this algorithm requires prior knowledge
of the degrees of all the vertices in the graph and cannot be used in the streaming setting. In [4],
Ahmed et al. use reservoir sampling to develop the “graph priority sampling” framework for counting
subgraphs. In a recent work [114], Jain and Seshadri propose a clique counting method based on
Túran’s Theorem that requires knowledge of the degeneracy of the observed graph. Bressan et al.
show an application of the color coding scheme [33] for the static setting which which use colorful
trees as prototypes to guide the sampling phase. Some alternative approaches focus on counting
specific graphs such as butterfly sub-graphs in bipartite graph streams [200].

189

u v

z w

e2

e1

e3

e6

e4 e5

T1 T2

Figure 8.1: Detection of 4-clique using triangles

In this work we present a sampling-based, one pass algorithm for insertion only streams to
approximate the global number of cliques found in large graphs. Furthermore, our algorithms do
not require any further information on the properties of the graph being observed.

Using a strategy similar to our TieredSampling approach, in [117] Jha and Seshadri propose
a one-pass streaming algorithm for triangle counting. This algorithm uses a first reservoir for edges
which are then used to generate a stream of wedges (i.e., paths of length two) stored in a second
reservoir. This approach appears to be not worthwhile for triangle counting as it is consistently
outperformed by a simpler strategy based on a single reservoir presented in [51]. This is due to the
fact that, as in most large graphs of interest wedges are much more frequent than edges, it is generally
not worth devoting a large fraction of the available memory space to maintaining wedges over edges.
In [5], Ahmed et al. used a similar approach based on the use of multiple reservoir sample levels
while developing a sampling-based streaming algorithm for the for approximate bipartite projection
in streaming bipartite networks: first, they maintain a reservoir of sampled bipartite edges with
sampling weights that favor the selection of high similarity nodes. Second, arriving edges generate a
stream of similarity updates based on their adjacency with the current sample. These updates are
aggregated in a second reservoir sample-based stream aggregator to yield the final unbiased

8.4 TieredSampling application to 4-clique counting

In this section, we present TS4C1 and TS4C2, two applications of our TieredSampling approach
for counting the number of 4-cliques in an undirected graph observed as an edge stream. Rather than
counting a 4-cliques only when the currently observed edge completes a 4-clique with five other edges
maintained in an edge sample (similarly as what successfully done for 3-cliques in [51]), we increase
the probability of observing a clique by using a 3-cliques (i.e., triangles) reservoir sample. Our two
TieredSampling algorithms partition the available memory into two samples, an edges reservoir
sample and a triangles reservoir sample. TS4C1 attempts in each step to construct a 4-cliques using
the currently observed edge, two edges from the edge reservoir sample and one triangle from the
triangle reservoir sample. TS4C2 attempts at each step to construct a 4-clique from the currently
observed edge and two triangles from the triangle reservoir sample. That is, both algorithms use

190

ALGORITHM 15 TS4C1 - Tiered Sampling for 4-Clique counting
Input: Insertion-only edge stream Σ, integers M , M∆

Se ← ∅ , S∆ ← ∅, t← 0, t∆ ← 0, σ ← 0
for each element (u, v) from Σ do . Process each edge (u,v) coming from the stream in
discretized timesteps

t← t+ 1
Update4Cliques(u, v) . Update the 4-clique estimator by considering the new 4-cliques

closed by edge (u,v)
UpdateTriangles(u, v) . Update the triangles reservoir with the new triangles formed by

edge (u,v)
SampleEdge((u, v), t) . Update the edges sample with the edge (u,v) according to RS

scheme

function Update4Cliques((u, v), t)
for each triangle (u,w, z) ∈ S∆ do . For each triangle with vertices u, w and z

if (v, w) ∈ Se ∧ (v, z) ∈ Se then . If triangle (u,w, z) forms a 4-clique (u,v,w,z) with two
edges in Se

p← ProbClique((u,w, z), (v, w), (v, z)) . Calculate probability of observing 4-clique
(u,v,w,z)

σ ← σ + p−1/2 . Update the 4-clique estimator

for each triangle (v, w, z) ∈ S∆ do . For each triangle with vertices v, w and z
if (u,w) ∈ Se ∧ (u, z) ∈ Se then . In case triangle (v,w,z) forms a 4-clique (u,v,w,z) with

two edges in Se
p← ProbClique((v, w, z), (u,w), (u, z)) . Calculate probability of observing 4-clique

(u,v,w,z)
σ ← σ + p−1/2 . Update the 4-clique estimator

function UpdateTriangles((u, v), t)
NSu,v ← NSu ∩N Sv
for each element w from NSu,v do . For each triangle (u,v,w)

t∆ ← t∆ + 1 . Increment the number of observed triangles
SampleTriangle(u, v, w) . Update the triangles sample with the triangle (u,v,w)

according to RS Scheme

triangle sub-patterns of a 4-clique as prototype sub-graphs used to aid in the detection of an entire
4-clique. At each time step t, both algorithms maintain a running estimation κ(t) of |C(t)

4 |. Clearly
κ(0) = 0 and the estimator is increased every time a 4-clique is “detected ” on the stream. The two
algorithms also maintains a counter τ (t) for the number of triangles observed in the stream up to
time t. This value is used by the reservoir sampling scheme which manages the triangle reservoir.

8.4.1 Algorithm TS4C1

Algorithm TS4C1 maintains an edges (resp., triangles) reservoir sample Se (resp., S∆) of fixed size
Me (resp.,M∆). From Lemma 8.1, for any t the probability of any edge e (resp., triangle T) observed
on the stream Σ (resp., observed by the TS4C1) to be included in Se (resp., S∆) is Me/t (resp.
M∆/τ

(t)). We denote as S(t)
e (resp., S(t)

∆) the set of edges (resp., triangles) in Se (resp., S∆) before

191

any update to the sample(s) occurring at step t. We denote with NS
(t)
e

u the neighborhood of u with
respect to the edges in S(t)

e , that is NS
(t)
e

u = {v ∈ V S(t)
e : (u, v) ∈ S(t)

e }.
Let et = (u, v) be the edge observed on the stream at time t. At each step TS4C1 executes three

main tasks:

• Estimation update: TS4C1 invokes the function Update 4-cliques to detect any 4-clique
completed by (u, v) (see Fig. 8.1 for an example). That is, the algorithm verifies whether in
triangle reservoir S∆ there exists any triangle T which includes u (resp., v). Note that since
each edge is observed just once and the edge (u, v) is being observed for the first time no
triangle in S∆ can include both u and v. For any such triangle T ′ = {u,w, z} (or {v, w, z}) the
algorithm checks whether the edges (v, w) and (v, z) (resp., (u,w) and (u, z)) are currently in
Se. When such conditions are meet, we say that a 4-clique is “observed on the stream”. The
algorithm then uses ProbClique to compute the exact probability p of the observation based
on the timestamps of all its edges. The estimator κ is then increased by p−1/2.

• Triangle sample update: using UpdateTriangles the algorithm verifies whether the edge et
completes any triangle with the edges in S(t)

e . If that is the case, we say that a new triangle
T ∗ is observed on the stream. The counter τ is increased by one and the new triangle is a
candidate for inclusion in S∆ with probability M∆/τ

t.

• Edge sample update: the algorithm updates the edge sample Se according to the Reservoir
Sampling scheme described in Section 8.2.

Each time a 4-clique is observed on the stream, TS4C1 uses ProbClique to compute the exact
probability of the observation. Such computation is all but trivial as it is influenced by both the
order according to which the edges of the 4-clique were observed on the stream and by the number
of triangles observed on the stream τ (t). The analysis proceeds using a (somehow tedious) analysis
of all the 5! possible orderings of the first five edges of the clique observed on the stream. Before
presenting the analysis for computing the exact probability of observing a 4-clique on the stream in
Lemma 8.3, we introduce Lemma 8.2

Lemma 8.2. Let λ ∈ C(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 8.1 as reference. Assume

further, without loss of generality, that the edge ei is observed at ti (not necessarily consecutively)
and that t6 > max{ti, 1 ≤ i ≤ 5}. λ can be observed by TS4C1 at time t6 either as a combination of
triangle T1 = {e1, e2, or e4} and edges e3 = (v, w) and e5 = (v, z), or as a combination of triangle
T2 = {e1, e3, e5} and edges e2 = (u,w) and e4 = (u, z).

Proof. As presented in Algorithm 15, TS4C1 can detect λ only when its last edge is observed on the
stream (hence, t6). When e6 is observed, the algorithm first evaluates whether there is any triangle
in S(t6)

∆ that shares one of the two endpoint u or v from e6. Since at this step (i.e., the execution
of function Update4Cliques) the triangle sample is yet to be updated based on the observation
of e6, the only triangle sub-structures of λ which may have been observed on the stream, and thus
included in S(t6)

∆ are T1 = {e1, e2, e4} and T2 = {e1, e3, e5}. If any of these is indeed in S(t6)
∆ , TS4C1

192

proceeds to check whether the remaining two edges required to complete λ (resp., e3, e5 for T1, or
e2, e4 for T2) are in Se. λ is thus observed either once or twice depending on which just one or both
of these conditions are verified.

Lemma 8.3. Let λ ∈ C(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 8.1 as reference. Assume

further, without loss of generality, that the edge ei is observed at ti (not necessarily consecutively)
and that t6 > max{ti, 1 ≤ i ≤ 5}. Let t1,2,4 = max{t1, t2, t4,Me + 1}. The probability pλ of λ
being observed on the stream by TS4C1 using the triangle T1 = {e1, e2, e4} and the edges e3, e5, is
computed by the ProbClique function as:

pλ =
Me

t1,2,4 − 1

Me − 1

t1,2,4 − 2
min{1, M∆

τ (t6)
}p′

where if t6 ≤Me

p′ = 1,

if min{t3, t5} > t1,2,4

p′ =
Me

t6 − 1

Me − 1

t6 − 2
,

if max{t3, t5} > t1,2,4 > min{t3, t5}
p′ =

Me − 1

t6 − 2

Me − 2

t1,2,4 − 3

t1,2,4 − 1

t6 − 1
otherwise

p′ =
Me − 2

t1,2,4 − 3

Me − 3

t1,2,4 − 4

t1,2,4 − 1

t6 − 1

t1,2,4 − 2

t6 − 2
.

Proof. Let us define the event Eλ = λ is observed on the stream by TS4C1 using triangle T1 =

{e1, e2, e4} and edges e3, e5. Further let ET1
= T1 ∈ S(t6)

∆ , and E3,5 = {e3, e5} ⊆ S(t6)
e . Given the

definition of TS4C1 we have:
Eλ = ET1

∧ E3,5,

and hence:
pλ = Pr (Eλ) = Pr

(
ET1
∧ E3,5

)
= Pr

(
E3,5|ET1

)
Pr (ET1

) .

In order to study Pr (ET1) we shall introduce event ES(T1) =“triangle T1 is observed on the stream
by TS4C1”. From the definition of TS4C1 we know that T1 is observed on the stream iff when the
last edge of T1 is observed on the stream at max{t1, t2, t4} the remaining two edges are in the edge
sample. Applying Bayes’s rule of total probability we have:

Pr (ET1) = Pr
(
ET1 |ES(T1)

)
Pr
(
ES(T1)

)
.

and thus:
pλ = Pr

(
E3,5|ET1

)
Pr
(
ET1
|ES(T1)

)
Pr
(
ES(T1)

)
. (8.1)

Let t1,2,4 = max{t1, t2, t4,M + 1}, in order for T1 to be observed by TS4C1 it is required that when
the last edge of T1 is observed on the stream at t1,2,4 its two remaining edges are kept in Se. From
Lemma 7.1 we have:

Pr
(
ES(T1)

)
=

Me

t1,2,4 − 1

Me − 1

t1,2,4 − 2
, (8.2)

and:
Pr
(
ET1
|ES(T1)

)
=
Me

τ t6
. (8.3)

Let us now consider Pr
(
E3,5|ET1

)
. While the content of S∆ itself does not influence the content

of Se, the fact that T1 is maintained in S(t6)
∆ implies that is has been observed on the stream at a

193

previous time and hence, that two of its edges have been maintained in Se at least until the last
of its edges has been observed on the stream. We thus have Pr

(
E3,5|ET1

)
= Pr

(
E3,5|ES(T1

)
)
. In

order to study p′ = Pr
(
E3,5|ES(T1

)
)
it is necessary to distinguish the possible (5!) different arrival

orders for edges e1, e2, e3, e4 and e5. However in an efficient analysis we reduce the number of cases
to be considered to just four:

• t6 ≤M + e: in this case all the edges observed on the stream up until t6 are deterministically
inserted in Se and thus p′ = 1.

• min{t3, t5} > t1,2,4: in this cases both edges e3 and e5 are observed after all the edges com-
posing T1 have already been observed on the stream. As for any t > t1,2,4 the event ES(T1)

does not imply that any of the edges of T1 is still in Se we have:
p′ = Pr

(
E3,5|ET1

)
= Pr

(
{e3, e5} ⊆ S(t6)

e

)
,

and thus, from Lemma 7.1:
p′ =

Me

t6 − 1

Me − 1

t6 − 2
.

• max{t3, t5} > t1,2,4 > min{t3, t5}: in this case only one of the edges e3, e5 is observed after all
the edges in T1 are observed. We need to therefore take into consideration that the two edges
of T1 are kept in Se until t1,2,4. Let eM3,5 (resp., em3,5) denote the last (resp., first) edge observed
on the stream between e3 and e5.

p′ = Pr
(
eM3,5 ∈ S(t6)

e |em3,5 ∈ S(t6)
e

)
Pr
(
em3,5 ∈ S(t6)

e

)
,

=
Me − 1

t6 − 2
Pr
(
em3,5 ∈ S(t6)

e |em3,5 ∈ S(t1,2,4)
e

)
Pr
(
em3,5 ∈ S(t1,2,4)

e

)
,

=
Me − 1

t6 − 2

t1,2,4 − 1

t6 − 1

Me − 2

t1,2,4 − 3
.

• t1,2,4 > max{t2, t4}: in all the remaining cases both e3 and e5 are observed before the last
edge of T1 has been observed. Hence:

p′ = Pr
(
{e3, e5} ⊆ S(t6)

e |{e3, e5} ⊆ S(t1,2,4)
e

)
Pr
(
{e3, e5} ⊆ S(t1,2,4)

e

)
,

=
Me − 2

t1,2,4 − 3

Me − 3

t1,2,4 − 4

t1,2,4 − 1

t6 − 1

t1,2,4 − 2

t6 − 2
.

The lemma follows combining the result for the values of p′ with (8.2) and (8.3) in (8.1).

In our proofs, we carefully account for the fact that, as we use reservoir sampling [234], the
presence of an edge (resp., of a triangle) in Se (resp., S∆) is not independent from the concurrent
presence of another edge (resp., triangle) in S∆. Further, we account for the fact that whether a
triangle can be in S∆ only if it was previously detected by TS4C1 (using the UpdateTriangles

function from Algorithm 15), which itself is dependent on which edges are held in the sample when the
last edge of the triangle itself is observed on the stream. In order to account for such dependencies,
it is necessary to break down the order of arrival of the edges themselves.

The following corollary provides a lower bound to the probability according to which a 4-clique
is observed by TS4C1. Although generally loose, this result will provide simplification and insight
in the analysis of the variance of the estimate obtained using TS4C1.

194

Corollary 8.4. Let λ ∈ C(t)
4 defined as in the statement of Lemma 8.3. The probability pλ of λ

being observed on the stream by TS4C1 using the triangle T1 = {e1, e2, e4} and the edges e3, e5 is
evaluated by the ProbClique function as:

pλ ≥ min
{

1,

(
Me

t− 1

)4
M∆

τ (t)

}
Analysis of the TS4C1 estimator We now present the analysis of the estimations obtained
using TS4C1. First we show their unbiasedness and we then provide a bound on their variance. In
the following we denote as t∆ the first time step at for which the number of triangles seen by TS4C1

exceeds M∆.

Theorem 8.5. The estimator κ returned by TS4C1 is unbiased, that is κ(t) = |C(t)
k | if t ≤

min{Me, t∆}. Further, E
[
κ(t)

]
= |C(t)

k | if t ≤ min{Me, t∆}.

Proof. From Lemma 8.2 we have that TS4C1 can detect any 4-clique λ ∈ C(t)
4 in exactly two ways:

either using triangle T1 and edges e3, e5, or by using triangle T2 and edges e2, e4 (use Figure 8.1 as
a reference).

For each λ ∈ C(t)
4 let us consider the random variable δλ1

(resp. δλ2
) which takes value p−1

λ1
/2

(resp., p−1
λ2
/2) if the 4-clique λ is observed by TS4C1 using triangle T1 (resp., T2) or zero otherwise.

Let pλ1
(resp., pλ2

) denote the probability of such event: we then have E [δλ1
] = E [δλ2

] = 1/2.
From Lemma 8.3, we have that the estimator κ(t) computed using TS4C1 can be expressed as

κ(t) =
∑
λ∈C(t)

4
(δλ1

+ δλ2
). From the previous discussion and by applying linearity of expectation

we thus have:

E
[
κ(t)

]
= E

 ∑
λ∈C(t)

4

(δλ1
+ δλ2

)

 =
∑
λ∈C(t)

4

(
E [δλ1

] + E [δλ2
]
)

=
∑
λ∈C(t)

4

1 = |C(t)
4 |.

Finally, let t∗ denote the first step for which the number of triangles detected by TS4C1 exceeds
M∆. For t ≤ min{Me, t

∗}, the entire graph G(t) is maintained in Se and all the triangles in G(t)

are stored in S∆. Hence all the cliques in G(t) are deterministically observed by TS4C1in both ways
and we therefore have κ(t) = |C(t)

4 |.

We now introduce an upper bound to the variance of the TS4C1 estimations. We present here
the most general result for t ≥Me, t∆. Note that if t ≤ min{Me, t∆}, from Theorem 8.5, κ(t) = |C(t)

k |
and hence Var

[
κ(t)

]
= 0. For min{Me, t∆} < t ≤ max{Me, t∆}, Var

[
κ(t)

]
admits an upper bound

similar to the one in Theorem 8.6.

Theorem 8.6. For any time t > min{Me, t∆}, he estimator κ returned by TS4C1 satisfies

Var
[
κ(t)

]
≤ |C(t)

4 |

c(t− 1

Me

)4
(
τ (t)

M∆

)
− 1

+ 2a(t)

(
c
t− 1

Me
− 1

)

+ 2b(t)

c(t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)
− 1

 ,

(8.4)

where a(t) (resp., b(t)) denotes the number of unordered pairs of 4-cliques which share one edge (resp.,
three edges) in G(t), and c ≥ M3

e

(Me−1)(Me−2)(Me−3) .

195

Similarly to what done in the proof of Theorem 8.5, in the proof of our result on the bound of the
variance of the estimate we associate two random variables to each of the 4-cliques of the graph (one
for each of the two possible ways of detecting such 4-clique). The proof relies on a careful analysis
of the order of arrival of the edges shared between a pair of two 4-cliques in the stream (which we
assume to be adversarial), as shown in Lemma 8.7. When bounding the variance, we must consider
not only pairs of 4-cliques that share edges, but also pairs of 4-cliques sharing no edges, since the
respective presences of the parts used to detect them (i.e., edges and triangles) in the respective
samples are not independent events.

In order to gain some insight on the variance bound in Theorem 8.6, note that the first, and
dominant, term of (8.4) is given by the total number of 4-cliques in G(t) (i.e., |C(t)

4 |) multiplied

by
(
c
(
t−1
Me

)4 (
τ(t)

M∆

)
− 1

)
which corresponds approximately to c(pλ)−1, where pλ denotes the lower

bound to the probability of TS4C1 detecting a 4-clique as provided by Corollary 8.4. This suggest a
natural relation between these quantities: as the probability of detecting a 4-clique decreases (resp.,
the total number of 4-cliques increases) the variance increases accordingly.

Before presenting the proof of Theorem 8.6, we introduce some the following lemma which con-
cerns the possible size of the edge intersection of two 4-cliques.

Lemma 8.7. Any pair (λ, γ) of distinct 4-cliques in G(t) can share either one, three or no edges.
If λ and γ share three edges, those three edges compose a triangle.

Proof. Suppose that λ and γ share exactly two distinct edges. This implies that they share at least
three distinct nodes, and thus must share the three edges connecting each pair out of said three
nodes. This constitutes a contradiction. Suppose instead that λ and γ share four or five edges while
being distinct. This implies that they must share four vertices, hence they cannot be distinct cliques.
This leads to a contradiction.

Lemma 8.7, allows us to point out the various cases to be considered in the main proof of
Theorem 8.6.

Proof of Theorem 8.6. Assume |C(t)
4 | > 0, otherwise TS4C1 estimation is deterministically correct

and has variance 0 and the thesis holds. For each λ ∈ C(t)
4 let λ = {e1, e2, e3, e4, e5, e6}, without

loss of generality let us assume the edges are disposed as in Figure 8.1. Assume further, without
loss of generality, that the edge ei is observed at ti (not necessarily consecutively) and that t6 >
max{ti, 1 ≤ i ≤ 5}. Let t1,2,4 = max{t1, t2, t4,Me + 1}. Let us consider the random variable δλ1

(resp. δλ2
) which takes value p−1

λ1
/2 (resp., p−1

λ2
/2) if the 4-clique λ is observed by TS4C1 using

triangle T1 = {e1, e2, e4} (resp., T2) and edges e3, e5 (resp., e2, e4) or zero otherwise. Let pλ1 (resp.,
pλ2

) denote the probability of such event.

196

Since, from Lemma 8.3 we know:

Var [δλ1] =
p−1
λ1

4
− 1

4
≤ 1

4

 τ (t)

M∆

3∏
i=0

t− 1− i
Me − i

− 1

Var [δλ2] =

pλ2

4

−1
− 1

4
≤ 1

4

 τ (t)

M∆

3∏
i=0

t− 1− i
Me − i

− 1

 .

we have:

Var
[
κ(t)

]
= Var

 ∑
λ∈C(t)

4

δλ1
+ δλ2

 =
∑
λ∈C(t)

4

∑
γ∈C(t)

4

∑
i∈{1,2}

∑
j∈{1,2}

Cov
[
δλi , δγj

]
=
∑
λ∈C(t)

4

(
Var [δλ1] + Var [δλ2]

)
+
∑
λ∈C(t)

4

(
Cov [δλ1 , δλ2] + Cov [δλ2 , δλ1]

)
+

∑
λ,γ∈C(t)

4
λ6=γ

(
Cov

[
δλ1 , δγ1

]
+ Cov

[
δλ1 , δγ2

]
+ Cov

[
δλ2 , δγ1

]
+ Cov

[
δλ2 , δγ2

])

=
|C(t)

4 |
2

 τ (t)

M∆

3∏
i=0

t− 1− i
Me − i

− 1

+
∑
λ∈C(t)

4

(
Cov [δλ1 , δλ2] + Cov [δλ2 , δλ1]

)
+

∑
λ,γ∈C(t)

4
λ6=γ

(
Cov

[
δλ1

, δγ1

]
+ Cov

[
δλ1

, δγ2

]
+ Cov

[
δλ2

, δγ1

]
+ Cov

[
δλ2

, δγ2

])
(8.5)

≤ |C
(t)
4 |
2

(
τ (t)

M∆
c

(
t− 1

Me

)4

− 1

)
+
∑
λ∈C(t)

4

(
Cov [δλ1

, δλ2
] + Cov [δλ2

, δλ1
]
)

+
∑
λ∈C(t)

4
λ 6=γ

(
Cov

[
δλ1 , δγ1

]
+ Cov

[
δλ1 , δγ2

]
+ Cov

[
δλ2 , δγ1

]
+ Cov

[
δλ2 , δγ2

])
. (8.6)

We now proceed to analyze the various covariance terms appearing in (8.5). In the following we
refer to

• The second summation in (8.5),
∑
λ∈C(t)

4

(
Cov [δλ1

, δλ2
] + Cov [δλ2

, δλ1
]
)
, concerns the sum of

the covariances of pairs of random variables each corresponding to one of the two possible ways
of detecting a 4-clique using TS4C1. Let us consider one single element of the summation:

Cov [δλ1
, δλ2

] = E [δλ1
δλ2

]− E [δλ1
]E [δλ2

] = E [δλ1
δλ2

]− 1/4.

197

Let us now focus on E [δλ1
δλ2

], according to the definition of δλ1
and δλ2

we have:

E [δλ1
δλ2

] =
p−1
λ1
p−1
λ2

4
Pr
(
δλ1

= p−1
λ1
∧ δλ2

= p−1
λ2

)
=
p−1
λ1
p−1
λ2

4
Pr
(
δλ1

= p−1
λ1
|δλ2

= p−1
λ2

)
Pr
(
δλ2

= p−1
λ2

)
≤
p−1
λ1
p−1
λ2

4
Pr
(
δλ2

= p−1
λ2

)
≤
p−1
λ1
p−1
λ2

4
pλ2

≤
p−1
λ1

4
.

We can therefore conclude:∑
λ∈C(t)

4

(
Cov [δλ1

, δλ2
] + Cov [δλ2

, δλ1
]
)
≤ |C

(t)
4 |
2

 τ (t)

M∆

3∏
i=0

t− 1− i
Me − i

− 1

≤ |C

(t)
4 |
2

(
τ (t)

M∆
c

(
t− 1

Me

)4

− 1

) (8.7)

• The third summation in (8.5), includes the covariances of all |C(t)
4 |
(

2|C(t)
4 | − 1

)
unordered

pairs of random variables corresponding each to one of the two possible ways of counting
distinct 4-cliques in C(t)

4 . In order to provide a significant bound it is necessary to divide
the possible pairs of 4-cliques depending on how many edges they share (if any). From
Lemma 8.7 we have that any pair of 4-cliques λ and γ can share either one, three or no
edges. In the remainder of our analysis we shall distinguishing three group of pairs of 4-cliques
based on how many edges they share. In the following, we present, without loss of general-
ity, bounds for Cov

[
δλ1

, δγ2

]
. The results steadily holds for the other possible combinations

Cov
[
δλ1 , δγ1

]
, Cov

[
δλ2 , δγ1

]
, Cov

[
δλ2 , δγ2

]
, Cov

[
δγ1 , δλ1

]
, Cov

[
δγ1 , δλ2

]
,

Cov
[
δγ2 , δλ1

]
, and Cov

[
δγ2 , δλ2

]
1. λ and γ do not share any edge:

E
[
δλ1

δγ2

]
=
p−1
λ1
p−1
γ2

4
Pr
(
δλ1

= p−1
λ1
∧ δγ2

= p−1
γ2

)
=
p−1
λ1
p−1
γ2

4
Pr
(
δλ1 = p−1

λ1
|δγ2 = p−1

γ2

)
Pr
(
δλ2 = p−1

λ2

)
The term Pr

(
δλ1

= p−1
λ1
|δγ2

= p−1
γ2

)
denotes the probability of TS4C1 observing λ using

T1 and edges e3 and e5 conditioned of the fact that γ was observed by the algorithm
using T3 and edges g3 and g5. Note that as λ and γ do not share any edge, no edge of γ
will be used by TS4C1 to detect λ. Rather, if any edge of γ is included in §e or if T3 is
included in S∆, this would lessen the probability of TS4C1 detecting λ using T1, e3 and
e5 as some of space in Se or S∆ may be occupied by edges or triangle sub-structures for

198

e2

e1

e∗

e6

e4 e5

T1 T2

g1

g3

g6

g4 g5

Figure 8.2: Cliques sharing one edge.

e3

e∗1

e∗2

e6

e5 e∗3

T1

g3
g5

g6

Figure 8.3: Cliques sharing three edges.

γ. Therefore we have Pr
(
δλ1

= p−1
λ1
|δγ2

= p−1
γ2

)
≤ Pr

(
δλ1

= p−1
λ1

)
and thus:

E
[
δλ1

δγ2

]
=
p−1
λ1
p−1
γ2

4
Pr
(
δλ1

= p−1
λ1
|δγ2

= p−1
γ2

)
Pr
(
δλ2

= p−1
λ2

)
≤
p−1
λ1
p−1
γ2

4
Pr
(
δλ1

= p−1
λ1

)
Pr
(
δλ2

= p−1
λ2

)
≤
p−1
λ1
p−1
γ2

4
pλ1

pλ2

≤ 1

4
We therefore have Cov

[
δλ1 , δγ2

]
≤ 0. Hence we can conclude that the contribution of the

covariances of the pairs of random variables corresponding to 4-cliques that do not share
any edge to the summation in (8.5) is less or equal to zero.

2. λ and γ share exactly one edge e∗ = λ ∩ γ as shown in Figure 8.2 Let us consider
the event E∗ =“e∗ ∩ T1 ∩ E(t1,2,4−1) ∈ St1,2,4e , and e∗ ∩ {e3, e5} ∩ E(t6−1) ∈ S

(t6)
e ”.

