
Fault-Tolerant Distributed Computability

by

Vikram Saraph

Sc. M., Brown University, 2015

B. S., University of Notre Dame, 2013

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2019

c© Copyright 2019 by Vikram Saraph

This dissertation by Vikram Saraph is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Maurice Herlihy, Director

Recommended to the Graduate Council

Date
Anna Lysyanskya, Reader

Brown University

Date
Sergio Rajsbaum, Reader

National Autonomous University of Mexico

Approved by the Graduate Council

Date
Andrew Campbell

Dean of the Graduate School

iii

Acknowledgements

First and foremost, I would like to thank my advisor, Maurice Herlihy, for his guidance during the

course of the PhD program. Maurice has been supportive and understanding in his role as a mentor,

but he has also always treated me as a peer and a coequal researcher. His ability to select challenging

yet fruitful research questions will always be a great source of inspiration for the rest of my career.

I am thankful to Anna Lysyanskaya and Sergio Rajsbaum for serving on my dissertation com-

mittee. Anna has always been welcoming and accommodating during our meetings to discuss my

research progress, while Sergio, a fellow champion of combinatorial topology, has always had unique

insight into the more mathematical aspects of this sort of work. I am also thankful to my collaborator

and coauthor, Eli Gafni, who was instrumental in helping me lay the groundwork for this thesis. I

additionally want to thank Petr Kuznetsov and Thibault Rieutord for acting as “adversaries” against

my research ideas and correcting some of my errors; I hope we may continue our collaboration in

the future. Thanks to my academic siblings Thomas Dickerson, Archita Agarwal, Zhiyu Liu, Daniel

Engel, and Eli Rosenthanl for our brainstorming sessions on various research problems.

I have always had a soft spot for mathematics, so these acknowledgements would be incomplete

without mentioning folks from the math community. I want to thank Tarik Aougab, Jeremy Kahn,

and Elchanan Solomon for their generosity in listening to my attempts at describing some of the core

mathematical challenges in this discipline. I also want to extend my thanks to the students I have

met in the math department through the open graduate education program. The weekly excursions

to Kabob and Curry were a welcome break from my research.

The computer science department’s staff has played a crucial role behind the scenes in making

this come together. I want to thank Lori Agresti, Lauren Clarke, Genie DeGouveia, Jane Martin,

Jane McIlmail, and Dawn Reed for their work that allowed me to worry less about deadlines and

paperwork. I am also thankful for the technical staff Donald Johwa, Ben Nacar, Frank Pari, Paul

iv

Vars, and Shaun Wallace for ensuring I have the infrastructure needed for my research.

I am grateful for the friends I have made during my time in the program, both within the Brown

community itself, and also outside of it. Providence has provided innumerable opportunities and

is an excellent place to build various circles of friendship. To Ashley Weber, for her company in

all of our PhD adventures. Your companionship has forever made me a better person. To Altan

Allawala, for being a wonderful roommate and a dedicated friend; I thoroughly enjoyed our numerous

philosophical, political, and personal conversations we have had over the years. I want to thank the

friends I met playing boardgames every Friday, including Nakul Gopalan, Thomas Dickerson, David

Meierfrankenfeld, Justin Pombrio, John Meehan, Johannes Novotny, Amy Becker, Sasha Berkoff,

and Jeroen Chua. I am also thankful for everyone that helped revived the tradition of going to

the GCB on Wednesdays, including Nediyana Daskalova, Ghous Amjad, Archita Agarwal, Marylin

George, Michael Markovitch, and Daniel Engel. There are many others I would like to thank for

all the puzzling, trivia-solving, room-escaping, bar hopping, hiking, biking, and other adventures

during my time in Providence, though you all are far too many to name.

My family has always been the foundation of my life. Thanks to Amma and Baba, and my brother

Siddharth for being there for anything and everything I have ever needed. To my cousins Anshu,

Ayush, Niharika, Neerad, and the rest of my extended family in India and scattered throughout the

world, for your love and compassion. None of this would have been possible without you all.

v

Contents

1 Introduction 1

1.1 Modeling a Distributed System . 1

1.2 Thesis at a Glance . 2

1.2.1 Loop Agreement . 3

1.2.2 The Convergence Algorithm . 4

1.2.3 t-Resilient Asynchronous Computability . 4

1.2.4 Computability against Adversaries . 5

1.3 Related Work . 6

2 Operational Model 8

2.1 Processes and Communication . 8

2.2 Read-Write Memory and Snapshots . 9

2.2.1 Immediate Snapshots . 9

2.3 Failures and Fault Tolerance . 10

2.3.1 Crash Failures . 10

2.3.2 Wait-freedom . 11

2.3.3 t-Resilience . 12

2.3.4 Resilience against Adversaries . 13

3 Mathematical Model 15

3.1 Combinatorial Topology . 15

3.1.1 Basics of Simplicial Complexes . 15

3.1.2 Point-set Topology . 17

vi

3.1.3 Carrier Maps and Subdivisions . 18

3.1.4 Stars, Links and Connectivity . 20

3.1.5 Shellability . 22

3.2 Classical Topology and Homotopy . 23

3.2.1 Homotopy and the Fundamental Group . 23

3.2.2 Gluing . 25

3.2.3 Simplicial Approximation . 26

3.2.4 The Nerve Lemma . 26

3.3 Distributed Tasks and Protocols . 27

3.3.1 Tasks . 27

3.3.2 Protocols . 28

3.3.3 Immediate Snapshot Protocol . 29

4 Loop Agreement 33

4.1 The Class of Loop Agreement Tasks . 33

4.2 Composing Loop Agreement Tasks . 35

4.2.1 Combining Simplicial Complexes . 35

4.2.2 Implementation by Multiple Tasks . 37

4.2.3 Relative Power of Multiple Task Implementation 39

4.2.4 Composite Loop Agreement . 42

4.3 A Categorical Interpretation . 43

4.3.1 Category Theory . 44

4.3.2 The Category of Loop Agreement Tasks . 45

4.4 The Lattice of Loop Agreement Tasks . 51

4.5 Concluding Remarks . 53

5 The Convergence Algorithm 54

5.1 The Asynchronous Computability Theorem . 55

5.1.1 Proof Approaches . 56

5.2 Non-chromatic Simplex Agreement . 57

5.3 The Convergence Algorithm . 59

5.3.1 Solving Chromatic Simplex Agreement . 59

vii

5.3.2 Bookkeeping . 63

5.3.3 Link-based Non-chromatic Simplex Agreement 64

5.3.4 Termination and Validity . 72

5.4 Application to General Tasks . 75

5.5 Concluding Remarks . 76

6 t-Resilient Asynchronous Computability 77

6.1 Delayed Snapshot Protocol and Task . 78

6.2 Connectivity Properties . 82

6.2.1 Shellability of the Protocol Complex . 82

6.2.2 Link-connectivity of the Protocol Complex 86

6.3 Single-Round Waiting . 91

6.4 Asynchronous Computability Theorems . 96

6.5 Applications of the t-resilient ACT . 97

6.6 Concluding Remarks . 99

7 Computability against Adversaries 100

7.1 Characterizing Adversaries . 101

7.1.1 Core Complexes . 101

7.2 Adversarial Snapshot Protocol . 103

7.3 Impossibility of Single-Round Waiting . 105

7.3.1 Two Rounds . 108

7.4 Concluding Remarks . 108

Bibliography 110

viii

Chapter 1

Introduction

Distributed computing is a field of computer science concerned with computation that takes place

in a distributed system consisting of a collection of autonomous agents that communicate with one

another. These agents may represent processes, threads, computers, nodes, or other computing

units, though when reasoning abstractly about a distributed system, it is common to refer to these

agents simply as processes. Processes interact with one another to solve a distributed coordination

problem called a task. To solve a task, the processes begin with private inputs, communicate their

knowledge with other processes, and decide on outputs based on their shared knowledge. Similar

to how classical computability is concerned with Turing decidability, distributed computability is

concerned with solvability of tasks under various constraints or assumptions on the model of our

distributed system. The focus of this thesis is on computability questions arising in distributed

computing.

1.1 Modeling a Distributed System

Assumptions on the model of a distributed system can greatly affect solvability of distributed tasks.

In a distributed system, it is a fundamental requirement for processes to have the ability to com-

municate with one another, but this can be accomplished in different ways. Two common models of

communication are message passing, in which processes may send private messages to one another,

and shared memory, in which processes read and write a shared state. This thesis is concerned with

the latter approach.

1

2

Processes may be subject to different failure models, which defines the behavior of a process if it

fails. The simplest type of process failure is the crash failure, where crashed processes halt and fall

silent. This work is concerned with crash failures; however, there is also the Byzantine failure model,

in which failed processes may behave erratically and convey false information to other processes.

While crash failures describe behavior of failed processes, they do not describe which or how

many processes may fail. In the most basic model of fault-tolerance, the goal is to design wait-free

algorithms, which tolerate any number of process failures. This is a strict requirement, so weaker

models such as t-resilience (which is tolerance of up to t failures) and resilience against adversaries

are also discussed in this thesis.

There are various synchrony models of a distributed system. In a synchronous model, there is

a global clock, and process execution occurs in rounds according to this clock. However, for of this

work, we assume process execution is entirely asynchronous, meaning that there is no bound on the

relative execution speed of different processes.

In summary, this thesis is concerned with distributed computability problems in which (1) pro-

cesses communicate using shared memory, (2) processes fail by crashing, and (3) execution is asyn-

chronous. With these assumptions, we wish to consider protocols under varying models of fault-

tolerance. A protocol is a distributed algorithm that solves a task, so that a task is solvable if there

exists a protocol for it. As one might expect, a more constrained model of fault-tolerance, such as

wait-freedom, permits fewer tasks to be solvable in a given model. One main objective of this thesis

is to characterize task solvability under models of fault-tolerance less strict than wait-freedom.

1.2 Thesis at a Glance

Combinatorial topology has been a useful tool for working with distributed tasks and protocols.

These objects are modeled as simplicial complexes (or complexes, for short), which are mathematical

structures that can be thought of as higher dimensional graphs. As with a graph, a complex is built

from a set of vertices, but instead of containing only edges connecting pairs of vertices, there are

simplexes that may connect sets of vertices. Each vertex represents a process state, while each

simplex represents a consistent state of a set of processes, or a global state of the whole distributed

system. Simplicial complexes allow one to discuss all possible global states of a distributed system,

in one compact representation. The input and output configurations of a task are each represented

3

as a simplicial complex, and the task specification is a map between the two.

This combinatorial model has been applied to prove numerous results in distributed computabil-

ity, one of the most foundational being the asynchronous computability theorem, which characterizes

wait-free solvability of tasks in shared memory. Informally, the theorem states that a distributed

task with inputs I, outputs O, and specification Γ is solvable if and only if there exists a map

from a subdivision of I to O, in such a way that respects the task specification. The asynchronous

computability theorem is a central inspiration to many results presented in this thesis.

1.2.1 Loop Agreement

An early motivation for formulating the asynchronous computability theorem was the fact that

determining wait-free solvability of a task in shared memory is generally an undecidable problem,

in the sense of classical computability. One way to prove undecidability is to exhibit the class of

loop agreement tasks, as Herlihy and Rajsbaum did, where they characterize their relative power

using associated fundamental groups, called algebraic signatures. Namely, they show that one loop

agreement task implements another if and only if there exists a certain homomorphism between

fundamental groups, which is undecidable since the word problem for groups is also undecidable.

In Chapter 4, we explore the class of loop agreement tasks by considering how to characterize

their relative power when these tasks are composed. This study requires a novel definition of how to

compose tasks in parallel. It is shown that the original characterization extends to composite loop

agreement tasks in a natural way. More specifically, the relative power of a composition of two loop

agreement tasks is determined by the group-theoretic product of their algebraic signatures. In this

way, loop agreement tasks can be decomposed into more basic tasks and reasoned about using these

“building block” tasks. Proofs of results in this chapter make use of theorems on homotopy from

algebraic topology.

We further investigate the class of loop agreement tasks in Section 4.3 by looking at them from a

category-theoretic perspective. Category theory is an area of math that is concerned with abstract

study of mathematical objects and morphisms, or functions, between them. Identifying a class of

objects as a category yields all the mathematical machinery that comes with it. In this case, we

show that loop agreement tasks form a category, with the composition of task being the product

for this category, suggesting that our definition of parallel task composition is the “correct” one.

Results here suggest there is more value in exploring more general tasks in the context of category

4

theory. This work was published in OPODIS [38].

1.2.2 The Convergence Algorithm

We return to discussing the asynchronous computability theorem in Chapter 5. To prove the theorem

for tasks in which process names are not relevant, one only needs a classic result from algebraic

topology called the simplicial approximation theorem, which is a tool for turning maps between

simplicial complexes into continuous functions. For general tasks where process names matter (and

the complexes are colored), there are technical difficulties in proving the theorem. Maps between

complexes must respect vertex colors, which is not guaranteed by the simplicial approximation

theorem.

Herlihy and Shavit approached this issue with an approach based in point-set topology, which

used an intricate proof involving technical concepts such as ε-perturbations and Cauchy sequences.

Gafni and Borowsky later proposed an alternative to their approach, one that is more algorithmic

in flavor. They reduced the proof of the asynchronous computability theorem to constructing an

algorithm to solve a certain distributed task. In particular, this convergence algorithm approximates

any chromatic subdivision with a more standard chromatic subdivision, which corresponds to a well-

understood protocol called the immediate snapshot. However, their description of the algorithm was

incomplete, and no proof of correctness was provide.

In this chapter, we provide a highly detailed description of the convergence algorithm, and offer

a complete proof of correctness for the algorithm. We also prove a corollary to the theorem, which

offers a way of approximating a continuous function with a color-preserving one, provided that the

task under consideration satisfies an important topological condition called link-connectivity. This

work was published in the Journal of Applied and Computational Topology [40].

1.2.3 t-Resilient Asynchronous Computability

A distributed algorithm is called t-resilient if it can tolerate up to t process failures. This requirement

is weaker than wait-freedom, which states that the algorithm must tolerate any number of failures;

by contrast, in the t-resilient model there is a bound on the number of failures, so it is considered a

more realistic model.

5

The original asynchronous computability theorem characterizes wait-free solvability of dis-

tributed tasks in shared memory, so it is reasonable to ask what happens to the theorem’s charac-

terization if the wait-free model of fault-tolerance is weakened to t-resilience. Indeed, in Chapter

6, we do exactly this by exploring how the combinatorial model is affected. In the original wait-

free theorem, immediate snapshots played a central role as a building block for wait-free protocols.

Therefore we introduce a new building block, which is a protocol called the delayed snapshot, for

execution in t-resilient systems. This snapshot protocol serves the same purpose as the immediate

snapshot did for the wait-free asynchronous computability theorem.

There is a fundamental correspondence between immediate snapshots and subdivisions, which

implies that read-write protocols never change the basic topology (or shape) of the modeling spaces.

However, as we see in this chapter, by weakening wait-freedom to t-resilience, and in working with

the delayed snapshot instead, we see that holes can be torn into the modeling spaces. Introducing

holes into a topological space allows for more flexibility of continuously mapping the space, which

corresponds to more solvable tasks in a weaker model of fault-tolerance.

Results in this chapter, combined with work on the convergence algorithm, also imply an in-

teresting complexity-theoretic result, which is that any t-resilient protocol may be implemented in

such a way that uses one wait barrier, followed by wait-free access to shared memory. Proving this

is made possible by the convergence algorithm in the previous chapter. This chapter culminates

with two different formulations of asynchronous computability for t-resilient systems. This work

was published in DISC [39].

1.2.4 Computability against Adversaries

The t-resilient model of fault-tolerance, while more realistic than wait-freedom, still has its own

drawbacks. Maximal failure sets of processes are all of the same size, which may not accurately

describe real-world systems that have more heterogeneous architectures. We consider a more general

model, resilience against adversaries, where an adversary can control whether certain sets of processes

fail.

Adversaries have previously been characterized by their cores and survivor sets. For example, in

a system with an adversary, it is always safe for a process to wait for a survivor set of processes to

appear before continuing with any computation. We use this characterization to define a snapshot

protocol for adversaries. Like the t-resilient model, Chapter 7 develops a snapshot protocol that

6

serves as a building block for protocols which are adversary-resilient. In doing so, there is a nice

correspondence between the snapshot protocol, and the characterization of adversaries.

This chapter includes an impossibility result for adversaries, in which one round of adversarial

snapshot is not always enough to simulate any subsequent number of rounds. Therefore one wait

barrier is generally insufficient to implement an adversary-resilient protocol. This is due to the

asymmetry of general adversaries, which introduce topological obstructions in model.

