Abstract of “A Theory of Abstraction in Reinforcement Learning”

by David Abel, Ph.D, Brown University, May 2020.

Reinforcement learning defines the problem facing agents that learn to make good deci-
sions through action and observation alone. To be effective problem solvers, such agents
must efficiently explore vast worlds, assign credit from delayed feedback, and general-
ize to new experiences, all while making use of limited data, computational resources,
and perceptual bandwidth. Abstraction is essential to all of these endeavors. Through
abstraction, agents can form concise models of their environment that support the many
practices required of a rational, adaptive decision maker. In this dissertation, I present
a theory of abstraction in reinforcement learning. I first offer three desiderata for func-
tions that carry out the process of abstraction: they should 1) preserve representation
of near-optimal behavior, 2) be learned and constructed efficiently, and 3) lower plan-
ning or learning time. I then present a suite of new algorithms and analysis that clarify
how agents can learn to abstract according to these desiderata. Collectively, these results
provide a partial path toward the discovery and use of abstraction that minimizes the

complexity of effective reinforcement learning.

A Theory of Abstraction in Reinforcement Learning

David Abel

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in

the Department of Computer Science at Brown University

Providence, Rhode Island

May 2020

© Copyright 2020 by David Abel

This dissertation by David Abel is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date

Michael L. Littman, Advisor

Recommended to the Graduate Council

Date

George Konidaris, Reader
Date

Stefanie Tellex, Reader
Date

Peter Stone, Reader
Date

Will Dabney, Reader

Approved by the Graduate Council

Date

Andrew G. Campbell, Dean of the Graduate School

ii

VITA

David Abel was born in Portland, Oregon. He received his Bachelors in computer science
and philosophy from Carleton College, during which he spent a semester in Budapest,
Hungary. He then attended Brown University, where he received a Masters in each of
computer science and philosophy en route to his Ph.D. At Brown, he taught CS8: A First
Byte of Computer Science and a Summer course he designed for high school students
on Al and Society. David also spent time as a research intern at Microsoft Research in
New York City, the University of Oxford, and DeepMind London. He received the Open
Graduate Fellowship to pursue a Masters in philosophy and the Presidential Award for
Excellence in Teaching.

During his Ph.D, David published the following papers: Value Preserving State-Action
Abstractions [11], The Efficiency of Human Cognition Reflects Planned Use of Information Pro-
cessing [132], The Value of Abstraction [131], The Expected-Length Model of Options [10], Find-
ing Options that Minimize Planning Time [144], Discovering Options for Exploration by Mini-
mizing Cover Time [145], State Abstraction as Compression in Apprenticeship Learning [9], State
Abstractions for Lifelong Reinforcement Learning [6], Policy and Value Transfer in Lifelong Re-
inforcement Learning [7], Bandit-Based Solar Panel Control [8], and Near Optimal Behavior via

Approximate State Abstraction [4].

iv

To my fiancée Elizabeth, my brother Mike, and my parents Mark & Diane.

ACKNOWLEDGEMENTS

One of the greatest pleasures of research is working with brilliant and thoughtful indi-
viduals from all over the world. I am grateful to my mentors for their encouragement
and guidance over the years, my collaborators for sharing their time and ideas, and the

support and friendship of many.

MENTORS

First, to my advisor, Michael Littman. From day one Michael was able to blend encour-
agement with structured advice. He always helped me feel like I was making progress
and knew how to point me in the right direction. I regularly left our meetings with a clear
objective and a wealth of excitement to learn about a new topic or work toward a new
result. On top of this, Michael is both immeasurably wise, funny, and humble. I can recall
many occasions where I pitched a new problem to him that I was stuck on—he quickly
figured out a solution, and would carefully lead me to the conclusion in a way that nur-
tured my own sense of curiosity and discovery, and made it fun along the way. Some of
my absolute favorite experiences in life are these moments Michael and I stared down a
tricky problem on the whiteboard in his office. These conversations eventually grew into
the publications and ideas that constitute this dissertation. Ultimately, Michael taught me
what good science looks like. He shaped how I ask questions, how to do my best to be
unbiased, and how to proceed in the presence of profound challenges and uncertainty.
Richard Hamming’s “You and Your Research” suggests that great research is done with

great courage: through his guidance, Michael has inspired me to try to be courageous in

vi

research, to ask big questions, and to methodically seek out principled answers. He has
also taught me to embrace my own instincts and curiosities, and to how to balance my
own philosophy with existing literature. Michael: thank you for your time, support, and
trust, for giving me the freedom to explore, allowing me to make safe mistakes, and being
such an outstanding mentor, advisor, and person. I am so profoundly lucky to have had
the opportunity to work with you! I will never forget our time doing research together,
and I look forward to continuing our collaborations and discussions in the future.

To George Konidaris, thank you for the many fascinating discussions on abstraction
and Al, and for the countless pieces of life advice you have offered over the years. I was
inspired by your research early on in my Ph.D, so it was a genuine delight to discover
that you were coming to Brown, and even more so that I had the good fortunate to
collaborate with you for many years. I have such a deep admiration for your research,
vision, and methods, and I am honored to have had the chance to work with you. Perhaps
the moment in my Ph.D when I laughed the hardest was up against the ICML 2018
submission deadline for our work on transfer learning in RL. I used the term “epistemic
guise” in a draft of the paper, and received a note from you “Dave what is an epistemic
guise.” I have been sure not used this phrase since (until now)! Thank you George for
your time and mentorship!

Next, to my Masters advisor, Stefanie Tellex: thank you for taking a chance on me as a
researcher, and for inspiring me to pursue Al research. You first taught me how to read
papers, how to give talks, how to formulate an appropriate research question, and many
other crucial aspects of how to be an effective scientist. I can still remember pitching my
first research problem; you were eager to engage with the ideas and gave me the tools I
needed to systematize my study. I will always finish my talks with a contributions slide
and include slide numbers, thanks to her many essential tips. Moreover, I will always
remember the moment in the midst of a paper deadline when you paused, told my co-
authors and me to bubble up a level and make sure we were doing okay as people. Thank

you, Stefanie!

vii

To Will Dabney, thank you for mentoring me at DeepMind, serving on my committee,
and for a both fruitful and enjoyable collaboration—I learned a great deal from working
with you and I look forward to our future research together!

To Peter Stone, thank you for your time in serving on my committee, your advice, and
for your thoughtful questions that still have me thinking!

To Colin Day, or “D-Day” (In Memoriam), I owe the initial spark of my love of math,
elegant theory, and the belief that hard work can translate to deep understanding, even
when facing challenges that seem insurmountable. You were an amazing teacher and
mentor. Thanks, D-Day!

To Jake Stults (In Memoriam), my first computer science teacher. Thank you for culti-
vating my initial curiosity about computation, Al, and logic, for sharing music with me,
and for your constant encouragement early on in life. Thanks, Jake!

To my other mentors, for their time, patience, advice, and helping me find my path:
Jason Decker, Fernando Diaz, Owain Evans, David Liben-Nowell, James MacGlashan,

Ana Moltchanova, Joshua Schechter, and Lawson L.S. Wong, thank you all!

FAMILY, FRIENDS, COLLABORATORS, AND COLLEAGUES

To my fiancée, Elizabeth Thiry, I am forever grateful for your love and support throughout
these five years. Thank you for listening to countless practice talks, inspiring me to take
on new challenges, filling our days with epic experiences all the way from Sweden to
Hungary to Boston, and always believing in me. The Ph.D has been such a blast and I
look forward to the rest of our life together!

To my parents, Diane and Mark Abel, thank you for your love and support, all the
way from oth grade to 23rd! I am grateful for all you have done—I am so fortunate to
have such wonderful parents. From early on in life you were both unwavering in your
encouragement, helping me to ask questions and to have fun with learning and life more
generally. Thank you for the many insightful conversations, trips, and experiences that

have shaped nearly every aspect of my life, and for helping me find my way!

viii

To my brother, Michael Abel, thank you for being such an amazing role model. I still
remember the many deep discussions we had about science and philosophy as we grew
up together. I vividly recall taking a drive together in the west hills of Portland one night
and discussing different kinds of infinity for hours. You were always supportive of these
discussions and helped me feel comfortable with wanting to think about philosophy and
math (you made it fun, too!). I would not have had the confidence to pursue this degree
without you as a role model. Most crucially, Mike is amazing at balancing life. Despite the
Ph.D being difficult, I always set aside time for friends, family, and personal time because
of the example he set. Thank you, Mike!

To Nate Bowditch, thank you for all of the good times, for being an outstanding room-
mate, person, and friend, and for the many deep discussions and epic adventures we
have had together!

To Pablo Leon-Luna, thank you for the many thoughtful conversations and good times,
for inspiring me to pursue what I truly love, and for all your support and friendship over
the years!

To Ellis Hershkowitz, thank you for helping me to discover the kind of research that I
value, for the many productive collaborations, fascinating conversations, and good times!

To those that were especially close collaborators or friends throughout my Ph.D, I am so
thankful for your time, support, and friendship: Cam Allen, Enrique Areyan, Dilip Aru-
mugam, Kavosh Asadi, Akshay Balsburamani, Christina Donovan, Chris Grimm, Mark
Ho, Yuu Jinnai, Ben LeVeque, Torben Noto, and Greg Yauney, thank you!

Lastly, I am grateful to all of the friends, extended family, colleagues, and collaborators
that have helped me on this journey! Thanks to Belle & Sid Abel (In Memoriam), Niko
Adamstein, Lori Agresti, Suzanne Alden, Gabriel Barth-Maron, Kathy Billings, Lisa and
Jason Bogardus, Ben Breen, Nick Brenner, Evan Cater, Lauren Clarke, Erica Clausen, Ge-
nie DeGouveia, Marie des]Jardins, Katie Franklin, Tomasz Kalbarczyk, Khimya Khetarpal,
Brian Kimpson, Akshay Krishnamurthy, Rita & Harry Krych (In Memoriam), Erwan

Lecarpentier, Meg & Alexander Leiken, Jason Liu, Jane Martin, Debbie Osterman, Matt

ix

Overlan, Katy Parsons, Bree & Ohm Patel, Robby Plowman, Jesse Polhemous, Emily Reif,
Mel Roderick, Mark Rowland, Hannah Roy, Brandon Saranik, Evan Schwed, Gunnar Sig-
urdson, Satinder Singh, Andy Smith, Katherine & Julius Thiry, Raphael Townshend, Nate
Umbanhowar, Ally Wharton, Will Whitney, John Winder, Danfei Xu, and to all of the
members of RLAB & Brown CS, thank you all!

CONTENTS

Part 1 PRELIMINARIES i
1 INTRODUCTION 2
1.1 The Reinforcement Learning Problem 4
1.2 Abstraction. 7
1.3 Thesis Statement 11
1.4 Contributions 12
2 BACKGROUND 15
2.1 Reinforcement Learning 15
2.2 State Abstraction L 36
2.3 Action Abstraction 52
2.4 Abstraction Desiderata 72
Part 2 STATE ABSTRACTION 78
3 APPROXIMATE STATE ABSTRACTION 79
3.1 Four Classes of Approximate State Abstraction 81
3.2 Analysis 83
3.3 Experiments 94
4 STATE ABSTRACTION IN LIFELONG RL 97
4.1 Transitive PAC State Abstractions 98
42 Analysis 101
43 Experiments 112
5 STATE ABSTRACTION AS COMPRESSION 118
5.1 Information Theory 120
5.2 Analysis: State Abstraction as Compression 127

Xi

53 Experiments

5.4 Extensions

Part 3 ACTION ABSTRACTION

6 FINDING OPTIONS THAT MINIMIZE PLANNING TIME

6.1 Formalizing The Problem
6.2 Options and Value Iteration
6.3 Complexity Results
6.4 Approximation Algorithms
6.5 Experiments

7 THE EXPECTED-LENGTH MODEL OF OPTIONS

7.1 The Expected-Length Model
72 ASimple Example
7.3 Analysis
7.4 Experiments

8 DISCOVERING OPTIONS FOR EXPLORATION
8.1 CoverTime
82 CoveringOptions

8.3 Experiments

Part 4 STATE-ACTION ABSTRACTION
9 VALUE PRESERVING STATE-ACTION ABSTRACTIONS
9.1 Analysis: State-Action Abstractions
9.2 Hierarchical Abstraction
10 CONCLUSION
10.1 Why Abstraction?
10.2 TheRoad Ahead
10.3 Concluding Remarks

BIBLIOGRAPHY

Xii

154
155
157
158
161
164
168
172
174
175
178
185
191
194
197

200

206
207
208
230
236
236
239
240

241

LIST OF TABLES

Table 2.1
Table 8.1

Table 9.1

A summary of several existing state abstraction types. 46
Comparison of the algebraic connectivity and the expected cover
time of covering options and eigenoptions. 201

Hierarchical abstraction notation. 232

xiii

LIST OF FIGURES

Figure 1.1
Figure 1.2

Figure 1.3

Figure 1.4
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 2.5
Figure 2.6

Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1

Figure 3.2
Figure 4.1
Figure 4.2

The process of abstraction.
The RLproblem.
A comparison of the problem posed to a hiker navigating to their
tent in a forest in fine detail (left) and in the abstract (right).
A visual overview of this dissertation.
The classical grid world by Russell and Norvig [277].
The RL problem when an agent interacts with an MDP.
The different families of RL algorithms.
Example learning curves showing cumulative (left) and average
(right) reward for a variety of RL algorithms.
RL with a state abstraction.
A simple grid world problem (left) and the abstracted problem
induced by the state abstraction (right).

The classical Four Rooms domain (left) extended by options (right).

RL with action abstraction.
The different forms of abstractionin MDPs.
This chapter studies families of approximate state abstraction that

induce abstract MDPs whose optimal policies have bounded value

e vs. Num States (left) and € vs. Abstract Policy Value (right). . . .
Lifelong Reinforcement Learning with State Abstraction.
Results averaged over 50 runs on the pathological three chain MDP

introduced in the proof of Theorem 4.6.

Xiv

14
21

22

24

32
38

40
53
56
72

8o

95
97

Figure 4.3

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Cumulative reward averaged over 100 task samples from the Col-
ored Four Rooms task distribution (top) and the Upworld task dis-
tribution (bottom). 114
Delayed Q-learning on a 15 x 15 Four Rooms task distribution. . . 115
Planning time for Value Iteration with and without a state abstrac-
tion as the environmental state space grows. 116

The proposed framework for trading off compression with value

via state abstraction. L L oL L 119
The basic quantities of information theory and their relations. . . . 122
The usual Rate-Distortion setting. 123
The Information Bottleneck. 125

(a) The average rate-distortion trade off made by Diss as p varies,
and (b) The average value of the ¢,y pairs found by Diss for
different valuesof B. o oL 136
The state abstractions found by Diss in the Four Rooms domain
when (a) f=0,(b) B=1,(c) B=2,and (d) =20. 138
A comparison of how ¢ with different choice of impacts simple
RL in the Four Rooms domain. 139
(a) The mean reward over 100 evaluation episodes of ¢, 7y com-
binations found by the VAE-approximation to Siss for different
values of B, and (b) attempted state reconstructions using fixed
abstractions found when f=2and f=2048. 141
The value of the abstract policy found by AC-Diss for values of
betweenoand 4. 145
State abstractions computed by Diss for a collection of MDPs using
Equation 5.67 for different valuesof B. 146
Learning curves for the single task experiments (top) and the trans-
fer experiments (bottom). o 0 0L 151
A comparison of different state discretization methods in Lunar

Lander. 152

XV

Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5

Figure 7.6
Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5
Figure 8.6

Figure 8.7
Figure 9.1
Figure 9.2

Action abstraction. L o 156
A single option can encode multiple unrelated behaviors. 160
Qualitative comparison of the optimal point options with options
generated by the approximation algorithm A-MIMO. 168
Quantitative evaluation comparing the planning speed up result-

ing from the options computed by solving MIMO and MOMI in

VariOUS WAYS. . . . v vt vt e e et 170
An intuitive illustration of the MTM (left) and ELM (right). 172
An illustration of the difference between ELM and MTM. 175
Learning with options in grid worlds. 187

The difference in value between ELM and MTM in the Four Rooms

task. . . L 188
Learning with optionsin Taxi. 189
Learning with options in Playroom. 190

An example illustrating the main idea behind covering options: the
expected length of the random walk between relevant states can be
reduced by well chosen options. 193
The relationship between (a) algebraic connectivity (A2) and cover
time on randomly generated graphs, and (b) the cover time of a
random walk vs. the cost of random policy. 197
The distance between the red state and all other states, measured
via Fiedler vector (left) and Euclidean distance (right). 198
Visualization of covering options and eigenoptions in Four Rooms
and thegxggridworld. 201
Spectral graph drawing of the state-transition graph. 202

Comparison of RL performance with different option generation

methods. 204
Comparison of online option generation methods.. 205
State and action abstractioninRL. 208
Grounding policy 7o, to 7'%4). 210

XVi

Figure 9.3

Figure 9.4

Figure 9.5
Figure 9.6

Empirical evidence that the ¢, Oy pairs from Theorem 9.1 preserve

Comparison of the learned value function with regular Q-learning

(left) and Q-learning with ¢,Op. 229
The construction of a hierarchy from (¢, Op) pairs. 230
The process of grounding a hierarchical policy. 232

Xxvii

Part 1

PRELIMINARIES

INTRODUCTION

Suppose you take a walk in the woods. You find yourself surrounded by pine trees,
chirping birds, a peaceful lake, and frogs eating delicious mealworms. A friend returns
from a walk and relays a story of a goat miraculously walking up a steep mountain
side. Your stomach grumbles and you deliberate over whether to eat an apple from your
backpack or to start a campfire and cook a hot meal.

Consider just how many activities are at your finger tips: you could climb a tree, discuss
philosophy with your friend, navigate to a nearby stream by listening for rushing water,
or create a map of the territory. To engage in any of these practices in this complex and
changing environment you must be capable of making hundreds of well-chosen decisions
that move you toward a particular objective. Moreover, you must make these decisions
while relying on imperfect memory and noisy sensory channels; some light hits your
retina indicating the sun has risen, changes in sound pressure are processed through
your ears to notify you of an impending thunderstorm, and nerve endings in your feet
tell you your boots are wet. Somehow, you map this continual stream of observations
to a choice of actions that moves you toward any of the above goals. How is this even
remotely possible?

Central to an agent’s ability to solve problems is the capacity to reason abstractly—

walking into a tree will cause pain while moving around it may not. Hence, representing

Figure 1.1: The process of abstraction.

particular patterns of visual stimuli as a tree that persists through time is immensely
useful. Additionally, conveying to other agents that trees possess the “do-not-walk-into”
property is likely to be critical to the overall fitness of the community at large. Indeed,
many central practices of agency rely on abstraction: speculating about and learning
from hypothetical scenarios, overcoming new challenges because of their similarity to
past experiences, and forming high-level plans spanning months or years that inform
immediate action; all of these depend on a concise, adaptive, and abstract representational
toolkit. For these reasons, the capacity to learn and make use of appropriate abstract
representations is likely to be an essential cognitive skill of any intelligent agent, whether
biological or artificial.

In the forest, we might imagine that a hiker trying to return to their tent may reason
using the abstract representation pictured in Figure 1.1. With this smaller model that still
retains relevant information, the hiker can carry out more valuable computation, explore
less, draw more robust inferences, and predict further into the future. These benefits
ultimately enable the hiker to safely navigate to their tent and to thrive in nature more
generally. Where, though, does this model come from? And how can an agent discover
such a model solely by interacting with their surroundings? These questions have long

stood as a fundamental puzzle in the science of understanding intelligence.

This dissertation is about the study of abstraction and its role in effective agency. I
ground this inquiry by concentrating on computational agents that must learn to solve
problems from interaction alone, as captured by the reinforcement learning (RL) problem.
Such an agent could consist of a finite state machine reacting to discrete symbols on a tape
for the purpose of sorting a list, but also a robot or animal observing the world through
sensors and a powerful action space that supports movement through and manipulation
of the environment. In this remarkably general framework, we will find footing to make

the study of abstraction concrete.

1.1 THE REINFORCEMENT LEARNING PROBLEM

RL defines the problem facing an agent that learns to make useful decisions through
observation and action alone. The primary objects of interest in RL are computational
agents, the worlds they inhabit, and the interactions thereof. An agent is understood
as any entity capable of perception and action, where perception involves the receipt
and processing of information from the environment, and action defines the process of
committing to a choice from a set of alternative courses of behavior. I sharpen our use
of the term “world” in the next chapter, but broadly it is to be understood as a set of
possible states of affairs, causal laws that move the world between these states, and an
agent that makes decisions in the world based on a stream of observation.

Critical to RL is the assumption that one special observation of the world is a numeri-
cal reward signal that corresponds to the immediate desirability of a given state of affairs.
The objective of an RL agent is then simple: maximize future rewards. Richard S. Sut-
ton and Michael L. Littman have articulated what is known as the reward hypothesis, or

reinforcement learning hypothesis, that states the following:

Definition 1.1. The reward hypothesis states, “all of what we mean by goals and purposes
can be well thought of as maximization of the expected value of the cumulative sum of a

received scalar signal (veward)” (Sutton, 2004).

Indeed, reward prediction and learning has long played a role in understanding human
and animal cognition [281, 84, 38]. For our present purpose, I assume the hypothesis to be
valid, and proceed on the basis that the space of agents that effectively learn to maximize
reward can be likened to the space of intelligent agents. I note, however, that a more
thorough philosophical treatment of this hypothesis is of deep importance.

With these pieces in play, the RL problem is defined at a high level as follows.

Definition 1.2. The reinforcement learning problem is as follows. An RL agent interacts

with its environment via the indefinite repetition of the following two discrete steps:
1. The agent receives an observation and a reward.
2. The agent learns from this interaction and executes an action.

This process is pictured in Figure 1.2. The goal of the agent during this interaction is to make

decisions so as to maximize its long term received reward.

reward observation action

Agent

Figure 1.2: The RL problem.

Returning to our peaceful forest, we might imagine that the hiker occupies the world
state pictured in Figure 1.1, and is learning about their surroundings to maximize reward.
Depending on the reward generating process, the hiker will be incentivized to exhibit
different kinds of behavior. For instance, the problem of navigating to a stream might be
associated with a reward signal that increases as the hiker gets closer to the water. An
effective agent, then, will learn to associate this positive signal with actions that move
them toward the stream. Over time, the most effective agents can reach the stream with-
out coming to harm along the way. To define the task of cooking food, we might attach
positive reward signal to the experiences of eating tasty food—again, effective agents will
be those that can prepare and eat food that is of sufficient levels of tastiness.

It is here that we find the remarkable expressivity of the RL problem: any goal-driven
task can be defined in terms of a reward function that is positive when the goal is satisfied,
and non-positive otherwise. Moreover, non-terminating behaviors such as controlling an
elevator, balancing a pole, survival, or regulating energy on a power grid can also be
elicited with the right choice of reward function by similar mechanisms.

Richard S. Sutton describes both the appeal and challenge of RL as follows.

Part of the appeal of reinforcement learning is that it is in a sense the whole
[artificial intelligence] problem in a microcosm. The task is that of an au-
tonomous learning agent interacting with its world to achieve a goal. The
framework permits the simplifications necessary in order to make progress,
while at the same time including and highlighting cases that are clearly be-
yond our current capabilities, cases that we will not be able to solve effectively
until many key problems of learning and representation have been solved.
That is the challenge of reinforcement learning.

(Sutton 1992, p. 2)

I am entirely sympathetic to Sutton’s reasoning. Addressing the RL problem is of crit-
ical importance to establishing a holistic understanding of intelligence. Even roughly 30
years after the above quote, there are still many “cases that are clearly beyond our current

capabilities” at the heart of RL. To be effective, RL agents must address a combination of

three classical problems of machine learning;:

1. Generalization: Given experience from the past, how can an agent better act in the

future?

Example 1: The hiker spots an owl in the woods they have never before seen. How do they

know it is an owl?

Example 2: You approach a door you have never before encountered and manage to open it

within seconds.

2. Exploration: How can an agent systematically trade off between 1) exploiting what
is known to be a reliably good choice with 2) making choices that may lead to new

discoveries?

Example: You visit your favorite restaurant, and deliberate whether to choose your go-to

entrée, or to try something new (that you might like even more!).

3. Credit Assignment: When feedback is delayed, how can an agent attribute credit to

the most causally relevant decisions made previously?

Example: You study for a test for weeks on end. Also, the night before the test, you eat a
bowl of cereal. You ace the test. How can you determine that it was the studying that led to

your success, and not the bowl of cereal?

Each of these problems individually is difficult, but in RL, agents must simultaneously
address all three. I return to a more technical treatment of some of these problems
throughout the dissertation after introducing the mathematical tools of RL in Chapter 2.

Fortunately, however, abstraction can help address each of these challenges.

1.2 ABSTRACTION

Indeed, understanding abstraction and its role in agency has long stood as one of the
fundamental questions of artificial intelligence (AI), dating back to the famous workshop

at Dartmouth that founded the field:

The study is to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it. An attempt will be made
to find how to make machines...form abstractions and concepts.

(McCarthy et al. 2006, p. 1)

Since this workshop, the study of abstraction in Al and related fields has led to a
profound appreciation for the role abstraction can play in both artificial and biological
creatures. The focus of this dissertation is naturally on the former, though a large body
of research in the cognitive, neuro, and psychological sciences examines the prevalence
of abstraction in the representational and decision making practices of humans [50, 158,
321, 297, 48, 338, 267, 97]-

The RL problem is perfectly suited to a scientific study of abstraction. Observation, on
its own, is far too complicated for an agent to reason with while acting in a changing
world. Thinking takes time. Processing, understanding, and reacting to every detail of a
history of observations is computationally intractable. Additionally, in deliberating over
possible futures, the space of sensible changes to the world that are worth considering is
dramatically smaller than that of the possible future observation stream. Behavior, too,
can often be defined at multiple levels of abstraction. For instance, an ant may act so as
to follow its friend, or choose which precise muscles to twitch to propel its legs.

At a high level, the process of abstraction can be divided into two broad categories:
1) state abstraction, which defines the practice of representing only the most relevant
properties of the world, and 2) action abstraction, which defines the practice of forming
a relevant set of long horizon behaviors available to an agent. In both cases, following
Giunchiglia and Walsh [119], I understand abstraction as “the process of mapping a rep-
resentation of a problem onto a new representation” (1992, p. 1).

Let us return to the woods. Suppose our hiker is trying to navigate back to their camp,
and can choose to represent this problem in great detail, or in the abstract, pictured in
Figure 1.3. In each case, the hiker deliberates over possible future courses of action. In the

tirst, however, the hiker’s actions are modeled in terms of the smallest possible execution

(a) Reasoning in the environment. (b) Reasoning in the abstract.

Figure 1.3: A comparison of the problem posed to a hiker navigating to their tent in a
forest in fine detail (left) and in the abstract (right).

of behavior—a slight step in one direction, or a tilt of the head. In the second, decisions are
considered that only change something substantive about the environment—previously,
the hiker was west of the bridge, and now, they are to the east of the bridge. Depending
on the problem, different degrees and types of abstraction will be most effective.

A state abstraction determines which changes to the environment count as substantive.
As the agent walks toward the bridge, for instance, the clouds shift overhead. The breeze
picks up slightly, and a bird flies by. These small changes are likely to be irrelevant to the
hiker’s objective of crossing the bridge. Conversely, when the hiker has reached the river
and can see the bridge, the state has changed in a relevant way. This strategy for reasoning
in terms of abstract states of affairs alone is pictured in Figure 1.3b. Note that only six
states are required; the hiker might occupy the three distinct regions of the woods west
of the river, the bridge, and their camp. These properties obscure many nuances such as
weather, precise orientation, and even subtleties about the agent’s physical or mental state.
For some problems, these six states along would be entirely insufficient for permitting the
representation of good behavior.

In Figure 1.3a, we instead see the diversity of state representations available if any

slight change to the environment is perceived as a substantive change to world state. The

10

agent could be next to the river, north of the bridge by five paces as opposed to four—
or, the agent could be immediately under a tree as opposed to standing near it. For
some problems, it is crucial to represent detailed aspects of the environment. For others,
however, a state representation that mirrors the figure on the right is more effective.

An action abstraction determines the arrows moving between nodes in Figure 1.3b.
From the hiker’s perspective, abstract actions are simply those behaviors that should
be considered in choosing a course of action. Again supposing the hiker is trying to
arrive safely at their camp, they may choose to navigate to a nearby hill to gain a view
of the surroundings, or may navigate to a known landmark such as the bridge (from
which they can quickly return to camp). In contrast, of course, the “primitive” actions
define the smallest possible choices available to the hiker—moving a toe, leg, or hand,
for instance. Action abstraction has appeared under a variety of names such as skills,
temporal abstraction, or macro-actions. I here use the general term of action abstraction to
capture each of these despite their differences.

Naturally, the two types of abstraction are intimately connected. As presented in Fig-
ure 1.3b, there is an explicit sense in which they are related: by some accounts, an abstract
action is just a behavior that takes an agent from one abstract state to another. This par-
ticular perspective connecting the two abstraction types has a rich history in Al, and will
resurface several times throughout this dissertation. However, it is not the only sense in
which the two forms of representation might be connected. Konidaris et al. [180] proves
that algorithms that build an abstract state representation based on a given collection of
abstract actions can preserve desirable properties. Indeed, dating back to the early work
of Dietterich [88], the two types of abstraction have been tied together. Near the end of
the dissertation, I will return to a technical analysis of state-action abstractions (Part 4).

Finally, repeated application of state or action abstractions can induce hierarchical ab-
straction, through which entities can be represented at varying levels of granularity. In

the forest, hierarchical abstraction may permit the hiker to reason using both the left and

11

the right representation, depending on the task at hand. As thinking time or data be-
comes more readily available, a more detailed representation may be used. If, however, a
quick decision needs to be made, or if the world is fundamentally unpredictable in great
detail at certain time horizons (for instance, it remains difficult to predict the weather
a few days away), the hiker may opt for the representation on the right. Many of the
fundamental open questions in the area center around hierarchical abstraction, with state
and action abstraction serving as palatable chunks that can be analyzed independently.
As with state-action abstraction, I will return to hierarchical abstraction near the end of

the dissertation in Part 4.

1.3 THESIS STATEMENT
With the main conceptual framework in play, I now highlight the central question ad-
dressed by this work:

How do reinforcement learning agents discover and make use of good abstractions?

I answer this question by advancing the following thesis:

e R

THESIS

— o === o<—
By drawing on insights from computational complexity theory, decision-
theoretic planning, and information theory, it is possible to design efficient
algorithms for discovering abstractions that reduce the amount of experience

or thinking time an RL agent requires to find a good solution.

To defend this thesis, I introduce three desiderata that articulate which abstractions are

useful in RL. At a high level, these desiderata state the following.

Good abstractions for RL are easy to discover and enable efficient learning of high value policies.

(D1) (D2) (D3)

I present more detail and justification for these desiderata in Section 2.4.

12

1.4 CONTRIBUTIONS

The remaining defense of this thesis is organized as follows.

PART 1. In Chapter 2, I provide necessary background on RL (Section 2.1) along with
state abstraction (Section 2.2) and action abstraction (Section 2.3). Then, I introduce and

motivate the abstraction desiderata in more detail (Section 2.4).

PART 2. The next part is dedicated to state abstraction. I present new algorithms and
three intimately connected sets of analysis, each targeting the discovery of state abstrac-
tions that satisfy the introduced desiderata. In Chapter 3, I develop a formal framework
for reasoning about state abstractions that preserve near-optimal behavior. This frame-
work is summarized by Theorem 3.1, which highlights four such sufficient conditions
for value-preserving state abstractions. Then, in Chapter 4, I extend this analysis to the
lifelong RL setting, in which an agent must continually interact with and solve different
tasks. The main insight of this chapter is the introduction of PAC state abstractions for
the lifelong learning setting, along with results clarifying how to efficiently compute them.
Theorem 4.4 illustrates the sense in which these abstractions are guaranteed to preserve
good behavior, and Theorem 4.5 shows how many previously solved tasks are sufficient
to compute a PAC state abstraction. I highlight results from simulated experiments that
illustrate the utility of the introduced types of state abstractions to accelerate learning
and planning. Lastly, Chapter 5 brings the tools of information theory to bear on state
abstraction. I develop a tight connection between state abstraction and Rate-Distortion
theory [284, 43] and the Information Bottleneck Method [318], and exploit this connec-
tion to design new algorithms for efficiently constructing state abstractions that elegantly
trade off between compression and representation of good behavior. 1 extend this algorithmic
framework in a variety of ways, illustrating its power for discovering state abstractions

that afford sample-efficient learning of good behavior.

13

PART 3. [then turn to action abstraction. In Chapter 6, I present analysis from Jinnai
et al. [144] studying the problem of finding abstract actions that make planning as fast as
possible—the main result states that this problem is NP-hard in general (under appropri-
ate simplifying assumptions), and is even hard to approximate in polynomial time. Then,
in Chapter 7, I address the problem of constructing the predictive model that accompanies
high level behaviors in planning. Such a model enables an agent to estimate the outcome
of executing the behavior in a given state (what will the world look like after I open this
door?). In this chapter I introduce and analyze a new model for these high level behaviors,
and prove that this simpler alternative is still useful under mild assumptions. I provide
empirical evidence that indicates the new predictive model can serve as a suitable substi-
tute for its more complicated counterpart. Lastly, in Chapter 8, I examine the potential for
abstract actions to improve the exploration process. I describe an algorithm developed
by Jinnai et al. [145] that is based around the notion of constructing abstract actions that
can easily reach all parts of the environment, and demonstrate that this algorithm can

accelerate exploration on benchmark tasks.

PART 4. Finally, I turn to the joint process of state-action abstraction. In Chapter 9, I
present a simple mechanism for combining state and action abstractions together. Using
this scheme, I then prove which combinations of state and action abstraction can preserve
representation of good behavioral policies in any finite MDP, summarized by Theorem 9.1.
I next study the repeated application of these joint abstractions as a mechanism for con-
structing hierarchical abstractions. Under mild assumptions about the construction of
the hierarchy and the underlying state-action abstractions, I prove that these hierarchies
can also preserve representation of globally near-optimal behavioral policies, as stated in

Theorem 9.3. I then conclude in Chapter 10 with reflections and directions forward.

Collectively, these results articulate a theory of abstraction in reinforcement learning.

Figure 1.4 presents a visual overview of this dissertation.

14

Part 2 Part 3
STATE ABSTRACTION ACTION ABSTRACTION

e N e N
CHAPTER 3 CHAPTER 6

Approximate State Abstraction Finding Options that Minimize Planning Time

o0
Action Abstraction "
Error P

oun:
Erro RL

Abstract Solution

CHAPTER 4 CHAPTER 7
State Abstraction in Lifelong RL The Expected-Length Model of Options

0
»'/@
= MDP
5
s .
Agent

CHAPTER 5 CHAPTER 8

State Abstraction as Compression Discovering Options for Exploration

"
7 ~ Unif(A)
G <

- nlVi5) = V) q;: ¢ ~ Unif(AuO)

- J g J
Part 4
STATE-ACTION ABSTRACTION
()
CHAPTER 9

Value Preserving State-Action Abstractions

Hierarchical Abstraction

Figure 1.4: A visual overview of this dissertation.

Inow turn to providing necessary background and notation on RL and abstraction. For

those familiar with RL, I recommend skipping to Section 2.2.

BACKGROUND

Parts of this chapter are based on “Concepts in Bounded Rationality: Perspec-
tives from Reinforcement Learning” [2] and “A Theory of State Abstraction

for Reinforcement Learning” [3].

In this chapter, I bring clarity to the concepts of agent, reward signal, world, and abstrac-
tion by introducing the RL problem. In particular, I survey the key definitions and nota-
tion of the RL problem (Section 2.1) along with state (Section 2.2) and action abstraction

(Section 2.3).

2.1 REINFORCEMENT LEARNING

There are many possible choices for formalizing the agent-environment interaction. How
is time to proceed—continuously, or in discrete rounds? What is the space of observa-
tions? Are all worlds of interest necessarily spatial or filled with objects, at least in some
capacity? With so many choices, it is not clear how to restrict attention to a suitable set of
worlds. One natural response might be the space of computable worlds, or perhaps those
with polynomial-time laws that transition the world from one state to the next. Indeed,
it is challenging to identify a set of worlds that is both suitably general while remaining

restricted enough to be useful.

15

16

In computational RL, the space of relevant environments are those that may be modeled
as a discrete-time Markov Decision Process (MDP) [266]. At a high level, the space of
MDPs defines worlds in which the next reward and the probability of arriving at the
next state of the world can be fully predicted by the current world state (and perhaps, an

agent’s choice of action). Formally, an MDP is defined as follows.

Definition 2.1. A discrete-time Markov Decision Process is a six tuple, (S, A, R, T,, po),

where:

* S: A set of states describing the possible configurations of the world.

A: A set of actions describing the possible choices available to an agent.

R:S8xAxS8 — [RMIN, RMax]: A reward function.

T:S8xA— A(S): A transition function denoting the probability of arriving in the

next state of the world after an action is executed in the current state.

v € [0,1): A discount factor, indicating an agent’s preference between near-term and

long-term rewards.

po € A(S): The probability of starting in each state.

The “Markov” in MDP indicates that the transition function, T, and reward function,
R, both depend only on the current state of the world (and action), and not the full state

history. That is,

T(St+1 | St, llt) = p(5t+1 | St, at) = P(St+1 | 50,40, - .,St,ﬂt), (2'1)

R(st, at,5141) = R(St,at, 5441 | S0,40, - -+, St,at). .., St,0t,5¢4+1)- (2.2)

Here, and throughout this dissertation, I use p(x) as shorthand for a probability mass

function P(X = x), where X is a discrete random variable taking on values x € X'

17

Equation 2.1 and Equation 2.2 state that there exist functions that fully characterize
the next state distribution and next reward from the current state and action alone. This
assumption is remarkably useful for simplifying analysis while still retaining appropriate
generality. Moreover, if any environment is not Markov, it is typically feasible to roll
the last k € IN steps of the world into a new memory-rich state representation, thereby
yielding a Markov model. In this way, MDPs generalize Markov chains [55] and Markov
reward processes [274] by allowing an agent to influence the state distribution T(s’ | s,a)
and reward R(s,a,s") according to the agent’s choice of action.

There are a few things to note about the reward function. First, there are three natural
ways it may be expressed: R(s), R(s,a), and R(s,a,s’). Naturally, the third form is the
most general, fully subsuming the first two. For this reason I introduce reward functions
in the most general form, but will occasionally use R(s) or R(s,a) for brevity. Note that
either of these are just shorthand or cases where all actions or all next states have the same
reward for the given state. Second, while I have defined R as a deterministic function, it
can in general be a probability distribution with support [RMIN, RMax]. Throughout the
dissertation I will tend to treat R as deterministic both in analysis and experiments unless
otherwise noted. Lastly, I will sometimes assume the initial reward ry is sampled from
some initial reward distribution R(sy) with the same support mentioned previously.

The central operation of RL is the repeated interaction between an agent and an MDP
in discrete time steps. It is common to assume that the agent knows everything about
the current state of world: the agent has no uncertainty regarding which state it occupies,
only what the reward and transition functions are. A more general formalism also mod-
els hidden information, called the Partially Observable MDP (POMDP) [154]. In both
POMDPs and MDPs, the agent interacts indefinitely with its environment with the goal
of learning how to take actions that maximize long-term discounted reward. Throughout
this dissertation, I make the standard assumption that the environment can be accurately
modeled by an MDP, rather than a POMDP. Other work has considered a more general

variant of the RL problem in non-Markovian settings [280, 134, 331, 197]. I focus only

18

on agents learning in Markovian environments, though note that there is interesting and
important work to be done in clarifying the role of abstraction in these general settings. I
will often restrict attention only to finite MDPs, too, in which the state and action space
are assumed to be finite.

From a methodological perspective, MDPs occupy an appropriate middle ground be-
tween simplicity and generality. I take it to be of fundamental importance to address
prominent open questions in the context of simple formalisms for which those questions
still remain open. By providing principled answers in these restricted settings, we can
systematically build up our understanding and guide future research into richer settings
rooted in first principles.

Under the assumption that RL agents will interact with an MDP, the RL problem can

be stated more precisely as follows.

Definition 2.2. The RL problem is formalized as follows. An RL agent interacts with an

MDP M = (S, A,R,T,v,po) by repeating the following four steps, letting t = O:
1. The agent receives a state sy € S and a reward r; € R from M.
2. The agent learns from this interaction and outputs an action, a; € A.
3. The MDP outputs the next state, Sy.1 ~ T(St41 | St,ar), and reward ryq = R(S¢, a¢, St+1)-

4. Increment t.

The goal of an RL agent interacting with an MDP is to make decisions that maximize

long term discounted reward:

Z iy (2.3)
t=0

The standard objective of an RL agent is to solve for behavior that will prescribe what to
do from any state the agent might occupy. Note, though, that this is a stronger notion than

what is strictly necessary. If the agent starts in state sy ~ pg, then there may be some states

19

of the environment that are difficult to reach. In this sense, it might be more effective
to focus attention on those states that are likely to be visited during the agent’s lifetime.
This insight will emerge shortly when we discuss the quality of an agent’s decision.

We ground this notion of behavior in all states in the MDP with a policy:

Definition 2.3. A policy, w:S — A(A), is a prescription for behavior for any state in the
given MDP.

Note that in the general case a policy can be stochastic. To make a decision, then, the
agent samples a ~ 77(- | s). Given that deterministic policies are often of interest, I will
also use 71(s) to denote a deterministic policy.

To characterize the notion of expected long term expected discounted reward, we next

introduce the value (V) and action-value (Q) functions.

Definition 2.4. The value function V™ : S — R, under a policy v of a state s € S is

denoted

V7(s) = %n(u |s) Z;SR(S, a,8')+~T(s"|s,a)V7(s"). (2.4)

Definition 2.5. The action-value function, Q™ : S x A — R, under a policy 7 of a state

s € S and action a € A is denoted

Q7 (s,a) := ;SR(S, a,s") +4T(s"|s,a)V7(s"). (2.5)

I denote the value (V) and action-value (Q) functions under the optimal policy as V*
and Q* respectively, which are determined by applying the max operator to the Bellman
Equation [41]:

V*(s) = max (Z R(s,a,8") +yT(s"| s,a)V*(s’)) . (2.6)

20

Since the support of R is the real valued interval [RM1In, RMax], I will denote

RM

QMAx = VMax < 1 _AX, (2.7)
RM

OMIN = VMIN > 1 _IN, (2.8)

as upper and lower bounds on the value achievable in a discounted, infinite horizon RL

problem. That is, for any state s in any MDP,

VMIN < V*(s) < VMax. (2.9)

In general, the value of a policy will serve as our primary method for evaluating an
agent’s behavior, and in many cases, for determining learning progress. Recently, Belle-
mare et al. [40] propose an extension to the classical Bellman Equation that translates the
expected future returns into a distribution over future returns. Later work has developed
RL algorithms that learn relative to this distributional objective to great effect [S0, 79, 130],
and has given rise to new explanatory models of the role dopamine neurons play in re-
ward error prediction [81]. While I do not attend to these directions, there is interesting

work to be done in combining the ideas of abstraction and distributional RL.

EXAMPLE. Let us now consider an example: the Russell and Norvig grid world, used
by the classic Al textbook [277]. The Russell and Norvig grid world is a discrete, 4 x 3
two-dimensional grid in which each state corresponds to the agent inhabiting one of
the eleven empty grid cells (Figure 2.1). For the purpose of clarity, I adopt a factored
representation for states. Specifically, each state will be defined as (x,y), for x € Ny,
y € Np3). Here, (1,1) denotes the state in the bottom left corner with x =1 and y = 1,
with x increasing as the agent moves to the right and y increasing as the agent moves up.
Naturally, an enumerated state space representation could be adopted, too, according to
which the states are represented by a single number (and thus not imposing any notion

of “space” onto the problem). The grid world MDP is then defined as follows.

21

Start

Figure 2.1: The classical grid world by Russell and Norvig [277].

Y

- §={(11),(21),3,1),(41),(1,2),(3,2),(42),(1,3),(2,3),(3,3),(43)},

N

. A:{T/ >y ~L/ <_}/

1 s'=(4,3),

S}

. R(S,a,sl) =1-1 ¢'= (4,2),

0 otherwise,

. T(s"|s,a) = 1{s" = grid_move(s,a)} where,

N

(s.x,min(s.y +1,3)) a=tands.x#2,
(min(s.x+1,4),s,y) a=-ands=(1,2),
grid-move(s,a) =1 (s.x, max(s.y—-1,1)) a=|ands.x#2,
(max(s.x-1,1),s,y) a=<«ands=(3,2),

5 otherwise,

5. po(s) = 1{s = (1,1)},

6. v =0.99.

That is, the reward function outputs zero for every transition unless the agent enters

state (4,3) or (4,2), in which case it receives +1 and -1 respectively. The four actions move

22

the agent in each cardinal direction with the exception of moving into the wall or edge of
the environment, which yields no effect. Lastly, when the agent arrives in either (4,3) or
(4,2), the episode ends and the agent moves back to sy to start the next episode.

From the perspective of the learning agent, it does not know that this grid world has
a Cartesian coordinate system, and that the action associated with the symbol “—” will
typically increase its x coordinate. Instead, the agent must repeatedly experiment with
the execution of different behaviors. With the initial state distribution py only assigning
mass to (1,1), the agent is first presented with choosing an action in the lower left state.
Without prior information, each state is equally informative, and so the agent might
choose <. Upon execution of this action, the MDP samples s; ~ T(- | sp = (1,1),a0 =
<), and r1 = R(sp = (1,1),a0 = «<,s; = (1,1)). Now, after this single action execution,
the agent occupies state (1,1), since the <« action moved the agent into the wall. After
receiving the first bit of signal from the environment the agent has the opportunity to
learn something. What effect did applying the “«” action in s = (1,1) have? How much
reward was received? As more data is gathered, agents will be better positioned to give
high confidence answers to these questions for different (s,a) pairs throughout the MDP.

This process continues indefinitely: the agent receives a state and reward pair from the
environment (s, 7;), and chooses an action a;. The MDP then transitions to the next state

and generates the next reward. This process is pictured in Figure 2.2.

s
= s ~T(C [spa) |

F g
S A Tre1 ~ R(8t,a1,5141)

g .

Figure 2.2: The RL problem when an agent interacts with an MDP.

23

It is often useful to allow the agent to periodically reset by resampling sy ~ po. Such
a system typically fixes a finite horizon H € IN and allows the agent to execute up to
H actions before resetting to a start state sy ~ pg. This setting is referred to as episodic
RL, with each episode consisting of at most H steps, as is the case in the grid world
above. In some cases, arriving at special goal or trap states (such as (4,3) and (4,2) in the
present example) can also have the effect of resetting the agent. All of this is in contrast
to continual learning in which the agent repeatedly interacts with its environment and is

never allowed to reset.
2.1.1 Canonical RL Algorithms

What, then, does it look like to solve the RL problem? A typical solution comes in the
form of a learning algorithm that captures a particular strategy for mapping a history of
experiences, (o, So,40,71,51,41,--.) to an action. In this way, the space of RL algorithms is
roughly the space of all functions that map arbitrary length histories of experience to a
choice of action. Good algorithms are those whose action selection becomes better with
time, as measured by the sum of discounted rewards received.

RL algorithms can be divided into three broad categories: policy-based, model-free,
and model-based. Each category is an answer to the question: “which functions are
being estimated during learning?”. If an RL algorithm maintains estimates of the tran-
sition and reward functions, T and R, then it is said to be model-based. If the reward
and transition functions are not estimated, but the action-value function Q is, then the
algorithm is model-free. Lastly, if all that is estimated is the policy directly, then it is
policy-based. These are relatively loose boundaries, however, as many algorithms often
compute partial solutions to different functions or carry out implicit computational work
that resembles construction of one of these functions [328]. A rough division between
these three approaches is pictured in Figure 2.3.

In model-based RL, the transition and reward functions are typically estimated explic-

itly. Then, using these estimates T and R, the agent often constructs a simulated MDP,

24

Model-based

|

Experience

Figure 2.3: The different families of RL algorithms.

M, which can be used to do explicit search for good behavior, or to evaluate different
policies. That is, given simulation access to an MDP M that is sufficiently similar to the
environmental MDP M, the agent can perform computations on M to construct 7* or
perhaps Q*, which can induce a policy by choosing the action with highest value.

In model-free and policy-based RL, the agent typically maintains an estimate of the
action-value function Q or a policy 7t directly. Various mechanisms are adjusted in order
to learn these functions faster by assigning credit more efficiently, generalizing more
robustly, or exploring more elegantly.

There are good arguments to adopt each style of algorithm depending on the context.
For instance, recent work by Sun et al. [303] illustrates a gap in the efficiency between
model-based and model-free approaches under a particular method of dividing the two
families. On the other hand, it has proven difficult to estimate accurate models. For
instance, even nearly-accurate one-step models are known to lead to an exponential in-
crease in the error of n-step predictions as a function of the horizon [157, 54], though
recent approaches show how to diminish this error through smoothness assumptions [23].
Moreover, composing an accurate one-step model into an n-step model is known to give
rise to predictions of states dissimilar to those seen during training of the model, leading
to poor generalization [314]. Notably, model-free and policy-based methods have enjoyed
a great deal of success when combined with deep neural networks, giving rise to so called

“deep RL” methods that learn effectively in a variety of challenging domains from Atari

25

[238] to robotics [199]. For more discussion on the relationship and interplay of these two
families, see work by Asadi [21]. To build further intuition, I now introduce two classical

RL algorithms, one model-free and one model-based.

MODEL-BASED: R-MAX. One of the earliest successful model-based algorithms was
that of Explicit Explore-Exploit or E2, developed by Kearns and Singh [157]. This pioneering
work established early theoretical guarantees for the efficiency E2, which has since paved
the way for a long and fruitful sequence of new and improved algorithms. Around the
same time, Brafman and Tennenholtz [54] introduced the algorithm R-Max, which uses
a similar exploration strategy to E2, and will be used in analysis and empirical study
throughout this dissertation.

R-Max makes decisions by exploring so as to seek out every opportunity for high-
performing behavior. That is, R-Max initially supposes it inhabits the maximally reward-
ing MDP: all rewards are believed to be RMax, the maximal possible reward, and all
transitions are assumed to be self-loops. Then, the algorithm acts according to the opti-
mal policy in this optimistic MDP to explore and collect experience. Consequently, the

algorithm will effectively try new actions that it does not yet know about. R-Max uses all

Algorithm 2.1 R-Max
INPUT: €, J, 7, So

m= f(e, 5)

initialize T, R, n

O = solvemdp(R, T, 7)

t=0

while True do
a; = arg max,, Q(st,b)
rt,St41 = act(sy, ar)
n(ss,ar) =n(sy,a;)+1
if n(s¢,a;) = m then

Q, R,T= update_model ()

end if
t=t+1

: end while

L PN VAR NR

R
= O

S
» N

26

collected experience to inform empirical estimates of the reward and transition function
for each (s,a) pair it encounters. Once enough data is collected for a particular (s,a)
pair, the empirical estimate of the reward and transition replace the optimistic estimate,
and the behavioral policy is recomputed based on this mixture of known and optimistic
reward and transitions. Simplified pseudocode for R-Max is presented in Algorithm 2.1,
where act(sy,a¢) defines a single interaction with the MDP. For more details on R-Max,

see Brafman and Tennenholtz [54] or Chapter 2.1 of Strehl et al. [301].