Clearly Pr
(
δλ1

= p−1
λ1
|δγ2

= p−1
γ2

)
≤ Pr

(
δλ1

= p−1
λ1
|E∗
)
. Recall from Lemma 8.3 that

Pr
(
δλ1
|E∗
)

= Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
Pr
(
T1 ∈ S(t6)

∆ |E∗
)
Pr
(
S(T1)|E∗

)
, where S(T1)

denotes the event “T1 is observed on the stream by TS4C1”. By applying the law of total
probability e have that Pr

(
T1 ∈ S(t6)

∆ |E∗
)
≤ Pr

(
T1 ∈ S(t6)

∆

)
. The remaining two terms

are influenced differently depending on whether e∗ ∈ T1 or e∗ ∈ {e3, e5}

199

– if e∗ ∈ T1: we then have Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≤ Pr

(
{e3, e5} ⊆ S(t6)

e

)
. This

follows from the properties of the reservoir sampling scheme as the fact that the edge
e∗ is in Se means that one unit of the available memory space required to hold e3 or
e5 is occupied, at least for some time, by e∗. If e∗ is the last edge of T1 observed in
the stream we then have:

Pr
(
S(T1)|E∗

)
= Pr

(
{e1, e2, e4} \ {e∗} ∈ S(

et1, 2, 4)|E∗
)

= Pr
(
{e1, e2, e4} \ {e∗} ∈ S(

et1, 2, 4)
)

≤ Me

t1,2,4 − 1

Me − 1

t1,2,4 − 2
Suppose instead that e∗ is not the last edge of T1. Assume further , without loss of
generality, that t2 > max{t1, t4}. TS4C1 observes T1 iff {e1, e4} ∈ S(

et2). As in E∗

we assume that once observed e∗ is always maintained in Se until t1,2,4 we have:
Pr
(
S(T1)|E∗

)
= Pr

(
{e1, e4} \ {e∗} ∈ S(

et1, 2, 4)|E∗
)

≤ Me − 1

t1,2,4 − 2

– if e∗ ∈ {e3, e5}: we then have Pr
(
S(T1)|E∗

)
≤ Pr

(
S(T1)

)
. This follows from the

properties of the reservoir sampling scheme as the fact that the edge e∗ is in Se means
that one unit of the available memory space required to hold the first two edges of
T1 until t1,2,4 is occupied, at least for some time, by e∗. Further, using Lemma 8.3
we have:

∗ if t6 ≤Me, then Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)

= 1

∗ if min{t3, t5} > t1,2,4, then Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≥ Me

t6−1 ,

∗ if max{t3, t5} > t1,2,4 > min{t3, t5}, then Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≥

max{Me−1
t6−2 ,

Me−2
t1,2,4−3

t1,2,4−1
t6−1 },

∗ otherwise Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≥ Me−2

t1,2,4−3
t1,2,4−1
t6−1 .

Putting together these various results we have that p(−1)
λ Pr

(
δλ1 = p−1

λ1
|δγ2 = p−1

γ2

)
≤

p
(−1)
λ Pr

(
δλ1

= p−1
λ1
|E∗
)
≤ c t6−1

Me
with c = s. Hence we have E

[
δλ1

δγ2

]
≤ c

4
t6−1
Me
≤ c

4
t−1
Me

.
We can thus bound the contribution to the third component of (8.5) given by the pairs
of random variables corresponding to 4-cliques that share one edge as:

2a(t)

(
c
t− 1

Me
− 1

)
, (8.8)

where a(t) denotes the number of unordered pairs of 4-cliques which share one edge in
G(t).

3. λ and γ share three edges {e∗1, e∗2, e∗3} which form a triangle sub-structure for both λ and
γ. Let us refer to Figure 8.3, without loss of generality let T1 denote the triangle shared
between the two cliques. We distinguish the kind of pairs for the random variables δλi
and δγj cases:

200

– δλi = p−1
λi

if T1 ∈ St6−1
∆ ∧ {e3, e5} ⊆ St6−1

e and δγj = p−1
γj if T1 ∈ Stγ−1

∆ ∧ {g3, g5} ⊆
Stγ−1
e , where tγ denotes the time step at which the last edge of γ is observed. This

is the case for which the random variables δλi and δγj corresponds to TS4C1 ob-
serving λ and γ using the shared triangle T1. Let us consider the event E∗ =“T1 ∈
S(t6)

∆ . Clearly Pr
(
δλi = p−1

λi
|δγj = p−1

γj

)
≤ Pr

(
δλi = p−1

λi
|E∗
)
. In this case we have

Pr
(
T1 ∈ S(t6)|E∗

)
≤ 1, while Pr

(
{e3, e5} ∈ S(t6)

e |E∗
)
≤ Prob{e3, e5} ∈ S(t6)

e . This
second fact follows from the properties of the reservoir sampling scheme as the fact
that the edges e∗1, e∗2 and e∗3 are in Se at least for the time required for T1 to be
observed, means that at least two unit of the available memory space required to
hold the edges e3, e5 are occupied, at least for some time. Putting together these var-
ious results we have that p(−1)

λi
Probδλi = p−1

λi
|δγj = p−1

γj ≤ p
(−1)
λi

Pr
(
δλi = p−1

λi
|E∗
)
≤

c
(
t6−1
Me

)2
τ(t)

S∆
. Hence we have E

[
δλiδγj

]
≤ c

4

(
t6−1
Me

)2
τ(t)

S∆
and Cov

[
δλi , δγj

]
≤

c
4

(
t6−1
Me

)2
τ(t)

S∆
− 1

4 .

– in all the remaining case, then the random variables δλi and δγj corresponds to
FourEstnot observing λ and γ using the shared triangle T1 for both of them. Let T ∗

denote the triangle sub-structure used by TS4C1 to count λ with respect to δλi . Let
us consider the event E∗ =“{e∗1, e∗2, e∗3}∩T1∩E(t1,2,4−1) ∈ St1,2,4e , T1 ∈ S(t6)

∆ unless one
of its edges is the last edge of T ∗ observed on the stream, and {e∗1, e∗2, e∗3}∩{e3, e5}∩
E(t6−1) ∈ S(t6)

e if e∗ ∈ {e3, e5}”, where E(t) denotes the set of edges observed up until
time t included. Clearly Pr

(
δλi = p−1

λi
|δγj = p−1

γj

)
≤ Pr

(
δλi = p−1

λi
|E∗
)
. Note that

in this case |{e∗1, e∗2, e∗3}∩T1|+|{e∗1, e∗2, e∗3}∩{e3, e5}|. By analyzing Pr
(
δλi = p−1

λi
|E∗
)

in this case using similar steps as the ones described for the other sub-cases we have
p

(−1)
λi

Pr
(
δλi = p−1

λi
|δγj = p−1

γj

)
≤ p

(−1)
λi

Pr
(
δλi = p−1

λi
|E∗
)
≤ c

(
t6−1
Me

)3

. Hence we

have E
[
δλiδγj

]
≤ c

4

(
t6−1
Me

)3

and Cov
[
δλi , δγj

]
≤ c

4

(
t6−1
Me

)3

− 1
4 .

We can thus bound the contribution to the third component of (8.5) given by the pairs
of random variables corresponding to 4-cliques that share three edges as:

2b(t)

c(t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)
− 1

 , (8.9)

where b(t) denotes the number of unordered pairs of 4-cliques which share three edges in
G(t).

The Theorem follows by combining (8.7), (8.8) and (8.9) in (8.5).

Memory partition across layers In most practical scenario we assume that a certain amount of
total available memory M is available for algorithm TS4C1. A natural question that arises is what
is the best way of spitting the available memory between Se and S∆. While different heuristics are
possible, in our work we chose to assign the available space in such a way that the dominant first
term of upper bound of TS4C1 in Theorem 8.6 is minimized. For 0 < α < 1 let Me = αM and

201

M∆ = (1− α)M . Then we have that |C(t)
4 |
(
c
(
t−1
αM

)4 (τ(t)−1
(1−α)M

)
− 1

)
is minimized for α = 4/5. This

convenient splitting rule works well in most cases, and is used in most of the paper. In Section 8.7,
we discuss a more sophisticated adaptive dynamic allocation of the available memory among the two
sample tiers, named ATS4C. We present experimental results for this method in Section 8.8.2.

Concentration bound Based on the bound on the variance in Theorem 8.6, we now show a
concentration bound for the estimator κ(t) returned by TS4C1. The proof of Theorem 8.8 is based
on the application of Chebyshev’s inequality [164, Thm. 3.6].

Theorem 8.8. Let t > min{Me, t∆} and assume |C(t)
4 | > 0. Let a(t) (resp., b(t)) denote the

number of unordered pairs of 4-cliques which share one edge (resp., three edges) in G(t), and c ≥
M3
e

(Me−1)(Me−2)(Me−3) . Further, let Me = αM (resp., Me = (1− α)M), for α ∈ (0, 1). For any
ε, δ ∈ (0, 1), if

M > α−1 max
{

5

√
α

1− α
3c(t− 1)4(τ (t))

δε2|C(t)
4 |

,
6ca(t)(t− 1)

δε2|C(t)
4 |2

, 3

√√√√3cb(t)c (t− 1)
2 (
ατ (t) + 3(1− α)(t− 1)

)
2(1− α)δε2|C(t)

4 |2
}
,

then the estimator κ(t) returned by TS4C1 satisfies:
Pr
(
|κ(t) − |C(t)

4 | < ε|C(t)
4 |
)
> 1− δ.

Proof. By Chebyshev’s inequality it is sufficient to prove that
Var

[
κ(t)

]
ε2|C(t)

4 |2
< δ .

From Theorem 8.6, we can write:
Var

[
τ (t)
]

ε2|C(t)
4 |2

≤ 1

ε2|C(t)
4 |

(
|C(t)

4 |

c(t− 1

Me

)4
(
τ (t)

M∆

)
− 1

+ 2a(t)

(
c
t− 1

Me
− 1

)

+ 2b(t)

c(t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)
− 1

)

<
1

ε2|C(t)
4 |

|C(t)
4 |c

(
t− 1

Me

)4
(
τ (t)

M∆

)
+ 2a(t)

(
c
t− 1

Me

)
+ 2b(t)c

(
t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)
=

1

ε2|C(t)
4 |

(
|C(t)

4 |c
(t− 1)

4
τ (t)

α4 (1− α)M5
+ 2a(t)c

(
t− 1

αM

)
+ 2b(t)c

(
t− 1

αM

)2
ατ (t) + 3 (1− α) (t− 1)

4α(1− α)M

)

=
1

ε2|C(t)
4 |

|C(t)
4 |c

(t− 1)
4
τ (t)

α4 (1− α)M5
+ 2a(t)c

(
t− 1

αM

)
+ 2b(t)c

(t− 1)
2
(
ατ (t) + 3 (1− α) (t− 1)

)
4α3(1− α)M3

 .

Hence it is sufficient to impose the following three conditions:

Condition 1
δ

3
>

1

ε2|C(t)
4 |2
|C(t)

4 |c
(t− 1)

4
τ (t)

α4 (1− α)M5
(8.10)

>
α

1− α
c (t− 1)

4
τ (t)

ε2|C(t)
4 |α5M5

,

202

which is verified for:

M > α−1 5

√√√√ 3α

1− α
c (t− 1)

4
τ (t)

δε2|C(t)
4 |

.

Condition 2
δ

3
>

1

ε2|C(t)
4 |2

2a(t)c

(
t− 1

αM

)
,

which is verified for:

M > α−1 6a(t)c (t− 1)

δε2|C(t)
4 |2

.

Condition 3

δ

3
>

1

ε2|C(t)
4 |2

2b(t)c
(t− 1)

2
(
ατ (t) + 3 (1− α) (t− 1)

)
4α3(1− α)M3

, (8.11)

which is verified for:

M > α−1 3

√√√√3b(t)c (t− 1)
2 (
ατ (t) + 3 (1− α) (t− 1)

)
2δε2(1− α)|C(t)

4 |2
.

The theorem follows.

Note that for t ≤ min{Me, t∆} all the edges (resp., triangles) observed up to time t can be
maintained in Se (resp., S∆), and, hence, we have κ(t) = |C(t)

k | and Var
[
κ(t)

]
= 0.

Theorem 8.8, provides a bound on the relative ε-approximation of |C(t)
4 | provided by TS4C1. In

particular, Theorem 8.8 suggest that while the variance of the estimator is bound to increase as |C(t)
4 |

increases (as stated in Theorem 8.6), for a given value δ, the size of available sample memory M
required to achieve an ε-approximation for |C(t)

4 | with probability at least 1− δ decreases for higher
values of |C(t)

4 |.

8.4.2 Algorithm TS4C2

While the version of TS4C1 presented in Algorithm 15 detects 4-cliques by using one triangle sub-
structure form S∆ and two edges from Se, it is possible to use different sub-structures to achieve the
same goal. We now present a variation of TS4C1, called TS4C2, which detects a 4-clique when the
current observed edge completes a 4-clique using two triangles currently in S∆. Towards improving
the presentation, the proofs of all the technical results discussed in this section are deferred to
Section 8.5.

TS4C1 and TS4C2 differ only in the Estimation update step, implemented by the function Up-

date4Cliques which determinates how the occurrences of 4-cliques are detected and the estimators
are correspondingly updated. The pseudocode for TS4C2 is presented in Algorithm 16:

• Whenever a new edge et = (u, v) is observed on the stream at time T , TS4C2 invokes the
function Update 4-cliques (Algorithm 16) which verifies whether in triangle reservoir S∆

there exists any (unordered) pair of triangles {T1, T2} such that T1 = {u,w, z} and T2 =

{v, w, z}, for w, z ∈ V (t). When such conditions are meet, we say that a 4-clique {u, v, w, z} is

203

ALGORITHM 16 TS4C2 - Tiered Sampling for 4-Clique counting using 2 triangle sub-structures

function Update4Cliques((u, v), t)
for each (u,w, z) ∈ S∆ ∧ (v, w, z) ∈ S∆ do . For each 4-clique (u,v,w,z) formed by two

triangles (u,w,z) and (v,w,z)
p← ProbClique((u,w, z), (v, w, z)) . Calculate the probability of observing 4-clique

(u,v,w,z)
σ ← σ + p−1 . Update the 4-clique estimator

“observed on the stream” by TS4C2. The algorithm then uses ProbClique to compute the
exact probability p of the observation based on the timestamps of all its edges according to
the results of Lemma 8.10. The estimator κ is then increased by p−1.

• TS4C2 then proceeds in updating the triangle sample S∆ and the edge sample Se follow-wing
the same steps as TS4C1 as described in Section 8.4.1.

The difference in the way 4-cliques are detected by TS4C2 corresponds to a difference in the
probability of such detections. Before introducing the lemma for calculating the probability of
detecting a 4-clique using TS4C2, we introduce the following technical Lemma 8.9 which states that
each 4-clique can be observed just once using TS4C1. In order to simplify the presentation, in the
following we use the following notation:

tM1,2,...,i , max{t1, t2, . . . , ti}
tm1,2,...,i , min{t1, t2, . . . , ti}

Lemma 8.9. Let λ ∈ C(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 8.1 as reference. Assume

further, without loss of generality, that the edge ei is observed at ti (not necessarily consecutively)
and that t6 > max{ti, 1 ≤ i ≤ 5}. λ can be observed by TS4C2 at time t6 only by a combination of
two triangles T1 = {e1, e2, e4} and T2 = {e1, e3, e5}.

Proof. TS4C2 can detect λ only when its last edge is observed on the stream (hence, t6). When
e6 is observed, the algorithm first evaluates whether there are two triangles in S(t6)

∆ , that share two
endpoints and the other endpoints are u and v respectively. Since at this step (i.e., the execution
of function Update4Cliques) the triangle sample is jet to be updated based on the observation
of e6, the only triangle sub-structures of λ which may have been observed on the stream, and thus
included in S(t6)

∆ are T1 = {e1, e2, e4} and T2 = {e1, e3, e5}. λ is thus observed if and only if both of
the triangles T1 and T2 are found in S(t6)

∆ .

Lemma 8.9, marks an important difference between TS4C2 and TS4C1 as for the latter there
are multiple ways of detecting the same 4-clique as discussed in Section 8.4. Such difference impacts
the analysis of the probability of detecting a 4-clique using TS4C2:

Lemma 8.10. Let λ ∈ C(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 8.1 as reference. Assume

further, without loss of generality, that the edge ei is observed at ti (not necessarily consecutively)

204

and that t6 > max{ti, 1 ≤ i ≤ 5}. The probability pλ of λ being observed on the stream by TS4C2,
is computed by ProbClique as:

pλ = min{1, Me

tM1,3,5 − 1

Me − 1

tM1,3,5 − 2
}min{1, M∆

τ (t6)

M∆ − 1

τ (t6) − 1
}p′

where:

p′ =

1, if tM1,2,4 ≤Me

Me−2
t1−3

Me−3
t1−4 , if t1 > tM2,3,4,5

Me−2
t1−3

Me−3
t1−4 , if tM3,5 > t1 > max{tm3,5, t2, t4}

Me−2
tM2,4−3

, if tM3,5 > tM2,4 > max{tm3,5, tm2,4, t1}
Me

t1−1
Me−1
t1−2 , if tm3,5 > t1 > tM2,4

Me−1
tM2,4−2

if tm3,5 > tM2,4 > t1

Me−1
tM2,4−1

Me−2
t1−3

t1−1
t2−1 , if tM2,4 > t1 > max{Me, t

m
2,4, t

M
3,5}

Me−1
tM2,4−1

Me

t2−1 if tM2,4 > Me > t1 > max{tm2,4, tM3,5}
t3−1
tM2,4−1

t3−2
tM2,4−2

Me−2
tM3,5−3

, if tM2,4 > tM3,5 > max{Me, t
m
3,5, t

m
2,4, t1}

Me

tM2,4−1
Me−1
tM2,4−2

, if tM2,4 > Me > tM3,5 > max{tm3,5, tm2,4, t1}
Me

tM2,4−1
Me−1
tM2,4−2

, if tm2,4 > t1 > tM3,5

Me−1
tM2,4−2

tM3,5−1

tM2,4−1
, if tm2,4 > tM3,5 > max{M, t1}

Me−1
tM2,4−2

Me

tM2,4−1
, if tm2,4 > Me > tM3,5 > t1

The analysis presents several complications due to the interplay of the probabilities of observing
each of the two triangles that share an edge. For a detailed proof of Lemma 8.11 and of the other
results in this section (Theorems 8.12,8.13, 8.14), we refer the reader to Appendix 8.5. The following
corollary presents a lower bound to the probability of a 4-clique being observed by TS4C2. While
rather loose, especially for 4-cliques that are detected towards the beginning of the edge stream, it
provides a useful intuition for the analysis of the variance of the estimator presented in Theorem 8.13.

Corollary 8.11. Let λ ∈ C(t)
4 and let pλ denote the probability of λ being observed on the stream by

TS4C2. We have:

pλ ≤
(
Me

t− 1

)4(
M∆

τ (t)

)2

.

Analysis of TS4C2 estimator

Theorem 8.12. The estimator κ returned by TS4C2 is unbiased, that is κ(t) = |C(t)
k | if t ≤

min{Me, t∆}. Further, E
[
κ(t)

]
= |C(t)

k | if t ≤ min{Me, t∆}.

The proof of 8.12 closely follows the steps of the proof of 8.5. The main differences are given by
the fact that there is one unique possible way according to which 4-cliques are observed by TS4C2

(Lemma 8.15), and the probability of such event is given by 8.9.

205

The analysis of the variance of TS4C2 presents considerable differences with respect to the
analysis of the variance of TS4C1, which are due to the different strategies that the two algorithms
use to detect 4-cliques. The key component of the analysis depends on the analysis of the covariance
of all the possible pairs of the binary random variables that are each associated with the detection of
one of the 4-cliques. As stated in Lemma 8.9, for TS4C2 there is just a single possible way according
to which a 4-clique can be detected. Thus, the number and the distribution of the random variables
considered in the analysis of the variance of TS4C2 are clearly different from those of the random
variables considered in the previous section for the analysis of the variance of TS4C1.

Theorem 8.13. For any time t > min{Me, t∆}, the estimator κ returned by TS4C2 satisfies

Var
[
κ(t)

]
≤ |C(t)

4 |

c(t− 1

Me

)4
(
τ (t)

M∆

)2

− 1

+ 2a(t)

(
c
t− 1

Me
− 1

)

+ 2b(t)

c(t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)
− 1

 , (8.12)

where a(t) (resp., b(t)) denotes the number of unordered pairs of 4-cliques which share one edge (resp.,
three edges) in G(t), and c ≥ M3

e

(Me−1)(Me−2)(Me−3) .

Note that the first, and dominant, term of (8.12) is given by the total number of 4-cliques in

G(t) (i.e., |C(t)
4 |) multiplied by

(
c
(
t−1
Me

)4 (
τ(t)

M∆

)2

− 1

)
which corresponds approximately to c(pλ)−1,

where pλ denotes the lower bound to the probability of TS4C2 detecting a 4-clique as provided
by Corollary 8.11. This suggests a natural relation between these quantities: as the probability of
detecting a 4-clique decreases (resp., the total number of 4-cliques increases) the variance increases
accordingly. The bound on the variance of TS4C2 is similar to the corresponding result for TS4C1 in
Theorem 8.13. While it appears that the leading term of the variance for TS4C2 is higher than that
those of TS4C2 by a τ(t)

M∆
factor, it should be noted that this is mostly a result of the simplification

of the analysis which is, however, required to achieve a closed form expression for the variance. In
our experimental analysis on random (Section 8.6.3) and real-world graphs (Section 8.8) we observe
that TS4C1 and TS4C2 generally exhibit comparable performance in terms of the quality of the
produced estimated and their variance.

Memory partition: Following the same criterion discussed in Section 8.4.1, we use |Me| = 2M/3

and |M∆| = M/3 as a general rule for assigning the available memory space between the two
sample levels. Given the fact that there is a much higher emphasis on the role and the use of the
triangle sub-patterns in TS4C2 compared to TS4C1, it should not be surprising that the preferred
memory split for the former assigned a higher fraction of the available memory space to the triangle
sample compared to the latter. We use this assignment in the remainder of the paper and for the
experimental evaluation of the performance of our algorithm.

Concentration bound: Based on the bound on the variance in Theorem 8.13, we now show a con-
centration bound for the estimator κ(t) returned by TS4C2 based on the application of Chebyshev’s

206

inequality [164, Thm. 3.6].

Theorem 8.14. Let t > min{Me, t∆} and assume |C(t)
4 | > 0. Let a(t) (resp., b(t)) denote the

number of unordered pairs of 4-cliques which share one edge (resp., three edges) in G(t), and c ≥
M3
e

(Me−1)(Me−2)(Me−3) . Further, let Me = αM (resp., Me = (1− α)M), for α ∈ (0, 1). For any
ε, δ ∈ (0, 1), if

M > α−1 max
{

3

√
α

1− α
3c(t− 1)2(τ (t))2

δε2|C(t)
4 |

,
6ca(t)(t− 1)

δε2|C(t)
4 |2

, 3

√√√√6b(t)c (t− 1)
2 (
ατ (t) + 3(1− α)(t− 1)

)
4(1− α)δε2|C(t)

4 |2
}

then the estimator κ(t) returned by TS4C2 satisfies
Pr
(
|κ(t) − |C(t)

4 | < ε|C(t)
4 |
)
> 1− δ.

As for Theorem 8.8, note that for t ≤ min{Me, t∆} all the edges (resp., triangles) observed up
to time t can be maintained in Se (resp., S∆), and, hence, we have κ(t) = |C(t)

k | and Var
[
κ(t)

]
= 0.

The proof for Theorem 8.14 follows steps analogous to those discussed for Theorem 8.8.
Although the difference between TS4C1 and TS4C2 may appear of minor interest, our exper-

imental analysis shows that it can lead to significantly different performances depending on the
properties of the graph G(t). Intuitively, TS4C2 emphasizes the importance of the triangle sub-
structures compared to TS4C1, thus resulting in better performance when the input graph is very
sparse with low number of occurrences of 3 and 4-cliques.

8.5 Proofs of technical results regarding TS4C2

In this section we present proofs for TS4C2 algorithm discussed in Section 8.4.2.

Proof of Theorem 8.10. Let us define the event Eλ = λ is observed on the stream by TS4C2 using
triangle T1 = {e1, e2, e4} and triangle T2 = {e1, e3, e5}. Given the definition of TS4C2 we have:

Eλ = ET1
∧ ET2

,

and hence:
pλ = Pr (Eλ) = Pr (ET1

∧ ET2
) = Pr

(
ET1
|ET2

)
Pr (ET2

) .

In oder to study Pr (ET2
) we shall introduce event ES(T2) =“triangle T2 is observed on the stream

by TS4C2”. From the definition of TS4C2 we know that T2 is observed on the stream iff when the
last edge of T2 is observed on the stream at max{t1, t3, t5} the remaining to edges are in the edge
sample. Applying Bayes’s rule of total probability we have:

Pr (ET2
) = Pr

(
ET2
|ES(T2)

)
Pr
(
ES(T2)

)
.

and thus:
pλ = Pr

(
ET1 |ET2

)
Pr
(
ET2 |ES(T2)

)
Pr
(
ES(T2)

)
. (8.13)

In order for T2 to be observed by TS4c2 it is required that wen the last edge of T2 is observed
on the stream at tM1,3,5 its two remaining edges are kept in Se. Lemma 7.1 we have:

Pr
(
ES(T2)

)
=

Me

t1,3,5 − 1

Me − 1

t1,3,5 − 2
, (8.14)

207

and:
Pr
(
ET2
|ES(T2)

)
=
Me

τ t6
. (8.15)

Let us now consider Pr
(
ET1 |ET2

)
. In order for T1 to be found in S∆ at t6 it is

necessary for T1 to have been observed by TS4C2. We thus have that Pr
(
ET1
|ET2

)
=

Pr
(
ET1
|ES(T1), ET2

)
Pr
(
ES(T1)|ET2

)
Pr
(
ET1 |ES(T1)

)
=
M∆ − 1

τ t6 − 1
(8.16)

Let us now consider Pr
(
ES(T1)|ET2

)
. while the content of S∆ itself does not influence the

content of Se, the fact that T2 is maintained in S∆ at t6 implies that it has been observed on
the stream at a previous time. We thus have Pr

(
ES(T1)|ET2

)
= Pr

(
ES(T1)|ES(T2)

)
. In order to

study p′ = Pr
(
ES(T1)|ES(T2)

)
it is necessary to distinguish the possible (5!) different arrival orders

for edges e1,e2, e3, e4 and e5. An efficient analysis we however reduce the number of cases to be
considered to thirteen.

• tM1,2,4 ≤ Me: in this case all edges of T1 are observed on the stream before Me so they are
deterministically inserted in Se and thus p′ = 1.