1.3 Related Work

Herlihy and Shavit [20, 21] introduced the use of algebraic and combinatorial topology to prove

impossibility results. Gafni and Koutsoupias [11] were the first to use the fundamental group to

show the undecidability of wait-free solvability of certain tasks. Herlihy and Rajsbaum [18, 19]

extended the undecidability results to other models, introducing the family of loop agreement tasks

and their algebraic signatures. Liu, Xu, and Pan [34] define n-rendezvous tasks, where processes

begin on distinguished vertices of an embedded (n − 1)-sphere of an n-dimensional complex, and

converge on a simplex of the embedded sphere. Liu, Pu, and Pan [33] explore a lower-dimensional

variant of loop agreement called degenerate loop agreement.

The original ACT [25, 24] used combinatorial arguments to construct the color-preserving map re-

quired by the theorem, but only characterized wait-free solvability. Borowsky and Gafni [5] proposed

the alternative algorithmic approach to constructing this map, but without complete definitions or

a proof of correctness. Guerraoui and Kuznetsov [16] compare the two approaches. Gafni et al. [15]

recently generalized the ACT to encompass infinite executions and other models.

The first application of the ACT was to prove the impossibility of the k-set agreement task [8],

a result also proved, using other techniques, by Borowsky and Gafni [4], and by Saks and Za-

haroglou [37]. These results generalize the classic proofs of the impossibility of consensus due to

Fischer et al. [10] and Biran et al. [3].

Castaneda and Rajsbaum [7] use the ACT to show that the renaming task [1] for n+1 processes

has no wait-free read/write protocol with 2n output names when n + 1 is a prime power, but that

a protocol does exist when n+ 1 is not a prime power. Attiya et al. [2] and Kozlov [29] give upper

bounds on the running times of such protocols.

Some prior approaches used simulation [6] to reduce certain t-resilient “colorless” protocols to

7

wait-free “colorless” protocols. Herlihy and Rajsbaum [23] derived task solvability conditions for

colorless tasks which, roughly speaking, can be defined independently of process identities. The

t-resilient model is a special case of adversarial shared-memory models [9].

We use the immediate snapshot (IS) protocol of Borowsky and Gafni [5], later extended by

Raynal and Stainer [36] extended to encompass failure detectors. Kozlov [28] was the first to prove

that the standard chromatic subdivision produced by immediate snapshot is, in fact, a subdivision.

Gafni et. al [15] give a general theorem for task solvability for a class of computational models,

but they do not give an explicit characterization of the protocol execution complex for t-resilient

computations. Gafni et. al. [12] introduce the class of affine tasks, which generalize the two-round

t-resilient task introduced in this work. Additionally, Kuznetsov et. al. [31] provide a combinatorial

characterization of adversarial task computability by using affine tasks.

Another approach is to reduce the problem of constructing t-resilient protocols to the problem

of constructing wait-free protocols. Gafni and Kuznetsov [13] [14] make progress in this direction,

considering a more general failure model that permits irregular failure patterns, but a weaker notion

of protocol correctness, called “weak solvability”. They provide a way to transform a task T to

another task T ′ such that if T is weakly solvable in the general model, then T ′ is weakly wait-free

solvable.

Chapter 2

Operational Model

In a distributed coordination task, or just task for short, there are multiple processes coordinating

with one another via a shared communication medium in order reach outputs compliant with a given

task specification. Here, we outline more details of the operational model used for the remainder of

the work. In the subsequent chapter we describe how combinatorial topology can be used to reason

about the operational model.

2.1 Processes and Communication

A distributed system is a set of n+1 processes denoted {p0, . . . , pn}, each with a unique identifier or

name. Recall that these processes are an abstraction, and can represent any sort of computational

unit, from cores on a process to individual computers in a cluster. Since we are concerned with

computability questions, the implementation details of each unit does not affect the problems we

consider in this work. We assume n+ 1 processes (rather than n) since doing so simplifies notation

used in topological reasoning. Unless otherwise specified, it is assumed here that there are always

n+ 1 processes in the system.

Recall that processes execute and communicate asynchronously, so that there is no bound on the

execution time between any processes. Any process may be delayed arbitrarily long before it takes

another computational step. Generally speaking, this disallows one process from waiting on any

other specific process, though as we will see, some form of waiting is permitted under weak enough

failure models.

8

9

There are many different models of communications, though in this work, processes communicate

with one another using shared memory. In the most basic kind of shared memory model, processes

have access to a shared set of memory registers, which store values from some domain. Each process

can either read a register, which returns the register’s contents, or write a new value to the register,

overwriting the old contents. Multiple processes can concurrently access a single register; however

each register is assumed to be atomic, so that concurrent read and write operations appear as if they

are executed in a sequential order. Atomic registers are used as building blocks for more complex

communication protocols.

2.2 Read-Write Memory and Snapshots

There are many variations of the asynchronous read-write model, though they are all computationally

equivalent and thus are interchangeable when discussing computability. This work makes use of two

distinct alternatives. In the atomic snapshot model, the n+1 processes have access to an array of n+1

atomic registers. Each process has exactly one designated register to which it can write atomically.

Additionally, each process can atomically read the entire array of registers. This operation is called

a snapshot. Note that this model can be implemented from atomic registers.

2.2.1 Immediate Snapshots

It is sometimes convenient to use a more structured variant of the atomic snapshot, known as the

immediate snapshot model [4, 37]. As with the atomic snapshot model, processes share an array

of registers. However in this model, there is only one operation, the immediate snapshot, which

takes place in two contiguous steps. In the first step, a process writes its view to memory, possibly

concurrently with other processes. In the step immediately following, it takes a snapshot of memory,

also possibly concurrent with other processes. More formally, letting Si denote the snapshot observed

by process pi, the immediate snapshot satisfies the following three conditions:

1. Self-containment : For all i, pi ∈ Si

2. Atomicity : For all i, j, either Si ⊆ Sj or Sj ⊆ Si

3. Immediacy : For all i, j, if pi ∈ Sj , then Si ⊆ Sj .

10

The first condition states that a process must appear in its own snapshot. The second condition

requires the set of snapshots to be linearly ordered, which corresponds to snapshots appearing to take

place in a sequential. These first two conditions define the atomic snapshot, and adding the third

condition defines the immediate snapshot. The third condition states that if one process appears

in another’s snapshot, then the entire snapshot of the first process must be contained in the second

process’s snapshot.

Note that immediate snapshots can be implemented from atomic snapshots. Modern processes

implement these models directly, though either model can be simulated by more conventional mod-

els, and vice-versa [22, Ch. 14]. The atomic snapshot model is convenient for expressing certain

algorithms. The immediate snapshot model has an elegant topological interpretation, making it

useful for topological proofs of impossibility or correctness.

The immediate snapshot can be iterated on a sequence of memory arrays M1, . . . ,MN . Here,

each process executes an immediate snapshot in which it writes its view, and updates its view to

be the retrieved snapshot. The process iteratively proceeds to the next immediate snapshot array

using its new view. This is called the iterated immediate snapshot.

2.3 Failures and Fault Tolerance

Imagine a distributed system in which any number of processes may fail, as they may fail in any

modern, real-world system. If these processes are running a distributed algorithm, then they may

have to account for failed processes during the course of their computation. In other words, the

distributed algorithm must be able to tolerate process failures.

2.3.1 Crash Failures

The most general way in which a process can fail is by exhibiting erratic behavior, where it commu-

nicates incorrect information to other processes. This kind of failure is called a Byzantine failure,

though it is not considered in this work. Instead, we consider a simpler notion of failures, called

crash failures. When a failed process crashes, it stops its execution and falls silent to other processes,

no longer participating in the distributed algorithm. Note that since our model is asynchronous, a

crashed process is indistinguishable to other processes from a slow one, since a slow process can take

arbitrarily long to respond. A process is non-faulty if it executes a given protocol without crashing,

11

while a process that crashes is called faulty. Henceforth, all processes that fail do so by crashing.

(a) (b)

Figure 2.1: In the above, (a) is a non-faulty process, and (b) is a crashed (failed) process.

We have defined the behavior of failed processes, but we have not yet considered which or

how many may processes may fail. This work considers three different models of failure and fault

tolerance: wait-freedom, t-resilience, and resilience against an adversary.

2.3.2 Wait-freedom

A distributed algorithm that tolerates an arbitrary number of failures is called wait-free. The fault-

tolerance guarantee ensuring correctness of a distributed algorithm, even in the presence of arbitrary

failures, is called wait-freedom. In a correctly implemented wait-free algorithm, no process can wait

on any set of other processes, because if one process did wait on another, the second one may crash

and the first one would never make progress. This cannot happen in a wait-free algorithm.

In a wait-free system, any combination of processes may fail. For example, if we consider a

three-process system, then Figure 2.2 shows all the ways in which processes may fail. The case

where all processes fail is excluded, since in this scenario, there is nothing to say since no processes

make progress.

12

(a) (b) (c)

(d) (e) (f)

Figure 2.2: All combinations of failed processes in a wait-free system.

The original asynchronous computability theorem characterized wait-free read-write solvability

of distributed tasks using combinatorial topology. Later in this thesis, we aim to generalize this

theorem to weaker guarantees of fault tolerance.

2.3.3 t-Resilience

In practice, wait-freedom is a strict property to guarantee of an algorithm. Wait-free algorithms

typically require participants to communicate redundant information to one another, in the event

that some participants crash and cannot respond. Such a strong guarantee may be necessary in

certain real-time systems, though often it may not be required. In many instances wait-freedom can

be weakened.

In a real-world system, perhaps it is reasonable to assume that at least a certain percentage of

processes are non-faulty. It may be unlikely, say, for 90% of all processes to fail simultaneously.

So there is value in considering weaker conditions than the guarantee of wait-freedom. In a

t-resilient distributed system, no more than t processes ever fail. Therefore in such a system, it is

safe for a process to wait for some set of n + 1 − t processes (inclusive of itself), since at least this

many processes must be non-faulty. A t-resilient distributed algorithm is one that can tolerate up

to t failures, while a distributed task is solvable t-resiliently if there is a t-resilient protocol for it.

Using this notation, the wait-free model is the same as the n-resilient model for a system with n+ 1

processes, since as noted before, a wait-free system technically allows all but one process to fail.

13

(a) (b) (c)

Figure 2.3: All combinations of failed processes in 1-resilient system.

For example, consider a system in which up to 1/3 of processes may fail. Then Figure 2.3 shows

all ways that processes may fail in such a system with three processes. There are fewer possible

ways in which processes may fail, compared to wait-freedom.

2.3.4 Resilience against Adversaries

t-resilience is a more realistic model of failure and fault tolerance when compared to wait-freedom,

but it is not without its own limitations. Failures in this model are in some sense uniform, since

all maximal failure sets having the same size. Furthermore, it does not capture the possibility of

certain processes failing together as a group, as may happen if processes share the same resources

or network infrastructure.

To address these limitations, one considers a yet more general failure model called resilience

against an adversary. An adversary in a distributed system is an entity capable of failing certain

sets of processes. It is modeled by the sets of processes it is capable of failing. For example, if

we think of a t-resilient system as one with an adversary, then this adversary can fail any set of

size up to t. But in general, adversaries may fail maximal sets of different sizes. In this work, the

only limitation placed on an adversary is that if can fail some set of processes, then it can fail any

subset. This type of adversary is sometimes called superset-closed, since the non-faulty sets of such

an adversary is closed under taking supersets.

The sets of processes that can be failed by an adversary are called its failure set, and completely

determine the adversary. Maximal failure sets are inconvenient to work with in practice; instead,

it is more common to work with an adversary’s cores and survivor sets. A core is a minimal set

of processes that cannot all fail simultaneously, while a survivor set is a minimal set of processes

that intersects every core. Cores and survivor sets each completely determine the failure sets of an

14

adversary.

As an example, consider an adversary in a system with three processes, p, q, and r, and suppose

the adversary can fail any subset of {p, q}, or it can fail r, but not both. Then its failure sets are

shown in Figure 2.4.

(a) (b)

(c) (d)

Figure 2.4: Failure sets of an adversary.

Its failure sets are {p}, {q}, {p, q}, and {r}. From these, one calculates the cores as {p, r} and

{q, r}, and from the cores, the survivor sets {p, q} and {r}.

The maximal failure sets of a t-resilient adversary are sets of size t, its cores are sets of size t+ 1,

and its survivor sets are those of size n+ 1− t. Similar to waiting in t-resilience, it is always safe to

wait on a survivor set of an adversary. If we name our adversary A, then a distributed algorithm is

called A-resilient if it can tolerate any failures caused by A.

Chapter 3

Mathematical Model

The mathematical model for distributed tasks and protocols draws from the basics of combinatorial

topology, which is a kind of generalization of graph theory to higher dimensions. In this area of

mathematics, the primary object of study is the simplicial complex, which, informally, is a set

of vertices with higher dimensional adjacencies beyond (1-dimensional) edges. In this section, we

present a primer on combinatorial topology, and describe how these concepts are employed in the

mathematical model and how it relates to the operational models in the previous chapter. We also

provide the necessary background from classical topology. A complete formal description of the

model appears in Herlihy et al. [22]. In the chapters to follow, we explain how the model is applied

to tackle various computability problems in distributed computing.

3.1 Combinatorial Topology

The first subsection establishes definitions from both combinatorial as well as point-set topology.

We build higher level abstractions from these definitions.

3.1.1 Basics of Simplicial Complexes

A simplicial complex (or just complex) K consists of a finite set V together with a collection of

subsets of V closed under containment. An element of V is called a vertex, and each set in K is

called a simplex. The dimension of σ is defined to be dim(σ) = |σ| − 1. A subset of a simplex

is called a face. We use “k-simplex” as shorthand for “k-dimensional simplex” and similarly for

15

16

“k-face”. If τ ⊆ σ are simplexes in some complex, then τ is a subsimplex of σ.

The dimension dim(K) of a complex is the maximum dimension of its simplexes. A maximal

simplex of K (with respect to containment) is called a facet of K. A complex is pure if all its facets

have the same dimension. The set of simplexes of K having dimension at most m is called the

m-skeleton of K, denoted skelm(K). The boundary of a simplex, denoted ∂∆k, is a subcomplex of

∆n consisting of all its (k − 1)-faces.

If L ⊂ K are complex, then the deletion of L from K is the subcomplex of K consisting of all

simplexes that do not intersect L.

σ

v
e

(a) A two-dimensional simplex colored by
three colors. The vertex v is a 0-simplex
and the edge e is a 1-simplex. The set σ is
the entire 2-simplex.

(b) A two-dimensional simplicial complex with three
facets. It is pure and chromatic, colored by three col-
ors.

Figure 3.1: An example simplex and simplicial complex.

A coloring of complex K is a function ` : V → D, where D is some finite set of colors. A

properly-colored simplex is one whose vertices have distinct colors under `, and a chromatic complex

is one whose simplexes are all properly colored. For complexes K and L, a vertex map φ : K → L

carries vertices of K to vertices of L. If in addition φ carries simplexes of K to simplexes of L then

it is called a simplicial map. If K and L are chromatic, then φ is chromatic if for all vertices v ∈ I,

v and φ(v) are labeled with the same color.

To further discuss important concepts from combinatorial topology, we introduce some basics of

point-set topology.

17

3.1.2 Point-set Topology

To discuss subdivisions and connectivity, it is useful to begin with some basic definitions from point-

set topology. A topological space is a set X together with a collection of subsets T , whose elements

are called open sets, satisfying the following conditions:

1. ∅ and X are open,

2. Arbitrary unions of open sets are open,

3. Finite intersections of open sets are open.

The complement of an open set if a closed set. The Euclidean space Rn is the prototypical

example of a topological space, with open sets generated by ε-balls. Virtually all spaces considered

in this thesis are subspaces of some Rn. A continuous function f : X → Y is a set function such

that f−1(O) is open for any open O. With this formal definition in mind, a homeomorphism is a

continuous function with a continuous inverse. If the domain of a continuous function is closed, then

it is a homeomorphism if and only if it is bijective.

Intuitively, homeomorphisms do not fundamentally change the shape of the underlying space.

For example, any square and circle are homeomorphic, informally because both are two-dimensional

objects and neither have holes. A more topical example is the n-ball and n-simplex, or their bound-

aries: the (n− 1)-sphere and the complex ∂∆n.

Roughly speaking, a homeomorphism will never change the dimension of a space it acts on;

however, as we will see in the next subsection, there are transformations of spaces that may grow or

shrink the dimension, but still preserves important connectivity properties of the space on which it

acts.

18

Figure 3.2: The triangle (or ∂∆2) and the circle are homeomorphic. The circle can be “straightened
out” to make a triangle.

We return to discussing simplicial complexes, but in a more geometric context. Although com-

plexes have been defined in a purely combinatorial way, they can also be realized as topological

spaces. Following Munkres [35], a geometric n-simplex is the convex hull of a set of n + 1 affinely

independent points in a Euclidean space of appropriate dimension. A geometric complex is a collec-

tion of geometric simplexes closed under containment such that every pair of distinct simplexes has

disjoint interiors. The point-set occupied by a simplex σ or complex K is denoted |σ| or |K|, and is

called its polyhedron.