MODEL-FREE: Q-LEARNING. The second and perhaps most canonical RL algorithm
is called Q-learning, first introduced by Watkins and Dayan [337]. Q-learning maintains
an estimate of the Q function for each state-action pair, and proceeds on the basis of
performing one simple update to this Q function estimate based on the last experience,
(st-1,a4-1,7¢-1,5¢), and a learning rate a € [0,1]. That is, we first initialize a Q-function
according to some protocol, such as choosing Q values uniformly at random from the
interval [QMiIN, QMaXx]. Or, more commonly, the initial Q function is set to be either 0, or
is set optimistically where Qo(s, a) = QMaXx for all s, a. Then, actions are chosen according

to the greedy policy, defined as follows.

Definition 2.6. The greedy policy with respect to some Q function is:

mg(als) =1 {a = arg max Q(s,a')} , (2.10)

where I assume that arg max returns a single entity, breaking ties consistently according to

any fixed method.

Note that if the given Q is in fact Q*, then 71o+- will be optimal. However, prior to
learning Q*, acting greedily will not sufficiently explore the environment as the agent may
over commit to locally promising but globally poor solutions. Indeed, the main guarantee
provided about Q-learning is that its asymptotic performance is optimal subject to the

assumption that every state-action pair is experienced infinitely often in the limit (among

27

other assumptions) [337]. Clearly, for many choices of initialization Qo, the greedy policy
may force Q-learning to only experience a small subset of the state-action space, thus
violating the conditions necessary to ensure convergence to optimal behavior.

The most common method of overcoming this difficulty is to pair Q-learning with an
e-greedy policy, which chooses an action uniformly at random with some small € € [0, 1]

probability, defined as follows.

Definition 2.7. The e-greedy policy, for € € [0, 1], with respect to some Q function is:

1-¢ a=argmax, Q(s,a’),
mge(als) = (2.11)

| AT—l otherwise.

Using an e-greedy policy (or another choice of stochastic policy, such as a softmax [22])
Q-learning makes decisions that are greedy with respect to its current estimate of the
Q function and slowly updates this estimate to be more accurate over time. Specifically,

when an experience (s;-1,a;-1,7:-1,5¢) takes place, the following update is applied:

Qi(si-1,a1) = (1 - a)Qr-1(se-1,a1-1) + (71 + max Qi1(st,a")). (2.12)

The full pseudocode of Q-learning is presented in Algorithm 2.2. For more detail on

Q-learning, see the original work by Watkins and Dayan [337].

Algorithm 2.2 Q-Learning
InPUT: &, v, 50, Qo, €

t=0

2: while True do

3 @~ 7Qe(- | sr)
4 rt,St+1 = act(sy, az)

5 Qrr1(st,ar) = (1—a)Qe(st,ar) + a(ry + maXyrea Qr(St+1,4"))
6: t=t+1

7: end while

28

I will shortly contrast how these two algorithms behave in the grid world described
earlier in the section. First, we must attend to the broader question: what does it look like

to compare different RL algorithms?
2.1.2 Evaluation in RL

As with other areas of machine learning, there are two broad approaches for evaluating
and understanding an RL algorithm. First, theoretical guarantees may be established
about an algorithm, often presented in the form of convergence to desirable fixed points,
a bound on the sample complexity of exploration [155], the algorithm’s (Bayesian or fre-
quentist) regret [28], or a KWIK bound on the algorithm [204]. Second, empirical investi-
gations of hypotheses relating to algorithms and their properties, or analysis on explana-
tory benchmark tasks. These may include visuals of learned policies, value functions,
or representations, or, most commonly, learning curves illustrating the agents learning
process.

In this section I provide a brief overview of these two approaches to evaluation. The
focus of this dissertation is on algorithms (and the abstractions they use) that can reliably
and quickly find near-optimal behavioral policies in any MDP. Naturally, there is much
more to the RL problem that I can not cover here. In particular, we might also care about
robustness, explainability, how an algorithm handles failures, safety, generalization, and

many other properties of interest.

SAMPLE COMPLEXITY OF EXPLORATION. After conducting an experiment that in-
volves a learning algorithm interacting with a chosen MDP, what is useful to have learned
about the algorithm? There are many possible answers. The most pressing is typically
related to the sample efficiency of the algorithm; how many experiences are needed until

the algorithm will achieve a satisfactory level of performance? This notion is grounded

29

in several different measures in RL, with the first being the sample complexity of explo-
ration introduced by Kakade [155], based in part by the analysis done by Kearns and

Singh [157] and Brafman and Tennenholtz [54].

Definition 2.8. Let € € Ry denote accuracy and 6 € Ryg denote an allowed failure probabil-
ity. The expression,

¢ (%/ ; S|, 1A, ﬁ/RMAX) (2.13)

is a sample complexity bound for a learning algorithm < if the following holds. For any

finite MDP M, RMax > 0: let o interact with M, starting in sy ~ po, resulting in the

process So, o, 0,51, - .., Then, with probability at least 1 -6, the number of time steps such

that V¥ (s;) < V*(s¢) —¢, is at most C(%, %, S|, A, %,RMAX).

The sample complexity captures how many mistakes we expect an algorithm to make
in any finite MDD, if left to run indefinitely. That is, a sample complexity of |S| will tell
us that the agent might make one mistake per state in the MDP. The sample complexity
is intended to clarify an RL algorithm’s effectiveness for exploring its environment while
also learning to make good decisions in that environment. It determines, for a given ¢ and
6, how many mistakes the agent is expected to make before acting in a near-optimal way.
The Probably Approximately Correct in Markov Decision Processes (PAC-MDP) [301] cri-
terion expresses a desirable guarantee about an algorithm’s sample complexity, inspired
by the seminal work establishing the learnability of concepts in supervised learning intro-
duced by Valiant [324]. PAC-MDP algorithms are those that achieve a polynomial sample
complexity and computational complexity with respect to ¢,6 and the MDP parameters.

For an early survey of PAC-MDP approaches, see work by Strehl et al. [301].

REGRET. The regret compares an agent’s total expected accumulated reward to that of

the optimal policy from the time of the agent’s first action execution.

30

Definition 2.9. Let u* (M) denote the average reward of the optimal policy in MDP M:
ll/l*(M) :V*(M/S) :mahx(M,n,s). (2.14)

Further let G(M, <7, so, H) denote the total accumulated reward by the agent after H steps
in MDP M with start state sg:

H-1
G(M, o ,s0,H)= > 1 (2.15)
Py

Then the following is the regret of an algorithm, <f , with finite horizon H, on MDP M.

Regret(M, o7 ,s9, H) := Hu* (M) - G(M, </, 59, H). (2.16)

Regret differs from the sample complexity of exploration in several critical ways. First,
the magnitude of each mistake the agent makes matters. While sample complexity counts
the number of mistakes, the size of the mistake made will contribute to an agent’s overall
regret. Second, in measuring regret, the agent’s long term behavior must approach the
global optimum, and not a locally optimal policy for the region of the state space the agent
is in. Regret is also commonly presented in two slightly different forms: Bayesian regret,
in which the agent is compared to optimal behavior relative to its prior, and Frequentist
regret, in which the agent is compared to the true optimal behavior. For more on these

two measures and their relationship, see work by Dann et al. [82].

Kwik. Li et al. [204] introduced the Knows What It Knows (KWIK) criterion, which
captures prominent elements of the PAC objective, but also incorporates an adversarial
element. In KWIK, we suppose there exists an input set X and output set, J. A given
hypothesis class, H, contains a subset of possible functions from X to). The agent’s goal

is to learn some target function, h* € # during the following repeated process:

31

¢ The agent and an adversary are given ¢ € Ry, J € Ryp, and H.
¢ The adversary selects the target function h* € H.

* Repeat:

The adversary selects x € X and gives it to the learner.

The learner predicts an output, § € Yu 1.

If § #1, then it must be accurate: [— h*(x)| < ¢, otherwise, the run is a failure.

If 7 =1, then the learner observes z ¢ Z of the output, where z = y in the

deterministic case, and has noise determined by nature in the stochastic case.
¢ The probability of a failed run must be bounded by J.

* Over the course of a run, the total number of steps on which 7 =1 must be bounded

by B(e,J).

KWIK has been used as a further evaluative criteria in the RL to bound the number
of experiences needed for an agent to accurately learn the model, T and R [93, 334, 335,
336]. KWIK typically deals with learning the transition model or rewards directly, and
so is naturally suited for model-based RL. It provides stronger guarantees than sample

complexity, since both samples and the target function are chosen in an adversarial way.

EMPIRICAL EVALUATION IN RL. Empirical evaluation in RL is naturally diverse. The
most standard experiments assess aspects of the sample efficiency of a given RL algorithm.
A typical experiment proceeds as follows. Choose an MDP, M, and a collection of learning
algorithms, «,...,o%,. Allow each of the n algorithms to interact with the MDP for
some number of steps, H. Then, compare the total cumulative reward received by each
algorithm. In this way, we test the relationship between the amount of experience the

algorithm has and its overall cumulative reward.

32

—e— Q-learning 1.0
404 — Delayed-Q
—— Random 0.8
e R-Max -
g 30 5 06
g = —e— Q-learning
v ¢ 04 —— Delayed-Q
> 20 (9]
S o —— Random
© ©
3 5 0.2 R-Max
€ 10 z
O 0.0
01 ® -0.2
0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48
Episode Number Episode Number
(a) Cumulative (b) Average

Figure 2.4: Example learning curves showing cumulative (left) and average (right) reward
for a variety of RL algorithms.

The results from such experiments are often represented as learning curves where the
X-axis denotes experience and the Y-axis is some measure of performance on the task,
either total reward accumulated or average reward accumulated per time step.

Example learning curves for each of the two algorithms discussed previously (R-Max
and Q-learning) acting in the Russell & Norvig grid world from Figure 2.1 are presented
in Figure 2.4. I additionally include two other approaches for further contrast. First,
a random actor (in orange) that does no learning, but simply always samples from the
uniform distribution over actions. Second, a more sophisticated version of Q-learning
called Delayed-Q (green) [300], that enjoys similar theoretical guarantees to R-Max (both
are PAC-MDP).

The two curves present the same results from a slightly different perspective. On the
left, I show that mean cumulative reward over episodes, presented with 95% confidence
intervals from 100 runs of the experiment. On the right, I show the average reward per
episode, again with 95% confidence intervals (from the same 100 runs).

These plots give us insight into how the different learning algorithms perform on this
grid world MDP. First note that on the first handful of episodes, all of the algorithms

perform nearly identically, on average. This is because nearly any algorithm designed

33

to learn on any MDP will require some number of samples before finding a reasonable
behavioral policy. If an algorithm were to behave well from the outset, it is likely overfit
to the task of interest and is susceptible to learn slowly in other MDPs, by No Free Lunch
[346]. Second, note that R-Max and Delayed-Q ultimately find the optimal policy in the
sample budget allotted. From the definition of the problem, recall that the maximum
reward receivable in any given episode is one. Therefore, note that the average plot
indicates that both R-Max and Delayed-Q are able to achieve one reward per episode
after the first ten or so episodes—this indicates that they have both found near-optimal
policies, and in a relatively sample efficient manner. In contrast, the random approach
unsurprisingly never finds a reasonable policy. Since the —1 square in the grid is easier to
reach on average than the +1 square, the random approach tends to lose reward over time.
Lastly, we find that Q-learning ultimately does find a reasonable policy, but it requires
more samples in order to produce high reward behavior.

These are roughly the questions we ask in running such an experiment: 1) What is the
initial performance like? 2) How long does it take the agent to converge to its eventual
best policy? 3) What is the value of the best policy the algorithm discovers? Learning
curves like the ones presented can help answer each of these questions, thereby giving
insight into the performance of the algorithm on the MDP of interest. Naturally, other
questions are of interest as well, such as how well an algorithm can perform when given
a new task, or its robustness to different hyper-parameter settings.

Beyond learning curves, there are many other facets of an RL algorithm that determine
its effectiveness. Naturally this space is far too vast to summarize, but one important
focus is on how well algorithms address each of the subproblems of RL discussed briefly in
the previous chapter. That is, in confronting the RL problem, algorithms must by neces-
sity tackle several subproblems of deep interest to the broader machine learning and Al
communities, including generalization, the explore-exploit dilemma, credit assignment,
and planning. I next provide detail on one subproblem of special interest, planning. For

more on the explore-exploit dilemma, see the recent book on bandits by Lattimore and

34

Szepesvari [189]. For more on credit assignment, see the recent work by Harutyunyan
et al. [127]. Lastly, for more on generalization as understood in supervised learning, see
the classic works by Valiant [324], Vapnik and Chervonenkis [330], or the book by Shalev-
Shwartz and Ben-David [283].

PLANNING. A computational practice critical to RL is planning. The key difference
between RL and planning is that the full model of the environment is given as input in
planning, so there is no uncertainty around T or R. Planning was originally studied early
on in Al by Bellman [11] and Newell et al. [248] among others. The planning problem is
commonly formalized in the context of a language (such as Strirs [105]) that provides a
high level scheme for expressing the consequences of decisions available to an agent in a
given domain. Under the assumption that environments of interest may be modeled as
MDPs, there is a decision-theoretic version of the planning problem tightly connected to

RL.

Definition 2.10. The MDP planning problem is defined as follows: givenan MDP M as
input, return a sequence of actions that achieves maximal expected discounted reward when

executed in M,

Syt (2.17)
i=1

In the above version of the problem the required solution is a sequence of actions. Of
course, other possible solutions may be of interest as well, such as a policy or value
function, though naturally these tend to be harder to compute.

Depending on the constraints placed on the problem, the general (propositional) plan-
ning problem is known to be PSPACE-Complete [61, 62], but solving for optimal behavior

in an MDP is known to be P-Complete in the size of the environment [257, 209]. Many

35

Algorithm 2.3 Value Iteration
InruT: M, A, V)

1: while True do

2 forse S do

3 Vt+1(5) = MaXged Ys'es R(S/ a, SI) + r)/T(S, | s,a)Vt(s’)
4 end for

5 if maxses [Vi+1(s) - Vi(s)| < A then
6: return V;
7 end if
8 t=t+1
o: end while

problem representations are known to grow super-polynomialy with the number of vari-
ables that characterize the domain and robust action spaces are often large or even con-
tinuous, making many planning problems on the scale of the real world computationally
intractable.

The standard algorithm in MDP planning is a dynamic programming algorithm called
Value Iteration (VI), first introduced by Bellman [42]. As per the name, the idea of VI is
to repeatedly propagate value to adjacent states, starting from some arbitrary initialized
value function Vp and terminating when the optimal value function is realized. Pseu-
docode for VI is presented in Algorithm 2.3.

This dissertation is ultimately about RL, rather than planning. Hence, VI will be treated
a general purpose tool for planning in finite MDPs that can be called as a subprocedure by
RL algorithms. In the context of model-based RL, such subprocedures are often called to
produce a policy 71;7[that is optimal in the simulated MDP M. Abstraction, as we will see,
is particularly effective for accelerating planning, since planning with a well structured
state-action space can be dramatically faster.

For further background on Markov Decision Process, see the text by Puterman [266],
and for more background on reinforcement learning, see texts by Kaelbling et al. [153],

Bertsekas and Tsitsiklis [416] and Sutton and Barto [309, 310].

36

2.2 STATE ABSTRACTION

I next introduce the formalisms for state abstraction in RL, followed by a survey of prior
research in the area.

In an MDP, a state fully describes the current configuration of the environment down
to the last detail. In a finite, discrete-time MDD, the default state representation is the set
containing the states sy,s», ..., S|s|- The actions, A, change the state of the MDP according
to the transition dynamics defined by T. However, this view on states is quite limiting, as
the state representation lacks structure. For instance, we may instead suppose that two
states can be deemed as similar or dissimilar to one another (standing near the bridge
and on the bridge in the forest, for instance). It is precisely these similarities that underlie
ontologies supporting objects, properties, relations, and universals. To facilitate this more
general notion of state, an MDP state is sometimes defined as a vector of variables or
features, formalized as a Factored MDP [167, 123], similar to the typical supervised and
unsupervised learning settings. Other types of MDPs have been introduced that lever-
age some kind of implicit ontological structure, such as Relational MDPs [159, 113], and
Object-Oriented MDPs [93], which explicitly carve the world into objects, their classes,
and functions thereof.

Regardless of the mechanism for representing states, the goal of state abstraction is to
reduce the size or complexity of the state space by grouping together similar states in a
way that doesn’t change anything important about the underlying problem being solved.

Concretely, a state abstraction is defined as follows.

Definition 2.11. A state abstraction is a function, ¢ : S — Sy, that maps each true

environmental state s € S into an abstract state Sp € S¢.

The abstract state corresponds to the agent’s representation of the current configuration
of the environment; it is often not a perfect characterization in that the abstracted state

may throw away some information. In some cases, the underlying state space S may

37

be continuous, and the abstracted space, discrete. For instance, we might let S = Ry,
with Sy = IN induced by the abstraction function ¢(s) = [s]. The function ¢ may also
just reduce a finite space S to a smaller one Sy. In this sense, state representations that
sharpen sensory observations into features or objects are carrying out a particular form
of abstraction.

Determining what information to throw away is the central question behind the theory
of state abstraction: how do effective agents come up with an appropriate abstract under-
standing of the environments they inhabit? I choose to systematize this question through
the introduced state abstraction functions, sometimes called state aggregation functions.

Why study such a broad question using such a specific and simple formalism? As with
our choice of MDPs as the model of the environment, I take it to be important to attend
to our question’s simplest unanswered form. That way, any new results build a foun-
dation upon which subsequent inquiry can take place. There are many other functions
of interest that change the state representation, and it is important to understand each of
them. These simple aggregation functions, ¢, are perhaps the simplest function that allow
analysis and study, and for which new insights can bring clarity to the process of state
abstraction in RL more generally. A natural direction for future work will investigate the
more general classes of state abstraction that are expressive enough to include features,
objects, and their kin.

In general, an RL agent makes use of a state abstraction function as follows. Each time
the MDP produces a state sy, it is first passed through ¢ yielding the abstracted state
syt Then, the agent takes sy as input, learns, and outputs an action a;. This process
is pictured in Figure 2.5. In this way, the agent never needs to know or confront the
environmental state space. Moreover, this division between ¢ and the agent allows for
the study of ¢ in a way that is agnostic to choice of RL algorithm.

It is also possible to define a new abstract MDP that is tightly connected to the original
MDP. I refer to this new MDP as the abstract MDP, My, drawing from the rich history of

abstraction in MDPs [165, 87]. The abstract MDP is defined by three components: the

38

S¢

Agent

Figure 2.5: RL with a state abstraction.

original MDP M, a state abstraction ¢, and a weighting function [273, 327, 203], w : S —
[0,1], such that:

Vspes, t 0, w(s) =1, (2.18)

S€S¢p
where I use s € 54 as shorthand for s € {5€ S: ¢(5) =54}
Together, these three components induce an abstract reward and transition function as

follows.

Definition 2.12. The abstract reward function, Ry : Sp x Ax S — [RMIN, RMaXx], is a

weighted sum of the rewards of each of the ground states that map to the same abstract state:

Ryp(sp,a,55) = 3, > R(s,a,8")w(s). (2.19)

S€Sy 5’55;

Definition 2.13. The abstract transition function, Ty : Sy x A — A(Sy), is a weighted

sum of the transitions of each of the ground states that map to the same abstract state:

Typ(sg | spa) = 3 Y T(s"|s,a)w(s). (2.20)

555415’65;

39

With these two components in place, the abstract MDP is defined as follows.

Definition 2.14. An abstract MDP is induced by the triple (M, ¢, w), yielding:
M(P = (S(P/A/ R(P/ T(])/ Wlpg)r (2'21)

where pg is the start state distribution py projected into the abstract state space.

Of special interest is the best policy representable in this abstract state space. Here,
“best” is understood in terms of the environmental value function, which defines the actual

problem being solved. More formally,

7y, = argmax Egy o, [V (¢(50))]- (2.22)
pelly
The policy 74 is really a mapping from abstract states to actions, but can easily be turned
into a policy over ground states and actions when paired with ¢. That is, for a given state
s, the function composition 714(¢(s)) outputs an action.

This policy is particularly informative as it represents the best solution an RL algorithm
reasoning with a state abstraction may try to discover. At the end of learning, we may
ask about the value loss incurred by the state abstraction, which corresponds to the gap in
value between the true optimal policy and this optimal abstract policy. For instance, if we
were interested in the policy that maximizes the expected ground value function under

the start state distribution, it would be desirable to minimize the following quantity:
min Eq-p, [V*(50) - V7 (s0)]. (2.23)
7T¢€H¢

Much of the technical work of this dissertation focuses on ensuring that abstract policies
that still achieve high value in the original problem still exist. While this property is
not sufficient to ensure an RL algorithm using ¢ can eventually learn good behavior, it is

necessary—if a good policy cannot even be represented, it certainly cannot be learned.

40

Cam a3)

State Abstraction @

8 t138

Figure 2.6: A simple grid world problem (left) and the abstracted problem induced by the
state abstraction (right).

Goa}
Goal

Start
Start

A few brief comments regarding notation and language are in order. Throughout the
dissertation, I will use the term abstract state or cluster to refer to states in the abstract
MDP, and ground or environmental state to refer to states in the original MDP M. I will
occasionally abuse notation and allow 714 (s) to act as shorthand for 74(sy), and similarly
V7 (s) to abbreviate V™™ (¢(s)), and so on. Where it is needed for clarity, I include the
use of ¢. Additionally, I let TL, denote the set containing all policies defined over the
abstract state space Sy induced by a particular ¢. Finally, I use ®,;; to denote the space of
all state abstraction functions.

As a motivating example, let us suppose an agent is placed into a wide hallway with
the goal of reaching the exit, which is placed at the far end of the hall. A traditional
representation for this problem might yield a Cartesian grid: the agent has an x and a
y coordinate, and the up, down, left, and right actions, and must navigate until its y
coordinate is sufficiently large (and so has reached the exit of the hallway). This MDP
and a corresponding abstract MDD, with a single row abstracted, is pictured in Figure 2.6.

What is an effective state abstraction in this domain? Of course, there are many possible
groupings. However, given the structure inherent in the problem, the agent’s x coordinate
is actually irrelevant for computing optimal behavior, or for computing the optimal value

function V* and action-value function, Q*, or (depending on the algorithm) for efficiently

41

learning any of these quantities. Thus, consider the function ¢ that projects the ground
state to an abstract state that only tracks the y coordinate. By this abstraction, all ground
states with the same y coordinate belong to the same abstract state. In this way, the true
state space of size N x M can be reduced to an abstract state space of size equivalent to the
length of the hallway, M. Intuitively, imagine you are walking down a hallway without
obstacles; if your mission was truly to make forward progress toward the exit of the hall,
then there is little need to pay attention to horizontal movement.

A single application of this state abstraction is pictured in the right of Figure 2.6. Again,
this abstract state space throws away information. For instance, there is no longer a
Markov transition model in the abstract space that will track perfectly with every trajec-
tory in the ground MDP. When the agent moves into the clustered state (pictured on the
right in orange), what happens when the agent executes the 1 action? This is determined
by choice of weighting function, w, that induces the abstract MDP. Hence, while there is
no permissible Markov Ty that can predict T(s' | s,a =1), there surely exist Markov tran-
sition functions Ty that can still support representation and discovery of good policies.
Intuitively, such a state space will inevitably induce a wrong but potentially useful model,
reminiscent of the classical adage of Box [51].

To summarize, state abstraction is about translating the environmental state space into
a new, more well behaved space. The central operation is aggregation, which can apply
to both continuous-to-discrete or large-to-small transformations. Different kinds of state
abstractions are guaranteed to preserve certain properties, and are thus desirable for RL
algorithms to discover and use. With our notation and concepts in place, I now turn to a

survey of prior literature on state abstraction in RL.
2.2.1 Prior Work on State Abstraction

The study of state abstraction in RL has a rich history, dating back to early work on ap-
proximating dynamic programs by Fox [107], Whitt [340, 341], Axsédter [29], and Bertsekas

and Castanon [45]. Additionally, much of the literature has been heavily influenced by

42

research on abstraction in planning [279, 165, 86], and hierarchical RL [85, 152, 342, 259,
88, 129]. Indeed, the literature on state abstraction is vast. I here survey prior research

that focuses on state abstraction in the context of RL in MDPs.

BISIMULATION. The work of Fox [107] and Whitt [340, 341] paved the way for under-
standing the value loss of state abstraction in MDPs. Fox and Whitt establish the first
principles regarding state aggregation and its impact on value function representation
and dynamic programming. Building on this work, Dean and Givan [86] developed an
algorithm for finding states that resemble one another via the bisimulation property [188].
Concretely, Dean and Givan [86] introduce the approximate bisimulation metric for par-
titioning an MDP’s state space into clusters of states whose transition model and reward
function are within ¢ € IR, of each other. In later work, Givan et al. [120] use these ideas
to develop an algorithm called Interval Value Iteration (IVI) that converges to the correct
bounds on a family of abstract MDPs called Bounded MDPs, which summarize the space
of possible MDPs the agent could be in, given the agent’s current knowledge of the MDP.

Since then, many approaches have adapted bisimulation in a variety of contexts related
to state abstraction. Ferns et al. [102, 103] develop state similarity metrics for MDPs by
bounding the value difference of ground states and abstract states for several bisimulation
metrics that induce an abstract MDP. More recent work has since extended these bisimu-
lation metrics to cooperate with action abstraction [65] and high-dimensional state spaces
[114, 64]. Taylor et al. [315] further analyze the performance loss associated with using a
bisimulation as part of an MDP homomorphism [272]. In a similar vein, Even-Dar and
Mansour [99] study different distance metrics used in identifying state space partitions
subject to e-similarity, providing value loss bounds for e-homogeneity subject to the L,
norm. Even et al. also prove that the problem of finding the maximally compressing state
abstraction is NP-hard, a result I return to in Chapter 4. In more recent work, Lehnert

and Littman [194, 195] combine ideas from bisimulation with the successor representation

43

[63] in the form of successor features [34]. Lehnert and Littman present a novel combina-
tion of these two concepts in the form of the Linear Successor Feature Model (LSFM) and
establish how LSFMs can underlie effective transfer, generalization, and model-based RL

more generally.

SOFT STATE AGGREGATION. One of the earliest studies of state abstraction in RL was
carried out by Singh et al. [294], who introduce soft state aggregation. These soft forms of
aggregation generalize the typical aggregation function to the class of stochastic functions
$:S — A(Sy). Using ¢ to act, an RL agent samples sy ~ ¢(s), and learns functions based
on abstract sy, rather than s. Singh et al. present convergence guarantees for Q-learning
with a fixed aggregation ¢, and a new heuristic method for adapting such an aggregation

online during learning.

MODEL SELECTION. A related and important body of work studies the problem of
selecting a state abstraction from a given class [173, 216, 251, 142, 254]. Ortner et al. [253]
developed an algorithm for learning partitions in an online setting by taking advantage of
the confidence bounds for T and R provided by UCRL [28], a model-based RL algorithm
that explores its environment efficiently. In earlier work, Konidaris and Barto [173] for-
mulate the abstraction selection problem as a model selection problem, making use of the
Bayesian Information Criterion [282] to inform which abstraction to choose. This work
focuses primarily on the selection of action abstractions, however, and will be discussed
in more length in this later survey (subsection 2.3.1) Later, Jiang et al. [142] analyze the
problem of choosing between two candidate abstractions for model-based RL. The core
analysis again studies an algorithm that treats the choice of abstraction as a model se-
lection problem, and analyzes the trade off between approximation error and estimation
error produced by each abstraction. van Seijen et al. [329] study a similar problem in the
context of Factored MDPs, in which the agent is explicitly given actions that move be-

tween candidate abstractions. Diuk et al. [94] study the closely related problem of feature

44

selection in MDPs, which has also received careful attention in prior work [260, 184, 296].
Diuk et al. make use of the adaptive k-meteorologists problem to learn an appropriate
set of features. Most recently, Ortner et al. [254] also study the problem of choosing an
appropriate state abstraction from a given library during RL in MDPs without trap states.
The key assumption is that at least one of the abstractions in the library induces an MDP—
subject to this assumption, they develop an online algorithm that enjoys bounded regret

relative to this best state abstraction in the library.

LEARNING WHAT IS IRRELEVANT. The early work of McCallum [225] proposed the
U-Tree algorithm that learns to represent state only in terms of its most relevant factors.
The algorithm proceeds by carrying out statistical tests to determine which factors can
be ignored, and which must be included in the tree. This notion of identifying irrelevant
factors has been a key component of many abstraction methods, such as the work by Jong
and Stone [147]. Here, Jong and Stone propose the property of policy irrelevance, which
states roughly that states can be grouped together if they have the same optimal action.
They then present statistical tests that can be deployed to determine which state variables
may be safely ignored. Menashe and Stone [236] introduce an algorithm for abstracting
continuous state, with the goal of inducing a small, tractable decision problem. They
present Recursive Cluster-based Abstraction Synthesis Technique (RCAST), a technique
for constructing a state abstraction that maps continuous states to discrete ones. Like
the other tree-based methods discussed, RCAST uses k-d-trees to partition the state space.
The key insight at the core of RCAST is to partition based on the ability to predict different

factors that characterize the state space.

OTHER ADAPTIVE AND ONLINE METHODS. Several related approaches introduce al-
gorithms for adaptively updating a state-space partitioning scheme, but do not base the
clustering on notions of irrelevance. Lee and Lau [192] use a form of adaptive vector

quantization to repeatedly partition a continuous state space into a discrete one, thereby

45

enabling classical RL algorithms like Q-learning to learn in a continuous space. To carry
out this partitioning, Lee et al. make use of a form of vector quantization to rapidly
cluster a continuous state space online in a computationally efficient manner using a
Voronoi like tesselation of the state space. Then, the resulting state space can be used
by Q-learning like algorithms (such as Temporal Difference or TD learning [305]). Krose
and Van Dam [185] develop a similar approach in the context of controlling a robot to
avoid collisions. Here, the state space is discretized using a Voronoi tesselation of the
input state space, similar to Lee and Lau [192]. Nicol and Chades [250] build on these
approaches by extending the ideas of state-space quantization to the problem of state es-
timation in POMDPs, focused on applications in conservation biology. Lastly, Cobo et al.
[71, 72] study methods for finding state abstractions based on a demonstrator’s behavior—
their method constructs abstract states that can be used to predict what a demonstrator
will do in each cluster. This idea will partially inform the study of Chapter 5 as well.
Similarly, Akrour et al. [12] proposes a method to simultaneously learn a clustering and
learn behavior within each cluster. This coupled learning process is shown to be effective,
as the existence of a sufficiently useful policy within each cluster is precisely the property
needed to determine how to assign the clusters.

Most recently, Du et al. [96] and Misra et al. [237] study the process of learning a state
abstraction online when learning in an observation-rich environment. Both approaches
develop and analyze an algorithm for learning a state abstraction online assuming that
the environment can be well modelled by a small, well-behaved state space, as modeled
by a Block MDP introduced by Du et al. [96]. A Block MDP, roughly, is an MDP that
is describable in terms of a small, well behaved state space, but is observed through rich
observations that are uniquely determined by their underlying latent state. Then, the
algorithm of Du et al. [96] focuses on learning a mapping from this rich observation space
to an estimate of this latent state space. The algorithm of Misra et al. [237] follows a similar
approach, but searches for abstract state spaces in which all ground states share forward

and backward transitions are shared, called “kinematic inseparability”. Both algorithms

46

enjoy guarantees on the sample complexity of RL while learning and exploiting these

state abstractions.

A UNIFIED FRAMEWORK OF STATE ABSTRACTION IN MDPs. Lietal. [203] presented
a unifying framework for state abstraction in MDPs. They define five types of state
abstractions that each ensure some property must hold between all the ground states in
each abstract state. Formally, a state abstraction type is defined with respect to a two-

argument predicate on state pairs.

Definition 2.15. A state abstraction type is a collection of functions ®, c @y associated
with a fixed predicate on state pairs, p: S xS — {0,1}, such that when any ¢, € O, clusters

state pairs, the predicate must be true for that state pair:

Pp(s1) = Pp(s2) = p(s1,52). (2.24)

Several candidate types introduced in previous work are presented in Table 2.1, along
with two notable properties I discuss in Chapter 3 and Chapter 4. For simplicity, I abuse

notation and let ¢, denote the type @, for any predicate p.

Name Predicate Value Loss Transitive

Po max, |Q*(s1,a) - Q*(sp,a)|]=0 o yes

Par ay =a; and V*(s1) = V*(s2) 0 yes

an* 7'(*(51) = T[*(Sz) 0 yes
* * 2eRM.

Po: max, |[Q*(s1,a) - Q*(s2,a)| < € (81_73*2" no
Q1) _ Qs LARMax

Pt MaAXa |5 570y ZbQ*(Sz,b)‘ <€ 2850y no
Q* (s1.4) Q* (sp.0) (AIRMAx+ek+k)

Ppolt max, Zi OGLh Zeb e | S € ZEW no

. 7Q (1) 7 _ 1 Q7 (s2, 2dRM
fo; Vai[TE1=1EF)" yes

Table 2.1: A summary of several existing state abstraction types.

47

Li et al. analyze five state abstraction types, in many cases drawing from state abstrac-

tions introduced in prior work. These five classes are as follows.

1. Puodei: The ground reward function and the ground transition function into abstract

states are the same,

4)model(51) = (Pmodel(SZ) = VYjea: R(S1,61) = R(Sz,&l), (2-25)
and
Vspesaea:), T(s"s1,a) = 30 T(s'|s2,0). (2.26)
s’esg s'esg

2. ¢g=: The Q function under any policy is the same,

$por(s1) = Por(52) = Vaearerr: Q" (s1,a) = Q" (s2,). (2.27)

3. ¢o+: The Q values for each action are the same,

$Q+(51) = P+ (52) == Vaea: Q" (s1,4) = Q" (s2,4). (2.28)

4. ¢qz+: The optimal action is the same and the Q value is the same for that action in

each state.

(1) = o (s2) = argmaxQ’(syx) = argmaxQ' (), (229
X€ ye
and
[V*(s1) - V*(s2)| = 0. (2.30)

5. ¢+: The optimal policy chooses the same action in each state,

Prx(81) = Prr(52) == 77 (51) = 7T (52). (2.31)

48

Li et al. further introduce the ordering operator, ®x > ®y, which states that any in-
stance ¢x € Px is also an instance of ®y. They prove the following ordering among the

five introduced classes:
Theorem 2.1. (Theorem 2 from [203]) For any MDP, ®q > @41 = Por = Pox = Pps = Py

That is, any element of ®,,,4,; is also an element of ®p~, and so on. This result is
particularly useful for understanding planning performance in the abstracted models
and for clarifying convergence conditions of different algorithms. They further prove

that certain types of state abstraction preserve representation of optimal behavior.

Theorem 2.2. (Theorem 3 from [203]) Any state abstraction function of type @,p4e1, Por, P+
or Oy« preserves the optimal policy. That is, if the abstraction ¢ is any of the above types, then the

value loss is 0. Conversely, instances of @+ do not always preserve the optimal policy.

Subsequent study by Walsh et al. [333] investigates the power of state abstraction func-
tions for supporting efficient transfer learning. That is, in the multitask RL setting, they
seek to maximize the speedup ratio, which measures the reduction in time needed to
find a good policy on the current MDP given that information may be transferred from
a collection of source MDPs. Walsh et al. introduce the General Abstraction Transfer
Algorithm (GATA), an algorithm for carrying out effective transfer of state abstractions

across these MDPs by choosing a ¢ that maximizes this speedup ratio.

REPRESENTING STATE IN OTHER FRAMEWORKS. Many previous works have pro-
posed different kinds of state representation (beyond aggregation) for MDPs. Dietterich
[68] introduced the MAXQ framework for decomposing value functions into a hierarchy
represented as an acyclic graph over subtask policies. In subsequent work, [89] further
investigate the impact of state abstraction on learning under MAXQ. Dietterich highlights
five conditions for safe state abstraction, under which a specific RL algorithm operating
in the MAXQ framework is guaranteed to discovery a globally optimal policy. These

tive conditions primarily deal with picking up on the right notions of irrelevance, similar

49

to those methods discussed above. Andre and Russell [17] also investigated a method
for state abstraction in hierarchical reinforcement learning leveraging a programming lan-
guage called ALISP that supports safe state abstraction. Agents programmed using ALISP

can ignore irrelevant parts of the state, achieving abstractions that maintain optimality.

STATE REPRESENTATION AND VALUE FUNCTION APPROXIMATION. A variety of
other approaches to state representation learning have been proposed that parallel the ob-
jectives of state abstraction. For instance, Whiteson et al. [339] build an adaptive variant
of the classical process of tile coding [307] for use in value function approximation. A
related body of work studies the formation and discovery of appropriate basis functions
for use in linear function approximation, typically applied to estimating Q*. Lagoudakis
and Parr [187], Mahadevan and Maggioni [214, 215], and Konidaris et al. [177] propose
different kinds of basis functions (the polynomial, Laplacian, and Fourier, respectively)
for use in value function approximation, each offering different desirable characteristics.
Similarly, Liang et al. [206] present empirical evidence that classical learning algorithms
can achieve competitive performance to many deep RL algorithms. Their approach con-
structs features that are well suited to the structure of Atari games, including properties
like relative object and color locations. The main result of the work shows that with a well
crafted set of features, even a simple learning algorithm can achieve competitive scores in

Atari games.

VALUE PRESERVATION. Since the work of Fox [107], a long line of work has brought
continued clarity the conditions under which state abstractions preserve value in MDPs.
Van Roy [327] provide bounds on the suboptimality achieved by approximate VI in a well-
behaved class of MDPs, in line with work on model minimization [86, 120, 270, 272, 273].
Recent analysis extends these insights to non-Markovian environments [135, 136, 217],
invoking similar classes of state abstraction to those surveyed by Li et al. [203] but adapted

to a more general class of environments. Again, the focus is on determining which classes

50

of state abstraction are guaranteed to preserve representation of high value policies, a
property that will be of central focus throughout the dissertation.

Li [202] also analyze a form of approximate state abstraction as applied to Delayed
Q-learning (see Corollary 1 in Section 8.2.3). The main result here presents a modified
sample complexity for Delayed Q-learning that only depends on the size of the abstract
state space rather than the true state space. The key property to note, however, is that
the analysis assumes Delayed Q-learning is interacting directly with an abstract MDP
My, rather than interacting with M and projecting states through ¢. This difference will
return again in Chapter 4, and particularly Equation 4.1. Additionally, Lehnert et al. [196]
explore the impact of horizon length on representation of value functions, with close
ties to the diameter of an abstract state. They find that the value loss of any policy that
optimizes with respect to an artificially-short horizon can achieve value similar to that of

policies that take into account the full horizon, building on the results of Jiang et al. [143].

STATE ABSTRACTION AND EXPLORATION. Mandel et al. [219] focus on the exploration-
exploitation dilemma in the context of state abstraction. In particular, they introduce a
Bayesian method for clustering states to facilitate effective exploration while generalizing
across the state space appropriately. The core contribution is the algorithm Thompson
Clustering for Reinforcement Learning (TCRL), which addresses the large space of possi-
ble abstract state spaces by exploiting explicit structure present in the environment. As a
result, TCRL narrows the search delicately to improve learning speed, enjoying Bayesian
regret guarantees. A slight variant of TCRL achieves regret similarly to that of PSRL [255].
Separately, Taiga et al. [313] study the exploration-exploitation dilemma from the perspec-
tive of approximate state abstraction.

Moore [240] introduced the Parti-Game algorithm, which uses a decision tree to dynam-
ically partition a continuous state space based on the need for further exploration. That is,
as data about the underlying environment is collected, state partitions are refined depend-

ing on a minimax score with respect to an adversary that prevents the learning algorithm

51

from reaching the goal (and knows the current partitioning scheme). Parti-Game applies
in tasks where 1) the transition function is deterministic, 2) the MDP is goal-based and
the goal state is known, and 3) a local greedy controller is available. Feng et al. [101] also
make use of a tree-based approach—this time, k-d-trees [110]—to dynamically partition
a continuous MDP’s state space into discrete regions. In contrast to Parti-Game, parti-
tions are chosen based on value equivalence, thereby enabling a form of closure under
the Bellman Equation.

Chapman and Kaelbling [66] study tree-based partitioning as a means of generalizing
knowledge in RL. Specifically, Chapman and Kaelbling propose the G algorithm, which
constructs a data-dependent tree of Q-value partitions based on which Q value can ade-
quately summarize different regions of the state space. Over time, the tree will grow to
sufficiently represent the needed distinctions in states. Further work uses decision trees
of different forms to partition complex (and often continuous) state spaces into discrete
models [323]. Asmuth et al. [25] introduce the Best of Sampled Set (BOSS) algorithm, a
Bayesian approach to exploration in RL that accommodates priors for clustering states.
The algorithm itself resembles PSRL: maintain a posterior on models, sample from the

posterior, and use the samples to inform decision making.

STATE REPRESENTATION LEARNING. A separate but relevant body of literature inves-
tigates learning state representations in the context of control and deep RL. For instance,
Jonschkowski and Brock [150] proposed learning state representations through a set of
well chosen ontological priors, catered toward robotics tasks, including a simplicity prior
and a causality prior (among others). These priors are then encoded into an optimization
problem that seeks to jointly optimize over each of their prescribed properties. Similarly,
Karl et al. [156] developed a variational Bayes method for learning a latent state-space
representation of a Markov model, given high dimensional observations. Critically, this
state space is of a simple Markov model, and does not involve decision making or re-

wards, which are critical aspects of learning state representations in MDPs [252]. For a

52

full survey of recent state representation schemes for deep RL, see text by Lesort et al.

[198], or the recent survey by Bertsekas [44].

STATE ABSTRACTION AND PLANNING As a final note, state abstraction has also been
applied extensively in the context of planning. Given the breadth of planning as a field,
I again highlight several methods that are tightly connected to MDPs and RL. Hostetler
et al. [133] apply state abstraction to Monte Carlo Tree Search [166, 74, 139] and expecti-
max search, giving value bounds of applying the optimal abstract action in the ground
tree(s). Other work develops similar methods for incorporating state abstraction into
Monte Carlo style planning algorithms [15, 16, 141]. Dearden and Boutilier [87] also ex-
amine state abstraction for planning, focusing on abstractions that are quickly computed
and offer bounded value. The primary analysis is on abstractions that remove negligible
literals from the planning domain description, yielding value bounds and a mechanism
for incrementally improving abstract solutions to planning problems.

As is hopefully apparent, the literature on state abstraction in RL is exceptionally both
broad and deep. I have chosen to exclude those approaches that are better considered as
joint state-action abstraction, as they will be discussed in subsection 2.3.2.

I now turn to a formal introduction of action abstraction.

2.3 ACTION ABSTRACTION

Action abstractions describes methods that empower the action space of an RL agent. With
a well structured action space, decision making agents can probe more deeply in search,
plan efficiently by focusing on progress toward a subgoal, or prune away irrelevant primi-
tive action sequences based on knowledge of action-optimality correlations. Of course, as
with structuring state, there are many possible operations available to organize the action

space. We might add new long horizon sequences of actions, prune away actions, or add

53

Goal

Goal

Start

(a) Four Rooms MDP (b) Four Rooms MDP with Options

Figure 2.7: The classical Four Rooms domain (left) extended by options (right).

actions that specifically try to satisfy some property or reach a subgoal with high prob-
ability. I here concentrate on what has become the most canonical formalism for action
abstraction, the options framework introduced by Sutton et al. [311].

To introduce options, let us consider the example domain pictured in Figure 2.7. This
problem is known as Four Rooms [311] and will be used as a canonical grid world prob-
lem for simple experiments and visuals throughout this dissertation. As with the original
Russell & Norvig grid world, the agent may move up, down, left, and right, with the goal
of getting from a particular cell in the grid to another. In this case there are long walls that
change the structure of the problem. The flow of movement throughout the environment
is thought to be suggestive of certain types of action abstractions, such as those that take
the agent to the doorways between rooms, or that transition between the rooms directly.
These kinds of additional high level behaviors may be naturally expressed in terms of
options. At a high level, an option is one prescription for an abstract behavior—in the
language of our forest example from Chapter 1, options will constitute the behaviors at
the level of “move to the waterfall” or “navigate back to camp”, rather than “rotate head”.

More formally, an option is defined as follows.

54

Definition 2.16. An option is a triple o = (1, Bo, 77,), where:
* T, ¢ Sisasubset of states denoting in which states the option is available to be executed,

* B, : S - A({0,1}), assigns a Bernoulli random variable to each state denoting the

probability that the option terminates upon arriving in that state,

* 11,:S = A(A) is a behavioral policy.

Options denote abstract actions; the three components indicate where the option o
can be executed (Z,), where it terminates (f,), and what to do in between these two
conditions (71,). Options are known to aid in transfer [172, 174, 58, 321], encourage
better exploration [227, 290, 291, 58, 30, 111, 211, 319, 145], and make planning more
efficient [222, 223, 144].

Action abstraction has historically been treated as a generic class of operations that
change the action space of an agent. Throughout this thesis, I will formalize the process
of action abstraction as a replacement of the primitive actions of an agent with some set
of options, O. I again take this class of operations to be of sufficient generality so as
to characterize the important questions about abstraction, but not to be so general so as
to limit analysis, understanding, and progress. Concretely, I define action abstraction as

follows.

Definition 2.17. An action abstraction is a function w : A — O that replaces the primitive

actions A with a set of options O.

An RL algorithm paired with an action abstraction chooses from among the available

options, denoted ()(s), at each time step. That is,

Q(s):={0eO:5¢eI,}. (2.32)

55

Then, the agent runs the option until it terminates in some state s’ according to B,(s).
Finally, the algorithm again chooses its next option from among the set Q)(s") and repeats
this process indefinitely.

With O replacing the primitive action space, it is not necessarily the case that every
policy over S and A may be represented. That is, the action abstraction may destroy an
agent’s ability to ever discover a near-optimal policy. Note, however, that the formalism is
expressive enough to describe the case where the primitive actions are redefined in terms
of options. For instance, the action a; can be translated into an option by constructing
the option that initiates in every state, terminates with probability 1 in every state, and
executes the policy m; : S - {a}, effectively encodes a; as an option. However, by
including options and primitive actions, learning algorithms face a larger branching factor,
and must search the full space of policies which can hurt learning performance [149].
Hence, it is often prudent to restrict the action space only to a set of options to avoid
blowing up the search space.

Then, when the agent chooses from among available options, the agent commits to
executing the policy associated with the option until the sampled terminating condition
is true for a state the agent arrives in. For example, if the termination condition assigns
zero probability to all states except s4 (in which B(s4) = 1), then the agent will execute
the option’s policy indefinitely until arriving in s4. When the agent reaches sy, the agent
will stop executing the option policy, and will make its next choice of action or option.
So, options facilitate action pruning of a certain form; when an option is selected, every
state the agent arrives in up until termination, the actions not chosen by the option policy
are effectively pruned. The resulting decision making problem slightly loses out on the
Markov property, too, as any state encountered while executing the option will induce a
different policy according to which option is currently being run. This process is pictured
in Figure 2.8. As with state abstraction, I will occasionally use O, to denote the set of all

options to simplify notation.

56

0ec(O

Agent
Figure 2.8: RL with action abstraction.

Since the primary objects of interest in an action abstraction are the options introduced,
O, I will largely talk about action abstraction in terms of which options are added.

Options also give rise to new transition and reward functions based on where the
options will terminate and the trajectory taken by the option’s policy. The model was

originally proposed for options by Precup and Sutton [263, 264], and is defined as follows.

Definition 2.18. For a given <y and option o, the multi-time model (MTM) defines the

transition and reward function by:

T,(' | 5,0) = ki Y Bo(s)P(S| =5' | Sp=5,0 = 0) = ki Y Bo(s (s K 5,0), (233)
=0 =0

R, (s,0):= klE k [rl +yr .+ s,o] . (2.34)
727,

This model allows for straightforward application of many standard RL and optimiza-
tion algorithms to settings that incorporate options. In Chapter 6, I will study how these
models can be exploited to make planning faster, and in Chapter 7, I motivate a simpler
alternative to these models. As with state abstraction, it is natural to define an abstracted

form of the environmental MDP in terms of the available options (and their models) at

57

a given time step. Without further modification, the induced model is in fact a semi-
Markovian decision process, as the situation in which the agent enters state s actually
differs depending on whether the agent is executing some option o, or not [311]. In Chap-
ter 9, I will avoid the semi-Markovian nature of options by studying a restricted subclass
of options that can only describe policies that are Markov in the original MDP.

In the Four Rooms MDP, let us consider two options that terminate in hallways, pic-

tured in the right of Figure 2.7. These two options are defined as follows.

Z(s) s=(1,1),
01 = B(s) 1{s =(3,6) ors=(6,3)},

7(s) argrEax(]l{s =(3,6) ors=(6,3)}+7 > T(s"|5,0)V{(s_(36) or S_(6,3)}(s')) ,
ae s'eS

and,

Z(s) s=(1,1),
0r= Bs) 1{s=(3,6) ors=(6,9)},

7(s) argljax(ll{s =(3,6) ors=(6,9)}+7 > T(s"|5,0)V(s_(36) or S=(6,9)}(s’)) :
ae s'eS

The first option 0; will initiate in the bottom left corner, and will only terminate when
the agent arrives in one of the two hallways leaving the lower left room, and executes the
policy that moves the agent to one of the hallways as quickly as possible. So, the option

might induce the following true trajectory:
(1/ 1)/ -, (2/ 1)/ TI (2/ 2)1 -, (3/ 2)1 -, (4/ 2)1 -, (5/ 2)1 T/ (5/ 3)/ >y (61 3) (235)

When the agent enters a new state while executing either option it draws a sample
from the Bernoulli distribution B,(s). If the sample is 1, then the agent stops following the
option policy, and is again in a position to choose among its active options (and perhaps

primitive actions). In the trajectory above, we define the option 0; such that B,((6,3)) =1,

58

and so the agent will stop executing the option at (6,3). At this point, the agent resumes
its regular action selection process.
With the basic notation and formalisms for action abstraction established, I next survey

previous research in the area.
2.3.1 Prior Work on Action Abstraction

As with state abstraction, research on action abstraction in RL has a long and deep history.
Early work concentrated on incorporating macro-operators [182, 183] that characterized
relevant sequences of actions to accelerate both planning and RL [137, 293, 229, 228, 235,
298], often expressed through hierarchical structures [85, 152, 128]. In the planning liter-
ature, it has long been understood that behavioral abstractions in the form of hierarchies
can greatly accelerate planning speed, as in Hierarchical Task Networks [76, 98]. For these
reasons, the primary focus of work on action abstraction in RL has been to unlock this
same degree of highly efficient decision making.

In the late 1990s and early 2000s, three formalisms emerged for capturing similar no-
tions of abstract behavior. Parr [258] proposed Hierarchies of Abstract Machines (HAMs)
to specify abstract behaviors in terms of partially specified programs. Around the same
time, Dietterich [88] proposed the MAXQ framework for hierarchical RL discussed briefly
in subsection 2.2.1. Finally, Sutton et al. [311] developed the options framework that much
of this section has been focused on. Each of these three methods systematizes the study
of behavioral abstractions in a slightly different way. Given the focus of this dissertation
on options (for reasons discussed earlier in the chapter), I concentrate this survey on prior
research on the options framework.

The initial options work grew out of the dissertation by Precup [262]. Since then, op-
tions have explored for their capacity to address many aspects of the RL problem, from
aiding in transfer, to representation learning, to off-policy evaluation, to planning. This
survey decomposes the use of options into these different desired effects, though in many

cases options are intended to aid in more than one of these processes.

59

OPTION DISCOVERY. Incontrast to planning, incorporating options into RL algorithms
typically requires that options are learned online. It has thus long stood as an open ques-
tion as to what precisely constitutes a good option for RL, and more generally how to
learn good options through interaction alone. The option discovery literature studies
variations of this problem. The emphasis has tended to be on forming objectives that give
rise to algorithms that learn options during RL, though naturally the literature is diverse.