• t1 > tM2,3,4,5: in this case the edge e1 that is shared by T1 and T2 is observed after e2, e3, e4,
e5.

p′ = P ({e2, e4} ∈ Se(t1)|{e3, e5} ∈ Se(t1))

= P (e2 ∈ Se(t1)|{e3, e4, e5} ∈ Se(t1)) · P (e4 ∈ Se(t1)|{e3, e5} ∈ Se(t1))

= min(1,
M − 3

t1 − 4
) ·min(1,

M − 2

t1 − 3
)

• tM3,5 > t1 > max{tm3,5, t2, t4}: in this case only one of the edges e3,e5 is observed after e1, which
is observed after all the remaining edges. Here we consider the case when e3 is the edge to be
observed last. The same procedure follows for e5 as well.

p′ = P ({e2, e4} ∈ Se(t1)|e5 ∈ Se(t1))

= P (e2 ∈ Se(t1)|{e4, e5} ∈ Se(t1)) · P (e4 ∈ Se(t1)|e5 ∈ Se(t1))

= min(1,
M − 2

t1 − 3
) ·min(1,

M − 1

t1 − 2
)

• tM3,5 > tM2,4 > max{tm3,5, tm2,4, t1}: in this case only one of the edges e3, e5 is observed after one of
the edges e2, e4, which is observed after all the remaining edges. We consider the case when
e3 and e2 are observed last. The same procedure follows for e4 and e5 as well.

p′ = P ({e1, e4} ∈ Se(t2)|{e1, e5} ∈ Se(t3))

= P (e1 ∈ Se(t2)|{e1, e4, e5} ∈ Se(t3)) · P (e4 ∈ Se(t2)|{e1, e5} ∈ Se(t3))

= 1 ·min(1,
M − 2

t2 − 3
)

• tm3,5 > t1 > tM2,4: in this case both edges e3,e5 are observed after e1, which is observed after
all the remaining edges. Here we consider the case when t3 > t5 > t1. The same procedure

208

follows for t5 > t3 > t1.
p′ = P ({e2, e4} ∈ Se(t1)|{e1, e5} ∈ Se(t3))

= P (e2 ∈ Se(t1)|e4 ∈ Se(t1), {e1, e5} ∈ Se(t3)) · P (e4 ∈ Se(t1)|{e1, e5} ∈ Se(t3))

= min(1,
M − 1

t1 − 2
) ·min(1,

M

t1 − 1
)

• tm3,5 > tM2,4 > t1: in this case both edges e3,e5 are observed after one of the edges e2,e4, which
is observed after e1. We consider the case t2 > t4 and t3 > t5. The same procedure follows for
t4 > t2 and t5 > t3

p′ = P ({e1, e4} ∈ Se(t2)|{e1, e5} ∈ Se(t3))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e1, e5} ∈ Se(t3)) · P (e1 ∈ Se(t3)|{e1, e5} ∈ Se(t3))

= min(1,
M − 1

t2 − 2
) · 1

• tM2,4 > t1 > max{Me, t
m
2,4, t

M
3,5}: in this case both edges e2, e4 are observed after e1, which is

observed after the edge reservoir is filled and after all the remaining edges. We consider the
case when t2 > t4. The same procedure follows for t4 > t2.

p′ = P ({e1, e4} ∈ Se(t2)|{e3, e5} ∈ Se(t1))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e3, e5} ∈ Se(t3)) · P (e1 ∈ Se(t2)|{e3, e5} ∈ Se(t1))

=
M − 1

t2 − 2
· M − 2

t1 − 3
· t1 − 1

t2 − 1

• tM2,4 > Me > t1 > max{tm2,4, tM3,5}:in this case both edges e2, e4 are observed after e1, which is
observed before the edge reservoir is filled and after all the remaining edges. We consider the
case when t2 > t4. The same procedure follows for t4 > t2.

p′ = P ({e1, e4} ∈ Se(t2)|{e3, e5} ∈ Se(t1))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e3, e5} ∈ Se(t3)) · P (e1 ∈ Se(t2)|{e3, e5} ∈ Se(t1))

=
M − 1

t2 − 2
· Me

t2 − 1

• tM2,4 > tM3,5 > max{Me, t
m
3,5, t

m
2,4, t1}: in this case only one of the edges e2, e4 is observed after

one of the edges e3, e5 which is observed after the edge reservoir if filled and after all the
remaining edges. We consider the case when t2 > t4 and t3 > t5. The same procedure follows
for t4 > t2 and t5 > t3

p′ = P ({e1, e4} ∈ Se(t2)|{e1, e5} ∈ Se(t3))

= P (e1 ∈ Se(t2)|e4 ∈ Se(t2), {e1, e5} ∈ Se(t3)) · P (e4 ∈ Se(t2)|{e1, e5} ∈ Se(t3))

=
t3 − 1

t2 − 1
· t3 − 2

t2 − 2
· Me − 2

t3 − 3

• tM2,4 > Me > tM3,5 > max{tm3,5, tm2,4, t1}: in this case only one of the edges e2, e4 is observed after
one of the edges e3, e5 which is observed before the edge reservoir if filled and after all the
remaining edges. We consider the case when t2 > t4 and t3 > t5. The same procedure follows

209

for t4 > t2 and t5 > t3

p′ = P ({e1, e4} ∈ Se(t2)|{e1, e5} ∈ Se(t3))

= P (e1 ∈ Se(t2)|e4 ∈ Se(t2), {e1, e5} ∈ Se(t3)) · P (e4 ∈ Se(t2)|{e1, e5} ∈ Se(t3))

=
Me

t2 − 1
· Me − 1

t2 − 2

• tm2,4 > t1 > tM3,5: in this case both edges e2,e4 are observed after e1, which is observed after
all the remaining edges. Here we consider the case when t2 > t4 > t1. The same procedure
follows for t4 > t2 > t1.

p′ = P ({e2, e4} ∈ Se(t1)|{e3, e5} ∈ Se(t1))

= P (e2 ∈ Se(t1)|e4 ∈ Se(t1), {e3, e5} ∈ Se(t1)) · P (e4 ∈ Se(t1)|{e3, e5} ∈ Se(t1))

= min(1,
Me − 1

t2 − 2
) ·min(1,

Me

t2 − 1
)

• tm2,4 > tM3,5 > max{M, t1}: in this case both edges e2,e4 are observed after one of the edges
e3,e5, which is observed after the edge reservoir is filled and after all the remaining edges.

p′ = P ({e1, e4} ∈ Se(t2)|{e1, e5} ∈ Se(t3))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e1, e5} ∈ Se(t3)) · P (e1 ∈ Se(t2)|{e1, e5} ∈ Se(t3))

=
Me − 1

t2 − 2
· t3 − 1

t2 − 1

• tm2,4 > Me > tM3,5 > t1: in this case both edges e2,e4 are observed after one of the edges e3,e5,
which is observed before the edge reservoir is filled and after all the remaining edges.

p′ = P ({e1, e4} ∈ Se(t2)|{e1, e5} ∈ Se(t3))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e1, e5} ∈ Se(t3)) · P (e1 ∈ Se(t2)|{e1, e5} ∈ Se(t3))

=
Me − 1

t2 − 2
· Me

t2 − 1

The lemma follows combining the result for the values of p′ with (8.14), (8.15) and (8.16) in
(8.5).

Applying this lemma to an analysis similar to the one used in the proof of Theorem 8.5 we prove
that the estimations obtained using TS4C2 are unbiased.

Proof of Theorem 8.12. Let t∗ denote the first step at for which the number of triangle seen exceeds
M∆. For t ≤ min{Me, t

∗}, the entire graph G(t) is maintained in Se and all the triangles in G(t)

are stored in S∆. Hence all the cliques in G(t) are deterministically observed by TS4C1and we have
κ(t) = |C(t)

4 |.
Assume now t > min{Me, t

∗} and assume that |C(t)
4 | > 0, otherwise, the algorithm determin-

istically returns 0 as an estimation and the thesis follows. For any 4-clique λ ∈ C(t)
4 which is

observed by TS4C2 with probability pλ, consider a random variable Xλ which takes value p−1

iff λ is actually observed by TS4C2 (i.e., with probability pλ) or zero otherwise. We thus have
E [Xλ] = p−1

λ Pr
(
Xλ = p−1

λ

)
= p−1

λ pλ = 1. Recall that every time TS4C2 observes a 4-clique on

210

the stream it evaluates the probability p (according its correct value as shown in Lemma 8.10) of
observing it and it correspondingly increases the running estimator by p−1. We therefore can express
the running estimator κ(t) as:

κ(t) =
∑
λ∈C(t)

4

Xλ .

From linearity of expectation, we thus have:
E
[
κ(t)

]
=
∑
λ∈C(t)

4

E[Xλ] =
∑
λ∈C(t)

4

p−1
λ pλ = |C(t)

4 |.

The following proof for Theorem 8.13 follows a structure similar to the one presented for Theo-
rem 8.6. The two proofs differ however reflecting the different way according to which 4-cliques are
detected by TS4C2 compared to TS4C1.

Proof of Theorem 8.13. Assume |C(t)
4 | > 0, otherwise TS4C1 estimation is deterministically correct

and has variance 0 and the thesis holds. For each λ ∈ C(t)
4 let λ = {e1, e2, e3, e4, e5, e6}, without loss

of generality, let us assume the edges are disposed as in Figure 8.1. Assume further, without loss of
generality, that the edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤
i ≤ 5}. Let t1,2,4 = max{t1, t2, t4,Me + 1}. Let us consider the random variable δλ which takes
value p−1

λ if the 4-clique λ is observed by TS4C2 using triangles T1 = {e1, e2, e4}, T1 = {e1, e3, e5}
and the final edge e6, or zero otherwise. Let pλ denote the probability of such event.

Since, from Lemma 8.3 we know:

Var [δλ] = E
[
δ2
λ

]
− E [δλ]

2
= pλ−1− 1 ≤

1∏
i=0

τ (t) − 1

M∆ − 1

3∏
i=0

t− 1− i
Me − i

− 1.

For the estimator κ(t) maintained by TS4C2 we thus have:

Var
[
κ(t)

]
= Var

 ∑
λ∈C(t)

4

δλ

 =
∑
λ∈C(t)

4

∑
γ∈C(t)

4

Cov
[
δλ, δγ

]
=
∑
λ∈C(t)

4

Var [δλ] +
∑

λ,γ∈C(t)
4

λ 6=γ

Cov
[
δλ, δγ

]

≤ |C(t)
4 |

 1∏
i=0

τ (t) − i
M∆ − i

3∏
i=0

t− 1− i
Me − i

− 1

+
∑

λ,γ∈C(t)
4

λ 6=γ

Cov
[
δλ, δγ

]
(8.17)

We now focus on the analysis of sum of covariances in the right hand side of the previous
inequality. From the definition of covariance, we have:

Cov
[
δλ, δγ

]
= E

[
δλδγ

]
− E [δλ]E

[
δγ
]

= E
[
δλδγ

]
− 1,

where the last passage follows as, by construction, for all λ ∈ C(t)
4 we have E [δλ] = 1. To complete

211

the analysis of the covariance we will therefore consider the term E
[
δλδγ

]
. We have:

E
[
δλδγ

]
= p−1

λ p−1
γ Pr

(
δλ = p−1

λ ∧ δγ = p−1
γ

)
= p−1

λ p−1
γ Pr

(
δλ1 = p−1

λ |δγ = p−1
γ

)
Pr
(
δλ = p−1

λ

)
= p−1

λ Pr
(
δλ = p−1

λ |δγ = p−1
γ

)
. (8.18)

In order to conclude our analysis it will therefore be necessary to study the probability according to
which TS4C2 observes λ conditioned on the fact that γ was observed. We divide the possible pairs
of 4-cliques depending on how many edges they share (if any). From Lemma 8.7 we have that any
pair of 4-cliques λ and γ can share either one, three or no edges, hence:

1. λ and γ do not share any edge: As λ and γ do not share any edge, no edge of γ will be
used by TS4C2 to detect λ. Rather, if any of the edges (resp., triangles) of γ is included
in §e (resp., S∆), this would lessen the probability of TS4C2 detecting λ as some of space
in Se or S∆ may be occupied by edges or triangle sub-structures for γ. Therefore we have
Pr
(
δλ = p−1

λ |δγ = p−1
γ

)
≤ Pr

(
δλ = p−1

λ

)
and thus from (8.18):

E
[
δλδγ

]
= p−1

λ Pr
(
δλ = p−1

λ |δγ = p−1
γ

)
≤ p−1

λ Pr
(
δλ = p−1

λ

)
= 1;

We therefore have Cov
[
δλ, δγ

]
≤ 0. Hence we can conclude that the contribution of the

covariances of the pairs of random variables corresponding to 4-cliques that do not share any
edge to the summation in (8.17) is less or equal to zero.

2. λ and γ share exactly one edge e∗ = λ ∩ γ as shown in Figure 8.2. Note first of all that if the
shared edge is the last to be observed on the stream for either λ or gamma, then the same
considerations presented for the case in which λ and γ do not share any edge apply an hence,
Cov

[
δλ, δγ

]
≤ 0.

In the following we assume that e∗ is not the last edge observed on the stream for neither λ
nor γ. Let us consider the event E∗ =“e∗ ∩ T1 ∩ E(t1,2,4−1) ∈ St1,2,4e , or e∗ ∩ T2 ∩ E(t1,3,5−1) ∈
St1,3,5e ”. Clearly Pr

(
δλ1 = p−1

λ1
|δγ2 = p−1

γ2

)
≤ Pr

(
δλ1 = p−1

λ1
|E∗
)
. Recall from Lemma 8.3

that Pr
(
δλ1 |E∗

)
= Pr

(
{e3, e5} ⊆ S(t6)

e |E∗
)
Pr
(
T1 ∈ S(t6)

∆ |E∗
)
Pr
(
S(T1)|E∗

)
, where S(T1)

denotes the event “T1 is observed on the stream by TS4C1”. By applying the law of total
probability e have that Pr

(
T1 ∈ S(t6)

∆ |E∗
)
≤ Pr

(
T1 ∈ S(t6)

∆

)
. The remaining two terms are

influenced differently depending on whether e∗ ∈ T1 or e∗ ∈ {e3, e5}

• if e∗ ∈ T1: we then have Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≤ Pr

(
{e3, e5} ⊆ S(t6)

e

)
. This follows

from the properties of the reservoir sampling scheme as the fact that the edge e∗ is in Se
means that one unit of the available memory space required to hold e3 or e5 is occupied,
at least for some time, by e∗. If e∗ is the last edge of T1 observed in the stream we then

212

have:
Pr
(
S(T1)|E∗

)
= Pr

(
{e1, e2, e4} \ {e∗} ∈ S(

et1, 2, 4)|E∗
)

= Pr
(
{e1, e2, e4} \ {e∗} ∈ S(

et1, 2, 4)
)

≤ Me

t1,2,4 − 1

Me − 1

t1,2,4 − 2
Suppose instead that e∗ is not the last edge of T1. Assume further , without loss of
generality, that t2 > max{t1, t4}. TS4C1 observes T1 iff {e1, e4} ∈ S(

et2). As in E∗ we
assume that once observed e∗ is always maintained in Se until t1,2,4 we have:

Pr
(
S(T1)|E∗

)
= Pr

(
{e1, e4} \ {e∗} ∈ S(

et1, 2, 4)|E∗
)

≤ Me − 1

t1,2,4 − 2

• if e∗ ∈ {e3, e5}: we then have Pr
(
S(T1)|E∗

)
≤ Pr

(
S(T1)

)
. This follows from the proper-

ties of the reservoir sampling scheme as the fact that the edge e∗ is in Se means that one
unit of the available memory space required to hold the first two edges of T1 until t1,2,4
is occupied, at least for some time, by e∗. Further, using Lemma 8.3 we have:

– if t6 ≤Me, then Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)

= 1

– if min{t3, t5} > t1,2,4, then Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≥ Me

t6−1 ,

– if max{t3, t5} > t1,2,4 > min{t3, t5}, then
Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≥ max{Me − 1

t6 − 2
,
Me − 2

t1,2,4 − 3

t1,2,4 − 1

t6 − 1
},

– otherwise Pr
(
{e3, e5} ⊆ S(t6)

e |E∗
)
≥ Me−2

t1,2,4−3
t1,2,4−1
t6−1 .

Putting together these various results we have that
p

(−1)
λ Pr

(
δλ1

= p−1
λ1
|δγ2

= p−1
γ2

)
≤ p(−1)

λ Pr
(
δλ1

= p−1
λ1
|E∗
)
≤ c t6 − 1

Me
,

with c = s. Hence we have E
[
δλ1δγ2

]
≤ c

4
t6−1
Me
≤ c

4
t−1
Me

. We can thus bound the contribution to
the third component of (8.5) given by the pairs of random variables corresponding to 4-cliques
that share one edge as:

2a(t)

(
c
t− 1

Me
− 1

)
, (8.19)

where a(t) denotes the number of unordered pairs of 4-cliques which share one edge in G(t).

3. λ and γ share three edges {e∗1, e∗2, e∗3} which form a triangle sub-structure for both λ and γ.
Let us refer to Figure 8.3, without loss of generality let T1 denote the triangle shared between
the two cliques. We distinguish the kind of pairs for the random variables δλi and δγj cases:

• δλi = p−1
λi

if T1 ∈ St6−1
∆ ∧{e3, e5} ⊆ St6−1

e and δγj = p−1
γj if T1 ∈ Stγ−1

∆ ∧{g3, g5} ⊆ Stγ−1
e ,

where tγ denotes the time step at which the last edge of γ is observed. This is the
case for which the random variables δλi and δγj corresponds to FourEst observ-
ing λ and γ using the shared triangle T1. Let us consider the event E∗ =“T1 ∈
S(t6)

∆ . Clearly Pr
(
δλi = p−1

λi
|δγj = p−1

γj

)
≤ Pr

(
δλi = p−1

λi
|E∗
)
. In this case we have

213

Pr
(
T1 ∈ S(t6)|E∗

)
≤ 1, while Pr

(
{e3, e5} ∈ S(t6)

e |E∗
)
≤ Prob{e3, e5} ∈ S(t6)

e . This sec-
ond fact follows from the properties of the reservoir sampling scheme as the fact that
the edges e∗1, e∗2 and e∗3 are in Se at least for the time required for T1 to be observed,
means that at least two unit of the available memory space required to hold the edges
e3, e5 are occupied, at least for some time. Putting together these various results we have
that p(−1)

λi
Probδλi = p−1

λi
|δγj = p−1

γj ≤ p
(−1)
λi

Pr
(
δλi = p−1

λi
|E∗
)
≤ c

(
t6−1
Me

)2
τ(t)

S∆
. Hence

we have E
[
δλiδγj

]
≤ c

4

(
t6−1
Me

)2
τ(t)

S∆
and Cov

[
δλi , δγj

]
≤ c

4

(
t6−1
Me

)2
τ(t)

S∆
− 1

4 .

• in all the remaining cases, then the random variables δλi and δγj corresponds to FourEst

not observing λ and γ using the shared triangle T1 for both of them. Let T ∗ denote the
triangle sub-structure used by TS4C1 to count λ with respect to δλi . Let us consider the
event E∗ =“{e∗1, e∗2, e∗3} ∩ T1 ∩ E(t1,2,4−1) ∈ St1,2,4e , T1 ∈ S(t6)

∆ unless one of its edges is
the last edge of T ∗ observed on the stream, and {e∗1, e∗2, e∗3} ∩ {e3, e5} ∩ E(t6−1) ∈ S(t6)

e

if e∗ ∈ {e3, e5}”, where E(t) denotes the set of edges observed up until time t in-
cluded. Clearly Pr

(
δλi = p−1

λi
|δγj = p−1

γj

)
≤ Pr

(
δλi = p−1

λi
|E∗
)
. Note that in this

case |{e∗1, e∗2, e∗3} ∩ T1| + |{e∗1, e∗2, e∗3} ∩ {e3, e5}|. By analyzing Pr
(
δλi = p−1

λi
|E∗
)

in
this case using similar steps as the ones described for the other sub-cases we have
p

(−1)
λi

Pr
(
δλi = p−1

λi
|δγj = p−1

γj

)
≤ p

(−1)
λi

Pr
(
δλi = p−1

λi
|E∗
)
≤ c

(
t6−1
Me

)3

. Hence we have

E
[
δλiδγj

]
≤ c

4

(
t6−1
Me

)3

and Cov
[
δλi , δγj

]
≤ c

4

(
t6−1
Me

)3

− 1
4 .

We can thus bound the contribution to the third component of (8.5) given by the pairs of
random variables corresponding to 4-cliques that share three edges as:

2b(t)

c(t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)
− 1

 , (8.20)

where b(t) denotes the number of unordered pairs of 4-cliques which share three edges in G(t).

The Theorem follows by combining (8.7), (8.19) and (8.20) in (8.5).

8.6 Comparison with single sample approach

Given a certain fixed amountM of available memory space, our TieredSampling approach suggest
that the user allocates such memory into multiple tiers of reservoir samples, in order to exploit the
sparsity of the sub-structures of the motif of interest. However, it is only natural to wonder how this
approach compares to an alternative, somewhat simpler, strategy that maintains a single sample of
edges and that relies only on the edges in the sample to detect occurrences of the motif in G(t).

To quantify the advantage of our TieredSampling approach, we construct and fully analyze
algorithm FourEst that uses a single edges sample strategy. We thoroughly compare the perfor-
mance achieved by TS4C1 with the performances of an algorithm, named FourEst, that uses a
single sample strategy. We analyze the estimator provided by FourEst compare the analytical

214

ALGORITHM 17 FourEst
Input: Edge stream Σ, integer M ≥ 6
Output: Estimation of the number of 4-cliques κ
Se ← ∅, t← 0, κ ← 0
for each element (u, v) from Σ do . Process each edge (u,v) coming from the stream in
discretized timesteps

t← t+ 1
Update4Cliques(u, v) . Update the 4-clique estimator by considering the new 4-cliques

closed by edge (u,v)
SampleEdge((u, v), t) . Update edge sample with (u,v) according to RS scheme

function Update4Cliques((u, v), t)
NSu,v ← NSu ∩N Sv
for each element (x,w) from NSu,v ×N Su,v do . For each 4-clique formed by (u, v) and 5

edges in the Se
if (x,w) in Se then . Calculate the probability of observing the new formed 4-clique

if t ≤M then
p← 1

else
p← min{1, M(M−1)(M−2)(M−3)(M−4)

(t−1)(t−2)(t−3)(t−4)(t−5) }
κ ← κ + p−1 . Increase 4-clique estimator by the inverse of the probability of

observing the new 4-clique

bound on the variance of the estimator and we then compare their performance on both synthetic
and real-world data (in Section 8.8).

8.6.1 Edge sampling approach - FourEst

FourEst (FOUR clique ESTimation) maintains an uniform random sample S of sizeM of the edges
observed over the stream using the reservoir sampling scheme, in order to estimate the number of
four cliques in G(t). This algorithm is a natural extension of the technique discussed in [51] for
triangle counting.

At each time step t, FourEst maintains a running estimation κ(t) of |C(t)
4 |. Clearly κ(0) = 0.

Every time a new edge et = (u, v) is observed on the stream, FourEst verifies whether e(t) completes
any 4-cliques with the edges currently in S(t)

e . If that is the case, the estimator κ is increased by
the reciprocal of the probability p = min{1,∏4

i=0
M−i
t−1−i} of observing that same 4-clique (from

Lemma 8.1) using FourEst. Finally, the algorithm updates Se according to the reservoir sampling
scheme discussed in Section 8.2. The pseudocode for FourEst is presented in Algorithm 17.

Analysis of the FourEst estimator: Before presenting the proof of the unbiasedness of the
estimations obtained using FourEst in Theorem 8.16, we introduce Lemma 8.15 which characterizes
the probability of a 4-clique being observed by algorithm FourEst. The proofs of the following
results share the structure of the proofs of corresponding results for TS4C1 and TS4C2.

215

Lemma 8.15. Let λ ∈ C(t)
4 with λ = {e1, e2, e3, e4, e5, e6}. Assume, without loss of generality, that

the edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. λ is
observed by FourEst at time t6 with probability:

pλ =

0 if |M | < 5,

1 if t6 ≤M + 1,∏5
i=0

M−i
t−i−1 if t6 > M + 1.

(8.21)

Proof. Clearly FourEst can observe λ only at the time step at which the last edge e6 is observed on
the stream at t6. Further, from its construction, FourEst observed a 4-clique λ if and only if when
its large edge is observed on the stream its remaining five edges are kept in the edge reservoir S. S
is a uniform edge sample maintained by means of the reservoir sampling scheme. From Lemma 7.1
we have that the probability of any five elements observed on the stream prior to t6 being in S at
the beginning of step t6 is given by:

Pr
(
{e1, e2, e3, e4, e5, e6} ⊆

)
=

0 if |M | < 5,

1 if t6 ≤M + 1,∏4
i=0

M−i
t−i−1 if t6 > M + 1.

The lemma follows.

As for the TieredSampling algorithms, the estimator obtained using FourEst is unbiased.

Theorem 8.16. Let κ(t) the estimated number of 4-cliques in G(t) computed by FourEst using
memory of size M . κ(t) = |C(t)

4 | if t ≤M + 1 and E
[
κ(t)

]
= |C(t)

4 | if t > M + 1.

Proof. Recall that when a new edge et is observed on the stream FourEst updates the estimator
κ(t) before deciding whether the new edge is inserted in S. For t ≤M+1, the entire graph G(t)\{et}
is maintained in S, thus whenever an edge et is inserted at time t ≤ M + 1, FourEst observes
all the triangles which include et in G(t) with probability 1 thus increasing κ by one. By a simple
inductive analysis we can therefore conclude that for t ≤M + 1 we have κ(t) = |C(t)

4 |.
Assume now t > M + 1 and assume that |C(t)

4 | > 0, otherwise, the algorithm deterministically
returns 0 as an estimation and the thesis follows. Recall that every time FourEst observes a
4-clique on the stream a time t it computes the probability p =

∏4
i=0

M−i
t−i−1 of observing it and

it correspondingly increases the running estimator by p−1. From Lemma 7.1, the probability p

computed by FourEst does indeed correspond to the correct probability of observing a 4-clique at
time t. For any 4-clique λ ∈ C(t)

4 which is observed by TS4C1with probability pλ, consider a random
variable Xλ which takes value p−1 iff λ is actually observed by FourEst (i.e., with probability pλ)
or zero otherwise. We thus have E [Xλ] = p−1

λ Pr
(
Xλ = p−1

λ

)
= p−1

λ pλ = 1.
We therefore can express the running estimator κ(t) as: κ(t) =

∑
λ∈C(t)

4
Xλ .

From linearity of expectation, we thus have:
E
[
κ(t)

]
=
∑
λ∈C(t)

4

E[Xλ] =
∑
λ∈C(t)

4

p−1
λ pλ = |C(t)

4 |.

216

We now show an upper bound to the variance of the FourEst estimations for t > M (for t ≤M
we have κ(t) = |C(t)

4 | and thus the variance of κ(t) is zero), and a corresponding concentration bound.

Theorem 8.17. For any time t > M + 1, we have

Var
[
κ(t)

]
≤ |C(t)

4 |
((

t− 1

M

)5

− 1

)
+ a(t)

(
t− 1

M
− 1

)
+ b(t)

((
t− 1

M

)3

− 1

)
,

where a(t) (resp., b(t)) denotes the number of unordered pairs of 4-cliques which share one edge (resp.,
three edges) in G(t). Thus, for any ε, δ ∈ (0, 1), if

M > (t− 1) max
{

5

√
3

δε2|C(t)
4 |

,
3a(t)

δε2|C(t)
4 |2

, 3

√
3b(t)

δε2|C(t)
4 |2

}
then Pr

(
|κ(t) − |C(t)

4 | < ε|C(t)
4 |
)
> 1− δ.

Proof. Assume |C(t)
4 | > 0 and t > M + 1, otherwise (from Theorem 8.16) TS4C1 estimation

is deterministically correct and has variance 0 and the thesis holds. For each λ ∈ C(t)
4 let

λ = {e1, e2, e3, e4, e5, e6}, without loss of generality let us assume the edges are disposed as in Fig-
ure 8.1. Assume further, without loss of generality, that the edge ei is observed at ti (not necessarily
consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. Let us consider the random variable δλ (which
takes value p−1

λ if the 4-clique λ is observed by FourEst, or zero otherwise. From Lemma 8.15, we
have:

pλ = Pr
(
δλ = p−1

λ

)
=

4∏
i=0

M − i
t− i− 1

,

and thus:
Var [δλ] = p−1

λ − 1.

We can express the estimator κ(t) as κ(t) =
∑
λ∈C(t)

4
. We therefore have:

Var
[
κ(t)

]
= Var

 ∑
λ∈C(t)

4

δλ

 =
∑
λ∈C(t)

4

∑
γ∈C(t)

4

Cov
[
δλ, δγ

]
=
∑
λ∈C(t)

4

Var [δλ] +
∑

λ,γ∈C(t)
4

λ6=γ

Cov
[
δλ, δγ

]

≤ |C(t)
4 |

 4∏
i=0

t− 1− i
M − i − 1

+
∑

λ,γ∈C(t)
4

λ6=γ

Cov
[
δλ, δγ

]
. (8.22)

From Lemma 8.7, we have that two distinct cliques λ and γ can share one, three or no edges.
In analyzing the summation of covariance terms appearing in the right-hand-side of (8.5) we shall
therefore consider separately the pairs that share respectively one, three or no edges.

• λ and γ do not share any edge:
E
[
δλδγ

]
= p−1

λ p−1
γ Pr

(
δλ = p−1

λ ∧ δγ = p−1
γ

)
= p−1

λ p−1
γ Pr

(
δλ = p−1

λ |δγ = p−1
γ

)
Pr
(
δλ = p−1

λ

)

The term Pr
(
δλ = p−1

λ |δγ = p−1
γ

)
denotes the probability of FourEst observing λ condi-

tioned of the fact that γ was observed. Note that as λ and γ do not share any edge, no edge of

217

γ will be used by FourEst to detect λ. Rather, if any edge of γ is included in S, this lowers
the probability of FourEst detecting λ as some of space available in S may be occupied by
edges of γ. Therefore we have Pr

(
δλ = p−1

λ |δγ = p−1
γ

)
≤ Pr

(
δλ = p−1

λ

)
and thus:

E
[
δλδγ

]
= p−1

λ p−1
γ Pr

(
δλ = p−1

λ |δγ = p−1
γ

)
Pr
(
δγ = p−1

γ

)
≤ p−1

λ p−1
γ Pr

(
δλ = p−1

λ

)
Pr
(
δγ = p−1

γ

)
≤ p−1

λ p−1
γ pλpγ

≤ 1.

As Cov
[
δλ, δγ

]
= E

[
δλδγ

]
−1, we therefore have Cov

[
δλ, δγ

]
≤ 0. Hence we can conclude that

the contribution of the covariances of the pairs of random variables corresponding to 4-cliques
that do not share any edge to the summation in (8.5) is less or equal to zero.