It is common to transition between a simplicial complex and its geometric realization, and in

some contexts where appropriate, even identify the two.

3.1.3 Carrier Maps and Subdivisions

A carrier map Φ : K → 2K takes each simplex σ ∈ K to a subcomplex Φ(σ) ⊆ L such that for

σ, τ ∈ K, Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ). A carrier map is chromatic if for every n-simplex σ ∈ K, Φ(σ)

is chromatic and pure of dimension n. A simplicial map φ : K → L is carried by a carrier map

Φ : K → 2L if for every simplex σ ∈ K, φ(σ) ⊆ Φ(σ). Let ∆n be a simplex whose vertices are labeled

with (n+ 1) distinct colors. If Φ is a carrier map, and σ a simplex of Φ(∆n), then the carrier of σ

in ∆n, denoted Car(σ,∆n), is the smallest face τ of ∆n such that σ ∈ Φ(τ).

A subdivision of a simplex σ is a complex Div(σ) such that |Div(σ)| = |σ|. Figure 3.3 illustrates

two useful subdivisions: the barycentric subdivision Bary(K) and the standard chromatic subdivision

19

¾

Bary ¾ Ch ¾

Figure 3.3: Barycentric and standard chromatic subdivisions. The barycentric subdivision is not
chromatic, but the standard chromatic subdivision is.

Ch(K). A subdivision is a special case of a carrier map; the subdivision operator maps each simplex

to its subdivision. A simplicial map φ from one subdivision of ∆n to another is carrier-preserving

if for every simplex σ in the first subdivision, σ and φ(σ) have the same carriers.

Consider a family of carrier maps Γn, with input complex ∆n, and outputs landing in either

Bary(∆n) or Ch(∆n) (depending on chromaticity). Then such a family is called boundary consistent

if for any k-simplex σ of ∆n, we have the following

Γn(∆n) ∩ Ch(σ) = Γk(Ch(σ))

Respectively for the barycentric subdivision. Note that this is not the standard definition of

boundary consistency, but in this thesis it has been modified to generalize to carrier maps.

20

3.1.4 Stars, Links and Connectivity

Stars and links are useful concepts for describing and working with discrete neighborhoods on sim-

plexes. Stars play an similar role to the open neighborhoods of topological spaces. We begin with

the definition of a star.

Definition 3.1.1. The star of a simplex σ in complex K, denoted St(σ,K), is the subcomplex of K

consisting of all simplexes τ that contain σ, along with all subsimplexes of σ.

In some circumstances, the open star is used in place of the star. The open star of a point is

simply the interior of the geometric realization of its star; that is, its boundary is excluded.

Definition 3.1.2. The link of a simplex σ in complex K, denoted Lk(σ,K), is the subcomplex of K

consisting of all simplexes τ disjoint from σ such that τ ∪ σ ∈ K.

The link is a subcomplex of the star, but one dimension lower. One can think of the link of σ

as a simplicial neighborhood that encompasses σ but does not intersect with it. Or alternatively,

can be thought of as the boundary of the star. See Figure 3.5 for examples of links in simplicial

complexes.

The link is used to define a combinatorial notion of connectivity, called link-connectivity. How-

ever before we introduce link-connectivity, we require the standard definition of connectivity from

algebraic topology.

We write Sk to denote the k-dimensional sphere. Then a topological space K is k-connected if, for

all 0 ≤ m ≤ k, any continuous map f : Sm → X can be extended to a continuous F : Dm+1 → X,

where the sphere Sm is the boundary of the disk Dm+1. This definition also applies to simplicial

complexes, where one considers connectivity of the geometric realization.

One way to think about k-connectivity is that any map f of the k-sphere that cannot be “filled

in” represents a k-dimensional “hole” in the complex. Though not standard mathematical termi-

nology, we refer to k-connectivity as topological connectivity (when k is understood), in order to

disambiguate from the link-connectivity property defined next.

21

v

w

u

(a) A (−1)-connected space. It
is non-empty, but paths do not
exist between points.

v

w

λ

!

(b) A 0-connected space. Paths
exist between any two points,
but the oval cannot be filled in.

v

w

λ

!

(c) A 1-connected space. Paths ex-
ist between points, and any ovals
can be filled in.

Figure 3.4: Examples of (−1)-connected, 0-connected, and 1-connected spaces

See Figure 3.4 for examples illustrating topological connectivity. In the first diagram, there is

no path between any of the three vertices, so the set is disconnected (also called (−1)-connected

by convention, which only requires non-emptiness). The second diagram is path-connected, or 0-

connected, since one can find a path between any two points. However it has a “hole” where a

closed path S1 encircling it cannot be extended to D2. In the third diagram, we have an example

of a simply-connected space, or 1-connected, where also embeddings of the sphere of S1 can also be

extended.

We can now define link-connectivity for pure simplicial complexes, in terms of topological con-

nectivity.

Definition 3.1.3. A pure n-dimensional complex K is link-connected if for all σ ∈ K, Lk(σ,K) is

(n− dim(σ)− 2)-connected.

22

C

Lk(v,C)

v

Lk(e,C)

e
H

w

(a)

(b)

(c)

(d)

Figure 3.5: Links in a simplicial complex. The complex on the righthand side is not link-connected,
due to the problematic red vertex and its insufficiently connected link.

Link-connectivity imposes a topological connectivity requirement on the link of each simplex of

a given complex, dependent on the simplex’s dimension. Informally, link-connectivity ensures that

a complex cannot be “pinched” too thinly at any given simplex. It is know that all subdivided

simplexes are link-connected. Figure 3.5 (d) shows an example of a simplicial complex that is not

link-connected.

3.1.5 Shellability

It is a common theme in mathematics to understand an object by decomposing it into its parts. Here

we consider one particular way of decomposing simplicial complexes. A pure simplicial complex is

called shellable if it can be assembled, in a nice way, from its facets in a one-at-a-time order.

Definition 3.1.4. Let C be a pure simplicial complex of dimension n, and let ψ0, . . . , ψs be an

enumeration of its facets. Then {ψi} is called a shelling order if for all j, the complex
⋃j
i=0 ψi∩ψj+1

is pure of dimension n − 1. A complex with a shelling order is said to be shellable. The complex

obtained by assembling a prefix of the shelling is called an intermediate complex.

See Figure 3.6 for a simple example of a shelling order on a simplicial complex. In later chapters,

23

we demonstrate how shellability can be used to not only assemble a simplicial complex from its

facets, but also from suitably defined subcomplexes, in a manner that yields desirable connectivity

properties.

(a) The first simplex in a shelling
order, and the first intermediate
complex.

(b) Adding two more simplexes
to the intermediate complex.
The intersection is highlighted in
orange.

(c) Finishing the construction of the
complex using the shelling order.
Note, as in this case, that the inter-
section is not always one simplex.

Figure 3.6: Shelling of a hexagonal simplicial complex.

3.2 Classical Topology and Homotopy

3.2.1 Homotopy and the Fundamental Group

Given a topological space X and a base point x0 ∈ X, a loop in X based at x0 is a continuous function

λ : [0, 1] → X such that λ(0) = λ(1) = x0. Two loops λ1 and λ2 based at x0 are (loop) homotopic

if one loop can be continuously deformed to the other. More precisely, λ1 and λ2 are homotopic

if there is a continuous function H : [0, 1] × [0, 1] → X such that H(0,−) = λ1, H(1,−) = λ2,

and H(−, 0) = H(−, 1) = x0. Homotopy is an equivalence relation. We write [λ] to denote the

equivalence class of all loops homotopic to λ.

Let α : [0, 1]→ X and β : [0, 1]→ X be two loops based at x0. Then we can concatenate α and

β to get another loop, α · β, defined by traversing α, returning to x0, and then traversing β. The

loop α · β : [0, 1]→ X, also based at x0, is defined as

(α · β)(t) =

 α(2t) for 0 ≤ t ≤ 1
2

β(2t− 1) for 1
2 ≤ t ≤ 1

Concatenation behaves well with homotopy. If α and β are homotopic to α′ and β′, respectively,

24

then [α ·β] = [α′ ·β′]. From this it follows that concatenation is associative on classes of loops based

at x0. In fact, concatenation is a group operation on classes of loops based at x0, with the inverse

computed by traversing a loop in the opposite direction, and the identity element being the class of

all loops homotopic to the constant loop at x0. Formally, the inverse of [α] is the class of the loop

α−1(t) = α(1− t), and the class [e] of loop e(t) = x0 serves as the identity.

Definition 3.2.1. Let X be a topological space, and let x0 ∈ X be a base point. Then the fundamen-

tal group of X at x0, denoted π1(X,x0), is the set of all loop homotopy classes with concatenation

as its group operation. If X is path-connected, then π1(X,x0) is independent of x0, and we simply

write π1(X).

If f : (X,x0) → (Y, y0) is a base point-preserving continuous function, then π1 also induces

a group homomorphism f∗ : π1(X,x0) → π1(Y, y0) called the induced homomorphism, defined by

f∗([λ]) = [f ◦ λ].

An important property of the fundamental group is how it behaves with the product of topological

spaces.

Fact 3.2.2. Let X and Y be topological spaces. Then π1(X × Y) ∼= π1(X)× π1(Y).

It turns out that the fundamental group of a space is trivial if and only if that space is simply-

connected, or 1-connected. In fact, the fundamental group can be generalized to higher kinds of

connectivity; these generalizations are called the higher homotopy groups, and are denoted πn(X)

for each n. Exploration of these groups is beyond the scope of this thesis, but there is one particular

fact about homotopy groups that proves useful. Namely, that the n-th higher homotopy group of a

space is trivial if and only if the space is n-connected.

Homotopy is defined for loops with based points, but it has a more general definition. We define

this, along with deformation retractions, a specific kind of homotopy.

Definition 3.2.3. Two continuous functions f, g : X → Y are homotopic if there is a continuous

H : X × [0, 1] → Y such that H(−, 0) = f and H(−, 1) = g. In this case, we write f ' g if this is

the case. If in addition X ⊆ Y and H fixes X, then H is called a deformation retraction and we

say Y deformation retracts onto X.

If δ is a simplicial approximation of a continuous function h, then it is known that |δ| ' h. Using

homotopy, we can define an equivalence between topological spaces called homotopy equivalence.

25

This is an equivalence weaker than homeomorphism, though homotopy equivalence still preserves

useful properties.

Definition 3.2.4. Let X and Y be topological spaces. Then X and Y are homotopy equivalent, or

X ' Y , if there are continuous functions f : X → Y and g : Y → X such that g ◦ f ' idX and

f ◦ g ' idY . The maps f and g are called homotopy equivalences and are homotopy inverses of one

another.

Homeomorphic spaces are clearly homotopy equivalent. In addition, the higher homotopy groups

are invariant under homotopy equivalences. This has the implication that one may freely apply

homotopy equivalences to a space, without changes whether or not the space is n-connected. We

state this as a fact, which can be found in [17].

Fact 3.2.5. Let X and Y be topological spaces. If X ' Y , then πn(X) ∼= πn(Y).

The next two facts are specifically about the interaction between simplicial complexes and ho-

motopy. We call a continuous function g : |A| → |B| cellular if g maps skeletons to skeletons, or

more precisely, if g(| skeln(A)|) ⊆ | skeln(B)| for every n. Then every continuous f : |A| → |B| is

homotopic to such a map g, as seen below.

Fact 3.2.6 (Cellular Approximation). Let f : |A| → |B| be a continuous function between simplicial

complexes A and B. Then f is homotopic to a cellular function g : |A| → |B|. Furthermore, if C ⊆ A

is a subcomplex such that f is already cellular on |C|, then we may require the homotopy between f

and g to fix |C|.

Now suppose we have a homotopy on a subcomplex and we want to extend it to the entire

simplicial complex. The next fact, also found in Hatcher [17], allows us to do this.

Fact 3.2.7 (Homotopy Extension). Let C ⊆ A and B be simplicial complexes, and let F : |A| → |B|

be a continuous function. Suppose we have a homotopy H : |C| × [0, 1] → |B| such that H(−, 0) =

F ||C|. Then there is a homotopy extending H to all of |A|, respecting F . That is, we can find

homotopy H ′ : |A| × [0, 1]→ |B| such that H ′||C|×[0,1] = H and H ′(−, 0) = F .

3.2.2 Gluing

The pasting lemma, a classic result taken from point-set topology, is a for constructing piecewise

maps. It generally applies to open and closed sets in topological spaces, though in this work, we

26

often apply it to construct a continuous map by defining a map on all facets of a complex, then

gluing all maps together.

Lemma 3.2.8. Let X1 and X2 be open or closed sets of a common topological space, with continuous

fi : Xi → Y that coincide on the intersection X1 ∩X2. Then the function f : X1 ∪X2 → Y , defined

in terms of the fi, is a continuous function.

3.2.3 Simplicial Approximation

We will also need the following version of the simplicial approximation theorem, which is originally

a result from classical algebraic topology. It allows one to take a continuous function between

simplicial complexes, and turn it into a simplicial one with similar properties. We define a simplicial

approximation.

Definition 3.2.9. Let B and C be abstract simplicial complexes, let f : |B| → |C| be a continuous

map, and let ϕ : B → C be a simplicial map. The map ϕ is called a simplicial approximation to f ,

if for every simplex α in B we have

f(Int |α|) ⊆
⋂
a∈α

St◦(ϕ(a)) = St◦(ϕ(α)), (3.2.1)

where Int |α| denotes the interior of |α|, and St◦(ϕ(a)) is the open star.

Theorem 3.2.10. Let B and C be simplicial complexes. Given a continuous map f : |B| → |C|,

there is an N > 0 such that f has a simplicial approximation ϕ : ChN (B) → C.

This theorem remains true if we replace Ch with Bary.

3.2.4 The Nerve Lemma

We end this section with yet another classical result from algebraic topology, called the nerve lemma.

This topic is covered both by Hatcher as well as Kozlov [27] [17].

Definition 3.2.11. Let K be a simplicial complex and let {Ki}i∈I be a collection of subcomplexes

covering K, which is to say that
⋃
i∈I Ki = K. Then the nerve complex N({Ki}i∈I) is a simplicial

complex whose vertices are the Ki and whose simplexes are collections {Kj}j∈J such that
⋂
j∈J Kj

is nonempty.

27

The nerve complex of a simplicial cover encodes how the components of the cover intersect with

one another. The complex obtained in this way sometimes shares connectivity properties with the

original complex, as described by the nerve lemma below. We can therefore use the nerve complex

to reason above connectivity properties of the original complex.

Lemma 3.2.12 (Nerve Lemma). Let {Ki}i∈I be a simplicial cover of K, and let k be some fixed

integer. For any nonempty J ⊆ I, define KJ =
⋂
j∈J Kj, and suppose that KJ is (k − |J | + 1)-

connected or empty for all such J . Then K is k-connected if and only if N ({Ki}i∈I) is k-connected.

3.3 Distributed Tasks and Protocols

Simplicial complexes are used to model two main objects of concern: tasks and protocols. Tasks

represent distributed coordination problems to be solved by a distributed system, while protocols

are the distributed algorithms that solve these tasks.

3.3.1 Tasks

Formally, a task is a triple (I,O,Γ), where I and O are the task’s input and output complexes,

and Γ : I → 2O is a carrier map. An initial configuration where each process pi is assigned input

value vi is represented as an n-simplex σ = (s0, . . . , sn) ∈ I, where each vertex si is labeled with vi.

Similarly, a legal final configuration where each process pi halts with output value wi is represented

as n-simplex τ = (t0, . . . , tn) ∈ O, where each vertex ti is labeled with wi. For each σ ∈ I, Γ(σ) ⊆ O

is the set of legal final configurations when the processes that appear in σ participate in the task.

This carrier map is called the task’s specification.

Vertices of task’s complexes are labeled process states, but they are also colored by process

names. Since each process is assumed to have a unique name pi, such a labeling would result in

chromatic input and output complexes. A task is called colored if we label processes with their

names, with the additional requirement that Γ is chromatic. Otherwise, the task is called colorless.

Intuitively, in a colorless task, any process is allowed to behave like any other process by adopting

the other’s input value, since process names are irrelevant.

An example of a colored task is consensus, where participating processes each begin with some

input and must decide on a common output. The task also requires the processes to agree on some

process’s input. That is, their decision must satisfy two conditions:

28

1. Agreement : all processes decide on the same value

2. Validity : this common decision value was some process’s input.

A simplified version of this is 2-process binary consensus, where there are only two processes,

and each process may start with either 0 or 1. Then in this case, it is relatively straightforward to

illustrate the input and output complexes, as well as the task specification, as in Figure 3.7.

0

0 1

1 0

0 1

1
!

Figure 3.7: The input complex, output complex, and task specification of 2-process binary consensus.