One of the most popular strategies for option discovery is based around the discovery
of subgoals as a mechanism for inspiring options—once a set of subgoals (or often abstract
states) is fixed, options may be defined that move the agent to the subgoal as quickly as
possible. McGovern and Barto [228] propose one of the earliest option discovery methods
based on estimating useful subgoals from a series of past trajectories. The main idea is
to those states that always appear in successful trajectories, and not on any unsuccessful
trajectories—if the number of trajectories is sufficiently large, then intuitively these states
are likely to be useful subgoals. These subgoals are then used to inform options, which
are shown to accelerate RL in benchmark tasks. Digney [90] and Stolle and Precup [295]
introduce similar approaches that determine subgoals based on which states have high
visitation count on past successful runs. By similar reasoning, Menache et al. [235] pro-
pose the Q-cut algorithm for discovering useful subgoals in RL. Here, the subgoals are
identified by estimating the MDP’s transition graph and solving a min-cut problem online
to identify bottleneck states. Mannor et al. [224] later developed an algorithm inspired
by similar principles; the algorithm maintains an estimate of the MDP’s transition graph
and applies a form of state abstraction to determine clusters of states that have similar
value functions. Using these clusters, options are then naturally defined as those policies
that transition between the clusters, thus moving the RL agent between relevant subre-
gions of the MDP. In a similar vein, Castro and Precup [65] construct an algorithm for
discovering options that connects disparate states, with state-distance defined according
to the bisimulation metrics discussed earlier in the chapter. In all of these works, options

are empirically shown to accelerate RL on collections of benchmark tasks. Also along

60

these lines, Provost et al. [265] learn discrete abstract state features in a continuous state
environment. Then, options are constructed that explicitly target nearby feature changes,
thereby again moving the agent through the state space. A separate but closely related
pair of approaches by Thrun and Schwartz [317] and Pickett and Barto [261] searches for
high value policies in related tasks that share decisions in select states. These policies are
then merged to form a general purpose option that is likely to accelerate learning across
the different tasks.

Later, Simsek and Barto [290] build on the above approaches by explicitly studying the
property of movement throughout the MDP, perhaps most closely related to the work
of Mannor et al. [224]. Here, Simsek and Barto use the property of relative novelty to
identify those states that are hard for the RL agent to reach from its current region of the
state space. These hard to reach states (referred to as “access states”) closely resemble
many of the bottleneck or subgoal discovery methods discussed above, but are unique
in that they are defined so as to allow the agent to reach a new portion of the state
space. The relative novelty of a state s; is said to be the ratio of novelty between the
states before s;_y,...,s;_1 and after s;,1,.... Hence, identifying novel subgoals is reduced
to a classification problem in which subgoals are learned that have relative novelty above
a particular well chosen threshold. This classification problem is solved in both a batch
offline and online setting. Using the estimated subgoals, options are generated that allow
RL agents to move more fluidly throughout the MDP. As with many of the approaches
surveyed thus far, experiments are conducted contrasting learning with and without the
learned options on grid world variations and the Taxi task introduced by Dietterich [88].
This was shortly followed by Simsek et al. [292], which blends the notion of access states
with the min-cut method by Menache et al. [235] but focuses on local rather than global
cuts.

In follow up work, Simsek and Barto [291] analyzes the graph theoretic property of
betweenness centrality [109], and argues for its application in formalizing what it means

to be a good option. The betwenness centrality assigns a real number to each vertex of

61

a graph measuring roughly how easy it is to reach all other vertices from that vertex.
Subgoal states, then, are defined as those states with high betweenness centrality in their
local region of the state space. That is, if a state s has considerably higher betweenness
then all states reachable in some chosen n € IN steps from s, it is a good candidate for a
subgoal. Options are then defined based around this subgoal as in prior work.

Konidaris and Barto [174] present one of the first algorithms for option discovery in
goal-based MDPs with continuous state based on the idea of chaining. Concretely, the
algorithm focuses on identifying options whose termination conditions always lie inside
of at least one other option’s initiation condition, thereby ensuring sequential application
of options. The key idea is that the chain of options discovered ensure that the goal is
eventually contained at the end of a chain, thus allowing an execution of the options to
lead to the goal. More generally, the initiation and termination conditions of the options
can be framed around arbitrary target events, such as those subgoals or bottlenecks dis-
cussed in prior work, rather than just the goal state. The chained options are shown to
dramatically improve learning on the challenging continuous state Pinball domain, both
when the ideal options are given up front and when the chained options are learned
online. Bagaria and Konidaris [31] recently extend these ideas to coordinate with deep
neural networks to great effect in environments with rich observations.

As discussed briefly earlier in the chapter, Konidaris and Barto [173] frame the problem
of option discovery as one of model selection—given a collection of experiences collected
during exploration, the objective is to determine the best option from a predetermined
library of candidate options. In this work, Konidaris and Barto in fact study the joint
process of selecting a state and action abstraction. The criteria used to determine the best
abstraction is that of the Bayesian Information Criterion [282], which offers an elegant
principle for determining the simplest, but most explanatory abstraction given the data.
Moreover, it allows for the incorporation of prior knowledge or preference about the ab-
stractions through the prior, as is standard in Bayesian methods. In experiments, the

selected abstractions are shown to accelerate RL performance relative to learning without

62

abstraction, providing strong evidence for the effectiveness of the approach. In follow up
work, Konidaris et al. [175] study the process of learning options given access to data gen-
erated by a demonstrator. Here, Konidaris et al. present CST, an algorithm for learning
how to segment existing trajectories into options, again using the idea of target events
from previous work. That is, given a list of target events, the agent will repeatedly try to
formulate options for realizing these events when they occur. Given access to a trajectory
generated by a demonstrator, the problem is to identify relevant change points through-
out the trajectory that should be broken into target events, and hence, options. These
ideas were later extended to the application of autonomous option discovery and use
on a mobile-manipulator robot, which learned to pull levers to open doors and navigate
through rooms [176]. For more on these approaches, see the dissertation by Konidaris
[168].

More recently, Machado et al. [211, 213] develop a suite of algorithms for discovering
options based around the graph Laplacian of the MDP’s transition graph. The resulting
options, called “eigenoptions”, are behaviors defined by Proto-value functions (PVFs), a
spectral approach to representation learning in RL [215]. The PVF captures, roughly, a
reward-agnostic representation of the diffusion structure of transitions in an MDP. By
similar reasoning to earlier work on subgoal discovery, the PVF may then be used to
identify those regions of the state space that are distant in transition space. Machado et
al. introduce the “eigenpurpose”, a mechanism for defining an intrinsic reward function
that increases as the agent moves toward disparate regions of the state space, as defined
by the PVF. Eigenoptions, then, are those options whose policies are optimal with respect
to this intrinsic reward function. In subsequent work, Machado et al. [213] extend these
ideas to richer settings, allowing for the discovery of eigenoptions in stochastic MDPs
and MDPs with high-dimensional state input. In a similar vein, Eysenbach et al. [100]
propose learning options such that the diversity of the trajectories produced by the set of

options is maximized, thereby generating options that may explore infrequently visited

63

states. Option discovery has also been studied in select other settings, including in inverse

RL [249] by Ranchod et al. [268], and in active learning [73] by da Silva et al. [78].

UNDERSTANDING THE IMPACT OF OPTIONS. Alongside the option discovery prob-
lem, it has also long been of interest to characterize how options impact the RL problem.
As much of the aforementioned work shows, when the right options are used, RL algo-
rithms can be empowered in a dramatic way. Jong et al. [149] address this question by
taking a close look at the impact options have on RL. Much of the focus is on inspecting
the empirical effect different options have on RL algorithms. In particular, Jong et al. set
out to clarify when and why options can help learning. One experiment conducted con-
trasts the learning performance of traditional Q-learning with two variants: 1) Q-learning
with subgoal-based options, and 2) Q-learning with experience replay [207], a mechanism
for improving an agent’s capacity to assign credit across long time horizons. The results
suggest that both variant (1) and (2) perform nearly identically, suggesting that options
are serving the same role that experience replay can. In other experiments, results sug-
gest that options can negatively affect learning performance, or have no change at all. In
particular, when options are paired with the principle of optimism under uncertainty for
exploration, learning time is increased. The conclusion from this study is that it is not
always straightforward that intuitively useful options will have the desired effect, and

that sometimes they can even negatively impact RL.

OPTIONS AND TRANSFER LEARNING. Similarly to state abstractions, options have
long been studied as a mechanism for facilitating transfer across tasks. A collection of
options can summarize many things about previous experience, including good default
policies for exploration, areas of an environment to pursue or avoid, or which actions
should appear in sequence. Early on, Konidaris and Barto [172] developed a method
for building options that are transferable between similar tasks. A core practice of the

method is to separate the problem representation into two types, a global problem-space

64

representation, and a local agent-space representation [1771] that captures an agent-relative
perspective on the environment’s features. Each MDP the agent inhabits is characterized
entirely by its problem-space representation, but the agent adopts the agent-space repre-
sentation for use in transferring options across relevant situations. For instance, in facing
several MDPs with keys and doors, a sensible agent-space option is one that collects the
nearest agent-space key and takes it to the nearest door. In contrast, the problem-space
representation defines these constituents by their absolute coordinates, and thus prohibits
this same form of seamless transfer. Konidaris and Barto make use of given and learned
options for accelerating learning in these key-door grid world MDPs to great effect.

Similarly, da Silva et al. [77] study the acquisition of parameterized options. That is, each
option policy is associated with some parameter that allows the option to adapt flexibly
to specific aspects of the given domain. The proposed approach is cast as a series of
regression problems, given data gathered on a collection of training MDPs. In particular,
this data is used to estimate the geometry of policy space in terms of some number of
low-dimensional manifolds. Then, a series of regression problems are solved that give
rise to the parameters of each option. Experiments are conducted in a challenging dart
throwing game, with results providing substantial evidence for the effectiveness of the
learned parameterized options.

Separately, Brunskill and Li [58] study the option discovery problem in the lifelong
setting. In particular, adopt the perspectives of Probably Approximately Correct (PAC)
learning introduced in the seminal work by Valiant [324]. The first result is a highly
general form of a PAC-MDP [301] guarantee adapted to the case of learning with options.
Recall that a PAC-MDP algorithm is one that is said to have a polynomial bound on the
number of mistakes made by the algorithm with high probability. Brunskill and Li first
present (their Theorem 1) a PAC-SMDP guarantee, suited to the case where an agent
inhabits an SMDP. Using this result, an extension of R-Max, SMDP-R-Mayx, is developed

and analyzed that is again well suited to the case of learning with options. Finally, these

65

insights are applied to the lifelong learning setting in which an agent will face a series of
MDPs sampled from the same distribution, each sharing a state-action space [344].

Thrun and Schwartz [317] performed one of the earliest studies of transferring abstract
actions in RL. The work centeres around the SKILLS algorithm, which identifies corre-
lated action sequences to group together into macro-operators called skills. In a similar
vein, Pickett and Barto [261] propose Policy Blocks, an approach for generating useful
options in lifelong RL. Given a set of optimal policies for some initial number of sam-
pled MDPs, all possible policy combinations are enumerated and scored according to the
size of their intersection with the solution policies. The n best options found this way
are then kept alongside the primitive actions during learning. Topin et al. [321] extend
Policy Blocks to Object-Oriented MDPs [93], thereby allowing for transfer to take place
across tasks that share object structure. The main advantage is similar to the agent-space
approach of Konidaris and Barto [172]: the components of each option can be defined
in terms of objects and their relations that are guaranteed to exist across different tasks,
thereby enabling high-level behaviors to be immediately applicable in new domains. Mac-
Glashan [210] develops a suite of algorithms based on similar ideas, targeting the transfer
of policies across tasks in continuous state settings, or when the tasks require different
state representations.

Most recently, Barreto et al. [35] propose the option keyboard, a framework for com-
bining options together into compositions of novel behavior. The main perspective is to
consider each option as a single key on a keyboard—then, when confronted with a new
task that is a composition of previous tasks [326], a combination of keys can compose a
“chord” that can solve the new task. There are two key technical ideas underlying the
option keyboard. First, a new perspective that views the process of combining distinct
options as one of combining intrinsic reward functions that induce the options; Second,
to make use of of generalized policy improvement (GPI) first presented by Barreto et al. [34],
to inform the creation of new option policies. GPI is a mechanism for constructing a

policy, 7T, from a collection of source policies, 7y, ..., 7T,, such that 7t is guaranteed to be

66

no worse than any in the collection. Hence, the option keyboard first learns a collection
of options designed to maximize independent intrinsic reward streams (also treated as
generic cumulants). Then, these different options can be easily composed to form a new

option that corresponds to any linear combination of the chosen intrinsic reward streams.

OPTIONS AND EXPLORATION. As suggested by earlier work, options can, in ideal
circumstances, dramatically improve the sample complexity of RL. Beyond the discovery
and transfer work already surveyed, a recent line of work has explicitly concentrated
on understanding how options impact exploration. For instance, Fruit and Lazaric [111]
develop an algorithm for minimizing regret of learning options, building on SMDP-R-
Max introduced Brunskill and Li [58]. Fruit and Lazaric propose SMDP-UCRL, an option-
based RL algorithm that builds around UCRL [28]. The main result of the work provides
upper and lower bounds on the regret of this algorithm, along with additional analysis
proving which cases the regret of option learning can be lower than that of traditional
RL. However, SMDP-UCRL requires prior knowledge in the form of the distribution of
reward and expected run time of each option. In follow up work, Fruit and Lazaric
[111] build on SMDP-UCRL with Free-SMDP-UCRL, which no longer requires this prior

knowledge, but still matches the original regret bound up to an additive constant.

OPTIONS AND NEURAL NETWORKS. The focus of much the present survey has been
on options in the context of finite MDPs, with occasional extensions into continuous
state spaces. In many cases, to confront the complexity of rich state spaces, deep neural
networks are exploited for their power in function approximation [191]. To this end,
Bacon et al. [30] established an elegant adaptation of the policy gradient theorem [312] to
the problem of learning options. This result underlies the Option-Critic, a neural network
architecture that supports end-to-end training of option policies and their termination
conditions. Critically, learning options in the Option-Critic does not require any use of

intrinsic rewards, which differentiates it from many of the option discovery approaches

67

surveyed previously. Bacon et al. present strong empirical evidence that the Option-Critic
can accelerate learning on challenging RL domains, even those with rich state spaces such
as games from the Arcade Learning Environment (ALE) [39].

The Option-Critic work was later extended in several ways to cooperate with policy
optimization methods [347], and to generate hierarchies of arbitrary depth [275]. Harb
et al. [124] incorporate the notion of deliberation cost into the training objective, drawing
on ideas from bounded rationality [286]. Here, as with the work of Simsek and Barto
[291], the goal is to clarify what is meant by a good option. Harb et al. answer this
question by arguing that options may be used to help resource-bounded agents make
decisions efficiently under harsh computational constraints. This perspective leads to the
introduction of the deliberation cost that acts as a regularizer to encourage options that
execute for longer periods of time, following similar reasoning to Mankowitz et al. [220].
Additionally, Tiwari and Thomas [319] offered pathways for incorporating the natural

gradient [14] into the Option-Critic, yielding performance gains on benchmark tasks.

THE INITIATION AND TERMINATION OF OPTIONS. The Option-Critic is primarily
concerned with learning the option policies and the termination condition, but assumes
that the options are available everywhere (so Z, = S, for all 0). Khetarpal et al. [160]
extend the Option-Critic to also incorporate the a generalization of the initiation condition
called the interest function of each option. Similarly to the Option-Critic, a gradient-based
update rule is developed that is suitable for learning options, their interest functions, and
their termination conditions, resulting in the Interest-Option-Critic. On the termination
side, Harutyunyan et al. [126] propose options that terminate in an “off-policy” way,
enabling unification of typical off-policy TD updates and option updates. This gives rise
to a new option learning algorithm, Q(), that enables faster convergence by learning
B in an off-policy manner. Similarly, Mankowitz et al. [220] study interrupting options,
a means of improving a given set of options during planning. Their idea is to alter a

given option’s predefined termination condition based on information computed during

68

planning. In this way, options can be iteratively improved via a Bellman like update (with
interruption added). They demonstrate that these new options also lead to a contraction-
mapping that ensures convergence of the option value function to a fixed point. Their
main contribution is to build regularization into this framework by encouraging their
operator to choose longer options. Later, Mankowitz et al. [221] propose Adaptive Skills
Adaptive Partitions (ASAP), a framework for learning when to apply options and what
they should do. ASAP is well suited for continuous state domains, and comes along with
strong properties, including the correction of a misspecified model, and convergence to a

locally optimal set of options and partitions.

OPTIONS AND PLANNING. Perhaps the greatest potential of options is their capac-
ity to empower the planning capabilities of RL agents. Silver and Ciosek [285] develop
compositional option models, which enable recursive nesting of option models through a
generalization of the Bellman operator. Using this new operator, Silver and Ciosek present
an algorithm designed for goal-based MDPS that estimates the transition model and ter-
mination condition for both the goal and subgoals simultaneously. These options and
their models are shown to greatly accelerate planning on the classical planning problems
of Towers of Hanoi and and a navigation task. Separately, Mann and Mannor [222], Mann
et al. [223] analyze the convergence rate of approximate dynamic programming with and
without options. The main result of the work proves that options can improve the conver-
gence rate of approximate value iteration. The degree of improvement depends on how
long the options run for, whether the value function is initialized pessimistically, and the
value of the policies associated with the options.

In a different vein, Konidaris et al. [178, 179] and James et al. [140] use options to gen-
erate a well behaved abstract state representation, even if the underlying environment
is continuous. Building on the chaining work discussed earlier, the main idea is again
to draw on sequential composition from robotics [60]; that is, for each option, the ter-

mination condition of the option must lie entirely inside of the initiation condition of at

69

least one other option. Using this idea, Konidaris et al. construct an abstract symbolic
state representation based on the initiation-termination relationships in a given set of op-
tions. The result is an algorithm that can translate a complicated domain and a set of
options into a domain that is representable in a classical planning language like STrirs.
Notably, the resulting discretized state space, along with the given options, is proven to
have the property that any plan consisting of these options is feasible—that the sequence
of operators is in fact executable. Tom Silver [320] study a related problem, focusing on
how to learn options that may then be exploited by a Strirs planner given new, more
complicated goals than those seen during the learning of the options.

Indeed, existing research on options is broad, exciting, and growing. Many open fun-

damental questions remain, a few of which I will study in Part 3.
2.3.2 Other Forms of Abstraction

State and action abstraction on their own have each been of long lasting interest in the RL
literature. Many of the surveyed methods were in fact designed to carry out both types of
abstraction simultaneously, or focus on one while carrying out the other implicitly. This
is particularly true in the broader study of hierarchical abstraction, which allows for the
representation of phenomena at different levels of granularity.

While my review of prior work concentrates on methods that focus on just state or
action abstraction, there has been a rich history on both hierarchical abstraction and joint
state-action abstraction.

I will differentiate between the process of state-action abstraction from hierarchical ab-
straction as follows. A single application of a state and action abstraction will be defined
as state-action abstraction, whereas a hierarchical abstraction is the repetition of n > 1
applications of state or action abstraction. Ultimately, this difference is purely for conve-

nience, as a single state-action abstraction is effectively a shallow hierarchy.

70

STATE-ACTION ABSTRACTION. Together, state and action abstractions can distill com-
plex problems into simple ones [151, 70]. As with the other types of abstraction, the
literature on joint state-action abstraction is too broad to cover in its entirety. I instead
highlight select works that are particularly relevant to the objectives of this dissertation.

Perhaps most relevant is are those approaches that inform state-action abstraction
through MDP homomorphisms Ravindran and Barto [270, 271, 272, 273], Ravindran [269].
MDP homomorphisms form a compressed representation of a given MDP by collapsing
state-action pairs that can be treated as equivalent. First, Ravindran and Barto [270] adapt
homomorphisms as used in finite state automata [125] for application to MDPs, building
on the model minimization techniques of Dean and Givan [86]. The main idea is to
search through the state-action space for symmetries that allows for the formation of a
functionally identical MDP. This tool is then exploited for the purpose of constructing
homomorphisms and options that induce more compact representation of the original
problem that is similar functionally.

In subsequent work, these ideas are expanded, building toward the more general fam-
ily of SMDP-homomorphisms Ravindran and Barto [272] that allows for the discovery
of symmetries between an MDP and SMDP. Later, Ravindran and Barto [273] general-
ize the previous frameworks to account for similarity of state-action pairs, rather than
equivalence, a move similar to the one I make in Chapter 3. In this work, Ravindran
and Barto introduce approximate MDP homomorphisms and prove the conditions under
which they are guaranteed to preserve representation of good behavior—this result is one
of the strongest of its kind, and heavily inspires the work of this dissertation. For more on
MDP homomorphisms as a framework for abstraction, see the dissertation by Ravindran
[269]. Lastly, in later years, Majeed and Hutter [218] extend the analysis of Ravindran
and Barto to non-Markovian settings, proving the existence of several classes of value
preserving homomorphisms—these classes closely resemble some of the families of state
abstraction discussed earlier: for instance, one family studied groups histories of states

together that induce similar value functions.

71

Mugan and Kuipers [242, 243, 244] develop a holistic approach called Qualitative
Learner of Action and Perception (QLAP) that autonomously discovers state and action
abstractions, even in MDPs with an underlying rich state and action space. The main idea
is to first learn a qualitative state representation supposing that the agent can observe the
value of different variables changing over time. By executing effectively random actions,
a this qualitative representation learns measures such as magnitude and change variables
of the observable quantities. Once enough data is collected, options are defined that
explicitly modify the qualitative variables captured by the learned state representation.
Experiments are conducted in the robotic simulator BREVE [164] in which a simulated
humanoid robot is asked to manipulate objects on a tabletop. QLAP is able to successfully
learn in a variety of tasks involving activities like pushing a block to a particular location
picking up a block.

Finally, Bai and Russell [32] develop a Monte Carlo planning algorithm that incorpo-
rates state and action abstractions to efficiently solve the Partially Observable MDP [154]
induced by these abstractions. That is, given an MDP with state space S, the state-action
abstraction induce a POMDP with observation space Sy. The main results present guar-
antees on the performance of the algorithm: Theorem 1 shows that the value loss of their
approach is bounded as a function of the state aggregation error [133], and Theorem 2
shows their algorithm converges to a recursively optimal policy for given state-action

abstractions.

HIERARCHICAL ABSTRACTION. Hierarchical abstraction captures methods that form
representations—either of state, action, or both—at different levels of granularity. Like
the other forms of abstraction, hierarchy has a rich history in RL, dating back to early
work on feudal learning by Dayan and Hinton [85], hierarchical Q-learning by Wiering
and Schmidhuber [342], HAMs by Parr and Russell [259], and the MAXQ framework by
Dietterich [88]. Since then, research has continued to establish the core principles of hi-

erarchical abstractions, including the study of bayesian hierarchical RL [63], model-based

72

hierarchical RL [148, 205, 108], model-free hierarchical RL [186, 106, 332, 246, 247, 200],
learning hierarchies in imitation learning [190], from demonstration [233], for transfer
[230, 232, 231], in multi-agent RL [116], and for planning [169, 121, 180, 345]. For more on
the early works of hierarchical RL, see the survey by Barto and Mahadevan [37].

In summary: the literature on understanding abstraction and its role in RL is expansive,
and far too broad to cover in this dissertation. I will return to direct comparisons where
appropriate in subsequent chapters, again drawing the distinction between the four ab-
straction types: 1) state, 2) action, 3) state-action, and 4) hierarchical. A visual illustrating

the intuitive difference between these four types of abstraction is presented in Figure 2.9.

J

(o anz) (o z) (o a2

State Abstraction §

eV
(
Action Abstraction ’

Goal
Goal
|
|

Go

3

Start

Start
Start

Start

a]
Goa}
aj
Goaj

Go
Go

g K]
yd S
Hierarchical ™ 3_

State-Action Abstraction Abstraction

i

Figure 2.9: The different forms of abstraction in MDPs.

Sta

Start Goaj

Start

[tart
Ltart
£tart

2.4 ABSTRACTION DESIDERATA

What is a good abstraction? A natural route to answering this question is to measure an
abstraction’s utility in terms of the quality of the representations the abstraction induces,
with a focus on how these representations change the RL problem. These considerations

could be made with respect to a particular choice of RL algorithm (or perhaps family, such

73

as model-free), or, in contrast, may be agnostic to the choice of RL algorithm. Indeed, the
right abstraction for one type of algorithm may be entirely useless to another. Similarly,
some abstractions may be effective in certain kinds of environments—those that abstract
aggressively may be most appropriate in highly uncompressed worlds, for instance. Fur-
ther, it might be the case that the properties underlying useful state abstraction differ
from action.

Throughout this dissertation, I advocate for three simple properties that both state and
action abstractions should have regardless of the choice of environment or RL algorithm.
For this reason, these desiderata are not intended to be exhaustive. There are surely
other properties we might hope abstractions possess depending on the broader context,
domain, or resource requirements. Still, it is useful to highlight an initial set of properties
that capture at least some of what is meant by “good” abstraction—this is precisely the

purpose of these desiderata. They are as follows.

(D1) ErFICIENT-CREATION: Computing or learning the abstraction should not be pro-

hibitively difficult.

Measurement: The most natural evaluation for D1 is to provide sample bounds or
computational complexity results that illustrate what resources are required to ac-

curately learn or construct the abstraction.

(D2) ErriciENT DECISION MAKING: An abstraction should enable efficient decision mak-
ing. That is, planning or learning with a good abstraction should be faster than

planning or learning without it.

Measurement: It is natural to measure such quantities in terms of the speed with
which RL or its subproblems can be solved on MDPs of relevance. Concretely, an
abstraction should lower the computational complexity of planning, or the sample
complexity of RL. Throughout this dissertation I will sometimes use the size of the

induced abstract model as a proxy for this measure, as most worst case sample

74

complexity, computational complexity, and regret bounds depend on the size of the

MDP being solved.

(D3) NEAR OpTIMALITY: An abstraction should enable agents to discover policies that

solve the original problem to a satisfactory degree.

Measurement: 1 measure this property based on some variant of a bound on the value
loss of an abstraction discussed throughout the chapter. Such a bound captures the
suboptimality of the best abstract policy in the environmental MDP. In the case of

state abstraction, value loss is defined in a straightforward way.

Definition 2.19. A value loss bound of a state abstraction ¢ € Oy is any value T € R
such that

min max V*(s) - V™ (s) <, (2.36)
7T¢EH¢ seS

with V the ground MDP’s value function and Il the set of all policies over abstract

states.

Note that to extend this definition to an action abstraction w, we will require some
extra machinery to define the ground value function under a policy over options,
as it is not necessarily well defined due to the semi-Markovian nature of option
execution. I remedy this fact in Chapter g with the introduction of joint state-action
abstractions that are guaranteed to yield a policy class Ilp, for which every entity

has a well defined ground value function.

Other measures of optimality include recursive optimality and hierarchical optimality
introduced by Dietterich [88]. The value loss mentioned above is a bound on the

global optimality, and so is stronger than either recursive or hierarchical optimality.

Abstraction, broadly speaking, reduces the dimensionality of an entity. In the con-
text of sequential decision making, abstraction reduces the representational complexity

needed to support efficient learning in complex decision making problems. This process

75

is captured by D2 (Efficient Decision Making) and D3 (Near-Optimality), with D1 fur-
ther requiring that abstractions should be easy to create, given the computational and
statistical budget available.

I take these three statements as guiding principles that help govern which abstractions

to learn in RL. Collectively, they state the following:

Good abstractions for RL are easy to discover and enable efficient learning of high value policies.

(D1) (D2) (D3)

I now show that satisfying any one or any two desiderata is trivial. In each of the below
remarks, I let M denote the environmental MDP and M denote the abstract MDP induced
by a pair ¢, O, with components (Sy, O, Rypw, Tp,w, 7, pg) and optimal policy 7*. The
reward and transition functions resulting from ¢ and w are defined as a straightforward
combination of the MTM with the weighted average mechanism that underlies Ry and T.
For more detail on the construction of this abstract MDP, and particularly the components
Ry,w, Tpw, see Chapter 9. Further, I let Iy, denote the identity abstraction, such that
Ipw(M) = M. More formally, Iy, is the pair (¢r, w;), where ¢y : s = s, and wy: A= Oy,
with O 4 the primitive actions redefined as options as per the scheme described earlier in

the chapter.
Remark 2.1. All three desiderata are trivial to satisfy individually.

Proof of D1.

For D1 (efficient abstraction discovery), consider Iy . The abstraction is the identity

function, and so requires no computation or learning. O

Proof of D2.

For D2 (supports efficient decision making), suppose we replace the ground state

and actions space with a single state and single action: |Sy| = |O| = 1. Clearly, such

76

a resulting MDP satisfies the first desiderata—it is trivial to plan or learn in the

resulting MDP.]

Proof of D3.

For D3, consider Iy, The optimal policy for Mj, , is exactly the optimal policy for

M, thus preserving representation of high value policies. O

I now show that any pair of desiderata are trivial to satisfy.
Remark 2.2. Any two desiderata are trivial to satisfy.

Proof of D1 & D2.

For D1 and D3, we again consider the abstraction that induces an abstract MDP
consisting of a single state and action. Planning and learning in this MDP are

trivial, and the abstraction can be created without any computation or data. O

Proof of D2 & D3.

For D2 and D3, suppose we solve for the optimal policy 7* in M and abstract
according to the 7t*-irrelevance abstraction that clusters states based on optimal
action in each state [147, 203]. The resulting abstract MDP is as small as can be
without losing the optimal policy, per the result of Li et al. [203], and so may be
said to support quick learning (under the assumption that MDP size may be treated

as a proxy for learning difficulty). Further, the abstract policy 7" is guaranteed to

be optimal when applied in the ground: max,s V*(s) = V7 (s) = 0. O

Proof of D1 & D3.

77

For D1 and D3 we again invoke Iy,. Clearly, the identity function is easy to com-

pute and the optimal policy of M will necessarily preserve optimality. O

The case of interest is an abstraction that satisfies all three desiderata. Really, though,
none of the properties expressed by the desiderata are themselves boolean functions. They
can each be satisfied to a different degree. Depending on the situation, it might be prudent
to represent an near-optimal policy, or to ensure learning is as fast as possible. Thus, when
we look for abstractions, our attention will be on those that achieve an appropriate trade
off between the different properties.

In general, it is unclear whether there is a single optimal abstraction—it will largely
depend on the broader objectives guiding the agent. Do we care about sample efficiency,
safety, asymptotic performance, or reliability? Depending on these criteria, and on the
resources available to the RL agent, different abstractions may be better suited to the
given context. For this reason, much of the analysis in this dissertation is focused on
understanding the interplay between these desiderata.

I now turn to the primary technical contributions of this work, beginning with state

abstraction.

Part 2

STATE ABSTRACTION

APPROXIMATE STATE ABSTRACTION

This chapter is based on “Near Optimal Behavior via Approximate State Ab-
straction” [4], jointly led by D. Ellis Hershkowitz, also in collaboration with
Michael L. Littman.

In this chapter I study which kinds of state abstraction are capable of preserving repre-
sentation of good policies. Intuitively, abstraction of almost any kind throws away some
amount of information. However, in RL, it is desirable (as per our third desiderata) that
abstractions retain enough relevant information so as to allow RL agents to eventually
learn to solve problems of interest. In light of this, I here introduce and analyze classes of
approximate state abstraction that are guaranteed to support representation of near-optimal
behavior, as pictured in Figure 3.1. Concretely, approximate state abstractions aggregate
states based on degrees of similarity in terms of relevant functions like Q, R, and T. As we
will see, these approximate state abstractions can jointly preserve representation of near-
optimal behavioral policies while simultaneously reducing the size of the represented
state space. In this way, this chapter is about state abstractions that satisfy desiderata D2
(efficient decision making) and D3 (near optimality). In the subsequent two chapters I
show how to translate the main conceptual framework here introduced to accommodate

all three desiderata.

79

8o

Goal

State Abstraction

(=)
Bounded

Wor y §

Abstract Solution w
= = 77 N

Figure 3.1: This chapter studies families of approximate state abstraction that induce ab-
stract MDPs whose optimal policies have bounded value in the original MDP.

Start
Start

I will first prove that approximate state abstraction can still preserve near-optimal be-
havior. The main result (Theorem 3.1) shows that, by relaxing state aggregation criteria
from equality to similarity, it is possible to achieve bounded value loss while offering
three benefits. First, approximate abstractions make use of the kind of knowledge that we
might expect a planning or learning algorithm to obtain without fully solving the MDP,
and are thus more in line with the first desiderata. In contrast, exact abstractions often
require solving for optimal behavior, thereby defeating the purpose of abstraction. Sec-
ond, because of their relaxed criteria, approximate state abstractions can achieve greater
degrees of compression than exact abstractions. This difference is particularly important
in environments where no two states are identical. With a more compressed state space,
many subprocedures critical to the overall effectiveness of an RL algorithm can be ac-
celerated. For instance, planning in an abstract model My to compute an estimate of
the optimal policy, 73, tends to be faster with a smaller state space. Third, because the
state aggregation criteria are relaxed to near equality, approximate abstractions are able to
tune the aggressiveness of abstraction by adjusting what they consider sufficiently similar

states. I explicitly build an algorithmic framework around this idea in Chapter 5.

81

Furthermore, I empirically demonstrate the relationship between the degree of com-
pression and error incurred on a variety of MDPs, illustrating a general trade off between

compression and value-preservation that will serve as the focus of Chapter 5.

3.1 FOUR CLASSES OF APPROXIMATE STATE ABSTRACTION

I next describe four different types of approximate state abstractions that preserve near-
optimal behavior by aggregating states on different criteria: ¢q:, on similar optimal Q-
values; ¢yode1., On similarity of rewards and transitions; ¢y, on similarity of a Boltz-
mann distribution over optimal Q-values; and ¢y, ., on similarity of a multinomial dis-

tribution over optimal Q-values. These four predicates are defined as follows.

po:(s1,52) = max|Q"(s1,0) - Q' (s2,)] < (1)

Pmodel ¢(51,52) = max |R(s1,a) = R(sp,a)| < eg and

vaEA,S:pES(p,S’ES;j : ‘T(S, | Slla) - T(S, | SZI“)| < ER, (32)
— Q*(sl,a) _Q*(SZILZ)
Pt (81,82) = max 07 (5,) <eg (3:3)
eQ* (Sl,ﬂ) — eQ* (52/‘1)
Proir (51,52) = max RO <e (3-4)

I now introduce the main theorem of this chapter that shows for each of the four
classes of approximate abstraction, for any finite MDP, the abstracted model preserves

near-optimal behavior. More formally:

Theorem 3.1. There exist at least four types of approximate state aggregation functions, ¢q:,
Pmodel er Prmuir and ¢popr, for which the optimal policy in the resulting abstract MDP, applied to the

environmental MDP, has suboptimality bounded by a function of €:

Vses 1 V*(s) = V™ (s) < 2eRMaxiy,, (3-5)

82

where 1, depends on the predicate associated with abstraction function types:

o = oo (56

Nmodel = % (3.7)
(% + ekporr + kbolt)

Meolt = =) , (3.8)

Mmult = W (3.9)

For tyors and 1,14, I also assume that the difference in the normalizing terms of each distribution

is each bounded by some non-negative constant, ky,;; € Rxo, kpoir € R of €:

< kmultgz (3'10)

|Z Q*(Sl;ai) - Z Q*(SZI El])
!]

< kporze. (3.11)

‘Z eQ" (s1i) _ Z eQ" (s2,4))
- ,

]

Further, I note that 7,4, of the original theorem has since been improved by a factor
of 1/(1-y) through Lemma 4 by Taiga et al. [313].
5 RMax _ 1

= —— since

Naturally, the value bound of Equation 3.5 is meaningless for 2ery > 57705 = —,

this is the maximum possible value achievable in any MDP (assuming RMIN = 0). In
light of this, observe that for ¢ = 0, all of the above bounds are exactly o. Any value
of £ spanning between these two points achieves different degrees of abstraction, with
different degrees of bounded loss. The degree of approximation (choice of ¢) changes the
compression-value trade off made by the abstraction. In the closing section of the chapter
(Section 3.3), I present an empirical study of this relationship in a variety of benchmark
MDPs. In each experiment the finding is consistent: as € increases, the size of the abstract
state space is reduced, and the value loss increases, though the rate at which this trade
off is made differs across tasks. I return to a more technical treatment of this trade off in

Chapter 5.

83

3.2 ANALYSIS

I now introduce each approximate state aggregation family in more technical detail and
prove the main result of the chapter. The proof strategy consists of proving a specific
value loss bound for each of the four function types.

Let us consider an approximate version of Li et al.’s [203] ¢g+. In this abstraction, states

are aggregated together when their optimal Q-values are within e.

Definition 3.1. An approximate Q™ abstraction (¢pg:) has the following form:

Po:(51) = Pz (52) == VYaea :1Q"(s1,a) - Q" (s2,a)| < e. (3.12)

Lemma 3.1. When a ¢ type abstraction is used to create the abstract MDP:

* 2eRMAXx
Vees: VT -V < ——. .
S S (S) (S) (1 _ ,)/)2 (3 13)

Proof of Lemma 3.1.

We first demonstrate that Q-values in the abstract MDP are close to Q-values in the
ground MDP (Claim 3.1). We next use Claim 3.1 to demonstrate that the optimal
action in the abstract MDP is nearly optimal in the ground MDP (Claim 3.2). Lastly,

Claim 3.3 shows that Lemma 3.1 follows from Claim 3.2.

Claim 3.1. Optimal Q-values in the abstract MDP closely resemble optimal Q-values in
the ground MDP:

€
1-9

VseS,aeA : ‘Q*(Sra) - Q;((PQQ (s),a)] < (314)

Consider a non-Markovian decision process of the same form as an MDP, My =

(Sn, A, RN, Tn, 7, po), parameterized by non-negative integer an N € Z, such that

84

for the first N time steps the reward function, the transition function, and state
space are those of the abstract MDP, My, and after N time steps the reward function,

transition dynamics and state spaces are those of M. Thus,

S ifN=0
Sy = (3-15)
S(p O/W

R(s,a) ifN=0
Rn(s,a) = (3.16)
Ry(s,a) o/w

Ty(s"|s,a) ifN=0

Tn(s'|s,a) = gi()T¢(S' |8, a)w(g) ifN=1 (3-17)
gG S
Ty(s"|s,a) o/w

The Q-value of state s in Sy for action 4 is:

Q*(s,a) if N=0
Qi(s,a) = geg(s)Q*(g,a)w(g) ifN=1 = (318)

Ry(s,a) +'ys 'Zs Ty(s¢ | 5,a) maxy Qy_1(5¢",a"). o/w
9'€Sp

We proceed by induction on N to show that:

N-1

VNses,alQn(sn, a) = Q*(s,a)| < > e, (3.19)
n=0

where sy = s if N =0 and sy = ¢ (s) otherwise.

(Base Case: N =0)

When N =0, Q}; = Q7, so this base case trivially follows.

(Base Case: N =1)

By definition of QY;, for any s, 4,

Qi(s,a)= >, [Q"(gm)w(g)]. (3-20)

8eG(s)

Since all co-aggregated states have Q-values within & of one another and w(g)

induces a convex combination,

Qi(sn,a) <ey"+e+Q"(s,a) (3.21)
1
~1Q7 (sw,a) = Q7 (s,a)| < ;87"- (3-22)

(Inductive Case: N > 1)

We assume as our inductive hypothesis that:

N-2

VsesalQN-1(n,a) = Q7 (s,a)[< 3 e". (3-23)
n=0

Consider a fixed but arbitrary state, s € S, and fixed but arbitrary action 4. Since

N >1, sy is ¢gz(s). By definition of Q7(sn,4), Ry, Ty:

Qi) = 3 al) [R5+ X T 5,0) mpx Qi a5,

seG(sn) s’eS

Applying our inductive hypothesis yields:

N-2
On(sn,a) < Y, w(g) x [R(s,a) +y > T(s| s,a)nszlx(Q*(s',a') + e'y”)].

seG(sn) s'eS n=0

85

86

Then,
N-2
Qn(sn,a) <y 22)87” + Z(:)[W(S) Q" (s,a)]. (3-24)
n= seG(sny

Since all aggregated states have Q-values within ¢ of one another:

N-2
QN(sn,a) <y > ey +e+Q*(s,a), (3.25)
n=0
N-1
S QN (sn,a) - Q7 (s,a) <y Y e (3.26)
n=0

Since s is arbitrary we conclude Equation 3.19. As N — oo, ¥\l ey” - ﬁ by

the sum of infinite geometric series and Qy — Qg. Thus, Equation 3.19 yields

Claim 3.1.

Claim 3.2. Consider a fixed but arbitrary state, s € S and its corresponding abstract state
Sp = pQ+e(s). Let a* stand for the optimal action in s, and ag stand for the optimal action

in sp:
a* =argmaxQ”(s,a), a,=argmaxQy(sy, a). (3.27)
a a

The optimal action in the abstract MDP has a Q-value in the ground MDP that is nearly

optimal:

* * * 28
V*(s) <Q"(s,a4) + T (3.28)
-
By Claim 3.1,

€

V()= Q1 (50 < Qjspa’) 4 (5:29)
By the definition of 4, we know that
* * * * 8
Qp(sp,a™) + T < Q¢(s¢,a¢)+ﬁ. (3-30)

Lastly, again by Claim 3.1, we know

2¢
1-9°

Qjsp) + 7 < Q' (505) + (3:31)

Therefore, Equation 3.28 follows.
Claim 3.3. Lemma 3.1 follows from Claim 3.2.

Consider the policy for M of following the optimal abstract policy 7'((}; for t steps

and then following the optimal ground policy 7* in M:

n*(s) ifn=0
Tpn(s) = (332)
mp(s) ifn>0

For n > 0, the value of this policy for s € S in the ground MDP is:
V7n(s) = R(s, wgu(s)) + v Y, Tp(s,a,s")Vor1(s").
s'eS
For n =0, V7 (s) is simply V*(s).

We now show by induction on f that

. o 2¢
VHEZZQ,SES vV (S) < V7Tten (S) + Z ’)’l 1—n . (333)
i=0

(Base Case: n =0)

By definition, when n = 0, V™" =V, so our bound trivially holds in this case.

(Inductive Case: n > 0)

88

Consider a fixed but arbitrary state s € S. We assume for our inductive hypothesis

that

* T, ol i 2¢
V*(s) S VTori(s) + Y v ——. (3-34)
o 1-7

By definition,

V7 (s) = R(s, wgu(s)) + Y. T(s"|'s,a)V7on1(s").
s’eS

Applying our inductive hypothesis yields:

n-1
Vmp,ﬂ(s) > R(s, 7[4),”(5)) + Z;gT(s’ |'s, 7(¢,n(5)) (V*(S’) - Zo ’)’112_8’)/).

Therefore,

n-1 2¢ .
Vi (s) 2 =y 2, 0= 10 (s, 74,1 (5))- (3-35)
i=0
Applying Claim 3.2 yields:
ol 2 2e
Vin(s) 2=y p,v'—— - +V*(s) (3-36)
i=20 l-9 1-7
. * T n < i 2¢
V() SV (s) +)y : (3:37)
i 1-7

Since s was arbitrary, we conclude that our bound holds for all states in S for the

inductive case. Thus, from our base case and induction, we conclude that

* n . 2¢
VieNgses : V7 (s) SV (s)+ > o')
i 1-7

(3-38)

Note that as n - o0, 31! 7i% - (1387)2

Ttpn — 7. Thus, we conclude Lemma 3.1. O

by the sum of infinite geometric series and

89

Now, consider an approximate version of Li et al. [203]'s ¢y,04.1, Where states are aggre-

gated together when their rewards and transitions are within e.

Definition 3.2. We let ¢4, define a type of state abstraction that, for fixed eg €
[RMIN, RMaXx] and e € [0, 1] satisfies:

(Pmodel,s(sl) = ¢model,£(52) - VaeA : |R(S],(1) - R(Sz,a)| <ER

and

Vs¢e$¢,,aeA : Z [T(SI | 51, LZ) - T(S, | 52, a)] <Er. (339)

s'esy

Lemma 3.2. When Sy is created using a ¢ode1 ¢ type:

2eg +27er (|Sp| - 1)

Vees : VT (s) = V7% (s) < RMAX TEE . (3-40)

Proof of Lemma 3.2.

Let B be the maximum Q-value difference between any pair of ground states in the

same abstract state for ¢y,oge1 ¢

B-= max |Q*(s1,a) - Q" (s2,a)|,

51,52/

where sq, 57 € sp. First, we expand:
1 ¢

B = max
51,52,4

R(s1,a) = R(sp,a) +7 ,Z;g[(T¢(S, | s1,a) — Tp(s"| sz,a))rr;a/ax Q*(s’,a’)”

(3-41)

Since difference of rewards is bounded by eg:

B < max
$1,82,4

ey 3 T[T a0 —T(S’ISz,ﬂ))n};,iXQ*(S',a')” 6.42)

5p€Sp 8'€5¢

90

By similarity of transitions under ¢4 :

B <eg+7QMax) er <eg+7y|SlerQMAXx. (3.43)
54;654;

Recall that QMAx < RlMTy Hence:

er +Y(|S|-1Der

B < RMAx
I-v

(3-44)

Since the Q-values of ground states grouped under ¢,,,4.1 are strictly less than

B, we can understand ¢4, as a type of ¢o-p. Applying Lemma 3.1 yields

Lemma 3.2. O

As mentioned previously, the above bound has since been tightened by Lemma 4 of

Taiga et al. [313]. The new bound is

2eg +27er (|Sp| - 1)
(1-7)?

Vses : VT (s) = V7 (s) < RMax (3.45)

Boltzmann over Optimal Q

Next we introduce ¢y,; ., Wwhich aggregates states with similar Boltzmann distributions on
Q-values. This type of abstractions is appealing as a Boltzmann distribution over Q-values
often shows up in exploration methods [309]. We find this type particularly interesting
for abstraction purposes as, unlike ¢g;, it allows for aggregation when Q-value ratios are

similar but their magnitudes are different.

Definition 3.3. We let ¢y define a type of state abstraction that, for fixed e, satisfies:

eQ*(slra) eQ*(SZra)
Prolt,e (1) = Ppolte(s2) = Va RO es) <e. (3.46)

91

We also assume that the difference in normalizing terms is bounded by some non-

negative constant, kp); € Ry, of e

Z eQ*(Sl/h) _ Z eQ*(SZb)
beA beA

< kpolt % €. (3-47)

Lemma 3.3. When Sy is created using a function of the ¢y type, for some non-negative con-

stant k € R: u
. 2e | 7=, + ekporr + kporr
Vses : VT (s) = V™ (s) < RMaAx <1 i ’ 5 ’) (3-48)
(1-7)
Proof of Lemma 3.3.
To prove the result, we make use of the approximation for e*, with ¢ error:
ef=T+x+5~1+x. (3-49)

We let §; denote the error in approximating eQ"(512) and §, denote the error in ap-

proximating eQ" (s20)

By the approximation in Equation 3.49 and the assumption in Equation 3.47:

1+Q%(s1,4)+61 1+Q%(s2,4) + 62
Zj eQ* (s1,4)) Zj e (51,4)) 4l

——

@

<e (3-50)

Either term @ is positive or negative. First suppose the former. It follows by algebra
that:

< 1+Q%(s1,a) +61 1+Q%(s2,a) + 67
- Z] eQ*(Slraj) Z] eQ*(Slraj) + Ekbolt

<e (3.51)

92

Moving terms:

-€ (kbolte +3 eQ*(Sl'”f)) -1+ <
j

. 1+Q*(s1,a) +61
EKbolt Z] eQ*(Slfﬂj)

) +Q"(s1,8) = Q" (52,4) <

€ (8kb01t +3 eQ*(SI'“f)) ~61+0 (3.52)
j

When @ is the negative case, it follows that:

< 1+Q%(s1,a) +61 1+Q%(s2,a) + 67 e
T e 5 Q) ek

(3-53)

By similar algebra that yielded Equation 3.52:

—-€ (_Skbolt + Z EQ*(S]’[H)) -0+ <
j

20" (51.)) +Q"(s1,a) - Q" (s2,1) <

€ (Skbolt +3 EQ*(sl’aj)) -01+d2 (3.54)
j

Combining Equation 3.52 and Equation 3.54 results in:

|Q*(s1,a) = Q" (s2,a)| < 5(A + ekpolt + kbolt) : (3-55)

1-7

Consequently, we can consider ¢y, as a special case of the ¢g: type, with Q*

similarity of

A
B=s(1' '7+skbolt+kbou). (3.56)

Lemma 3.3 then follows from Lemma 3.1. O

93

Multinomial over Optimal Q: @it e

Lastly, I consider a variant derived from a multinomial distribution over Q* for similar
reasons to the Boltzmann distribution, with the multinomial offering the added appeal of

simplicity.

Definition 3.4. Let ¢y11 ¢ define a type of abstraction that, for fixed e, satisfies

_ N Q*(Slla) _ Q*(Slla)
‘Pmult,s(sl) = (Pmult,s(SZ) va Zb Q*(Sll b) Zb Q*(Sll b) <e&. (3-57)

As with the Boltzmann class, I again assume that the difference in normalizing terms

is bounded by some non-negative constant, ky,;t € Rxo, of &:

|Z Q" (s1,a1) = 3 Q" (52,))| < kil ¥ &. (3-58)
i j

Lemma 3.4. When S is created using a function of the ¢, type, for some non-negative

constant k1 € R:

A
u + kmult)

2¢
* 1-
Vses V" (8) =V (s) < RMAX((lv_—,y)Z. (3-59)

Proof of Lemma 3.4.

The proof follows an identical strategy to that of Lemma 3.3, but without the ap-

proximation e* ~ 1 + x. O

94

3.3 EXPERIMENTS

I next conduct experiments to highlight the impact state abstractions of the ¢ type
can have. I provide results for only ¢g- because, as per Lemma 3.2, Equation 3.3, and
Equation 3.4, the other three functions are reducible to particular ¢q: functions. The code
for running these experiments is publicly available.’"

I first explicitly construct an approximate state abstraction instance by approximating
Q* through dynamic programming, then greedily aggregating ground states into abstract
states that satisfy the ¢+ criteria. Since this approach represents an order-dependent
approximation to the maximum amount of abstraction possible, I randomize the order in
which states are considered across trials. Every ground state is equally weighted in its
abstract state (that is, w(s) = 1/|¢(s)|).

For each domain, I report the average number of abstract states and the value of the
best abstract policy in the ground MDP, each with 95% confidence intervals. First, I
compare the number of states in the abstract MDP for different values of ¢, shown in the
left column of Figure 3.2. Second, I report the value under the abstract policy of the initial
ground state, shown in the right column of Figure 3.2. In the Taxi and Random domains,
200 trials were run for each data point, whereas 20 trials were sufficient in Minefield.

These empirical results corroborate the main finding of this chapter—approximate state
abstractions can decrease state space size while retaining bounded error. In Minefield,
observe that as ¢ increases from 0, the number of abstract states is reduced, and optimal
behavior is very nearly maintained. Similarly, in Taxi, when ¢ is between .02 and .025,
we observe a reduction in the number of states in the abstract MDP while value is fully
maintained. For values of € >.025, increased reduction in state space size comes at a cost
of value. Lastly, as ¢ is increased in the Random domain, there is a smooth reduction in

the number of abstract states with a corresponding cost in the value of the derived policy.