• λ and γ share exactly one edge e∗ = λ ∩ γ (as shown in Figure 8.2). Let us consider
the event E∗ =“e∗ ∈ St6 unless e∗ is observed at t6”. Clearly Pr

(
δλ = p−1

λ |δγ = p−1
γ

)
≤

Pr
(
δλ = p−1

λ |E∗
)
. Recall from Lemma 8.15 that Pr

(
δλ|E∗

)
= Pr

(
{e1, . . . , e5} ⊆ S(t6)

e |E∗
)
.

We can distinguish two cases: (a) e∗ = e6: in this case we have Pr
(
δλ|E∗

)
=

Pr
(
{e1, . . . , e5} ⊆ S(t6)

e

)
= pλ; (b) e∗ 6= e6: in this case we have Pr

(
δλ|E∗

)
=

Pr
(
{e1, . . . , e5} \ {e∗} ⊆ S(t6)|e∗ ∈ S(t6)

e

)
=
∏3
i=0

M−1−i
t6−2−i . We can therefore conclude:

E
[
δλδγ

]
= p−1

λ p−1
γ Pr

(
δλ = p−1

λ |δγ = p−1
γ

)
Pr
(
δγ = p−1

γ

)
≤ p−1

λ Pr
(
δλ = p−1

λ |δγ = p−1
γ

)
≤ t6 − 1

M
.

We can thus bound the contribution to covariance summation in (8.22) given by the pairs of
random variables corresponding to 4-cliques that share one edge as:

a(t)

(
t− 1

M
− 1

)
, (8.23)

where a(t) denotes the number of unordered pairs of 4-cliques which share one edge in G(t).

• λ and γ share three edges {e∗1, e∗2, e∗3} which form a triangle sub-structure for both λ and
γ. Let us refer to Figure 8.3. Let us consider the event E∗ =“{e∗1, e∗2, e∗3} ∩ E(t6−1) ⊆
S(t6). Clearly Pr

(
δλ = p−1

λ |δγ = p−1
γ

)
≤ Pr

(
δλ = p−1

λ |E∗
)
. Recall that Pr

(
δλ|E∗

)
=

Pr
(
{e1, . . . , e5} ⊆ S(t6)|E∗

)
. We can distinguish two cases:

(a) e6 ∩ {e∗1, e∗2, e∗3} 6= ∅: in this case we have |{e1, . . . , e5} \
(
{e∗1, e∗2, e∗3} \ {e6}

)
| = 3

hence Pr
(
δλ|E∗

)
= Pr

(
{e1, . . . , e5} \

(
{e∗1, e∗2, e∗3} \ {e6}

)
|
(
{e∗1, e∗2, e∗3} \ {e6}

)
⊆ S(t6)

)
=∏2

i=0
M−2−i
t6−3−i ;

(b) e6 ∩ {e∗1, e∗2, e∗3} = ∅: in this case we have |{e1, . . . , e5} \
(
{e∗1, e∗2, e∗3} \ {e6}

)
| = 2 hence

Pr
(
δλ|E∗

)
= Pr

(
{e1, . . . , e5} \ {e∗1, e∗2, e∗3}|{e∗1, e∗2, e∗3}) ⊆ S(t6)

)
=
∏1
i=0

M−3−i
t6−4−i ;. For the

218

pairs of 4-cliques which share three edge we therefore have:
E
[
δλδγ

]
= p−1

λ p−1
γ Pr

(
δλ = p−1

λ |δγ = p−1
γ

)
Pr
(
δγ = p−1

γ

)
≤ p−1

λ Pr
(
δλ = p−1

λ |δγ = p−1
γ

)
≤

2∏
i=0

t− 1− i
M − i .

We can thus bound the contribution to covariance summation in (8.22) given by the pairs of
random variables corresponding to 4-cliques that share one edge as:

b(t)

 2∏
i=0

t− 1− i
M − i − 1

 = b(t)c′
(
t

M

)5

(8.24)

where b(t) denotes the number of unordered pairs of 4-cliques which share three edges in G(t)

and c′ = (M − 1)(M − 2)/M2.

The bound on the variance follows form the previous considerations and by combining by combin-
ing (8.23) and (8.24) in (8.22). Finally, the concentration bound is obtained by applying Chebyshev’s
inequality [164, Thm. 3.6]. The proof follows a reasoning analogous to that in the proof of Theo-
rem 8.8.

8.6.2 Variance comparison

Although the upper bounds obtained in Theorems 8.6, 8.13, and 8.17 cannot be compared directly,
they still provide some useful insight on which algorithm may be performing better according to the
properties of G(t).

Let us consider the first, dominant, terms of each of the variance bounds, that

is |C(t)
4 |
((

t−1
Me

)4
τ(t)

M∆
− 1

)
for TS4C1, |C(t)

4 |
(
c
(
t−1
Me

)4 (
τ(t)

M∆

)2

− 1

)
for TS4C2, and

|C(t)
4 |
((

t−1
M

)5 − 1
)

for FourEst. All the bounds share a similar dependence from the num-
ber of pairs of cliques that share one or three edges in the second and third term. Due to the fact
that TS4C1 splits the memory into two levels (in particular, with Me = 4M/5) we have a higher
overall contribution for these terms.

While TS4C1 exhibits a slightly higher constant multiplicative term cost due to the splitting of
the memory in the TieredSampling approach, the most relevant difference is however given by
the term τ(t)

M appearing in the bound for TS4C1 compared with an additional t−1
M appearing in the

bound for FourEst. Recall that τ (t) denotes here the number of triangles observed by the algorithm
up to time t. Due to the fact that the probability of observing a triangle decreases quadratically
with respect to the size of the graph t, we expect that τ < t and, for sparser graphs for which
3 and 4-cliques are indeed “rare patterns”, we actually expect τ (t) << t. Therefore, under these
circumstances, we would expect M/5τ >> M/t.

This is the critical condition for the success of the TieredSampling approach. If the sub-
structure selected as a tool for counting the motif of interest is not “rare enough” then there is no
benefit in devoting a certain amount of the memory budget to maintaining a sample of occurrences

219

of the sub-structure. Such problem would, for instance, arise when using the TieredSampling

approach for counting triangles using wedges (i.e., two-hop paths) as a sub-structure, as attempted
in [117], as in most real-world graph the number of wedges is much greater of the number of edges
themselves making them not suited to be used as a sub-structure.

8.6.3 Experimental evaluation over random graphs

In this section, we compare the performances of our TieredSampling algorithms of TS4C1 and
TS4C2 with the performance of the single sample approach FourEst, on randomly generated
graphs. In particular, we analyze random graph based on a variation 2 of the Barábasi-Albert
random graph [8] model, which exhibits the same scale-free property observed in many real-world
graphs of interest such as social networks. The graph are generated as follows: the initial graph is a
star graph with m+ 1 nodes and m edges where a node (i.e., the center of the star) is connected to
the remaining m ones. Then, n vertices are added one at a time. When the i-th node is added, for
m+1 ≤ i ≤ n, it is connected to m vertices among the i−1 ones already added which are chose with
a probability that is proportional to the number of links (i.e., edges) that the existing nodes already
have. In particular, the probability that the i-th new node is connected to node j, for 1 ≤ j ≤ i− 1

is pi, j = dj/
∑i−1
`=1 d`, where dj denotes the degree of the j-th node before the insertion of the i-th

node. The graph constructed at the end of this process has n+m total vertices and nm total edges.
The corresponding graph stream can be constructed by simulating the generating process of the
random graph and by selecting randomly the order of the edges among the m that are generated
for each node insertion. Such variation allows the study of a random preferential attachment graph
without starting from a densely connected initial component.

In our experiments, we set n = 20000 and we consider various values for m from 50 to 2000
in order to compare the performances of the two approaches as the number of edges (and thus
triangles) increases and the generated graph grows denser. We start with a graph with The al-
gorithms use a memory space whose size corresponds to 5% of the number of edges in the graph
nm. While FourEst devotes the entire available memory to maintaining an edges reservoir sample,
the TieredSampling algorithms will split the available space between the edge sample Se and the
triangle samples (S∆) according to the splitting criteria discusses in the respective sections (i.e., for
TS4C1: Me = 4M/5 and M∆ = M/5; for TS4C2 Me = 2M/3 and M∆ = M/3).

We compare the accuracy of TieredSampling and FourEst approaches on random graphs
using the standard Mean Average Percentage Error MAPE [110] as defined in Section 8.2.

In Figure 8.4, we compare the average MAPE of FourEst, TS4C1 and TS4C2 for Barábasi-
Albert random graphs with 20000 nodes and various values ofm ranging from 50 to 2000. In columns
2,3 and 5 of Table 8.2 we present the average of the MAPEs of the ten runs for FourEst, TS4C1

and TS4C2. In column 4 (resp., 6) of Table 8.2 we report the percent reduction/increase in terms
of the average MAPE obtained by TS4C1 (resp., TS4C2) with respect to FourEst.

2We use the version provided by the NetworkX package https://networkx.github.io/documentation/
networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html

https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html

220

m FourEst TS4C1
Change
TS4C1

TS4C2
Change
TS4C2

50 0.8775 0.5862 -33.19% 0.5222 -40.49%
100 0.3054 0.1641 -46.27% 0.1408 -53.90%
150 0.1521 0.0937 -38.34% 0.0917 -39.70%
200 0.0899 0.0599 -33.39% 0.0549 -38.95%
300 0.0486 0.0346 -28.80% 0.0417 -14.19%
400 0.0289 0.0249 -13.87% 0.0261 -9.32%
500 0.0221 0.0197 -11.28% 0.0239 8.08%
750 0.0134 0.0132 -1.57% 0.0181 34.90%
1000 0.0088 0.0099 13.14% 0.0146 66.36%

Table 8.2: Comparison of MAPE of FourEst. TS4C1 and TS4C2 for Barábasi-Albert
graphs.

50 100 150 200 300 400 500 750 10000.00

0.01

0.10

1.00

Av
g.
 M

AP
E

FOUREST
TS4C1
TS4C2

Figure 8.4: Average MAPE on Barábasi-Albert random graphs, with n = 20000 and
various values of m.

221

Both TieredSampling algorithms consistently outperform FourEst for values of m up to 400,
that is for fairly sparse graphs for which we expect 3 and 4 cliques to be rare patterns. The advantage
over FourEst is particularly strong for values of m up to 200 with reductions of the average
MAPE up to 30%. For denser graphs, i.e. m ≥ 750, FourEst outperforms both TieredSampling

algorithms. This in consistent with the intuition discussed in Section 8.6.2, as for denser graphs
triangles are not “rare enough” to be worth saving over edges. Note however that in these cases
the quality of all the estimators is very high (i.e., MAPE≤ 1%). We can also observe that TS4C2

outperforms TS4C1 for m ≤ 200. Vice versa, TS4C1 outperforms TS4C2 (and FourEst) for
300 ≤ m ≤ 750. Since, as discussed in Section 8.4.2, TS4C2 gives “more importance” to triangles,
it works particularly well when the graph is very sparse, and triangles are particularly rare. As the
graph grows denser (and the number of triangles increases), TS4C1 performs better until, for highly
dense graphs FourEst produces the best estimates.

8.7 Adaptive Tiered Sampling Algorithm

An appropriate partition of the available memory between the layers used in the TieredSampling

approach is crucial for the success of the algorithm: while assigning more memory to the triangle
sample allows to maintain more sub-patterns, removing too much space from the edge sample reduces
the probability of observing new triangles.

While in Section 8.4.1 (resp., Section 8.4.2) we provide a general rule according to which to decide
how to split the available memory space for TS4C1 (resp., TS4C2), such partition may not always
lead to the best possible results. For instance, if the graph being observed is particularly sparse,
assigning a large portion of the memory to the triangles would result in a considerable waste of
memory space due to the low probability of observing triangles. Further, as discussed in Section 8.6,
depending on the properties of G(t) an approach based on simply maintaining a sample of the edges
could perform better than the TieredSampling algorithms. As in the graph streaming setting
these properties are generally not known a priori, nor stable through the graph evolution, a fixed
memory allocation policy appears not to be the ideal solution.

In this section, we present ATS4C, an adaptive variation of our TS4C2 algorithm, which dy-
namically analyzes the properties of G(t) through time and consequently decides how to allocate the
available memory.

Algorithm description: We present a step by step pseudocode description of ATS4C in Algo-
rithm 18.ATS4C has two main “execution regimens”: the “initial regimen” (R1) for which it behaves
exactly as FourEst, and the “stable regimen” (R2) for which it behaves similarly to TS4C2. (R1)
is the initial regimen for ATS4C. Once the algorithm switches to (R2) it does not ever switch back
to (R1). ATS4C maintains an estimate κ(t) of the number of 4-cliques observed on the stream
up to time t. ATS4C increases κ each time a 4-clique is observed according to the same method

222

discusses for FourEst while in (R1) (by invoking Update4CliqueFirstRegimen, line 13 of Al-
gorithm 18), and according to the same method discussed for TS4C2while in (R3) (by invoking
Update4CliqueSecondRegimen, line 26 of Algorithm 18). Analogously to what done for the
other algorithms discusses so far, towards guaranteeing that κ is an unbiased estimator, each time a
4-clique is detected ATS4C computes the probability p of such detection and increases the estimate
by p−1.

While in (R1), every M time steps ATS4C decides, based on the number of triangles ob-
served so far, whether to switch from (R1) to (R2). Recall that, from Lemma 7.1 (resp.,
Lemma 8.11) the probability of a 4-clique whose last edge is observed at time t being observed by
TS4C2 (resp., FourEst) is approximately pα = (min{1, αM/t})4(min{1, (1 − α)M/τ (t)})2 (resp.,
ps = (min{1,M/t − 1})5), where 2/3 < α < 1 (resp., 0 < 1 − α < 1/3) denotes the fraction of
the available memory which is assigned to the edge sample (resp., triangle sample).SWITCH deter-
mines which partition of the available space between edge only sample and triangle sample would
maximize the approximate probability of detecting a 4-clique using TS4C2. That is, SWITCH

computes α∗ = argmaxα∈[2/3,1)pα (line 31 Algorithm 18). SWITCH then evaluates if the approxi-
mate probability of detecting a clique using the FourEst approach is higher than that achievable
using TS4C2 while partitioning the available memory according to α∗ (line 32). If that is the case
(i.e., ps > pα∗), SWITCH returns zero and ATS4C elects to remain in (R1) (line 11). Vice versa,
if ps ≤ pα∗ , SWITCH returns the value α∗ and ATS4C transitions to (R2)): the triangle reservoir
S∆ is assigned (1 − α∗)M memory space, and it is filled with the triangles composed by the edges
currently in the edge reservoir, using the reservoir sampling scheme.
Finally the edge reservoir Se is constructed by selecting α∗M of the edges in the current sample uni-
formly at random, thus ensuring that Se is an uniform sample (lines 7-11). Once ATS4C switches
to (R2) it never goes back to (R1).

While in (R2), as long as |S∆| < M/3, every M time steps ATS4C evaluates whether it is
opportune to assign a higher fraction of the available memory to S∆. Let t = iM , rather than just
using the information of the number of triangles seen so far τ (iM), ATS4C computes a “prediction”
of the total number of triangles seen until (i+1)M assuming that the number of triangles seen during
the next M steps will equal the number of triangles seen during the last M steps (line 53), that
is ˜τ ((i+1)M) = 2τ (iM) − τ ((i−)M). ATS4C then evaluates the partitioning of the available memory
space among the two tiers which would maximize the approximate probability of detecting a 4-clique
at time (i+1)M , i.e., α∗ = argmaxa∈[2/3,1)(min{1, αM/(i+1)M)})4(min{1, (1−α)M/ ˜τ ((i+1)M)})2.
Let α denote the split being used by ATS4C at t = iM :

• if α∗ > α, ATS4C determines that increasing the memory space devoted to the triangles
sample would not improve the algorithm’s likelihood of detecting 4-cliques. ATS4C continues
its execution with no further operations (ATS4C never reduces the memory space assigned to
S∆);

• otherwise, if α∗ < α, ATS4C removes (α−α∗)M edges from Se selected uniformly at random,
thus ensuring that Se is still an uniform sample of the edges observed on the stream, and the

223

ALGORITHM 18 ATS4C - Adaptive Version of TieredSampling

Input: Insertion-only edge stream Σ, M
1: Se ← ∅ , S∆ ← ∅, S ′∆ ← ∅, M ′∆ ← 0, t← 0, t∆ ← 0, σ ← 0, r ← 1
2: for each element (u, v) from Σ do
3: t← t+ 1
4: if r = 1 then . Operations while in (R1)
5: if t%M = 0 then . Every M time steps evaluate whether to switch from (R1) to (R2)
6: α← SWITCH . Compute recommended splitting coefficient
7: if α > 0 then
8: r ← 2 . Switch to (R2)
9: S∆ ← CreateTriangleReservoir(α) . Create and populate triangles sample
S∆

10: Se ← Subsample(α,Se) . Select uniformly at random a subset of size αM of Se
11: Update4CliquesSecondRegimen((u, v), t) . Update 4-clique estimate
12: else
13: Update4CliquesFirstRegimen((u, v), t) . Remain in (R1), update 4-clique

estimate
14: else if r = 2 then . Operations while in (R2)
15: if t%M = 0 then . Every M time steps update split proportions between Se and S∆

16: UpdateMemory . Decide whet er to assign more space to S∆

17: if t′∆ < M∆ then
18: UpdateTriangles((u, v), t′∆, S

′
∆)

19: p∆ ← min(1, M∆

t∆
), p′∆ ← min(1,

M ′∆
t′∆

)

20: if p∆ < p′∆ then . Merge main triangle sample S∆ and temporary S ′∆
21: Smerged ← ∅
22: for each (x, y, z) ∈ S∆ do
23: if FlipBiasedCoin(

p′∆
p∆

) = heads then . Select the triangles to be moved from
S ′∆ to S∆

24: Smerged ← Smerged ∪ (x, y, z)

25: S∆ ← Smerged ∪ S′∆
26: Update4CliquesSecondRegimen((u, v), t) . Update 4-clique estimate
27: UpdateTriangles((u, v), S∆) . Update triangles sample
28: SampleEdge((u, v), t) . Update edges sample
29: function Switch . Decide whether to switch from (R1) to (R2)
30: ps ← min(1, Mt)5

31: pα ← min(1, αMt)4 ·min(1, (1− α)Mt∆)2 where a = argmaxα∈[2
3 ,1]pα

32: if ps < pα then
33: return α . ATS4C switches from (R1) to (R2)
34: else
35: return 0 . ATS4C remains in (R1)

freed space is assigned to S∆. Let us denote this space as S ′∆.

As ATS4C progresses and observes new triangles it fills S ′∆ using the reservoir sampling scheme.
That is S ′∆ is used a temporary buffer to store observed triangle patterns. S∆ and S ′∆ are then
merged at the first time step for which the probability p∆ of a triangle seen before the creation of
S ′∆ being in S∆ becomes lower than the probability p∆′ of a triangle observed after the creation

224

36: function CreateTriangleReservoir(α)
37: i← 1
38: M∆ = (1− α)M
39: while |S∆| < M∆ do
40: (x, y)(i) ← Edge observed at time i

41: for each element z from NS(i)
x,y do

42: t∆ ← t∆ + 1
43: S∆ ← S∆ ∪ (x, y, z)

44: while |S| > M −M∆ do
45: (v, w)← random edge from S
46: S ← S \ {(v, w)}
47: function UpdateMemory
48: t

(i+1)M
∆ = 2t

(iM)
∆ − t((i−1)M)

∆ . Prediction of number of triangles at (i+1) step
49: pα ← min(1, αMt)4 ·min(1, (1− α) M

t
(i+1)M
∆

)2 where a = argmaxα∈[2
3 ,1]pα

50: if α < M∆

M then
51: for i ∈ [1, M∆

M − α] do
52: (v, w)← random edge from S
53: S ← S \ {(v, w)}
54: M∆ ←M∆ + 1, M ′∆ ←M ′∆ + 1

55: function UpdateTriangles((u, v), t) . Update S∆

56: NSu,v ← NSu ∩N Sv
57: for each element w from NSu,v do
58: t∆ ← t∆ + 1
59: SampleTriangle(u, v, w)

60: function Update4CliquesFirstRegimen((u, v), t))
61: Update κ using procedure Update4Cliques((u, v), t) of FourEst algorithm
62: function Update4CliquesSecondRegimen((u, v), t)
63: Update κ using procedure Update4Cliques((u, v), t) of TS4C2 algorithm

of S ′∆ being in it. The merged triangle sample contains all the triangles in S ′∆, while the triangles
in S∆ are moved to it with probability p∆′/p∆. This ensures that after the merge all the triangles
seen on the stream are kept in the triangle reservoir with probability p∆′ . After the merge, ATS4C

operates the samples as described in TS4C2. Finally, ATS4C increases the memory space for S∆

only if all the currently assigned space is used. Once S∆ is filled, ATS4C maintains it a reservoir
sample for the triangle observed on the stream (invoking the UpdateTraingles function, line 55).

The analysis of ATS4C presents several additional challenges compared to those of our previous
algorithms TS4C1 and TS4C2, due to the interplay between execution regimens. Still, as during
(R2) (resp., (R1)) ATS4C behaves effectively as TS4C2 (resp., FourEst), albeit with some
further complication due to the adjustment of the assignment of memory between layer, whenever
a 4-clique is observed, ATS4C may compute exactly the probability of observing such clique, by
relying on the properties of TS4C2 and FourEst.

Theorem 8.18. The estimator κ returned by ATS4C is unbiased, that is κ(t) = |C(t)
k | if t ≤ M .

Further, E
[
κ(t)

]
= |C(t)

k | if t ≥M .

225

The proof of Theorem 8.18, follows a reasoning analogous to that discussed in similar results
for the unbiasedness of TS4C2 and FourEst, and relies on the fact that, as discussed in the
algorithm description, whenever a 4-clique is observed, ATS4C can compute exactly the probability
of observing such clique.

We show how the adaptive assignment of the available memory realized by ATS4C succeeds in
combining the advantages of the single edge sample approach (e.g., FourEst), and of the multi-tier
prototype-based approach of TieredSampling via experimental evaluation on real-world graphs
presented in Section 8.8.2.

8.8 Experimental Evaluation

In this section, we evaluate through extensive experiments the performance of our proposed Tiered-

Sampling method when applied for counting 4-cliques and 5-cliques in large graphs observed as
streams. We use several real-world graphs with size ranging from 106 to 108 edges (see Table 8.3
for a complete list). All graphs are treated as undirected. The edges are observed on the stream
according to the values of the associated timestamps if available, or in random order otherwise. In
order to evaluate the accuracy of our algorithms, we compute the “ground truth” exact number of
4-cliques (resp., 5-cliques) for each time step using an exact algorithm that maintains the entire G(t)

in memory. Besides verifying the accuracy of the proposed TieredSampling methods, an impor-
tant goal of the experimental analysis is to ascertain the benefits of our multi-tier method compared
to approaches for which the estimate is achieved by maintaining simply a reservoir sample of the
observed edges. Therefore, our main term of comparison will be the FourEst algorithm which
is a generalization of the TRIEST algorithm [51]. Our experiments are implemented in Python
and their source code can be found in (https://github.com/erisaterolli/TieredSampling). The exper-
iments were run on the Brown University CS department cluster3, where each run employed a single
core and used at most 4GB of RAM.

The section is organized as follows: we first evaluate the performance of TS4C1 and TS4C2

and we compare them with the estimations obtained using FourEst. We then present practical
examples that motivate the necessity for the adaptive version of our TieredSampling approach,
and we show how our ATS4C manages to capture the best of the single and multi-level approach.
Finally, we show how the TieredSampling approach can be generalized in order to count structures
other than 4-cliques.

8.8.1 Counting 4-Cliques

We estimate the global number of 4-cliques on insertion-only streams, starting as empty graphs and
for which an edge is added at each time step, using algorithms FourEst, TS4C1 and TS4C2. As
discussed in Section 8.4.1 (resp., Section 8.4.2), in TS4C1 (resp., TS4C2) we split the total available

3https://cs.brown.edu/about/system/services/hpc/grid/

226

Graph Nodes Edges
Exact

4-clique count
TieredSampling

M = 0.05|E|
Source

DBLP 986,324 3,353,618 40,675,407 41,750,428 [26]

Patent (Cit) 2,745,762 13,965,132 3,296,890 3,294,045 [51]

LastFM 681,387 30,311,117 46,201,534,449 49,189,084,815 [51]

Live Journal 5,363,186 49,514,271 16,121,317,106 16,035,963,528 [26]

Hollywood 1,917,070 114,281,101 728,184,767,782 727,002,104,249 [26]

Orkut 3,072,441 117,185,083 3,221,163,953 3,210,957,578 [162]

Twitter 25,080,769 100,000,000 19,920,704 20,562,810
[26]

[51]

Table 8.3: Graphs used in the experiments

M = 0.01 M = 0.02 M = 0.05
FOUR
EST TS4C1 TS4C2 TS

Change
FOUR
EST TS4C1 TS4C2 TS

Change
FOUR
EST TS4C1 TS4C2 TS

Change

DBLP 0.942 0.658 0.599 -36.00% 0.915 0.336 0.526 -63.28% 0.114 0.069 0.105 -39.47%
Holly
wood 0.056 0.029 0.023 -59.00% 0.013 0.016 0.01 -23.08% 0.004 0.006 0.002 -50.00%

Last
FM 0.07 0.20 0.196 65.00% 0.022 0.239 0.10 354.54% 0.003 0.0304 0.032 866.67%

Live
Journal 0.295 0.079 0.148 -73.00% 0.098 0.02 0.025 -79.59% 0.019 0.006 0.006 -68.42%

Orkut 0.789 0.224 0.086 -89.00% 0.116 0.059 0.058 -50.00% 0.013 0.021 0.008 -38.46%
Patent

Cit 0.954 0.767 0.188 -80.00% 0.473 0.304 0.141 -70.19% 0.112 0.113 0.039 -65.18%

Twitter 0.928 0.896 0.511 -45.00% 0.928 0.481 0.428 -53.88% 0.205 0.076 0.088 -62.93%

Table 8.4: Average MAPE of various approaches for all graphs with available memories
of 1%, 2% and 5% of the size of the graph. In the TS Change column we report the
decrease/increase in MAPE of the best performing TieredSampling algorithm among
TS4C1 and TS4C2 compared to the single reservoir algorithm FourEst.

memory space M as |Se| = 4M/5 and |S∆| = M/5 (resp., |Se| = 2M/3 and |S∆| = M/3). The
experimental results show that these fixed memory splits perform well for most cases. We then
experiment with an adaptive splitting mechanism that handles the remaining cases.

In Fig. 8.5 we present the estimation obtained by averaging 10 runs of respectively TS4C1,
TS4C2 and FourEst using total memory space M = 5 × 105 for the LiveJournal and Hollywood
graphs (i.e., respectively using less than 1% and 0.5% of the graph size). While the average of the
runs for TS4C1 and TS4C2 are almost indistinguishable from the ground truth, the quality of the
estimator obtained using FourEst considerably worsens as the graph size increases.

In Table 8.4, we report the average MAPE performance over 5 runs for TS4C1, TS4C2 and
FourEst for graphs listed in Table 8.3. For each graph, we assign a different total memory space
equal to a 1%, 2% and 5% fraction of the total number of edges (i.e., of the size of the graph). Except
for LastFM, our TieredSampling algorithms clearly and consistently outperform FourEst for all
the considered available memory sizes with the average MAPE reduced by up to 89%. While the
performances of all algorithms are improved (in terms of MAPE reduction) as the size of the available
memory increases, the improvement achieved by or TieredSampling algorithms with respect to
FourEst appear to consistent for the various memory sizes being considered. While on most graphs

227

0 1 2 3 4

Time ×107

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

1. 4

1. 6

1. 8

4
-C
li
q
u
e
s

×1010

ground truth

4EST

4CTISA

(a) Live Journal

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

Time ×108

0

1

2

3

4

5

6

7

8

4
-C
li
q
u
e
s

×1011

ground truth

4EST

4CTISA

(b) Hollywood

Figure 8.5: Comparison of |C(t)
4 | estimates obtained using TS4C1, TS4C2 and FourEst

with M = 5× 105,

TS4C1 and TS4C2 produce similar estimates (and, hence, MAPE), it can be noted that TS4C2

clearly outperforms TS4C1 in graphs for which the number of 4-cliques is low compared to the
number of edges, such as Patent (Cit) and Twitter. In these graphs, triangles are “rare enough” so
that assigning a greater fraction of the available memory to maintain their occurrences and relying
on observed triangles to count 4-cliques leads to tighter estimates. LastFM is the only graph for
which FourEst (considerably) outperforms the TieredSampling algorithms. Such phenomenon
is due to the high density of the graph |E|/|V | > 500 and to the fact that for the LastFM graph
triangles are not a rare enough sub-structure to justify the choice of maintaining them over simple
edges.