In the figure, vertices are colored by process name (in this case, white and black), and labeled by

input 0 or 1. The colored boxes depict how the task specification Γ maps inputs to outputs. When

the process inputs are the same, as in the red and blue boxes, then the processes must decide on

that value itself, so in the case the image of the task specification is only one simplex. However,

when there are mixed inputs, as in the purple boxes, then the processes can either both decide 0

or both decide 0. In this case, the specification maps each mixed-input edge to the entire output

complex (both edge), since either choice of decision value is valid.

3.3.2 Protocols

A protocol is also a triple (I,P,Ξ), where are I and P the protocol’s input and protocol complexes,

and Ξ : I → 2P is a carrier map called the execution map. The input complex is constructed in

the same way as for tasks. Vertices of the protocol complex represent uninterpreted process states.

Similar to a task’s specification, the execution map defines which set of process states can result from

a given input configuration. As before, if the input complex is chromatic, then all other complexes

and maps are required to be chromatic. A protocol is colored if its input complex is taken to be

chromatic, and colorless otherwise.

A protocol (I,P,Ξ) wait-free solves a task (I,O,Γ) if there exists a color-preserving simplicial

29

map δ : P → O, called a decision map, such that

δ(Ξ(σ)) ⊆ Γ(σ) (3.3.1)

for each σ ∈ I. For weaker models of fault tolerance, 3.3.1 is only required to hold for σ

corresponding to valid executions. For instance, a task is solvable t-resiliently if equation 3.3.1 holds

for all σ such that |σ| ≥ n + 1 − t. Similarly, for adversaries, 3.3.1 need only hold for σ containing

a survivor set. This definition of solvability clear implies that a task solvable in a stricter model of

fault-tolerance is also solvable in a weaker one.

In Section 3.3.3, we formally model the immediate snapshot as a kind of protocol defined here.

Protocols can simulate other protocols. A protocol (I,P,Ξ) simulates another (I,P ′,Ξ′) if there

exists a simplicial map φ : P ′ → P, called a simulation, such that (φ◦Ξ)(σ) ⊆ Ξ′(σ). The operational

intuition is that φ sends simulated process states to real states.

P

I O
δ

Ξ

Γ

(a) A protocol solving a task.

P ′

I P

φΞ′

Ξ

(b) A protocol simulating an-
other protocol.

P ′ P

I O

φ

δ
Ξ

Γ

Ξ′

(c) A simulated protocol solving
a task.

Figure 3.8: Protocols solve tasks, and protocols can simulate other protocols. The power set notation
for carrier maps’ range (e.g. 2O) is omitted above to more succinctly convey the intuition.

Figure 3.8c shows how a simulated protocol can be used to solve a task, by combining the

notations of simulation and solvability.

3.3.3 Immediate Snapshot Protocol

Here, we give a concrete example of a wait-free protocol which is used throughout the rest of this

thesis. This is the immediate snapshot protocol introduced in the previous chapter.

There are multiple equivalent ways of modeling read-write memory, with the most primitive

building block being the atomic register. Atomic registers can simulate atomic snapshots, where

any single process is capable of reading a shared array in one atomic step. Atomic snapshots allow

one to reason about protocols in terms of the number of rounds each process must run, though the

30

corresponding topological structure of this protocol can be quite complex [30].

The immediate snapshot, described in the previous chapter, further simplifies the model used

to reason about read-write memory. In fact, it may be modeled formally as a protocol, in which

processes begin with their names as inputs, write their names to the shared memory, and take a

snapshot. The input complex for n + 1 processes is then just the standard simplex ∆n, colored

by process names. The output complex turns out to be the standard chromatic subdivision of ∆n,

which is denoted Ch(∆n).

(a) Each vertex represents a process state, which in
this case is the snapshot read by the process.

simultaneouslytogether,
then

(b) Each simplex in the complex represents one pos-
sible interleaving of the three processes.

Figure 3.9: The immediate snapshot protocol complex for three processes, with example states and
configurations.

The execution map of this protocol is given by the subdivision operator Ch itself, since each

simplex in ∆n is indeed mapped to its subdivision, which is a subcomplex of Ch(∆n). Hence the

protocol is given by the triple (∆n,Ch(∆n),Ch).

See Figure 3.9 illustrating processes states and global configurations in the immediate snap-

shot protocol with three processes. Figure 3.9a shows examples of process state for three different

processes during three different execution.

• The highlighted blue vertex is the state of the blue process during an execution where it runs

solo, or first.

• The highlighted green vertex is a state where the green process observes both itself and the red

process in its immediate snapshot, so either the red process executed solo (the bottom-right

31

red vertex), or the red process ran concurrently with the green one.

• The highlighted red vertex is a state where the red process sees all three processes in its

snapshot. In this case, as far as the red process knows, the either two may have run concurrently

with itself, or may have preceded the red process.

Figure 3.9b shows two examples of final process configurations after running the immediate snap-

shot protocol, which are simplexes. In the central simplex, all three processes execute concurrently.

In the other simplex highlighted, the red and green processes execute concurrently, then the blue

process executes afterwards.

For colorless tasks, the colorless immediate snapshot protocol is used, which is a minor variation

of the immediate snapshot. As with the ordinary snapshot, the colorless immediate snapshot operates

on an array of clean memory. But since in a colorless task, process names are not relevant and only

the inputs are, the process only stores its input before taking a snapshot. So a snapshot only

consists of a set of states, without reference to names. The colorless snapshot’s protocol complex is

the barycentric subdivision.

Recall that the immediate snapshot protocol can be iterated on a sequence of clean arrays of

memory. Doing so corresponds to repeatedly applying the standard chromatic subdivision operator.

For instance, the second standard chromatic subdivision of ∆2 is depicted in Figure 3.10 (colors are

omitted).

Due to the correspondence between immediate snapshot protocols and the iterated standard

chromatic subdivision, these two are useful tools in studying computability results of distributed

tasks. Both are used extensively throughout this thesis.

32

Figure 3.10: The second standard chromatic subdivision of ∆2, which is the protocol complex for
two rounds of immediate snapshots.

Chapter 4

Loop Agreement

In this chapter, we discuss a simple class of colorless tasks called loop agreement, originally intro-

duced to prove undecidability of solvability of tasks in read-write memory. Each loop agreement

task models convergence of processes on some given simplicial surface. Processes begin at points in a

designated loop, and they must meet at (decide on) a simplex of the surface. Herlihy and Rajsbaum

characterized these tasks by their algebraic signatures, each consisting of a group and a distinguished

element.

We extend their work by defining the composition of multiple loop agreement tasks to create

a new one with the same combined power, and generalize their algebraic signature construct to

these composite tasks [38]. In this way, one can think of loop agreement tasks in terms of their

basic building blocks. We also explored a category-theoretic perspective of loop agreement by

defining a category of tasks, showing that the algebraic signature is a functor, and proving that task

composition is the categorical product. This section uses more advanced techniques and definitions

from algebraic topology, which are outlined in the first subsection of the appendix.

4.1 The Class of Loop Agreement Tasks

We begin with the definitions of edge paths and triangle loops, which are required to formally define

the designated loop on a loop agreement task’s surface. An edge path is essentially a sequence of

adjacent edges, while a triangle loop is a set of three mutually adjacent edge paths.

Definition 4.1.1. An edge path in a complex C is an alternating sequence of vertices and edges,

33

34

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Figure 4.1: Loop agreement. If there is one input vertex, the processes stay put. If there are two,
processes must convergence on the path between these two vertices. If all three possible inputs
appear, processes are free to meet at any simplex.

v1, e1, v2, e2, . . . , vk−1, ek−1, vk, where ei = {vi, vi+1}. An edge loop is an edge path with v0 = vk. A

triangle loop in C is a six-tuple λ = (v0, v1, v2, p01, p12, p20) such that each vi is a vertex in C and

pij is an edge path between vi and vj.

Triangle loops are indeed loops in the topological sense (that is, an embedding of S1), but they

are also subcomplexes with designated vertices and edge paths. We may now define the class of loop

agreement tasks.

Definition 4.1.2. A loop agreement task is a task (I,O,Γ) for which I = ∆2, O is a connected

2-dimensional complex with triangle loop λ = (v0, v1, v2, p01, p12, p20), and Γ is defined as:

Γ(σ) =


{vi} : σ = {i}

pij : σ = {i, j}

O : σ = {0, 1, 2}

35

We write Loop(O, λ) to denote this task. Input vertices are carried to the designated vertices

of λ, the input edges are carried to paths between designated vertices, and the input triangle is

carried to the whole output complex. See Figure 4.1 for an illustration. The algebraic signature of

Loop(O, λ) is (π1(O), λ). This signature characterizes the relative power of such tasks.

We state the original theorem of Herlihy and Rajsbaum, characterizing the relative power of loop

agreement tasks in terms of algebraic signatures.

Theorem 4.1.3 (Herlihy and Rajsbaum). Task Loop(K1, λ1) implements Loop(K2, λ2) if and only

if there exists a group homomorphism h : π1(K1)→ π1(K2) such that h([λ1]) = [λ2].

As an aside, their theorem implies that the problem of wait-free task solvability in read-write

memory is undecidable; see Herlihy et. al. [22] for details. This theorem is generalized to allow

multiple tasks to implement another.

4.2 Composing Loop Agreement Tasks

Now that we have defined the class of loop agreement theorems, and stated the original results, we

discuss how loop agreement tasks can be combined into a single task.

4.2.1 Combining Simplicial Complexes

Before composing loop agreement tasks, we must consider how to combine their underlying simplicial

complexes. Here, define the categorical product of simplicial complexes. This is later used to define

implementation by multiple tasks, and task composition.

Definition 4.2.1. Let C1 and C2 be simplicial complexes, and let V (C1) and V (C2) be their vertex

sets, respectively. Then the (categorical) product of simplicial complexes is a complex C1 × C2 with

vertex set V (C1)× V (C2). A subset σ of V (C1)× V (C2) is a simplex in C1 × C2 if and only if ρ1(σ)

and ρ2(σ) are simplexes in C1 and C2, where ρ1 and ρ2 are projections onto the first and second

coordinates, respectively.

36

× =

(a) The usual topological product of two topolog-
ical spaces, which is a two-dimensional object.

× =

(b) The simplicial complex obtained from the
categorical product of two edges, which is a
three-dimensional object.

Figure 4.2: Topological product (left) versus categorical product (right) of two 1-simplexes.

Intuitively, the product of complexes is a way of combining two complexes in the “best possible

way,” and operationally, the product captures all possible combinations of process views if two tasks

are solved in parallel. Note, however, that this differs from the topological product of their geometric

realizations.

See Figure 5.1 showing the difference between the topological product of two 1-simplexes versus

their categorical product. In general, given simplicial complexes A and B of dimensions m and n,

respectively, the dimension of their topological product |A| × |B| is m+ n. However, the dimension

of their categorical product |A × B| is (m+ 1)(n+ 1)− 1, which is multiplicative in its two factors.

The topological spaces |A| × |B| and |A × B| are not homeomorphic, particularly because the

categorical product is of higher dimension. However, the two spaces are homotopy equivalent. In the

example given, this can be seen visually in which the tetrahedron is “flattened” against the square.

This homotopy equivalence is stated as a theorem below.

Fact 4.2.2. Let A and B be simplicial complexes. Then |A| × |B| ' |A × B|.

See Kozlov’s book on combinatorial algebraic topology for a detailed proof of this result [27]. It

follows that |A| × |B| and |A × B| have the same fundamental group. This will allow us to pass

between the categorical product of A and B and the topological product of |A| and |B|.

37

4.2.2 Implementation by Multiple Tasks

To implement one task from a collection of others, we run protocols for each task from the collection,

and use the combined output as the return value. Given two loop agreement tasks, the composite

task’s output complex is the 2-skeleton of the product of their output complexes, and the composite

task’s loop is the “diagonal” of the product of the two original loops. If λ1 and λ2 are two loops, we

denote the corresponding diagonal loop by λ1 ? λ2. A formal definition of this follows.

Definition 4.2.3. Let λ1 = (v0, v1, v2, p01, p12, p20) and λ2 = (w0, w1, w2, q01, q12, q20) be triangle

loops in complexes A and B, respectively. Then the diagonal product of λ1 and λ2, denoted λ1 ? λ2,

is the triangle loop (u0, u1, u2, r01, r12, r20) in A × B, where ui = (vi, wi). The path rij is defined

by traversing pij while wi is fixed, followed by traversing qij while vj is fixed. Note that we will use

pij ? qij to denote the path defined by rij as above, though strictly speaking, the ? operator denotes

two different operations in λ1 ? λ2 and pij ? qij.

Figure 4.3 below illustrates the diagonal product of two triangle loops λ1 and λ2 below, as a

subcomplex of their product λ1 × λ2. For ease of illustration, the loops are drawn as paths; the top

and bottom vertices are identified. While each edge path in this example consists of just one edge,

the diagram can be used to understand paths of any length. In this case, instead of λ1 × λ2 being a

union of just three 3-simplexes, it would be a union of several more.

While the diagonal product λ1?λ2 does not appear directly in the definition of implementation by

multiple tasks, it is used in the relevant proofs characterizing relative power. The diagonal product

is also needed to define composite loop agreement tasks.

38

=

λ1 ★ λ2

λ1 λ2

★

p01

p12

p20

q01

q12

q20

λ1 × λ2

Figure 4.3: The diagonal product of two triangle loops λ1 = (p01, p12, p20) and λ2 = (q01, q12, q20).
The tetrahedra illustrate their categorical product when regarded as simplicial complexes.

Definition 4.2.4. Let T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), and T = Loop(K, λ) be loop agreement

tasks. Let Γ1, Γ2, and Γ be their respective specification maps. We say T1 and T2 implement T if

there is an N ∈ N and a simplicial map

φ : BaryN (skel2(K1 ×K2))→ K

such that

(φ ◦ BaryN)(skel2(Γ1(σ)× Γ2(σ))) ⊆ Γ(σ)

Here is the intuition behind this definition. To solve task T using protocols for T1 and T2, the

participating processes first execute protocols for T1 and T2, resulting in a simplex on the combined

output complex K1 ×K2. More specifically, since there are at most three participants, they end up

on a simplex of skel2(K1 × K2). The processes then exchange results via N rounds of reading and

writing to auxiliary read-write memory, ending up on a simplex of BaryN (skel2(K1 ×K2)). Finally,

each process calls a decision map φ to choose a vertex in K.

39

4.2.3 Relative Power of Multiple Task Implementation

The relative power of multiple task implementation can also be characterized using algebraic sig-

natures. As with the original characterization, two loop agreement tasks implement another if and

only if there is a satisfactory homomorphism between their respective fundamental groups. This is

stated as a theorem.

Theorem 4.2.5. Let T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), and T = Loop(K, λ). Then T1 and T2

implement T if and only if there exists a group homomorphism

h : π1(K1)× π1(K2)→ π1(K)

such that h([λ1], [λ2]) = [λ].

Theorem 4.2.5 describes only two loop agreement tasks implementing a third, but by finite in-

duction, one can easily generalize this to n tasks. Its proof is broken down into two other theorems,

which jointly prove Theorem 4.2.5. The first theorem is a topological characterization of two tasks

implementing a third, while the second theorem is on the correspondence between continuous func-

tions and group homomorphisms.

Theorem 4.2.6. Tasks T1 and T2 implement T if and only if there exists a continuous function

f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ).

We prove Theorem 4.2.6 by proving each direction individually via the following lemmas.

Lemma 4.2.7. If there is a continuous function f : (skel2(K1×K2), λ1 ? λ2)→ (K, λ), then T1 and

T2 implement T .

Proof. Suppose such a function f exists, and let Γ1, Γ2, and Γ be the specification maps for T1,

T2, and T , respectively. To prove T1 and T2 implement T , we require an N ∈ N and a simplicial

map φ : BaryN (skel2(K1 × K2)) → K such that for each σ ∈ I, we have (φ ◦ BaryN)(skel2(Γ1(σ)×

Γ2(σ))) ⊆ Γ(σ). We will construct such a φ by taking a simplicial approximation of a suitably

defined continuous function.

Let p01, p12, and p20, and q01, q12, and q20 be the designated edge paths of λ1 and λ2, respectively.

Consider

X = |(p01 × q01)| ∪ |(p12 × q12)| ∪ |(p20 × q20)| ⊆ |K1 ×K2|

40

as a topological subspace. Clearly, each |pij × qij | deformation retracts to the corresponding path

|pij ? qij | in |λ1 ? λ2|. In other words, we have a continuous function

H : X × [0, 1]→ |K1 ×K2|

such that H(x, 0) = x, H(X, 1) = |λ1?λ2|, and H(a, t) = a for each a ∈ |λ1?λ2|, x ∈ X, and t ∈ [0, 1].

Now using Fact 3.2.7, we can extend H to a continuous function H ′ : |K1×K2| × [0, 1]→ |K1×K2|.