3.1 https://github.com/david-abel/state_abstraction

https://github.com/david-abel/state_abstraction

Epsilon vs. Num Abstract States

S

5

e
PP PSP S

v
S

Num Abstract States

| ®—e Num. Ground States
=k Num. Abstract States

0.00

0.05

0.10 0.15

Epsilon
(a) Minefield

Epsilon vs. Num Abstract States

700
(%]
o
2
©
3
0 509
—
[}
E 4
b=
[%]
_2
c P
=]
2 /| ®—® Num. Ground States e,
k=K Num. Abstract States st
0’.‘ 00 0.605 0610 0615 0.620 0.625 0.030 0.035
Epsilon
(c) Taxi
Epsilon vs. Num Abstract States
(%]
O 100jmem
2
© ng(
3
[
kY,
o e—e Num. Ground States
“ k=X Num. Abstract States
Q
< 4
€
2
WW
0.0 0.2 03 0.4
Epsilon
(e) Random

95

Epsilon vs. Value of Abstract Policy

-
5

-
S

AR -9
L Rt 7

3

o

k=X

Val. Optimal Policy
Val. Random Policy]|
Val. Abstract Policy,|

~

Value of Abstract Policy

0.10

Epsilon
(b) Minefield

Epsilon vs. Value of Abstract Policy

°

°

Value of Abstract Policy

o2

o
n

N

W

o

e—e Val. Optimal Policy
|| e—e Val. Random Policy]|

ra

¥—X Val. Abstract Policy|

00 0.005 0.010 0.015 0.020 0.025

Epsilon
(d) Taxi

o

30 0.035

Epsilon vs. Value of Abstract Policy

o

Value of Abstract Policy

kY

—

e—e Val. Optimal Policy

|| e—e Val. Random Policy]|
¥—X Val. Abstract Policy|

N

0.0 0.1 0.2 0.3

Epsilon
(f) Random

Figure 3.2: € vs. Num States (left) and € vs. Abstract Policy Value (right).

When ¢ = 0, there is no reduction in state space size whatsoever (the ground MDP has 100

states), because no two states have identical optimal Q-values.

These experimental results also highlight a noteworthy characteristic of approximate

state abstraction in goal-based MDPs. Taxi exhibits relative stability in state space size and

96

behavior for e up to .02, at which point both fall off dramatically. I attribute the sudden
fall off of these quantities to the goal-based nature of the domain; once information critical
for achieving optimal behavior is lost in the state aggregation, solving the goal—and so
acquiring any reward—is impossible. Conversely, in the Random domain, a great deal of
near optimal policies are available to the agent. Thus, even as the information for optimal
behavior is lost, there are many near optimal policies available to the agent that remain
available.

To summarize, in this chapter I motivated and introduced the family of approximate
state abstraction. Each of the four types analyzed is guaranteed to preserve representation
of good behavioral policies, with the degree of suboptimality induced a direct function of

the amount of knowledge used to inform the state abstraction.

STATE ABSTRACTION IN LIFELONG RL

This chapter is based on ‘State Abstractions for Lifelong Reinforcement Learn-

ing” [6], joint with Dilip Arumugam, Lucas Lehnert, and Michael L. Littman.

In the previous chapter, I motivated the family of approximate state abstraction, which
can preserve representation of good behavior without requiring a perfect solution to the
MDP of interest. In this chapter, I extend these results to the case where an agent is
presented with a continuous stream of tasks to solve. That is, I study state abstraction in
the context of lifelong RL.

Indeed, a long standing goal of Al is to understand how autonomous agents can accu-

mulate and make use of knowledge across a variety of related tasks, or perhaps from a

¢

S‘P 1

Figure 4.1: Lifelong Reinforcement Learning with State Abstraction.

97

98

continual stream of experience. This setting (and its kin) has appeared under a variety
of names including multitask learning, lifelong learning, transfer learning, or continual
learning. The premise of each of these settings is to agents that must interact with and
solve many different tasks over the course of a lifetime, as studied by Thrun [316], Wilson
et al. [344], Isele et al. [138], Walsh et al. [333] and Wilson et al. [344]. There are important
nuances that separate each of these specific settings, but the spirit is largely the same. I
will henceforth use the term lifelong learning to capture the many variations of this setting.

Lifelong reinforcement learning presents a particularly difficult set of challenges as it
forces agents not only to generalize within an MDP, but also across MDPs. Drawing from

prior literature, I offer the following definition of the lifelong RL setting.

Definition 4.1. In lifelong reinforcement learning, the agent receives S, A, po, horizon
H, discount factor vy, and query access to a fixed but unknown probability distribution over
reward-transition function pairs, D. The agent samples (R;, T;) ~ D, and interacts with the
MDP (S, A, R;, Ti, v, po) for H time steps, starting in state sy ~ po. After H time steps, the

agent resamples from D and repeats.

The tools of abstraction are particularly well-suited to assist in lifelong RL, as state
abstraction can capture relevant task structure across MDPs that can aid in information
transfer and accelerate learning. Equipped with the right state abstraction, then, an agent
might be able to learn in an extremely sample efficient manner, even on unseen tasks.
It is precisely this insight that I investigate in this chapter. For more motivation and

background on lifelong RL, see work by Brunskill and Li [59].

4.1 TRANSITIVE PAC STATE ABSTRACTIONS

Concretely, I propose two new classes of state abstraction that together are easy to com-
pute in the lifelong setting. That is, the joint family of 1) transitive, and 2) PAC state
abstractions are efficient to compute, can be estimated from a finite number of sampled

and solved tasks, and preserve expected near-optimal behavior in lifelong RL. These are

99

the first state abstractions to satisfy this collection of properties. I close the chapter with
a negative result, however: PAC-MDP algorithms [301] such as R-Max [54] are not guar-
anteed to interact effectively with an abstracted MDP, suggesting that additional work
is needed to leverage this idea to yield sample efficient learning. Finally, I conduct sev-
eral simple experiments with standard algorithms to empirically corroborate the effects
of state abstraction on lifelong RL.

I will make use of two PAC-MDP algorithms from prior literature: R-Max [54] and
Delayed Q-learning [300]. As discussed in Chapter 2, a PAC-MDP algorithm comes with
a guarantee that it will only make a polynomial number of mistakes with high probability,
thereby ensuring that it explores the MDP efficiently. Delayed Q-learning is a model free
algorithm that also makes heavy use of optimism to inform its exploration strategy.

In general, computing the approximate state abstraction that induces the smallest pos-
sible abstract state space for that predicate is known to be NP-Hard [99]. Indeed, this
result limits the potential utility of state abstractions, as reducing the size of the abstract
state space is the main goal of state abstraction; a smaller state space is desirable as the
reduced MDP is (typically) easier to solve.

I first introduce transitive state abstractions, a restricted class of approximate state ab-
stractions that can be computed efficiently. Intuitively, transitive state abstractions induce
an equivalence class on ground states; transitivity guarantees that the predicate p associ-
ated with the type satisfies the implication [p(s1,sp)and p(s2,53)] = p(s1,53). Many
existing state-abstraction types are transitive. However, the approximate abstraction types
introduced in the previous chapter are not transitive. Thus, I next introduce a transitive

modification of each of the approximate state-abstraction types.

Definition 4.2. For a given d € [0,VMAX], ¢ . denotes a state-abstraction type with
d

predicate:

QX/I(;L“)] i} {QRA(;zfﬂ)}_ (4.1)

ptIi\/I(SI/SZ) = Vied: [

100

Intuitively, the abstraction discretizes the interval from [0, VMax] by buckets of size d.
Then, a pair of states satisfy the predicate if the Q*-values for all actions fall in the same
discrete buckets. Note that this predicate is transitive by the transitivity of being-in-the-
same-bucket. As I will show in the next section, the above type affords representation
near-optimal behavior as a function of d.

The second new family of state abstractions introduced are those that are suitable for
application to a distribution of MDPs. The motivation for these state abstractions is to
identify a mechanism for extending a state abstraction that preserves representation of
good policies in one MDP to the case of many MDPs. In particular, I will later show
that PAC abstractions ensure, with high probability over the task distribution D, that a
high value policy is representable. The family is defined as follows, inspired by PAC

learning [324].

Definition 4.3. 4)2 is a PAC state abstraction belonging to type ¢, such that, for a given
0 €(0,1], and a given distribution over MDPs D, the abstraction groups together nearly all
state pairs for which the predicate p holds with high probability over the distribution. More
formally, for an arbitrary state pair (s1,s,), let o} denote the predicate that is true if and only

if p is true over the distribution with probability 1 - x:
0k (s1,52) = P {pm(sts2) =1) 21 -x. (4-2)
Then 4)2 is a PAC state abstraction if there exists an € € (—=0,0) such that, for all s1,s:

P {0, (s1,52) = ¢5(s1) = P (s2) } 2 1 - 6. (4-3)

101

4.2 ANALYSIS

I now present our main theoretical results on each of the two new abstraction types.
These results summarize how to bring efficiently computable, value-preserving state ab-

stractions into lifelong RL. I first analyze transitive abstraction, then PAC abstractions.
4.2.1 Transitive State Abstractions

I first show that transitive state abstractions can be computed efficiently.

Theorem 4.1. Consider any transitive predicate on state pairs, p, that takes computational com-
plexity c, to evaluate for a given state pair. The state abstraction type ¢, that induces the smallest

abstract state space can be computed in O(|S] - c,).

Proof of Theorem 4.1.

Let ¢, denote the computational complexity associated with computing the pred-
icate p for a given state pair. Consider the algorithm consisting of the following
four rules for constructing abstract clusters (which define the abstract states) using

queries to each of the |S|* state pairs. Let (s;,s;) denote the current state pair:

1. If p(si,sj) is true, and neither state is in an abstract cluster yet, make a new

cluster consisting of these two states.

2. If p(s;,sj) is true and only one of the states is already in a cluster, add the

other state to the existing cluster.
3. If p(si,s;) is true and both s; and s; are in different cluster, merge the clusters.

4. If p(s;,s;) is false, add each state not yet in a cluster to its own cluster.

Running this algorithm makes one query per state pair, of which there are |S[.

Thus, the complexity is O (|S* - ¢p).

102

From steps 1-3, after iterating through the possible state pairs, there cannot exist
a state pair (sy,s,) such that p(sy,s,) is true but s, and s, are in different clusters.
Further, by transitivity, when we apply the cluster merge in step 3, we are guaran-

teed that every state pair in the resulting cluster necessarily satisfies the predicate.

Thus, we compute the smallest clustering definable by p. O

The intuition here is that we can avoid many computations by relying on transitivity.
Any one query made of a state pair predicate can yield information about all state pairs
in the equivalence class. Critically, the complexity of ¢, dictates the overall complexity of
computing ¢y.

Recall that most known approximate state-abstraction types are not transitive (see Ta-
ble 2.1, for instance). Hence, I next show that there exists an approximate state-abstraction

type—with a transitive predicate—with bounded value loss:

Theorem g4.2. The ¢ abstraction type is a subclass of ¢q: introduced in the previous chapter,
with d = ¢, and therefore, for a single MDP, the optimal abstract policy 7ty resulting from ¢gq-

ensures
2dRMax

V*(s0) = V7% (s0) < a7

(4-4)
Proof of Theorem 4.2.

For any two state-action pairs that satisfy the predicate p%,, we know by definition

of the predicate that for each action a, there exists a Qjyyer such that:

Qlower < Q*(Slz LZ) < Qlower +4,

Qlower < Q*(SZIQ) < Qlower +d.

Therefore, for each action a:

Q% (s1,4) - Q" (s2,8)[< d. (4-5)

103

Therefore, ¢ is a subclass of ¢g:. O

Thus, the ¢ class represents a reasonable candidate for state abstractions as it can
be computed efficiently and posses a value loss that scales according to a free parameter,
d. When d = 0, the value loss is zero, and the abstraction collapses to the typical ¢o-
irrelevance abstraction from Li et al. [203]. Note that predicates defining other existing
abstraction types, such as ¢,+ [203], also have natural translations to transitive predicates
using the same discretization technique. While most of the main theoretical results are
agnostic to choice of predicate, I concentrate on Q based abstractions due to their simplic-
ity and utility. Notably, none of these state abstractions require exact knowledge of Q*: I
always approximate it based on knowledge of prior tasks. Our results shed light on when
it is possible to employ approximate knowledge of this kind for use in decision making.

Recall, however, that the primary goal of state abstraction is to reduce the size of the
agent’s representation over problems of interest. A natural question arises: if one were
to solve the full NP-Hard problem of computing the maximally compressing state ab-
straction of a particular class, how much more compression can be achieved over the
transitive approximation? Intuitively: Is the transitive abstraction going to compress the

state space? The following result addresses this question.

Theorem 4.3. For a given d, the function belonging to the transitive abstraction type ¢ that
induces the smallest possible abstract state space size is at most 24 times larger than that of the
maximally compressing instance of type ¢gx, for d = e. Thus, letting Sy denote the abstract state
space associated with the maximally compressing ¢pqx, and letting S, denote the abstract state

space associated with the maximally compressing ¢ ,:
[Sel- 2 > |- (4.6)

Proof of Theorem 4.3.

104

Let M be an arbitrary MDP. Consider a set of states S c S clustered together under
$or and, in particular, consider the Q-values of all states in S fora particular action,

a € A. Note that, by construction of ¢g:, for any
Vs,s’e§ : |Q*(S/a) - Q*(S,,ﬂ)| <g,

Recall that, intuitively, ¢ is a discretization of the interval [0, VMax] where d
controls the placement of boundaries, forming buckets of Q-values. The Q-values
for all states in S and for action 4 reside in a single sub-interval of length .

Letting d = ¢, the placement of boundaries that form ¢g: could break the e-
interval of Q-values for the non-transitive cluster S no more than once, resulting
in the creation of at most two new state clusters in ¢q-. Repeating the process for
each action, these separations within the original cluster compound, resulting in at

most 2Ml such subdivisions and, accordingly, 21! clusters in ¢q: for each cluster in

PQ:- u

The above result shows that the non-transitive, maximally compressing state space size

can in fact be quite smaller than the transitive approximation (by a factor of 214).
4.2.2 PAC Abstractions

Next, I analyze PAC abstractions for the purpose of extending state abstractions to the
lifelong setting. I first show that, for any abstraction type ¢, its PAC variant achieves

bounded value loss (with high probability) as a function of the single task loss of ¢,:

Theorem 4.4. Consider any state-abstraction type ¢, with value loss T,. That is, in the traditional

single task setting, letting 71, denote 1y :

Vses 1 V¥ (s) = V7 (s) < 7. (4.7)

105

Then, the PAC abstraction (/)2, in the lifelong setting, induces a policy 11, 5 with expected value
loss:

* 7-[*,
Vses MH::D [VM(S) - VMM(S):I <e(1-38)T, +36VMax. (4.8)

Proof of Theorem 4.4.

By definition of PAC abstractions, with probability 1 -4, the abstraction function
¢>;§ aggregates if and only if pg .o for some small ¢ € (-4, 9).

Then, with probability 1 -4, there is at least a 1 -6 — € chance that the predicate
holds for a particular state, by definition of pg . Thus, by definition of p(’; , with prob-
ability (1-0)(1 -6 -¢), the state abstraction correctly aggregates, and consequently
the inherited value loss 7, bound holds. If the abstraction incorrectly aggregates,
the value loss can be up to VMax.

Letting € = 6, we see that the PAC loss is at worst upper bounded by a convex
mixture of T, with probability (1-35), and with probability 35, is VMax. Thus, the

expected value loss of ¢ is:

* 7[*'-
Vses M]I:ZD [VM(S) - (s)] <e(1-36)T1, +36VMAX. (4-9)

The value loss may be quite high, as up to 30VMax value can be lost in the worst
case. Accordingly, it is important to be cautious in selection of J. This bound is not tight,
however, so in practice the value loss is likely to be lower.

Next, I show how to compute PAC abstractions from a finite number of sampled tasks.

Theorem 4.5. Let o7, be an algorithm that given an MDP M = (S, A,R,T,) as input can

determine if p(s1,S2) is true for any pair of states, for any state abstraction type. Then, for a given
2

0¢€(0,1] and e € (=6,0), it is possible to compute a PAC abstraction 43;5, after m > 1n€(_20) sampled

MDPs from D.

Proof of Theorem 4.5.

106

We are given as input a ¢ € (0,1], a distribution over MDPs D, and the algorithm
4/, which, given an MDP M and a state pair outputs pp(s,s’).
Consider an arbitrary pair of states s and s’. For m sampled MDPs, the algorithm

4, can produce a sequence of m predicate evaluations:

p1(s,s"), pm(s,s"). (4.10)

Let p be the empirical mean over the predicate sequence:

p=—>riss). (4.11)
i-1

The clustering algorithm is quite simple: for our input ¢ € (0,1], cluster all state
pairs (s,s") such that p(s,s") > 1 -6 after m samples.

We now prove that, for a particular setting of m, the resulting cluster assignments
constitute a state abstraction that clusters a pair of states only if the predicate is true
with high probability.

First, let p denote the probability that p is true over the distribution:

?(Slsl) = IPM~D{p(SIS/) = 1}' (4-12)

Using Hoeffding’s Inequality, we upper bound the probability that p deviates from

P by more than some small € € (0,0):

P{|p(s,s") -E[p(s,s")]| > e} =P{|p(s,s") - P(s,s")| > ¢} < 2e72me, (4.13)

Thus, for 6 = 2e~2me.

P{|p(s,s") -p(s,s")| <&} >1-6. (4.14)

107

Rewriting;:

P {jf(s,s)~P(s,s)l <&} >1-0 (415)
P{-e<p(s,s")-p(s,s)<e}>1-9, (4.16)

2
In 5

By algebra, note that, when m > —*, the condition of Equation 4.14 holds.
Let p? denote the predicate that is true if and only if p is true over the distribution

with high probability for a given J:

. 1 p>1-9
5 (s1,52) = (4.17)
0 otherwise.

Now, we form our state abstraction under the following rule:

$o(s1) = is2) = p(s,s) > 1-4. (4.18)

If, after m samples, p were identical to p, then we would have:

Vs i Prn{pf(s,s) = $(s1) = 5 (s2)} 2 1-6. (4.19)

Hence, p deviates from p by at most € with probability 1-4. Thus, for some
g€ (-06,0), p+e=p. Therefore, the clustering rule defined by Equation 4.18 ensures

there exists an € such that, with high probability, we cluster according to:

Voo 05 (51,52) = 95(s1) = ¢ (52). (4-20)

2
We conclude that, for m > h;—z" sampled and solved MDPs, we compute a lifelong

PAC state abstraction q@f,. O

108

Note that this result assumes oracle access to the true predicate, p(s1,s2), during the
computation of (f)f,. The analogous case in which p can only be estimated via an agent’s
interaction with its environment is a natural next step for future work.

Given the ability to compute PAC abstractions from a finite number of samples, I now

study the interplay between state abstractions and PAC-MDP algorithms for efficient RL.

Theorem 4.6. Consider an MDP M and an instance of R-Max [54] that breaks ties using round-
robin selection over actions. Now, consider R-Max paired with a state-abstraction function ¢ with
value loss bounded by ey € Ryo. If R-Max interacts with M by projecting any received state s
through ¢, then R-Max is no longer guaranteed to be PAC-MDP in M (even relative to mistakes
defined by ey). In fact, the number of mistakes made by R-Max can be arbitrarily large.

Proof of Theorem 4.6.

Consider the simple three state chain:

K KQ‘H(+RMax
& —®

The agent has three actions, left, right, and loop, associated with their natural

effects (left in sy is a self loop with reward 0, while right moves the agent to s;,
and so on).

In states sy and sy, let the reward for 1oop be some small constant «, and let the
loop action in s3 yield RMax reward.

Let v = 0.95, s define the initial state, and x = 0.001. Suppose the agent reasons
using an instance of ¢+ with ¢ = 0.1. Then, observe that all three states may be

clustered, since:
VSE{SO,S]rSZ} : lg}aa;(Q* (S, ul) - Q*(S, 112) <E (4'21)

That is, note that the Q™ values of each state-action pair are roughly as follows:

109

Q*(sg,right) »0.90 Q*(sq,right) ~0.95 Q*(sy,right) ~0.95
Q*(so,1eft) »0.86 Q*(s1,1left)~0.86 Q*(s2,left) ~0.90
Q*(sg,1oop) »0.87 Q*(s1,1lo0p) »0.91 Q*(s2,loo0p) ~ 1.0

Therefore, for € = 0.1, a valid clustering assigns ¢(so) = ¢(s1).

To break ties, we suppose R-Max chooses actions according to a round-robin policy,
starting with action left. Thus, in the abstract, R-Max first chooses left, then right,
then self loop, then left, right, self loop, and so on, until each state-action pair is
known.

In the above problem, this sequence of actions will never lead the agent out of
state sp or s;. Let m denote the parameter given to R-Max that determines how
many samples per state-action pair are sufficient for the pair to be considered
known. Therefore, after m executions of these three actions across states sy and
s1, R-Max with ¢ will compute a transition model that assigns zero probability to
arriving in g from the aggregated state ¢(sg). Further, the action loop will have
the largest reward associated with it—«, a reward chosen to be arbitrarily small—
which is thus arbitrarily worse than the goal reward. So, R-Max with ¢ will make

an unbounded number of mistakes even when ¢ is a state abstraction that ensures

bounded value loss. O

The above result is a surprising negative result—it suggests that there is more to the
abstraction story than simply projecting states into the abstract. Specifically, it is indicative
of future work that clarifies how to form abstractions that preserve the right kinds of
guarantees.

To communicate this piece more directly, I conduct a simple experiment in the 3-chain
problem introduced in the proof of Theorem 4.6. Here I run R-Max and Delayed Q-
learning with and without ¢q-, with abstraction parameter ¢ = 0.01. Each agent is given
250 steps to interact with the MDP. The results are shown in Figure 4.2. R-Max, paired

with abstraction ¢g;, fails to learn a anywhere close to a near-optimal policy. In fact, it is

110

1.0 |
i‘
o 0.8
©
2
& 0.6
(4
2
B M
= 0.4 0
g —e— RMax
©o0.2 —— RMax-¢o;
—— Delayed-Q
0.0 Delayed-Q-¢o:

0 30 60 90 120 150 180 210 240
Step Number

Figure 4.2: Results averaged over 50 runs on the pathological three chain MDP introduced
in the proof of Theorem 4.6.

possible to control a parameter in the MDP such that R-Max performs arbitrarily bad. It
remains an open question as to whether ¢ preserves the PAC-MDP property for Delayed
Q [30o].

To highlight this point further, I next show that projecting an MDP to the abstract state
space via ¢ and learning with M, is non-identical to learning with M and projecting

states through ¢:

Corollary 4.1. Consider any RL algorithm </ whose policy updates during learning and a fixed
choice of state abstraction, ¢. Let o7, denote the algorithm yielded by projecting all incoming states
to ¢(s) before presenting them to o7, and let My = (S, A, Ty, Ry, 7, pg), denote the abstract MDP
induced by ¢ on M, with w(s) the uniform weighting function.

There exists an MDP M such that the process yielded by <y interacting with M is not identical
to o interacting with My, even if nf%(s) = 7t'(s) for all t and s. That is, there exists choice of
¢ and M such that the expected trajectory of these two processes is non-identical. Formally, there

exists a time step t € IN, MDP M, and ¢ € P,y such that

E [si|so]# E [si]so], (4.22)
ﬂf,s(rpg Hp,50 ~Po

where sy is the state the agent arrives in after t time steps.

Proof of Corollary 4.1.

111

Note that when M, is computed directly, the functions Ry and T, assume a fixed
weighting function w(s).

Again let us consider the three state chain MDP from the previous proof. During
typical interaction between M and ., no such fixed weighting function exists for
any algorithm </ that updates its policy. That is, the distribution of states the agent
finds itself in will change as its policy changes, and therefore, w(s) must change,
too, thereby updating T,. Conversely, in the true MDP, T remains fixed.

Thus, the process of . interacting with M induces a sequence of interactions
with abstract MDPs whose transition and rewards change along with the policy

the agent follows. Thus, for some non-identity ¢, for any algorithm .7 whose

policy changes over time, the resulting expected interaction may be different. O

These results illustrate a peculiarity to using state abstractions in RL: abstracting during
interaction is distinct from offline abstraction. This result is reminiscent of Theorem 4 and
Theorem 5 by Li et al. [203] that describe the impact ¢ can have on convergence guarantees
of well known RL algorithms. An important direction for future work is to provide a
cohesive framework that preserves both PAC and convergence guarantees, whether the
abstractions are used offline or online.

To summarize the analysis in this chapter: any state abstraction that belongs to both
the transitive class and the PAC class is: (1) efficient to compute, (2) can be estimated from
a polynomial number of sampled and solved problems, (3) and preserves near-optimal
behavior in the lifelong RL setting. The identification of such a class of desirable state
abstractions for lifelong RL is the main contribution of this chapter, gesturing toward
state abstractions that can trade off between all three desiderata. Alongside these positive
results, I have highlighted shortcoming of state abstractions in the final two results, raising
open questions about how to generalize state abstractions to work well with existing PAC-
MDP algorithms.

I now move on to an empirical study evaluating the utility of these abstractions.

112

4.3 EXPERIMENTS

I conduct two sets of simple experiments with the goal of illuminating how state abstrac-
tions of various forms impact learning and decision making. The code for running these

experiments is publicly available.**

* Learning with and without cpg: I investigate the impact of different types of abstrac-
tions on Q-Learning [337] and Delayed Q-learning [300] in different lifelong RL task

distributions.

¢ Planning with and without 4)2: Second, I explore the impact of planning via VI (Al-
gorithm 2.3) with and without a state abstraction, intended to be suggestive of the

potential to accelerate model-based algorithms with good state abstractions.

In each case, I compute various types of 4);57 according to the sample bound from The-
orem 4.5, with 6 = 0.1, and the PAC parameter ¢ = 0.1 (the worst case €). I experiment
. 5 . 5 i 5 . e 1.
with (4)Q*), approximate ((pQ;), and transitive ((,bQ;) state abstractions from the Q similarity
classes across each of the above algorithms. I experiment with probably approximate Q
based abstractions because their value loss bound is known, tight, and a small function of
the approximation parameter, and (2) They have known transitive variants and are thus
simple to compute, as shown in Theorem 4.1. Further, if a Q* based abstraction presents
no opportunity to abstract (the reward or transition function change too dramatically

across tasks), then Theorem 4.5 indicates that ¢ will abstain from abstracting.

Lifelong RL

Each learning experiment proceeds as follows. For each agent, at time step zero, sample
a reward function from the distribution. Then, let the agent interact with the resulting
MDP for 100 episodes. When the last episode finishes, reset the agent to the start state s,

and repeat. All learning curves are averaged over samples from the distribution. Thus,

4.1 https://github.com/david-abel/rl_abstraction

https://github.com/david-abel/rl_abstraction

113

improvements to learning from each ¢ are improvements averaged over the task distribution.
In all learning plots we report 95% confidence intervals over the sampling process (both
samples from the distribution and runs of each agent in the resulting MDP).

Color Room: I first conduct experiments testing Q-learning and Delayed Q learning on
an 11 x 11 Four Rooms variant, adapted from Sutton et al. [311]. In this task distribution,
goal states can appear in exactly one of the furthest corner of each of the three non-starting
rooms (that is, there are three possible goal locations) uniformly at random. Transitions
into a goal state yield +1 reward with all other transitions providing +0. Goal states are set
to terminal. To explore the impact of abstraction, I augment the problem representation
by introducing an irrelevant state feature: color. Specifically, each cell in the grid can have
a color red, blue, green, or yellow. All cells are initially red. The agent is given another
action, paint, that paints the entire set of cells to one of the four colors uniformly at
random. No other action can change the color of a cell. The color has no impact on either
reward or transitions, and so is fundamentally irrelevant in decision making. We are
thus testing the hypothesis as to how effectively the sample based PAC abstractions can
pick up on the irrelevant characteristics and still support efficient but high performance
learning. Given the inherent structure of the Four Rooms domain we also experiment
with an intuitively useful hand-coded state abstraction, ¢, that assigns an abstract state
to each room for a total of four abstract states. The agents all start in the bottom left cell.

The top row of Figure 4.3 shows results for algorithms run on the Colored Four Rooms
task distribution. For Q-learning the data suggest that all three PAC abstractions achieve
improvement in mean cumulative reward, averaged across 100 task samples. Notably, the
slope of the learning curves are similar as well, suggesting that the policies discovered
after 100 episodes are comparable in value. Notably, the variants with the abstraction
tend to find better policies more quickly. In the case of Delayed-Q, the new transitive PAC
abstraction (green) finds even further improvement over the baseline algorithm, both in

terms of learning speed and the value of the policy used near the end of learning.

114

50 —e— Q-learning 50{ —®— Delayed-Q d
—— Q-learning-¢o; Y —— Delayed-Q-¢o; a

© 40 —— Q-learning-¢o; © 40 —— Delayed-Q-¢o; Yy
g Q-learning-¢o- g Delayed-Q-¢o*
g 301 Q-learning-¢, 2 301 Delayed-Q-¢,
[[
= =
© 5
S 20 =} 1
€ €
S S
o O

10 7 10 4

O 7 0 4
0 15 30 45 60 75 90 105 0 15 30 45 60 75 90 105
Episode Number Episode Number
(a) Q-Learning, Color Room (b) Delayed Q, Color Room
—e— Q-learning —eo— Delayed-Q

2501 —— Q-learning-¢o; 80 —+— Delayed-Q-¢o;
- —— Q-learning-¢o; - —— Delayed-Q-¢o;
§ 200 Q-learning-go- ‘g o Delayed-Q-¢o-
[[}
o o
o 150 [
= = P
k] 40 7
S =] A
2 100 g 7
=] =]
° < “ 20

o—0—0—0-0—0-0—0—0—0=
0] soeee 0
0 60 120 180 240 300 360 420 480 0 15 30 45 60 75 90
Episode Number Episode Number
(c) Q-Learning, Upworld (d) Delayed Q, Upworld

Figure 4.3: Cumulative reward averaged over 100 task samples from the Colored Four
Rooms task distribution (top) and the Upworld task distribution (bottom).

The bottom row of Figure 4.3 present results for the same learning set up with the Up-
world MDP distribution. This domain is an extremely simple 30 x 11 grid world, where
one of the 30 possible goals in the top row is active at any given time. The agent always
starts in the bottom left corner. As expected, the data suggest that the improvement from
the abstraction in this domain are dramatic, as there is great opportunity to abstract. The
performance of both baseline algorithms is dominated by any of the approaches that use
state abstraction.

Four Rooms: I next conduct an experiment in a larger 15 x 15 Four Rooms variant in

which color and paint are removed to explore the degree to which the irrelevant variables

115

[}
o

—eo— Delayed-Q
—+— Delayed-Q-¢q;
—— Delayed-Q-¢o;
Delayed-Q-¢o-
Delayed-Q-¢5

w
o

IS
o

Cumulative Reward
N w
o o

=
o

o
>
>
>

>
>
>

(
!

0 30 60 90 120 150 180 210 240
Episode Number

Figure 4.4: Delayed Q-learning on a 15 x 15 Four Rooms task distribution.

explain the learning improvement found in the previous experiment. I evaluate Delayed
Q-learning again with the same process for constructing state abstractions, again with
250 episodes, with 100 steps per episode. Here, the results suggest that the abstractions
do effectively nothing to change learning—no irrelevant variables are included in the
problem, and so only a few states are clustered. The original MDP has around 200 states,
with the abstract state spaces averaging around 150 states. Consequently, learning is
largely unchanged. However, not that in the case of ¢, when each state in the same
room is clustered together, learning is devastated. This again highlights the importance
of delicately choosing a state abstraction. Even when the other state abstractions did not

accelerate learning, they at least did not negatively impact it, either.

Planning

To give further evidence of the potential benefits offered by state abstraction I next con-
trast the time taken to plan with and without the state abstraction. Indeed, the benefits
of state abstraction to planning have been well studied [165, 133, 141, 15, 16]. I next study
the impact of giving VI (Algorithm 2.3) a state abstraction in four simple problems. The
first is the 10 x 30 Upworld grid problem from Chapter 3, the second is the standard Four

Rooms domain, the third is the Color Rooms domain from the previous experiment, and

1.6
—— VI-¢O‘;
141 —— v
i
T 1.2
S
\% 1.0
gos
£
0.6
c
=
£04
o
0.2
0.0 ———
4 6 8 10 12 14 16
Grid Width
(a) Planning in Upworld
2.00
—o— Vi-¢o;
R 1.75 Vi
5 1.50
c
o
& 1.25
°a
[
2 1.00
E
©0.75
=
€ 0.50
©
T
0.25
0.00
3 4 5 6 7 8 9
Grid Width

(c) Planning in Color Rooms

© © o o o
=) = = N N
vl o v o v

Planning Time (seconds)

o
o
S

116

—— V|-¢od~
—— Vi

w
»
w
o
~
0
©
o
o

Grid Width

(b) Planning in Four Rooms

Planning Time (seconds)
e = = N N W
w o w o w o

o
o

—e— Vi-¢o;
—— Vi

4 6 8 10 12 14 16 18
Num. States

(d) Planning in a Random MDP

Figure 4.5: Planning time for Value Iteration with and without a state abstraction as the

environmental state space grows.

the final is the Random MDP from Chapter 3. In each MDP, I vary the size of the under-

lying state space and contrast the time taken for VI to converge with and without a state

abstraction.

Results are presented in Figure 4.5. The findings are expected: in both Upworld and the

Color Rooms MDPs, there are opportunities to abstract aggressively, thereby significantly

lowering the computation needed to run VI to convergence. In the other two domains,

there is some opportunity to abstract, but not as much, and consequently the benefits to

planning time are not as dramatic. In all cases, the ground value of the computed policy

117

is identical. Thus, the data suggest that planning can be accelerated when there is oppor-
tunity to abstract. Consequently, model-based RL algorithms employing the appropriate
state abstractions may be able to plan more efficiently.

In this chapter, I focused on bringing state abstraction theory out of the traditional
single task setting and into lifelong RL. I introduce two new complementary families of
state abstractions, (1) transitive state abstractions, and (2) PAC abstractions. Together,
they characterize state abstractions that can be feasibly obtained (satisfying D1) while
still preserving near-optimal behavior (satisfying D3). Additionally, I drew attention to
several shortcomings of learning with abstractions, building on those studied by Li et al.
[203] and Gordon [122], suggesting pathways for realizing the full potential of abstraction
in RL. Moreover, the experimental evidence suggests that both planning and learning
can be made more efficient when these abstractions are used—in this sense, these state

abstractions target the satisfaction of all three desiderata.

STATE ABSTRACTION AS COMPRESSION

This chapter is based on “State Abstraction as Compression in Apprenticeship
Learning” [9] joint with Dilip Arumugam, Kavosh Asadi, Lawson L.S. Wong
and Michael L. Littman, and “Learning State Abstractions for Transfer in

Continuous Control” [24] led by Kavosh Asadi, also with Michael L. Littman.

In the previous two chapters, I analyzed classes of state abstraction functions that can
reduce the size of the underlying state space while simultaneously preserving representa-
tion of good policies. This dual-objective closely parallels the mission of information theory,
which presents a rigorous formalism for understanding communication in the presence
of noise. The key results of information theory are centered around the act of compres-
sion—how an entity can be reduced in size while preserve its essence. There is striking
similarity between this process and that of abstraction. A natural line of reasoning, then,
seeks to establish more explicit contact between the tools of information theory and the
process of abstraction. Indeed, cognitive neuroscience has suggested that perception and
generalization are tied to efficient compression [27, 288, 289], termed the “efficient coding

hypothesis” by Barlow [33].

118

119

9 A(p(a), p())

Reference p(a)
Policy

me(als)

Figure 5.1: The proposed framework for trading off compression with value via state ab-
straction.

The goal of this chapter is to adopt the viewpoint that state abstraction for sequential
decision making can be understood as a process of compression. From this new per-
spective, I will introduce a new algorithm for constructing state abstractions that imports
many of the desirable characteristics enjoyed by some of the key algorithms of informa-
tion theory. Precisely, I draw a parallel between state abstraction as used in reinforcement
learning and compression as understood in information theory. This parallel is heavily
inspired by the seminal work of Shannon [284], Blahut [17], Arimoto [20] and Tishby
et al. [318], and draws on insights from related work on understanding the relationship
between abstraction and compression [19, 297].

While the perspective I here introduce is intended to be general, I will restrict the
initial study by concentrating on the learning problem when a demonstrator is available,
as in Apprenticeship Learning [26, 1, 19], which simplifies aspects of the model. I will
later build toward the regular RL setting after this initial framework is established.

Concretely, I introduce a new objective function that explicitly balances state-compression
and performance. The main result of this chapter proves this objective is upper bounded
by a variant of the Information Bottleneck objective adapted to sequential decision mak-
ing. I introduce Deterministic Information Bottleneck for State abstraction (D1ss), an algo-
rithm that outputs a lossy state abstraction optimizing the trade off between compressing

the state space and preserving the capacity for performance in that compressed state

120

space. I present empirical results that showcase the relationship between compression
and performance captured by the algorithm in a traditional grid world, along with an
extension to high-dimensional observations via experiments with the Atari game Break-
out. Then, I introduce several extensions to this framework that relax critical assumptions,
allowing for more general application of the proposed methods.

First, I present a brief survey of information theory.

5.1 INFORMATION THEORY

Information theory offers foundational results about the limits of compression [284]. The
core of the theory clarifies how to communicate in the presence of noise, culminating in
seminal results about the nature of communication and compression that helped establish
the science and engineering practices of computation. In Shannon’s words: “The funda-
mental problem of communication is that of reproducing at one point either exactly or
approximately a message selected at another point” (1948, p. 1). One focus of information
theory is on constructing coder-decoder pairs that can faithfully communicate messages
with zero or low error, even in the presence of noise.

The seminal results all center around the definition of entropy, sometimes called the

Shannon entropy:

Definition 5.1. The entropy of a discrete random variable X, with alphabet X, is given by:

H(X) ==} p(x)log p(x). (5.1)

xeX

The entropy measures, roughly, the surprise inherent in a random variable. Throughout
this chapter, I use log as shorthand for log,.
Entropy may be extended to account for joint and conditional probability distributions

as follows.

121

Definition 5.2. The joint entropy of two discrete random variables X and Y, with alphabets

X and Y, is given by:

H(X,Y) =~ > p(x,y)logp(x,y). (5.2)

xeX yey

Definition 5.3. The conditional entropy of X given Y (again two discrete random variables

with alphabets X and) is given by:

H(X|Y):=~% > p(x,y)logp(x|y). (5.3)
xeX yey

An additional quantity of relevance is the Mutual Information between two discrete

random variables:

Definition 5.4. The mutual information of two discrete random variables X and Y is
given by:

p(x,y)
[(X;Y): —XEZXyEZyP(x Jy)log ——" 2)P(y)’ (5-4)

Together with the joint and conditional entropy, the theory offers an elegant, inter-
locking set of relations between these basic quantities. Their relations are pictured in
Figure 5.2.

A final quantity that is of special interest is the relative entropy, also called the Kullback-
Leibler divergence (KL divergence). The KL divergence expresses the error associated
with choosing the probability distribution p(X) to approximate the probability distribu-

tion p(x).

122

H(X,Y)

H(X)

H(Y)

I(XiY)

Figure 5.2: The basic quantities of information theory and their relations.

Definition 5.5. The KL divergence between two probability distributions p(x) and q(x) is

given by:

_ p(x)
Dic(pllq) = Z;(p(x)log) (5.5)

Observe that another interpretation for the mutual information of two random vari-
ables X and Y is that it expresses the KL divergence between the joint p(x,y) and the

independent: p(x)p(y) distributions:

I(X;Y) = Dx(p(x,y) | p(x)p(y)) x;{y;y p(x,y)log 0Py (5.6)

Further note two other properties of the KL divergence: 1) The Dxy, between two proba-
bility distributions that do not have overlapping support is oo, and 2) Dy, is not a metric,
because there exist choices of p and g such that Dxr.(p || 9) # Dx(q || p). Still, the KL
divergence is an exceptionally useful measure.

For more background on information theory, see the book by Cover and Thomas [75].

123

X X .
Source Encoder d(x, %)

p(z|x) fiZ-X

p(x)

Figure 5.3: The usual Rate-Distortion setting.

5.1.1 Rate-Distortion Theory

Of particular relevance to state abstraction is Rate-Distortion (RD) theory, which is a sub-
tield of information theory that studies the trade off between a code’s ability to compress
(rate) and represent the original signal (distortion) [284, 43].

The typical RD setting is pictured in Figure 5.3: an information source generates x € X,
which is coded via p(z | x) to z € Z, and decoded via a deterministic function f : Z —
X. Distortion is defined with respect to a chosen distortion metric, d : X x X - Ry,
where typically X = X. The information rate, R, denotes the number of bits in each code
word. So, with a coding alphabet Z ={0,1}", the rate is n. Shannon and Kolmogorov
(see Berger [43] for more background) offer a lower bound on the trade off between Rate
and Distortion: given a level of distortion, D, the following function defines the smallest

rate that achieves expected distortion of at most D:

R(D) = i 1(X; X). _
() P(flx)i]g[ggc,i)]sD () (5.7)

Intuitively, Equation 5.7 tells us that as bits are added to the code, algorithms can more
faithfully reconstruct the original source messages.

For a given information source, it is natural to consider how to compute a coder-
decoder pair that achieves one of the minimal points defined by the Rate-Distortion func-

tion. Finding this point presents the following optimization problem:

min I(X; X) +f Ep, 5 [d(x,%)], (5-8)
PEN)——
Rate Distortion

124

with a Lagrange multiplier B € R, expressing the relative preference between minimizing
rate and distortion. As B gets closer to 0, rate becomes more important, while as S
approaches co, minimizing distortion is prioritized. Note that it is desirable to identify
coder-decoder pairs that live exactly on this curve, as any point living above indicates
that either more compression can take place (lower rate) or more accurate reconstruction
can take place (lower distortion).

Blahut-Arimoto (BA) is a simple iterative algorithm that converges to the global op-
timum of this optimization problem [20, 47]. BA alternates between the following two

steps, for a given f € Ry:

pra(%) = 3 p()pe(%] x), (5:9)

xeX
pr1(¥) exp(-pd(x, %))
Y vex Pra (X)) exp(=Bd(x,x'))’

Pt+1(f | x) =

BA is known to converge to the global optimum with convergence rate:

o (111 log(% /e), (5:11)

for e error tolerance [20]. The computational complexity of finding the exact solution
for a discrete, memoryless channel is unknown. For a continuous memoryless channel,
the problem is an infinite-dimensional convex optimization which is known to be NP-

hard [304].
5.1.2 The Information Bottleneck Method

Note, however, that for us to make use of the Blahut-Arimoto algorithm for computing
an optimal coder-decoder pair (for a given f), a distortion metric d is required. However,
as discussed by Tishby et al. [318], this requirement places all of the burden of relevant
information onto choice of metric; RD theory defines “relevant” information by choice

of a distortion function—codes are said to capture relevant information if they achieve

125

z 1] .
Encoder —>w d(y,9)

p(z|x) p(@|x) i

p(x)

Relevance
Variable

p(y|x)

Figure 5.4: The Information Bottleneck.

low distortion. How, though, should such a metric be chosen if the signal being trans-
mitted were to represent an image? It is not obvious whether precise pixel values are the
important thing to preserve, rather than the overall contents of the image at the level of
objects, scenes, and relations. A simple pixel inversion or image rotation will surely yield
extremely high increase for many natural choices of metric, but in many contexts such
transformations don’t actually destroy relevant information.

In this sense, the choice of metric determines what counts as relevant information. In
general, it is desirable to allow for a less restrictive choice of relevant information.

The Information Bottleneck (IB) Method is one possible remedy to this problem. The IB
defines relevant information according to how well a random variable Y can be predicted
from each ¥ € X, as pictured in Figure 5.4. For the IB to make sense, we must suppose
that I(X;Y) > 0, and that the coder—decoder scheme has access to the joint probability
mass function (pmf) p(x,y). IB then recasts the RD lower bound in Equation 5.7 in terms
of prediction of Y given X. The optimal assignment to the distribution p(% | x) is then
given by minimizing:

Lp(x|x)]=1(X;X)-BIX;Y), (5.12)

where B € Ry is again a Lagrange multiplier attached to the meaningful information.
Like BA, choice of § determines the relative preference between compression (rate) and

predicting Y (distortion); when B = 0, the coder can ignore Y entirely, and so is free to

126

compress arbitrarily. Conversely, as f - oo, the coder must prioritize prediction of Y,
requiring more bits in the coding alphabet.
Tishby et al. [318] offer a convergent algorithm for solving the above optimization prob-

lem.

Theorem 5.1. (Appears as Theorem 5 by Tishby et al. [318]) Equation 5.12 yields the following

optimization problem:

min Lyg [p(2 | x); p(%); p(y |)] = min (I(X;X)+l3 E_[Dre(p(y[x) | P(y!f)]). (5.13)
p() p() p(x®)

The algorithm consists of the following three steps, which, when repeated, converge to a local

minima of the above optimization problem, with Z(p, x) a normalizing term:

pi(% | x) < S exp(-BDxe(p(y | x) || pe(y |),
pre1(X) < T p(x)pi(X] x), (5-14)

pre1(y | X) < Xy p(y [x)pe(x | X).

It is important to note that the algorithm only presents a locally optimal solution to the
above optimization problem. To the best of our knowledge, there is no known efficient
algorithm for computing the global optimum. Mumey and Gedeon [245] show that a
closely related problem to finding the global optimum in the above is in fact NP-hard,
suggesting that local convergence or approximation is likely our best option. Additionally,
if the support of p(y | x) and p(y | ¥) does not exactly overlap, then Dy, is trivially infinity,
leading to vacuous updates. It is thus important that application of their algorithm be

applied in a context with overlapping supports.

THE DETERMINISTIC IB (DIB). Strouse and Schwab [302] extend IB by focusing on

deterministic coding functions where p(¥ | x) = f : X - X. Given the equality I(X;Y) =

127

H(X)-H(X|Y), note that when the coder is a deterministic function f, we can replace

the mutual information term in the objective by the entropy of the latent space:

min Lpp [f(X);P(f);P(yIX)]=min(H(5<)+ﬁ I [DKL(p(ylx)Hp(ylf))])- (5.15)
f(x) f(x) p(x)

Given that state abstractions are often deterministic, I will primarily be focused on this

extension.

5.2 ANALYSIS: STATE ABSTRACTION AS COMPRESSION

I now adapt the Information Bottleneck to construct state abstractions for sequential de-
cision making problems. The proposed framework is pictured in Figure 5.1, with the in-
formation generating source defined as pg, the stationary distribution in the given MDP
induced by the expert policy, rg. That is, the source distribution is defined as the -
discounted stationary distribution pg(s), for each s € S, for a given start state distribution
po, as:

PE(s) = i’ytﬂ’{st =s | po, g} (5.16)
i=0

My goal is to answer the following question: How many abstract states are needed for an
agent to faithfully make similar decisions to an expert demonstrator? To answer this question,
I cast the Rate-Distortion trade off as one between (1) the size of the abstract state space
|Sp|, and (2) the value of the best policy representable using Sy compared to 7tr.

One might wonder why such a question cannot be answered by assigning one abstract
state to each action, as is captured by the 77*-irrelevance abstractions studied by Jong and
Stone [147] and Li et al. [203]. First, if the demonstrator policy is stochastic, no such
abstraction exists. Second, we are ultimately interested in state abstractions that facilitate
effective learning; if the abstraction were given to an arbitrary RL algorithm, we would like

learning to be made easier. Highly aggressive abstraction types like 77* destroy guarantees

128

and make aspects of learning harder [203, 5]. Lastly, 7w*-irrelevance only captures lossless
abstraction; through RD, we can build a toward theory of lossy compression for RL.

More formally, I introduce and study the following objective:

Definition 5.6. The objective function, J, for a given Lagrange multiplier p € Ry, is
defined as:

T =181+ B [V7(9) -V (9(3))]. (5:17)

The goal is to define an algorithm that efficiently minimizes the above objective.
Eventually, I will introduce an algorithm that minimizes an upper bound on the CVA
objective. To related this upper bound, we require the following definition, denoting the

size of the non-negligibly used portion of an alphabet under a pmf:

Definition 5.7. The pmf-used alphabet size of X is the number of elements whose probability
under p(x) is greater than some negligibility threshold &, € (0,1):

e s= min {|{x € X p(x) > S} X1} (5.18)

This notion of alphabet size generalizes the usual method of measuring the size of a state
space. When we think about the CVA objective, the state space size will be thought of in

relation to this notion of state space size, under a given state distribution.

DIB Upper Bounds the CVA Objective

Recall that the given MDP M paired with the fixed control policy 7tr defines an information-
generating source. At each time step, a state is sampled from pr and given to a learning
agent through a state-abstraction function, ¢ : § - S, which projects each state to each

abstract state sy. I make the additional simplifying assumption that there exists a fixed

129

policy 7tg that controls the MDP. The agent’s goal is to perform as well as the demonstra-
tor using as small of a state space as possible, as reflected by J. This reference policy
7tg may be the optimal policy 77*, but it could also be something else, such as the agent’s
policy on a previous episode.

I now construct the IB and DIB analogue objectives. First, let I(S; 54,) denote the rate,
where S is a random variable indicating the probability of arriving in each state under
pe, and Sy is a random variable indicating the probability of arriving in each abstract
state under pg and projecting each ground state through ¢. Second, following the IB, let
Dxr.(7e(- | s) || 7t4(- | sp)) denote the distortion for a given state s. The total distortion,

then, is the KL in expectation under pg:

Es.pp [DxL(7e(- | 8) | 70 (- | ¢(s9)))]- (5.19)

Further, suppose there exists a fixed, deterministic mapping from Sy to §, with § =
S. Thus, the distribution p(% | x) is simply p(sy | s), which I henceforth abbreviate as
¢. Consequently, the following alignments emerge between the present objects of study

(abstractions, policies) and those studied by the IB:

p(X[x)~¢, p(X)~pp, py|X)~ 114, (5.20)

where py is the stationary distribution over abstract states induced by 77, and ¢. Thus,

per Theorem 5.1, I next construct an objective function J based on the IB:

T [0:pgimgl =1(5:Sp) + B [BDx(meC1) [1sp))]- (521)

130

If we choose to use the DIB instead, then we only consider deterministic state abstrac-
tion functions ¢ : S - Sy, and so H(Sy | S) = 0. Therefore, the DIB analogue objective is

expressed as:

Jois [¢; 043 7] = H(Sy) + B [BDxL(7e(: [9) [[7o | £(5)))] (5.22)

With these objectives in place, I now build toward the main theorem of this chapter,
which relates Jpg to J. To prove the theorem, I first introduce two key lemmas. The first

relates the entropy of a pmf to the maximum size of the alphabet used by that pmf:

Lemma 5.1. Consider a discrete random variable X, with alphabet X and some pmf p(x). For

a given threshold 6,,;, € (0,1), the pmf-used alphabet size of the alphabet is bounded, relative to

some pmf p(x):
oy« —) (5.:23)
Omin log()

‘Smin

Proof of Lemma 5.1.

First, recall the definition of the entropy H(X) of a discrete random variable X,

taking on values x € X,

H(X) = -). p(x)log, p(x). (5.24)

xeX

Then, for a given maximum entropy H(X) < N and d, € R,9, we seek an upper

bound on |;c|j(z;g).

That is, we would like to upper bound the following quantity:

X fsmin . ‘
p(x)lzrl-lle(l))é)g]\ﬂ [t (5.25)

131

Note that this quantity is maximized by a uniform distribution that applies d,,i,

mass to each element in the support, across the largest alphabet where H(X) = N:

H(X) = —E)j{ p(x)log, p(x) (5.26)
=- x;w Omin 108, Spmin (5-27)
= —| X |6 in 108, Spmin (5-28)
= [X'[0nin log, 1, : (5-29)
min

Therefore, for a given pmf p(x) with entropy H(X), and a minimum threshold of

probability, the minimum size of the alphabet X" is upper bounded:

T (5-30)

This bound is relatively loose; we know trivially that H(X) < log, |X|. Thus, in the
worst case, the bound can be up to O (1/8,i) times larger than the true alphabet. Still,
this result allows us to relate the entropy of a random variable with its used alphabet
size. Further, by definition, the entropy of the abstract stationary distribution, H(py),
gives us a lower bound on the number of bits needed to represent the used parts of Sy.
In this way, the entropy as a measure of compression is exploiting the fact that the most
probable state can be written as 0, the second most probable state as 10, and so on. Thus,
a lower entropy is already indicative of reducing |Sy|. Further, in experiments, we will
find this upper bound is loose relative to the size of the abstract state space the algorithm
produces.