We analyze the variance reduction achieved using our TieredSampling algorithms by comparing
the empirical variance observed over ten runs for all graphs using available memory M equal to 1%,
2% and 5% of the size of the graphs. The results for Live Journal graph are reported in Fig. 8.6.
While for both TS4C1 and TS4C2 the minimum and maximum estimators are close to the ground
truth throughout the evolution of the graph even in cases having a small amount of available memory,
FourEst estimators exhibit very high variance especially towards the end of the stream and when
the available memory is small. This trend is consistently observed for all the other graphs. As an
illustrative example, we show the variance of all algorithms for Twitter with an available memory
size of 5% of the total graph.

Despite the differences between TS4C1 and TS4C2, their variances appear to be strikingly
similar for the evaluated graph, with TS4C2 exhibiting slightly better performance, especially during
the first half of the stream. This is due to the rarity of the triangle prototype pattern used in the
detection of 4-cliques for the Hollywood graph: compared to TS4C1, TS4C2 devotes a higher
fraction of the available memory to S∆ which leads to a higher likelihood of detecting 4-cliques and,
hence, a lower empirical variance.

228

0 1 2 3 4 5
Number of Edges ×107

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

4-
Cl
iq
ue

s
×1010

Ground Truth
FOUREST

(a) FOUREST, M = 0.01*|E|

0 1 2 3 4 5
Number of Edges ×107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

4-
Cl
iq
ue

s

×1010

Ground Truth
FOUREST

(b) FOUREST, M = 0.02*|E|

0 1 2 3 4 5
Number of Edges ×107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

4-
Cl
iq
ue

s

×1010

Ground Truth
FOUREST

(c) FOUREST, M = 0.05*|E|

0 1 2 3 4 5
Number of Edges ×107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

4-
Cl
iq
ue

s

×1010

Ground Truth
TS4C1

(d) TS4C1, M = 0.01*|E|

0 1 2 3 4 5
Number of Edges ×107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

4-
Cl
iq
ue

s

×1010

Ground Truth
TS4C1

(e) TS4C1, M = 0.02*|E|

0 1 2 3 4 5
Number of Edges ×107

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

4-
Cl
iq
ue

s

×1010

Ground Truth
TS4C1

(f) TS4C1, M = 0.05*|E|

0 1 2 3 4 5
Number of Edges ×107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

4-
Cl
iq
ue

s

×1010

Ground Truth
TS4C2

(g) TS4C2, M = 0.01*|E|

0 1 2 3 4 5
Number of Edges ×107

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

4-
Cl
iq
ue

s

×1010

Ground Truth
TS4C2

(h) TS4C2, M = 0.02*|E|

0 1 2 3 4 5
Number of Edges ×107

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

4-
Cl
iq
ue

s

×1010

Ground Truth
TS4C2

(i) TS4C2, M = 0.05*|E|

Figure 8.6: Variance of various approaches for Live Journal with available memories of
1%, 2% and 5% of the size of the graph.

Our experiments not only verify that TS4C1 and TS4C2 allow to obtain good quality estimations
which are in most cases (except for the LastFM graph) superior to the ones achievable using a single
sample strategy, but also validate the general intuition underlying the TieredSampling approach.

Both TieredSampling algorithms are extremely scalable, showing average update times in the
order of hundreds microseconds for all graphs as shown in Table 8.5.

8.8.2 Adaptive Tiered Sampling

In Section 8.8.1, we showed that TS4C2, allows to obtain high quality estimations for the number
of 4-cliques outperforming in most cases both TS4C1 and FourEst. These results were obtained
splitting the available memory such that |Se| = 2M/3 and |S∆| = M/3. As discussed in Section 8.7,
while this is a useful general rule, depending on the properties of the graph, different splitting rules
may yield better results. We verify this fact by evaluating the performance of TS4C2 when used
to analyze the Patent(Cit) graph using different assignments of the total space M = 5× 105 to the

229

0.0 0.2 0.4 0.6 0.8 1.0
Number of Edges ×108

0.0

0.5

1.0

1.5

2.0

2.5
4-
Cl
iq
ue

s
×107

Ground Truth
FOUREST
TS4C1
TS4C2

Figure 8.7: Variance of various approaches for Twitter with available memory of 5% of
the size of the graph.

Dataset FourEst TS4C1 TS4C2

DBLP 6.56 19.6 15.8
Hollywood 10.95 15.75 19.95
Lastfm 17.65 45.62 64.92
Live Journal 9.22 10.72 16.49
Orkut 5.55 8.93 7.45
PatentCit 9.25 11.95 12.12
Twitter 9.08 20.49 17.77

Table 8.5: Average update time for all graphs measured in microseconds.

230

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time ×107

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4-
C
li
q
u
es

×106

ground truth

|S∆| = 1
3

|S∆| = 1
6

|S∆| = 1
9

Figure 8.8: |C(t)
4 | estimations for Patent (Cit) using TS4C2 withM = 5×105 and different

memory space assignments among tiers.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of Edges ×107

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4-
Cl
iq
ue

s

×106

Ground Truth
TS4C2
ATS4C

(a) Patent(Cit.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Edges ×107

0

1

2

3

4

4-
Cl
iq
ue

s
×1010

Ground Truth
TS4C2
ATS4C

(b) [LastFM

Figure 8.9: Comparison of |C(t)
4 | estimates obtained using ATS4C, TS4C2, and

FourEst with M = 5× 105.

two levels. The results in Fig. 8.8 show that decreasing the space assigned to the triangle sample
from M/3 to M/9 allows to achieve estimates that are closer to the ground truth leading to a 31%
reduction of the average MAPE. Due to the sparsity of the Patent(Cit) graph, TS4C2 observes
a very small number of triangles for a large part of the stream. Assigning a large fraction of the
memory space to S∆ is thus inefficient as the probability of observing new triangles is reduced, and
the space assigned to S∆ is not fully used.

To overcome such difficulties, in Section 8.7 we introduced ATS4C, an adaptive version of TS4C2,
which allows to dynamically adjust the use of the available memory space based on the properties
of the graph being observed. We experimentally evaluate the performance of ATS4C over ten runs
on the Patent(Cit) and the LastFM graphs and we compare it with TS4C2 and FourEst using
M = 5× 105.

231

As shown in Fig. 8.9, for both graphs, ATS4C produces estimates that are nearly indistinguish-
able from the ground truth. ATS4C clearly outperforms TS4C2 (with |S∆| = M

3) on Patent(Cit)
where triangles are sparse motifs achieving an ∼ 85% reduction of the average MAPE compared to
TS4C2. ATS4C returns high quality estimations even for the LastFM graph, for which the single
level approach FourEst outperforms TS4C1 and TS4C2.

8.9 Generalizing the TieredSampling approach

While so far we focused on counting the number of occurrences of 4-cliques in a graph stream, the
TieredSampling approach can be generalized towards estimating the counts of a wide variety of
graphlets. In this section, we discuss an heuristic which allows generalizing the approach discussed
so far to a general graphlet. As an example, we discuss and application of the TieredSampling

approach that yields high-quality estimates of the number of 5-cliques in graph streams, named
TS5C.

8.9.1 The TieredSampling framework

Let G′ = (V ′, E′) be the graph or pattern of interest for whom we aim to estimate the number of
occurrences in the graph stream. Towards obtaining an algorithm A, which provides such estimates,
we apply the TieredSampling approach following the following steps:

1. Identify a “prototype” sub-pattern: We identify a sub-pattern of G′, henceforth denoted
as G′′ = (V ′′, E′′) such that V ′′ ⊆ V ′ and E′′ ⊆ E′. G′′ will play a role analogous to that
played by triangles towards counting 4-cliques in the stream. Such sub-pattern serves as a
prototype to aid in the detection of instances of the graphlet of interest. Part of the memory
available to algorithm A will be allocated to maintaining a reservoir sample of the instances of
G′′ observed on the stream by A so far, henceforth named SP , while the remaining available
memory will be used as a uniform sample of the edges observed on the stream, henceforth
named Se. Both samples are maintained by A according to the reservoir sampling mechanism,
following steps analogous to those discussed for TS4C1 and TS4C2. Further, we assume that
whenever an occurrence of G′′ is selected to be included in SP , A maintains information on
the time step at which it was detected.

Algorithm A operates similarly to TS4C1 and TS4C2: whenever an edge e is observed in the
steam at time t A verifies whether an instance of G′ can be obtained by combining e with one
of the prototypes in S(t)

P and with exactly |E′|−|E′′|−1 edges in S(t)
e . A maintains an estimate

κ(t) of the number of occurrences of G′ in the stream up to time t which is updated each time
an instance of G′ is detected. Then A determines whether an instance of the prototype G′′ can
be detected combining e with |E′′|−1 edges in S(t)

e . Each detected occurrence G′′ is submitted
to the reservoir SP . Finally, A inserts e into the reservoir sample Se.

232

While G′′ can be chosen arbitrarily among the sub-graphs of G′ some properties appear to
be desirable: (i) G′′ should be rare enough so that it is worth maintaining instances of it in
memory but not overly rare so that part of the available memory would not be utilized (unless
using the adaptive version of TieredSampling); (ii) G′′ should cover a significant fraction of
the edges of G′′, that is, it should be possible to complete an instance of G′ by adding a small
number of edges to G′; (iii) G′′ should be connected. Property (i) is desirable since, as shown
for the case of 4-cliques, under such circumstances A achieves efficient use of the available
memory and the benefit of maintaining rare instances of the prototype towards detecting G′.
Property (ii) is desirable as it allows for a simpler and less computational intensive detection
of instances of G′ by composing instances of G′′ and a few remaining edges. Finally, property
(iii) is desirable as connected sub-graphs are, in general, rarer than non-connected graphs with
the same number of edges, and they allow for a simpler - less computationally intensive -
algorithmic criteria for detecting occurrences of G′ by completing occurrences of the prototype
G′′. While any subgraph satisfying these properties appears desirable to be used as a prototype,
as a heuristic, choosing as G′′ a clique sub-graph of G′ satisfies the desired properties.

2. Bounding the probability of observing G′: Algorithm A maintains an estimator κ(t) of
the number of occurrences of G′ observed on the stream up to step t. Ideally, A would proceed
by increasing κ(t) each time an occurrence of G′ is detected on the stream by an amount
which corresponds to the reciprocal of the probability of such occurrence being observed by
A. As discussed in Theorem 8.5 (resp., Theorem 8.12) for TS4C1 (resp., TS4C2), this does
indeed guarantee κ(t) to be anunbiased estimate of the number of occurrences of G′. However,
computing exactly the probability of observing G′ and G′′ is, in general, rather complicated as
it requires breaking down a high number of sub-cases each tied to the order according to which
the edges are observed on the stream and whose number does, therefore, grow exponentially
with respect to the number of edges of G′. While it is possible to reduce the number of these
cases by matching some common patterns, the analysis is still rather complex and not easily
generalize from one sub-graph G′ to another G′. Rather than computing the exact value, using
an approximate of the probability according to whom A observes an instance of G′ (resp., G′′)
is generally sufficient to obtain good quality, albeit generally non-unbiased, estimates for the
count of occurrences of G′ while considerably reducing the effort of the analysis.

Let t denote the time step at whom the last edge e of an occurrence of G′, denoted as Ĝ′ =

(V̂ ′, Ê′), is observed on the stream. Based on the choice of the prototype, it will be possible
for A to detect Ĝ′ by composing an occurrence of the prototype G′′ (whose edges has been
previously observed on the stream),which may have been previously detected and maintained
in the reservoir sample used to maintain instances of G′′, with some edges currently stored in
the edge reservoir sample, and e itself. Assume that A detects by composing an occurrence
of G′′, henceforth denoted as Ĝ′′ = (V̂ ′′, Ê′′). stored in S(t)

∆ , |E′| − |E′′| − 1 edges of Ĝ′′ in
S(t)
e , and the edge e itself. Let p denote the probability of A observing Ĝ′ in such a way, A

233

approximates p as
p̃ = Pr

(
Ĝ′′ ∈ S∆

)
Pr
(
V̂ ′ \ (V̂ ′′ ∪ {e}) ⊆ S(t)

e

)
= Pr

(
Ĝ′′ ∈ S∆|Ĝ′′ was observed by A

)
Pr
(
Ĝ′′ was observed by A

)
Pr
(
V̂ ′ \ (V̂ ′′ ∪ {e}) ⊆ S(t)

e

)
.

• A approximates Pr
(
Ĝ′′ ∈ S∆|Ĝ′′ was observed by A

)
, as the probability that, condi-

tioned on Ĝ′′ having been observed by A, Ĝ′′ is stored in the the reservoir SP at time t,
that is:

Pr
(
Ĝ′′ ∈ S∆|Ĝ′′ was observed by A

)
≈ min

{
1,
|SP |
τ (t)

}
,

where |SP | denotes the size of the fraction of the memory space allocated to SP and τ (t)

denotes the number of instances of G′′ detected by A up to time t− 1.

• A approximates Pr
(
Ĝ′′ was observed by A

)
as the probability that when the last edge

of Ĝ′′ arrived on the stream its remaining |E′′| − 1 were stored in Se. That is:

Pr
(
Ĝ′′ was observed by A

)
≈
(

min

{
1,
|Se|
t′ − 1

})|E′′|−1

,

where |Se| denotes the size of the fraction of the memory space allocated to Se and t′ is
the time step at which the last edge of Ĝ′′ was observed on the stream. The approximate
used here is a simplified version of the exact value computed in Lemma 8.1.

• A approximates Pr
(
V̂ ′ \ (V̂ ′′ ∪ {e})

)
as the probability of the |E′| − |E′′| − 1 edges in

V̂ ′ \ (V̂ ′′ ∪ {e} being included in Se. That is:

Pr
(
V̂ ′ \ (V̂ ′′ ∪ {e})

)
≈
(

min

{
1,
|Se|
t− 1

})|E′|−|E′′|−1

.

The approximate used here is a simplified version of the exact value computed in
Lemma 8.1.

Hence, we have:

p̃ = min

{
1,
|SP |
τ (t)

}(
min

{
1,
|Se|
t′ − 1

})|E′′|−1(
min

{
1,
|Se|
t− 1

})|E′|−|E′′|−1

.

In general we have that p 6= p̃. In most cases p̃ is lower than than the actual value p.

3. Determining increments to the estimate κ: The computed value p̃ approximates the
probability ofA detecting Ĝ′ specifically using the instance Ĝ′′ of the prototype completed with
edges form Se. However, in general it will be possible for A to detect the same occurrence Ĝ′ of
the pattern of interest. A similar circumstance was discussed for TS4C1, as the algorithm can
detect a 4-clique in two possible ways (i.e., using two possible triangle sub-graphs). Correcting
for such phenomena is of crucial importance towards avoiding overestimating the number of
occurrences of G′. In order to do so, it is necessary to determine the number of possible ways
for A to detect Ĝ′ given the order of the edges on the stream. Let e denote the last edge of
Ĝ′ observed on the stream. If/when A detects Ĝ′, it counts the number of possible distinct
occurrences of the prototype G′′ in the sub-graph (V̂ ′, Ê′ \ {e}) (i.e., the sub-graph of Ĝ′

obtained by removing e). By construction of A, such number, henceforth denoted as c(Ĝ′)

234

corresponds to the number of possible ways according to whom A may detect Ĝ′ by combining
e, an occurrence of the prototype G′′, and exactly |V ′| − |V ′′| − 1 edges from Se. c(Ĝ′) can be
derived only from e and Ĝ′ which are both known to A if/when Ĝ′ is detected.

Whenever A observes an instance of G′ it increases κ by p̃−1/c(Ĝ′). For each occurrence Ĝ′

of G′ let κhatG′ be the random variable which corresponds increment to the estimate κ due
to Ĝ′. That is, κ =

∑
occurrences of G’ κĜ′ . Towards κ being an unbiased estimate we therefore

desire E
[
κĜ′

]
= 1. By construction of A we have:

E
[
κĜ′

]
=

∑
ways for A to detect Ĝ′

p̃−1

c(Ĝ′)
Pr
(
A detects Ĝ′ in the i-th way

)
≈ 1

c(Ĝ′)

∑
ways for A to detect Ĝ′

p̃−1p̃

=
c(Ĝ′)

c(Ĝ′)

= 1.

While, for different combinations of prototypes and edges (i.e., the ways) the probabilities of
detecting Ĝ′, using the approximate p̃ allows for a considerable simplification of the analysis
(and, in turn, of the algorithm) while still providing good estimates. While the criteria used
deciding how to increment κ aims to have it function as an unbiased estimate of the number of
occurrences of G′, due to the use of the approximate p̃, κ is not, in general, an actual unbiased
estimator. Since, as previously discussed, we have that, in general, p̃ < p, our estimator κ will
generally slightly underestimate the number of occurrences of the pattern of interest.

4. Partition of the available memory space among reservoir tiers: Following the heuristic
already used for determining how to partition the available space discussed for TS4C1 and
TS4C2, toward maximizing the probability of A detecting instances of G′, we assign |SP | and
|Se| in such a way that p̃ is maximized, while setting t, t′ and τ (t) as constants.

By following the outlined steps it is possible to deploy the TieredSampling approach to obtain
an algorithm A that produces high-quality estimated of the number of occurrences of the desired
pattern G′. While the construction of A previously discussed lead to obtaining an algorithm for
which the memory space is statically distributed between the edge-only reservoir and the proto-
type reservoir, a generalization of the adaptive algorithm ATS4C can be obtained following similar
reasoning.

8.9.2 Using TieredSampling to count 5-Cliques

To demonstrate the generality of our TieredSampling approach, we present TS5C, a one-pass
counting algorithms for 5-clique in a stream. Following the steps outlined in the previous section,
TS5C selects a 4-clique as a prototype sub-pattern to detect 5-cliques. The algorithm maintains two
reservoir samples, one for edges and one for 4-cliques. When the currently observed edge completes

235

ALGORITHM 19 TS5C - Tiered Sampling for 5-Clique counting
Input: Insertion-only edge stream Σ, integers M , MC

Se ← ∅ , SP ← ∅, t← 0, τ ← 0, κ ← 0
for each element (u, v) from Σ do . Process each edge (u, v) coming from the stream in
discretized timesteps

t← t+ 1
Update5Cliques(u, v) . Update the 5-clique estimator by considering the new 5-cliques

closed by edge (u,v)
Update4Cliques(u, v) . Update the 4-clique sample with the new 4-clique observed

according to RS scheme
SampleEdge((u, v), t) . Update the edges sample with the edge (u, v) according to RS

scheme

function Update5Cliques((u, v), t)
for each 4-clique (u, x, w, z, t′) ∈ SP do

if (v, x) ∈ Se ∧ (v, w) ∈ Se ∧ (v, z) ∈ Se then

p̃← min
{

1, MP

τ

}(
min

{
1, Me

t−1

})3(
min

{
1, Me

t′−1

})5

. Approximate probability of

detecting a 5-clique
κ ← κ + p̃−1/2 . Estimate update accounting for two possible ways of detecting

5-cliques
for each 4-clique (v, x, w, z, t′) ∈ S∆ do

if (u, x) ∈ Se ∧ (u,w) ∈ Se ∧ (u, z) ∈ Se then

p̃← min
{

1, MP

τ

}(
min

{
1, Me

t−1

})3(
min

{
1, Me

t′−1

})5

κ ← κ + p̃−1/2

function Update4Cliques((u, v), t)
NSu,v ← NSu ∩N Sv
for each pair (w, z) from NSu,v ×N Su,v do

if (w, z) ∈ Se then
tC ← tC + 1
Sample4Clique(u, v, w, z, t)

236

a 4-clique with edges in the edge sample the algorithm attempts to insert it to the 4-cliques reservoir
sample. A 5-clique is counted when the current observed edge completes a 5-clique using one 4-clique
in the reservoir sample and 3 edges in the edge sample. Given the choice of the prototype, each
occurrence of a 5-clique may be detected by TS5C in at most two different ways. The probability
of each detection is approximated as

p̃ = min

{
1,
MP

τ

}(
min

{
1,

Me

t′ − 1

})5(
min

{
1,

Me

t− 1

})3

where Me (resp., MP) denotes the memory space assigned to the edge-only (resp., the prototype/
4-cliques) reservoir, t (resp., t′) denotes the time step at which the last edge of the 5-clique (reps.,
prototype 4-clique being used) arrived on the stream, and τ (t) denotes the number of 4-clique
prototypes detected by TS5C up to time t. The approximate p̃ is obtained following the breakdown
discussed in step (3) of Section 8.1:

• min
{

1, MP

τ

}
approximates the probability of the 4-clique prototype used to detect the oc-

currence of a 5-clique to be in SP at time t conditioned on the fact that it was observed by
TS5C;

•
(

min
{

1, Me

t′−1

})5

approximates the probability that the 4-clique prototype used to detect the

occurrence of a 5-clique and whose last edge arrived on the stream at time t′ was observed by
TS5C (i., the probability that when the last edge of the 4-clique was observed on the stream
the remaining 5 edges were included in S(t′)

e);

•
(

min
{

1, Me

t−1

})3

approximates the probability that the remaining 3 edges used in the detection

of the 5-clique are included in S(t)
e .

Other details of the construction of TS5C follow the blueprint outlined in the previous section.
The pseudocode of TS5C is presented in Algorithm 19. The use of the approximate p̃ allows to
adapt the TieredSampling paradigm to the task of counting 5-cliques while considerably reducing
the analysis effort. In contrast, the exact analysis would require a breakdown of a number of cases
corresponding to all the possible ordering of arrival the 11 edges in a 5-clique.

While the use of approximate values of the probability of detecting instances of the pattern of
interest leads to the estimate κ not being unbiased, in the following experimental evaluation we
show that the computed estimate is still very close to the ground truth value. Our experiments
compare the performance of TS5C to that of a standard one tier edge reservoir sample algorithm
FiveEst (refer to Algorithm 20 in the latter part of this Section), similar to FourEst. We evaluate
the average performance over 10 runs of the two algorithms on the DBLP graph using M = 3× 105.
The results are presented in Fig. 8.10. TS5C clearly outperforms FiveEst, despite the latter
providing an unbiased estimate (Theorem 8.20), in obtaining much better estimations of the ground
truth value |C(t)

5 | achieving an ∼ 56% reduction of the average MAPE.

237

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Edges ×106

0

1

2

3

4

5

5-
Cl
iq
ue

s
×108

Ground Truth
FiveEst
TS5C

Figure 8.10: Comparison of |C(t)
5 | estimates for the DBLP graph obtained using TS5C

and FiveEst with M = 3 × 105. Out of 567,495,440 5-cliques that are present in the
DBLP graph, the single reservoir algorithm FiveEst estimates a number of 153,979,072
and TS5C estimates of number of 565,173,908 5-cliques.

FiveEst: 5-clique counting using an edge-only sample

Lemma 8.19. Let λ ∈ C(t)
5 with λ = {e1, . . . , e10}. Assume, without loss of generality, that the edge

ei is observed at ti (not necessarily consecutively) and that t10 > max{ti, 1 ≤ i ≤ 9}. λ is observed
by FiveEst at time t10 with probability:

pλ =

0 if |M | < 9,

1 if t10 ≤M + 1,∏9
i=0

M−i
t−i−1 if t10 > M + 1.

(8.25)

Theorem 8.20. Let κ(t) the estimated number of 5-cliques in G(t) computed by FiveEst using
memory of size M > 9. κ(t) = |C(t)

5 | if t ≤M + 1 and E
[
κ(t)

]
= |C(t)

5 | if t > M + 1.

The proof for Lemma 8.19 (resp., Theorem 8.20), closely follows the steps of the proof of
Lemma 8.15 (resp., Theorem 8.16).

238

ALGORITHM 20 FiveEst - Single Reservoir Sampling for 5-cliques counting
Input: Edge stream Σ, integer M ≥ 6
Output: Estimation of the number of 5-cliques κ
Se ← ∅, t← 0, κ ← 0
for each element (u, v) from Σ do . Process each edge (u, v) coming from the stream in
discretized timesteps

t← t+ 1
Update5Cliques(u, v) . Update the 5-clique estimator by considering the new 5-cliques

closed by edge (u, v)
SampleEdge((u, v), t) . Update the edges sample with the edge (u, v) according to RS

scheme

function Update5Cliques(u, v)
NSu,v ← NSu ∩N Sv
for each element (x,w, z) from NSu,v ×N Su,v ×N Su,v do

if {(x,w), (x, z), (w, z)} ⊆ Se then
if t ≤M + 1 then

p← 1
else

p←∏9
i=0

M−i
t−i−1

κ ← κ + p−1

8.10 Conclusions

In this work, we study the problem of counting sparse motifs in large-scale graphs streams using
multi-layer (tiered) reservoir sampling. We developed TieredSampling, a novel technique for ap-
proximate counting sparse motifs in massive graphs whose edges are observed in a one-pass stream.
We fully analyze and demonstrate the advantage of our method in a specific application for counting
number the of 4-cliques in a graph using a two sample approach. Through extensive experimental
analysis, we show that the proposed algorithms produce high quality and low variance approxima-
tions for the number of 4-cliques for large graphs, both synthetic and real-world, with up to hundred
of millions edges. We present both analytical proofs and experimental results, demonstrating the
advantage of our method in counting sparse motifs compared to the standard methods of using just
a single edge reservoir sample.

We present a simple process that allows generalizing the TieredSampling approach to provide
estimates of the count for any subgraph of interest while considerably reducing the effort for the
analysis by using opportune approximations. We showcase the effectiveness of this approach by
presenting TS5C, an application of TieredSampling for counting the number of 5-cliques in a
graph stream.

With the growing interest in discovering and analyzing large motifs in massive-scale graphs in
social networks, genomics, and neuroscience, we expect to see further applications of our technique.

Chapter 9

Reconstructing Hidden Permutations

Using the Average-Precision (AP)

Correlation Statistic1

In this Chapter, we study the problem of learning probabilistic models for permutations, where the
order between highly ranked items in the observed permutations is more reliable (i.e., consistent
in different rankings) than the order between lower ranked items, a typical phenomena observed
in many applications such as web search results and product ranking. We introduce and study
a variant of the Mallows model where the distribution is a function of the widely used Average-
Precision (AP) Correlation statistic, instead of the standard Kendall’s tau distance. We present a
generative model for constructing samples from this distribution and prove useful properties of that
distribution. Using these properties we develop an efficient algorithm that provably computes an
asymptotically unbiased estimate of the center permutation, and a faster algorithm that learns with
high probability the hidden central permutation for a wide range of the parameters of the model. We
complement our theoretical analysis with extensive experiments showing that unsupervised methods
based on our model can precisely identify ground-truth clusters of rankings in real-world data. In
particular, when compared to the Kendall’s tau based methods, our methods are less affected by
noise in low-rank items.

1A preliminary version of the results presented in this chapter appeared in the proceedings of the 30-th AAAI
Conference on Artificial Intelligence. This is joint work with Alessandro Epasto, Professor Fabio Vandin and Professor
Eli Upfal.

239

240

9.1 Introduction

Probabilistic models of ranking data have been studied extensively in statistics [153], machine learn-
ing [9] and theoretical computer science [30, 42]. Applications of ranking models include understand-
ing user preferences in electoral systems, ordering web search results, aggregating crowd-sourcing
data, and optimizing recommendation systems results [233, 197, 61, 215, 34, 241, 159].

Most of the analytic work in this area has focused on the Mallows model [153] which defines a
probability distribution over a set of permutations of n elements given a fixed center permutation π
(the ground truth), and a dispersion parameter β > 0. The probability of a permutation σ in Mallows
model is PrM(β,π)(σ) = N−1

β exp(−βdK(π, σ)), where dK(π, σ) is the Kendall’s tau distance between
π and σ, and Nβ is a normalization factor independent of σ (see Section 9.3 for more details). Since
the Kendall’s tau distance simply counts the number of pairs of items whose order is inverted in
σ with respect to their order in π, a permutation with inversions of elements occupying positions
towards the end of the ranking has the same probability as a permutation with the same number of
inverted pairs near the top of the ranking.

In many practical applications, such as web search ranking, voter preferences surveys, consumer
evaluation systems and recommendation systems we expect the input samples to provide a more
reliable order for items at the top of the ranking than for “less important" items at the bottom of
the ranking [159, 233, 241]. The limitation of the Kendall’s tau distance and the associated Mallows
model, when applied to such data has been pointed out in a number of recent works [233, 241, 136].
Note that the Spearman’s footrule distance [216], another widely used statistic, suffers from the
same problem.