In particular, define r : |K1×K2| → |K1×K2| as r(x) = H(x, 1). This is a continuous function from

|K1×K2| to itself that fixes |λ1 ?λ2| while collapsing X to |λ1 ?λ2|. We restrict r to | skel2(K1×K2)|

and invoke Fact 3.2.6 to get a function

g : | skel2(K1 ×K2)| → | skel2(K1 ×K2)|

that fixes |λ1 ? λ2| while collapsing skel2(X) to |λ1 ? λ2|. Now let F = f ◦ g. This is a continuous

function F : | skel2(K1 ×K2)| → |K| which maps λ1 ? λ2 to λ.

To show F is carried by Γ, first consider the case where |σ| = 1, where σ is just a point. Then the

point |Γ1(σ)×Γ2(σ)| is contained in |λ1?λ2|, so is fixed under g, and hence mapped to the appropriate

point in λ by the given function f . The case |σ| = 2 is similar. We have |Γ1(σ)×Γ2(σ)| ⊆ X, which

collapses to |λ1 ? λ2| under g. The function f maps this to λ, as desired. The final case is when

|σ| = 3, which does not require any part of the proof above, since Γ(σ) = K. In all cases, we see

that F is carried by Γ. Letting φ : BaryN (skel2(K1 ×K2))→ K be a simplicial approximation of F ,

φ is also carried by Γ, so we have the required decision map.

Lemma 4.2.8. If tasks T1 and T2 implement T , then there is a continuous function

f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ)

Proof. Assuming T1 and T2 implement T , we have a simplicial map φ : BaryN (skel2(K1×K2))→ K

that is carried by Γ. In particular, φ maps λ1 ? λ2 to λ. Let f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ),

defined by f(x) = |φ|(x). Then f maps |λ1 ? λ2| to |λ| since φ does this as well.

Lemmas 4.2.7 and 4.2.8 together prove Theorem 4.2.6. Next, we prove the correspondence

41

between continuous functions and group homomorphisms. In order to do this, we refer to the

following result shown in Herlihy and Rajsbaum [19]. See their paper for a proof.

Lemma 4.2.9. Let K and L be finite, connected, 2-dimensional simplicial complexes, and let h :

π1(K)→ π1(L) be a homomorphism with h([σ]) = [τ]. Then there exists a continuous f : |K| → |L|

such that f∗ = h and f ◦ σ = τ .

The above lemma is applied to prove the a correspondence between maps. However before we

continue with the next theorem, we state a fact from algebraic topology that will aid us in the proof.

Fact 4.2.10. Let C be a complex. Then the inclusion ι : skel2(C) → C induces an isomorphism on

fundamental groups.

This fact essentially states that the fundamental group of a simplicial complex is completely

characterized by its 2-skeleton, so we may apply the 2-skeleton operator without changing the group.

Theorem 4.2.11. There exists a continuous function f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ) if and

only if there exists a group homomorphism h : π1(K1)×π1(K2)→ π1(K) such that h([λ1], [λ2]) = [λ].

Proof. First suppose we have a continuous function f : (skel2(|K1 × K2|), λ1 ? λ2) → (K, λ). We

begin by constructing a homomorphism

h′ : π1(|K1 ×K2|)→ π1(K)

with h′([λ1 ? λ2]) = [λ]. Let ι : skel2(|K1 × K2|) → |K1 × K2| be the inclusion map, whose induced

homomorphism is actually an isomorphism, by Fact 4.2.10. Then we let

h′ = f∗ ◦ ι−1
∗

In order to show h′([λ1 ?λ2]) = [λ], it suffices to show that ι−1
∗ ([λ1 ?λ2]) = [λ1 ?λ2]. However, notice

that [λ1 ? λ2] = ι∗([λ1 ? λ2]) since λ1 ? λ2 is already in skel2(|K1 ×K2|), so ι−1
∗ ([λ1 ? λ2]) = [λ1 ? λ2]

as required.

Now, we define the desired homomorphism

h : π1(K1)× π1(K2)→ π1(K)

42

using h′. Let α1 and α2 be loops in K1 and K2 respectively. By Fact 3.2.6, α1 and α2 are homotopic to

edge loops β1 and β2. Now define h as h([α1], [α2]) = h′([β1?β2]). Then it follows that h([λ1], [λ2]) =

[λ]. To show h is well-defined, we need to show that |β1 ? β2| ' |β′1 ? β′2| for other edge-loop

representatives β′1 and β′2 of α1 and α2. We can find edge homotopies H1 and H2 taking β1 and

β2 to β′1 and β′2, respectively, so H1 ? H2 is an edge homotopy from |β1 ? β2| ' |β′1 ? β′2|, proving

that h is well-defined. We have thus found the required h, which proves the forward direction of the

theorem.

Now suppose we start with a homomorphism h as described above. We reverse the above ar-

gument. We begin by constructing a homomorphism h′ : π1(|K1 × K2|) → π1(K). Let α be

a loop in |K1 × K2|. As before, α is homotopic to some edge loop β of K1 × K2. We define

h′([α]) = h([ρ1 ◦ β], [ρ2 ◦ β]]), where the ρi are the projection maps. This map is clearly well-defined

and a homomorphism since it is the composition of h and the induced maps of the ρi.

Now we define a homomorphism

h′′ : π1(skel2(|K1 ×K2|))→ π1(K)

with h′′([λ1 ?λ2]) = [λ], using h′. Let ι be the inclusion map, as before. Then we define h′′ = h′ ◦ ι∗.

Since ι∗([λ1 ? λ2]) = [λ1 ? λ2], we see that h′′([λ1 ? λ2]) = [λ]. Finally, we invoke Lemma 4.2.9 on

h′′ to obtain the required f . This proves the backward direction of the theorem, and completes the

proof.

Theorems 4.2.6 and 4.2.11 together prove Theorem 4.2.5.

4.2.4 Composite Loop Agreement

In defining multiple implementation, we said that tasks T1 and T2 implement T if we can use the

combined output complex skel2(K1×K2) of T1 and T2 to solve T . We can think of parallel execution

of protocols for T1 and T2 as solving a task with input complex ∆2, output complex skel2(K1×K2),

and specification Γ1×Γ2. We get a task T ′ = (∆2, skel2(K1×K2),Γ1×Γ2), and from the definitions

it is clear that T1 and T2 implement T if and only if T ′ implements T . Unfortunately, T ′ is not a

loop agreement task, since processes starting on an edge in ∆2 can land on any edge in λ1 × λ2 and

still obey the task specification. However, the subcomplex λ1 × λ2 is not a loop. We address this

43

by defining a loop agreement task T1 × T2 with output complex skel2(K1 × K2) with triangle loop

λ1 ? λ2. We then show that T ′ and T1 × T2 implement one another, so that they are equivalent.

Refer to Figure 4.3 for a simple illustration of λ1 ? λ2.

Definition 4.2.12. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be loop agreement tasks. Then the

composition of T1 and T2, denoted T1×T2, is the loop agreement task Loop(skel2(K1×K2), λ1 ?λ2).

From this definition, together with what was proved in the previous section, we get the following

propositions.

Proposition 4.2.13. Tasks T1 and T2 implement T1 × T2.

Proof. In the proof of Theorem 4.2.5, we show the following lemma: T1 and T2 implement T if

there exists a continuous function f : (skel2(K1 × K2), λ1 ? λ2) → (K, λ). Letting T = T1 × T2, the

proposition is an immediate consequence of this lemma.

So two tasks T1 and T2 are capable of implementing their composite task T1 × T2. Likewise,

we are able to show the reverse direction. That is, the composite tasks is just as powerful as each

component loop agreement task.

Proposition 4.2.14. Task T1 × T2 implements T1 (respectively T2).

Proof. Lemma 6.2 from Herlihy and Rajsbuam [19] states that it suffices to show there exists a

continuous function f : skel2(K1 × K2) → K1 mapping λ1 ? λ2 to λ1. It is easy to see that the

projection map ρ1 : skel2(K1×K2)→ K1 satisfies this condition. The proof that T1×T2 implements

T2 is identical.

4.3 A Categorical Interpretation

The above two propositions together imply that T1 and T2, and T1×T2 have the same computational

power, in the sense that they can implement the same loop agreement tasks. This claim can be

made more rigorous using the language of category theory. In the next subsection, we offer a brief

introduction to elements of category theory; see MacLane [32] for a complete and formal treatment.

Then we describe how the class of loop agreement tasks can be interpreted as a category.

44

4.3.1 Category Theory

A category C is a collection of objects, denoted Ob(C), together with a collection of morphisms

between objects, denoted Hom(C). Each morphism has a domain and codomain, which are both

objects in Ob(C). If f is a morphism with domain X and codomain Y , we write f : X → Y . This

notation is intentionally suggestive of ordinary set functions.

As with set functions, morphisms can be composed. Formally, Hom(C) is equipped with a binary

operation called composition. If f and g are morphisms, then their composition is denoted f ◦ g.

Note that function composition is only defined when the codomain of the first morphism is equal

to the domain of the second. The composition operation is required to be associative; that is, given

f : W → X, g : X → Y , and h : Y → Z, composition must obey the rule that h◦ (g ◦f) = (h◦g)◦f .

Composition also requires the existence of an identity morphism for each object X, denoted idX ,

such that for each f : X → Y , we have f ◦ idX = f = idY ◦ f .

Sets and set functions comprise the category of sets, which is typically denoted Set. The category

of topological spaces, denoted Top, has spaces as its objects and continuous functions as its mor-

phisms. There is also the category of groups, Grp, consisting of groups and groups homomorphisms.

Algebraic signatures belong to a similar category called the category of pointed groups, pGrp, whose

objects are groups with distinguished elements, and whose morphisms are group homomorphisms

that map distinguished elements to distinguished elements.

Objects and morphisms of one category can be transformed into to objects and morphisms of

another. Given categories C and D, a functor F : C → D assigns to each object X ∈ Ob(C)

an object F (X) ∈ Ob(D), and to each morphism f : X → Y a morphism F (f) : F (X) → F (Y).

Functors must respect composition, so that given two compatible morphisms f, g ∈ Hom(C), we must

have F (f ◦ g) = F (f) ◦ F (g). Functors should also respect identity morphisms: F (idX) = idF (X).

A common example of a functor is the fundamental group functor π1 : pTop → Grp, which maps

pointed topological spaces to their respective fundamental groups, and maps continuous functions to

their induced homomorphisms. The geometric realization | · | : SimC→ Top is a functor from the

category of simplicial complexes with simplicial maps to Top, which maps complexes and simplicial

maps to their respective geometric realizations. In the next section we define Loop, the category of

loop agreement tasks.

45

Loop pGrp

Loop(K1, λ1)

Loop(K2, λ2)

π1(K1), [λ1]

π1(K2), [λ2]

(δ, N) |δ|*

F

Figure 4.4: An example of a functor of categories, which here is the algebraic signature between Loop
and pGrp. Note that functor not only map objects to objects, but also morphisms to morphisms.

The categorical product of simplicial complexes was introduced in the previous section, but it

the concept has a broader definition within the context of category theory. The categorical product

is a kind of operation that combines two objects from the same category, to form a new object that

is representative of components in some standard way. Informally, the categorical product of two

objects is the most generic object that maps onto the original two.

Definition 4.3.1. Let C be a category, and let X1 and X2 be objects in this category. The categorical

product of X1 and X2 is the unique object X1 × X2 satisfying the following condition: there exist

morphisms (called projections) ρ1 : X1×X2 → X1 and ρ2 : X1×X2 → X2 such that for any object

X with morphisms f1 : X → X1 and f2 : X → X2, there exists a unique morphism f : X → X1×X2

such that f1 = ρ1 ◦ f and f2 = ρ2 ◦ f . That is, f1 and f2 factor through X1 ×X2 in a unique way,

via f . The morphism f is called the product morphism of f1 and f2.

We will see that loop agreement task composition is an example of a categorical product. Next,

we show how the class of loop agreement tasks forms a category.

4.3.2 The Category of Loop Agreement Tasks

We define Loop, the category of loop agreement tasks. Let Ob(Loop) be the collection of all loop

agreement tasks Loop(K, λ), where K ranges over all finite connected 2-dimensional complexes, and

λ ranges over all edge loops. Morphisms in Loop are valid decision maps between tasks. That is,

46

given tasks T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2), a morphism f : T1 → T2 is a pair (δ,N)

where N ∈ N and δ : BaryN (K1)→ K2 is a decision map such that T1 solves T2 via δ. Composition

of morphisms is defined as follows. Given objects T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), T3 =

Loop(K3, λ3), and morphisms f1 : T1 → T2, f2 : T2 → T3 where f1 = (δ1, N1) and f2 = (δ2, N2), the

composition f2 ◦ f1 is defined as (δ2 ◦ BaryN2(δ1), N1 +N2).

Two morphisms are considered equivalent if their simplicial maps are homotopic. Note that by

identifying morphisms (in this case homotopic ones), we are constructing a quotient category of the

original one. In order to construct a quotient category, the equivalence must be compatible with

composition. However, it is known that homotopy is compatible with compositions of continuous

functions. It remains to be shown that Loop is indeed a category.

Theorem 4.3.2. Loop is a category.

Proof. Let Ti and fi be defined as above, and let Γi be the tasks’ respective specification maps. To

show Loop is a category, we need to show that Hom(Loop) is closed under composition, composition

is associative, and identity morphisms exist. Showing that Hom(Loop) is closed under composition

amounts to showing that T1 solves T3 via

δ2 ◦ BaryN2(δ1) : BaryN1+N2(K1)→ K3

For brevity we define δ = δ2 ◦ BaryN2(δ1).

From the definition of task implementation, we know that

δ1 ◦ BaryN1 ◦Γ1 ⊆ Γ2

and

δ2 ◦ BaryN2 ◦Γ2 ⊆ Γ3

and we want to show

δ ◦ BaryN1+N2 ◦Γ1 ⊆ Γ3

We have the sequence of containments

δ2 ◦ BaryN2 ◦δ1 ◦ BaryN1 ◦Γ1 ⊆ δ2 ◦ BaryN2 ◦Γ2 ⊆ Γ3

47

We also know that

BaryN2 ◦δ1 = BaryN2(δ1) ◦ BaryN2

so

δ2 ◦ BaryN2 ◦δ1 ◦ BaryN1 ◦Γ1

= δ2 ◦ BaryN2(δ1) ◦ BaryN2 ◦BaryN1 ◦Γ1

= δ ◦ BaryN1+N2 ◦Γ1 ⊆ Γ3

Therefore T1 solves T3 via δ, so Hom(Loop) is closed under our definition of composition.

Verifying associativity follows a similar argument. Again, let Ti and fi be defined as above, and

in addition let T4 = Loop(K4, λ4) and let f3 : T3 → T4 with f3 = (δ3, N3). We must show that

(f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1)

But

(f3 ◦ f2) ◦ f1

= (δ3 ◦ BaryN3(δ2), N2 +N3) ◦ (δ1, N1)

= (δ3 ◦ BaryN3(δ2) ◦ BaryN2+N3(δ1), N1 +N2 +N3)

and

f3 ◦ (f2 ◦ f1)

= (δ3, N3) ◦ (δ2 ◦ BaryN2(δ1), N1 +N2)

= (δ3 ◦ BaryN3(δ2 ◦ BaryN2(δ1)), N1 +N2 +N3)

= (δ3 ◦ BaryN3(δ2) ◦ BaryN2+N3(δ1), N1 +N2 +N3)

so (f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1). Therefore composition is associative.

The last requirement, existence of identity morphisms, is trivial to show. Task T1 solves itself

via the decision map (idK1 , 0). This finishes the proof that Loop is a category.

48

Next, we show that the algebraic signature of Herlihy and Rajsbaum can be formulated as a

functor between Loop and pGrp. We first define the mapping between objects and morphism, and

then prove it satisfies the properties of a functor.

Definition 4.3.3. Let T1, T2 ∈ Ob(Loop) with T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2), and let

f1 : T1 → T2 with f1 = (δ1, N1) be a morphism between the two. Then the algebraic signature

functor is a functor S : Loop → pGrp defined as follows. Object T1 is mapped to (π1(K1), [λ1]),

while morphism f1 : T1 → T2 is mapped to |δ1|∗ : (π1(K1), [λ1])→ (π2(K2), [λ2]).

Theorem 4.3.4. S : Loop→ pGrp is a functor.

Proof. We use the fact that π1 and | · | are both functors. We need to show that S preserves identity

morphisms and respects composition of morphisms. Let T1, T2, and f be defined as above, and let

T3 = Loop(K3, λ3) and let f2 : T2 → T3 with f2 = (δ2, N2). Then, using the functoriality of π1 and

| · |, we have

S(f2 ◦ f1)

= S((δ2 ◦ BaryN1(δ1), N1 +N2))

= |δ2 ◦ BaryN1(δ1)|∗

= (|δ2| ◦ |BaryN1(δ1)|)∗

= |δ2|∗ ◦ |δ1|∗

= S(f2) ◦ S(f1)

so S respects composition. Now let idT1
be the identity morphism of T1. Then S(idT1

) =

S((idK1
, 0)) = |idK1

|∗ = idπ1(K1), so S also preserves identity morphisms. S is well-defined since π1

cannot distinguish between homotopic functions. We conclude that S is a functor.