Next, I introduce a second lemma that relates the expected KL divergence between two
policies to the difference in value achieved by the policies, in expectation under some

state distribution:

132

Lemma 5.2. Consider two stochastic policies, 7t1 and 7t on state space S, and a fixed probability

distribution over S, p(s). If, for some k € Rxo:

pIE) [Dr (71 (- |s) || ma(- | 8))] <k, (5.31)
then:

IF) [V(s) - V™(s)] < V2kVMaX, (5.32)

p(s

where VMAX is an upper bound on the value-function.

Proof of Lemma 5.2.

Recall the total variation distance (TVD) between our two policies for a given state

s is defined as:

TV(re(-|s), (- |5)) = su§|m;(a |5) = 7tp(als)|. (5-33)

Furthermore, recall that TVD relates to the L1 norm and the KL divergence:

TV(TEC19) g 19) = 5 1e(19) =1) (534)
<\ 2Dl 19) 1 mlc19) (535)

where the inequality in Equation 5.35 is formally known as Pinsker’s inequality.

With this inequality in place, we expand the expectation in the value bound:

IEp(s) [VTE(s) = V7 (s)] (5.36)
< 390) (X re(o19) - mola [9I(R(50)+ 7 £ TE V7o) - V()

= Z Z p(s)|me(als) —mg(als)| (R(s,a) +'yZ: T(s"|s,a)|[VTE(S") - V7T¢(s/)|)

seSaeA

133

Then, applying the upper bound on the possible value VMax = RMax/(1-1) to

Equation 5.36:
(5-37)

E,) [V (s) = V7™(s)] < VMAX E) [|7te(a | s) - g(a | s)|].

Then, by Pinsker’s inequality, we conclude:

\/%DKL(T[E(Q [5) [7g(als)) (5.38)

O]

E,()[V(s) - V7™(s)] < 2VMax E (5

< V2kVMax.

The above bound relates the distortion measure present in IB to that of the CVA objec-

tive. Note that this bound is vacuous for values of k > %

With these lemmas in place, I now present the theorem.
Theorem 5.2. A variation of the DIB objective Jpjg is an upper bound for the CVA objective, J,
where state space size is treated as]Sﬂi;’)”'(”s). Formally, for all ¢ € ®:

H(py) .
¢ +2VMAX’BP]IE:5) [Die(7e(s) || mh(s)]. (5:39)
E

Spl2in +B E [VE(s) - VT(s)| <
Selpatey + BB [V () -V (s)] Slog

1
5

Proof of Theorem 5.2.
The proof follows from Lemma 5.1 and Equation 5.2. Consider the ¢ that minimizes

Jpis, yielding the value of at most N + Bk, where:
(5-40)

N = H(S(p)
k=E [Dx(me(als) | rp(a | ¢(s))]. (5-41)

134

Then, by Lemma 5.1, we know:
. N
Sl (542)
py(s) Omin lOg, (im
By Equation 5.2, we know:
E,(s) [V (s) - V7 (s)] < V2kVMax. (5.43)
Therefore, since both quantities are non-negative, we conclude:
‘5min
T(91 = 1Spl2r) + By [V (5) - V7 (5)] (5.44)
N
<—+ ﬁ\/2_kVMAx. (5.45)
Ominlog, -~
Thus, we can upper bound the quantities in J as a function of the quantities in
Jois.]

This theorem tells us that the optimization problem presented by Jpip can be well ap-
proximated by the usual IB method. I thus introduce Determinstic Information Bottleneck
for State abstractions (D1Bs, presented in Algorithm 5.1), a simple iterative algorithm that
adapts the DIB to Apprenticeship Learning with state abstractions. Diss outputs a state-
abstraction—policy pair in finite time that computes a local minimum of Jps, which we
know from Theorem 5.2 is an upper bound on J. The pseudocode presented is for the
deterministic variant of the IB, as often state abstraction functions are treated as determin-
istic aggregation functions [203]. The stochastic variant, which I call Siss, will also be of

interest, as soft state aggregation has been explored as well [294].

5.3 EXPERIMENTS

I now describe several experiments that explore the power of DiBs for constructing ab-

stractions that trade off between compression and value. First, I study the traditional

135

Algorithm 5.1 DIBS
INvUT: 7TE, pE, M, B, A, iters
Ourrurt: ¢, 71y

1: Vs :¢o(s) = random.choice([1,|S]]) > Initialize
20 Vs i1 (a]sg) ~ Unif(A)
3 Vs pg0(sp) ~ Unif([1,[S]])
4: for t =0 to iters do D> Iterative updates
50 Jea(@e(s)) =1ogpg,(Pi(s)) — BDxL(7te(- | 8) [| 7g,e(- | $1(5)))
6: ¢t+1(s) = afgmaX% jt+1(5¢)
7 Pp+1(59) = Lsgy(s)=s, PE(S)
Zs:z])t(s):s(l) 7'[5(11‘5)‘05(5)
Zs:<pt(s):s¢ PE(S)

8: 7T<p,t+1(11 |sp) =

9: if maxye(,, 2000} Li(ft, fi+1) < A then > Check convergence
10: break
11: end if
12: end for

13: return ¢ri1, 7 141

Four Rooms domain discussed in Chapter 2. Second, I present a simple extension to Siss
that scales to high-dimensional state spaces and evaluate this extension in the Atari game
Breakout using the Arcade Learning Environment (ALE) [39]. The code for running these

experiments is freely available for reproduction and extension.>"
5.3.1 Four Rooms

I first investigate the power of DiBs to appropriately trade off between value loss and
compression.

The first experiment focuses on the Four Rooms grid world domain discussed in Fig-
ure 2.7. Recall that the agent interacts with an 11 x 11 grid with walls dividing the world
into four connected rooms. The agent has four actions, up, left, down, and right. Each
action moves the agent in the specified direction with probability 0.9 (unless it hits a wall),
and orthogonally with probability 0.05. The agent starts in the bottom left corner, and
receives +1 reward for transitioning into the top right state, which is terminal. All other

transitions receive o reward. I set 7y to 0.99. For simplicity, I set the expert policy 7tg to be

5.1 https://github.com/david-abel/rl_info_theory

https://github.com/david-abel/rl_info_theory

136

the optimal policy, with an additional ¢ = 0.05 probability of taking an action at random to
ensure that an arbitrary stochastic policy over the action space has overlapping support
with the expert policy.

In Four Rooms, I run Diss and SiBs to convergence and compare the value of 77y s
and 7g 51 to the value of the demonstrator policy for g between o and 4, incrementing
by 0.2. I determine convergence as per line 9 of Algorithm 5.1: if all updating functions
change by no more than A, the algorithm has converged. I set A to 0.001, an arbitrarily
chosen small constant.

Figure 5.5a illustrates the rate-distortion trade off made by 500 different runs of Diss
with different settings of B ranging from 0.0 to 4.0: each point indicates the size of the
average abstract state space (y-axis) and value of the abstract policy relative to the demon-
strator (x-axis), achieved by the computed state abstraction for the given . The large val-
ues of B correspond to larger circles, with the maximal value of B = 4.0 appearing in the
top left of the curve, and the smallest of B = 0.0 appearing at the bottom right. Since the
demonstrator is in fact suboptimal due to the e-randomness, it is possible for the abstract
policy to do slightly better than the demonstrator in terms of reward, as is the case for all

points with x-value less than o0.0. However, there is no incentive in the objective for this

7 0.8
oo ... @ B€l0,0.2,..,4.0]
61 0.7
_ 5] _ 0.6
& g
4 =05
3,
0.41 —— T
24 —>— Ty, DIBS
0.3 —+— Ty,siBS
0.0 0.1 0.2 0.3 0.4 0.5 " T T T
0 1 2 3
Es~p[VT(s) — V()] 8
(a) Trade off made by the ¢’s output by Diss for (b) Four Rooms: V™ (sg) vs. B

different values of .

Figure 5.5: (a) The average rate-distortion trade off made by Diss as p varies, and (b) The
average value of the ¢, 71y pairs found by Diss for different values of B.

137

to be the case, as reward is not yet incorporated into learning in any way. Observe that
when B = 0, D1Bs prioritizes compression, yielding a one-state MDP on average (the far
right point). As B increases (which moves along the line to the left), the algorithm grad-
ually tips the trade off from prioritizing compression to prioritizing performance. As
increases, we see the abstract policy achieve the same value as the demonstrator. Also of
note is that a two-state abstract space is capable of representing a policy (which could be
stochastic) that is nearly as effective as the expert policy. With a one state MDP, however,
the best policies found by Diss still yield around 0.45 expected value loss relative to 7r.

Figure 5.5b offers a slightly different perspective on the same results. Here, I present
the average value of the abstract policy achieved as a function of B, with again varying
from 0 to 4.0. The results are averaged over the same 500 runs, with the lines indicating
the average and shaded regions denoting 95% confidence intervals. Notably, when B is o,
the algorithm tends to find a policy that achieves significantly worse than the expert. With
Diss, as B increases, we see rapid improvement in the quality of the discovered policy, up
until B = 1, at which point the abstract policy achieves almost identical performance to
the expert. In contrast, the stochastic variant SiBs sees effectively no improvement in
the quality of the policy until B = 1. I conjecture that this is due to the more difficult
optimization problem presented, as the space of probabilistic state abstraction may be
much harder to search through than the space of deterministic ones. Still, as B increases
past one, both 77y prss and 71y 55 Nearly match the value of the control policy.

Figure 5.6a, Figure 5.6b, Figure 5.6¢, and Figure 5.6d show the state abstractions found
by Diss for B =0, § =1, B = 2, and B = 20 respectively. Notably, each of these state
abstractions were sufficient for effectively solving the problem escept for the g = 0 case.
For the abstraction in Figure 5.6b, there are four abstract states, which is sufficient for
nearly representing a 7*-irrelevance abstraction of the demonstrator policy (“move up”
in green, “move right” in tan, and so on). As B is increased, observe that the abstraction
yields far more states, though the quality of the optimal policy is already as high as it can

go (there is simply less pressure to compress). Note that these experiments only examine

138

1 (5
(T I I [

| [=] | B
[T
[

|
| | S

] |
[O [
[] RN EEEEE
N || 5 I
N | [WS [S

(@ pwithB=0,[Sp/=1 (b)pwithp=1,|Sp|=4 () pwithp=2,|Sp|=5 (d) ¢ with §=20,[Sy| =9

Figure 5.6: The state abstractions found by Diss in the Four Rooms domain when (a) =0,
(b) =1, (c) =2, and (d) B=20.

the effect of the state abstractions found by DiBs on representation of the optimal policy.
However, intuitively, the abstract state spaces pictured in Figure 5.6b, Figure 5.6¢, and
Figure 5.6d will give rise to different degrees of learning difficulty, even though they can
each represent a near-optimal policy.

I now investigate the impact of these state abstractions on learning. In particular, I
study how the resulting state abstractions change learning for simple RL algorithms in
the Four Rooms grid world. The experiment proceeds as follows. First, before any RL
algorithm interacts with an MDP, I construct state abstractions using Di1Bs using different
values of B, with all other settings as described in the previous experiment. Then, I give
the resulting state abstractions to Q-learning on Four Rooms and contrast the different
algorithm-¢ pairs” behavior.

Results are presented in Figure 5.7. Each plot is the result of 25 runs of the experiment,
indicating the mean cumulative reward of different learning algorithm—¢ combinations.
The B parameter was chosen to range from 0.01 up to 100.0, with each order of magnitude
in between. Observe that, with a smaller data set (left), Q-Learning is able to more
quickly find a better policy using state abstractions resulting from middle choices of . In
particular, the best performance within 100 episodes is obtained by the approach using
B = 1.0. As B decreases, performance decays rapidly, and as B increases, performance

worsens as well. In contrast, with a larger data set—that is, when the number of episodes

139

—e— Q-learning —e— Q-learning P

— Q-learning-¢g-o.01 8001 —— Q-learning-¢g-o.01

—— Q-learning-¢g-0.1 —— Q-learning-¢g-o.1
Q-learning-¢g-1.0 Q-learning-¢g-1.0
Q-learning-¢s-10.0 Q-learning-¢s-10.0
Q-learning-¢g -100.0 Q-learning-¢g -100.0

~
o

(=)}
o

w
o
(=)}
o
o

IS
o

w

o
N
o
o

Cumulative Reward
Cumulative Reward

N

o
N
o
o

=
o

e W 0 A

0 15 30 45 60 75 90 0 150 300 450 600 750 900 1050

o

Episode Number Episode Number
(a) Q-learning, 100 episodes (b) Q-learning, 1,000 episodes

Figure 5.7: A comparison of how ¢ with different choice of B impacts simple RL in the
Four Rooms domain.

is set to 1,000—Q-learning is able to ultimately overtake all approaches using a state
abstraction, but less efficiently than when B is set to the ideal value of 1 for the domain.
This is precisely because Q-learning is guaranteed to eventually find the optimal policy,
whereas the variations using ¢ will learn a best-in-class policy, but relative to a restricted
class. This is precisely a bias-complexity trade off; choice of § is determining how large
the abstract state space is, and thus the space of possible Q functions learnable by the

algorithm.
5.3.2 Breakout

I next translate the proposed algorithmic framework into domains with high-dimensional
observations. To do so, I turn to variational autoencoders (VAEs) [163]. In a VAE,
we are concerned with learning a compact latent data representation, z, that captures
a high-dimensional observation space, x, through the use of two parameterized functions
qy(z | x) and pg(x | z). The pair represent a probabilistic encoder and decoder, typi-
cally captured by two separate neural networks, where the former maps data to a latent
representation and the latter maps from z to the original observation. Traditionally, the

two models are trained jointly to optimize the evidence lower bound objective (ELBO),

140

which maximizes [, (jx)[log pe(x | z)] to facilitate reconstruction of the original data and
minimizes Dxr (q4(z | x) || p(z)) to keep qy(z | x) close to some prior p(z) over latent
codes. Both g4(z | x) and p(z) are commonly treated as Gaussian to use the Gaussian
reparameterization trick [163]. Since the ELBO is optimized in expectation over the data

distribution, p(x), we can leverage a known result regarding the KL divergence [161]:

Ep [Dxe(qy (- | 2) | p(2))] = I(X; Z) + Dxi(q(2) || p(2)) 2 I(X; Z), (5.46)

where g(z) = E,(y)[qy(z | x)]. I treat x as the ground state representation S and z as
the abstract state Sp. I derive a new objective function that serves as a variational upper

bound to the stochastic IB (SiBs) objective derived in Equation 5.21:

H}?in E [Dxr(gp(-[8) 1 p(sg)) +B E [Dxr(me(-|s) || (- [59))]], (5-47)
S~POE sp~¢(s)

SminI(§i5) +6 E_ [Dee(reC-[9) 11 7 sp))] (548)
¢ S~PESp~P(s)

where the upper bound follows directly from Equation 5.46.

To make use of this upper bound, we first create a demonstrator policy g for the
Atari game Breakout [39] using A2C [239]. A Gaussian VAE agent is then trained with a
separate architecture that has the same first four layers as the A2C agent before mapping
out to a mean and covariance (in R?®). Instead of reconstructing states, this decoder
serves as an abstract policy network, mapping to a final distribution over the primitive
actions, 714(a | s), which is really 7ty (a | z). The model is trained via Equation 5.47 for 2000
episodes using the Adam optimizer [162] with a learning rate of 0.0001. During training,
the expert’s policy (7tg) controls the MDP.

Figure 5.8 presents results showcasing the effect of B on compression and performance
in. The data suggest a relationship similar to that of Figure 5.5) between choice of g,

success in approximating the demonstrator policy, and the nature of the resulting state

141

600 g % % * * g -

500 +

Mean Episodic Reward
w
(=]
o

100 -

Ty, SIBS
0 - TE

0 2 4 6 8 10 12 14

(a) Breakout: Mean Reward vs. (b) Original (top) and ¢ with B = 2 (middle) and
B = 2048 (bottom)

Figure 5.8: (a) The mean reward over 100 evaluation episodes of ¢, 77, combinations found
by the VAE-approximation to Siss for different values of 8, and (b) attempted
state reconstructions using fixed abstractions found when 8 = 2 and p = 2048.

abstraction. In the visualizations of the abstraction, observe that the quality of state recon-
struction (each state is a row of four consecutive game screens) is compromised under a
low setting of B (prioritizing compression), whereas a higher value of preserves more in-
formation (paddle position and shape of bricks), leading to higher-quality reconstruction.
Seeing that agent performance converges below the expert policy g, it is possible that
increasing the size of the latent bottleneck may close the gap. Of critical importance to
this setup is the use of a reconstruction network to visualize the latent state information,
shown in Figure 5.8b. Due to the method of reconstruction, it may be difficult to deter-
mined what information is truly represented as opposed to what information is easily
captured in the reconstruction.

So far, I have articulated a new formalism for treating state abstraction as compression
in MDPs. To make the setting concrete, I adopt the apprenticeship learning perspective
and assumed query access to an expert control policy 7tg. Then, using this new perspec-
tive, I introduced a new objective and proved that it is well-approximated by an IB-like
objective, giving rise to a convergent algorithm for computing state abstractions that trade

off between compression and value.

142

5.4 EXTENSIONS

Many questions remain. First, it is natural to be interested in the case when 7g does not
control the MDD, but rather the RL agent’s actions determine which states are occupied.
In this case, unfortunately, no fixed state distribution is likely to be available. Second, the
current formulation concentrates on constructing abstract state spaces that can represent
high value policies, but do nothing to ensure that such policies are easy for RL algorithms
to discover. An important direction going forward is to identify the role that a well
structured state space plays in ensuring low sample complexity RL. Third, much of the
chapter has focused on discrete state spaces. It is important to understand whether similar
ideas can apply to continuous state spaces, too. Lastly, it is natural to consider the lifelong
or multitask setting, in which an RL agent must learn to solve a variety of related tasks. I

next discuss study some of these extensions.
5.4.1 Agents Controls the MDP

Relaxing the assumption that g controls the MDP is essential for extending these ideas to
traditional RL. I here propose a path toward removing the control policy g by focusing
on an intermediate goal: define an algorithm with the same properties as Diss, but with
the learning agent’s non-stationary policy controlling the underlying MDP instead of 7.
Ultimately, this will give rise to an algorithm that, after T < oo iterations, can produce an

abstraction—policy pair such that, for some state distribution p(s):

Epo) [V*(5) - V7 (5)] < (B, T). (5.49)

The most challenging aspect of this setup is that the source distribution is no longer fixed,
since the agent’s policy will change over time as the agent learns and updates both ¢ and
. To this end, I present the following lemma that suggests that two policies that deviate

by a bounded amount are guaranteed to share similar stationary distributions.

143

Lemma 5.3. Given two policies 711 and 72, if sup g Ygea |1(a | 5) = m2(a | s)| < A, for A € Ry,

then:

A
Z |p7771/50 (S) ~ Pra.s0 (S)| < 1 _r)/,)/l (5-50)
seS

where pr s, denotes the stationary distribution over states under 7, starting in state sg.

Proof of Lemma 5.3.

We bound the difference between the two state distributions after ¢ steps as follows.

First, expanding:

2 107,50 (8) = Py (5 = D7 IP(St = 8" | s0, 711) =P(S; =" | 50, 702)| (5.51)
s'eS s'eS
= > P(Si-1 =550,) Y. ma(a|s)T(s"|s,a).
seS acA
Then, by algebra:
Z |p§'[1,5() (S,) - piTz,So(S,)| (552)
s'eS
< SINPG=slso,m) Y (mials) - mala] 9)T(|s,) (553)
s'eS seS aeA
+ Y AX (P(Sta=51s0,m) ~P(Si1 =5 |50, 1)) ¥ ma(a | $)T(s | 5,a)]
s'eS seS aeA
Continuing,
Z ‘pi'{l,SO(S,) - pgTz,So (S,)‘ (5'54‘)
s'eS
< Y P(Sic1=5s0,m1) Y. ‘nl(u |s)—ma(als)| Y. T(s"|s,a) (5.55)
seS aeA s’eS
+ 0y ‘IP(SH =5|sg,) —P(St1 =5 | sp, 7t2)| Y. mo(als) > T(s'|s,a)
seS acA s'eS
< A+ |P(Si =5 [50,m) ~P(Sit =5 |50, 70)| (5.56)
seS
= B+ Y |0 (87) ~ s, (5 (5.57)

s'eS

144

Applying the above bound, and using induction, we have:
Z |p§T],SO(S,) - p;fz,SO (S’)| S tA (558)
s'eS
Therefore,
2 1pis0(8) = Preaso ()] (5.59)
seS
= 2 1A= 2 707,50 (5) = (1=7) 2 7075, (5)) (5-60)
seS telN telN
S (1 - r)/) Z r)/t Z |p§'[1,5(] (S) - Iol7"(2,50(s)| (561)
teN seS
YA YA
< (1- YA = (1 - = . O (5.62)
Corollary 5.1. As a simple corollary of Lemma 5.3, observe that,
V() =V = 1303 0o (IR(S) = 20 3 Py sy (SIR(S)] (5.63)
S S
telN se t se
S RMAXtZ]I\I(]‘_r)/) Zs|p§1’1,50(s) _piTz,So(S)’ (564)
€ SE€,
< RMax(1-7) > Aq't (5.65)
telN
YA
= RMAx1 — = AyVMax (5.66)

This lemma is useful as it suggests that policies that are similar to one another will have
similar stationary state distributions, too. In particular, in the case where 7t no longer
controls the MDP, but rather 71, does, the state distribution of relevance will be py ;. If,
however, over time we can ensure that after some t > N updates, Tyt & TTE, then we can
construct a convergent algorithm for the agent-in-control setting. I leave this analysis as
an open question.

I offer an initial variant of this algorithm that I call agent-controlled Diss (AC-Diss). I

conduct an experiment similar to that of the previous section in the Four Rooms domain.

145

—— ¢

0.2 —— AC-y, pigs

o 1 2 3 5 6 7 8

4
B

Figure 5.9: The value of the abstract policy found by AC-Diss for values of § between o
and 4.

Here, I run the entire process of AC-DiBs for N rounds, each time to convergence, but
letting the agent’s initial policy for that round define the stationary state distribution.
Results are presented in Figure 5.9. Surprisingly, AC-DiBs always converges, yielding
policies that are similar in value to 7rg for > 2. This finding supports the previous
speculation, along with Lemma 5.3, that there is a feasible route to defining a convergent

form of DiBs when the agent’s policy controls the underlying MDP.
5.4.2 Multiple MDPs

Second, I use our framework to compute a single abstraction sufficient for representing
the demonstrator policy across distinct but potentially related tasks. Concretely, I suppose
we are given a set of MDPs M, each sharing a state and action space, but are allowed to
vary in T, R, and 7.

I conduct an experiment in which |[M| = 4, where the four task are defined by a goal
being in each of the four corners of the grid world. I run Diss for each MDP in M, for a
tixed B, and form a global abstraction ¢ by taking the intersection across each computed
state abstraction. That is, for any state pair (s1,5s2), for ¢; computed by Diss on each MDP,

I define ¢ 4:

M|
Pm(s1) = Pprm(s2) = /_\1 {pi(s51) = Pi(s2) }- (5.67)

146

(@) =0 (b) p =10 (©) =20

Figure 5.10: State abstractions computed by Diss for a collection of MDPs using Equa-
tion 5.67 for different values of B.

Figure 5.10 shows ¢ for different values of . All cells with the same color are
grouped into the same state, except for white: all white states are each treated as their true
ground state. Note that the abstraction becomes far more detailed as p increases. When
B is close to o, the algorithm prioritizes compression, as is reflected by Figure 5.10a, which
only has a single state. Conversely, as increases, the algorithm adds more distinctions
between states, only grouping those that are close to one another or the near the same
wall. When B = 10, the abstraction groups large regions of contiguous states together,
such as the central group of states in the top right room, and many states in the center
of the bottom left room. When B = 20, we find even less compression, but still see a few
small contiguous regions that have some structural similarities. Critically, none of the
abstractions are perfect. It is unknown what might constitute an ideal abstraction in this

case, nor how well our proposed algorithm might approximate such an ideal.

5.4.3 Learning ¢ in Continuous State Environments

The investigation in this part of the dissertation so far has focused on discrete MDPs. It is
important, however, to consider whether similar ideas are applicable when the underlying

environmental state and action space are continuous, too. In this final section, I study the

147

case when the underlying state space is continuous, summarizing work first presented by
Asadi et al. [24].

Concretely, I here introduce a new objective function that may be solved with standard
stochastic gradient descent. Thus, we will develop a procedure simple for learning a
state abstraction that maps a continuous state space into a discrete one given access to
some number of trajectories of behavior on several training tasks. I then provide a gen-
eralization error bound on the quality of the learned state abstraction, assuming a fixed
distribution over states p is used in both training and testing (even if the MDP changes). I
then conduct an empirical study to validate the usefulness of the learned state abstraction
in two kinds of experiments: 1) using ¢ to accelerate RL on the exact MDP in which ¢
was learned, and 2) using ¢ to accelerate RL on MDPs similar (but not identical to) the
MDP in which ¢ was learned. That is, in the most general case, the agent will be allowed
to collect data on some set of training MDPs, and then use this data to inform a choice of
state abstraction for use in future related tasks.

One important difference from previous settings is that I will here focus on stochastic
state abstraction functions, which I denote ¢ : S - A(S,) that defines a function from
ground states s € S to a probability distribution over abstract states Sy [294]. Any policy

over abstract states, denoted 775 will first sample sy ~ ¢(- | s), then act given this s.

THE NEW OBJECTIVE. The objective is similar in spirit to the CVA and Diss introduced
earlier in the chapter (Algorithm 5.1) adapted to continuous state spaces. Here, we again
look to map ground states in which the optimal policy is similar into a common abstract
state. The difficulty is that only finitely many pairs (s;, 7*(s;)) can be sampled, thus
making it challenging to determine how to cluster any state s’ not seen during training.
This is especially challenging when the state space is continuous, as conservatively we

expect the agent to never inhabit the same state twice.

148

The objective is based around the idea of forming a state abstraction and policy pair
that are most likely to have generated the set of trajectories seen during training. Con-
cretely, we introduce the following objective that measures the probability of trajectories
7! generated by an estimate of the optimal policy 7t*. In a single MDP, the goal is to max-
imize this probability if an agent were to use the function ¢ and policy, 75, Over abstract

states. This optimization problem is formulated as follows.

M) M .

argmax [[p(7', §, 1) = argmax >_log p(T', P, 5), (5.68)

J),?T(I‘) i=1 43,7'[43 i=1
where:
. GRS o
logp(t', ¢, m5) =log [] 7(aj |sp)p(sjialsi . a;), (5.69)
j=1

T(7)) ,. ,. () D

= > log 3 PGsols])mza] |sp)+ 3 logp(siyi|si,ai). (5.70)
j=1 S‘PES‘P]=1

@

Note that term @ is not a function of the optimization variables, and may be dropped,

yielding the following.
Moo M T() R
argmax) log p(T',§,715) =argmax) > log > ¢(sp|s;)ms(a; |sp)- (5.71)
¢ =1 gy i=1 j=1 5p€Sp

In general, we imagine that the agent is tasked with solving a set of K different MDPs,
only some of which are seen during training. This extension changes the objective as

follows.

K MG o
argmaxy > > log > P(sy|s;)mz(a; |sp k). (5.72)
43,7r¢-, k=1i=1 j=1 5p€Sp

If the solution to the optimization problem is accurate enough, then states that are clus-
tered into a single abstract state generally have a similar policy in the MDPs used for

training.

149

Although it is possible to jointly solve this optimization problem, for simplicity let us
assume 775 is fixed and provided to the learner. We then parameterize the abstraction
function ¢ by a vector 6 representing the weights of a neural network, 43(| s;0). Further,
we use softmax activation to ensure that ¢ outputs a probability distribution.

A good setting of € can be found by performing stochastic gradient ascent on the

objective above, as is standard when optimizing neural networks [191]:

KM T(Tl i i
0<0+avey > > log > ¢(splsi;0)mz(aj |se k). (5.73)
k=11i=1 j:1 S¢€$¢

As in the experiments earlier in the chapter, we here use the Adam optimizer [162].

ANALYSIS. Ideally, as per the abstraction desiderata, we would like the abstractions
learned by our procedure to support efficient discovery of good policies. When the state
space is continuous, this is particularly challenging, as the agent is constantly encounter-
ing ground states never seen during training. In light of these difficulties, we next prove
that a ¢ learned according to our procedure on some finite data set of n experiences can
still ensure a form of bounded expected value loss, assuming the state distribution is
unchanged.

Concretely, let us suppose that the probability distribution used to generate states dur-
ing both training and evaluation is some fixed p. Then, it is natural to consider how well
the learned state abstraction will support learning under the friendly assumption that
future states will also be sampled according to p. In particular, I next present a generaliza-
tion error bound on the dissimilarity between 7* and ys for the learned 43, in expectation
under the sampling distribution p. This error bound can be decomposed into three com-
ponents: 1) the training error (in training ¢), 2) the Rademacher Complexity [36] of ®,

and 3) the size of the data set used to train ¢, n. More formally, the result is as follows.

150

Theorem 5.3. For any error probability 6 € (0,1), n the size of the training data set, A the
training error, and for some fixed distribution on states p using during training, the following

holds with probability 1 -6,

0l
Esvp [H(n*(|s) - 7p(-| S))Hl] < % +2V2Rad(®) + 2171 S, (5-74)

The proof was first introduced by Asadi et al. [24]—see Theorem 1. The main power of

this bound comes from the application of Rademacher Complexity [36], which measures
the richness of the function family ®. This result indicates the effect of the capacity of
the model family (smooth neural networks, in our case), and of the sample size (1) on
the overall gap in quality between the abstract policy and the optimal policy. This result
is powerful as it tells us that states sampled from the distribution p, even those not seen

during training, are likely to be well accommodated by the learned state abstraction.

EXPERIMENTS. I now summarize empirical results from two sets of experiments that

investigate the utility of the proposed approach.

1. Single Task: We collect an initial data set Dyain of size n to be used to train the
state abstraction ¢ based on MDP M. Then, we evaluate the performance of tabular
Q-learning on M given this state abstraction. These experiments provide an initial

sanity check as to whether the state abstraction can facilitate learning at all.

2. Multi-Task: We next consider a collection of MDPs { My, ..., M;}. We collected an
initial data set Diin of (s,a) tuples from a (strict) subset of MDPs in the collection.
We used Dyin to construct a state abstraction ¢, which we then gave to Q-learning
to learn on one or many of the remaining MDPs. Critically, we evaluate Q-learning

on MDPs not seen during the training of ¢.

For each of the two experiment types, we evaluate in three different domains, Puddle
World, Lunar Lander, and Cart Pole. Open source implementations of Lunar Lander

and Cart Pole are available by Brockman et al. [56]. We contrast the learning efficiency

151

Gs
-
(a) Puddle World (b) Lunar Lander (c) Cart Pole
Cumulative Reward: Puddle H 1.0 W 1.0 Cumulative Reward: Gym LunarLander V2 Cumulative Reward: Cart Pendulum
10000
Q-learning—¢ Q-learning—¢ Q-learning—¢
= Linear-Q 500001 s Linear-Q = Linear-Q

50 8000
® e e
s] 0 5
3 3 3

2 o 2 2 6000
2 £ -s0000 :

£ s 3 g a0
E E _100000 £

© © © 2000

-100
~150000
0
0 15 30 45 60 75 90 0 60 120 180 240 300 360 420 480 0 6 12 18 24 30 36 42 48

Episode Number Episode Number Episode Number

(d) Single Task Puddle World (e) Single Task Lunar Lander (f) Single Task Cart Pole

Cumulative Reward: Puddle H 1.0 W 1.0 Cumulative Reward: Gym LunarNoShaping VO Cumulative Reward: Lifelong Cart Pendulum
0 10000

200 Q-learning—¢
—=— Linear-Q

Q-learning—¢
—=— Linear-Q

~10000 8000

~20000 6000

-30000 4000
-100

Cumulative Reward
Cumulative Reward
Cumulative Reward

—40000

2000
-200 Q-learning—¢

—=— Linear-Q

=50000
0

0 30 60 90 120 150 180 210 240 0 60 120 180 240 300 360 420 480 0 6 12 18 24 30 36 42 48
Episode Number Episode Number Episode Number
(g) Puddle World Transfer (h) Lunar Lander Transfer (i) Cart Pole Transfer

Figure 5.11: Learning curves for the single task experiments (top) and the transfer experi-
ments (bottom).

of tabular Q-learning paired with the learned state abstraction (green) with Q-learning
using a linear function approximator (blue) [234, 177]. The features used by the linear
approximator are those provided by the standard implementation of each domain. In
Puddle World, the state is a pair of real numbers denoting spatial coordinates; in Cart
Pole, the state is constituted by four real numbers indicating the location, velocity, angle,
and angular velocity of the pole; and in Lunar Lander, the state is eight real numbers
indicating things like the position and angle of the lander. Full parameter settings and

other experimental details are available in our code.”*

5.2 https://github.com/david-abel/continuous_state_sa

https://github.com/david-abel/continuous_state_sa

152

Figure 5.11 presents results for both experiments, with the single task results in the
middle row and the transfer results in the bottom row. Each figure presents the mean cu-
mulative reward per episode with 95% confidence intervals, averaged over 25 instances.
In Puddle World, we see that the learned state abstraction is capable of consistently sup-
porting extremely sample efficient learning in both the single task and transfer case—by
around episode 30 in both cases, tabular Q-learning reliably converges to a policy that
effectively takes the agent directly to the goal while avoiding the puddle. The same is
true of Lunar Lander, only more samples are required in the transfer case. In contrast, for
the given sample budgets, the approach using the linear function approximator is unable
to improve its policy at all. Lastly, in Cart Pole, we see both approaches are able to find
near-optimal policies in relatively few samples.

In a final experiment, we contrast the learning performance of tabular Q-learning using
several different state-discretization methods on the single task variant of the Lunar Lan-
der domain. First, we use our same approach, shown in green. Second, we contrast tile
coding (orange) [307], a naive form of discretization we call bucket coding (pink), and an
approach that uses state features learned by a Deep Q-Network [238] trained on the same
task (blue). Results are presented in Figure 5.12. The data are quite clear: on average,
the state abstraction learned by our approach is sufficient for enabling extremely sample

efficient learning on Lunar Lander. In contrast, none of the other state representations

100000 100000

50000 50000

0

—50000

—500001 —e— Q-learning-dgn_coding —e— Linear-Q-dqn_coding

Cumulative Reward
Cumulative Reward

—+— Q-learning-¢ ‘-‘\" ~-100000{ —*— Q-learning—¢
—+— Q-learning-tile_coding —+— Linear-Q-tile_coding
—100000 Q-learning-bucket_coding \\ Linear-Q-bucket_coding \\
—150000
0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360 420 480
Episode Number Episode Number
(a) Tabular Q (b) Linear Q

Figure 5.12: A comparison of different state discretization methods in Lunar Lander.

153

support the learning of good behavioral policies. For more on these ideas, experiments,
and the algorithm, see original work by Asadi et al. [24].

To summarize, this chapter draws on the tools of information theory to cast the process
of state abstraction as a form of compression. I introduced an algorithmic framework
that can efficiently produce state abstractions that trade off between compression and
value preservation. Through a variety of visuals, empirical study, and analysis, I have
demonstrated the power of this approach to discover good state abstractions for RL.

This brings Part 2 to a close. I next shift focus to action abstraction.

Part 3

ACTION ABSTRACTION

FINDING OPTIONS THAT MINIMIZE
PLANNING TIME

This chapter is based on “Finding Options that Minimize Planning Time”
[144] led by Yuu Jinnai, joint with D. Ellis Hershkowitz, Michael L. Littman,

and George Konidaris.

Action abstraction defines the process of forming high level behaviors such as “go to
the bridge”, in place of “rotate right leg so many degrees”. Such a mechanism is deeply
connected to many other important practices of agency, including the discovery and ma-
nipulation of useful subgoals, efficient long-horizon planning, and credit assignment. The
primary formalism I adopt for capturing action abstraction is the options framework [311].
Several other names describe roughly the same process, including skills, temporal abstrac-
tion, and macro-actions. I treat options as sufficiently general to capture all of these, but
of course there are subtleties to each particular type. For further background on action
abstraction and options, see Section 2.3.

As with state abstraction, my objective in this part of the dissertation is to bring for-
mal clarity to the discovery of good action abstractions (those that satisfy the abstraction

desiderata—see Section 2.4).

155

156

Cam a3)

5
8,

In this chapter, I first study one notion of “good action abstraction”. I present analysis

Goal

Action Abstraction

Start

Figure 6.1: Action abstraction.

of the problem of finding options that make the process of planning as efficient as possible.
To make this problem concrete I will make several simplifying assumptions that allow for
appropriate analysis. In particular, I will ground the speed of planning in terms of how
many iterations of VI (Algorithm 2.3) are required to return an accurate value function
for the whole state space. I prove that this problem is NP-hard and hard to approximate
well. Fortunately, these hardness results also come along with two approximation algo-
rithms that each nearly match the lower bound of approximation hardness under friendly
assumptions. One of the algorithms is based on an approximation of set cover by Chvatal
[69], and the other is based on the procedure by Archer [18]. In simple experiments,
the options found by these approximation algorithms are nearly competitive (in terms of
acceleration of VI) with those options found by solving the NP-hard problem.

Why might we care about this problem? Well, again, there are many things abstract
actions can do to enhance a learning agent’s capabilities. Intuitively, carrying out long-
horizon simulations of the right kind can be immensely useful, so long as the simulations
are sufficiently well informed. Imagine boiling a pot of water. By setting a particular
degree of heat beneath the flame, it is easy to predict that in some number of minutes that
the water will boil with extremely high probability. It is not necessary to know precisely

how long it will take, or exactly how much water will evaporate before you turn the heat

157

down. To be useful, it is simply sufficient to know that the heat will lead to water boiling
in a reasonable time frame. It is this activity that carries a great deal of promise, and
for which the options formalism is well suited to study. Hence, a general negative result
illustrating that it is difficult to find the right options suggests that there is more nuance to
the problem of discovering good options than simply optimizing relative to a given task—
I liken this result to a version of the No Free Lunch theorem [346], according to which
no learning algorithm can dominate all others on all problems. In a sense, the hardness
results presented here suggest that no option discovery algorithm can efficiently find the
right options on all problems, but perhaps on a well chosen subset, such a task is easier.
To summarize, the results of this chapter are useful for understanding the limitations
of option discovery, evaluating option discovery methods, and for guiding future option

discovery algorithms. I return to this discussion later in the chapter.

6.1 FORMALIZING THE PROBLEM

I now formalize what it means to find the set of options that is optimal for planning. I
will then use this formalism to establish hardness results for computing options that help
with planning, both in the worst and approximate cases. The main positive result is the
existence of an approximation algorithm with a principled theoretical foundation.

To ground this study, I will restrict attention to a particular notion of planning in several
ways. First, I only study the acceleration of VI, rather than the full scope of planning
algorithms. Indeed, I take VI to be both sufficiently general and canonical to capture
the rough structure of many planning algorithms. Second, I ignore any increase to the
branching factor. This is a big component, as adding options will help reduce the number
of iterations of VI, but will necessarily increase the number of actions evaluated at each
state. Hence, the proposed model only captures a part, but not the whole picture, of
planning acceleration. Finally, I concentrate only on finite MDPs. While these restrictions
limit the scope of the result, it is important to establish this the computational difficulty

of this problem in a restricted setting before considering the more general cases.

158

Precisely, I will show that the problem of finding options that minimize the number of

iterations required by VI,

1. is 21°8“"-hard to approximate for any € > 0 unless NP ¢ DTIME(nP°Y108) 01 where

n is the input size;
2. is Q(logn)-hard to approximate even for deterministic MDPs unless PTIME = NP;
3. has a O(n)-approximation algorithm;
4. has a O(logn)-approximation algorithm for deterministic MDPs.

In Section 6.4, I present A-MOMI, a polynomial-time approximation algorithm that has
O(n) suboptimality in general and O(logn) suboptimality for deterministic MDPs. Note
that the expression 2log' 1 jg only slightly smaller than n: if € = 0 then Q(2°8") = Q(n).
Thus, A-MOMI is close to the best possible approximation factor. In addition, I will con-
sider the complementary problem of finding a set of k options that minimize the number
of VI iterations until convergence. I show that this problem is also NP-hard, even for a
deterministic MDP. After establishing these complexity results, I highlight a brief empir-
ical study comparing the performance of two heuristic approaches for option discovery:
betweenness options [291] and eigenoptions [211], with those options discovered by the

new approximation algorithm.

6.2 OPTIONS AND VALUE ITERATION

I here study the value-planning problem, defined as follows.

Definition 6.1. The value-planning problem is defined as follows: given an MDP M =
(S, A R, T,v,p0) and an € € Ry, return a value function, Vi such that |Vi(s) - V*(s)| < €
forallseS.

6.1 This is a standard complexity assumption: see, for example, Dinitz et al. [91]

159

As discussed in Section 2.3, options have a well defined transition and reward model

for each state named the multi-time model [264]:

T,(s' | 5,0) = ki 2V Bo(s)p(s' k | 5,0), 6.1)
=0

R,(s,0) = klE [rl YTyt ’)/k_lrk

/S51..k

s,o] . (6.2)

To run VI with options, it is natural to substitute the MTM for the standard reward and
transition function and apply the same exact operations. The algorithm then computes a
sequence of functions V, Vi, ..., V; using the Bellman Equation on the MTM:

Vir1(s) = max [R,(s,0)+ > T,(s"|s,0)Vi(s")]. (6.3)
0eAuQ)(s) s'eS

Throughout this chapter, I will assume that the model of each option is given to the
agent and ignore the computational cost for computing the model for the options. This
is yet another assumption that will help simplify the analysis, but will also restrict the
scope of the result—indeed, understanding the total difficulty of option discovery (model
computation and all), is of deep importance. In Chapter 7, I develop an alternative model
to the MTM that is simpler to estimate while retaining desirable properties.

Here, I study the problem of choosing a subset of options O’ from a given set O to add

to A that minimizes the number of iterations required for VI to converge.®?

Definition 6.2. The number of iterations L(O) of VI using the joint action set Au O,

with O a non-empty set of options, is the smallest b at which |V},(s) —V*(s)| <€ forall s € S.

POINT OPTIONS. Due to the generality of the options framework, a single option can
in fact encode several completely unrelated sets of different behaviors. For example, con-

sider the nine-state MDP pictured in Figure 6.2. In this MDP, I include the initiation,

6.2 To ensure that |[V*(s) - V;(s)| < € for each s € S, run VI until |V;,1(s) - V;(s)| < €(1 =) /27 for each s € S [343].

160

Figure 6.2: A single option can encode multiple unrelated behaviors.

policy, and termination of a single option. The option initiations in s; and s, and ter-
minates in s9 and ss. However, the policy executed from s; and s, ultimately produce
entirely independent trajectories. Consequently, this single option defines two separate
behaviors. For this reason, it can be difficult to reason about the impact of adding a sin-
gle option in the traditional sense—it might be the case that one option in fact defines
arbitrarily many separate behaviors. In fact, as the MDP grows larger, a combinatorial
number of behaviors can emerge from a single option. It can thus be difficult to address
the question: which single option helps planning the most? Thus, for the purposes of the
analysis, we choose to focus attention on a special subclass of options that only allow for

a single continuous stream of behavior:

Definition 6.3. A point option is any option o whose initiation set I, and termination

condition B, correspond to one state each:

HseS:Z,(s) =1} =1, (6.4)

{s €S : Bo(s) >0} =|{s€S: Bo(s) =1} =1. (6.5)

I let O, denote the set containing all point options. Note that trivially O, c Oy;. Addi-
tionally observe two key properties of point options: 1) an arbitrary collection of options

in a finite MDP can be represented as a collection of point options, and 2) a point option

161

is simply a regular option paired with a particular kind of state abstraction that groups
together all states in the initiation and termination sets (assuming deterministic termina-

tion). For these reasons, point options are surprisingly general.

63 COMPLEXITY RESULTS
The main results of this chapter focus on two computational problems, first introduced
by Jinnai et al. [144];

1. MINOprTIONMAXITER (MOMI): Given a set of options O, which subset O’ ¢ O allows

VI to converge in at most ¢ iterations?

2. MINITERMAXOrTION (MIMO): Given a set of options O, which subset of k or fewer

options O, ¢ O will minimizes the number of iterations of VI to convergence?

More formally, the two problems are defined as follows.

Definition 6.4. The MinOptionMaxIter problem is defined as follows: given an MDP
M, a non-negative real-value €, and an integer {, return O that minimizes |O| subject to

OcOpand L(O) < L.

MinITERMAaxOrtioN (MIMO).

Definition 6.5. The MinlterMaxOption problem is as follows: given an MDP M, a non-
negative real-value €, and an integer k, return O that minimizes L(QO), subject to O ¢ Oy

and |O| < k.

I now present the main result of the chapter, which states that both MOMI and MIMO

are NP-hard.
Theorem 6.1. MOMI and MIMO are NP-hard.

This result was first proven by Jinnai et al. [144]—see Theorem 1. For proofs of all results

introduced in this chapter, see original work by Jinnai et al. [144].

162

Generalizations of MOMI and MIMO

It is natural to consider whether the hardness results of Theorem 6.1 extend to more
general settings. Let us now turn to extensions of these problems that offer significant
coverage of settings relevant to finding the optimal options for accelerating VI.

First, consider the case where the given options are not point options, but rather may be
an arbitrary subset of O,;;. When the given set of options is in fact O,;, MOMI is solved
trivially, since the optimal option for accelerating VI is one that initiates everywhere and
executes 7t*. However, in practice, the set O, is likely to be inaccessible. Instead, it is
often preferable to focus on classes of options that can be constructed with a restricted
computational or sample budget. To capture this variant of the problem, let us now

introduce a generalization of MOMI:

Definition 6.6. The MOMIg,, problem is defined as follows: given an MDP M, a non-
negative real-value €, O ¢ Oy, and an integer ¢, return O minimizing |O| subject to

L(O)<tland O c O

In this way, O’ can denote options that satisfy other criteria, such as those that can
be constructed or estimated given some resource budget, or obtain of other desirable
properties. As is expected, this problem is again NP-hard, since both MOMI,,, and
MIMOy,, are supersets of MOMI and MIMO respectively.

Theorem 6.2. MOMI,,, and MIMOg,;, are NP-hard.

Another relevant relaxation of MIMO and MOMI is to move to the multitask or life-
long setting discussed in Chapter 4—how does this problem change when our goal is
to identify options that accelerate planning on multiple MDPs? More concretely, given
a distribution over MDPs D, we would like to compute the smallest set of options Oy,
that minimize the expected number of iterations to solve M ~ D. I refer to this problem as

MOML,,,,,;;i, defined as follows.

163

Definition 6.7. The MOMI,,,,;;; defines the following computational problem: given a
probability distribution over MDPs D, O' ¢ Oy, a non-negative real-value €, and an integer

¢, return O that minimizes |O| such that Epr.p[Lp(O)] < € and O ¢ O'.

As expected, the same extension can be applied to MIMO, too.
Theorem 6.3. MOMI,,,,;;; and MIMO,,,,,;;; are NP-hard.

The proof follows from the fact that MOMI,,,,,;;; is a superset of MOMI,,, and MIMO, 1
is a superset of MIMOyg,.

In light of the computational difficulty of both problems, the appropriate approach is to
find a suitable approximation algorithms. However, even approximately solving MOMI

is hard. More precisely:
Theorem 6.4.

1. MOMI is Q(logn) hard to approximate even for deterministic MDPs unless P = NP.

2. MOMl,y, is 218" "_pard to approximate for any € > 0 even for deterministic MDP unless

NP ¢ DTIME(nPolvlosn),

3. MOMI is 218" "_pard to approximate for any € > 0 unless NP ¢ DTIME (nF°108™),

Note that an O(n)-approximation is achievable by the trivial algorithm that returns a
set of all candidate options. Thus, Theorem 6.4 roughly states that there is no polynomial
time approximation algorithms other than the trivial algorithm for MOML

In the next section we show that an O(log n)-approximation is achievable if the MDP is
deterministic, and the agent is given the set containing all point options. Thus, together,
these two results give a formal separation between the hardness of abstraction in MDPs
with and without stochasticity.

In summary, the problem of computing optimal behavioral abstractions for accelerating

VI is computationally intractable.

164

64 APPROXIMATION ALGORITHMS

I now provide polynomial-time approximation algorithms, A-MIMO and A-MOM], to
solve MOMI and MIMO respectively. Both algorithms have bounded suboptimality that
is slightly worse than a constant factor for deterministic MDPs.

The analysis requires several assumptions. First, there is exactly one absorbing state
sg € S with T(sg | a,s¢) =1 and R(sg,a) = 0. Second, that every optimal policy eventually
reaches s, with probability 1. Third, there is no cycle with a positive reward involved
in the optimal policy’s trajectory. That is, V'(s) := E[Y;2,max{0,R(s,a)}] < oo for all
policies 7t. Note that we can convert a problem with multiple goals to a problem with a
single goal by adding a new absorbing state s, to the MDP and adding a transition from
each of the original goals to s,.

Unfortunately, these algorithms are computationally more involved than solving the
MDP itself through standard methods, and are thus unlikely to be practical. Instead, they
are useful for analyzing and evaluating options discovered by heuristic algorithms. If the
option set found by an option discovery method outperforms the option set found by one
the following approximation algorithms (in planning performance), then it is strong evi-
dence that the option set found by the heuristic is close to the optimal option set (for that
MDP). The approximation algorithms are guaranteed to have bounded suboptimality if
the MDP is deterministic, so any heuristic method that provably exceeds our algorithm’s
performance will also guarantee bounded suboptimality. Further, these algorithms may

be a useful foundation to help guide future option discovery methods.

APPROXIMATION ALGORITHM: A-MOMI. [now describe a polynomial-time approx-
imation algorithm, A-MOMI, that uses set cover to solve MOMI. The overview of the

procedure is as follows.

165

1. Compute an asymmetric distance function de(s,s’) : S xS - N representing the
number of iterations for a state s to reach its e-optimal value if we add a point

option from a state s’ to a goal state s,.

2. For every state s;, compute a set of states X,, within ¢ -1 distance of reaching s;. The
set X, represents the states that converge within /¢ steps if a point option is added

from s; to sq.

3. Let X be a set of X;, for every s; € S~ X, where X; is a set of states that converges

within ¢ without any options.

4. Solve the set-cover optimization problem to find a set of subsets that covers the
entire state space using the approximation algorithm by Chvatal [69]. This process
corresponds to finding a minimum set of subsets {X, } that makes every state in S

converge within ¢ steps.

5. Generate a set of point options with initiation states set to one of the center states

in the solution of the set-cover, and termination states set to the goal.

The distance function d. : S xS — N, is defined as follows.

Definition 6.8. The asymmetric distance de(s;, s]-) is one minus the number of iterations

for s; to reach e-optimal if a point option is added from s; to sq.

More formally, let d_(s;) denote the number of iterations needed for the value of state
s; to satisfy |V (s;) - V*(s;)| < €, and let d.(s;,s;) be an upper bound of the number of
iterations needed for the value of s; to satisfy |V (s;) - V*(s;)| < €, if the value of s; is
initialized such that [V (s;) - V*(s;)| < €. Let de(s;,5;) = min(dg(s;) - 1,dc(si,s)). For
simplicity, I use d as shorthand for d..