In this work we address the limitation of the standard Mallows distribution by proposing an
alternative exponential distribution of permutations, MAP (β, π), in which the Kendall’s tau dis-
tance of the Mallows distribution is replaced by a new distance based on the widely used Average
Precision (AP) correlation statistic [241]. The AP statistic (and hence the AP model) takes into
account not only the number of miss-ranked pairs but also the locations (and hence the importance)
of the miss-placed pairs in the ranking. Let [n] be the set of natural numbers {1, . . . , n}, and let
Sn be the set of all permutations over [n]. Given a fixed center permutation π ∈ Sn and a disper-
sion parameter β > 0, the probability associated with a permutation σ ∈ Sn according to the new
model is PrMAP(β,π)(σ) = Z−1

β exp(−βdAP (π, σ)), where dAP (π, σ) is the AP-distance between π
and σ and Zβ is a normalization factor independent of σ (see Section 9.3 for more details). To the
best of our knowledge, no work has addressed the problem of modeling permutations with provable
guarantees subject to such properties.

We now summarize the main contributions of this work:

• We introduce a novel variant of the standard Mallows model based on the more nuanced AP
statistic.

• We introduce a generative process for this probability distribution. This process, besides
defining an efficient algorithm for sampling permutations from the distribution, is a useful tool

241

in establishing formal properties of our model.

• We provide bounds on the probability of swapping elements and use these bounds to quantify
the number of samples required for learning the parameters of the model.

• We design efficient algorithms that given O(log n/(nβ)) samples learn the central permutation
with high probability for β = Ω(1/n). We also show an alternative algorithm that efficiently
computes an asymptotically unbiased and consistent estimator of the central permutation for
any β > 0.

• We experimentally evaluate our model and algorithms using both synthetic and real-world data.
We show experimentally the accuracy of our estimators in the reconstruction of the hidden
permutation with a limited number of samples. We also show with real data that unsupervised
methods based on our model can precisely (and efficiently) identify ground-truth clusters of
rankings with tens of thousand of elements. Moreover we show that our method is less affected
by noise in the lowest positions of the rankings, which is more likely to occur [233], than the
Kendall-based ones. Finally we show that simple supervised classification algorithms based on
the AP statistic outperform classifications based on the Kendall-based distance measure.

The newMAP (β, π) model is significantly more challenging for mathematical analysis than the
Mallows model. TheMAP (β, π) model does not have many of the simplifying features used in the
analysis of Mallows model, such as translational invariant of the distribution [42]. Nevertheless, as
we show in this work, the model remains sufficiently mathematically tractable to derive non-trivial
theoretical results. Furthermore, while many of the results for the Mallows model require a constant
β, our analysis applies to β = β(n) that is decreasing in n.

The presentation is structured as follows. Section 9.2 reviews part of the literature which is
relevant for our problem. Section 9.3 formally defines theMAP (β, π) model and provides some in-
tuition on the behavior of the AP model. Section 9.4 defines a generative process for the distribution
that will be pivotal in the analysis of our model. Section 9.5 presents the in depth study the math-
ematical properties of our model and the learning algorithms designed on this study. Section 9.6
presents an experimental evaluation of our method on real and synthetic data. Finally, Section 9.7
draws conclusions and hints at possible future directions stemming from our work.

9.2 Related Work

Ranking problems have been studied extensively since at least the 18th century works of Borda and
Condorcet on social choice theory [34, 197]. We discuss here only the most relevant works derived
from Mallows’ original work.

Properties of the Mallows model [153] were studied in [55, 79]. Tail bounds on the displace-
ment of an element were studied in [31, 21]. Reconstructing the hidden central permutation was
studied in [31, 158, 42, 151]. Finding the maximum likelihood permutation is equivalent to the well

242

known rank aggregation problem which is NP-hard [11] and has a polynomial-time approximation
scheme [126]. Several heuristics were introduced in order to solve this problem [158, 203] with no
provable guarantees. The problem of learning a mixture of Mallows models was studied in [9, 42].
The Mallows model has also been extended in various ways by generalizing the Kendall’s tau dis-
tance in order to weigh the number of inversions with respect to previously defined parameters for
each element [78, 79]. In the Recursive Inversion Model [157] different weights are assigned to the
inversions of elements, requiring a priori specification of n − 1 weights. A priori assigning such
weights is not easy. In contrast, the AP model we consider gradually and coherently weighs the
elements based on their positions.

Recent work [186] generalizes the Mallows model to other distances in which the maximum
likelihood can be efficiently computed. [209] proposed a weighting scheme for Kendall’s tau distance
where the weight of errors depends on the ranks of the inverted items. [136] later extended Shieh’s
model defining an even more sophisticated scheme that takes into account positions of the items,
weights, and their similarity. Various works [71, 102] addressed the issue of assigning different
weights to various elements by restricting the computation of some statistics only on specific parts
of the ranking.

The AP correlation statistic, which is the focus of this work, was introduced in [241, 240]. Since
its introduction, AP correlation has been widely used in the literature [233, 198, 205, for instance,
and see the references of these papers]. Recently [233] generalized the AP correlation and other
metrics to handle ties and other ways to weighting inversions. We believe that our approach could
be adapted to the corresponding extension of the AP-distance. To the best of our knowledge no prior
work has addressed the problem of provably reconstructing the center permutation of a generalized
Mallows model using AP distance or similar more nuanced measures.

9.3 The AP model

For π ∈ Sn let πi be the i-th element in the order defined by π, and π(i) is the position of i ∈ [n] in
π. We use the notation i <π j to indicate that π ranks i before j, or equivalently, that π(i) < π(j).
Finally we use π[t] to denote the prefix of the t highest ranked elements in π, i.e. π[t] = (π1, . . . , πt).

Our new model uses the following AP distance of a permutation σ from permutation π:

dAP (π, σ) =

n−1∑
i=1

n∑
j=i+1

Eij
n

2(j − 1)
,

where Eij = 1 iff item πi is ranked after item πj in permutation σ, and Eij = 0 otherwise. Note
that the AP-distance dAP (π, σ) is defined with respect to a ground truth π and it is therefore not
symmetric. Notice that the Kendall’s tau distance dK(π, σ) can be expressed in the same form by
assigning cost 1 (instead of n

2(j−1)) for each inversion, i.e. dK(π, σ) =
∑n−1
i=1

∑n
j=i+1Eij .

The AP-distance has the same range and extreme points as the Kendall’s tau distance: 0 ≤
dAP (π, σ) ≤

(
n
2

)
, dAP (π, σ) = 0 iff π = σ, and dAP (π, σ) =

(
n
2

)
iff σ is obtained by reversing π.

However, the AP-distance assigns weights to inverted pairs in σ which depend on the locations of

243

the items in π. More specifically, the cost assigned to inversion of elements (πi, πj) for i < j is
n

2(j−1) . The cost assigned by AP is strictly higher than the one given by tau distance (always 1) for
elements in the first half of the ranking, i.e. for j < n

2 + 1 and strictly lower than 1 for j > n
2 + 1.

Given this distance function we define the AP modelMAP (β, π):

Definition 9.0.1 (AP model). The AP model is a probability distribution over Sn. Given a fixed
center permutation π and a dispersion parameter β > 0, the probability of a permutation σ ∈ Sn is

Pr
MAP(β,π)

(σ) = Z−1
β exp(−βdAP (π, σ)), (9.1)

where Zβ =
∑
σ∈Sn exp

(
−βdAP (π, σ)

)
is a normalization coefficient independent of σ.

Notice that our model differs from the traditional Mallows modelM (β, π) only in the use of the
AP distance dAP (π, σ) instead of the Kendall’s tau distance dK(π, σ).

Before studying the details of the model we show that, as in the traditional Mallows model,
finding the maximum likelihood center permutation for an arbitrary multi-set of permutations is
NP-hard.

More precisely, we define the AP-ML problem as follows. Given an arbitrary multiset P of elements
of Sn (and β > 0) find the permutation πAP ∈ Sn such that:

πAP = arg max
π∈Sn

∏
σ∈P

Pr
MAP(β,π)

(σ)

Theorem 9.1. The AP-ML problem is NP-hard

Proof. We show that this problem is NP-Hard for an arbitrary multiset P by reducing an instance
of the K-LM problem, which has been shown to be NP-Hard in [30], to a corresponding instance of
the AP-ML problem.

Reduction from Kendall-ML to the AP-ML Given the multiset P of permutations over [n],
we create the set F = {f1, . . . , fN} composed by N = |P |n3 new elements such that F ∩ [n] = ∅.
We denote the as SF∩[n] the set of permutations generated by F ∩ [n].

First, we create a multiset P̄ ′ which is composed by M = n10 copies of the pair of permutations
(f1, . . . , fN , 1, . . . n) and (f1, . . . , fN , n, . . . 1).

We then create a multiset P̄ ′′ such that for each permutation π ∈ P we have a permutation
π̄ ∈ P̄ ′′ which is obtained by prefixing the permutation π with (f1, . . . , fN).

We finally the set P̄ ⊆ SF∩[n] as P̄ = P̄ ′ ∪ P̄ ′′.

Lemma 9.2. Let πAP be the solution of the AP-ML problem on the set P̄ . We then have πAP (i) = fi

for i = 1, . . . , N .

Proof. We shall first verify that the the elements form F occupy the first N positions in πAP . If this
is not the case then there must exist a pair of elements fi ∈ F and i ∈ [n] s.t. πAP (i) = πAP (fi) + 1.
Let π′ be the ranking obtained by just inverting these two elements, given the construction of P̄ ,
for any σ̄ ∈ P̄ we have dAP

(
π′, σ

)
< dAP (πAP , σ) which leads to a contradiction. A similar proof

allows us to conclude that we indeed have πAP (i) = fi for i = 1, . . . , N . The lemma follows.

244

Lemma 3 implies that the elements in [n] occupy the last n positions of the solution of the AP-ML
problem oh the set P̄ . Let πK be the sub-permutation obtained by considering just the elements of
[n] in πAP .

Lemma 9.3. The permutation πK is a correct solution K-ML problem for the multiset P .

Proof. The proof is by contradiction. Suppose there exists a permutation π′K ∈ Sn such
that

∑
σ∈P dK

(
π′K , σ

)
<
∑
σ∈P dK (πK , σ). Let us then consider the permutation π′AP =

(f1, . . . , fN , π
′
K) ∈ SF∩[n]: from Lemma 3 we have that for any σ̄ ∈ P̄ there are no inversions

between elements form F and element from [n] in π′AP with respect to σ̄. The possible variation in
the value of

∑
σ∈P̄ dAP

(
π′AP , σ

)
with respect to

∑
σ∈P̄ dAP (πAP , σ) can therefore depend just on

inversions involving elements from [n]. Since, by the construction of the permutations in P̄ , these
elements appear in the positions N + 1, N + 2, . . . , N + n, the inversions involving them can have
weight at most 1/N = 1/|P |n3 and at least 1/(N + n) = 1/(|P |n3 + n) according to the AP mea-
sure. The contribution to

∑
σ∈P̄ dAP (πAP , σ) due just to the elements from [n] is therefore at least∑

σ∈P dK (πK , σ) /(N + n) while the contribution to
∑
σ∈P̄ dAP

(
π′AP , σ

)
due just to the elements

from [n] is at most
∑
σ∈P dK

(
π′K , σ

)
/(N). Since we have

∑
σ∈P dK

(
π′K , σ

)
<
∑
σ∈P dK (πK , σ) ≤

|P |n2/2 we can conclude: ∑
σ∈P dK (πK , σ)

N + n
>

∑
σ∈P d

′
K (πK , σ)

N
If that is the case, then the permutation π′AP = (f1, . . . , fN , π

′
K) ∈ SF∩[n] is such that:∑

σ∈P̄

dAP
(
π′, σ

)
<
∑
σ∈P̄

dAP (πAP , σ) .

Since πAP is a solution of the AP-ML problem for P̄ we have a contradiction. The lemma follows.

Note that for any β > 0 we have that a permutation π which is a solution of the AP-ML problem
for P is the one that minimizes the average AP distance to the multi-set P , that is also NP-hard to
find.

We stress that the previous NP-hardness result holds for arbitrary multi-sets (i.e. not generated
by the AP model distribution). As we will see in the rest of this Chapter, when the permutations
are generated according to the AP model distribution, it is possible to learn important properties
of the model in polynomial time.

9.4 Generative Process for MAP (β, π)

We give a randomized algorithm for constructing a permutation σ ∈ Sn according to theMAP (β, π)

model. The algorithm is based on the one presented in [55] and provides useful insight on the
probability distribution for the AP model. Recall that π[i] refers to the prefix of length i of the
permutation π.

245

TheMAP (β, π) Generative Process: Let π = π1, π2, . . . , πn be the central permutation. We
generate a random permutation σ in n steps. At step i we produce a permutation σi in the following
way:

1. σ1 = (π1);

2. for i = 2 to n do:

(a) choose a random value 0 ≤ r ≤ i− 1 according to the probability

Pr(r = j) =
1

Bi
exp

(
−βn

2

j

i− 1

)
,

where

Bi =

i−1∑
j=0

exp

(
−βn

2

j

i− 1

)
.

(b) Generate a permutation σi from σi−1 by placing item πi after item σi−1
i−1−r. i.e., for

1 ≤ t ≤ i − 1 − r we have σit = σi−1
t , then σii−r = πi, and for i − r + 1 ≤ t ≤ i we have

σit = σi−1
t−1. If r = i− 1, we have σi1 = πi.

(c) Finally output σ = σn.

Theorem 9.4 (Correctness AP generative process). For i = 1, . . . , n, the permutation σi generated
by the MAP (β, π) Generative Process has distribution MAP

(
n
i β, π[i]

)
. In particular, the output

permutation σ = σn has distributionMAP (β, π).

Proof. In the following let pi,i−j , denotes the probability that element πi has been inserted in position
1 ≤ i− j ≤ i of the permutation σi during the i-th step of the generative process for 0 ≤ j < i ≤ n.
We have:

pi,i−j =
1

Bi
exp

(
−βn

2

j

i− 1

)
(9.2)

The proof is by induction on i. In the base case for i = 1 we have σ1 = π1 with probability one.
Since the the only possible permutation has distance zero from the center the statement is therefore
verified. For i > 1, let σi be the sequence given as output of the process at step i for which the
element πi is placed in position i−j of the corresponding permutation σi−1. By inductive hypothesis,
the probability of σi−1 being returned by the process at step i− 1 is given by:

Pr
MAP(n

i−1β,π[i−1])
(σi−1) =

1

Zβ [i− 1]
exp(−βdAP

(
π[i− 1], σi−1

)
), (9.3)

where Zβ [i] =
∑
σi exp

(
−βdAP

(
π[i], σi

))
We have:

dAP

(
π[i], σi

)
= dAP

(
π[i− 1], σi−1

)
+

j

i− 1
(9.4)

with dAP
(
π[1], σ1

)
= 0. We can express Zβ [i] as a function of Zβ [i− 1] as follows:

Zβ [i] =
∑
σi

exp
(
−βdAP

(
π [i] , σi

))
=
∑
σi−1

exp
(
−βdAP

(
π [i− 1] , σi−1

)) i−1∑
j=0

exp
(
−β n2

j
i−1

)
And therefore:

Zβ [i] = Zβ [i− 1]Bi (9.5)

246

The probability of obtaining σi as output of the process at step i is given by the product of the
probability of of obtaining σi−1 as output of the process at step i−1 times the probability of placing
element πi in position i− j:

Pr
MAP(n

i−1β,π[i−1])
(σi−1)pi,i−j = 1

Zβ [i−1] exp(−βdAP
(
π[i− 1], σi−1

)
) 1
Bi

exp
(
−βn2

j
i−1

)
= 1

Zβ [i−1]Bi
exp(−β

(
dAP

(
π[i− 1], σi−1

)
+ j

i−1

)
From (9.4) and (9.5) we therefore have:

Pr
MAP(n

i−1β,π[i−1])
(σi−1)pi,i−j =

1

Zβ [i]
exp(−βdAP

(
π[i], σi

)
) = Pr

MAP(ni β,π[i])
(σi)

The theorem follows.

Moreover, we can also compute the normalization coefficient Zβ of the model is given by:

Corollary 9.5. For n = 1, Zβ = 1. Otherwise, for n > 1,

Zβ =

n∏
i=2

exp
(
−βn2 i

i−1

)
− 1

exp
(
−βn2 1

i−1

)
− 1

.

9.5 Reconstructing the Center Permutation in the AP model

In this section we study the problem of reconstructing the hidden center permutation given a set of
samples drawn from the AP model.

Problem 9.6 (Permutation Reconstruction in the AP model). Given T i.i.d. samples obtained from
MAP (β, π) with unknown parameters β > 0 and π ∈ Sn, compute a best estimate for the center
permutation π.

A minimum requirement for solving the problem is β > 0, since for β = 0, the distribution is
uniform over Sn and all centers define the same distribution.

Our first goal is to show that with a sufficient number of samples we can reconstruct the center
permutation for any β > 0, even for β = β(n)

n→∞−→ 0. To achieve this goal we design a rank-based
algorithm that for any set of samples outputs a permutation that is an unbiased estimate of the
central permutation. As we increase the number of samples, the sequence of estimates converges;
thus the estimate must be consistent and therefore converges to the central permutation.

For a more practical result we present a comparison-based algorithm that for any β > 2 ln(2)
n ,

and given O(log(n)) independent samples from the distribution, computes w.h.p.2 the correct center
permutation.

2We say that an event happens with high probability (w.h.p.) if it happens with probability ≥ 1− 1
n
.

247

9.5.1 Rank-based algorithm for β > 0

Theorem 9.7 (Probability of a swap between elements adjacent in π). Let σ be obtained from
MAP (β, π), with π ∈ Sn and β > 0. For any 1 ≤ i ≤ n− 1, let Pr

(
Si,i+1

)
be the probability of two

elements occupying the positions i and i+ 1 in π are swapped in σ. We have:
Pr
(
Si,i+1

)
≤ 1/2

with equality iff β = 0.

Proof. We compute the probability of swap using our generative process. The relative order between
πi and πi+1 in σ is determined when πi+1 is inserted in σi+1 in the generating process. Later
insertions of items cannot change that order. Thus, the probability of a swap between elements πi−1

and πi in σ is given by the probability of inserting πi in a position smaller or equal to the one in
which the element πi−1 was previously inserted.

Let q = e−βn/2 than q ≤ 1 with equality iff β = 0. The generative process inserts the element πi
in position 1 ≤ i− j ≤ i during the i-th step with probability

pi,i−j = B−1
i exp

(
−βn

2

j

i− 1

)
= B−1

i q
j
i−1 .

Thus, Pr
(
σ(πi+1) < σ(πi)

)
=

1

BiBi+1

i∑
j=0

q
j
i

j−1∑
t=0

q
t
i−1

 =

∑i
j=0

∑j−1
t=0 q

j
i+ t

i−1∑i
j=0

∑i−1
t=0 q

j
i+ t

i−1

=

∑i
j=0

∑j−1
t=0 q

j
i+ t

i−1∑i
j=0

∑j−1
t=0 q

j
i+ t

i−1 +
∑i
j=0

∑i−1
t=j q

j
i+ t

i−1

=
A

A+B

We can now match each element q
j
i+ t

i−1 in B to element q
t+1
i + j

i−1 in A. It is easy to verify that
q
j
i+ t

i−1 ≥ q
t+1
i + j

i−1 with equality either if q = 1 or t = i− 1 and j = 0. . This implies A ≤ B with
equality iff β = 0, proving the claim.

Note that the above result applies only for adjacent items in the permutation π, and only with
probability ≤ 1/2. Thus, the result does not imply a total order. Recall that in general, Pr(X ≥
Y) > 1/2 does not imply E[X] ≥ E[Y] or vice versa. Nevertheless, in this model we can prove a
total order on the expected position of items in the observed permutations. In the following, let
σ(πi) denote the position of the element πi in a permutation σ ∼ MAP (π, β). Note the distinction
with σi which denotes the element at the i-th position in σ instead.

Theorem 9.8. For any β > 0 and 1 ≤ i ≤ n− 1,
E[σ(πi)] < E[σ(πi+1)].

Proof. Consider the process of generating the permutation σ ∼MAP (π, β). While the order between
πi−1 and πi is fixed when πi is in inserted to the (partial) permutation, their final locations are
influenced by the insertions of elements πi+1, . . . , πn. In particular, the distance between πi−1 and
πi is increased when an element is inserted between them.

We now use the mapping defined in the proof of the previous theorem, mapping the event where
πi−1 was inserted in position i− 1− j and πi was inserted in position i− t with t ≤ j to the event

248

with of lower or equal probability in which πi−1 was placed in position i−1− t while πi was inserted
in position i− j+ 1. The interval between the two elements in both cases starts at location i−1 + j.
When σ(πi−1) < σ(πi) the length of the interval is j− t+ 1 and when σ(πi) < σ(πi−1) the length of
the interval is j − t. Since the insertion of the elements πi+1, . . . , πn is independent of the locations
of πi−1 and πi the expected increase in the location of σ(πi) is no less than the expected increase in
the location of σ(πi−1).

We will now describe a rank-based algorithm for the permutation reconstruction problem which
takes as input a sample σ1, . . . , σs of s independent random permutations from MAP (β, π) and
computes an estimate πRank for the central permutation π.

For each element π1, . . . , πn we compute the respective average rank σ(πi) = 1
s

∑s
j=1 σ

j(πi).
We then build the permutation πRank by ordering the elements πi according to their average ranks
σ(πi). The running time of the proposed algorithm is O(sn + n log n) where O(sn) time is needed
to computed the average rank for each element, and O(n log n) time is required by the sorting
algorithm. Since the average ranks converge to their expectations we have:

Theorem 9.9. The ranking πRank is an asymptotically unbiased and consistent estimator.

Since the ranks are integers we can conclude that:

Corollary 9.10. For any value of β > 0, and with a sufficient number of samples, the reconstructed
permutation πRank equals the central ranking π .

9.5.2 Comparison-Based algorithm for β ∈ Ω(1
n
)

We now present an efficient algorithm for β > c ln(2)
n , c > 2 independent of n, which relies on the

following result:

Theorem 9.11 (Probability of a swap between any pair of elements from π). Let σ be obtained
from MAP (β, π), with π ∈ Sn and β > 0. Given a pair (i, k) with 1 ≤ i < n and 0 ≤ k < n − i,
let Pr

(
Si,i+k+1

)
be the probability of two elements occupying the positions i and i + k + 1 in π are

swapped in σ.

Pr
(
Si,i+k+1

)
≤ exp

(
−βn

2

)
exp

(
−βn

2

i

i+ k

)
.

In the following, we use pi,k to denote the probability that the element πi has been inserted in
position 1 ≤ k ≤ i of the permutation σi during the i-th step of the generative process. Let k = i− j
from equation (9.2) we have:

249

pi,k = pi,i−j =
1

Bi
exp

(
−βn

2

j

i− 1

)

=
exp

(
βn
2

)
exp

(
βn
2

) exp
(
−βn2

j
i−1

)
i−1∑
k=0

exp
(
−βn2 k

i−1

)

=
exp

(
βn
2
i−1−j
i−1

)
i−1∑
k=0

exp
(
βn
2
i−1−k
i−1

)

= exp

(
βn

2

k − 1

i− 1

) exp
(

βn
2(i−1)

)
− 1

exp
(

βn
2(i−1) i

)
− 1

We first introduce the following lemma which will prove useful in the following derivations.

Lemma 9.12. Let σi ∼MAP
(
n
i βn, π[i]

)
be a permutation produced at the i-th step of the algorithm

and let σi (πi) ∈ {1, 2, . . . , i} be the position in which the element πi added during the i-th step. We
then have:

Pr
(
σi(πi) ≤ j

)
=

exp
(

βn
2(i−1)j

)
− 1

exp
(

βn
2(i−1) i

)
− 1

. (9.6)

Proof. We have:

Pr
(
σi(πi) ≤ j

)
=

j∑
k=1

Pr
(
σi(πi) = k

)

=

j∑
k=1

pi,k

=

j∑
k=1

exp
(

βn
2(i−1) (k − 1)

)(
exp

(
βn

2(i−1)

)
− 1

)
exp

(
βn

2(i−1) i
)
− 1

=
exp

(
βn

2(i−1)

)
− 1

exp
(

βn
2(i−1) i

)
− 1

j∑
k=1

exp

(
βn

2(i− 1)
(k − 1)

)

=
exp

(
βn

2(i−1)

)
− 1

exp
(

βn
2(i−1) i

)
− 1

j−1∑
y=0

exp

(
βn

2(i− 1)
(y)

)

=
exp

(
βn

2(i−1)

)
− 1

exp
(

βn
2(i−1) i

)
− 1

exp
(

βn
2(i−1)j

)
− 1

exp
(

βn
2(i−1)

)
− 1

=
exp

(
βn

2(i−1)j
)
− 1

exp
(

βn
2(i−1) i

)
− 1

250

Proof of Theorem 9.11 The probability Pr
(
Si,i+k+1

)
can be upper bounded by using law of

total probability conditioning on the position in which the i-th element was inserted at the i-th
step. The probability of πi and πi+k+1 to be swapped in σ depends on the position occupied by πi
when πi+k+1 is inserted according to the Generative Process described in Section 9.4. In particular
said probability increases monotonically with the index of the position occupied by πi prior to the
insertion of πi+k+1, a sketch of the proof for this statement follows. If prior to the insertion of
πi+k+1 element πi is occupying position r ≤ i + k, then the swap occurs iff πi+k+1 is inserted in a
position with index smaller or equal than r. If instead prior to the insertion πi is occupying position
r + 1, then the swap occurs iff πi+k+1 is inserted in any position with index smaller or equal than
r + 1. Since the probability of inserting πi+k+1 in in a position with index smaller or equal than
r + 1 is strictly greater than the probability of inserting πi+k+1 in in a position with index smaller
or equal than r, the statement is verified. Next, we observe that the position occupied by element
πi when πi+k+1 is inserted depends on the position in which πi was inserted during the i-th step.
In particular, if πi was inserted in position j during the the i-th step, the leftmost position it can
occupy at step i+ k+ 1 is j+ k. This occurs iff all the k elements inserted between the i-th and the
i+ k+ 1-th step are swapped with respect to the i-th element. Following our previous observations,
we can then conclude that the probability of the i-th and the i+ k + 1-th elements being swapped
in σ given that the i-th was inserted in position j is upper bounded by the probability of swapping
the elements given that the i-th is occupying the leftmost rightmost possible position, hence j + k,
whenπi+k+1 is inserted. We thus have:

Pr
(
Si,i+k+1

)
≤

i∑
j=1

pi,jPr
(
σi+k+1(πi+k+1) ≤ j + k

)
=

i∑
j=1

exp
(
βn(j−1)
2(i−1)

)(
exp
(

βn
2(i−1)

)
−1

)
exp
(

βn
2(i−1)

i
)
−1

exp
(

βn
2(i+k)

(j+k)
)
−1

exp
(

βn
2(i+k)

(i+k+1)
)
−1

251

Since exp
(

βn
2(i−1)

)
< exp

(
βn

2(i−1) i
)
and exp

(
βn

2(i+k) (j + k)
)
< exp

(
βn

2(i+k) (i+ k + 1)
)
we have:

Pr
(
Si,i+k+1

)
≤

i∑
j=1

exp
(
βn(j−1)
2(i−1)

)
exp
(

βn
2(i−1)

)
exp
(

βn
2(i−1)

i
) exp

(
βn

2(i+k)
(j+k)

)
exp
(

βn
2(i+k)

(i+k+1)
)

≤
i∑

j=1

exp
(
βn
2 (j

i−1 + j+k
i+k)

)
exp
(
βn
2 (i

i−1 + i+k+1
i+k)

) =
i∑

j=1

exp

(
βn
2

(
2ij+kj+ik−j−k

(i+k)(i−1)

))
exp

(
βn
2

(
2i2+2ik−k−1

(i+k)(i−1)

))

≤
i∑

j=1

exp

(
βn
2

(
2ij+kj+ik−j−k−2i2−2ik+k+1

(i+k)(i−1)

))
≤

i∑
j=1

exp

(
βn
2

(
2ij+kj−j−2i2−ik+1

(i+k)(i−1)

))
≤

i∑
j=1

exp

(
βn
2

(
2ij+kj−j−2i2−ik+1+i−i

(i+k)(i−1)

))
≤

i∑
j=1

exp

(
−βn2

(
(i−j)(2i+k−1)+(i−1)

(i+k)(i−1)

))
≤ exp

(
− βn

2(i+k)

) i−1∑
y=0

exp

(
−βn2

(
2i+k−1

(i+k)(i−1)

)
y

)

≤ exp
(
− βn

2(i+k)

) exp

(
− βn2

(
2i+k−1

(i+k)(i−1)
i
))
−1

exp

(
− βn2

(
2i+k−1

(i+k)(i−1)

))
−1

Again since exp

(
−βn2

(
2i+k−1

(i+k)(i−1)

))
> exp

(
−βn2

(
2i+k−1

(i+k)(i−1) i
))

we have:

Pr
(
Si,i+k+1

)
≤ exp

(
− βn

2(i+k)

) exp

(
− βn2

(
2i+k−1

(i+k)(i−1)
i
))

exp

(
− βn2

(
2i+k−1

(i+k)(i−1)

))

≤ exp
(
− βn

2(i+k)

)
exp

(
−βn2

(
2i+k−1

(i+k)(i−1) (i− 1)
))

≤ exp
(
− βn

2(i+k)

)
exp

(
−βn2

(
(i+k)+(i−1)

i+k

))
≤ exp

(
−βn2

)
exp

(
−βn2 i

i+k

)

Corollary 9.13. For any 0 < q < 1/2, and a pair (i, k) with 1 ≤ i < n and 0 ≤ k < n − i, the
probability that πi and πi+k+1 are swapped in σ ∼MAP (β, π), with β >

2 ln
(

1
q

)
(i+k)

(2i+k)n is at most:
Pr
(
Si,i+k+1

)
≤ q.