We are almost ready to prove that composition of loop agreement tasks is in fact the categorical

product in Loop, but first we need a lemma describing the categorical product in SimC2, which is

slightly different than the one in SimC. Namely, we must take 2-skeletons after taking the product

of complexes.

49

Lemma 4.3.5. If K1 and K2 are objects in SimC2, then skel2(K1×K2) is their categorical product

in SimC2.

Proof. In order to define the product, we must first define projection maps. These projection maps

are ρ1 : skel2(K1 × K2) → K1 and ρ2 : skel2(K1 × K2) → K2, defined as ρ1(v1, v2) = v1 and

ρ2(v1, v2) = v2. That is, the ρi are the restrictions to the 2-skeleton of the projection maps found

in Definition 4.2.1, so they are clearly simplicial.

Now suppose we have a 2-dimensional complex K with simplicial maps δ1 : K → K1 and δ2 : K →

K2. Then we define δ : K → skel2(K1 × K2) as δ(v) = (δ1(v), δ2(v)). This is the only possible set

function δ that makes the diagram commute; that is, δ is the only set function such that δ1 = ρ1 ◦ δ

and δ2 = ρ2 ◦ δ. This proves uniqueness, but we must also show that δ is simplicial.

Let σ be a simplex in skel2(K1 × K2). Then δ1(σ) and δ2(σ) are simplexes in K1 and K2,

respectively. But as we have shown, δ1(σ) = ρ1(δ(σ)) and δ2(σ) = ρ2(δ(σ)), so in particular, we see

that ρ1(δ(σ)) and ρ2(δ(σ)) are simplexes. Hence by Definition 4.2.1, δ(σ) is a simplex in K1 × K2,

and furthermore it is a simplex in skel2(K1 × K2) since the dimension of σ is at most 2. So δ is a

simplicial map, which proves that skel2(K1×K2) is the categorical product of K1 and K2 in SimC2.

Note that Lemma 4.3.5 easily generalizes to SimCn and the n-skeleton. We use the above con-

struction of the categorical product in SimC2 to define a product in the category of loop agreement

tasks.

Theorem 4.3.6. Composition of loop agreement tasks is the categorical product in Loop.

Proof. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be tasks as defined before, and let Γ1 and Γ2

be their specification maps, respectively. Let Γ× be the specification map of T1 × T2. We must first

define decision maps from T1×T2 to T1 and T2 that make T1×T2 the categorical product. We know

that skel2(K1 × K2) is the categorical product of K1 and K2 in the category SimC2, and that the

product comes with projection maps ρ1 : skel2(K1×K2)→ K1 and ρ2 : skel2(K1×K2)→ K2. Using

these, we define maps g1 : T1 × T2 → T1 and g2 : T1 × T2 → T2 with g1 = (ρ1, 0) and g2 = (ρ2, 0),

and we show that these maps make T1 × T2 the categorical product of T1 and T2.

50

T

T1 T1 × T2 T2

f 1
f
2f

g1 g2

Figure 4.5: The universal property defining the product informally states that if T solves tasks T1

and T2, then there is a unique decision map, f , for which T solves T1 × T2.

We showed in Proposition 4.2.14 that g1 and g2 solve T1 and T2, respectively. To prove that g1

and g2 are the projection maps satisfying Definition 4.3.1, we consider a task T that implements both

T1 and T2, say via maps f1 = (δ1, N1) and f2 = (δ2, N2), respectively. Let T = Loop(K, λ) and let Γ

be its specification map. We must find a decision map that solves T1 × T2 from T . Without loss of

generality, assume N1 ≥ N2, so let δ′2 : BaryN1(K)→ K2 be a simplicial approximation of δ2. Then

δ = (δ1, δ
′
2) is a map from BaryN1(K) to skel2(K1 × K2), though it does not necessarily carry λ to

λ1?λ2. Instead, g = (δ,N1) is a morphism from Loop(K, λ) to Loop(skel2(K1×K2), δ(λ)). However,

it is easy to see that δ(λ) is homotopic to λ1?λ2. Using Fact 3.2.7, we can extend this to a homotopy

on all of skel2(K1×K2), so we obtain a continuous function h : | skel2(K1×K2)| → | skel2(K1×K2)|.

Let γ : BaryM (skel2(K1 × K2)) → skel2(K1 × K2) be a simplicial approximation of h. Then notice

that g′ = (γ,M) is a morphism from Loop(skel2(K1 × K2), δ(λ)) to Loop(skel2(K1 × K2), λ1 ? λ2).

So f = g′ ◦ g is a morphism f : T → T1 × T2. We must also show that f = (γ ◦BaryM (δ), N1 +M)

makes the diagram commute. Let δ′ = γ ◦ BaryM (δ). We know that ρi ◦ δ ' δi by construction of

δ, and it is also clear that δ′ ' δ, by construction of δ′ and γ. It follows that ρi ◦ δ′ ' δi, proving

that f makes the diagram commute. Thus we have the required product morphism.

Finally, it remains to show that f is unique. Let f ′ be any such morphism making the diagram

commute, and let δ′ be its simplicial map. Then, as set maps, we know that δ′ = (ρ1 ◦ δ′, ρ2 ◦ δ′).

However, we are assuming that |ρ1 ◦ δ′| ' |δ1| and |ρ2 ◦ δ′| ' |δ2|, so this allows us to conclude

that |δ′| = (|ρ1 ◦ δ′|, |ρ2 ◦ δ′|) ' (|δ1|, |δ2|). Therefore |δ′| ' (|δ1|, |δ2|), which is homotopic to the

map constructed in the existence proof above. So δ is unique up to homotopy, meaning that f is

unique. This proves that g1 and g2 are satisfactory projection maps, proving that T1 × T2 is in fact

the categorical product of T1 and T2.

51

The category pGrp also has products. We define this product below, and state without proof

that it is indeed the categorical product. This follows immediately from the fact that the direct

product of groups is the categorical product in Grp [32].

Fact 4.3.7. Let (G1, g1) and (G2, g2) be objects in pGrp. Then (G1×G2, (g1, g2)) is their categorical

product.

With this in mind, the following corollary is a simple consequence of Theorem 4.2.5. It states

that the algebraic signature functor preserves categorical products of objects.

Corollary 4.3.8. The functor S : Loop→ pGrp preserves products.

Proof. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be objects in Loop. Then S(T1) =

(π1(K1), [λ1]) and S(T2) = (π1(K1), [λ2]), so S(T1) × S(T2) = (π1(K1) × π2(K2), ([λ1], [λ2])). How-

ever, from the proof of Theorem 4.2.11, we see that (π1(K1)× π2(K2), ([λ1], [λ2])) ∼= (π1(skel2(K1 ×

K2)), [λ1 ?λ2]) = S(T1×T2), so in fact S(T1×T2) ∼= S(T1)×S(T2). Therefore S preserves products.

4.4 The Lattice of Loop Agreement Tasks

In this subsection, we present some simple conclusions derived from the algebraic signature functor

applied to certain loop agreement tasks. The first result is on (3, 2)-set agreement, or the most

powerful task among the class of loop agreement.

Proposition 4.4.1. Let T be (3, 2)-set agreement, and let T ′ be any other loop agreement task.

Then T × T ′ and T are equivalent.

Proof. Recall that (3, 2)-set agreement is the task Loop(skel1(∆2), ζ), where ζ is the triangle

loop (0, 1, 2, ((0, 1)), ((1, 2)), ((2, 0))). This triangle loop generates π1(skel1(∆2)), so S(T) =

(π1(skel1(∆2)), [ζ]) ∼= (Z, 1). Let S(T ′) = (G, g). Then by Corollary 4.3.8, S(T × T ′) =

S(T)× S(T ′) = (Z×G, (1, g)). The homomorphism φ : Z×G → Z defined by projection onto the

first coordinate sends (1, g) to 1, and the homomorphism ψ : Z → Z × G defined by ψ(n) = (n, g)

sends 1 to (1, g). So T × T ′ and T implement one another, so they are equivalent.

52

Since (3, 2)-set agreement was shown to be universal for loop agreement by Herlihy and Rajsbaum

[19], it is operationally intuitive that composing it with any other loop agreement task should not

change the relative power of (3, 2)-set agreement, since it is already the most powerful task. The

next result is about the least powerful loop agreement task, or simplex agreement.

Proposition 4.4.2. Let T be any simplex agreement task, and let T ′ be any other loop agreement

task. Then T × T ′ and T ′ are equivalent.

Proof. Since the output complex if T is a subdivided simplex, it has trivial fundamental group, so

S(T) = (1, e). As before, let S(T ′) = (G, g). By Corollary 4.3.8, S(T × T ′) = S(T) × S(T ′) =

(1×G, (g, e)), which is clearly isomorphic to (G, g). So T ×T ′ and T implement one another, so are

equivalent.

Herlihy and Rajsbaum also showed that simplex agreement is implemented from any loop agree-

ment task [19], so it is also intuitively clear that composing a task with simplex agreement should

not change the relative power of the original task. Adding simplex agreement to a task will not

increase its power.

The next result is about self-composition of tasks.

Proposition 4.4.3. Let T be any loop agreement task. Then T × T and T are equivalent.

Proof. Let S(T) = (G, g). Then by Corollary 4.3.8, S(T×T) = S(T)×S(T) = (G×G, (g, g)). Letting

φ : G → G ×G be the diagonal map φ(x) = (x, x), φ maps g to (g, g), and letting ψ : G ×G → G

be projection onto a coordinate, ψ maps (g, g) to g. So T × T and T are equivalent.

The above result states that composing a loop agreement task with copies of itself will not change

its relative power. This is also reasonable since nothing new is gained by adding a task of the same

relative power.

Using this result, together with other properties of the categorical product such as commutativity

and associativity, one can show that the class of loop agreement tasks forms a join semi-lattice, with

the categorical product as the join operation. The (3, 2)-set agreement and simplex agreement tasks

are the top and bottom of this lattice, respectively.

53

4.5 Concluding Remarks

It is a common technique to study a class of objects by mapping these objects into a class of simpler

ones in such a way that preserves enough information about the original class of objects. This is

the motivation behind the fundamental group from algebraic topology, and is also the motivation of

the algebraic signature of Herlihy and Rajsbaum in their work on loop agreement. In this work we

formalized and further extended the algebraic signature characterization by defining the composition

of tasks and relating compositions of tasks to products of groups, and in doing so we partially

answered the questions raised in the original paper. It remains to be answered how much further

this characterization can be extended, or whether there is anything more to be learned from the

algebraic signature functor between loop agreement tasks and groups with distinguished elements.

One may further in the direction of category theory, such as asking whether the algebraic signature

has an adjoint (roughly, inverse).

The categorical techniques in this chapter can be applied to general tasks. For example, tasks

with decision maps form a category Task, with loop agreement as a subcategory. In the case of

loop agreement, we are able to extract valuable information about tasks by mapping them into

groups. Another question to be explored is what kind of functors may be applied to general tasks.

Also in the case of loop agreement, we were able to identify parallel composition with the category

product. It may be possible to define parallel composition for more general tasks, for instance using

the complex skeln(O1 ×O2).

In this work we only considered colorless tasks, but there could also be value in investigating

whether any of the ideas presented here can be generalized or applied to colored tasks, since colored

tasks tend to be more useful in practice.

Chapter 5

The Convergence Algorithm

The class of loop agreement tasks is a witness showing that task solvability is generally an undecidable

problem. However, there are other means of characterizing the solvability of tasks. Herlihy and

Shavit’s [25, 24] asynchronous computability theorem use combinatorial topology to characterize

which tasks are solvable in asynchronous read-write memory. The theorem states that a protocol

for a task exists if and only if there is a chromatic simplicial map from the input complex to output

complex, compatible with the task’s specification.

The proof of the asynchronous computability theorem is straightforward for colorless tasks, since

it essentially reduces to the simplicial approximation theorem simplicial approximation [35, p.89]

from classical topology. However when colors (or process names) are introduced, then proving the

corresponding asynchronous computability theorem requires an additional difficult step. This is

because the simplicial approximation does not make any guarantee about preserving colors.

To construct a color-preserving map required a long construction involving point-set topology,

such as ε-balls and Cauchy sequences. Borowsky and Gafni [5] later proposed an alternative proof

strategy for the theorem in which the essential color-preserving property was guaranteed by an

algorithm (referred to as the convergence algorithm), rather than by a combinatorial construction.

The description of this algorithm was sketchy, however, and no proof was provided.

In this chapter, we give a complete description of the convergence algorithm, along with its

first proof of correctness. We begin by providing further background on existing results concerning

the asynchronous computability theorem, then describe a colored task called chromatic simplex

agreement, explain how it is solved, and apply it to prove the theorem. The convergence algorithm,

54

55

which solves chromatic simplex agreement, is also applicable to results in subsequent chapters in the

form of a more broadly applicable corollary.

5.1 The Asynchronous Computability Theorem

The asynchronous computability theorem states that a task T = (I,O,Γ) has a wait-free protocol

in read-write memory if and only if there is a color-preserving, simplicial map from a chromatic

subdivision of I to O that complies with the task specification map Γ. Below we state this theorem

more formally.

Theorem 5.1.1. A task (I,O,Γ) has a wait-free read-write protocol if and only if there is a chro-

matic subdivision Div(I) and a color-preserving simplicial map µ : Div(I)→ O carried by Γ.

We gives examples showing when the asynchronous theorem applies and when it fails. Consider

two different two-process tasks: approximate agreement, in which processes start on opposite ends of

an edge and must converge to an edge somewhere in the middle, and binary consensus, as described

in Chapter 3.

0

1

0

1

6/7

5/7

4/7

3/7

2/7

1/7

0

1

Div μ

I ODiv(I)

(a) Approximate agreement is solvable.

0

0 1

1 0

0 1

1
!

I O

(b) Binary consensus is not solvable.

Figure 5.1: Two tasks for which the asynchronous computability theorem applies.

Approximate agreement is a task that is solvable in read-write memory. Accordingly, as we see

in Figure 5.1a, there is a subdivision Div (in this case given by Ch2) and a color-preserving map

µ such that µ : Div(I) → O complies with the task specification, which only requires that the two

56

processes meet at an edge. However, in the case of binary consensus, the task requires the black

vertex labeled 0 in the input complex to map the similarly labeled vertex in the output, and likewise

for the white vertex. But since there is no path connecting the black and white vertexes in the

output complex, it is impossible to find a simplicial map that preserves the edge between the white

and black vertices in the input complex, no matter how many times the input is subdivided. So

binary consensus is not solvable in read-write memory, as is expected.

5.1.1 Proof Approaches

In one direction, the claim is relatively easy. If there exists a read-write protocol, then there is

also an immediate snapshot protocol for solving the task, due to the equivalence between read-write

protocols and immediate snapshot protocols. Now since there is an immediate snapshot protocol

for the task (I,O,Γ), this means exactly that there is a color-preserving simplicial decision map

δ : ChN (I) → O, compliant with Γ. Therefore ChN (I) is the desired subdivision and δ is the

desired simplicial map.

The other direction is more difficult: we must show that given a chromatic subdivision Div(I)

and a color-preserving map µ : Div(I) → O carried by Div, we can find a read-write protocol

solving the task. The most straightforward strategy is to show the existence of a color-preserving

simplicial map

φ : ChN (I)→ Div(I),

for some N > 0, such that for all σ ∈ I, φ(ChN σ) ⊆ Div σ. If we have such a map φ, then we can

compose φ with the simplicial map µ already given to us, as follows:

ChN (I)
φ→ Div(I)

µ→ O.

These maps can be used to construct a protocol. From an input simplex σ, each process performs

the following three steps. First, a process executes an N -layer immediate snapshot protocol, halting

on a vertex x of the complex ChN σ. Then, it computes another vertex y = φ(x), which is in Div σ.

Finally, it computes z = µ(y), which is the output vertex. This protocol solves the task since both

maps φ and µ are carrier-preserving.

In previous work, a simplicial map φ : ChN (I) → Div(I) was constructed by taking a

57

simplicial approximation ψ : ChN (I) → Div (I), carried by ∆, and then modifying this map

to make it preserve colors. The bulk of the original proof is concerned with “perturbing” ψ to

make it color-preserving, a somewhat delicate construction. Borowsky and Gafni suggested a more

algorithmic approach: treat this problem as a task, (I,Div I,Div), in which processes start on

vertices of matching color on a simplex σ of I, and halt on vertices of matching color on a single

simplex of Div(I). They give a protocol (called the convergence algorithm) that solves this chromatic

simplex agreement (CSA) task, which induces the desired map. As noted, the original paper lacked

a complete description of the algorithm and a proof, both of which are presented here.