Note that we need to solve the MDP once to compute d. The quantity d(s,s’) can be
computed once the MDP is solved without any options and have stored all value functions

Vi fori=1,...,b until convergence as a function of Vy: Vi(s) = f(Vi(s0), Vi(s1),...). If a

166

point option is added from s’ to sg, then Vi(s") = V*(s’). Thus, d(s,s’) is the smallest i
such that V;(s) is e-optimal if we replace Vi(s") with V*(s") when computing V;(s) as a

function of V;. With these pieces in play, we can now state the properties of A-MOMI.
Theorem 6.5. A-MOMI has the following properties:

1. A-MOMI runs in polynomial time.

2. It guarantees that the MDP is solved within ¢ iterations using the option set acquired by

A-MOMI O.

3. Ifthe MDP is deterministic, the option set is at most O(logn) times larger than the smallest

option set possible to solve the MDP within { iterations.

Note that the approximation bound for a deterministic MDP will inherit any improve-
ments to the approximation algorithm for set cover. Set cover is known to be NP-hard to
approximate up to a factor of (1-0(1))logn [92], thus there may be an improvement on
the approximation ratio for the set cover problem, which will also improve the approxi-

mation ratio of A-MOMI.
APPROXIMATION ALGORITHM: A-MIMO. The outline of the approximation algorithm
for MIMO (A-MIMO) is as follows.

1. Compute de(s,s") : S xS - N for each pair of states.

2. Using this distance function, solve an asymmetric k-center problem, which finds a
set of center states that minimizes the maximum number of iterations for every state

to converge.

3. Generate point options with initiation states set to the center states in the solution

of the asymmetric k-center problem and termination conditions to the goal.

As in A-MOMI, we first compute the distance function, which is the most computation-

ally demanding part of the algorithm. Then, we use d to solve the asymmetric k-center

167

problem [256] on (U, d, k) to get a set of centers, which we use as initiation states for point
options. The asymmetric k-center problem is a generalization of the metric k-center prob-

lem where the function d obeys the triangle inequality, but is not necessarily symmetric:

Definition 6.9. Th asymmetric k-center problem is defined as follows: given a set of
elements U, a function d : U xU — IN, and an integer k, return C that minimizes P(C) =

maxgey mingec d(s, ¢) subject to |C| < k.

We solve this problem using a polynomial-time approximation algorithm proposed
by Archer [18]. The algorithm has a suboptimality bound of O(log* k)®3 where k < |U|.
It is known that the problem cannot be solved within a factor of log™ /| - 6(1) unless
P=NP [68]. As the procedure by Archer [18] often finds a set of options smaller than
k, we generate the rest of the options by greedily adding logk options at once. Finally,
we generate a set of point options with initiation-states set to one of the centers and the
termination state set to the goal state of the MDP. That is, for every c € C, we generate a

point option starting from c to the goal state s,.
Theorem 6.6. A-MIMO has the following properties:

1. A-MIMO runs in polynomial time.
2. If the MDP is deterministic, it has a bounded suboptimality of O(log™ k).
3. The number of iterations to solve the MDP using the option set acquired is upper bounded

by P(C).

With the primary analysis established, I now turn to an empirical study of these algo-

rithms and the options they construct.

6.3 log” is the number of times the logarithm function must be iteratively applied before the result is less than
or equal to 1.

168

6.5 EXPERIMENTS

I next turn to an empirical study that examines the performance of VI using options
generated by the approximation algorithms on simple grid worlds. The first domain is
the same Four Rooms grid world studied in previous chapters, and the second is a 9xg
grid world with no walls. In both domains, the agent’s goal is to reach the top right
corner.

Visualizations. First, we visualize a variety of option types, including the optimal point
options, those found by our approximation algorithms, and several option types proposed

in the literature. To generate these visuals, we compute the optimal set of point options

(a) Optimal, k =2 (b) Optimal, k = 4 (c) Betweenness, k = 4

(d) Approximation, k = 2 (e) Approximation, k = 4 (f) Eigenoptions, k = 4

Figure 6.3: Qualitative comparison of the optimal point options with options generated
by the approximation algorithm A-MIMO.

169

by enumerating every possible set of point options and picking the best. We also con-
trast these options with eigenoptions [212] and options based on betwenness by Simsek
and Barto [291]. Figure 6.3 shows the optimal and bounded suboptimal set of options
computed by A-MIMO for k =2 and k = 4.

Figure 6.3c shows the four bottleneck states with highest shortest-path betweenness
centrality in the state-transition graph. Observe that the optimal options are quite close
to the bottleneck states, suggesting that bottleneck states are also useful for planning as
a heuristic to find useful subgoals. Figure 6.3f shows the set of subgoals discovered by
graph Laplacian analysis following the method of Machado et al. [211]. Both eigenoptions
and betweenness options are designed for use in RL, rather than planning, but there is
still meaningful qualitative difference in the options discovered. Indeed, one potential
reason to acquire good options to plan is for their eventual use in model-based RL.

While such visuals can only highlight qualitative differences in the different methods,
it is still apparent that the approximation algorithm and the optimal algorithm find rea-
sonably similar sets of options. That is, contrasting Figure 6.3a with Figure 6.3d, we see
that the options generated are in fact relatively similar—both initiate in the bottom left
and top left rooms respectively, and are around 10 steps away from the goal. The same is
true when k = 4: note that in Figure 6.3b and Figure 6.3a there is roughly one option in
each room in both cases.

Quantitative Evaluation. Next, we turn to a quantitative evaluation to directly contrast
the impact the discovered options have on the speed of VI. Specifically, we run VI using
the set of options generated by A-MIMO and A-MOMI and compare their performance
to the optimal set of options found by solving the full NP-hard problem. Figure 6.4a and
Figure 6.4b present the number of iterations on the Four Rooms and 9 x 9 grid using a set
of options of size k. The experimental results suggest that the approximation algorithm
tends to find a set of options slightly worse in performance than the optimal ones. For
betweenness options and eigenoptions, we evaluated every subset of options among the

four and present results for the best subset found. Because betweenness options are

170

Fourroom 9x9 grid

P
W B

Iterations
#lterations

12

#

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12

#Options #Options
(a) Four Rooms (MIMO) (b) 9 x 9 grid (MIMO)
Fourroom 9x9 grid
\ —e— OPT —e— OPT
12 \ APPROX 14 APPROX

12
10

10

#Options
#Options

4 o—a_4 -
\ 4 L
2 P 5 \\’%3 .

" —a—a—a—a_

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16
#lterations #lterations

(c) Four Rooms (MOMI) (d) 9 x9 grid (MOMI)

Figure 6.4: Quantitative evaluation comparing the planning speed up resulting from the
options computed by solving MIMO and MOMI in various ways.

placed close to the optimal options, the performance is close to optimal especially when
the number of options are small.

In addition, we used A-MOMI to find a minimum option set to solve the MDP within
the given number of iterations. Figure 6.4c and Figure 6.4d show the number of options
generated by A-MOMI compared to the minimum number of options. As the data indi-
cate, the optimal approach and A-MOMI find options of similar quality, suggesting that
in these simple problems, the approximation algorithm is as effective as solvine thee full
NP-hard problem.

In this chapter, I address a fundamental question concerning the use of action abstrac-

tions that help accelerate planning in MDPs. This led to two problem formulations for

171

finding options: 1) minimize the size of option set given a maximum number of itera-
tions (MOMI) and 2) minimize the number of iterations given a maximum size of option
set (MIMO). The main results prove that these two problems are both computationally
intractable under several assumptions—we here suppose the option models are given,
the branching factor is ignored, and that VI is sufficiently general to capture planning
algorithms. These assumptions do limit the scope of these results. Fortunately, each prob-
lem also permits a polynomial-time algorithm for MDPs with bounded reward and goal
states, with bounded optimality for deterministic MDPs. Experimental data support the
usefulness of the approximation algorithms, though it is important to be mindful of their

computational costs.

THE EXPECTED-LENGTH MODEL OF
OPTIONS

This chapter is based on “The Expected-Length Model of Options” [10] jointly
led by John Winder, also with Marie desJardins and Michael L. Littman.

Making accurate long horizon predictions about the effects of an action can improve an
agent’s ability to make meaningful decisions. For instance, the hiker in the forest from
Chapter 1 is sure to rely on the ability to predict which high level behaviors will lead them
to the bridge, the tent, or the waterfall. With such predictive power, agents can take into
account the long-term outcomes of an action, and use this information to make informed

plans that account for contingencies, uncertainty, and ultimately help determine which

oy .

(a) Multi-Time Model (b) Expected-Length Model

actions will maximize value.

Figure 7.1: An intuitive illustration of the MTM (left) and ELM (right).

172

173

However, learning models that are suitable for use in making long horizon predictions
is challenging. Even e-accurate one-step models are known to lead to an exponential
increase in the error of n-step predictions as a function of the horizon [157, 54], though
recent approaches show it is possible to diminish this error through smoothness assump-
tions about the environment [23]. Moreover, composing an accurate one-step model into
an n-step model is known to give rise to predictions of states dissimilar to those seen dur-
ing training of the model, leading to poor generalization [314]. By encoding only relevant
long horizon sequences of behavior, options offer one promising approach for supporting
the discovery of accurate long term models. How to obtain an option model tractably,
however, remains an open question. To this end, this chapter studies the problem of
efficiently computing option models from experience.

I first discuss the sense in which the traditional multi-time model (MTM) of options [263,
264], is highly parameterized, and thus difficult to compute or learn under reasonable
constraints. Intuitively, the density modeled by the MTM tracks the outcome of a given
option over all possible time steps (Figure 7.1a), which can be impractical to compute
even in small domains. In light of this difficulty, I motivate the construction of an alter-
nate model that I call the expected-length model (ELM). The main idea behind the ELM,
and indeed, this chapter, is that it is not necessary to model the full joint distribution
of possible outcomes of an option, as in the MTM. Instead, it is sufficient to estimate
1) how long, on average, an option takes to run, and 2) a categorical distribution over
states where the option terminates. The ELM is formed by combining these two pieces of
information (Figure 7.1b) .

I then prove that in goal-based MDPs, the differences in value functions induced by
the MTM and the ELM is bounded as a function of the horizon and other relevant prop-
erties of the option and environment. I then conduct an empirical study contrasting the
performance of the ELM with the MTM in a variety of MDPs. The findings from these ex-
periments suggest that in the right kinds of problems, the ELM is a suitable replacement
for the MTM.

174

7.1 THE EXPECTED-LENGTH MODEL

I now introduce the new option model and motivate its properties. The ELM is defined

as follows.

Definition 7.1. The expected-length model (ELM) for a given option o in state s supposes
that the distribution of time steps taken by the option can be well approximated by its expected

value, py:

Ty (s"|5,0) = 1" p(s" | 5,0), (7.1)

Ry (s,0,8") = yY™E[r1+12... 471y |s,0], (7.2)

where p(s’ | s,0) denotes the probability of terminating in s', given that the option was

executed in s.

Modeling only the expected number of time steps throws away information—it ignores,
essentially, the particulars of how executing the option can play out. Consider an agent
in the usual Four Rooms domain with an option for moving from the top-left room to
the top-right one. Suppose the primitive actions are stochastic, with a small probability
of moving the agent in the wrong direction. Due to the non-zero probability of slipping,
the option may sometimes take five, ten, or even more steps to reach the top-right room.
Instead of modeling the full distribution of the number of time steps taken, ELM averages
over these quantities (represented by), and models the transition as taking place over
this expected number of time steps. I provide additional intuition for ELM in Section 7.2
by working through a concrete example.

The main result of this chapter demonstrates that this process of distillation is accept-
able and desirable, leading to simpler models and often improving the rate at which
models are learned. Specifically, I prove that, under mild assumptions, ELM induces

similar value functions to MTM, where the bound depends on primarily on the amount

175

of stochasticity in the MDP (and the option’s trajectory). From experimental evidence, I

conclude that ELM option models can perform competitively to MTM.

7.2 A SIMPLE EXAMPLE

Let us first develop intuition behind ELM through an example, concentrating on the

transition model.

Example 7.1. Consider the six-state MDP in Figure 7.2a, chosen to accentuate the differences in
ELM and MTM. Suppose an option initiates in sy (shown in blue), and terminates in s¢ (shown in
tan). For simplicity, suppose B,(s) = 1{s = s¢ }. The option policy is depicted by the arrows—when
the option executes its policy in sq, it lands in s with probability % and ss with probability % In
sa, when the option executes its policy, the agent stays in sy with probability 1 -6, and transitions
to s3 with probability § (and so on for s3 and s4). Conversely, in ss, the option transitions to sg

with probability 1.

Consider the process of estimating the option model at s¢: T, (s¢ | 51,0) under the MTM.
To construct a proper estimate, the MTM must estimate the probability of termination in
each state over all possible time steps to determine IP(s(!) = s | 51,0),P(s? = 54| 51,0),
This computation involves estimation over arbitrarily many time steps; in some cases, like
this one, we might find a closed form based on convergence of the geometric series, but
agents cannot always intuit this fact from limited data. In contrast, the ELM models this

distribution according to yy, the average number of time steps.

1.0 - ELM
- MTM

1
S

o
W

1-6 1-¢ 1-6

F
> 3
5 5 s s
g 04
0.5 +1 & .
e Q o2 S —
0.5 . S
001 00 02 04 06 08 10
1 6 2 4 6 8 10 12 6
K

(a) (b) Model Diff. § = 0.4 (c) Value Diff. vs. §

o
>
1V (s1) = Vi (s1)]
°
9

Ve

o
o

Figure 7.2: An illustration of the difference between ELM and MTM.

176

Given the true MDP transition function T, I run n rollouts of the option to termination.
Supposing each rollout reports (s,o,r,s’,k), with r the cumulative reward received and k
the number of time steps taken, it is natural to estimate p; with the maximum likelihood
estimator (MLE) i = 1 ¥, k;. Additionally, we can estimate p(s’ | s,0), the probability
that o terminates in s’, by modeling it as a categorical distribution with ¢ = |S| parameters.
Then, it is feasible to estimate each ¢; with an MLE.

To summarize:

e The ELM estimates yy and p(s’ | s,0), for each s’ of relevance, by using an MLE

based on data collected from rollouts of the option.

¢ The MTM must estimate the probability of terminating in each state, at each time
step. It is unclear how to capture this infinite set of probabilities of value economi-

cally.

Figure 7.2b shows their differences in the quantity P(s®) = s¢ | s1,0), for each time
step k. The MTM (in orange) distributes the transition probability across many lengths k.
Approximately half of the time, s is reached in two steps via the bottom route through ss;
the rest of the probability mass is spread across higher values, reflecting longer paths (via
s2). The ELM (in blue) instead assumes the option takes pj = 5 steps. For both models,
each non-zero bar represents a parameter that needs to be estimated, giving a sense of
the difficulty in estimating each distribution.

Next consider the mean value difference under each model averaged over 20 runs,
presented with 95% confidence intervals in Figure 7.2c. Observe that this value difference
which decreases to nearly o0.15 as § tends to 1 (with VMax = 1.0). This trend is predicted
by the analysis I conduct in Section 7.3, which suggests that the higher the variance over

expected number of time steps, the more the ELM deviates from the MTM.

177

Difficulty of Finding Option Models

The goal of the ELM is to simplify the MTM to be able to estimate and compute the model

of a given option more efficiently.

ESTIMATION. Learning an option’s MTM involves estimating a complicated proba-
bility distribution. Specifically, the general case requires parameters for the (potentially
unbounded) number of time steps taken to reach a given s’ conditioned on initiating o in
s, for each s’ € S. For such cases, a common assumption to make in analyzing complexity
is to model the process out to some finite horizon. One reasonable approximation might
involve limiting the sum inside the MTM to the first A = (1-)~! steps as an artificial hori-
zon, thereby yielding A|S|> parameters to estimate. In contrast, ELM requires learning the
parameters of a categorical distribution indicating the probability of terminating in each
state. With one multinomial for each state, any learning algorithm must estimate 2|S|?
total parameters. Depending on the stochasticity inherent in the environment, option
policy, and option-termination condition, estimating this smaller number of parameters

is likely to be considerably easier (A > 2).

coMPUTATION. The MTM requires performing the equivalent computation of a Bell-
man backup until the option is guaranteed to have terminated just to compute the option’s
reward function (Equation 2.34). Due to the decreasing relevance of future time steps due
to -, one might again only compute out to A time steps to determine R, and T,,. Thus,
computing R, is roughly as hard as computing the value function of the option’s policy
(at least out to A time steps), requiring computational hardness similar to that of an algo-
rithm like Value Iteration (Algorithm 2.3), which is known to be O(|S[?|A|) per iteration,
with a rough convergence rate of O(A|T|) for |T| as a measure of the complexity of the true
transition function [322, 209]. Conversely, ELM is well suited to construction via Monte

Carlo methods. Consider a single simulated experience e = (s,0,7,s’,t), of the initial state,

178

the option, termination state, cumulative reward, and time taken. This experience con-
tains each data point needed to compute the components of option 0’s ELM (Equation 7.1
and Equation 7.2), all sampled directly from the appropriate distributions. With the ELM,
option models can be learned from these simulations, £, with each e € £ needing only
labels of where the option began, where it ended, how much reward it received, and how
long it took. It is therefore sufficient to run a number of rollouts proportional to the de-
sired accuracy when using ELM. Relying on such methods for computing the MTM again
requires estimating a potentially large number of parameters, which is often untenable.

In considering both estimation and computation, note that these are not conclusive
analyses of the computational and statistical difficulty of obtaining each model, but take
the insights discussed to serve as sufficient motivation for further exploration of the ELM.
For instance, there is some similarity in determining the MTM and TD(A) when A =
1 [305], so such estimation can be feasible (see, for instance, Chapter 4 of Parr [258]).

I now turn to the primary analysis of the chapter, which illustrates the deviation be-

tween the MTM and the ELM for each of the transition, reward, and value functions.

7.3 ANALYSIS

The main result of this chapter bounds the value difference between the ELM and MTM

in goal-based MDPs. This theorem holds under the following two assumptions.

Assumption 7.1. All MDPs considered are goal-based. That is, in each MDP, there is a unique

goal state sg such that Vsesacn : R(8,a,84) =1, where T(sq | s¢,a) = 1. All other rewards are zero.

This assumption is used to bound the difference of the ELM and MTM reward func-
tions, but is not required to bound their transition functions.
The next assumption is useful in the analysis, but conceptually there is no reason it

cannot be removed in future.

179

Assumption 7.2. For every option, the termination probability is non-zero in every state, bounded

below by a fixed constant Bmin € (0,1].

Indeed, while these assumptions slightly limit the scope of the analysis of the ELM,
I take the setting to still be sufficiently interesting to offer insights about learning and
using option models. Naturally, the relaxation of each assumption is a sensible direction
for future work.

At a high level I now show that the following claims hold under these two assumptions:
1. Lemma 7.1: || Ty = T}, /|0 is bounded.

2. Lemma 7.2: ||Ry = Ry, || is bounded in goal-based MDPs.

3. Theorem 7.1: ||V - Vi ||« is bounded in goal-based MDPs.

I begin with the two lemmas that show the transition and rewards of the ELM are

reasonable approximations of the MTM in goal-based MDPs.

Lemma 7.1. Under Assumption 7.2, the expected-length transition model is sufficiently close to

the transition model of the multi-time model. More formally, for any option o € O, for some real
2

T>1, ford= UT"—; and for any state pair (s,s") € S x S, with probability 1 - ¢:
T, (5" | 5,0) = Ty, (5| 5,0)] < Yo" (2T + 1) Pmin, (7.3)

Proof of Lemma 7.1.

Let T, (s | s,0) denote the multi-time model, and let T, (s" | s, 0) denote the expected

length model.

For a fixed but arbitrary state-option-state triple (s,0,s"):

ITy(s" [5,0) = Ty (" | s, 0)]

Nk

YP(S; =5 |5,0)B(s") M f;IP(st = 5'|'5,0)B(5")]
=

-~
I
—_

M8

|27 P (st =5"|'5,0)B(s") =" P(St = 5" | 5,0)B(s"))|

~
I
—_

(7' = ")P(St =5"| 5,0)B(s")]

M8

—~
Il
—_

(7' = ")P(St =5"| 5,0)B(s")]

M8

-~
Il
—_

Note that P(s; =s’ | s,0)B(s") is bounded above:

P(St = S, | S,O),B(S,) < (1 - ﬁmin)t/

180

(7-4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

since, in order to be in state s; at time f we have to not terminate in each of sq,...s;.

Further, we know that:

(1-x)<e™

for any x € [0, 1]. Therefore:

IP(St/ = S, | S,O)IB(S,) < e_.Bmint

So, rewriting;:

T, (5" ['5,0) = Ty (5" | 5,0)| = | i(’rt —Y*)P(s =5, B(s) | s, 0)]

< | Z(/yt — r),]"k)e_.BmintL
t=1

(7.10)

(7.11)

(7.12)

(7.13)

181

Thus:

Ty (5" 5,0) = Ty (8" [5,0) < | 2 (o =) P (7.14)
=1

Let K denote the random variable indicating the number of time steps taken by the

option. Now, note that by Chebyshev’s inequality, we know that for any 7 > 1:

2

o
P{K -l 2 7} < . (715)
Thus, letting J = i—;, we find that:
o2
IP{|K—yk]§T}21—§:1—(5. (7.16)
Thus, with probability 1 - ¢:
]/lk+T
T, (s"[5,0) = Ty (8" | s,0) < | D (7' = *)e Pt (7.17)
f=}4k—’l’
]/lkJrT
< Z |(r),t — ry.uk)| e_ﬁmint (7'18)
t=yk—T
}lk+T
<Yyt Pt (7.19)
t=pp—T
Up+T
— r),ﬂk_T Z e_.Bmint (7.20)
t=p—T
< AHTT(2T + 1) Pmin (7.21)
Therefore, for 6 = ‘;—;:
IP{|T,(s" | 5,0) = Ty, (5" | 5,0)| < " T (2T + 1)e Prin} > 14, (7.22)

182

Lemma 7.2. Under Assumption 7.1 and Assumption 7.2, ELM’s reward model is similar to
2
MTM'’s reward model. More formally, for a given option o, for 6 = %, for some T > 1, for any

state s:

IR, (s,0) - Ryk(5/0)| = |T7(5g |'s,0) - Tyk(sg |'s,0)l. (7.23)

Thus, by Lemma 7.1, with probability 1 - §:
Ry (5,0) = Ry (5,0)] < 77 (27 + 1)ePmin. (7.24)

Proof of Lemma 7.2.

In the goal-based MDP considered all rewards are either o or 1 (Assumption 7.1).
Thus, if a given option cannot reach the goal state, the two reward models are

identical, since all accumulated rewards by the option will be zero:

[Ry(s,0) = Ry, (s,0)| = 0. (7.25)

Conversely, if the option can reach the goal state, then the expected reward of the
option is just the probability, under the relevant transition model (T, or Tj,) of

reaching the goal. Therefore, more generally:

Ry(s,0) =T, (sq]s,0), (7.26)

Ry, (s,0) = Ty (sg,8,0). (7.27)

Consequently, by definition:

|R’7(S/0) - R}lk(sro)| = |T7(Sg | S/O) - T,uk(sg | 510)| (7-28)

183
Thus, we conclude by applying Lemma 7.1, for J = ‘;—;, for any s and o:

P {|R,(s,0) = Ry, (s,0)| < Y T (2T + 1)6'5’””’} >1-6. (7.29)

Notably, Lemma 7.1 does not depend on Assumption 7.1—it applies to any finite MDP.
Hence, it is likely that the ELM reward function is similar to the MTM in a more general
class of MDPs than goal-based problems, but I leave such a direction open for future

work. With these lemmas in place, I now present the main result of the chapter.

Theorem 7.1. In goal-based MDPs, the value of any policy over options under ELM is bounded
relative to the value of the policy under the multi-time model, with high probability.
More formally, under Assumption 7.1 and Assumption 7.2, for any policy over options 1t,, some

real valued T > 1, € = Yo T (2T + 1)€_ﬁ’”i”, 0= ‘;—i,for any state s € S, with probability 1 - §:

e(1—M) + 9" SRMax

Tty _ Y/
V) = Vi O ey (T =i+ ey

Proof of Theorem 7.1.
Let

e=y"T(2T + 1)6‘5"“'”, (7.30)

and again let 6 = ‘;—z By Lemma 7.1 and Lemma 7.2, we know that the reward and

transition models are bounded, each with probability 1 - 4:

|R’Y(S/O) - Rﬂk(sf 0)| <g, (7-31)

IT,(s"|5,0) = Ty (s" | s,0)| < e. (7.32)

184

Then, let

Vyi(s) = Ry(s,0) +9M" Y (P(s" | s,0) +¢&) VIE(S"). (7.33)
s’eS

Note that, by the transition model bound above:
V2" = Vi lleo < IVad = Vi lloo (7-34)

Then, by Lemma 4 by Strehl and Littman [299], we upper bound the right hand

side of Equation 7.34 with probability 1 -4, for any option o, any policy 7, for any

state s:
(1= 9")e+ M ERMax
T a4 < 2))
|Q’Y,€(S/O) ka(s,0)| = (1_,)/’41()(1_,)/#,(_{_%,)/”1() (7 35)
By combining Equation 7.34 and Equation 7.35, we conclude the proof. O

Thus, in goal-based MDPs, the value of the two models is bounded. The dominant
terms in the bound are T and y***, which roughly capture the variance over the number
of time steps taken by the option and the length of the option’s execution. When the
option’s execution is nearly deterministic, T is close to 1, and the bound collapses to 3.
Therefore, the bound is tightest when 1) the option or MDP is not very stochastic, and
2) the option executes for a long period of time. Further, the bound is quite loose; the
proof of Lemma 7.1 uses Chebyshev’s inequality, which does not sharply characterize
concentration of measure, and the proof relies on at least one other loose approximation.
Hence, in practice, it is likely that the two models will be closer; the experiments I next
provide further support for the closeness of the two models in a variety of traditional
MDPs.

Finally, for clarity, note that the typical convergence guarantees of the Bellman Oper-
ator are preserved under the ELM. The property follows naturally from the main result
of Littman and Szepesvéri [208], since the ELM is still a well-formed transition model,

and v € [0,1) for any 7 € [0,1):

185

Remark 7.1. The Bellman Operator using the ELM (in place of the MTM) converges to the fixed
point V..

To summarize, in goal-based MDPs, the ELM gives rise to value functions that do not
deviate too dramatically from the MTM. The degree of deviation in these value functions
scales with the stochasticity inherent to the underlying MDP and option, and inversely

with the expected-length of the option. I now discuss experiments investigating the utility

of the ELM in RL.

7.4 EXPERIMENTS

I next describe the findings from simulated experiments that offer further support for the

hypothesis that the ELM is suitable replacement for the MTM in specific MDPs.

METHODOLOGY. Each experiment is framed as a hierarchical model-based RL prob-
lem. That is, the agent reasons with a collection of primitive actions and options. All
option models are initially unknown, and thus the learning agent estimates each options’
reward and transition model from past experience. Throughout, the baseline RL algo-
rithm used is R-Max [54]. As discussed in Section 2.1, R-Max treats unknown (s,a) pairs
(or in this case, (s,0) pairs), as providing maximum reward until they become “known”
by being executed some m number of times. It is here that the MTM and the ELM dif-
fer in application: a transition under the MTM requires adding and updating as many
parameters as needed across all k possible time steps, while a transition under the ELM
needs only update its running average, p. This is in part due to the number of parame-
ters involved in R-Max, and it is worth noting that a tighter concentration inequality than
Hoeftding’s (used in R-Max to determine m) may yield similar performance. The policy
for each option is computed by running VI (Algorithm 2.3) over the approximate option
models.

Each experiment consists of 30 independent trials and is conduced as follows. Every

trial, I first sample a new reward function R; from a prespecified distribution over tasks,

186

D. Each reward function induces a goal-based problem that provides a large positive
reward at goal states, a negative reward at any transition into a failure state, and zero
otherwise. The presence of negative rewards deviates slightly from Assumption 7.1, but
not in a way that prevents straightforward application of the ELM. Indeed, expanding
Lemma 7.2 to more general classes of reward functions is an important open question.

Each trial consists of 300 episodes, terminating at either a goal state, a failure state, or
upon reaching a pre-determined maximum number of steps. The hierarchies used are
based on options or MAXQ task hierarchies from existing literature [85]. I set m =5
for the confidence parameter in R-Max. Across all MDPs, v = 0.99, and all transitions
are stochastic with probability 4/5 of an action succeeding, otherwise transitioning with
probability 1/5 to a different adjacent state (as if another action had been selected).

Experiments are conducted in the following domains: the standard Four Rooms do-
main seen in previous chapters; Bridge Room, a grid world with a large central room
containing pits (failure states) spanned by a bridge with two longer safe corridors on ei-
ther side; the Taxi domain studied in the experiments from Chapter 3, for which tasks are
defined by hierarchical options composed of other options; and, the discrete Playroom
domain [295, 180], also using a hierarchy of options.

The Bridge Room domain is a grid world with a large central room contains a bridge
of traversable cells that are flanked by failure states. The agent starts on one side of the
bridge, with the goal state across the bridge. Two corridors on either side of the central
room offer safe but longer pathways from the start state to the bridge. The agent is
only given options for moving to the doorways between rooms. The bridge is short but
crossing it is dangerous due to the stochasticity inherent in the environment. The optimal
policy, then, is to move through either corridor around the bridge room.

The discrete Playroom domain [295, 180] defines a complex sequential decision prob-
lem. The agent has three effectors: 1) an eye, 2) a hand, and 3) a marker. Each marker is
moved separately. The environment contains music and lights (both start off) and several

objects that can be interacted with if both the hand and eye are over them. There is a

187

switch that turns the lights on or off, a green button that turns music on, a red button
that turns music off, a ball that can be thrown towards the marker, a bell that rings when
hit by the ball, and a monkey that cries only when the lights are off, the music is on, and
the bell rings; the goal is to make the monkey cry. Following Konidaris et al. [180], the
agent plans over the interact primitive action and options for moving each effector to each

object.

RESULTS. I contrast discounted cumulative reward (performance) and time steps (sam-
ple complexity) achieved by the ELM compared to the MTM in each of the above domains.
Figure 7.3, Figure 7.5, and Figure 7.6 present performance curves with 95% confidence in-
tervals. Overall, the data suggest that the ELM and the MTM attain the same asymptotic
performance across each domain, reflecting the fact that they both eventually converge
to policies with similar values for each task. Further, the results suggest that the ELM
often requires fewer absolute samples to achieve the same quality behavior. This fact is
reflected by the learning curve of the ELM terminating earlier than the MTM when plot-
ted over time steps in Figure 7.3a, given that both approaches are run for a consistent
number of episodes. This result suggests that policies formed using ELM reach the goal

earlier in learning, since the agent more quickly finds a good policy. That is, since the

200

50 — ELM —— ELM on 9x9
MTM MTM on 9x9
1507 Eim on 11x11

N
o

————— MTM on

1004

w
o

50 1

]
o

Cumulative reward
cumulative reward

=
o

-50 1

o

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time-steps Time-steps
(a) Four Rooms. (b) Bridge Room.

Figure 7.3: Learning with options in grid worlds.

188

— 0.020

— 0.010

— 0.000

Figure 7.4: The difference in value between ELM and MTM in the Four Rooms task.

goal state is terminal, R-Max using the ELM tends to find the goals more quickly, and
thus experiences shorter episodes than the variant using the MTM.

Figure 7.4 displays the difference of the value functions learned under these models in
the Four Rooms MDP. In this problem, max; V*(s) =1/(1-0.99) = 1/.01 = 100. The largest
gap between V' and V; is just around 0.02, confirming their similarity in this MDP. Most
importantly, despite the difference in the value functions, the policies generated from both
are identical; both the MTM and ELM are able to support the discovery of a high-value
policy. This is further evidence that the models learned under the ELM are nearly-correct,
but per the learning curves in Figure 7.3a, can often be acquired sooner.

Figure 7.3b presents results on two variants of the Bridge Room domain. The inflection
points in the learning curves reflect the average point in learning when option models are
considered known by R-Max. Observe that the ELM consistently tends to converge earlier
in learning, reflecting its ability to quickly estimate the ELM, and thus more quickly make
use of the available options to plan. In the gxg variant of Bridge Room, however, the
results are not statistically significant. For this smaller domain, the bridge is short enough
that the approach using the ELM may get lucky and cross the bridge safely several times.
If this were to occur, the agent will learn to expect higher reward from the bridge option,
negatively impacting the ELM’s overall performance until it eventually learns the impact

of occasionally falling into a pit. In other words, the high-level behavior of choosing to

189

35000 _— 160000 1 ELM
MTM
30000 140000 ¢
a a
g 25000 9 120000 4
Iy i —— ELM, 1 passenger ry
g 200007 MTM, 1 passenger 2 100000 4
s —— ELM, 2 passengers s
< 150004 1 MTM, 2 passengers R 800004 |
g . g :‘
G 10000 1 51 [
60000+ |
5000 |
| 40000
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Episodes Episodes
(a) Taxi, one and two passenger variants. (b) Taxi, three passengers.

Figure 7.5: Learning with options in Taxi.

cross the bridge, rather than take the long route around it, tends to yield high variance
outcomes over reward. Hence, the confidence interval of the ELM on 9xg in Figure 7.3b
widens as the ELM is less consistent across trials; this domain was used precisely to
exhibit this potential downside of the ELM. As suggested by the analysis, domains with
high stochasticity are likely to prove problematic for the ELM.

For the Taxi domain, I consider the cumulative number of samples as task complexity
increases from one to three passengers. In each case, observe that both approaches are
able to learn models in relatively few episodes. In the case of one and two passengers
(Figure 7.5a), the approaches achieve similar performance, and the benefit of the ELM
over the MTM is statistically significant but minimal. For the largest Taxi task involving
three passengers (Figure 7.5b), the results are similar but have lower variance.

Figure 7.6 presents results, again measuring the cumulative steps taken in the discrete
Playroom domain. Here, the patterns observed in the other examples recur, though the
two approaches diverge later than in the Taxi experiments. This behavior is due to the
immense state-action space that must be learned for the effector-moving options. That is,
even as the option models are being learned, ELM’s practical effect is apparent—favoring

expected length leads to the generation of overall shorter plans.

190

3000001 —— gIm
MTM
250000 A
200000 A
150000 /

100000 -

Cumulative steps

50000 § /

0

0 50 100 150 200 250 300
Episodes

Figure 7.6: Learning with options in Playroom.

Let us take stock. In this chapter, I proposed a simpler option model, the ELM, to
replace the standard MTM. The analysis and experiments presented in this chapter show-
case the ELM’s potential for retaining a reasonable approximation of the MTM while
removing the overhead in its construction. The main theorem (Theorem 7.1) bounds the
value difference of MTM and ELM in goal-based problems, and the experimental findings
corroborate the claim that the ELM can be a suitable replacement for the MTM for RL,

especially when the environment is not very stochastic.

DISCOVERING OPTIONS FOR
EXPLORATION

This chapter is based on “Discovering Options for Exploration by Minimizing
Cover Time” [145] led by Yuu Jinnai, also in collaboration with Jee Won Park

and George Konidaris.

One of the central challenges of RL is the explore-exploit dilemma, discussed briefly in
Chapter 2. At a high level, the dilemma highlights the fact that RL agents acting in an
unknown world must simultaneously discover new things about their surroundings while
using what is already known to make good decisions. Such a trade off is especially chal-
lenging in environments where the vast majority of rewards are zero with only occasional
signal that differentiates good and bad decisions.

Let us return once again to the hiker camping in the forest from Chapter 1. The last few
nights, they unfortunately developed a bit of back pain from sleeping inside the tent in a
thin sleeping bag. However, the hiker also brought a hammock and a (now broken, sadly)
inflatable air mattress. The sun is beginning to set and our hiker is deliberating over
possible sleeping configurations. They are presented with a variety of choices: they could

move their tent to a new location with softer or flatter ground, rotate their sleeping bag,

191

192

find a suitable spot to hang the hammock, or try to fix the air mattress. Critically, the hiker
does not know in advance which of these activities will help them reliably get a good
night of rest and let their back recover. Testing each activity requires time and energy
as well, as it is not trivial to hang a hammock or fix an air mattress. Additionally, there
is uncertainty over the desirability of each outcome, and the only way to get true signal
about the impact of each decision is to actually experiment with a particular sleeping
configuration for a period of time. How is the hiker to proceed?

This is precisely an instance of the explore-exploit dilemma: the hiker could exploit
what they know now and continue sleeping in their current spot where they have con-
sistently been safe, warm, and comfortable except for the recent back pain. Or, they
can explore new activities, facing the uncertainty inherent in each of the new sleeping
modes. Depending on the hiker’s willingness to experiment, or the potential severity of
the outcomes, different strategies might make sense.

Implicit in the hiker’s situation is that they are already aware of the other relevant
sleeping strategies even if they have not actually tried them before. This is a key source
of the utility of action abstraction in facing down the explore-exploit dilemma. If the
agent did not have the capacity to consider the “set-up-and-sleep-in-hammock” option,
but rather faced down the exponential policy space formed by every permutation of
primitive actions, then the problem is effectively hopeless (should I sleep in my sleeping
bag, or execute some choice of actions a;,a;,ax, ag,...,Vijre,.?)-

In this way, options have the potential to dramatically alter the exploration problem.
Thus, options that are able to accelerate exploration are directly in line with the second
desiderata (efficient decision making). Long-horizon actions can enable agents to focus on
a particular objective conditioned on a consistent intent, giving rise to directed exploration
strategies that prune away irrelevant action sequences.

In light of these intuitions, this chapter studies the problem of discovering options that

can aid in exploration. I describe a new polynomial time algorithm first introduced by

193

A~

7t ~ Unif(Au O)

7

7t ~ Unif(A)

Figure 8.1: An example illustrating the main idea behind covering options: the expected
length of the random walk between relevant states can be reduced by well
chosen options.

Jinnai et al. [145] that improves exploration in finite, sparse reward MDPs by construct-
ing covering options that minimize the expected number of steps to reach a (previously
unknown) rewarding state without task-dependent reward information. An intuitive il-
lustration of this idea is pictured in Figure 8.1. I suggest that this algorithm is in line
with both the first and second abstraction desiderata, since the options do not require
unreasonable resource budgets, and are aimed at improving the sample efficiency of RL.
Concretely, the proposed algorithm finds a set of options that reduce the expected cover
time [57] of a random walk over the combined action space, Au O.

Computationally, this problem is equivalent to finding a set of edges to add to the
MDP’s transition graph that minimize the expected cover time, which is known to be a
hard combinatorial optimization problem [52, 53]. In light of this difficulty, the algorithm
instead seeks to minimize an upper bound of the expected cover time given as a func-
tion of the algebraic connectivity of the graph Laplacian [104, 57, 67] using the heuristic
method by Ghosh and Boyd [117]. I study the practical utility of the proposed option dis-
covery algorithm in six finite goal-based MDPs, finding that covering options can indeed
accelerate exploration.

The proposed option discovery algorithm makes the assumption that the behavior of
an RL agent at the beginning of its learning process may be modeled as a random walk

induced by a fixed stationary policy. Without any other knowledge about a given problem,

194

this is sensible: a reasonable default exploration policy is to execute actions uniformly at
random (at least until more data is collected). Additionally, this random walk will help
establish a simple form of worst-case analysis. Surely other more nuanced exploration
methods will be faster than a fixed policy. Under this assumption, we build toward an
upper bound on the expected cover time of a random walk in the MDP.

As in Chapter 6, this chapter studies point options that initiate and terminate in exactly
one (possibly different) state each. For more on point options, see Chapter 6, and specif-
ically Definition 6.3. Adding a point option to an MDP corresponds to inserting a single
edge into the graph induced by the MDP’s transition dynamics. Throughout the chapter,

I will refer to the state s with B,(s) =1 as the subgoal state.

8.1 COVER TIME

In this section, I motivate the use of cover time as a mechanism for studying exploration
in RL. The cover time is the time required for a random walk to visit all the vertices
in a graph [57]. To be precise in grounding this concept, let us first introduce several
additional definitions.

First, assume we are given a discrete Markov chain {X;} with state space V denoting

the vertices of graph G. The hitting time Hij, where i,j € V, is defined as
Hjj:=inf{teN: X;=jand Xo =i}. (8.1)

In other words, H;; is the greatest lower bound on the number of time step ¢ required to

reach state j after starting at state i. The cover time starting from state 7 is then defined as

C::= H;;, 8.
i ri%x ij (8.2)

and the expectation of cover time, E[C(G)], is the expected cover time of trajectories

induced by the random walk, maximized over the start state [57]. Thus, the expected

195

cover time bounds how likely a random walk will lead to a rewarding state, formalized

in the following result.

Theorem 8.1. Given an MDP M that encodes a goal-based MDP with goal g, where a non-
positive reward r. < 0 is given for entering non-goal states and -y = 1. Let W be a random walk

transition matrix, W(s,s") = ¥ 4ea T(s)T(s" | s, a) then:
Vg Vg'(s) 21 E[C(G)]. (8.3)

where IE[C(G)] is the expected cover time of a transition matrix W.

The proof was first introduced by Jinnai et al. [145]—see Theorem 1.

Intuitively, this result suggests that a smaller expected cover time may translate to more
efficient exploration. More formally, let P be a random walk induced by a fixed policy 7
in an MDP with start state distribution pg. Broder and Karlin [57] prove that the expected
cover time E[C(G)] of P is bounded by a function of the second largest eigenvalue of the

random walk matrix Ay_1(P) as follows.

n?Inn
E[C(G)] < m(1+0(1))r (8.4)

where n = |V| and k is the number of eigenvalues. The normalized graph Laplacian of an

unweighted undirected graph is defined as:
L:=1-T2AT1/?, (8.5)

where [is an identity matrix [67]. The random walk matrix can be written in terms of the
Laplacian:

P=T'A=T"*1-2)T". (8.6)

196

Note that since P and I - £ are similar matrices, they have the same eigenvalues and
eigenvectors. Therefore, Ay_1(P) = 1-Ay(L), where A(L) is the second smallest eigen-

value of £. By Equation 8.4,

n?lnn
A2

E[C(G)] < (1+0(1)). (8.7)

Hence, the larger the A, (L) is, the smaller the upper bound on the expected cover time.
The second smallest eigenvalue of £ is known as the algebraic connectivity of the graph,
with its corresponding eigenvector referred to as the Fiedler vector [104]. There are several
operations that can be applied to the graph to increase the algebraic connectivity. For
instance, if we add well chosen nodes to the graph, the connectivity changes, but not
necessarily in a way that improves the cover time. Alternatively, we might reroute edges
in the graph. However, in general it is undesirable to reroute edges as this changes the
space of representable policies and may destroy an agent’s ability to represent a high
value policy. Finally, we might add entirely new edges to the graph—in RL, this is effect
of adding options to the primitive action space. Therefore, adding edges is a reliable
way to reduce the cover time without potentially sacrificing optimality. Naturally, if
more information about the problem is available (such as which primitive actions may be
pruned on a per-state basis), other operations may be considered as well to lower cover

time.
8.1.1 Cover Time Experiments

In the previous section, I illustrated how the algebraic connectivity of an MDP’s transition
graph relates to the expected cover time. I now describe a simple experiment that further
examines this relationship.

The experiment consists of two steps. First, generate 100 random connected graphs

with 10 nodes with edge density fixed to 0.3.°! Second, approximate the expected cover

The graph generation process proceeds as follows. First, start with a single node. Pick one node from the
existing graph and add an edge to connect to a new node. Follow this procedure for the number of nodes

197

L] L]
70 . 26 ° ® . . °
L] L]
2 R) .
[L] ° []

60 e ®e Su e 3 :°
@ ‘as *e £ °e 3 83
£ d % § 2 8y ¢ ge o ¢

50 ° ° 2 sl o’ H
2 “oe” &% & o ° ' °
S e oo S 90 ° H Se °

B ge0®
40 ° e . 8 $8e¢ o,
L] ° oo © °
L] L]]
18
30 .
L] L]
16
010 015 020 025 030 035 30 10 50 60 70
Connectivity Cover Time
(a) (Connectivity) ~ (cover time) (b) (cover time) ~ (cost of the policy)

Figure 8.2: The relationship between (a) algebraic connectivity (A2) and cover time on
randomly generated graphs, and (b) the cover time of a random walk vs. the
cost of random policy.

time of a random walk on a random graph by sampling 10,000 trajectories induced by the
random walk and computing their average cover time.

Figure 8.2a shows the relationship of the algebraic connectivity and the expected cover
time of the random walk induced by the uniform random policy. The takeaway from
these results is that the random walk tends to have smaller expected cover time when
the underlying state-transition graph has larger algebraic connectivity. Conversely, Fig-
ure 8.2b shows the expected cost of a random policy from the initial state to reach the
goal state. Here, observe that the cost of a random policy is correlated to the cover time,

as expected.

8.2 COVERING OPTIONS

As discussed, computing the precise set of edges that minimize expected cover time in
a graph is thought to be NP-Hard [13]. Even a good solution is hard to find due to
Braess’s paradox [52, 53] which states that the expected cover time does not monotonically

decrease as edges are added to the graph.

n -1, generating a random tree of size n. Then, pick an edge uniformly randomly from E until the edge
density reaches the threshold.

198

0.0 2.5 5.0 7.5 10.0 ' 0.0 2.5 5.0 7.5 10.0
(a) Fiedler vector (b) Euclidean distance

Figure 8.3: The distance between the red state and all other states, measured via Fiedler
vector (left) and Euclidean distance (right).

Therefore, the expected cover time is often minimized indirectly by maximizing alge-
braic connectivity [104, 67]. In particular, the expected cover time is upper bounded
by quantity related to the algebraic connectivity (Equation 8.7), and by maximizing this
quantity, the bound can be minimized [57]. Choosing the set of edges that maximize the
algebraic connectivity of a given graph is known to be NP-hard [241]. However, Ghosh
and Boyd [117] developed an approximation procedure for this problem that proceeds as

follows.

1. Compute the second smallest eigenvalue and its corresponding eigenvector (the

Fiedler vector) of the Laplacian of the state transition graph G.

2. Let v; and v; be the states with the largest and smallest values in the Fiedler vector
respectively. Generate two point options, the first with Z, = {v;}, o, = 1{v;}, and
the second with Z,, = {v;} and B,, = 1{v;}. Each option policy is the optimal path

from the initial state to the termination state.

3. Set G « Gu{(v;,v;)} and repeat the process until the number of options reaches k.

199

Intuitively, the algebraic connectivity represents how well the graph is connected. The
Fiedler vector is an embedding of a graph to a line (that is, a real number) where nodes
connected by an edge tend to be placed close to one another (for example, see Figure 8.3).
A pair of nodes with the maximum and minimum value in the Fiedler vector are the most
distant nodes in this embedding space. Thus, our proposed method greedily connects
the two most distant nodes in the embedding, thereby greedily maximizing the algebraic
connectivity to a first order approximation [117].

The result is a set of options that is guaranteed to minimize the lower bound on the

expected cover time, as summarized by the following result.

Theorem 8.2. Assume that a random walk induced by a policy 7t is a uniform random walk:

1/d, if u and v are adjacent,
W(u,v) := (8.8)

0 otherwise,

where d,, is the degree of the node u. Adding two options by the algorithm improves the upper

bound of the cover time if the multiplicity of the second smallest eigenvalue is one:

, n’Inn
E[C(G)] < m(l +0o(1)), (8.9)

(v;-v))?

where E[C(G")] is the expected cover time of the augmented graph, F = M) T35

and v;, v;

are the maximum and minimum values of the Fiedler vector.

The proof was first introduced by Jinnai et al. [145]—see Theorem 2.

The state transition graph G may either be given to the agent as input or learned dur-
ing interaction with the MDP. Throughout, we assume that the graph is undirected and
strongly connected, so every state is reachable from every other state. As in the work by
Machado et al. [211], the proposed algorithm can be generalized to MDP’s with rich state
spaces using an incidence matrix instead of an adjacency matrix; such a generalization

was recently carried out by Jinnai et al. [146] to great effect.

200

To summarize the approach, the expected cover time of a random walk is a useful
measure for approximating the exploration difficulty of goal-based MDPs. Under this
approximation, we design an option discovery algorithm that decreases the cover time by
choosing options that connect states that are most distant according to the Fiedler vector.
I now discuss findings from an empirical study first carried out by Jinnai et al. [145] that

examines the utility of covering options.

8.3 EXPERIMENTS

We conduct experiments with six finite MDPs, many of which should be familiar from
previous chapters. These domains include the 9xg grid from Chapter 6, the standard Four
Rooms grid world, Parr’s maze [259], Taxi from Chapter 3, the classic disc puzzle Towers
of Hanoi, and a discrete driving domain called Race Track. Towers of Hanoi is a classic
game consisting of three pegs that can hold different size discs (sorted in decreasing order
of disc diameter) on any of the pegs. The goal is to move all discs from a single initial
peg to a goal peg while keeping the constraint that each smaller disc is placed above a
larger one (or is the only disc on the peg). In Race Track, the agent must reach the finish
line by driving a car without hitting the track’s boundary. The agent may change the
car’s vertical and lateral velocity by +1, -1, or o in each time step. If the car hits the track
boundary, it is moved back to the starting position.

In each MDP, we compare the performance of covering options, eigenoptions [211], and
betweenness options [291]. These methods were chosen for similar reasons discussed in
Chapter 6: they are closely related option discovery methods that do not require reward
information. More detail about eigenoptions and betweenness options is provided in
subsection 2.3.1.

To make the comparison more direct, we experiment with a point option variant of
the eigenoption method, though notably this was not the intend structure for eigenop-
tions. For the k-eigenvectors that correspond to the smallest k eigenvalues, we generate

a point option from a state with the highest (or lowest) value to a state the lowest (or

201

Four Rooms gx9 grid
A2 E[C(G)] A2 E[C(G)]
Covering options 0.065 672.0 0.24 258.6
Figenoptions 0.054 695.9 0.19 261.5
No options 0.023 1094.8 0.12 460.5

Table 8.1: Comparison of the algebraic connectivity and the expected cover time of cover-
ing options and eigenoptions.

highest) value in the eigenvector. The point option constructed in this way minimizes the

eigenvalue of each corresponding eigenvector.

First, we present a simple quantitative evaluation measuring the impact covering op-
tions and eigenoptions have on the algebraic connectivity (A;) and expected cover time
(E[C(G")]) in each of the Four Rooms and 9xg grid worlds. Results are presented in
Table 8.1. In both domains the covering options achieve larger algebraic connectivity and
smaller expected cover time than eigenoptions as desired, providing initial confirmation

that covering options perform as expected.
8.3.1 Visuals

We next present a series of visualizations that highlight important qualitative properties of
covering options. Figure 8.4 visualizes the eight covering options and eigenoptions found

in Four Rooms and the 9xg9 grid world. Note that each algorithm may output many

(a) Covering options (b) Covering options (c) Eigenoptions (d) Eigenoptions

Figure 8.4: Visualization of covering options and eigenoptions in Four Rooms and the gxg
grid world.

202

different sets of options, and we here choose to visualize just one set. Observe that in
each MDP, both option types tend to connect options that are far apart in the underlying
MDP. In Four Rooms, for instance, eigenoptions and covering options tend to connect the
states in the opposite corners together. In the 9xg grid world, this quality is also present.
The options found by both approaches tend to connect states that are far apart, suggesting
that they each increase the algebraic connectivity of the MDP’s transition graph.

Next, we further highlight the qualitative impact different options have on these two
grid worlds. Figure 8.5 presents the spectral graph drawing [181] of the state-transition
graph augmented with each option type. The spectral graph drawing is a technique that
is used to visualize the graph topology using eigenvectors of the graph Laplacian. Each
node 7 in the state-space graph is placed at (v2(n),v3(n)) in the (x,y)-coordinate, where
v; is the i-th smallest eigenvector of the graph Laplacian. These visuals provide further
qualitative support for the hypothesis that the option generation methods are successfully

connecting distant states.