In particular, for β > c ln(2)
n with c > 2 independent of n, we have that for any pair (i, k) with

1 ≤ i < n and 0 ≤ k < n− i:
Pr
(
Si,i+k+1

)
≤ 1

2
.

With O(dlog n/(βn)e) samples we can therefore run any O(n log n) sorting algorithm, repeating
every comparisons O(dlog n/(βn)e) times to guarantee that with probability 1−O(1/n) all pairs are
placed in the right order. The total running time of this algorithm is O(n log n log n/(βn)). Note

252

that with a careful analysis of the dependencies between the comparisons one can apply the noisy
sorting algorithm in [74] to obtain an O(n log n) algorithm.

9.6 Experimental evaluation

We used both synthetic and real-world data to evaluate our algorithms and to explore the use of the
AP distance as an alternative to the standard Kendall’s tau distance in learning a true order from
noisy sample data. We used two real-world datasets. First, we obtained a new dataset with long
permutations and ground truth information, by automatically ranking Wikipedia pages with multiple
ground-truth classes (a similar approach was used in [181] for linguistic graphs). We believe that
our practical and efficient approach for generating classified permutations datasets will be useful in
other studies. Second, we used publicly available data from human cancer studies with permutations
with binary classifications.

We implemented the algorithms in C++. Each run used a single core and less than 4GB of
RAM.3

9.6.1 Reconstructing the Hidden Permutation

In this experiment, we generated, using the algorithm defined in Section 9.4, a set P of i.i.d. permu-
tations of size n = 100 from theMAP (β, π) model with different settings of β and size of |P |.4 We
obtained an estimate π∗ of the central permutation π by applying our estimation algorithm to the
set P . We then tested the quality of the estimate π∗ using two measures: Correctness (Corr.), the
fraction of correctly ranked pairs i, j ∈ [n] s.t. π∗(πi) < π∗(πj) for i < j; Precision at 10 (P. at 10),
the fraction of elements in the first 10 positions of π∗ that are in {π1, ..π10}. Both of the measures
range from 0 (π∗ is the inverse of π) to 1 (π∗ = π).

The results are shown in Figure 9.1 for the algorithm in Section 9.5.2 and are consistent with our
theoretical analysis (we report averages over 300 runs of the experiment). Results for the Rank-based
algorithm in Section 9.5.1 are very close and thus omitted. We observe that for both algorithms fewer
samples are required to correctly reconstruct π as β grows, as expected. Notice that the algorithms
achieve high precision even with few samples for β > 1

n . For the more challenging settings (e.g.,
β = 0.01) we observe fairly high precision with more samples. Notice also the high precision in
the reconstruction of the first (and most important) positions of the central ranking even in the
higher variance experiment. This confirms our theoretical insight discussed in Section 9.5 according
to which the AP model has lower variance then the Mallows model using Kendall’s tau distance in
the first positions of the ranking.

3All our algorithms are easily parallelizable, if needed, but we did not pursue this direction.
4W.l.o.g., we set π to the identity permutation (1, . . . , 100).

253

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
c
c
u
ra

c
y

Samples

Accuracy vs # Samples

P. at 10, Beta = 0.05
Corr. Beta = 0.05

P. at 10 Beta = 0.01
Corr. Beta = 0.01

Figure 9.1: Accuracy on synthetic data

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2 4 6 8 10 12 14 16 18 20

A
c
c
u

ra
c
y

Iterations

Accuracy vs # K-Means Iterations

Purity
ROC

Prec. at 10

Figure 9.2: Accuracy vs. # Iterations in K-means with Real Data

9.6.2 Experiments with real-data

Clustering. We now assess the ability of a simple unsupervised clustering algorithm based on k-
means, and equipped with our AP model estimators, to correctly cluster permutations from real-data
for which we possess ground truth labeling. We address this problem in the context of web-pages
rankings. In this context ranking correctly web-pages as well classifying pages in ground-truth
categories is key to provide high quality recommendations.

Numerous algorithms, like the PageRank, are known to induce rankings over web-pages. In this
experiment we use the well known Personalized PageRank [101] random walk with different seed
pages to produce random permutations with ground-truth classes. Note that the AP model finds a
natural application in this context as the first results in the permutations are more meaningful than

254

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
u
ri
ty

Fraction Randomized

Purity vs Randomization

AP
TAU

Figure 9.3: Purity vs. Level of Randomization in K-means with Real Data

the last ones.
More precisely, we used a snapshot of the entire English Wikipedia graph [27] with approximately

4.2 million nodes and 101 million edges; where nodes represent pages and edges represent hyperlinks.
Each page in our dataset is classified with ground-truth categories (≈ 30 thousand classes) in the
YAGO2 [105] knowledge-base taxonomy. We select a set C of YAGO2 categories. Then for, each
category c ∈ C, we create t rankings of nodes with ground-truth category c as follows: for t times,
we select a page u in category c uniformly at random (u.a.r.), then we compute the the Personalized
PageRank (PPR) ranking using u as seed of the walk. We set α = 0.15 as the jump-back probability
in all the walks. Notice that each of these rankings is biased towards the origin node and hence,
toward the nodes belonging to category c of the seed node. This produces a set P of |P | = t|C|
permutations over nodes in the graph with ground-truth classes.5

Given rankings P as input (without their ground-truth category) our aim is to cluster them as
homogeneously as possibly by category, and to derive a representative ranking from each cluster. To
do so we apply a heuristic based on the k-means algorithm as follows. Given the permutations P
and a value k, we first assign the permutations to k clusters Ci for i ∈ [k] u.a.r.. Then, we apply the
following two procedures in order for a certain number of iterations (or until convergence). Step
1: For each Ci we compute the center permutation π̄i using the comparison-based algorithm in
Section 9.5.2 over the permutations in Ci. Step 2: For each permutation σj ∈ P we assign σj to
the cluster Ci whose center π̄i minimizes the AP cost function dAP (π̄i, σj). Finally, the output of
the algorithm is a partition of the rankings in k clusters as well as a center permutation π̄i for each
cluster.

5We restrict these rankings to contain only the nodes associated with some category c ∈ C.

255

For our quantitative analysis, we selected t = 200 u.a.r. nodes for each of the eight well-
represented categories in the Wikipedia taxonomy.6 In this experiment |P | = 1600 and each permu-
tation has n ≈ 26,000 elements. To evaluate the obtained clusters, we used the purity score– i.e.,
the fraction of correctly classified rankings if each ranking in cluster Ci is assigned to a majority
ground-truth class in Ci (purity 1 is obtained only for the perfect partitioning). Figure 9.2 shows
the evolution of purity over the iterations setting k = 8 and averaging over 20 runs. Notice that
purity converges to a high level (close to 80% percent) in a few iterations, showing that the obtained
clusters are indeed close to the ground truth classes. We then evaluate the correctness of the ob-
tained k = 8 centers’ rankings. To do so we use the standard ROC and Precision at 10 measure
obtained by considering each position of the central ranking of a cluster as correct if it belongs to
a node of the majority class of that cluster. The results are shown in Figure 9.2. Notice that the
algorithm converges quickly to good quality central rankings (ROC significantly higher than 50%,
precision close to 40%).

Finally we tested the ability of our algorithms (and of the AP distance) to overcome noise in
the lowest position of the permutations — which are more noisy in practice [233]. Consider a
ranking σ in P and let c be the category to which it is assigned. We randomized the lowest γn
positions, for γ ∈ (0, 1), as follows: we kept the first (1 − γ)n positions intact and then we added
the remaining elements in the order of a u.a.r. ranking chosen from a different category. This
randomization was applied to every ranking. As γ grows, the described randomization increases
the amount of noise in the lower part of the rankings making them less related to the original
category (and more biased towards a random different category). We then applied the k-means
algorithm as before. In this experiment we compared also the result obtained by the same algorithm
using the Kendall’s tau distance instead of the AP distance (in Step 2) to assign permutations
to centers (all the rest left equal). Figure 9.3 shows the purity reached after 10 iterations of k-
means using both measures depending on the amount of randomization. We noticed that the results
without randomization are qualitatively similar using the two measures. However, while the AP-
based algorithm is almost unaffected even when the lowest 50% of rankings are randomized, the
Kendall’s tau one degrades its performance quickly. The AP maintains good purity in the clusters
found even for a 75% randomization of the rankings. This confirms experimentally the intuition
that the AP distance is less affected by the noise occurring in the lowest positions with respect to
the Kendall’s tau distance.

Classification. We now turn our attention to a supervised learning algorithm for classification
based on our model. We used 10 publicly available datasets from human cancer research. From each
dataset, we have a series of real-valued feature vectors measuring gene expressions or proteomic
spectra — see [119] for details on the dataset. Each feature vector is assigned to one of two binary
classes (e.g., “Normal vs. Tumor”, “Non-relapse vs. Relapse”).

6We used scientific fields (computer scientists, neuroscientists, mathematicians), art-related (American actors,
singers, English writers) and other categories (American politicians, Olympic athletes). For this test we discarded
from the sample nodes belonging to more than one category in the list.

256

Dataset Prec. Tau Prec. AP
BC1 0.662 0.674
BC2 0.621 0.601
CT 0.848 0.868
LA1 0.666 0.685
LC2 0.986 0.993
MB 0.613 0.648
OV 0.836 0.817
PC1 0.657 0.667
PC2 0.499 0.493

Average 0.709 0.716

Table 9.1: Classification Results. Average precision of the classification algorithm in
the human cancer dataset. The best result for each dataset is highlighted in bold.

It has been observed that in the context of high-dimensional gene expressions, the relative order
of the features is more important than their absolute magnitude [119, 85], since the relative order
is less affected by pre-processing designed to overcome technological biases. Hence, as in [119], for
each vector in our dataset we obtain a permutation over the set of the features by sorting them in
decreasing order of value (ties broken randomly). We split each dataset in training and testing sets
using 5-fold cross-validation.

We applied the following simple classification algorithm. For each class we reconstructed the
center permutation using our comparison-based algorithm (in Section 9.5.2) on the set of permuta-
tions belonging to that class in the training set. We then classified each permutation in the testing
set with the class of the center permutation having minimum distance to that permutation. We
used as distance either AP or Kendall’s tau. The results are reported in Table 9.1 where we show
the average classification precision over 10 independent runs of the 5-fold cross-validation (a total of
50 independent test/train experiments). The results show that the AP distance improves over the
Kendall’s tau distance in most datasets, and the average precision improves as well.

These experiments confirm our original motivation for the study of the AP model suggesting
that items in the beginning of the permutations are likely to have higher importance and less noise
in both supervised and unsupervised learning tasks.

9.7 Conclusion

In this work we have introduced a novel stochastic permutation model based on a more nuanced
permutation statistic measure that is widely used in practice. Despite its sophistication is still
amenable to formal analysis. This allows us to define provably correct algorithms to learn the
parameters of this model efficiently.

We believe that this is a first step towards defining even more sophisticated (and arguably more
realistic) probabilistic models of rankings for which many of the results achieved in the traditional
Mallows model literature could be extended.

257

As a future work we would like to define models that allow both ties in the rankings—which
are very frequent in many practical applications—and more general cost functions as those recently
defined in [233].

Chapter 10

Conclusion and Future Directions

In this thesis, we have shown how probabilistic modeling and sampling-based methods can be suc-
cessfully used to tackle a wide array of challenges arising while analyzing data due to its availability.
In the case for which there is low available data, difficulties arise when trying to extract statistically
significant pattern from the data while reducing the risk of overfit, that is, the risk of erroneously
inferring that properties observed on the observed data generalize to the entire population. In the
case of a massive dataset, computational challenges arise from the cost of manipulating and moving
large amounts of data towards computing the quantities of interest.

The approaches discussed in this thesis share an emphasis on the use of estimates computed
using the given samples, which are then used to infer properties of the overall population. This
helps in both the settings previously discussed: it allows extract insights on the large population
from a smaller sample of available data, and it allows to operate on a manageable subset of a large
dataset, thus considerably reducing computational requirements and effort while still extracting sig-
nificant information. Towards validating the insights obtained from such estimates, it is crucial to
characterize their quality by bounding the probability of observing large deviations for the observed
values with respect to the corresponding ground truth values. In our work, we use different methods
depending on the specific task at hand. In particular, we build from tools form statistical learning
theory that yield uniform convergence bounds on the error distribution for a class of query functions.
These bounds relate the strength of the guarantees (accuracy and confidence) to notions of com-
plexity of the class of query functions such as the Vapnik–Chervonenkis dimension and Rademacher
complexity. We also use important sampling schemes such as reservoir sampling and random pairing
in our analysis of massive graph streams. All our efforts aim to produce efficient algorithms which
yield results whose quality satisfies rigorous probabilistic guarantees.

Due to the intrinsic generality of the used approached we believe our result can be further
developed in multiple interesting ways: we aim to improve our multiple hypotheses testing procedure
for both the standard and adaptive case (RadeFWER, RadeFDR, RadaBound) by using tighter analysis
of the generalization error based on variance-aware uniform convergence bound. In particular, we
aim to integrate the empirical variance of the class of functions corresponding to the hypotheses

258

259

being tested in the bound on the generalization error of the estimates. By doing so, we aim to have
tighter generalization bounds and, in turn, increase the statistical power of the proposed procedures.
On a similar note, we aim to integrate the use of additional information on the hypotheses being
tested in our procedures. In some settings, it would appear reasonable for the analyst to have
some prior information or belief regarding the population and/or the set of hypotheses being tested.
Such knowledge may, for example, manifest itself into the willingness to accept some observation as
statistically significant even in circumstances for which the same observation would not be considered
as such without prior knowledge. Similar approaches are used in the classical multiple hypothesis
scenario by assigning weights to the p-values obtained for certain hypotheses. We believe that by
opportunely adapting our current procedures, we will be able to allow for the integration of such
user knowledge.

We also aim the extend on the graph motifs analysis framework introduced in TRIÉST and
Tiered Sampling. A crucial aspect of modern social networks is their intrinsic dynamic nature.
Social networks are a prime example of this as an incredibly high number of communications between
users are established and closed every minute. As studied in our work on counting triangles in fully
dynamic graph streams [51], characterizing such dynamic behavior introduces several challenges.
It is then perhaps surprising that when studying the number of occurrences of a given sub-graph,
the only property of interest of such a pattern is its topology. Several recent works have proposed
a different characterization of the dynamic nature of sub-graph occurrences referred as “temporal
motifs” [174, 169, 141, 147]. While the definitions proposed so far in the literature have some
differences, they share the core idea of characterizing the sup-patterns of interest not only according
to their topology (e.g., a triangle, 4-clique) but also according to their “temporal profile”. The
temporal profile is a property that characterizes the occurrence of the sub-pattern with respect
to the temporal properties of the edges. An example of a possible temporal profile would be a
minimum time span between the arrival of the first and of the last edge composing the pattern
of interest. Such an example would be particularly appropriate for applications for which we care
particularly about interactions (or communities) that are established in a short time, possibly as a
result of some event. Another possible category of temporal profiles would characterize the order
according to which the pattern is realized. For instance, when considering 4-cliques, we may be
interested only in the cases for which one of the nodes is connected with the remaining three nodes,
while the remaining communications between nodes are established afterward. Such a temporal
profile would allow characterizing situations in which closely connected communities are generated
as a result of the action of a “trend setter ” party. Different notions of temporal profile share a
common challenge due to the inclusion of “time” as a requirement for a pattern occurrence. This
is particularly important in the analysis of large social networks as we can observe a large number
of interactions over fairly large time-span. As an interesting direction for future work, we aim to
deploy the paradigm of Trièst and Tiered Sampling to the study of temporal graph motifs, that
is, to count the occurrences of sub-graph patterns characterized not only by their topology but also
by their temporal behavior. Such results would provide means of a characterization of the evolution

260

of the properties of large graphs through time. We plan to build on more refined sampling schemes,
such as Weighted Reservoir Sampling by Chao [39], in order to improve the quality of our estimates.
We believe Tiered Sampling to be particularly useful for detecting temporal motifs for which the
temporal profile consists of a characterization of the order according to which a given target pattern
evolves over time. This is due to the possibility of selecting a rare prototype temporal motif to be
used to detect the entire motif.

Bibliography

[1] Ehud Aharoni and Saharon Rosset. Generalized α-investing: definitions, optimality results and
application to public databases. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 76(4):771–794, 2014.

[2] Nesreen K Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. Graph Sample
and Hold: A framework for big-graph analytics. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 1446–
1455. ACM, 2014.

[3] Nesreen K. Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. Graph sample
and hold: A framework for big-graph analytics. In KDD ’14, pages 1446–1455, 2014.

[4] Nesreen K Ahmed, Nick Duffield, Theodore Willke, and Ryan A Rossi. On sampling from
massive graph streams. arXiv preprint arXiv:1703.02625, 2017.

[5] Nesreen K Ahmed, Nick Duffield, and Liangzhen Xia. Sampling for approximate bipartite
network projection. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pages 3286–3292, 2018.

[6] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. Efficient graphlet
counting for large networks. In ICDM’15, pages 1–10. IEEE, 2015.

[7] Mikel Aickin and Helen Gensler. Adjusting for multiple testing when reporting research results:
the bonferroni vs holm methods. American journal of public health, 86(5):726–728, 1996.

[8] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74(1):47, 2002.

[9] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan. Learning mixtures
of ranking models. In Advances in Neural Information Processing Systems, pages 2609–2617,
2014.

[10] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an
application to counting triangles in graphs. In Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’02, pages 623–632. SIAM, 2002.

261

262

[11] John Bartholdi III, Craig A. Tovey, and Michael A. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and welfare, 6(2):157–165, 1989.

[12] Peter L. Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selection and error estima-
tion. Mach. Learn., 48:85–113, 2002.

[13] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res., 3:463–482, March 2003.

[14] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient algorithms for
large-scale local triangle counting. ACM Transactions on Knowledge Discovery from Data,
4(3):13:1–13:28, 2010.

[15] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the royal statistical society. Series B (Method-
ological), pages 289–300, 1995.

[16] Yoav Benjamini, Abba M Krieger, and Daniel Yekutieli. Adaptive linear step-up procedures
that control the false discovery rate. Biometrika, 93(3):491–507, 2006.

[17] Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing
under dependency. Annals of statistics, pages 1165–1188, 2001.

[18] Yoav Benjamini, Daniel Yekutieli, et al. The control of the false discovery rate in multiple
testing under dependency. The annals of statistics, 29(4):1165–1188, 2001.

[19] D. A Berry et al. Bayesian perspectives on multiple comparisons. Journal of Statistical
Planning and Inference, 82(1–2), 1999.

[20] Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips.
Tolerating the community detection resolution limit with edge weighting. Physical Review E,
83(5):056119, 2011.

[21] Nayantara Bhatnagar and Ron Peled. Lengths of monotone subsequences in a Mallows per-
mutation. Probability Theory and Related Fields, pages 1–62, 2014.

[22] Carsten Binnig, Lorenzo De Stefani, Tim Kraska, Eli Upfal, Emanuel Zgraggen, and Zheguang
Zhao. Toward sustainable insights, or why polygamy is bad for you. In CIDR 2017, 8th Biennial
Conference on Innovative Data Systems Research, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings, 2017.

[23] Gilles Blanchard and Etienne Roquain. Adaptive fdr control under independence and depen-
dence. arXiv preprint arXiv:0707.0536, 2007.

[24] Avrim Blum and Moritz Hardt. The ladder: A reliable leaderboard for machine learning
competitions. In International Conference on Machine Learning, pages 1006–1014, 2015.

263

[25] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation:
A multiresolution coordinate-free ordering for compressing social networks. In Proceedings
of the 20th International Conference on World Wide Web, WWW ’11, pages 587–596. ACM,
2011.

[26] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation:
A multiresolution coordinate-free ordering for compressing social networks. In WWW’11.
ACM, 2011.

[27] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression techniques. In
Proceedings of the 13th conference on World Wide Web, pages 595–602. ACM, 2004.

[28] Carlo E Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Libreria inter-
nazionale Seeber, 1936.

[29] Ilaria Bordino, Debora Donato, Aristides Gionis, and Stefano Leonardi. Mining large networks
with subgraph counting. In ICDM’08, pages 737–742. IEEE, 2008.

[30] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceedings
of the nineteenth ACM-SIAM symposium on Discrete algorithms, pages 268–276. Society for
Industrial and Applied Mathematics, 2008.

[31] Mark Braverman and Elchanan Mossel. Sorting from noisy information. arXiv preprint, 2009.

[32] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi.
Motif counting beyond five nodes. ACM Transactions on Knowledge Discovery from Data
(TKDD), 12(4):1–25, 2018.

[33] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. Motivo: fast motif counting via suc-
cinct color coding and adaptive sampling. Proceedings of the VLDB Endowment, 12(11):1651–
1663, 2019.

[34] Eric Brian. Condorcet and Borda in 1784. Misfits and documents. Journal Electronique
d’Histoire des Probabiltés et de la Statistique, 4(1), 2008.

[35] Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. Triangle counting
in dynamic graph streams. Algorithmica, 76(1):259–278, sep 2016.

[36] AE Burgess, RF Wagner, RJ Jennings, and Horace B Barlow. Efficiency of human visual
signal discrimination. Science, 214(4516):93–94, 1981.

[37] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Proceedings of the 25th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’06, pages
253–262. ACM, 2006.

264

[38] Òscar Celma Herrada. Music recommendation and discovery in the long tail. Technical report,
Universitat Pompeu Fabra, 2009.

[39] M. T. CHAO. A general purpose unequal probability sampling plan. Biometrika, 69(3):653–
656, 12 1982.

[40] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for histogram
construction: How much is enough? In Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’98, pages 436–447, New York, NY, USA, 1998.
ACM.

[41] You-Wei Cheah et al. Provenance quality assessment methodology and framework. J. Data
and Information Quality, 5(3):9:1–9:20, 2015.

[42] Flavio Chierichetti, Anirban Dasgupta, Ravi Kumar, and Silvio Lattanzi. On reconstruct-
ing a hidden permutation. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 28:604–617, 2014.

[43] Fernando Chirigati, Harish Doraiswamy, Theodoros Damoulas, and Juliana Freire. Data
polygamy: The many-many relationships among urban spatio-temporal data sets. In Pro-
ceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, pages
1011–1025, New York, NY, USA, 2016.

[44] Fernando Chirigati et al. Data polygamy: The many-many relationships among urban spatio-
temporal data sets. In SIGMOD, 2016.

[45] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. Time series
feature extraction on basis of scalable hypothesis tests (tsfresh – a python package). Neuro-
computing, 307:72 – 77, 2018.

[46] Yeounoh Chung et al. Estimating the impact of unknown unknowns on aggregate query results.
In SIGMOD, pages 861–876, 2016.

[47] Edith Cohen, Graham Cormode, and Nick Duffield. Don’t let the negatives bring you down:
sampling from streams of signed updates. ACM SIGMETRICS Performance Evaluation Re-
view, 40(1):343–354, 2012.

[48] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. Viz-
dom: Interactive analytics through pen and touch. Proceedings of the VLDB Endowment,
8(12):2024–2027, 2015.

[49] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. The
case for interactive data exploration accelerators (ideas). In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, page 11. ACM, 2016.

265

[50] Yahoo! Research Webscope Datasets. Yahoo! Answers browsing behavior version 1.0. http:

//webscope.sandbox.yahoo.com, (Accessed on) September 2016.

[51] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. Trièst: Counting
local and global triangles in fully dynamic streams with fixed memory size. ACM TKDD’17,
11(4):43, 2017.

[52] Kevin L Delucchi. The use and misuse of chi-square: Lewis and burke revisited. Psychological
Bulletin, 94(1):166, 1983.

[53] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn.
Res., 7:1–30, December 2006.

[54] Jean-Claude Deville and Yves Tillé. Efficient balanced sampling: The cube method.
Biometrika, 91(4):893–912, 2004.

[55] Persi Diaconis and Arun Ram. Analysis of systematic scan Metropolis algorithms using
Iwahori-Hecke algebra techniques. Department of Statistics, Stanford University, 2000.

[56] Evanthia Dimara, Anastasia Bezerianos, and Pierre Dragicevic. The attraction effect in infor-
mation visualization. IEEE Trans. Vis. Comput. Graph., 23(1), 2016.

[57] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[58] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold, and Aaron Roth.
Generalization in adaptive data analysis and holdout reuse. In Advances in Neural Information
Processing Systems, pages 2350–2358, 2015.

[59] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron
Roth. The reusable holdout: Preserving validity in adaptive data analysis. Science,
349(6248):636–638, 2015.

[60] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Leon Roth. Preserving statistical validity in adaptive data analysis. In Proceedings
of the forty-seventh annual ACM symposium on Theory of computing, pages 117–126. ACM,
2015.

[61] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation
methods for the web. In Proceedings of the 10th conference on World Wide Web, pages 613–
622. ACM, 2001.

[62] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In TCC, volume 3876, pages 265–284. Springer, 2006.

[63] Kacha Dzhaparidze and JH Van Zanten. On bernstein-type inequalities for martingales.
Stochastic processes and their applications, 93(1):109–117, 2001.

http://webscope.sandbox.yahoo.com
http://webscope.sandbox.yahoo.com

266

[64] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden thematic layers
in the World Wide Web. Proceedings of the National Academy of Sciences, 99(9):5825–5829,
2002.

[65] Bradley Efron and Trevor Hastie. Computer Age Statistical Inference, volume 5. Cambridge
University Press, 2016.

[66] H. Ehsan, M. A. Sharaf, and P. K. Chrysanthis. Muve: Efficient multi-objective view recom-
mendation for visual data exploration. In 2016 IEEE 32nd International Conference on Data
Engineering (ICDE), pages 731–742, May 2016.

[67] Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Ismail Oner Sebe, Ahmed Taei, and
Sunita Verma. Ego-net community mining applied to friend suggestion. Proceedings of the
VLDB Endowment, 9(4):324–335, 2015.

[68] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph computation
in evolving graph. In Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, pages 300–310. ACM, 2015.

[69] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. Spotlight: Detect-
ing anomalies in streaming graphs. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1378–1386, 2018.

[70] Adir Even et al. Dual assessment of data quality in customer databases. J. Data and Infor-
mation Quality, 1(3), 2009.

[71] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on
Discrete Mathematics, 17(1):134–160, 2003.

[72] Wenfei Fan et al. Discovering conditional functional dependencies. IEEE Trans. Knowl. Data
Eng., 23(5):683–698, 2011.

[73] Vicky Fasen, Claudia Klüppelberg, and Annette Menzel. Quantifying extreme risks. In Risk-A
Multidisciplinary Introduction, pages 151–181. Springer, 2014.

[74] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy infor-
mation. SIAM Journal on Computing, 23(5):1001–1018, 1994.

[75] Helmut Finner and Veronika Gontscharuk. Controlling the familywise error rate with plug-in
estimator for the proportion of true null hypotheses. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 71(5):1031–1048, 2009.

[76] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. Clique counting in mapreduce:
Algorithms and experiments. JEA, 20:1.7:1–1.7:20, October 2015.

[77] R.A. Fisher. The design of experiments. Oliver and Boyd, Edinburgh, Scotland, 1935.

267

[78] Michael A. Fligner and Joseph S. Verducci. Distance Based Ranking Models. Journal of the
Royal Statistical Society. Series B (Methodological), 48(3), 1986.

[79] Michael A. Fligner and Joseph S. Verducci. Multistage ranking models. Journal of the Amer-
ican Statistical Association, 83(403), 1988.

[80] Dean P Foster and Robert A Stine. α-investing: a procedure for sequential control of expected
false discoveries. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(2):429–444, 2008.

[81] The R Foundation. The r project for statistical computing. https://www.r-project.org/.

[82] David A Freedman. On tail probabilities for martingales. the Annals of Probability, pages
100–118, 1975.

[83] Juliana Freire et al. Exploring what not to clean in urban data: A study using new york city
taxi trips. IEEE Data Eng. Bull., 39(2), 2016.

[84] Yulia Gavrilov, Yoav Benjamini, Sanat K Sarkar, et al. An adaptive step-down procedure with
proven fdr control under independence. The Annals of Statistics, 37(2), 2009.