5.2 Non-chromatic Simplex Agreement

We first consider a more simple task, called non-chromatic simplex agreement (NCSA), in which

processes start on the same input complex I and must converge to any simplex of Div(I). Processes

do not have to land on vertices of any specified color, though they must remain where they are if they

run solo. As we will see in section 5.3.3, we use a variation of NCSA, called link-based non-chromatic

simplex agreement (LNCSA), as a subroutine for defining the convergence algorithm.

Informally, in the NCSA task, the n + 1 processes start on any set of vertices from a given

complex, and converge to any n-simplex, subject to the constraint that any process that executes in

isolation must halt on the vertex where it began.

Definition 5.2.1. Let K be a complex with vertex set V , and let ∆(V) denote the complex whose

simplexes are all the subsets of V . The (n+ 1)-process non-chromatic simplex agreement task over

I is the (n+ 1)-process colorless task (skeln(∆(V)),K,Γ), where, for each σ ∈ ∆(V), Γ(σ) = {v} if

σ = {v}, and Γ(σ) = skelk(K) if |σ| = k > 1.

NCSA can be solved in read-write memory provided that I exhibits sufficient topological con-

nectivity. We present an inductively constructed protocol on skeletons of the input complex, and

use the complex’s connectivity to extend the protocol to higher dimensions.

Theorem 5.2.2. If K is an n-dimensional (n − 1)-connected complex, then there is a wait-free

read-write protocol for solving NCSA over K.

58

Proof. Let I = skeln(∆(V)). We inductively define a continuous function

f : |I| → |K|

carried by Γ, and then take its simplicial approximation. We induct over skeletons of I by defining,

for each m, a continuous map

fm : | skelm(I)| → | skelm(K)|

carried by Γ. We begin with the base case by setting f0(v) = v, the inclusion of vertices into K. As

a constant map, f0 is clearly continuous. Furthermore, it it carried by Γ since the task requires a

solo process to remain at the vertex at which it starts. Therefore we have a map satisfying the base

case.

(a) The 0-skeleton (base case).
(b) The 1-skeleton, using 0-
connectivity of the output com-
plex.

(c) The 2-skeleton, using 1-
connectivity of the output com-
plex.

Figure 5.2: Building up the skeletons of the input complex. Connectivity of the output complex is
used to extend the continuous map with each step.

Now inductively assume we have constructed a continuous map

fm : | skelm I| → |K|.

Let {σi} be the set of facets of skelm+1(I), and let ∂σi denote the boundary of σi, which is equiva-

lently its set of facets. Since K is m-connected, we can extend each fm|∂σi
to a function

fm+1
i : |σi| → | skelm+1(K)|.

59

Since adjacent fm+1
i agree on their intersection by construction, we can use the pasting lemma (see

3.2.8), we can glue all these maps together. This yields a combined map fm+1 on all of skelm(I).

Moreover, it extends the map fm and is carried by Γ. Therefore by induction on skeletons, we obtain

a map

fn = f : |I| → |K|,

carried by Γ. Finally, we take a simplicial approximation of f to get a simplicial map

φ : Chk(I)→ K

By the simplicial approximation theorem, φ is also carried by Γ, so it is a decision map that solves

the NCSA task.

5.3 The Convergence Algorithm

Suppose we want to solve chromatic simplex agreement on a subdivided complex Div(I). In this

section, we describe the convergence algorithm for solving chromatic simplex agreement. The algo-

rithm proceeds in rounds, with participating processes beginning on a simplex of I. The processes

gradually converge to one simplex of the subdivision, with at least one process make its decision

with each round.

5.3.1 Solving Chromatic Simplex Agreement

Algorithm 1 shows pseudocode for the convergence algorithm, which is informally explained below.

Then in the section to follow, we more formally described all auxiliary information that each process

computes and tracks during execution of the convergence algorithm. Finally, prove correctness of

the algorithm.

Participating processes begin on a simplex of I. In the first round, the processes to run a simplex

agreement protocol on Bary(Div(I)). Recalling the construction of the barycentric subdivision, this

corresponds to the processes collectively choose a nested sequence of simplexes in Div(I). Each

process then writes its simplex obtained this way to shared memory array, and takes an immediate

snapshot of the array, in order to observe simplexes written by other participating processes. Within

the obtained snapshot of simplexes, if a process sees a vertex of its color in all such simplexes, then

60

the process returns that vertex and finishes the convergence algorithm. Otherwise, it computes its

view1 as the union of all simplexes it saw in the snapshot, minus the vertex of its own color, if one

exists. The process proceeds to the next round.

Inductively, a process entering round r > 1 has already computed a view, as in the first round

described above. Each process begins round r by writing this view to a shared memory array. Then

it takes an immediate snapshots of the array from this round, simultaneously with taking a snapshot

from the first round. By retaking a snapshot of the first round, a process updates the participating

set of processes it observes running the protocol. Each process maintains what it believes to be

the participating set of processes through its entire execution. Next, after taking a snapshot of the

views from the current round, the process computes its core2, defined to be the intersection of the

views from the current round’s snapshot.

Using these two snapshots, the process computes its convergence complex, a simplicial neigh-

borhood of the core (defined in the next section). Note that processes typically construct different

convergence complexes, though all such complexes will be ordered by inclusion. Each process then

chooses a starting vertex of its own color in its convergence complex, and runs the LNCSA protocol

on the barycentric subdivision of its convergence complex. Processes collectively obtain a nested

sequence simplexes, similar to the first round. Each process then replaces its core with the smallest

core observed when running LNCSA. Each process writes its simplex and its new core to shared

memory and takes a snapshot. If a process sees a vertex of its color in each simplex it saw, it decides

on that vertex and finishes. Otherwise, it updates its view and proceeds to the next round.

1 Borowsky and Gafni called the view the “core”.
2 Borowsky and Gafni called this the “intersection of cores”.

61

62

shared participating[n+1];

shared views[n+1];

shared simplexes[n+1, n+1];

protocol chromaticSimplexAgree(p, v, I, Div):

participating[p] := p;

s := simplexAgree(v, I, Div);

immediate

simplexes[1, p] := (s, ∅);

snap := snapshot(simplexes[1]);

if ∃u : u ∈
⋂
t∈snap t and χ(u) = p then

return u;

else

toss := {u : u ∈
⋃
t∈snap and χ(u) = p};

w :=
⋃
t∈snap t− toss;

r := 2;

while True do

immediate

views[r, p] := w;

snap := snapshot(views[r]);

P := snapshot(participating);

c :=
⋂
x∈snap x;

s, c := linkNonchromaticSimplexAgree(v, c, P , I, Div);

immediate

simplexes[r, p] := (s, c);

snap := snapshot(simplexes[r]);

if ∃u : u ∈
⋂
t∈snap t and χ(u) = p then

return u;

else

toss := {u : u ∈
⋃
t∈snap and χ(u) = p};

w :=
⋃
t∈snap[0] t ∪

⋂
d∈snap[1] d− toss;

r := r + 1;

Algorithm 1: The convergence algorithm

63

5.3.2 Bookkeeping

If each process executes Algorithm 1, it will decide on a vertex of its color in a simplex on Div(I),

thus solving CSA over I. In this section we establish terminology used in proving correctness of the

convergence algorithm.

Here is some notation to track all information that each individual process computes during its

run. Let p0, . . . , pn be the processes participating in the convergence algorithm. Let p be any such

process. For each round r > 1, the state of process p consists of the following: its participating set

P rp , its core crp, its convergence complex Crp , its starting vertex vrp, its simplex srp, and its view wrp.

Here is how each of these items is computed during round r of the convergence algorithm:

1. The participating set P rp is the set of processes (and corresponding input vertices) that process

p sees when it takes a snapshot of the first round’s shared memory. This is the set of processes

which p believes (by round r) to be executing the algorithm, and only increase with each

subsequent round.

2. The core crp is the set of vertices that may be decision values of processes (other than p) that

have finished the executing the convergence algorithm. It is defined to be

crp =
⋂
j∈J

wrpj ,

where J is the index set of processes, seen by p, in its snapshot of views from the current round

r. During the execution of the LNCSA protocol, the process p may observe smaller cores, in

which case p recomputes its own core as

c̄rp =
⋂
k∈K

crpk

where I is the index set of processes seen by p during the LNCSA protocol.

3. The convergence complex Crp is the complex on which p runs the LNCSA protocol, in order to

choose a new simplex consistent with decision values already determined by other processes.

It is computed as

Crp = Lk(
⋂
k∈K

crpk ,
⋃
k∈K

P rpk).

64

This is the link of the smallest observed core, contained in the complex determined by the

largest observed participating set.

4. The starting vertex vrp is the vertex on which p begins running the LNCSA protocol. Any

vertex from Crp with the same color as p may be chosen. Starting vertices, in addition to

process names, are contained in participating sets.

5. The simplex srp is the simplex in Crp which p chooses as a result of running the LNCSA protocol.

They collectively represent the domain of values from which processes may choose decision

values in round r.

6. The view wrp is the set of vertices that p sees in round r. It is computed as

wrp =
⋃
i∈I

srpi ∪
⋂
i∈I

c̄rpi − {u
r
p}

where I is the index set of processes seen by p in its snapshot of simplexes and cores, and urp

is the vertex with the same color as p, if it exists. It is a union of observed simplexes, together

with the smallest core, minus a vertex of your own color.

5.3.3 Link-based Non-chromatic Simplex Agreement

We have mostly described the convergence algorithm, with the exception of how to solve the LNCSA

task. In this section we provide more details of LNCSA, how it is solved, and how it fits into the

bigger picture of the convergence algorithm.

Recall that the convergence algorithm should solve the task (I,Div(I),Div), known as chromatic

simplex agreement. Consider an execution of the convergence algorithm, specifically at the point in

time where processes have just computed their convergence complexes, in some given round. We

want these processes to collectively converge to a simplex that is consistent with the smallest core

among them, since this core represent decision values of processes that have finished the algorithm.

They should do this by selecting vertices on the largest convergence complex, since the largest one

is the link of the smallest core. This observation is at the heart of LNCSA task.

Before we can properly define LNCSA, there are a few technical lemmas required to proceed.

The first lemma notes that all views and cores, defined only as sets of vertices until now, are indeed

65

simplexes of the subdivision Div(I). This lemma allows us to, for example, compute links of cores

and define the convergence complex.

Lemma 5.3.1. All views and cores are simplexes.

Proof. This is a proof by induction on the numbers of rounds in the convergence algorithm. It is

clear that views from the first round are simplexes, since each one is a subset of the largest simplex

chosen during simplex agreement. By downward closure of complexes, subsets of simplexes are also

simplexes.

The cores computed in the second round are also simplexes, since they are intersections of the

views from the first round. Intersections of simplexes are simplexes.

Inductively assume that all views from round r are simplexes. Clearly all cores cr+1
p in round

r+ 1 are simplexes as well, since they are intersections of views from round r. Views in round r+ 1

are computed as

wr+1
p =

⋃
i∈I

sr+1
pi ∪

⋂
i∈I

c̄r+1
pi − {u

r+1
p }

Now consider a process p, and let I denote the index set of processes contained in snapshot of

simplexes taken by p. Then we know that there is a largest simplex among processes in the snapshot,

or that ⋃
i∈I

sr+1
pi = sr+1

p`

for some ` ∈ I, since the simplexes are ordered by inclusion. Then sr+1
p`

is the largest simplex seen

by p in its snapshot. Furthermore, we know that sr+1
p`
∪ c̄r+1

p`
is a simplex, by definition of the link of

a simplex, since sr+1
p`

is chosen from the link of the core. But the intersection of all cores is contained

in the core of p, or ⋂
i∈I

c̄r+1
pi ⊆ c̄r+1

p`

so from the definition of how view r + 1 is computed, we get the containment

wr+1
p =

⋃
i∈I

sr+1
pi ∪

⋂
i∈I

c̄r+1
pi − {u

r+1
p } ⊆ srp` ∪ c̄

r+1
p`

.

We just showed that the expression on the righthand side is a simplex, so by downward closure, we

conclude that wr+1
p is a simplex.

We have shown that the views and cores in round r+1 are also simplexes. Therefore by induction,

66

all views and cores are simplexes.

We are now able to appropriately compute convergence complexes, since we can take links of

cores due to cores being simplexes. The next lemma states that the set of all convergence complexes

of the processes is ordered by inclusion. In some sense, this ensures that the LNCSA convergence

subtasks solved by different processes are coherent, even though each process may have computed a

different convergence complex.

Lemma 5.3.2. The convergence complexes of participating processes for any given round are ordered

by inclusion.

Proof. Consider any round r. If exactly one or fewer processes have not decided, then the claim

is trivial. So let p1 and p2 be distinct processes that have not decided, and let Ci denote the

convergence complex for pi. We must show a containment relationship between C1 and C2. Without

loss of generality, suppose p1 takes a snapshot of the view arrays for rounds 1 and r before p2. Then

p2 sees more views than p1, so it computes a larger intersection for its core. In other words, this

meaning that c2 ⊆ c1, where ci is the core of pi in the current round r. Furthermore, if Qi is the set

of participating processes seen by pi (or those in the snapshot from the first round), then Q1 ⊆ Q2.

Since the link operator is order reversing in the first argument, and order preserving in the

second, we get the following inclusions:

C1 = Lk(c1, Q1) ⊆ Lk(c2, Q2) ⊆ Lk(c2, Q2) = C2

We conclude that C1 ⊆ C2. Therefore the convergence complexes of any two processes partici-

pating in the LNCSA protocol for round r are comparable, so the set of all convergence complexes

is ordered by inclusion.

We now have a complex (or set of complexes) on which processes converge and run an LNCSA

protocol. The next lemma allows each process to choose a valid starting vertex before beginning the

protocol. In particular, for any process, there is a vertex of its own color in its convergence complex.

The next lemma allows each process to pick a vertex of its own color in its convergence complex

when it begins solving LNCSA. This is not immediate since convergence complexes generally have

a smaller dimension than that of the full complex.

67

Lemma 5.3.3. Let p be a process has not finished executing the convergence algorithm by round r.

Then there is at least one vertex of its color in its convergence complex Crp.

Proof. Recall that crp is the core of p in round r. Since the convergence complex Crp is a link of crp,

it is enough to show that no vertex in crp has the same color as p. This is because Crp and crp are

colored by complementary sets of colors.

The core crp is computed as the intersection of views that p sees in its snapshot of the shared

array of views in round r. This snapshot must include wr−1
p , which is the view of p itself. But wr−1

p

cannot contain a vertex of color p, since any such vertex is explicitly removed in the computation

of wr−1
p . Since wr−1

p does not contain a vertex of color p, neither does crp since it the intersection of

all views from this round. Hence the core does not contain a vertex of color p. Since Cp is its link

in a chromatic complex, it must contain at least one vertex of color p.

We now have a complex for LNCSA and vertices on which each process may take as inputs. The

next lemma is a more technical one, and constrains how decision values obtained in previous rounds

appear in views and cores of other processes in later rounds.

Lemma 5.3.4. Suppose a process decides on a vertex. Then that vertex is contained in the views

and cores of all processes in all subsequent rounds.

Proof. Suppose process p decides on vertex u in round rp. We proceed by induction on the number

of rounds greater than rp, first showing that all views contain vertex u. The fact that cores contain

u as well follows as a simple corollary.

As the base case, we first show that every view computed in round rp itself contains vertex u.

Let p′ be any other process that does not decide this round. Then there are two cases for process p′

when it computes its new view:

1. Process p′ sees the simplex that p wrote to shared memory,

2. Process p′ does not see this simplex.

In the first case, p′ sees the simplex that p wrote. Let this simplex be σ. Since the convergence

algorithm stipulates that a process only decides when it sees a vertex of its color in every simplex,

and p decides in this round, then simplex σ must contain vertex u. Otherwise p would not decide in

this round. So p′ includes σ in the computation of its view, which includes the union of all simplexes

observed in the snapshot. Therefore the view of p′ in round rp contains u.

68

Now we consider the second case, where p′ does not see the simplex that p wrote. But for p

to decide on u, u must have been contained in all simplexes it observed in its snapshot, since this

is again the requirement for a process to decide. In particular, since p′ did not see the simplex

written by p, it must be that p′ preceded p in writing its simplex to the array. Therefore p must

have observed the simplex written by p′. Therefore the simplex written by p′ must have contained

vertex u. including the simplex of p′. Since this simplex contains u, the view of p′ will also contain

u.

In either case, the view of p′ contains u, and since p′ was taken to be arbitrary, the same holds

for any other process that does not decide by round rp.

Next, we inductively assume that all views from some round r ≥ rp contain vertex u. We want

to show that all views from the next round r+ 1 also contain u. First, consider the cores computed

in round r + 1. Since cores are intersections of views from the previous round r, and all previous

views contain u, it follows that all cores computed in round r+1 also contain u. Furthermore, recall

how any process p′ computes its view in round r + 1. We have:

wr+1
p′ =

⋃
i∈I

sr+1
pi ∪

⋂
i∈I

c̄r+1
pi − {u

r
p′}.