(a) Covering options (b) Eigenoptions (Four Rooms) (c) No options (Four Rooms)
(Four Rooms)

(d) Covering options (9x9 grid) (e) Eigenoptions (9x9 grid) (f) No options (9x9 grid)

Figure 8.5: Spectral graph drawing of the state-transition graph.

203

8.3.2 RL with Options

We next present findings from two sets of experiments examining how the options found

by our algorithm can impact RL.

OPTIONS COMPUTED OFFLINE. In the first variant, we suppose that the transition
graph is given to the option discovery method offline, and the computed options are given
to an RL algorithm before learning begins. In each experiment we test with Q-learning
as the underlying RL algorithm paired with different option types, where a = 0.1,y = 0.95.
Each approach is run for 100 episodes with 100 steps per episode for the 9xg grid, and
500 steps per episode in Four Rooms, Hanoi, and Taxi.

As one caveat, following the methods of Machado et al. [211], we evaluate our method
using a sample-based approach for option discovery in both Race Track and Parr’s maze.
That is, instead of giving the agent access to the whole adjacency matrix, the agent instead
samples 100 trajectories of a uniform random policy in the MDP, and uses this data to
form an incidence matrix. We sampled each trajectory for 1000 steps for Parr’s maze and
100 steps for the Race Track domain, and use these data to generate an incidence matrix
to inform option generation. As the agent has no prior knowledge on states not present
in the incidence matrix, the agent terminates the option if it reaches a state outside of the
incidence matrix.

Figure 8.6 presents the mean cumulative reward per averaged over five runs in each
MDP. In some cases, the options neither accelerate nor deteriorate the learning—for in-
stance, in both the 9 x 9 grid and Four Rooms, each of covering, eigen, and betweenness
options all perform comparably to regular Q-learning. In Four Rooms, the quality of the
policy learned by each of the variants including options does seem to be slightly higher
on average than that of Q-learning, though it is not a statistically significant improvement.

Conversely, in Race Track, we see covering options and betweenness options dramatically

204

Q-learning-covering

60 Q-learning-covering — Q-learning-eigen Q-learning-covering
Q-learning-eigen -_— Q-Iearn!ng-bet 35
50 Q-learning-bet 401 —— Q-learning

— Q-learning-eigen
30 Q-learning-bet
—— Q-learning
25 Random
20
1
1

—— Q-learning Z Random

40 Random /

w
S

Cumulative Reward
w
s
Cumulative Reward
N
S
Cumulative Reward

-
=)

o
|

0 15 30 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90
Episode Number Episode Number Episode Number
(a) 9x9 grid (b) Four Rooms (c) Towers of Hanoi

Q-learning-covering
—— Q-learning-eigen

Q-learning-bet
—— Q-learning
Random

~
=)

Q-learning-covering Q-learning-covering
—— Q-learning-eigen s0] — Q-learning-eigen
—— Q-learning —— Q-learning-bet

40 Random —— Q-learning

60 Random

o
S

o

Cumulative Reward
N oW B oW,
S oS

o

Cumulative Reward
Cumulative Reward

=
)

o

0 15 30 45 60 75 90 0 150 300 450 600 750 900 0 15 30 45 60 75 90
Episode Number Episode Number Episode Number
(d) Taxi (e) Parr’s Maze (f) Race Track

Figure 8.6: Comparison of RL performance with different option generation methods.

outperform all other methods, while in Towers of Hanoi, covering options and eigenop-
tions negatively impact learning. In summary, the data suggest that each option type can
both help or hurt learning depending on the context, but options tend to help more often

than hurt on the studied domains.

OPTIONS COMPUTED ONLINE. Lastly, we study the case where options are discovered
online during learning. Each agent generates four options to add to their option set every
10,000 step for Parr’s maze and 500 steps for the Towers of Hanoi and Taxi, until |O| = 32.
Each agent is given 100 episodes consisting of 10,000 steps each in Parr’s maze and 100
steps each for Hanoi and Taxi. The policy of each option is computed by forming the
greedy policy relative to a Q function learned by running Q-learning (a = 0.1,y = 0.95) on
the sampled data to convergence. Here, I give an intrinsic reward of 1 to the agent when

it reaches the subgoal state and ignore the rewards from the environment.

205

o
N

I\

il

WH i J 1

Q-learning-covering
—— Q-learning-eigen

i
| J“\Qm

Random
||

0 25 50 75 100 125 150 175 200 0 15 30 45 60 75 920 0 15 30 45 60 75 920
Episode Number Episode Number Episode Number

o
7]

o
o

ﬁ\ 'm o8 ::

I

Q-learning-covering
—— Q-learning-eigen
—— Q-learning

Random

Q-learning-covering
—— Q-learning-eigen
—— Q-learning

Random

Average Reward
°
o
5
Average Reward
)
b
Average Reward

o

o

&
4
N

I
e

o
o

o
=)
S

(a) Parr’s maze (b) Towers of Hanoi (c) Taxi

Figure 8.7: Comparison of online option generation methods.

Results are presented in Figure 8.7, indicating the average reward per episode. Observe
that across all three domains, Q-learning paired with covering options is able to reliably
find a good policy, giving support to the claim that covering options can in fact accelerate
exploration. In Parr’s maze, for instance, a goal-base problem with a long horizon before
any goal is obtained, the approach with covering options is able to find the goal a non-
negligible fraction of episodes after around 25 episodes, whereas an agent with primitive
actions is unable to find the goal throughout all of learning. Further observe that covering
options and eigenoptions tend to perform similarly, suggesting that they can each be

useful for accelerating exploration in RL.
8.3.3 Concluding Remarks

In this chapter, I illustrated the sense in which appropriate action abstractions can accel-
erate exploration in RL. In the previous two chapters, I concentrated on finding options
that make planning efficient (Chapter 6), and motivated an new alternative to the stan-
dard option models, (Chapter 7). Collectively, the results established in this part of the
dissertation offer support for the great potential of action abstraction to accelerate and im-
prove RL, and provide concrete paths to action abstraction that can satisfy the desiderata.

I now turn to the next and final part of the dissertation in which I study good combi-

nations of state and action abstraction.

Part 4

STATE-ACTION ABSTRACTION

VALUE PRESERVING STATE-ACTION
ABSTRACTIONS

This chapter is based on “Value Preserving State-Action Abstractions” [11]
with Nathan Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Pre-

cup, Michael L. Littman.

In light of the separate benefits of state and action abstraction (see Part 2 and Part 3),
it has long been of interest as to how to appropriately combine the two methods. To this
end, the focus of this chapter is on the following question.

Which combinations of state abstractions and options preserve
representation of near-optimal policies?

The main result of this chapter summarize new analysis addressing this question, pro-
viding a concrete step toward state-action abstractions that can satisfy all three desiderata.
Specifically, I here introduce combinations of state abstractions (¢) and options (O) that
are guaranteed to preserve representation of near-optimal policies in finite MDPs. These
combinations, and the analysis thereof, resemble the classes of approximate state abstrac-
tion studied in Chapter 3—the main theorem of the chapter (Theorem 9.1) highlights the

general relationship between approximate knowledge used in forming these abstractions

207

208

and the quality of the best policy representable in the abstract. I will then extend this re-
sult to the case of hierarchical abstractions, providing a general scheme for characterizing
value-preserving hierarchies under mild assumptions.

To perform this analysis, I first define ¢-relative options, a general formalism for an-
alyzing the value loss of a state abstraction paired with a set of options. I then prove
four sufficient conditions, along with one separate necessary condition, for ¢-relative op-
tions to preserve near-optimal behavior in any finite MDP. I further prove that ¢-relative
options can be composed to induce a hierarchy that preserves near-optimal behavior un-
der appropriate assumptions about the hierarchy’s construction. I suggest these results
can support the development of principled methods that learn and make use of value-

preserving abstractions.

0.1 ANALYSIS: STATE-ACTION ABSTRACTIONS

I incorporate state and action abstraction into RL as pictured in Figure 9.1. When the
environment transitions to a new state s, the agent processes s via ¢ yielding the abstract
state, sy. Then, the agent chooses an option from among those that initiate in s, and

follows the chosen option’s policy until termination, where this process repeats. In this

r

MDP

S¢ 0e®

Agent

Figure 9.1: State and action abstraction in RL.

209

way, an RL agent can reason in terms of abstract state and action alone, without knowing
the true state or action space.
To analyze the value loss of these joint abstractions, I first introduce ¢-relative options,

a simple means of combining state abstractions with options.

Definition 9.1. For a given ¢, an option o is said to be ¢-relative if and only if there is

some sy € Sy such that, for all s € S:

Zo={s"esg}, Po(s)=1{s¢sp}, 7m0ell, (9.1)

where 115, = {m:{s" esp} = A(A)} is the set of all ground policies defined over ground

states in sy, and s € sy is shorthand for s € {s" € S : P(s") =54 }.

Intuitively, these options initiate in exactly one abstract state and terminate when the
option policy leaves the abstract state. I henceforth denote (¢, 0,) as a state abstraction
paired with a set of ¢-relative options, and denote Oy as any non-empty set that 1) con-
tains only ¢-relative options, and 2) contains at least one option that initiates in each

S¢ S S¢

EXAMPLE. Let us again consider the classical Four Rooms domain. Suppose that the
state abstraction ¢ turns each room into an abstract state. Then any ¢-relative option in
this domain is one that initiates anywhere in one of the rooms and terminates as soon as
the agent leaves that room, as pictured in Figure 9.2a. The only degree of flexibility in
grounding a set of ¢-relative options for the given ¢, then, is which policies are associated
with each option, and how many options are available in each abstract state. If, for
instance, the optimal policy 7* were chosen for an option in the top right room, but
the uniform random policy were available everywhere else, how might that impact the

overall suboptimality of the policies induced by the abstraction? I now build toward the

210

04 TTo, (S) se%
TTo, (S) se%

O U
01 03 7'(04)(5)) 7o, (s) s €l
o, (s) s e%

(a) Assignment of options to each sy via 77, . (b) Construction of 7-% X

Figure 9.2: Grounding policy 7o, to ng[p.
main result of the chapter (Theorem 9.1) that clarifies the precise conditions under which
e-optimal policies are representable under different (¢, Oy) pairs.

As discussed in Chapter 2, the value loss of an abstraction captures the gap in ground
value between the best ground policy and best abstract policy. While value loss has a
straightforward definition for state abstraction, it is not so clear for action abstraction.
To analyze the value loss of state-action abstraction pairs (¢, Op), I first show that any
such pair gives rise to an abstract policy over Sy and Oy that induces a unique policy in
the original MDP (over the entire state space). Critically, this property does not hold for

arbitrary options due to their semi-Markovian nature.

Remark 9.1. Every deterministic policy defined over abstract states and ¢-relative options, o, :
Sy — Oy, induces a unique Markov policy in the ground MDP, 7'[(]194) : S = A(A). We let
o, denote the set of abstract policies representable by the pair (¢, Oy), and H(UQ(,, denote the

corresponding set of policies in the original MDP.

Proof of Remark 9.1.

Consider an arbitrary deterministic policy 7to,. By definition, this policy assigns
one option to each abstract state. Let O, denote the set of options this policy as-

signs.

211

By construction of ¢-relative options, for every ground state s € S there is one
unique option 0ys) € O that can be executed in s.
Therefore, we construct a policy 7'% as the combination of option policies in
9
Or. Specifically, letting 7, denote the option policy of the option in O that is

assigned to ¢(s):

71294)(5) = Tlo, ., (5) (9-2)

This remark gives us a means of translating a policy over ¢-relative options into a policy
over the original state and action space, S and .\A. Consequently, it is possible to extend
the notion of value loss studied in previous chapters to apply to a set of options paired
with a state abstraction: every (¢, Oy) pair yields a set of policies in the original MDP,

HUO¢. The value loss of (¢, Oy) as then the value loss of the best policy in this set.

Definition 9.2. The value loss of (¢, Oy) is the smallest degree of suboptimality achievable:

{
L(¢,Op) = min ||[V* -V "%

7TO¢€H@¢

(9-3)

[ee)

Note that this notion of value loss is not well defined for options in general, since they in-
duce a semi-MDP: there is no well-formed ground value function of a policy over options,
but rather, a semi-Markov value function. As a simple illustration, consider a ground
state s, two options 01 and o, (either of which could be executing in s¢), and a policy
Ttg,0 Over abstract states and options. It could be that 01 or 03 is currently executing when
s¢ is entered or that either option has just terminated, requiring 77y, to select a new op-
tion. Each of these three cases induces a distinct value V"¢ (s;) which is then difficult

to distill into a single ground value function. This is a key reason to restrict attention to

212

¢-relative options, each of which retains structure that couples with the corresponding

state abstraction ¢ to yield value functions in the ground MDP.
9.1.1 Four Classes of Value Preserving State-Action Abstractions

I now show how different classes of ¢-relative options can represent near-optimal policies.
We define an option class by a predicate A : Oy + {0,1}, and say that a set of ¢-relative
options Oy belongs to the class Oy , if and only if A(Oy) = 1.

I begin by summarizing the four new ¢-relative option classes, drawing inspiration
from other forms of abstraction [86, 273, 203, 142, 4, 247] discussed in more detail in
subsection 2.2.1 and subsection 2.3.1. For each class, I will refer to the optimal option in s,
05,, as the ¢-relative option that initiates in sy and executes 77" until termination. These
classes were chosen as they closely parallel existing properties studied in the literature.

The four classes are as follows:

Jy

. Similar Q* Functions: In each sy, there is at least one option o that has similar Q* to

O5,,-
2. Similar Models: In each s, there is at least one option o that has a similar multi-time

model [264] to 0;¢.

3. Similar k-Step Distributions: In each sy, there is at least one option o that has a similar
k-step termination state distribution to o; » based off the hierarchical construction
introduced by Nachum et al. [247]. Loss bounds will only apply to goal-based
MDPs.

4. Approximate MDP Homomorphisms: Any deterministic 7o, can encode an MDP ho-
momorphism. The MDP homomorphism option class is defined by a guarantee on

the quality of the resulting homomorphism.

I now present each class in full technical detail. As stated, the first two classes guarantee

¢ closeness of values and models respectively. More concretely:

213

SIMILAR Q*-FUNCTIONS (O o). The e-similar Q" predicate defines an option class

where:

where

Q:,(5,0) = R(s, 700(s)) +7 Y, T(s" |5, 700(s)) (1(5" €55)Q3, (5',0) + 1(s" £ 55)V*(s))) - (9:5)

s'eS

This Q-function describes the expected return of starting in state s, executing a ¢-relative
option o until leaving ¢(s), then following the optimal policy thereafter. More generally,
this class of ¢, Oy pairs captures all cases where each abstract state has at least one option
that is useful. Note that the identity state abstraction paired with the degenerate set of
options that exactly encodes the execution of each primitive action will necessarily be an

instance of this class.

SIMILAR MODELS (Ogp m,.). The e-similar T and R predicate defines an option class

where:

TS TS, <eg, (9.6)

/\(Ocp) vs¢eS¢ 0€0y * ‘ <er and ‘

Rs,os” 4) - Rs,o

o0 (o]

where R;, and T_f’o are shorthand for the reward model and multi-time model of Sutton
et al. [311]. Roughly, this class states that there is at least one option in each abstract
state that behaves similarly to the optimal option in that abstract state, o5, throughout its
execution in the abstract state.

I next derive two classes of ¢-relative options based on abstraction formalisms from ex-
isting literature. The first is based on the hierarchical construction introduced by Nachum
et al. [247], while the second shows that ¢-relative options can describe an MDP homo-

morphism [273].

214

SIMILAR K-STEP DISTRIBUTIONS (O). Let p(s’,k |s,0) denote the probability of
option o terminating in s’ after k steps, given that it initiated in s. We define this class by

the following predicate:
A(Oy) = Vspe8yJoc0, VieN :SEI;;‘});S Ip(s’, k| 510;4,) -p(s’kls,0) <. (9-7)

Intuitively, this class of Oy states that in each abstract state, there exists an option that

can induce sufficiently similar k-step state distributions to executing the optimal option

*

in that abstract state, o0; ’

APPROXIMATE MDP HOMOMORPHISMS (0¢,H). As discussed in Chapter 2, MDP
homomorphisms define mappings from one MDP to another in a way that preserves
desirable properties [270]. The main idea behind these mappings, as with state and
action abstraction, is to identify symmetries in the underlying environmental MDP that
can be expressed through a simpler model than the original MDP. An approximate MDP
homomorphism extends this notion of equivalence to similarity, thereby allowing greater
opportunity to compress [273]. To define this class of ¢-relative options, we first define
the one-step abstract transition and reward functions for a ¢-relative option o. That is, for

w:S — [0,1] any valid weighting function such that 3., w(s) = 1:

Ty(sy | 5,0) = X w(s) Y T(s' |5, 70(5)), (98)
5€S¢ s’es(’P
Rp(sp,0) = Y w(s)R(s, 7,(s)). (9.9)
5€5¢

Next, we introduce the quantities K, and K; of Ravindran and Barto [273]:

, (9.10)

Ky = max > | 3 T(s'[5,8) = Ty(sy | 9(5), 0, (¢(5)))

seSaeA 5p€Sy s'€sy

Ky = max |R(s,a) - Ryp(9(s), 710, (9(s))). (9.11)

215

These capture the maximum discrepancy between the model of the ground MDP and
the model of the induced abstract MDP defined according to (¢, Oy). Using these quanti-

ties, the class of ¢-relative options is defined as follows.

AMOy) =V no, €lo, : Kp <€pand K; <¢,. (9.12)

These four classes will constitute four sufficient conditions for (¢, Op) pairs to yield
bounded value loss.

9.1.2 Main Result

The main result of this chapter establishes the bounded value loss of pairs (¢, Op) where
O, belongs to any of these four classes, and the size of the bound depends on the degree

of approximation (eq; €g, €7; 7; and &, €p)-

Theorem 9.1. (Main Result) For any ¢, the four introduced classes of ¢-relative options satisfy:

€0

L(¢, Op,0r) < T (9.13)
e +|SlerRMax

L(p, Op) < ('1 '_Tﬂz , (9.14)
S|

L(¢,Oypr) < W, (9.15)
2 RMax ¢

L Opa) < 12 (o0 TToX), (9:16)

where the L(¢, Oy,) bound holds in goal-based MDPs and the other three hold in any finite MDP.

Proof of Theorem 9.1.

We prove this claim using four separate proofs, each targeting one class.

Proof. (L(¢,Op,qr) < 18—_Q7)

216

I
Consider L(¢, Oy, qr) = min_y maxges |V*(s) - V% (s)|- Since V*(s) > V' (s)
O,

|
ell
p O

for all 7t, we henceforth drop the absolute value for convenience.

To proceed, we recall that of, is the ¢-relative option that executes 77 in every

state and terminates when it leaves the abstract state s:

0:¢ = Vges (I(S) = ¢(S) =S¢,
B(s) = d(s) # 5,

7(s) = 7" (s))- (9.17)

Note that since og, always chooses actions according to 7%, that Q¢ (s, 05,) = V*(s)

(where Qg is defined according to Equation g.5).

Then, by the Q; predicate, we can construct a policy over abstract states and

options o, € Ilo, with the following property:

vs(peS(P,ses(p : Q;:,, (5/ 0:47) - Q:¢ (5/ ,qu (S(P)) < €Q- (918)

Note that po,(sy) outputs an option. As in Equation 9.18, we henceforth denote

sp = ¢(s) and correspondingly sj, = ¢(s’).
Then it must be the case that

{
L($, Op:) < maxV*(s) = V' (s). (919)

217

Let Qj(s,0) denote the expected discounted reward of executing option o, then

executing ¢ options under jio,, then following the optimal policy thereafter. Note

that

U
lim Q7 (s, o, (59)) = V" (s),

(9-20)

because Q; (s, no,(s¢)) is the expected discounted reward of executing +1 options

under po,, then following the optimal policy thereafter.

We next show by induction on f that

€
1-9°

1
max V*(s) - V"o, (s) =max lim V*(s) - Qf (s, po,(s9)) <
seS seS t—oo
In particular, we wish to show that
t .
Vien :max V' (s) - Qf (s, o, (sp)) < 2 Q7"
€ i=0

(Base Case)
When t=0, forall s S,

Qo (s, 1o, (s9)) = Q5, (s, 1o, (59)),

(9.21)

(9.22)

(9-23)

because both quantities represent the expected discounted reward of executing the

option po,(sy) then following the optimal policy thereafter. It follows that

max V" (s) = Qo (s, o, (s9)) = max V" (s) = Qs, (s, o, (sp)),
= nsfle‘asx Q;:p (SI 0:4)) - Q;:p (SI ‘1/[04) (SQD))/

<eQ,

0
=>eg?’,
=0

(9-24)
(9-25)
(9-26)

(9-27)

218

where the inequality holds by definition of yo,.

(Inductive Case)

We assume as the inductive hypothesis that

k .
max V*(s) - Qi (5, 1oy (59)) < Y- €07, (9.28)
s€ i=0

and want to show that

k+1)
max V" (s) - Qfun (5 10, (59)) € " €07 (9.29)
se 20
To begin, fix s € S and consider
V*(s) = Qs (s, 1o, (59)) (9:30)
V9 (Ra(son50) + 5 ol 15,00, (o0 (o, () (03
=V7(s) = Ro(s, o, (sp)) - 2:; To(s" s, o, (59))Qx (5", o, (5p)) (9-32)

where R, and T, indicate the reward and multi-time models.

Now, subtract and add Ygcs To(sls, o, (5¢))V*(s'):

= V'(s) - Ro(s, 1o, (s9)) - s; To(s"[s, o, (59)) V7 (5") (9-33)
+S§S To(s" | s, 1o, (39))V* (") - SZ;S To(s" | s, 1o, (59)) Qi (8", 1o, (55))

= V() - Qs5, (s, 1o, (59)) (9-34)
+s§$ To(s" 5,10, (s9)) [V (s") - Q¢ (5", 1o, (sp)] (9-35)

= Q;,(s,05,) - Q5 (s o, (s)) (9.36)
+S§S To(s"| s, 1o, (59)) [V*(s") = Qi (5", 1o, (54)] (9:37)

< g) To(s' |5, 1o, (59)) [V (s") — Qi (s, o, (sp)] (9-38)

s'eS

by definition of po ,- continuing, we have that:

e+) i p(s' s, o, (sp))7" [V*(s') - Qi (s', o, (sp)]

s’eS n=1

&g+ Z ZP(S Tl|S VO¢(S¢))'Y Z‘SQ’Y/

s’eS n=1

IN

by the inductive hypothesis. Then:

= €Q+’)/ZZP(S n+1]s,puo,(sp))7r" Zley

s'eS n=0

= €Q+725Q7 ZSZP(S +1]s,p0,(59))7"
s'eS n=0

IA

eo+7 Z egv' -1
i=0
k+1

= Yegv,
i=0

since p(s’,n+1]s,po,(s4)) is a probability distribution and 1 is less than 1.

219

(9-39)

(9-40)

(9-41)

(9-42)

(9-43)

(9-44)

All together, we've shown that V*(s) - Qy, (s, no,(sg)) < Zi”ol egY forallsesS,

which implies that

k+1

maxV (8) = Qiy1(s, 1o, (59)) < ZOSQ7’

as desired.

It follows by induction that

Vren s max V7 (s) = Q¢ (s, o, (5¢)) ZEQ”Y

(9-45)

(9-46)

220

Therefore,
y
L(¢, Op,0;) < max V™ (s) = V' (s) (947)
= max lim V" (s) - Q; (s, 1o, (s¢)) (9-48)
< lim gemi (9-49)
= %, (9:50)
which completes the proof. O

SlerVM
Proof. (L(¢, Opm.) < €R+|1|€_—TWAX)
We show that this class is a subclass of the O¢/Q§ class. Therefore, it stands to
show that, given our class definition, there exists an option in every abstract state

that is near-optimal in Q-value.

Fix s € S. Let sy = ¢(s). By the M, predicate, there exists an option 0 € Oy such
that

! !
||Tss,os*¢ ~Toollo <€ and ||Rs,o;¢ = Rsplloo < €R- (9-51)

Now, we consider the difference in optimal Q-values between og and 0. We first
have that:
Q2,(5,0) = R(5,7o(5)) + 71 Y, T(s' |'5,70(5)) (15" € 59) Q, (5",0) + U(s" £ 55)V*(s"))
s'eS
=Ro(s,0) + Y. To(s"|5,0)V*(s'),

s’eS
(9-52)

221

with R, and T, denoting the standard multi-time model of Sutton et al. [311].

By symmetry,
Q:,(5,05,) = Rols,0%,) + 3 To(s' | 5,03,)V*(s"). (9.53)
s’'eS
Therefore,
< [Ro(5,03,) = Ro(5,0)| +] Y (To(s' |5,05,) = To(s' | 5,0)) V()| (9:55)
s'eS
< [Ro(s,05,) = Ro(s,0)[+ 3 |To(s" |5,05,) = To(s" [5,0)[[V*(s"))| (9:56)
s’eS
< er+|SlerVMax, (957)

by the model similarity assumption. We have now shown that any option with near-
optimal models has a near-optimal Q-value with eg = e +|SleVMax. Therefore,

by the previous result,

er +|SleTVMax
1-7 '

L(¢,Og,m.) < (9.58)

Proof. (L(¢, Oy,c) < (ﬁ‘f)'z)

We first state rigorously our definition of a goal-based MDP.

Definition 9.3. A goal-based MDP is an MDP with some number of goal states, denoted
Sg € S. The reward function is such that R(s,a) =1 if s € Sg, R(s,a) = 0 otherwise, and

222

the episode terminates after receiving a reward in a goal state. Furthermore, we assume that

each goal state exists in its own abstract state: s # s = ¢(sq) # ¢(s), where s € Sg,5 € S.

We show that this class is a subclass of the Oy o+ class in goal-based MDPs. In
particular, it stands to show that given our class definition, there exists an option

in every abstract state that is near-optimal in Q-value.

First, note that in the abstract states containing a goal state, any option is optimal
since R(s,a) = 1 regardless of action. Therefore, we restrict our attention to an
arbitrary s € S\ Sg, fixing sy = ¢(s). Let o be an option available in sy such that

MaXses,, s'eS lp(s’, ks, o;}) -p(s',k|s,0)| < T, by the option class definition. Then

Qs,(s,05,) = Q3 (s,0) (9-59)

= RO(S, 0;;,) + Z T0(5,|5/ 0;4,)‘/* (5,) - RO(S,O) - Z TO(S,|S,O)V* (5,) (9-60)
s'eS s'eS

- Z;S [To(s’|s, 0;¢) - To(s'|s,o)] V*(s"), (9.61)

where we drop the R, terms since s ¢ Si, each goal state has its own abstract state,

and R(s,a) =0 for s ¢ Sg. Continuing, we have that

Q:, (505~ Q4 5,0) = T [SIp(s k1 505) - ps K s.0p | ve(e), o6

s'eS Lk=1

writing out the multi-time model. This implies that

Qi (5,08) = Q5 (5,0) € X 7LV (). (9.63)

s’eS 1-

Now, note that V*(s") = ¥ cs, X2 p(sg, t | 8, 77*)v" in a goal-based MDP, where

p(sg,t|s’, ") is the probability of being in state s, after t timesteps, starting from

223

s" and following 7*. Indeed, this gives that V*(s') < 1 since p(sg,t | s', ") is a

probability distribution and <y is less than one. Therefore,

T7|S|

Qz, (5,0%,) - Q2 (5,0) < 17 (9.64)

We have shown that there exists an option, o, in any abstract state that is near-

optimal in Q-value, with eg = %"79' Therefore, by the Oy,0: bound,

TS|

a-n (9.65)

(4’ O¢T) = (

as desired. O

P (1600005 5 o+ 455

We prove this result by illustrating the connection between our formalisms and
the work of Ravindran and Barto [273]. To do so, we first restate their definition of

an approximate homomorphism.

Definition 9.4. An approximate MDP homomorphism [273] h : M — M’ from an
MDP M = (S,A,Y,T,R,v) toan MDP M’ = (§',A",Y',T',R’,y) is a surjection from
Y to Y, defined by a tuple of surjections (f,{gs:s€S}), with h((s,a)) = (f(s),gs(a)),
where f:S - S" and g5 : As — A}(s)for s €S, such that for all s,s" in Sand a € As :

T'(f(s") | f(s),gs(a)) = > wgp Y, T(s"|qb) (9.66)
@Ol s

R'(f(s).8s(a))= 3wy R(q,b), (9-67)
(@Dl

224

where [(s,a)], denotes the preimage of h((s,a)), [s']s denotes the preimage of f(s'),
and Y, b)e[(sa)], Wb = 1. Furthermore, ¥ and ¥' denote the sets of admissible state-action
pairs in the ground and abstract MDP respectively. Based on ¥ and ¥', Ay denotes the
set of actions available in state s of the ground MDP, and A}(5) denotes the set of abstract

actions available in state f(s) of the abstract MDP.

We now illustrate how our definitions of ¢, Ry, Ty with respect to a given 7o, in-
duce an approximate homomorphism. First, note that our ¢ precisely corresponds
to their definition of f, a state abstraction. Then, fix sy € Sy, and let A; , =170, (5¢)}

with gs(ﬂ) = 7T(9¢(S¢)Vses¢ VieA-

We now consider our definitions of Ty and Ry:

Typ(sg [5p,0) = Y w(s) Y T(s"|s,70(s)) Ry(54,0) = > w(s)R(s, mo(s)),
S€Sy s’esfp S€sy

(9.68)

We note that these are precisely an instance of P’ and R’ as defined above, with
wyp = 0 whenever b # 71,(q) . We write w(s) to denote this choice of weighting func-
tion, which depends only on the action prescribed by 7,. We select this choice of
weighting function (as opposed to a weighting dependent on all available actions)
in order to faithfully represent the 1-step behavior of executing an option in the

abstract MDP.

By these connections, a deterministic policy 7o, over ¢-relative options coupled
with our choice of weighting function defines an approximate homomorphism. We
further adapt their definitions of K, and K, to our notational setting, which describe

the maximum discrepancy in models between the ground and abstract MDPs.

Kp= max | 3 T(s'[5,8) = Ty(ss | §(5), 0, (¢(5)))], (9:69)

seSaeA 5p€Sp s'esy

225

K, = s?&ifA'R(s'”) =Ry (¢(s), 0, (¢(s)))]- (9.70)

The main theorem of Ravindran and Barto [273] guarantees that the value loss of

the optimal policy in the abstract MDP M’ is upper-bounded by

K
2 (k+ T 5,77),
1-v 1-+ 2
where J is upper-bounded by RMax. Let po, € Ilp, denote the optimal policy in

the abstract MDP. By our option class definition, all abstract policies 7o, € I, in-

duce homomorphisms with bounded Kj, K;. Thus, 1o, has bounded K, K;. Then:

y
L(9,Opp) = min |[[V*=V"%| (9:71)
ﬂolp EH@¢ o0
ul
< V* -V 0 s (972)
2 v s K
< K Oy .
1_7(r+1_7r 2) (9.73)
2 RMax e
< e+ L2, (9-74)
1-v 1-4 2
as desired. 0
Having proven the value loss for each Oy class, the result follows. O

Observe that when the approximation parameters are zero, many of the bounds col-
lapse to 0 as well. This illustrates the trade off made between the amount of knowledge
used to construct the abstractions and the degree of optimality ensured, as was the case
with approximate state abstractions in Chapter 3. In a sense, this result is the spiritual
successor to Theorem 3.1, extended to options. Further note that the value loss of the state

abstraction does not appear in any of the above bounds—indeed, ¢ will implicitly atfect

226

the value loss as a function of the diameter of each abstract state. Finally, observe that, as
with Theorem 3.1, each of the above classes expresses a sufficient condition needed for a
pair (¢, Oy) to preserve value.

It is useful, however, to identify not just sufficient conditions, but also necessary. To this
end, we next establish one necessary condition of all (globally) value preserving (¢, Oy)

classes.

Theorem 9.2. For any (¢, Op) pair with L(¢p, Oyp) < 11, there exists at least one option per abstract

state that is n-optimal in Q-value. Precisely, if L(¢, Op) < 1, then:

vs¢,eS¢, Vses¢ Elon(P : Q;:b (S/ 0:4,) - Q;:a (S/ 0) <7. (9.75)

Proof of Theorem 9g.2.

)

_ : * 710
Let po, = argming, oo, Vei-v "¢

[ee]

Suppose, for a contradiction, that there exists an abstract state s, for which there

is no 7-optimal option in Oy. Then it must be the case that
Qg (s,07) = Q5, (s, oy (5)) > 77 (9.76)

for some s € s.
By, Q;,(s,0") = V*(s), this implies that

V*(s) - Q;, (s, o, (s)) > 1. (9-77)
|

Then, note that Q; ¢(s, 1o, (s)) 2 V"o (s) because Qg describes the expected re-

U
turn of executing option i, (s), then switching to optimal behavior, whereas V"o

227

describes the expected return of executing o, (s) then continuing to execute op-

tions according to po,.

y
Noticing that V*(s) > QF (s, po,(s)) > V"o (s), we have that
!
Vi(s) =V % (s) > 7. (9-78)

This implies that

I
L(¢,0p) = min |[V* -V (9.79)
7'[(94) eHO‘P oo
1
= V*(s) - V"% (s) (9-80)
> 1], (9-81)
which contradicts the premise. Therefore, it must be true that
VS¢€S¢ vS€S¢ HDGO(p : Q;-(’, (SI 0*) - Q;—(’; (SI 0) S 7] (982)
O

This theorem tells us that for any agent acting using these join state-action abstractions,
if there exists an abstract state for which there is not an 7-optimal option, then the agent

cannot represent a globally near-optimal policy.
9.1.3 Experiment

I next conduct a simple experiment to test whether value preserving options enable sim-
ple RL algorithms to find near-optimal policies. The experiment illustrates an important
property of one of the introduced ¢, O, classes, and is organized as follows. First, I con-
struct a ¢, Oy pair belonging to the Oy, o: class using dynamic programming. I give this
pair to one of four different RL algorithms: Q-learning [337], SARSA [276], Double Q-
learning [325], and R-Max [54]. For each algorithm, I vary the number of interactions it

is allowed to have with the environment, N, ranging from N =100 to N = 1,000,000. As

228

0.8 0.8 \>\

0.6 —+- Oy 0.6 -+ Oy
;’5 %= Orandom ;:5 =%~ Orandom
3 0.4 Oy,0;,N=1e2 3 04 Oy,0;,N=1e2
s " < :
€ —— 040:,N=1€4 \ € —— Op0:,N=1e4

02 —— O¢,o;,N=l< 02 —*— 0y,0;,N=1e6

0.0¢ 0.0¢

1.0 1.5 20 25 3.0 35 40 45 5.0 1.0 1.5 20 25 30 35 40 45 5.0
|0 |0l
(a) Q-learning (b) SARSA
§ =%~ Orandom -+ Oy
0.8 04,0;.N=1e2 0.8 =% Orandom
—— Opo: N=1e4 04,0:.N=1e2

0.6 —— Od».O;:N=196 0.6 — O¢,og~,N= led
Eo ~_ . | zo 04,0:N =16
o o
5 04 & 04
> >

0.2 0.2

0.0¢ 0.0

10 15 20 25 3.0 35 40 45 5.0 1.0 15 20 25 3.0 35 40 45 5.0
|0 |0l
(c) Double Q (d) R-Max

Figure 9.3: Empirical evidence that the ¢, O, pairs from Theorem 9.1 preserve value.

expected, the environment is the Four Rooms MDP with a single goal location in the top
right and start location in the bottom left. The state abstraction ¢ maps each state into
one of four abstract states, denoting each of the four rooms. I vary both the number of
options added per abstract state (|Oy|) and the sample budget given to each algorithm
(N), and present the value of the policy discovered by the final episode for each setting of
|Og| and N. The code is publicly available for extension and reproduction. %*

Results are presented in Figure 9.3. First, note that with only one option per abstract
state, all four algorithms can trivially find a near-optimal policy, even with a small sample

budget. This is predicted by Theorem 9.1: the included options preserve value, and so

9.1 https://github.com/david-abel/vpsa_aistats2020

https://github.com/david-abel/vpsa_aistats2020

229

any assignment of options to abstract states will yield a near-optimal policy. In contrast,
if randomly chosen options are used instead (shown in blue, labeled as O;angom), the
learning algorithm fails to find a good policy even with a high sample budget (N = 1e6
was used). Second, we find that as the number of options increases, the added branch-
ing factor causes each algorithm to find a lower value policy with the same number of
samples. However, by Theorem 9.1 we know each set of options preserves value; as the
sample budget increases we see that the value of the discovered policy tends toward op-
timal in each algorithm. For SARSA, for instance, there is a dramatic difference between
the lowest setting of N and the higher two settings. In short, the ¢, Oy pairs defined by
Theorem 9.1 do in fact preserve value, but will also affect the sample budget required
to find a good policy, with the exact extent changing depending on the RL algorithm. I
foresee the combination of value preserving abstractions with those that lower learning
complexity (see recent work by Brunskill and Li [58], Fruit et al. [112]) as a key direction
for future work.

I further visualize the learned value function of Q-learning with and without ¢-relative
options after the same sample budget, depicted in Figure 9.4. Notably, since ¢-relative
options update entire blocks of states, we see large regions of the state space with the

same learned value function. Conversely, Q-learning only tends to explore (and estimate

* *
* .
N .

Figure 9.4: Comparison of the learned value function with regular Q-learning (left) and
Q-learning with ¢, Oy.

230

the values of) a narrow region of the state space. The visual highlights this important

qualitative difference between learning with and without action abstractions.

9.2 HIERARCHICAL ABSTRACTION

I now present an extension of Theorem 9.1 that applies to hierarchies consisting of (¢, Oy)
pairs. I prove that the value loss compounds linearly if we are to construct a hierarchy
using algorithms that generate a well-behaved ¢ and Oy. To do so, we require two def-
initions and additional notation. We first define a hierarchy as n sets of (¢, Op) pairs, as

pictured in Figure 9.5.

Definition 9.5. A depth n hierarchy, denoted H,, is a list of n state abstractions, 4)(”),
and a list of n sets of ¢-relative options, Oé"). The components (I, B, t) of each of the i-th

set of options, Oy, ; are defined over the (i - 1)-th abstract state space,

Spi-1={Pi-1(pia(--.91(5)...)) [s € S} (9:83)

I next introduce additional notation to refer to values, states, options, and policies at each
level of the hierarchy. Let 71, : Sy — Oy denote the level n policy encoded by the

hierarchy, with IT, the space of all policies encoded in this way. I let s; denote shorthand

a

Figure 9.5: The construction of a hierarchy from (¢, Oy) pairs.

231

for sy = ¢'(s) = ¢i(...¢1(s) ...), with s a state in the ground MDP. I further denote V; as

the i-th level’s value function, defined as follows for some ground state s.

V7 (s) =max|R; (s;,0) + > T; (s" |'s1,0) V/*(s") |, (9-84)
0€0; s'eS;
where,
Ri(s;,0) := > wi(si-1)Rs; 4,0, (9.85)
5i-1€S;
Ti(s}[si,0) = > Y wi(sii) ok, (9-86)

5i-1€5i s]_1€S; 1

Again, R, and TSSIO are defined according to the multi-time model [311], 5; € Sy is a level
i state resulting from ¢’(s), and w; is an aggregation weighting function for level i. Note
that Vj is the ground value function, which we refer to as V for simplicity. The full list of

notation for this section is presented in Table 9.1.
9.2.1 Hierarchy Analysis

I now extend Theorem 9.1 to hierarchies of fixed but arbitrary depth, building on two key
observations. First, any policy 7, represented at the top level of a hierarchy H, also has a
unique Markov policy in the ground MDP, which we denote 7% (in contrast to 77}, which

moves the level n policy to level n —1). I summarize this fact in the following remark:

Remark 9.2. Every deterministic policy 7t; defined by the i-th level of a hierarchy, H,, induces a
Y

i

unique policy in the ground MDP, which we denote 1t

To be precise, note that Ttii specifies the level i policy 7r; mapped into level 7;_;, whereas
7'(}l refers to the policy at 77; mapped into 71p. The process of forming this ground policy

7% from a policy at the top level of the hierarchy 7;, is pictured in Figure 9.6.

232

5, S(P,l/ Ry S¢,n—1 B

Figure 9.6: The process of grounding a hierarchical policy.

¢ A state abstraction function.

Oy A set of ¢-relative options.

L(¢,0p) The value loss of the ¢, Oy pair.

o, A policy that maps each abstract state to an option.

71(1194) A policy over § and A, induced by 7o,

H, A hierarchy of depth 7, denoting the pair of lists (¢, (’)é,n)).

47(”) A list of n state abstractions, where ¢; : Sp; 1 = Sp,i-

o The i-th state abstraction in a list ¢(").

¢’ The result of applying the first i state abstractions to s, ¢;(...¢1(s)...).
Sy,i The i-th abstract state space, with Sy the ground state space.

Si A state belonging to Sy,

v Value of level i under policy 7, defined according to R; and T;.

Oyp,i Options at level 7, with each component defined over states in Sy, 1.
R; A reward function over level i states and options.

T; A transition function over level i states and options.

TT; The policy over level i of the hierarchy such that 77; : §; — Oy,;.

Ttil A policy over Sp; 1 and Oy,;_1, induced by 7;.

nlu A policy over S and A, induced by ;.

Table g9.1: Hierarchical abstraction notation.

233

The second key insight is that the value loss of (¢, Oyp) pairs applies in a straightforward

way to hierarchies, H,.

Definition 9.6. The value loss of a depth n hierarchy H,, is the smallest degree of subopti-
mality across all policies representable at the top level of the hierarchy:

4
L(H,) == min ||[V* - V&

mthelly

(9-87)

oo

This quantity denotes how suboptimal the best hierarchical policy is in the ground MDP.
Therefore, the guarantee we present expresses a condition on global optimality rather than
recursive or hierarchical optimality [88].

I next show that there exist value-preserving hierarchies by bounding the above quan-

tity for well constructed hierarchies. To prove this result, we require two assumptions.

Assumption 9.1. The value function is consistent throughout the hierarchy. That is, for every
level of the hierarchy i € N<,_1, for any policy 7t; over states Sy ; and options Oy ;, there is a small
K € Ryq such that:

max
seS

Vv (¢1(s)) - V™ (¢'9))| < (9.88)

Assumption 9.2. Subsequent levels of the hierarchy can represent policies similar in value to the
best policy at the previous level. That is, for every i € Ng,-1, letting 7] = argmin,_ . [|V5 -

y
Vonf ||co, there is a small £ € Ry such that:

)

e T

‘7 i _‘I i+1
i i

<. (9-89)

(e e]

min
' y
T €,

It is likely that both assumptions are true given the right choice of state abstractions,
options, and methods of constructing abstract MDPs. As some motivating evidence, a
claim closely related to Assumption 9.1 was proven in Chapter 3 as Equation 3.14, and
Assumption 9.2 is of similar structure to Theorem 9.1. These two assumptions (along

with Theorem 9.1) give rise to hierarchies that can represent near-optimal behavior.

234

Theorem 9.3. Consider two algorithms: 1) y: given an MDP M, outputs a ¢, and 2) p,:
given M and a ¢, outputs a set of options Oy such that there are constants k and { for which
Assumption 9.1 and Assumption 9.2 are satisfied. Then, by repeated application of </ and o,

we can construct a hierarchy of depth n such that

L(H,) <n(x+?). (9-90)

Proof of Theorem 9.3.

We present the proof of the bound for a two level hierarchy, but the same strategy

generalizes to n levels via induction.

Let £ be the known upper bound for L(¢, ©O), obtained by any of the (¢, Oy) pairs

from Theorem 9.1.

By definition of L(¢, O):
!
in Vg - Voo < 4. :
min |[Vo = Vo 'l (9:91)

By Assumption 9.1:

{
e
v7'51€H1 : ||V0 ' V17T1||°0 <K. (992)
I
Letting 75 = argmin ||V — V||, by Assumption g.2:
7T1€H1
. iy 5
min [V =V #le < £. (9-93)
el

By Assumption 9.1:
| U
Vn’%eHé : ||‘/17T2 - Vonz ||°° <K. (994)
Therefore, by the triangle inequality:

|
min ||[Vg = V2 leo < 2(k + £). O

7'[2€HZ

235

This theorem offers a clear path for extending the guarantees of ¢-relative options
beyond the typical two-timescale setup observed in recent work [30, 247] to fully realize
the benefits of (multi-level) hierarchical abstraction. Moreover, both Assumption 9.1 and
Assumption 9.2 are sufficient—together with ¢-relative options that satisfy Theorem 9.1—
to construct a hierarchy with low value loss. One conclusion to draw is that algorithms
for leveraging hierarchies may want to explicitly search for structures that satisfy our
assumptions: 1) value function smoothness up and down the hierarchy, and 2) policy
richness at each level of the hierarchy:.

I have here proven which state-action abstractions are guaranteed to preserve repre-
sentation of near-optimal policies. To do so, I introduced ¢-relative options, a simple
but expressive formalism for combining state abstractions with options. Under this for-
malism, I proposed four classes of ¢-relative options with bounded value loss. Lastly, I
proved that under mild conditions, pairs of state-action abstractions can be recursively
combined to induce hierarchies that also possess near-optimality guarantees.

I take these results, along with those established in Part 2 and Part 3, to serve as a

concrete path toward principled abstraction discovery and use in RL.

10

CONCLUSION

The thesis of this dissertation is that insights from computational complexity, decision-
theoretic planning, and information theory can shape principled abstraction discovery
algorithms that empower RL agents. I defended this thesis on two fronts: 1) state abstrac-
tion (Part 2), and 2) action abstraction (Part 3), with a final note on the tightly woven
connections between these two (Part 4). In this final chapter, I offer broader outlooks on

abstraction and its role in both AI and RL.

10.1 WHY ABSTRACTION?

In Chapter 1, I suggested that the process of abstraction is critical to the success of any
adaptive sequential decision making agent. Naturally, such a claim is speculative, as
the space of all possible agents is vast. It is not yet clear which properties precisely
separate effective agents from the ineffective ones. I now revisit this point with the results
established in the dissertation in hand. I set out to present the strongest argument about
the potential for abstraction to contribute to solutions to the RL problem, though naturally
much of the present discussion remains speculative.

I take there to be three senses in which understanding the role of abstraction in RL is

useful:

236

237

1. Abstraction is sufficient (and perhaps, necessary) for grounding simulated states

and actions to observation and behavior.

2. If the space of relevant worlds can be characterized by simple underlying laws, then
abstraction may be viewed (charitably, perhaps) as the process of recovering this

simplicity from an agent-centric experience of the world.

3. Even if the best RL agents do not explicitly abstract, there is likely to be implicit
abstraction taking place in their computation. Furthermore, understanding the im-

plicit mechanisms that support effective agency is still of deep scientific importance.

I now expand on each point in more detail.

First, abstraction is sufficient for grounding simulated states and actions to the observa-
tion and behavior space defined by the world. As highlighted throughout the dissertation
and in prior work, these internal representations can be immensely useful for unleash-
ing the power and reliability of computation onto sequential decision making problems.
Konidaris [170] presents a compelling case for the necessity of abstraction from this per-
spective, too, arguing that “a necessary but understudied requirement for general intelli-
gence is the ability to form task-specific abstract representations” (2019, p. 1). Like the
views presented in this dissertation, Konidaris goes on to suggest that RL is an appropri-
ate paradigm to formalize and investigate abstraction in the context of agency. Abstrac-
tion is at least one vehicle for carrying out simulated decision making in fictional, but
grounded, state-action space. Using this capacity, agents are empowered to consider past
counterfactuals or inform present decision from alternative courses of future behavior.
Such practices appear critical to effective agency.

Second, abstraction can also be viewed as the recovery of simple underlying world laws
from agent-centric experience. To expand on this point, let us make two assumptions.
First, the space of worlds of interest are those with exceedingly simple descriptions that

give rise to complex phenomena. Second, that agents of interest are resource-bounded,

238

as has been articulated by many [286, 287, 118, 278, 201, 115]. Which kinds of resource-
bounded agents will be most successful in such a space of worlds? An agent using a
simple model can support more valuable computation per time step; it is likely that
those models that recover more of the underlying laws will be more capable of making
informed predictions about their surroundings. For more on this point, I expand on this
argument in detail elsewhere [2].

Third, let us suppose that the most reliably successful RL agents are those that do not
make explicit use of abstraction. I suggest that some form of abstraction is likely to be
taking place implicitly within such agents.’”" That is, the more an agent can specialize
to a particular distribution of worlds, the more effective they can be at learning and
solving tasks in those worlds. I speculate that it is likely that the process of abstraction
is necessarily tied to this process of specialization. This reasoning is supported in part
by the bias-complexity trade off discussed throughout the dissertation; as an abstraction
becomes more aggressive, the space of representable entities becomes less rich, thereby
making many problems critical to learning and decision making easier, but potentially
compromising the quality of the best entities representable. In this sense, I conjecture
that the most effective learning agents will carry out abstraction in some form, whether
implicitly or explicitly.

One might worry that without a clear protocol for testing for the implicit use of ab-
straction, this claim is unfalsifiable. However, one straightforward mechanism for testing
whether an agent abstracts implicitly is to again turn to information theory. As has been
argued elsewhere (see work by Legg and Hutter [193] and Dowe et al. [95] and references
therein) compression may be tied to fundamental aspects of intelligent systems. Thus, let us
suppose that some form of compression-based test will suffice for determining whether
abstraction is implicitly used by an agent. Then, I claim, if it is feasible to determine
which kinds of compression are essential to effective agency, and which are not. In this

sense, abstraction remains critical.

10.1 This conjecture is supported in part by point 2: simple underlying worlds yield simple explanatory models.

239

There are many other reasons to take abstraction-based approaches to RL as promising
beyond those discussed thus far. With abstractions, there is a more direct path toward
shared knowledge among a community of agents, simple communication between the
agents, or mechanisms that test for the reliability, failure modes, safety, and robustness of
an agent. As hinted at in Chapter 1, a hiker that first learns walking into a tree is painful is
sure to share this finding with their community. As such discoveries become bigger and
more significant, abstraction is essential to effectively convey knowledge across broad
populations of agents. In addition to communication, the role of abstraction in relation to
these other properties is also deserving of attention. Indeed, there are many fundamental

questions left to address.

10.2 THE ROAD AHEAD

There are many remaining steps to realize the potential of abstraction in RL. The primary
contributions of this thesis target finite MDPs, the class of state aggregation functions
¢: S — Sp, and action abstractions w : A = O where the set O is assumed to operate on
these finite state spaces. The analysis and algorithms describe methods for finding and
using abstractions that are guaranteed to retain desirable properties, with empirical sup-
port illustrating the potential for these abstractions to accelerate learning and planning.
However, these results are restricted in several ways.

First, the kinds of functions studied are themselves relatively weak. The act of state
aggregation or discretization can only go so far to simplify state spaces. This formalism
fundamentally lacks the capacity to express the kinds of powerful relations or descriptions
that appear in common language. The most natural expansion of the results presented in
Part 2 will go beyond aggregation functions to richer function families that can define ob-
jects, relations, predicates, and their kin. Establishing the same degree of understanding
about these more powerful function families is essential to a comprehensive understand-

ing of how agents come to act in complex environments. The same can be said of options.

240

Second, the primary focus of this dissertation is on finite MDPs. As discussed briefly
in Chapter 2, there are many schemes for defining the space of relevant worlds, with
tinite MDPs being one suitable choice. Much of the analysis and the vast majority of the
experimental study in this dissertation takes place in the context of simple grid worlds
and their kin, with only a few exceptions. Thus, a second critical direction is to expand the
primary analysis beyond finite state-action spaces. Some preliminary directions toward
this goal were summarized in Section 5.4, but there is more to be done.