[85] Donald Geman, Christian d’Avignon, Daniel Q. Naiman, and Raimond L. Winslow. Classifying
gene expression profiles from pairwise mRNA comparisons. Statistical applications in genetics
and molecular biology, 2004.

[86] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. Maintaining bounded-size sample syn-
opses of evolving datasets. The VLDB Journal, 17(2):173–201, 2008.

[87] Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics.
International statistical review, 70(3):419–435, 2002.

[88] Nadine Gissibl, Claudia Klüppelberg, and Johanna Mager. Big data: Progress in automating
extreme risk analysis. In Berechenbarkeit der Welt?, pages 171–189. Springer, 2017.

[89] Phillip Good. Permutation tests: a practical guide to resampling methods for testing hypothe-
ses. Springer Science & Business Media, 2013.

[90] Priscilla E Greenwood and Michael S Nikulin. A guide to chi-squared testing, volume 280.
John Wiley & Sons, 1996.

[91] Max Grazier G’Sell et al. Sequential selection procedures and false discovery rate control.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(2), 2016.

[92] Hua Guo, Steven Gomez, Caroline Ziemkiewicz, and David Laidlaw. A case study using
visualization interaction logs and insight. IEEE Trans. Vis. Comput. Graph., 2016.

https://www.r-project.org/

268

[93] Wenge Guo. A note on adaptive bonferroni and holm procedures under dependence.
Biometrika, 96(4):1012–1018, 2009.

[94] Hack your way to scientific glory. https://projects.fivethirtyeight.com/p-hacking/, 2018. Ac-
cessed: 2018-08-01.

[95] A. Hajnal and E. Szemerédi. Proof of a conjecture of P. Erdős. In Combinatorial theory and
its applications, II (Proc. Colloq., Balatonfüred, 1969), pages 601–623, 1970.

[96] Bronwyn H Hall, Adam B Jaffe, and Manuel Trajtenberg. The NBER patent citation data file:
Lessons, insights and methodological tools. Technical report, National Bureau of Economic
Research, 2001.

[97] Peter Hall and Christopher C Heyde. Martingale limit theory and its application. Academic
press, 2014.

[98] Pat Hanrahan. Analytic database technologies for a new kind of user: the data enthusiast. In
SIGMOD, 2012.

[99] Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry. Discrete &
Computational Geometry, 45(3):462–496, 2011.

[100] Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive data analysis is
hard. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on,
pages 454–463. IEEE, 2014.

[101] Taher H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the 11th conference on World
Wide Web, pages 517–526. ACM, 2002.

[102] Taher H Haveliwala, Aristides Gionis, Dan Klein, and Piotr Indyk. Evaluating strategies for
similarity search on the web. In Proceedings of the 11th conference on World Wide Web, pages
432–442. ACM, 2002.

[103] Yosef Hochberg. A sharper bonferroni procedure for multiple tests of significance. Biometrika,
75(4):800–802, 1988.

[104] Yosef Hochberg and Yoav Benjamini. More powerful procedures for multiple significance
testing. Statistics in medicine, 9(7):811–818, 1990.

[105] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard
de Melo, and Gerhard Weikum. YAGO2: Exploring and querying world knowledge in time,
space, context, and many languages. In Proceedings of the 20th conference companion on
World wide web, pages 229–232. ACM, 2011.

[106] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of
statistics, pages 65–70, 1979.

269

[107] Gerhard Hommel. A stagewise rejective multiple test procedure based on a modified bonferroni
test. Biometrika, 75(2):383–386, 1988.

[108] Yifan Huang, Haiyan Xu, Violeta Calian, and Jason C Hsu. To permute or not to permute.
Bioinformatics, 22(18):2244–2248, 2006.

[109] Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679–688, 2006.

[110] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy. IJF,
22(4):679–688, 2006.

[111] Stratos Idreos et al. Overview of data exploration techniques. In SIGMOD, 2015.

[112] Amazon Inc. Amazon mechanical turk. https://www.mturk.com.

[113] John P. A. Ioannidis. Why most published research findings are false. Plos Med, 2(8), 2005.

[114] Shweta Jain and C. Seshadhri. A fast and provable method for estimating clique counts using
turán’s theorem. In WWW ’17, pages 441–449, 2017.

[115] Harold Jeffreys. The theory of probability. OUP Oxford, 1998.

[116] Madhav Jha, C. Seshadhri, and Ali Pinar. A space-efficient streaming algorithm for estimating
transitivity and triangle counts using the birthday paradox. ACM Transactions on Knowledge
Discovery from Data, 9(3):15:1–15:21, 2015.

[117] Madhav Jha, C. Seshadhri, and Ali Pinar. A space-efficient streaming algorithm for estimating
transitivity and triangle counts using the birthday paradox. ACM TKDD, 9(3):15:1–15:21,
February 2015.

[118] Madhav Jha, C. Seshadri, and Ali Pinar. Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In WWW ’15, pages 495–505, 2015.

[119] Yunlong Jiao and Jean-Philippe Vert. The Kendall and Mallows kernels for permutations.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages
1935–1944, 2015.

[120] M. I. Jordan. The era of big data. ISBA Bulletin, 18(2), 2011.

[121] Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In Computing and Combinatorics: 11th Annual International Conference, COCOON
’05, pages 710–716. Springer, 2005.

[122] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. Distributed and
interactive cube exploration. In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on, pages 472–483. IEEE, 2014.

https://www.mturk.com

270

[123] T. Kanamori, T. Suzuki, and M. Sugiyama. f -divergence estimation and two-sample homo-
geneity test under semiparametric density-ratio models. IEEE Transactions on Information
Theory, 58(2):708–720, Feb 2012.

[124] Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary sub-
graphs in data streams. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wat-
tenhofer, editors, Automata, Languages, and Programming, volume 7392 of Lecture Notes in
Computer Science, pages 598–609. Springer, 2012.

[125] Kimberly Keeton et al. Do you know your iq?: a research agenda for information quality in
systems. SIGMETRICS Performance Evaluation Review, 37(3):26–31, 2009.

[126] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of
the thirty-ninth ACM symposium on Theory of computing, pages 95–103. ACM, 2007.

[127] Alicia Key, Bill Howe, Daniel Perry, and Cecilia Aragon. Vizdeck: self-organizing dashboards
for visual analytics. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 681–684. ACM, 2012.

[128] Rogier Kievit et al. Simpson’s paradox in psychological science: a practical guide. Frontiers
in psychology, 4, 2013.

[129] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and Ronitt Rubin-
feld. Rapid sampling for visualizations with ordering guarantees. Proceedings of the VLDB
Endowment, 8(5):521–532, 2015.

[130] Adam Kirsch, Michael Mitzenmacher, Andrea Pietracaprina, Geppino Pucci, Eli Upfal, and
Fabio Vandin. An efficient rigorous approach for identifying statistically significant frequent
itemsets. Journal of the ACM (JACM), 59(3):12, 2012.

[131] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence
- Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

[132] Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E. Tsourakakis. Ef-
ficient triangle counting in large graphs via degree-based vertex partitioning. Internet Mathe-
matics, 8(1–2):161–185, 2012.

[133] Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Trans-
actions on Information Theory, 47(5):1902–1914, July 2001.

[134] Aryeh Kontorovich. Concentration in unbounded metric spaces and algorithmic stability. In
Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 28–
36, 2014.

271

[135] Tim Kraska et al. Mlbase: A distributed machine-learning system. In CIDR, 2013.

[136] Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rankings. In Proceedings
of the 19th conference on World wide web, pages 571–580. ACM, 2010.

[137] Konstantin Kutzkov and Rasmus Pagh. On the streaming complexity of computing local
clustering coefficients. In Proceedings of the 6th ACM International Conference on Web Search
and Data Mining, WSDM ’13, pages 677–686. ACM, 2013.

[138] Konstantin Kutzkov and Rasmus Pagh. Triangle counting in dynamic graph streams. In
Scandinavian Symposium and Workshops on Algorithm Theory, SWAT ’14, pages 306–318.
Springer, 2014.

[139] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a social
network or a news media? In Proceedings of the 19th International Conference on World Wide
Web, WWW ’10, pages 591–600. ACM, 2010.

[140] Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law))
graphs. Theoretical Computer Science, 407(1):458–473, 2008.

[141] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 1(1):2, 2007.

[142] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
journal of the Association for Information Science and Technology, 58(7):1019–1031, 2007.

[143] M. Lichman. UCI machine learning repository, 2013.

[144] Yongsub Lim and U Kang. MASCOT: Memory-efficient and accurate sampling for counting
local triangles in graph streams. In Proceedings of the 21st ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 685–694. ACM, 2015.

[145] Yongsub Lim and U Kang. Mascot: Memory-efficient and accurate sampling for counting local
triangles in graph streams. In KDD’15, pages 685–694. ACM, 2015.

[146] Paul Liu, Austin R Benson, and Moses Charikar. Sampling methods for counting temporal
motifs. In Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, pages 294–302, 2019.

[147] Paul Liu, Austin R. Benson, and Moses Charikar. Sampling methods for counting temporal
motifs. In Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, page 294–302, New York, NY, USA, 2019. Association for Computing Machinery.

[148] Zhicheng Liu et al. The Effects of Interactive Latency on Exploratory Visual Analysis. IEEE
Trans. Vis. Comput. Graph., 20(12), 2014.

272

[149] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time visual querying of big data.
In Computer Graphics Forum, volume 32, pages 421–430. Wiley Online Library, 2013.

[150] Maarten Löffler and Jeff M. Phillips. Shape fitting on point sets with probability distributions.
CoRR, abs/0812.2967, 2008.

[151] Tyler Lu and Craig Boutilier. Learning Mallows models with pairwise preferences. In Proceed-
ings of the 28th International Conference on Machine Learning, pages 145–152, 2011.

[152] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation for visual analysis.
IEEE Transactions on Visualization and Computer Graphics, 13(6):1137–1144, Nov 2007.

[153] Colin L. Mallows. Non-null ranking models. i. Biometrika, 44(1/2):pp. 114–130, 1957.

[154] Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approximate
counting of cycles in streams. In European Symposium on Algorithms, ESA ’11, pages 677–688.
Springer, 2011.

[155] Adam Marcus et al. Crowdsourced data management: Industry and academic perspectives.
Foundations and Trends in Databases, 6(1-2):1–161, 2015.

[156] John H. McDonald. Handbook of Biological Statistics. Sparky House Publishing, Baltimore,
Maryland, USA, second edition, 2009.

[157] Christopher Meek and Marina Meila. Recursive inversion models for permutations. In Advances
in Neural Information Processing Systems, pages 631–639, 2014.

[158] Marina Meila, Kapil Phadnis, Arthur Patterson, and Jeff A Bilmes. Consensus ranking under
the exponential model. arXiv preprint, 2012.

[159] Massimo Melucci. On rank correlation in information retrieval evaluation. In ACM SIGIR
Forum, volume 41, pages 18–33. ACM, 2007.

[160] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

[161] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

[162] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby Bhat-
tacharjee. Measurement and analysis of online social networks. In ACM SIGCOMM’07, pages
29–42, 2007.

[163] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

273

[164] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge University Press, 2nd edition, 2005.

[165] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge university press,
2017.

[166] D. Moritz, C. Wang, G. L. Nelson, A H. Lin, M. Smith, B. Howe, and J. Heer. Formalizing
visualization design knowledge as constraints: Actionable and extensible models in draco. In
IEEE Trans. Visualization and Comp. Graphics (Proc. InfoVis), 2018.

[167] Jerzy Neyman and Elizabeth L Scott. Consistent estimates based on partially consistent
observations. Econometrica: Journal of the Econometric Society, pages 1–32, 1948.

[168] Dang Tuan Nhon et al. Transforming scagnostics to reveal hidden features. IEEE Trans. Vis.
Comput. Graph., 20(12), 2014.

[169] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo, and Vito
Latora. Graph metrics for temporal networks. In Petter Holme and Jari Saramäki, editors,
Temporal Networks, pages 15–40. Springer, 2013.

[170] Luca Oneto, Alessandro Ghio, Davide Anguita, and Sandro Ridella. An improved analysis
of the Rademacher data-dependent bound using its self bounding property. Neural Networks,
44:107–111, 2013.

[171] Rasmus Pagh and Charalampos E. Tsourakakis. Colorful triangle counting and a MapReduce
implementation. Information Processing Letters, 112(7):277–281, March 2012.

[172] Rasmus Pagh and Charalampos E. Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Inf. Process. Lett., pages 277–281, 2012.

[173] Kirill Paramonov, Dmitry Shemetov, and James Sharpnack. Estimating graphlet statistics
via lifting. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 587–595, 2019.

[174] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in temporal networks. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
WSDM ’17, page 601–610, New York, NY, USA, 2017. Association for Computing Machinery.

[175] Ha-Myung Park and Chin-Wan Chung. An efficient MapReduce algorithm for counting tri-
angles in a very large graph. In Proceedings of the 22nd ACM International Conference on
Conference on Information & Knowledge Management, CIKM ’13, pages 539–548. ACM, 2013.

[176] Ha-Myung Park and Chin-Wan Chung. An efficient mapreduce algorithm for counting triangles
in a very large graph. In CIKM ’13, pages 539–548, 2013.

274

[177] Ha-Myung Park, Sung-Hyon Myaeng, and U. Kang. PTE: Enumerating trillion triangles on
distributed systems. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16. ACM, 2016.

[178] Ha-Myung Park, Francesco Silvestri, U. Kang, and Rasmus Pagh. MapReduce triangle enumer-
ation with guarantees. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, CIKM ’14, pages 1739–1748. ACM, 2014.

[179] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and sam-
pling triangles from a graph stream. VLDB’13, pages 1870–1881, 2013.

[180] Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and
sampling triangles from a graph stream. Proceedings of the VLDB Endowment, 6(14):1870–
1881, 2013.

[181] Mohammad Taher Pilehvar, David Jurgens, and Roberto Navigli. Align, disambiguate and
walk: A unified approach for measuring semantic similarity. In ACL (1), pages 1341–1351,
2013.

[182] Leo Pipino et al. Data quality assessment. Commun. ACM, 45(4):211–218, 2002.

[183] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for analyst tech-
nology as identified through cognitive task analysis. In Proceedings of international conference
on intelligence analysis, volume 5, pages 2–4, 2005.

[184] Tiberiu Popoviciu. Sur les èquations algèbriques ayant toutes leurs racines rèelles. Mathemat-
ica, 9:129–145, 1935.

[185] Frank C Porter. Testing consistency of two histograms. arXiv preprint arXiv:0804.0380, 2008.

[186] Tao Qin, Xiubo Geng, and Tie-Yan Liu. A new probabilistic model for rank aggregation. In
Advances in neural information processing systems, pages 1948–1956, 2010.

[187] X. Qin, Y. Luo, N. Tang, and G. Li. Deepeye: An automatic big data visualization framework.
Big Data Mining and Analytics, 1(1):75–82, March 2018.

[188] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. Graft: An efficient
graphlet counting method for large graph analysis. IEEE TKDE, 26(10):2466–2478, 2014.

[189] Payam Refaeilzadeh, Lei Tang, Huan Liu, and M. TAMER ÖZSU. Cross-Validation, pages
532–538. Springer US, Boston, MA, 2009.

[190] Matteo Riondato, Mert Akdere, Ugur Çetintemel, Stanley B. Zdonik, and Eli Upfal. The
vc-dimension of queries and selectivity estimation through sampling. CoRR, abs/1101.5805,
2011.

275

[191] Matteo Riondato et al. Efficient discovery of association rules and frequent itemsets through
sampling with tight performance guarantees. TKDD, 8(4), 2014.

[192] Matteo Riondato et al. Mining frequent itemsets through progressive sampling with
rademacher averages. In KDD, 2015.

[193] Matteo Riondato et al. ABRA: approximating betweenness centrality in static and dynamic
graphs with rademacher averages. CoRR, abs/1602.05866, 2016.

[194] Joseph P Romano, Azeem M Shaikh, and Michael Wolf. Control of the false discovery rate
under dependence using the bootstrap and subsampling. Test, 17(3):417, 2008.

[195] Joseph P Romano and Michael Wolf. Exact and approximate stepdown methods for multiple
hypothesis testing. Journal of the American Statistical Association, 100(469), 2005.

[196] Daniel Russo and James Zou. How much does your data exploration overfit? controlling bias
via information usage. arXiv preprint arXiv:1511.05219, 2015.

[197] Donald G. Saari. Which is better: the Condorcet or Borda winner? Social Choice and Welfare,
26(1):107–129, 2006.

[198] Tetsuya Sakai. Evaluation with informational and navigational intents. In Proceedings of the
21st conference on World Wide Web, pages 499–508. ACM, 2012.

[199] Babak Salimi, Johannes Gehrke, and Dan Suciu. Hypdb: Detect, explain and resolve bias in
olap. arXiv preprint arXiv:1803.04562, 2018.

[200] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. Butterfly count-
ing in bipartite networks. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2150–2159, 2018.

[201] Sanat K Sarkar. On methods controlling the false discovery rate. Sankhyā: The Indian Journal
of Statistics, Series A (2008-), pages 135–168, 2008.

[202] Sanat K Sarkar, Wenge Guo, and Helmut Finner. On adaptive procedures controlling the
familywise error rate. Journal of Statistical Planning and Inference, 142(1):65–78, 2012.

[203] William W. Schapire, Cohen Robert E., and Yoram Singer. Learning to order things. In
Advances in Neural Information Processing Systems, volume 10, page 451. MIT Press, 1998.

[204] M Schemper. A survey of permutation tests for censored survival data. Communications in
Statistics-Theory and Methods, 13(13):1655–1665, 1984.

[205] Erich Schubert, Remigius Wojdanowski, Arthur Zimek, and Hans-Peter Kriegel. On Evaluation
of outlier rankings and outlier scores. In SDM, pages 1047–1058, 2012.

276

[206] Jinwook Seo and Ben Shneiderman. A rank-by-feature framework for interactive exploration
of multidimensional data. Information Visualization, 4(2):96–113, July 2005.

[207] Juliet Popper Shaffer. Multiple hypothesis testing. Annual review of psychology, 46, 1995.

[208] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

[209] Grace S. Shieh. A weighted Kendall’s tau statistic. Statistics & probability letters, 39(1):17–24,
1998.

[210] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information visualiza-
tions. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336–343. IEEE,
1996.

[211] Yedendra Babu Shrinivasan and Jarke J van Wijk. Supporting the analytical reasoning process
in information visualization. In Proceedings of the SIGCHI conference on human factors in
computing systems, pages 1237–1246. ACM, 2008.

[212] Zbyněk Šidák. Rectangular confidence regions for the means of multivariate normal distribu-
tions. Journal of the American Statistical Association, 62(318), 1967.

[213] R John Simes. An improved bonferroni procedure for multiple tests of significance. Biometrika,
73(3):751–754, 1986.

[214] Matthew Skala. Hypergeometric tail inequalities: ending the insanity. arXiv preprint,
1311.5939, 2013.

[215] Johannes Sorz, Martin Fieder, Bernard Wallner, and Horst Seidler. High statistical noise limits
conclusiveness of ranking results as a benchmarking tool for university management. PeerJ
PrePrints, 3:e1162, 2015.

[216] Charles Spearman. The proof and measurement of association between two things. American
Journal of Psychology, 15:88–103, 1904.

[217] Spurious correlations. http://tylervigen.com/old-version.html, 2018. Accessed: 2018-08-01.

[218] Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes and the hardness of
preventing false discovery. In Conference on Learning Theory, pages 1588–1628, 2015.

[219] Jean M. Steppe and Kenneth W. Bauer. Improved feature screening in feedforward neural
networks. Neurocomputing, 13(1):47 – 58, 1996.

[220] Melissa K Stern and James H Johnson. Just noticeable difference. The Corsini Encyclopedia
of Psychology, pages 1–2, 2010.

277

[221] John D Storey, Jonathan E Taylor, and David Siegmund. Strong control, conservative point es-
timation and simultaneous conservative consistency of false discovery rates: a unified approach.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(1):187–205,
2004.

[222] W Nick Street, William H Wolberg, and Olvi L Mangasarian. Nuclear feature extraction for
breast tumor diagnosis. In Biomedical image processing and biomedical visualization, volume
1905, pages 861–871. International Society for Optics and Photonics, 1993.

[223] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer.
In Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pages
607–614. ACM, 2011.

[224] Jonathan Taylor and Robert J Tibshirani. Statistical learning and selective inference. Pro-
ceedings of the National Academy of Sciences, 112(25):7629–7634, 2015.

[225] The Koblenz Network Collection (KONECT). Last.fm song network dataset. http://konect.
uni-koblenz.de/networks/lastfm_song, Accessed on September 2016.

[226] Charalampos E Tsourakakis, U. Kang, Gary L. Miller, and Christos Faloutsos. Doulion:
counting triangles in massive graphs with a coin. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 837–846.
ACM, 2009.

[227] Charalampos E Tsourakakis, Mihail N Kolountzakis, and Gary L Miller. Triangle sparsifiers.
Journal of Graph Algorithms and Applications, 15(6):703–726, 2011.

[228] John W Tukey et al. Comparing individual means in the analysis of variance. Biometrics,
5(2):99–114, 1949.

[229] V. Vapnik et al. On the uniform convergence of relative frequencies of events to their proba-
bilities. Theory Probab. Appl., 16(2), 1971.

[230] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. In Measures of complexity, pages 11–30. Springer, 2015.

[231] Manasi Vartak et al. SEEDB: efficient data-driven visualization recommendations to support
visual analytics. PVLDB, 8(13), 2015.

[232] Manasi Vartak, Samuel Madden, Aditya Parameswaran, and Neoklis Polyzotis. Seedb: auto-
matically generating query visualizations. Proceedings of the VLDB Endowment, 7(13):1581–
1584, 2014.

[233] Sebastiano Vigna. A weighted correlation index for rankings with ties. In Proceedings of the
24th Conference on World Wide Web, pages 1166–1176, 2015.

http://konect.uni-koblenz.de/networks/lastfm_song
http://konect.uni-koblenz.de/networks/lastfm_song

278

[234] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1):37–57, 1985.

[235] Jiannan Wang et al. A sample-and-clean framework for fast and accurate query processing on
dirty data. In International Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, pages 469–480, 2014.

[236] Peter H Westfall, S Stanley Young, et al. Resampling-based multiple testing: Examples and
methods for p-value adjustment, volume 279. John Wiley & Sons, 1993.

[237] Kanit Wongsuphasawat et al. Voyager: Exploratory analysis via faceted browsing of visual-
ization recommendations. IEEE Trans. Vis. Comput. Graph., 22(1), 2016.

[238] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. Voyager 2: Augmenting visual anal-
ysis with partial view specifications. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pages 2648–2659. ACM, 2017.

[239] xkcd. Significant. https://xkcd.com/882/, 2018. Accessed: 2018-08-01.

[240] Emine Yilmaz and Javed A. Aslam. Estimating average precision with incomplete and im-
perfect judgments. In Proceedings of the 15th ACM conference on Information and knowledge
management, pages 102–111. ACM, 2006.

[241] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. A new rank correlation coefficient
for information retrieval. In Proceedings of the 31st annual ACM SIGIR conference, pages
587–594. ACM, 2008.

[242] Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel Fekete, and Tim Kraska.
How progressive visualizations affect exploratory analysis. IEEE Trans. Vis. Comput. Graph.,
2016.

[243] Emanuel Zgraggen, Zheguang Zhao, Robert C. Zeleznik, and Tim Kraska. Investigating the
effect of the multiple comparisons problem in visual analysis. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada,
April 21-26, 2018, page 479, 2018.

[244] Zheguang Zhao, Lorenzo De Stefani, Emanuel Zgraggen, Carsten Binnig, Eli Upfal, and Tim
Kraska. Controlling false discoveries during interactive data exploration. In Proceedings of
the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 527–540, 2017.

[245] Alain F. Zuur, Elena N. Ieno, and Chris S. Elphick. A protocol for data exploration to avoid
common statistical problems. Methods in Ecology and Evolution, 1(1):3–14, 2010.

	List of Tables
	List of Figures
	Introduction
	I Hypothesis testing and statistical learning
	Family Wise Discovery Rate using Rademacher Complexity uniform convergence bounds
	Introduction
	Standard multi-comparisons control procedures
	Setting
	Uniform bound on generalization error with Rademacher Complexity
	Proofs of uniform convergence bounds
	Uniform convergence bound based on the Martingale Central Limit Theorem
	Application of Bernstein's Inequality for Martingales

	FWER control with Rademacher Complexity
	FDR control with Rademacher Complexity
	Experimental analysis
	Experiments with synthetic data
	Experiments with real data

	Conclusion

	A Rademacher Complexity Based Method for Controlling Power and Confidence Level in Adaptive Statistical Analysis
	Introduction
	The RadaBound
	Bounding (Fk,barx) using Rademacher Complexity
	Tight bounds on Rademacher Complexity estimate
	Application of the Martingale Central Limit Theorem

	Bounding the generalization error using McDiarmid's inequality
	The RADABOUND Algorithm
	Experimental results
	Comparison with methods based on Differential Privacy
	Conclusion

	II Visual data analysis with quality guarantees
	Towards sustainable insights
	Introduction
	The Risk With Today's Tools
	Visual Data Exploration
	Visual Recommendations
	Automatic Correlation Finders
	Automatic Model Finding

	QUDE: A System to Quantify the Uncertainty in Data Exploration
	Controlling the Exploration Risk
	Detecting Common Statistical Pitfalls
	Data Quality Issues
	Current State of QUDE

	Conclusion

	Controlling False Discoveries During Interactive Data Exploration
	Introduction
	Related Work
	A Motivational Example
	Hypothesis Testing
	Visualizations as Hypotheses
	Heuristics for Visualization Hypotheses
	Heuristics Applied to the Example

	The Qude User Interface
	Background
	Hold-Out Dataset
	Family-Wise Error Rate (FWER)
	False Discovery Rate (FDR)
	Other Approaches

	Interactive Control
	Outline of the Procedure
	-Investing for Data Exploration
	-Farsighted Investing Rule
	-Fixed Investing Rule
	-Hopeful Investing Rule
	-Hybrid Investing Rule
	Investment based on Support Population
	What Happens If the Wealth is 0?

	Most Important Discoveries
	Limitations and Opportunities
	Experimental Evaluation
	Exploration Settings
	Targeted Exploration
	Free-form Exploration
	Uniform Exploration
	Real-world Deployment
	Discussion

	Supplemental Experiments
	Safety against Uncertainty
	FDR versus FWER

	Conclusion and Future Work

	VizRec: a framework for secure data exploration via visual representation
	Introduction
	Problem Statement
	SeeDB
	Problem set-up
	Visualizations
	Visualization recommendations

	Statistically safe visualizations and recommendations
	Classical statistical testing
	Recommendation validation via estimation
	Correcting for Adaptive Multi-Comparisons

	Statistical Guarantees Via Uniform Convergence Bounds
	VC dimension
	Statistically Valid Visualization through VC dimension
	The VizRec recommendation validation criteria
	The VC dimension of the Range Space
	Trade-off between query complexity and minimum allowable selectivity

	Discussion
	Number of hypotheses being tested
	Bounding the complexity of the query class
	Preprocessing heuristics
	Modified 2-test

	Experiments
	Anecdotal examples
	Random data leads to no discoveries
	Statistical Testing vs. VC approach
	VC bounds and Chernoff-Hoeffding bounds
	Restricting the search space

	Conclusion

	III Counting sub-graphs in massive dynamic graph streams
	TRÍEST: Counting Triangles in Massive Graph Streams
	Introduction
	Preliminaries
	Related work
	Algorithms
	A first algorithm – trièst-base
	Improved insertion algorithm – trièst-impr
	Fully-dynamic algorithm – trièst-fd
	Counting global and local triangles in multigraphs
	Discussion

	Experimental evaluation
	Insertion-only case
	Fully-dynamic case
	Multigraphs

	Conclusions

	Tiered Sampling: An Efficient Method for Approximate Counting Sparse Motifs in Massive Graph Streams
	Introduction
	Preliminaries
	Related Work
	TieredSampling application to 4-clique counting
	Algorithm TS4C1
	Algorithm TS4C2

	Proofs of technical results regarding TS4C2
	Comparison with single sample approach
	Edge sampling approach - FourEst
	Variance comparison
	Experimental evaluation over random graphs

	Adaptive Tiered Sampling Algorithm
	Experimental Evaluation
	Counting 4-Cliques
	Adaptive Tiered Sampling

	Generalizing the TieredSampling approach
	The TieredSampling framework
	Using TieredSampling to count 5-Cliques

	Conclusions

	Reconstructing Hidden Permutations Using the Average-Precision (AP) Correlation Statistic
	Introduction
	Related Work
	The AP model
	Generative Process for MAP(,)
	Reconstructing the Center Permutation in the AP model
	Rank-based algorithm for > 0
	Comparison-Based algorithm for (1n)

	Experimental evaluation
	Reconstructing the Hidden Permutation
	Experiments with real-data

	Conclusion

	Conclusion and Future Directions
	Bibliography