Third, this dissertation focuses on the learning problem facing a single agent. In reality,
of course, many agents of relevance occupy a community. These agents learn, act, explore,
and plan based on the beliefs and behaviors of other agents. How might the abstraction
desiderata change if two agents or more are learning cooperatively in the same world?
It is likely, for instance, that agents ought to specialize their abstractions while retaining
enough overlap to allow for communication. Understanding abstraction when multiple

agents are present is a key direction for further work.

10.3 CONCLUDING REMARKS

In conclusion, I take understanding abstraction in RL to be of fundamental importance to
a holistic science of Al. The formalisms and analysis of this dissertation build on a long
line of research to provide new clarity on how to discover and use good abstractions in

RL. There is still much to be done, but the road ahead is an exciting one.

BIBLIOGRAPHY

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship Learning via Inverse Reinforce-
ment Learning. In Proceedings of the International Conference on Machine learning,

2004.

[2] David Abel. Concepts in bounded rationality: Perspectives from reinforcement

learning. Master’s thesis, Brown University, 2019.

[3] David Abel. A theory of state abstraction for reinforcement learning. In Proceedings

of the Doctoral Consortium of the AAAI Conference on Artificial Intelligence, 2019.

[4] David Abel, D. Ellis Hershkowitz, and Michael L. Littman. Near optimal behavior
via approximate state abstraction. In Proceedings of the International Conference on

Machine Learning, 2016.

[5] David Abel, Dilip Arumugam, Lucas Lehnert, and Michael L. Littman. Toward
good abstractions for lifelong learning. In NeurIPS Workshop on Hierarchical Rein-

forcement Learning, 2017.

[6] David Abel, Dilip Arumugam, Lucas Lehnert, and Michael L. Littman. State abstrac-
tions for lifelong reinforcement learning. In Proceedings of the International Conference

on Machine Learning, 2018.

[7] David Abel, Yuu Jinnai, Yue Guo, George Konidaris, and Michael L. Littman. Policy
and value transfer in lifelong reinforcement learning. In Proceedings of the Interna-

tional Conference on Machine Learning, 2018.

241

8]

[13]

[14]

[15]

[16]

242

David Abel, Edward C. Willams, Stephen Brawner, Emily Reif, and Michael L.
Littman. Bandit-based solar panel control. In Proceedings of the Conference on In-

novative Applications of Artificial Intelligence, 2018.

David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L. Littman, and
Lawson L.S. Wong. State abstraction as compression in apprenticeship learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

David Abel, John Winder, Marie desJardins, and Michael L. Littman. The expected-
length model of options. In Proceedings of the International Joint Conference on Artificial

Intelligence, 2019.

David Abel, Nathan Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina
Precup, and Michael L. Littman. Value preserving state-action abstractions. In

Proceedings of the International Conference on Artificial Intelligence and Statistics, 2020.

Riad Akrour, Filipe Veiga, Jan Peters, and Gerhard Neumann. Regularizing rein-
forcement learning with state abstraction. In Proceedings of the International Confer-

ence on Intelligent Robots and Systems. IEEE, 2018.

David Aldous and James Fill. Reversible Markov chains and random walks on

graphs. Technical report, University of California, Berkeley, 1995.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,

10(2):251-276, 1998.

Ankit Anand, Aditya Grover, Mausam, and Parag Singla. ASAP-UCT: abstraction
of state-action pairs in UCT. In Proceedings of the International Joint Conference on

Artificial Intelligence, 2015.

Ankit Anand, Ritesh Noothigattu, Mausam, and Parag Singla. OGA-UCT: on-the-
go abstractions in UCT. In Proceedings of the International Conference on Automated

Planning and Scheduling, 2016.

243

[17] David Andre and Stuart Russell. State abstraction for programmable reinforcement

learning agents. In Proceedings of the AAAI Conference on Artificial Intelligence, 2002.

[18] Aaron Archer. Two O(log” k)-approximation algorithms for the asymmetric k-center
problem. In Proceedings of the International Conference on Integer Programming and

Combinatorial Optimization, 2001.

[19] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and autonomous systems, 57(5):469—

483, 2009.

[20] Suguru Arimoto. An algorithm for computing the capacity of arbitrary discrete

memoryless channels. IEEE Transactions on Information Theory, 18(1):14-20, 1972.

[21] Kavosh Asadi. Strengths, weaknesses, and combinations of model-based and model-

free reinforcement learning. Master’s thesis, University of Alberta, 2015.

[22] Kavosh Asadi and Michael L. Littman. An alternative softmax operator for rein-
forcement learning. In Proceedings of the International Conference on Machine Learning,

2017.

[23] Kavosh Asadi, Dipendra Misra, and Michael L. Littman. Lipschitz continuity in
model-based reinforcement learning. In Proceedings of the International Conference on

Machine Learning, 2018.

[24] Kavosh Asadi, David Abel, and Michael L. Littman. Learning state abstractions for

transfer in continuous control. arXiv preprint arXiv:2002.05518, 2020.

[25] John Asmuth, Lihong Li, Michael L. Littman, Ali Nouri, and David Wingate. A
Bayesian sampling approach to exploration in reinforcement learning. In Proceedings

of the Conference on Uncertainty in Artificial Intelligence, 2009.

[26] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In

Proceedings of the International Conference on Machine Learning, 1997.

[27]

[28]

[29]

[30]

[31]

244
Fred Attneave. Some informational aspects of visual perception. Psychological Re-
view, 3(61), 1954.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted

reinforcement learning. In Advances in Neural Information Processing Systems, 2007.

Sven Axsdter. State aggregation in dynamic programming — an application to

scheduling of independent jobs on parallel processors. Operations Research Letters, 2

(4):171-176, 1983.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In

Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining.

In Proceedings of the International Conference on Learning Representations, 2020.

Aijjun Bai and Stuart Russell. Efficient reinforcement learning with hierarchies of
machines by leveraging internal transitions. In Proceedings of the International Joint

Conference on Artificial Intelligence, 2017.

Horace B. Barlow. Possible principles underlying the transformation of sensory

messages. Sensory communication, 1:217-234, 1961.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van
Hasselt, and David Silver. Successor features for transfer in reinforcement learning.

In Advances in Neural Information Processing Systems, 2017.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygiin,
Philippe Hamel, Daniel Toyama, Jonathan Hunt, Shibl Mourad, David Silver, and
Doina Precup. The option keyboard: Combining skills in reinforcement learning.

In Advances in Neural Information Processing Systems, 2019.

245

[36] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities:
Risk bounds and structural results. Journal of Machine Learning Research, 3(Nov),

2002.

[37] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical rein-

forcement learning. Discrete event dynamic systems, 13(1-2):41-77, 2003.

[38] Hannah M. Bayer and Paul W. Glimcher. Midbrain dopamine neurons encode a

quantitative reward prediction error signal. Neuron, 47(1):129-141, 2005.

[39] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research, 47:253-279, 2013.

[40] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective
on reinforcement learning. In Proceedings of the International Conference on Machine

Learning, 2017.

[41] Richard Bellman. Dynamic programming and Lagrange multipliers. Proceedings of

the National Academy of Sciences, 42(10):767-769, 1956.

[42] Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechan-

ics, pages 679-684, 1957.

[43] Toby Berger. Rate distortion theory: A mathematical basis for data compression. Prentice-

Hall, 1971.

[44] Dimitri P. Bertsekas. Feature-based aggregation and deep reinforcement learning;:
A survey and some new implementations. IEEE/CAA Journal of Automatica Sinica, 6

(1):1-31, 2018.

[45] Dimitri P. Bertsekas and David A. Castanon. Adaptive aggregation methods for

infinite horizon dynamic programming. IEEE Transactions on Automatic Control, 34:

589-598, 1989.

246

[46] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming, volume 5.
Athena Scientific Belmont, MA, 1996.

[47] Richard Blahut. Computation of channel capacity and rate-distortion functions.

IEEE transactions on Information Theory, 18(4):460—473, 1972.

[48] Matthew Botvinick and Ari Weinstein. Model-based hierarchical reinforcement
learning and human action control. Philosophical Transactions of the Royal Society

B: Biological Sciences, 369(1655), 2014.

[49] Matthew Botvinick, Ari Weinstein, Alec Solway, and Andrew G. Barto. Reinforce-
ment learning, efficient coding, and the statistics of natural tasks. Current Opinion

in Behavioral Sciences, 5:71-77, 2015.

[50] Matthew M. Botvinick, Yael Niv, and Andew G. Barto. Hierarchically organized be-
havior and its neural foundations: A reinforcement learning perspective. Cognition,

113(3):262-280, 2009.

[51] George E.P. Box. Science and statistics. Journal of the American Statistical Association,

71(356):791-799, 1976.

[52] Dietrich Braess. Uber ein paradoxon aus der verkehrsplanung. Un-

ternehmensforschung, 12(1):258-268, 1968.

[53] Dietrich Braess, Anna Nagurney, and Tina Wakolbinger. On a paradox of traffic

planning. Transportation science, 39(4):446—450, 2005.

[54] Ronen I. Brafman and Moshe Tennenholtz. R-max: A general polynomial time

algorithm for near-optimal reinforcement learning. JMLR, 3(Oct):213-231, 2002.

[55] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, vol-

ume 31. Springer Science & Business Media, 2013.

[56] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAl gym, 2016.

247

[57] Andrei Z. Broder and Anna R. Karlin. Bounds on the cover time. Journal of Theoreti-

cal Probability, 2(1):101-120, 1989.

[58] Emma Brunskill and Lihong Li. PAC-inspired option discovery in lifelong rein-
forcement learning. In Proceedings of the International Conference on Machine Learning,

2014.

[59] Emma Brunskill and Lihong Li. The online coupon-collector problem and its appli-

cation to lifelong reinforcement learning. arXiv preprint arXiv:1506.03379, 2015.

[60] Robert R. Burridge, Alfred A. Rizzi, and Daniel E. Koditschek. Sequential compo-

sition of dynamically dexterous robot behaviors. The International Journal of Robotics

Research, 18(6):534-555, 1999.

[61] Tom Bylander. Complexity results for planning. In Proceedings of the International

Joint Conference on Artificial Intelligence, volume 10, 1991.

[62] Tom Bylander. The computational complexity of propositional STRIPS planning.

Artificial Intelligence, 69(1-2):165-204, 1994.

[63] Feng Cao and Soumya Ray. Bayesian hierarchical reinforcement learning. In Ad-

vances in Neural information Processing Systems, 2012.

[64] Pablo Samuel Castro. Scalable methods for computing state similarity in determin-
istic Markov decision processes. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2020.

[65] Pablo Samuel Castro and Doina Precup. Automatic construction of temporally
extended actions for MDPs using bisimulation metrics. In Proceedings of the European

Workshop on Reinforcement Learning, 2011.

[66] David Chapman and Leslie Pack Kaelbling. Input generalization in delayed rein-
forcement learning: An algorithm and performance comparisons. In Proceedings of

the International Joint Conference on Artificial Intelligence, 1991.

248

[67] Fan R.K. Chung. Spectral graph theory. American Mathematical Society, 1996.

[68] Julia Chuzhoy, Sudipto Guha, Eran Halperin, Sanjeev Khanna, Guy Kortsarz,
Robert Krauthgamer, and Joseph Seffi Naor. Asymmetric k-center is log* n-hard

to approximate. Journal of the ACM, 52(4):538-551, 2005.

[69] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of

operations research, 4(3):233—235, 1979.

[70] Kamil Ciosek and David Silver. Value iteration with options and state aggregation.

arXiv:1501.03959, 2015.

[71] Luis C. Cobo, Peng Zang, Charles L. Isbell, and Andrea L. Thomaz. Automatic state
abstraction from demonstration. In Proceedings of the International Joint Conference on

Artificial Intelligence, 2011.

[72] Luis C. Cobo, Charles L. Isbell, and Andrea L. Thomaz. Automatic task decompo-
sition and state abstraction from demonstration. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems, 2012.

[73] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with

statistical models. Journal of Artificial Intelligence Research, 4:129-145, 1996.

[74] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search.

In Proceedings of the International Conference on Computers and Games, 2006.

[75] Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley &

Sons, 2012.

[76] Ken Currie and Austin Tate. O-plan: the open planning architecture. Artificial

intelligence, 52(1):49-86, 1991.

[77] Bruno Castro da Silva, George Konidaris, and Andrew G. Barto. Learning parame-

terized skills. In Proceedings of the International Conference on Machine Learning, 2012.

[78]

[79]

[80]

[81]

[82]

[84]

[85]

[86]

[87]

249

Bruno Castro da Silva, George Konidaris, and Andrew G. Barto. Active learning of
parameterized skills. In Proceedings of the International Conference on Machine Learning,

2014.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile
networks for distributional reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2018.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional
reinforcement learning with quantile regression. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, 2018.

Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather,
Demis Hassabis, Rémi Munos, and Matthew Botvinick. A distributional code for

value in dopamine-based reinforcement learning. Nature, pages 1-5, 2020.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret:
Uniform PAC bounds for episodic reinforcement learning. In Advances in Neural

Information Processing Systems, 2017.

Peter Dayan. Improving generalization for temporal difference learning: The suc-

cessor representation. Neural Computation, 5(4):613—624, 1993.

Peter Dayan and Bernard W. Balleine. Reward, motivation, and reinforcement learn-

ing. Neuron, 36(2):285-298, 2002.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Advances in

Neural Information Processing Systems, 1993.

Thomas Dean and Robert Givan. Model minimization in Markov decision processes.

In Proceedings of the AAAI Conference on Artificial Intelligence, 1997.

Richard Dearden and Craig Boutilier. Abstraction and approximate decision-

theoretic planning. Artificial Intelligence, 89(1):219—-283, 1997.

[88]

[89]

[90]

[94]

[95]

250

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value

function decomposition. Journal of Artificial Intelligence Research, 2000.

Thomas G. Dietterich. State abstraction in MAXQ hierarchical reinforcement learn-

ing. In Advances in Neural Information Processing Systems, 2000.

Bruce L. Digney. Learning hierarchical control structures for multiple tasks and
changing environments. In Proceedings of the International Conference on Simulation of

Adaptive Behavior, 1998.

Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth
and the hardness of approximating basic k-spanner. In International Colloquium on

Automata, Languages, and Programming. Springer, 2012.

Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceed-

ings of the ACM Symposium on Theory of Computing, 2014.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representa-
tion for efficient reinforcement learning. In Proceedings of the International Conference

on Machine Learning, 2008.

Carlos Diuk, Lihong Li, and Bethany R. Leffler. The adaptive k-meteorologists prob-
lem and its application to structure learning and feature selection in reinforcement

learning. In Proceedings of the International Conference on Machine Learning, 2009.

David L. Dowe, José Herndndez-Orallo, and Paramjit K. Das. Compression and
intelligence: social environments and communication. In Proceedings of the Interna-

tional Conference on Artificial General Intelligence, 2011.

Simon S. Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik,
and John Langford. Provably efficient RL with rich observations via latent state

decoding. In Proceedings of the International Conference on Machine Learning, 2019.

251

[97] Maria Eckstein and Anne Collins. Evidence for hierarchically-structured reinforce-

ment learning in humans. In Proceedings of Annual Conference of the Cognitive Science

Society, 2018.

[08] Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and

[99]

[100]

[101]

[102]

[103]

[104]

[105]

expressivity. In Proceedings of the AAAI Conference on Artificial Intelligence, 1994.

Eyal Even-Dar and Yishay Mansour. Approximate equivalence of Markov decision

processes. In Learning Theory and Kernel Machines. Springer, 2003.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity
is all you need: Learning skills without a reward function. In Proceedings of the

International Conference on Representation Learning, 2019.

Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington. Dy-
namic programming for structured continuous Markov decision problems. In Pro-

ceedings of the Conference on Uncertainty in Artificial Intelligence, 2004.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov
decision processes. In Proceedings of the Conference on Uncertainty in Artificial Intelli-

gence, 2004.

Norm Ferns, Pablo Samuel Castro, Doina Precup, and Prakash Panangaden. Meth-
ods for computing state similarity in Markov decision processes. In Proceedings of

the Conference on Uncertainty in Artificial Intelligence, 2006.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Jour-

nal, 23(2):298-305, 1973.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189—208, 1971.

252

[106] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hi-
erarchical reinforcement learning. In Proceedings of the International Conference on

Learning Representations, 2017.

[107] Bennett L. Fox. Discretizing dynamic programs. Journal of Optimization Theory and

Applications, 11(3):228-234, 1973.

[108] Vincent Frangois-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined
reinforcement learning via abstract representations. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 33, 2019.

[109] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociome-

try, pages 35-41, 1977.

[110] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transactions on Mathemati-

cal Software, 3(3):209—226, 1977.

[111] Ronan Fruit and Alessandro Lazaric. Exploration—exploitation in MDPs with op-
tions. In Proceedings of the International Conference on Artificial Intelligence and Statis-

tics, 2017.

[112] Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Emma Brunskill. Regret min-
imization in MDPs with options without prior knowledge. In Advances in Neural

Information Processing Systems, 2017.

[113] Natalia H. Gardiol and Leslie Pack Kaelbling. Envelope-based planning in relational

MDPs. In Advances in Neural Information Processing Systems, 2004.

[114] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Belle-
mare. DeepMDP: Learning continuous latent space models for representation learn-

ing. In Proceedings of the International Conference on Machine Learning, 2019.

253

[115] Samuel]J. Gershman, Eric J. Horvitz, and Joshua Tenenbaum. Computational ra-

tionality: A converging paradigm for intelligence in brains, minds, and machines.

Science, 349(6245):273—278, 2015.

[116] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hierarchical
multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems, 13

(2):197—229, 2006.

[117] Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Decision and
Control, 2006 45th IEEE Conference on, pages 6605-6611. IEEE, 2006.

[118] Gerd Gigerenzer and Daniel G. Goldstein. Reasoning the fast and frugal way: mod-

els of bounded rationality. Psychological review, 103(4):650, 1996.

[119] Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artificial intelligence,

57(2-3):323-389, 1992.

[120] Robert Givan, Sonia Leach, and Thomas Dean. Bounded parameter Markov deci-

sion processes. In European Conference on Planning, 1997.

[121] Nakul Gopalan, Marie desJardins, Michael L. Littman, James MacGlashan, Shawn
Squire, Stefanie Tellex, John Winder, and Lawson L.S. Wong. Planning with abstract
Markov decision processes. In Proceedings of the International Conference on Automated

Planning and Scheduling, 2017.

[122] Geoffrey J. Gordon. Chattering in SARSA(A). Technical report, Carnegie Mellon

University Learning Lab, 1996.

[123] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections for fac-
tored MDPs. In Proceedings of the International Joint Conference on Artificial Intelligence,

2001.

254

[124] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is
not an option: Learning options with a deliberation cost. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2018.

[125] Juris Hartmanis and Richard E. Stearns. Algebraic structure theory of sequential ma-

chines. Prentice-Hall, Inc., 1966.

[126] Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, and Ann Nowé.
Learning with options that terminate off-policy. In Proceedings of the AAAI Conference

on Artificial Intelligence, 2018.

[127] Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar,
Bilal Piot, Nicolas Heess, Hado van Hasselt, Gregory Wayne, Satinder Singh, and
Doina Precup. Hindsight credit assignment. In Advances in Neural Information Pro-

cessing Systems, 2019.

[128] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas Dean, and
Craig Boutilier. Hierarchical solution of Markov decision processes using macro-

actions. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 1998.

[129] Bernhard Hengst. Discovering hierarchy in reinforcement learning with HEXQ.

Proceedings of the International Conference on Machine Learning, 2002.

[130] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Sil-
ver. Rainbow: Combining improvements in deep reinforcement learning. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 2018.

[131] Mark K. Ho, David Abel, Thomas L. Griffiths, and Michael L. Littman. The value

of abstraction. Current Opinion in Behavioral Sciences, 2019.

255

[132] Mark K. Ho, David Abel, Jonathan D. Cohen, Michael L. Littman, and Thomas L.
Griffiths. The efficiency of human cognition reflects planned use of information

processing. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[133] Jesse Hostetler, Alan Fern, and Thomas G. Dietterich. State Aggregation in Monte

Carlo Tree Search. In Proceedings of the AAAI Conference on Artificial Intelligence, 2014.

[134] Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic

probability. Springer, 2005.

[135] Marcus Hutter. Extreme state aggregation beyond MDPs. In Proceedings of the

International Conference on Algorithmic Learning Theory, 2014.

[136] Marcus Hutter. Extreme state aggregation beyond Markov decision processes. The-

oretical Computer Science, 650:73-91, 2016.

[137] Glenn A. Iba. A heuristic approach to the discovery of macro-operators. Machine

Learning, 3(4):285-317, 1989.

[138] David Isele, Mohammad Rostami, and Eric Eaton. Using task features for zero-
shot knowledge transfer in lifelong learning. In Proceedings of the International Joint

Conference on Artificial Intelligence, 2016.

[139] Steven James, George Konidaris, and Benjamin Rosman. An analysis of Monte

Carlo tree search. In Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[140] Steven James, Benjamin Rosman, and George Konidaris. Learning to plan with

portable symbols. In ICML Workshop on Planning and Learning, 2018.

[141] Nan Jiang, Satinder Singh, and Richard Lewis. Improving UCT planning via ap-
proximate homomorphisms. In Proceedings of the International Conference on Au-

tonomous Agents and Multi-Agent Systems, 2014.

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

256

Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based
reinforcement learning. In Proceedings of the International Conference on Machine Learn-

ing, 2015.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of
effective planning horizon on model accuracy. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems, 2015.

Yuu Jinnai, David Abel, D. Ellis Hershkowitz, Michael L. Littman, and George
Konidaris. Finding options that minimize planning time. In Proceedings of the Inter-

national Conference on Machine Learning, 2019.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options
for exploration by minimizing cover time. In Proceedings of the International Confer-

ence on Machine Learning, 2019.

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George Konidaris. Exploration
in reinforcement learning with deep covering options. In Proceedings of the Interna-

tional Conference on Learning Representations, 2020.

Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant state
variables. In Proceedings of the International Joint Conference on Artificial Intelligence,

2005.

Nicholas K. Jong and Peter Stone. Hierarchical model-based reinforcement learning:
R-max + MAXQ. In Proceedings of the International Conference on Machine Learning,

2008.

Nicholas K. Jong, Todd Hester, and Peter Stone. The utility of temporal abstraction
in reinforcement learning. In Proceedings of the International Conference on Autonomous

Agents and Multiagent Systems, 2008.

257

[150] Rico Jonschkowski and Oliver Brock. Learning state representations with robotic

priors. Autonomous Robots, 39(3):407—428, 2015.

[151] Anders Jonsson and Andrew G. Barto. Automated state abstraction for options
using the U-tree algorithm. In Advances in Neural Information Processing Systems,

2001.

[152] Leslie Pack Kaelbling. Hierarchical reinforcement learning: Preliminary results. In

Proceedings of the International Conference on Machine Learning, 1993.

[153] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement

learning: A survey. Journal of Artificial Intelligence Research, pages 237-285, 1996.

[154] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning

and acting in partially observable stochastic domains. Artificial intelligence, 101(1-2):

99-134, 1998.

[155] Sham Kakade. On the sample complexity of reinforcement learning. PhD thesis, Univer-

sity of London, 2003.

[156] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep
variational Bayes filters: Unsupervised learning of state space models from raw

data. In Proceedings of the International Conference on Learning Representations, 2017.

[157] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in poly-

nomial time. Machine learning, 49(2-3):209—232, 2002.

[158] Charles Kemp and Joshua Tenenbaum. Structured statistical models of inductive

reasoning. Psychological review, 116(1):20, 2009.

[159] Kristian Kersting, Martijn Van Otterlo, and Luc De Raedt. Bellman goes relational.

In Proceedings of the International Conference on Machine learning, 2004.

258

[160] Khimya Khetarpal, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon,
and Doina Precup. Options of interest: Temporal abstraction with interest functions.

In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[161] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Proceedings of the

International Conference on Machine Learning, 2018.

[162] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[163] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceed-

ings of the International Conference on Learning Representations, 2014.

[164] Jon Klein. BREVE: a 3D environment for the simulation of decentralized systems

and artificial life. In Proceedings of the International Conference on Artificial life, 2003.

[165] Craig A. Knoblock. Automatically generating abstractions for planning. Artificial

Intelligence, 68(2):243-302, 1994.

[166] Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In In

Proceedings of the European Conference on Machine Learning, 2006.

[167] Daphne Koller and Ronald Parr. Computing factored value functions for policies
in structured MDPs. In Proceedings of the International Joint Conference on Artificial

Intelligence, 1999.

[168] George Konidaris. Autonomous Robot Skill Acquisition. PhD thesis, University of

Massachusetts Amherst, 2011.

[169] George Konidaris. Constructing abstraction hierarchies using a skill-symbol loop.

In Proceedings of the International Joint Conference on Artificial Intelligence, 2016.

[170] George Konidaris. On the necessity of abstraction. Current opinion in behavioral

sciences, 29:1—7, 2019.

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

259

George Konidaris and Andrew G. Barto. Autonomous shaping: Knowledge transfer
in reinforcement learning. In Proceedings of the International Conference on Machine

Learning, 2006.

George Konidaris and Andrew G. Barto. Building portable options: Skill transfer in
reinforcement learning. In Proceedings of the International Joint Conference on Artificial

Intelligence, 2007.

George Konidaris and Andrew G. Barto. Efficient skill learning using abstraction
selection. In Proceedings of the International Joint Conference on Artificial Intelligence,

2009.

George Konidaris and Andrew G. Barto. Skill discovery in continuous reinforce-
ment learning domains using skill chaining. In Advances in Neural Information Pro-

cessing Systems, 2009.

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew G. Barto. Con-
structing skill trees for reinforcement learning agents from demonstration trajecto-

ries. In Advances in Neural Information Processing Systems, 2010.

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew G. Barto. Au-
tonomous skill acquisition on a mobile manipulator. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2011.

George Konidaris, Sarah Osentoski, and Philip S. Thomas. Value function approxi-
mation in reinforcement learning using the Fourier basis. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2011.

George Konidaris, Leslie Pack Kaelbling, and Tomds Lozano-Pérez. Constructing
symbolic representations for high-level planning. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, 2014.

260

[179] George Konidaris, Leslie Pack Kaelbling, and Tomds Lozano-Pérez. Symbol acqui-
sition for probabilistic high-level planning. In Proceedings of the International Joint

Conference on Artificial Intelligence, 2015.

[180] George Konidaris, Leslie Pack Kaelbling, and Tomé&s Lozano-Pérez. From skills to
symbols: Learning symbolic representations for abstract high-level planning. Jour-

nal of Artificial Intelligence Research, 2018.

[181] Yehuda Koren. On spectral graph drawing. In International Computing and Combina-

torics Conference, pages 496—508. Springer, 2003.

[182] Richard E. Korf. Learning to solve problems by searching for macro-operators.

Technical report, Carnegie Mellon University, 1983.

[183] Richard E. Korf. Macro-operators: A weak method for learning. Artificial intelligence,

26(1):35-77, 1985.

[184] Mark Kroon and Shimon Whiteson. Automatic feature selection for model-based re-
inforcement learning in factored MDPs. In Proceedings of the International Conference

on Machine Learning and Applications, 2009.

[185] Ben J.A. Krose and Joris WM. Van Dam. Adaptive state space quantisation for
reinforcement learning of collision-free navigation. In Proceedings of the International

Conference on Intelligent Robots and Systems, 1992.

[186] Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hi-
erarchical deep reinforcement learning: Integrating temporal abstraction and intrin-

sic motivation. In Advances in Neural Information Processing Systems, 2016.

[187] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of

Machine Learning research, 4(Dec):1107-1149, 2003.

[188] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Informa-

tion and computation, 94(1):1-28, 1991.

261

[189] Tor Lattimore and Csaba Szepesvdri. Bandit algorithms. preprint, 2018.

[190] Hoang M. Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and Hal
Daumé III. Hierarchical imitation and reinforcement learning. In Proceedings of the

International Conference on Machine Learning, 2018.

[191] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436, 2015.

[192] Ivan S.K. Lee and Henry Y.K. Lau. Adaptive state space partitioning for reinforce-

ment learning. Engineering Applications of Artificial Intelligence, 17(6):577-588, 2004.

[193] Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine

intelligence. Minds and machines, 17(4):391—444, 2007.

[194] Lucas Lehnert and Michael L Littman. Transfer with model features in reinforce-

ment learning. arXiv preprint arXiv:1807.01736, 2018.

[195] Lucas Lehnert and Michael L Littman. Successor features support model-based and

model-free reinforcement learning. arXiv preprint arXiv:1901.11437, 2019.

[196] Lucas Lehnert, Romain Laroche, and Harm van Seijen. On value function represen-
tation of long horizon problems. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2018.

[197] Jan Leike. Nonparametric General Reinforcement Learning. PhD thesis, Australian

National University, 2016.

[198] Timothée Lesort, Natalia Diaz-Rodriguez, Jean-Franois Goudou, and David Filliat.
State representation learning for control: An overview. Neural Networks, 108:379—

392, 2018.

[199] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. Journal of Machine Learning Research, 17(1):1334-1373,

2016.

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

262

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-
level hierarchies with hindsight. In Proceedings of the International Conference on Learn-

ing Representations, 2019.

Richard L. Lewis, Andrew Howes, and Satinder Singh. Computational rationality:
Linking mechanism and behavior through bounded utility maximization. Topics in

cognitive science, 6(2):279-311, 2014.

Lihong Li. A unifying framework for computational reinforcement learning theory. PhD

thesis, Rutgers University, 2009.

Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified theory of
state abstraction for MDPs. In Proceedings of the International Symposium on Artificial

Intelligence and Mathematics, 2006.

Lihong Li, Michael L. Littman, Thomas J. Walsh, and Alexander L. Strehl. Knows

what it knows: A framework for self-aware learning. Machine Learning, 82(3):399—

443, 2011.

Zhuoru Li, Akshay Narayan, and Tze-Yun Leong. An efficient approach to model-
based hierarchical reinforcement learning. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2017.

Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael Bowling. State of the
art control of atari games using shallow reinforcement learning. In Proceedings of

the International Conference on Autonomous Agents and Multiagent Systems, 2016.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, plan-

ning and teaching. Machine learning, 8(3-4):293-321, 1992.

Michael L. Littman and Csaba Szepesvdri. A generalized reinforcement-learning
model: Convergence and applications. In Proceedings of the International Conference

on Machine Learning, 1996.

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

263

Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the complex-
ity of solving Markov decision problems. In Proceedings of the International Joint

Conference on Artificial Intelligence, 1995.

James MacGlashan. Multi-source option-based policy transfer. PhD thesis, University

of Maryland, Baltimore County, 2013.

Marios C. Machado, Marc G. Bellemare, and Michael Bowling. A Laplacian frame-
work for option discovery in reinforcement learning. In Proceedings of the Interna-

tional Conference on Machine Learning, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro,
and Murray Campbell. Eigenoption discovery through the deep successor represen-

tation. In Proceedings of the International Conference on Learning Representations, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro,
and Murray Campbell. Eigenoption Discovery through the Deep Successor Repre-
sentation. In Proceedings of the International Conference on Learning Representations,

2018.

Sridhar Mahadevan and Mauro Maggioni. Value function approximation with dif-
fusion wavelets and Laplacian eigenfunctions. In Advances in Neural Information

Processing Systems, 2006.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision processes.

Journal of Machine Learning Research, 8(Oct):2169-2231, 2007.

Odalric-Ambrym Maillard, Phuong Nguyen, Ronald Ortner, and Daniil Ryabko.
Optimal regret bounds for selecting the state representation in reinforcement learn-

ing. In Proceedings of the International Conference on Machine Learning, 2013.

264

[217] Sultan Javed Majeed and Marcus Hutter. Performance guarantees for homomor-
phisms beyond Markov decision processes. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2019.

[218] Sultan Javed Majeed and Marcus Hutter. Performance guarantees for homomor-
phisms beyond Markov decision processes. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2019.

[219] Travis Mandel, Yun-En Liu, Emma Brunskill, and Zoran Popovic. Efficient Bayesian
clustering for reinforcement learning. In Proceedings of the International Joint Confer-

ence on Artificial Intelligence, 2016.

[220] Daniel J. Mankowitz, Timothy A. Mann, and Shie Mannor. Time-regularized inter-
rupting options. In Proceedings of the International Conference on Machine Learning,

2014.

[221] Daniel J. Mankowitz, Timothy A. Mann, and Shie Mannor. Adaptive skills adaptive

partitions (asap). In Advances in Neural Information Processing Systems, 2016.

[222] Timothy A. Mann and Shie Mannor. Scaling up approximate value iteration with
options: Better policies with fewer iterations. In Proceedings of the International Con-

ference on Machine Learning, 2014.

[223] Timothy A. Mann, Shie Mannor, and Doina Precup. Approximate value iteration

with temporally extended actions. Journal of Artificial Intelligence Research, 2015.

[224] Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in
reinforcement learning via clustering. In Proceedings of the International Conference

on Machine Learning, 2004.

[225] Andrew McCallum. Reinforcement learning with selective perception and hidden state.

PhD thesis, University of Rochester, 1995.

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

265

John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon.
A proposal for the Dartmouth summer research project on Artificial Intelligence,

August 31, 1955. Al magazine, 27(4):12-12, 2006.

Amy McGovern. acQuire-macros: An algorithm for automatically learning macro-

actions. In NeurIPS Workshop on Abstraction and Hierarchy in Reinforcement Learning,

1998.

Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in rein-
forcement learning using diverse density. In Proceedings of the International Confer-

ence on Machine Learning, 2001.

Amy McGovern, Richard S. Sutton, and Andrew H. Fagg. Roles of macro-actions
in accelerating reinforcement learning. In Proceedings of the Grace Hopper Celebration

of Women in Computing, 1997.

Neville Mehta, Mike Wynkoop, Soumya Ray, Prasad Tadepalli, and Thomas G. Di-
etterich. Automatic induction of MAXQ hierarchies. In NeurIPS Workshop on Hierar-

chical Organization of Behavior, 2007.

Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, and Alan Fern. Transfer in
variable-reward hierarchical reinforcement learning. Machine Learning, 73(3):289,

2008.

Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas G. Dietterich. Auto-
matic discovery and transfer of MAXQ hierarchies. In Proceedings of the International

Conference on Machine Learning, 2008.

Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas G. Dietterich. Auto-
matic Discovery and Transfer of Task Hierarchies in Reinforcement Learning. Al

Magazine, 32(1):35, 2011.

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

266

Francisco S. Melo, Sean P. Meyn, and M. Isabel Ribeiro. An analysis of reinforce-

ment learning with function approximation. In Proceedings of the International Con-

ference on Machine Learning, 2008.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut - dynamic discovery of
sub-goals in reinforcement learning. In Proceedings of the European Conference on

Machine Learning, 2002.

Jacob Menashe and Peter Stone. State abstraction synthesis for discrete models of

continuous domains. In Proceedings of the AAAI Spring Symposium Series, 2018.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kine-
matic state abstraction and provably efficient rich-observation reinforcement learn-

ing. arXiv preprint arXiv:1911.05815, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level

control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings of the International Confer-

ence on Machine Learning, 2016.

Andrew W. Moore. The parti-game algorithm for variable resolution reinforcement
learning in multidimensional state-spaces. In Advances in Neural Information Process-

ing Systems, 1994.

Damon Mosk-Aoyama. Maximum algebraic connectivity augmentation is NP-hard.

Operations Research Letters, 36(6):677-679, 2008.

267

[242] Jonathan Mugan and Benjamin Kuipers. Towards the application of reinforcement
learning to undirected developmental learning. In Proceedings of the International

Conference on Epigenetic Robots, 2008.

[243] Jonathan Mugan and Benjamin Kuipers. Autonomously learning an action hierar-
chy using a learned qualitative state representation. In Proceedings of the International

Joint Conference on Artificial Intelligence, 2009.

[244] Jonathan Mugan and Benjamin Kuipers. Autonomous learning of high-level states
and actions in continuous environments. IEEE Transactions on Autonomous Mental

Development, 4(1):70-86, 2011.

[245] Brendan Mumey and Tomd$ Gedeon. Optimal mutual information quantization is

NP-complete. In Neural Information Coding, 2003.

[246] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. In Advances in Neural Information Processing

Systems, 2018.

[247] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal rep-
resentation learning for hierarchical reinforcement learning. In Proceedings of the

International Conference on Learning Representations, 2019.

[248] Allen Newell, John Clark Shaw, and Herbert A. Simon. Empirical explorations of
the logic theory machine: a case study in heuristic. In Papers presented at the Western

Joint Computer Conference: Techniques for Reliability.

[249] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning.

In Proceedings of the International Conference on Machine Learning, 2000.

[250] Sam Nicol and Iadine Chades. Which states matter? an application of an intelligent
discretization method to solve a continuous pomdp in conservation biology. PloS

one, 7(2), 2012.

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

268

Maillard Odalric-Ambrym, Phuong Nguyen, Ronald Ortner, and Daniil Ryabko.
Optimal regret bounds for selecting the state representation in reinforcement learn-

ing. In Proceedings of the International Conference on Machine Learning, 2013.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Ad-

vances in Neural Information Processing Systems, 2017.

Ronald Ortner, Odalric-Ambrym Maillard, and Daniil Ryabko. Selecting near-
optimal approximate state representations in reinforcement learning. In Proceedings

of the International Conference on Algorithmic Learning Theory, 2014.

Ronald Ortner, Matteo Pirotta, Alessandro Lazaric, Ronan Fruit, and Odalric-
Ambrym Maillard. Regret bounds for learning state representations in reinforce-

ment learning. In Advances in Neural Information Processing Systems, 2019.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement
learning via posterior sampling. In Advances in Neural Information Processing Systems,

2013.

Rina Panigrahy and Sundar Vishwanathan. An O(log" n) approximation algorithm

for the asymmetric p-center problem. Journal of Algorithms, 27(2):259—268, 1998.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov deci-

sion processes. Mathematics of Operations Research, 12(3):441—450, 1987.

Ronald Parr. Hierarchical Control and Learning for Markov Decision Processes. PhD

thesis, University of California, Berkeley, 1998.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of ma-

chines. In Advances in Neural Information Processing Systems, 1998.

269

[260] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L.
Littman. An analysis of linear models, linear value-function approximation, and fea-
ture selection for reinforcement learning. In Proceedings of the International Conference

on Machine learning. ACM, 2008.

[261] Marc Pickett and Andrew G. Barto. PolicyBlocks: An algorithm for creating useful
macro-actions in reinforcement learning. In Proceedings of the International Conference

on Machine Learning, 2002.

[262] Doina Precup. Temporal abstraction in reinforcement learning. PhD thesis, University

of Massachusetts Amherst, 2001.

[263] Doina Precup and Richard S. Sutton. Multi-time models for reinforcement learning.

In ICML Workshop on Modelling in Reinforcement Learning, 1997.

[264] Doina Precup and Richard S. Sutton. Multi-time models for temporally abstract

planning. In Advances in Neural Information Processing Systems, 1998.

[265] Jefferson Provost, Benjamin Kuipers, and Risto Miikkulainen. Developing naviga-
tion behavior through self-organizing distinctive-state abstraction. Connection Sci-

ence, 18(2):159—172, 2006.

[266] Martin L. Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

[267] Lorna C. Quandt, Yune Sang Lee, and Anjan Chatterjee. Neural bases of action

abstraction. Biological psychology, 129:314, 2017.

[268] Pravesh Ranchod, Benjamin Rosman, and George Konidaris. Nonparametric
Bayesian reward segmentation for skill discovery using inverse reinforcement learn-

ing. In Proceedings of the Conference on Intelligent Robots and Systems, 2015.

[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

270

Balaraman Ravindran. SMDP homomorphisms: An algebraic approach to abstraction
in semi Markov decision processes. PhD thesis, University of Massachusetts Amherst,

2003.

Balaraman Ravindran and Andrew G. Barto. Model minimization in hierarchical
reinforcement learning. In Proceedings of the International Symposium on Abstraction,

Reformulation, and Approximation, 2002.

Balaraman Ravindran and Andrew G. Barto. Relativized options: Choosing the
right transformation. In Proceedings of the International Conference on Machine Learn-

ing, 2003.

Balaraman Ravindran and Andrew G. Barto. SMDP homomorphisms: An algebraic
approach to abstraction in semi-Markov decision processes. In Proceedings of the

International Joint Conference on Artificial Intelligence, 2003.

Balaraman Ravindran and Andrew G. Barto. Approximate homomorphisms: A
framework for non-exact minimization in Markov decision processes. In Proceedings

of the International Conference on Knowledge Based Computer Systems, 2004.

Andrew Reibman, Roger Smith, and Kishor Trivedi. Markov and Markov reward
model transient analysis: An overview of numerical approaches. European Journal

of Operational Research, 40(2):257—267, 1989.

Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. In

Advances in Neural Information Processing Systems, 2018.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering Cam-

bridge, UK, 1994.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 2009.

271
[278] Stuart Russell and Devika Subramanian. Provably Bounded-Optimal Agents. Jour-
nal of Artificial Intelligence Research, 2:575-609, 1995. ISSN 1076-9757.

[279] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,

5(2):115 - 135, 1974.

[280] Jiirgen Schmidhuber. Reinforcement learning in Markovian and non-Markovian

environments. In Advances in Neural Information Processing Systems, 1991.

[281] Wolfram Schultz, Peter Dayan, and P. Read Montague. A neural substrate of pre-

diction and reward. Science, 275(5306):1593-1599, 1997.

[282] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):

461464, 1978.

[283] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From

Theory to Algorithms. Cambridge University Press, 2014.

[284] Claude E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 277:379—423, 1948.

[285] David Silver and Kamil Ciosek. Compositional planning using optimal option mod-

els. In Proceedings of the International Conference on Machine Learning, 2012.
[286] Herbert A. Simon. Models of man; social and rational. Wiley, 1957.

[287] Herbert A. Simon. Theories of bounded rationality. Decision and organization, 1(1):

161-176, 1972.

[288] Chris R. Sims. Rate—distortion theory and human perception. Cognition, 152:181—

198, 2016.

[289] Chris R. Sims. Efficient coding explains the universal law of generalization in hu-

man perception. Science, 360(6389):652-656, 2018.

272

[290] Ozgiir Simsek and Andrew G. Barto. Using relative novelty to identify useful tem-

[291]

[292]

[293]

[294]

[295]

[296]

[297]

poral abstractions in reinforcement learning. In Proceedings of the International Con-

ference on Machine Learning. ACM, 2004.

Ozgiir Simsek and Andrew G. Barto. Skill characterization based on betweenness.

In Advances in Neural Information Processing Systems, 2009.

Ozgiir Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identifying useful subgoals in
reinforcement learning by local graph partitioning. In Proceedings of the International

Conference on Machine Learning, 2005.

Satinder Singh. Scaling reinforcement learning algorithms by learning variable tem-
poral resolution models. In Proceedings of the International Machine Learning Confer-

ence, 1992.

Satinder Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning
with soft state aggregation. In Advances in Neural Information Processing Systems,

1995.

Satinder Singh, Andrew G. Barto, and Nuttapong Chentanez. Intrinsically moti-
vated reinforcement learning. In Advances in Neural Information Processing Systems,

2005.

Matthijs Snel and Shimon Whiteson. Multi-task reinforcement learning: Shaping
and feature selection. In Proceedings of the European Workshop on Reinforcement Learn-

ing, 2011.

Alec Solway, Carlos Diuk, Natalia Cérdova, Debbie Yee, Andrew G. Barto, Yael Niv,
and Matthew Botvinick. Optimal behavioral hierarchy. PLoS computational biology,

10(8):€1003779, 2014.

273

[298] Martin Stolle and Doina Precup. Learning options in reinforcement learning. In
Proceedings of the International Symposium on Abstraction, Reformulation, and Approxi-

mation, 2002.

[299] Alexander L. Strehl and Michael L. Littman. A theoretical analysis of model-based
interval estimation. In Proceedings of the International Conference on Machine Learning,

2005.

[300] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L.
Littman. PAC model-free reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2006.

[301] Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in

finite MDPs: PAC analysis. Journal of Machine Learning Research, 10:2413-2444, 2009.

[302] DJ Strouse and David J. Schwab. The deterministic information bottleneck. Neural

Computation, 29(6):1611-1630, 2017.

[303] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
Model-based RL in contextual decision processes: PAC bounds and exponential im-
provements over model-free approaches. In Proceedings of the Conference on Learning

Theory, 2019.

[304] Tobias Sutter, David Sutter, Peyman Mohajerin Esfahani, and John Lygeros. Efficient
approximation of channel capacities. IEEE Transactions on Information Theory, 61:

1649-1666, 2015.

[305] Richard S. Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3(1):9—44, 1988.

[306] Richard S. Sutton. Introduction: The challenge of reinforcement learning. In Rein-

forcement Learning, pages 1—3. Springer, 1992.

274

[307] Richard S. Sutton. Generalization in reinforcement learning: Successful examples

using sparse coarse coding. In Advances in Neural Information Processing Systems,

1996.

[308] Richard S. Sutton. The reward hypothesis, 2004. URL http://incompleteideas.

net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html.

[309] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 1998.

[310] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT press, 2018.

[311] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, 1999.

[312] Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In

Advances in Neural Information Processing Systems, 2000.

[313] Adrien Ali Taiga, Aaron Courville, and Marc G. Bellemare. Approximate explo-

ration through state abstraction. arXiv preprint arXiv:1808.09819, 2018.

[314] Erik Talvitie. Self-correcting models for model-based reinforcement learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[315] Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance
loss in approximate MDP homomorphisms. In Advances in Neural Information Pro-

cessing Systems, 2008.

[316] Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In

Advances in Neural Information Processing Systems, 1996.

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

[317]

[318]

[319]

[320]

[321]

[322]

[323]

[324]

[325]

275

Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning.

In Advances in Neural Information Processing Systems, 1995.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottle-
neck method. In Proceedings of the Allerton Conference on Communication, Control, and

Computing, 1999.

Saket Tiwari and Philip S. Thomas. Natural option critic. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2019.

Anurag Ajay Josh Tenenbaum Leslie Pack Kaelbling Tom Silver, Rohan Chitnis.
Learning skill hierarchies from predicate descriptions and self-supervision. In AAAI

Workshop on Generalization in Planning, 2020.

Nicholay Topin, Nicholas Haltmeyer, Shawn Squire, John Winder, Marie desJardins,
and James MacGlashan. Portable option discovery for automated learning transfer
in object-oriented Markov decision processes. In Proceedings of the International Joint

Conference on Artificial Intelligence, 2015.

Paul Tseng. Solving H-horizon, stationary Markov decision problems in time pro-

portional to log(H). Operations Research Letters, 9(5):287—297, 1990.

William T.B. Uther and Manuela M. Veloso. Tree based discretization for continuous
state space reinforcement learning. In Proceedings of the AAAI Conference on Artificial

Intelligence, 1998.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):

1134-1142, 1984.

Hado van Hasselt. Double Q-learning. In Advances in Neural Information Processing

Systems, 2010.

276

[326] Benjamin Van Niekerk, Steven James, Adam Earle, and Benjamin Rosman. Com-
posing value functions in reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2019.

[327] Benjamin Van Roy. Performance loss bounds for approximate value iteration with

state aggregation. Mathematics of Operations Research, 31(2):234—244, 2006.

[328] Harm van Seijen and Richard S. Sutton. A deeper look at planning as learning from

replay. In Proceedings of the International Conference on Machine learning, 2015.

[329] Harm van Seijen, Shimon Whiteson, and Leon Kester. Efficient abstraction selection

in reinforcement learning. Computational Intelligence, 30(4):657-699, 2014.

[330] Vladimir N. Vapnik and Aleksei Y. Chervonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of Probability & Its

Applications, 16(2):264—280, 1971.

[331] Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. A
Monte-Carlo AIXI approximation. Journal of Artificial Intelligence Research, 40(1):95—

142, 2011.

[332] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchi-
cal reinforcement learning. In Proceedings of the International Conference on Machine

Learning, 2017.

[333] Thomas]J. Walsh, Lihong Li, and Michael L. Littman. Transferring state abstrac-
tions between MDPs. In ICML Workshop on Structural Knowledge Transfer for Machine

Learning, 2006.

[334] Thomas J. Walsh, Istvan Szita, Carlos Diuk, and Michael L. Littman. Exploring com-
pact reinforcement-learning representations with linear regression. In Proceedings of

the Conference on Uncertainty in Artificial Intelligence, 2009.

277

[335] Thomas J. Walsh, Sergiu Goschin, and Michael L. Littman. Integrating sample-
based planning and model-based reinforcement learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2010.

[336] Thomas J. Walsh, Daniel K. Hewlett, and Clayton T. Morrison. Blending au-
tonomous exploration and apprenticeship learning. In Advances in Neural Informa-

tion Processing Systems, 2011.

[337] Christopher J.C.H. Watkins and Peter Dayan. g-learning. Machine learning, 8(3-4):

270—-292, 1992.

[338] Denise M. Werchan, Anne G.E. Collins, Michael J. Frank, and Dima Amso. 8-month-
old infants spontaneously learn and generalize hierarchical rules. Psychological sci-

ence, 26(6):805-815, 2015.

[339] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Adaptive tile coding for

value function approximation. Technical report, University of Texas at Austin, 2007.

[340] Ward Whitt. Approximations of dynamic programs, i. Mathematics of Operations

Research, 3(3):231-243, 1978.

[341] Ward Whitt. Approximations of dynamic programs, ii. Mathematics of Operations

Research, 4(2):179-185, 1979.

[342] Marco Wiering and Jiirgen Schmidhuber. HQ-learning. Adaptive Behavior, 6(2):219—

246, 1997.

[343] Ronald J. Williams and Leemon C. Baird. Tight performance bounds on greedy
policies based on imperfect value functions. Technical report, College of Computer

Science, Northeastern University, 1993.

[344] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforce-
ment learning: a hierarchical Bayesian approach. In Proceedings of the International

Conference on Machine learning, 2007.

278

[345] John Winder, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr, Shawn
Squire, Marie desJardins, and Cynthia Matuszek. Planning with abstract learned
models while learning transferable subtasks. In Proceedings of the AAAI Conference

on Artificial Intelligence, 2020.

[346] David H. Wolpert. The lack of a priori distinctions between learning algorithms.

Neural computation, 8(7), 1996.

[347] Shangtong Zhang and Shimon Whiteson. DAC: The double actor-critic architecture

for learning options. In Advances in Neural Information Processing Systems, 2019.

	Preliminaries
	Introduction
	The Reinforcement Learning Problem
	Abstraction
	Thesis Statement
	Contributions

	Background
	Reinforcement Learning
	State Abstraction
	Action Abstraction
	Abstraction Desiderata

	State Abstraction
	Approximate State Abstraction
	Four Classes of Approximate State Abstraction
	Analysis
	Experiments

	State Abstraction in Lifelong RL
	Transitive PAC State Abstractions
	Analysis
	Experiments

	State Abstraction as Compression
	Information Theory
	Analysis: State Abstraction as Compression
	Experiments
	Extensions

	Action Abstraction
	Finding Options that Minimize Planning Time
	Formalizing The Problem
	Options and Value Iteration
	Complexity Results
	Approximation Algorithms
	Experiments

	The Expected-Length Model of Options
	The Expected-Length Model
	A Simple Example
	Analysis
	Experiments

	Discovering Options for Exploration
	Cover Time
	Covering Options
	Experiments

	State-Action Abstraction
	Value Preserving State-Action Abstractions
	Analysis: State-Action Abstractions
	Hierarchical Abstraction

	Conclusion
	Why Abstraction?
	The Road Ahead
	Concluding Remarks

	Bibliography