This includes the intersection of all cores. But since each core contains u, we get the following

containment:

u ∈
⋂
i∈I

c̄r+1
pi ⊆ wr+1

p′

so the view of p′ computed in round r + 1 also contains u. Therefore all views in round r + 1 also

contain u.

We have shown that assuming all views in round r ≥ rp contain vertex u, this implies that all

views in round r + 1 also contain u. Hence by induction, all views in all rounds after rp contain u.

Finally, since cores are computed as intersections of views in each round, all cores in rounds

r > rp must also contain u. This finishes the proof.

Intuitively, the above lemma states that decision values are stable as the convergence algorithm

proceeds.

69

Defining LNCSA

We now have all the parts required to define the LNCSA task. Recall that (I,Div(I),Div) is the

chromatic simplex agreement task we want to solve via the convergence algorithm. Take any round

r, and suppose the processes have just computed their links. We describe the LNCSA they will solve

as the next step of the algorithm.

Informally, in repeatedly solving the LNCSA task, the processes converge to a simplex that is

consistent with the smallest core among them, or vertices of the decided processes. Stated in a

different way, these processes will converge on the largest link among the processes.

We proceed with a formal definition of the LNCSA task, beginning with process inputs to the

task. As usual, process inputs are represented with a simplicial complex, denote A, with vertices

representing state. Each process’s input state consists of the following data:

1. Core c,

2. Participating set P ,

3. Starting vertex v chosen from the convergence complex.

Note that by Lemma 5.3.3, each process is able to choose a valid starting vertex on its convergence

complex. This set of input data is expressed compactly as a triple (v, c, P), with the implicit

requirements that that v ∈ P and Car(c, I) ⊆ P .

We have a vertex set for the input complex, so now we define its simplexes. A set of triples (or

vertices) {(vi, ci, Pi)} is a simplex in A if the vi all have distinct colors, and {ci} and {Pi} are ordered

by inclusion. We require the vi to have different colors, since each process must choose a vertex

of its own color. Furthermore, since cores and participating sets are computed using immediate

snapshots, the sets {ci} and {Pi} are ordered by inclusion. So the LNCSA task will only receive

inputs that already satisfy these constraints. So A is a subcomplex of

∆(V)× Bary(Div(I))× Bary(I),

where V is the vertex set of I. The barycentric subdivision in the above expression correspond

to sets of simplexes ordered by inclusion. The second component’s domain consists of simplexes

from Div(I) since cores are simplexes in this subdivision. The third component’s domain consists

of simplexes from I since participating sets are just sets of processes.

70

We have described the input complex, so we next describe the output complex of LNCSA. This

complex is given by B = Bary(Div(I)). This is because processes should collectively choose a set of

simplexes that are ordered by inclusion.

Having defined the input and output complexes, we now define the task specification, which is

a carrier map between the two complexes. Processes that execute in isolation stay where they are.

Otherwise, processes converge to a simplex in the largest link they see. So if σ = {(vi, ci, Pi)} is a

simplex in A, then we have

Γ(σ) =


{v} if σ = {(v, c, P)}

Lk(
⋂
ci,

⋃
Pi) otherwise

But Lemma 5.3.2 states that convergence complexes are ordered by inclusion, which implies that Γ

is monotonic. This makes Γ a carrier map.

We have defined the input complex A, output complex B, and task specification Γ of the LNCSA

task. We state this as a definition below.

Definition 5.3.5. Let A, B, and Γ be complexes and carrier map as described above. Then LNCSA

is the colorless task given by the triple (A,B,Γ).

We have a formal definition of the LNCSA task. Note the similarity of this task with the NCSA

task from the previous section, where processes converge on a subdivision but are not required to

choose vertices of their own color.

We provide an immediate snapshot protocol for solving the LNCSA task.

Lemma 5.3.6. Let r be any round in the convergence algorithm, after which the processes have

computed their cores. Then there is a wait-free immediate snapshot protocol for converging to a

simplex on Lk(
⋂
k∈K c

r
pk
,
⋃
k∈K P

r
pk

). In other words, the task (A,B,Γ) is solvable.

Proof. We show that this task is solvable by constructing a continuous map

f : |A| → |B|

carried by Γ. Once we have such a map, we can apply the simplicial approximation theorem to

produce a carrier-preserving map, thereby showing the task is solving since we will have produced a

71

decision map. We induct on skeletons of the input complex in order to construct such a continuous

f . More specifically, for each m, we build up continuous maps

fm : | skelm(A)| → |B|

defined on successive skeletons of the input complex. As the base case, we define f0 as f0((v, c, P)) =

v for each vertex (v, c, P) of A. The function f0 is clearly continuous and carried by Γ, since f0 is

a constant map and Γ requires solo processes to stay where they are. Now inductively assume we

have defined fm. We want to define an extension of the map fm to the next skeleton, or

fm+1 : | skelm+1(A)| → |B|.

Let {σi} be some enumeration of the facets of skelm+1(A). For each i, we index the vertices of each

simplex as σi = {(vij , cij , Pij)}j≤m+2.

Given this indexing, we calculate the smallest core and largest participating set among the

processes, in order to determine the largest convergence complex among them. These cores and

participating sets are computed as

ci =
⋂
j

cij and P i =
⋃
j

Pij .

This is again due to the fact that cores and participating sets are ordered by inclusion.

By the inductive hypothesis on the map fm, we know that fm is carried by Γ. Looking at the

definition of Γ, fm being carried by Γ exactly means that its image is contained in the convergence

complex

Li = Lk(ci, P i).

Furthermore, we also know that dim(Li) ≥ dim(σi) = m, since each vij ∈ Li as the processes’

starting vertices, each vij has different color. and the fact that Li is chromatic. Suppose dim(P i) = n.

We know that Li a link of a simplex in the subdivided simplex Bary(Div(P i)). As a subdivided

simplex, the latter complex is link-connected. Therefore, using link-connectivity of Bary(Div(P i))

72

and the fact that dim(Li) ≥ m, we conclude that Li has connectivity of degree at least

n− 2− (n−m− 1) = m− 1

Using this observation, along with the fact that Im(fm) ⊆ Li, we can extend fm|∂σi
to a function

fm+1
i : |σi| → |Li|, which is possible since ∂σi is homeomorphic to a sphere. So we have extended

the map fm to every individual simplex of the (m + 1)-skeleton, however these maps need to be

pieced together to form one map.

Using the pasting lemma, we can glue together the fm+1
i defined on simplex σi to obtain a

continuous function

fm+1 : | skelm+1(A)| → B

which extends the original fm on its entire domain. By construction, fm+1 is carried by Γ, since

its image lands in the (m + 1)-skeleton of the output complex. So by induction, we have obtained

a continuous function f : |A| → |B| defined on the whole input complex. Finally, by the simplicial

approximation theorem, we get a simplicial map δ that is also carried by Γ. We conclude that the

task (A,B,Γ) is wait-free solvable using immediate snapshots.

We now have a protocol for the LNCSA task, which completeness the description of the conver-

gence algorithm. We must finally show that the convergence algorithm itself is a correct protocol

for solving the chromatic simplex agreement task.

5.3.4 Termination and Validity

We now have all the necessary results to prove correctness of the convergence algorithm. In proving

correctness of the algorithm, the two main properties to prove are its termination and validity.

Showing that all non-faulty processes terminate is essential to wait-freedom of the algorithm, while

validity ensures that each process decides on a vertex compliant with the task specification.

We begin by showing termination, or that all processes participating in the algorithm eventually

decide. The intuition here is that with each round, at least one process is able to decide on a vertex,

since there is at least one process that sees a valid decision vertex contained in the view of all other

processes.

Theorem 5.3.7. All processes participating in the convergence algorithm eventually decide.

73

Proof. We show that at least one process decides each round. Consider any round in the convergence

algorithm, and let {p0, . . . , p`} be the set of processes participating in the algorithm. The processes

begin this round by each of them running the LNCSA protocol over the barycentric subdivisions of

their convergence complexes. By Lemma 5.3.6, the processes collectively converge to a simplex τ on

the largest subcomplex, say Bary(C), where each process computes some subsimplex of τ . That is,

by definition of the barycentric subdivision, the simplex τ ∈ Bary(Aik) corresponds to a chain of

simplexes, given by

σi0 ⊆ · · · ⊆ σi`

Their intersection is σi0 , which is clearly nonempty, so choose a vertex v̂ ∈ σi0 . Then the color of

v̂, which we denote as χ(v̂), cannot be the color of any non-participating process. To see this, note

that all convergence complexes Bary(C) are all subcomplexes of the processes’ carrier in Div(I), and

this subcomplex is colored by processes of only those that are participating in the algorithm.

Neither can χ(v̂) be the color of a process that decided in a previous round. Towards a contra-

diction, suppose not. Then this means the largest convergence complex contains vertices of color

χ(v̂), meaning that the corresponding core could not contain a vertex of color χ(v̂), since the link

contains vertices of color exactly those not in the corresponding core. This contradicts Lemma 5.3.4,

since decided vertices must be contained in all cores. x

Let p̂ ∈ P be the process whose color is χ(v̂), and let K ⊆ {0, . . . , `} be the index set of processes

that p̂ saw during its snapshot of the simplex array. Then

⋂
k≤`

σik ⊆
⋂
k∈K

σik ,

so v̂ ∈
⋂
k∈K σik . Since p̂ sees v̂ in all simplexes in its snapshot, then according to the algorithm,

p̂ decides on v̂. We have therefore show that at least one process p̂ decides in this round, for any

round taken arbitrary. From this it follows that every process participating in the algorithm must

decide in at most n+ 1 rounds.

This proves that the convergence algorithm terminates, hence is wait-free. Finally, we show that

the set of vertices chosen by the processes comply with the task specification of chromatic simplex

74

agreement on Div(I), which we state in the following way.

Theorem 5.3.8. Participating processes converge to a simplex in their carrier, and each process

chooses a vertex of its own color.

Proof. We show that for each round r, the set of vertices that processes have decided form a simplex.

We argue by induction, beginning with the first round. In the first round, it is clear that decision

values form a simplex, since processes can only decide on vertices from the largest simplex chosen

by solving the first LNCSA. Any subset of this largest simplex is clearly also a simplex, so the set

of decision values from the first round (which must be of size at least one) is a simplex. This shows

the base case holds.

Inductively, we consider a round r, and we inductively assume that the vertices which processes

decided during the rounds up to r form a simplex, which we call τr. Consider round r+1. Processes

in this round choose vertices on a simplex of the barycentric subdivision of the largest convergence

complex, say Bary(C), which is determined by the smallest core. So vertices on which processes

decide this round are contained in an ascending chain of simplexes in C. Call the largest such

simplex Σr+1, and let cr+1 be the smallest core, corresponding to the largest convergence complex.

Then by definition of the link, cr+1∪Σr+1 must be a simplex in C, since the largest link is determined

by the smallest core cr in round r. From Lemma 5.3.4, we must have τr ⊆ cr+1, since all decision

values are contained in subsequent cores and views. So τr∪Σr+1 is also a simplex in C, by downward

closure of simplicial complexes. Let σr+1 ⊆ Σr+1 be the set of all vertices that processes on decide

during round r + 1. Again by downward closure,

τr ∪ σr+1 ⊆ τr ∪ Σr+1,

so τr ∪ σr+1 is a simplex. But by definition of τr, we have that τr+1 = τr ∪ σr+1, where τr+1 is

exactly the set of vertices on which processes have decided up to round r + 1. So τr+1 is also a

simplex. By induction on the number of rounds, it follows that the processes’ decision values form

a simplex.

Processes can only choose decision values in their carrier, since all links are computed relative to

any observed participating sets, and all decision values are chosen from their links (of cores). That

is, at no point does a process ever jump outside of the participating processes’ carrier. Furthermore,

each process only ever decides on a process of its own color, as stipulated by the convergence

75

algorithm.

Therefore the processes collectively converge to a simplex in Div(I), and each chooses a vertex

of its own color. This completes the proof of validity,

Having proven termination and validity of the convergence algorithm, the correctness of the

algorithm follows. So the convergence algorithm solves chromatic simplex agreement. Since the

algorithm is implemented entirely in read-write memory, then from the correspondence between

solvability of immediate snapshots and existence of a decision map, we get a color-preserving sim-

plicial map φ : ChN (I)→ Div(I). From this fact, the asynchronous computability theorem follows

immediately. Recall from Section 5.1 the more difficult direction of theorem, in which we are given

a color-preserving simplicial map µ : Div(I) → O. Then composing µ and φ yield a decision map

for the general task (I,O,Γ).

5.4 Application to General Tasks

The chromatic simplex agreement task over a chromatic subdivision Div(I) is defined as the task

(I,Div(I),Div). The proof of the convergence algorithm shows that this task has a wait-free read-

write protocol. To enable the convergence algorithm to work, we required that Div(I) be link-

connected. This was an important connectivity property for links within the subdivided simplex,

since it allowed us to solve LNCSA over iteratively smaller convergence complexes. Phrased in more

topological and combinatorial terms, the convergence algorithm allows us to find a color-preserving

simplicial map

φ : ChN (I)→ Div(I)

carried by Div, one that approximates the continuous (identity) map id : |I| → |Div(I)| also carried

by Div. In fact, link-connectivity is the essential property of the output complex for this argument

to go through. In particular, the convergence algorithm may be applied to more general continuous

functions f : |I| → |O| carried by certain well-behaved Γ. If one is given the assumption that Γ(σ) is

link-connected for all σ ∈ I, we can use the convergence algorithm to obtain a chromatic simplicial

map φ : ChN (I)→ O also carried by Γ. We state this observation as a theorem.

Theorem 5.4.1. Let f : |I| → |O| be a continuous map between chromatic complexes and let

Γ : I → O be a carrier map such that Γ(σ) is link-connected for each σ ∈ I. Suppose f is carried

76

by Γ. Then there exists a chromatic, carrier-preserving simplicial map φ : ChN (I)→ O.

A task whose specification map satisfies the above link-connectivity condition is referred to as a

link-connected task. The content of Theorem 5.4.1 is that the convergence algorithm may be applied

to any link-connected task.

5.5 Concluding Remarks

The heart of the asynchronous computability theorem is in the construction of a color-preserving

map from a chromatic subdivision of the input complex to the output complex. While it is easy

to construct a simplicial map using the well-known simplicial approximation theorem [35, p.89], the

only prior construction [22, 24] lacked any algorithmic insight into the asynchronous computability

theorem. The work in this section not only provides an alternative proof of this theorem, but it

highlights the importance of link-connectivity of tasks.

While general tasks may not necessarily be link-connected, many complexes considered in the

literature do exhibit this property. In the next chapters, we use Theorem 5.4.1 as a means for

translating between the combinatorics and the topology of a given task. In certain settings, this

theorem provides us a way of reducing combinatorial questions to topological ones, which can allow

for the application of more classical results from classical and geometric topology.

Chapter 6

t-Resilient Asynchronous

Computability

In the previous chapter, we introduced the asynchronous computability theorem, which characterizes

the wait-free solvability of tasks in read-write memory. We presented an algorithmic proof of this

theorem, and provided an explicit description of the convergence algorithm. In this chapter, we

show that the asynchronous computability theorem can be generalized to a more general model of

process failure, namely the t-resilient model [39]. In a system that exhibits t-resilience, only up to t

processes may fail at any time (as opposed to arbitrary numbers of process failures in the wait-free

model). A protocol is t-resilient if it is correct even in the presence of up to t failures, while a task

is solvable t-resiliently if it has a t-resilient protocol.

The t-resilient asynchronous computability theorem, presented in this chapter, is a characteri-

zation for tasks that are solvable t-resiliently. Recall that the wait-free theorem states that a task

(I,O,Γ) has a wait-free read-write protocol if and only if there is a subdivision Div(I) of I and

a simplicial map φ : Div(I) → O that is complies with the task’s specification Γ : I → 2O.

To prove a corresponding theorem for t-resilient solvability, we replace subdivision with a specific

carrier map, denoted ChNt , to be defined in this chapter. Then given this new carrier map, we show

that a (I,O,Γ) has a t-resilient protocol if and only if there is a simplicial map φ : ChNt (I) → O

carried by Γ. We also give a continuous version of this theorem, which requires that the task be

link-connected, Given such a task, we show that only one application of the new carrier map is

77

78

required to characterize t-resilient solvability.

The immediate snapshot protocol gave rise to the standard chromatic subdivision Ch. Accord-

ingly, immediate snapshots may be thought of as a building block for solving tasks wait-free, since

iterating the protocol enough times implies the existence of a suitable decision map. Here, we give

a protocol that is analogous to the immediate snapshot, which serves a similar role for t-resiliently

solvable tasks.

It is not immediately straightforward how to generalize the immediate snapshot protocol to

be t-resilient. We propose the delayed snapshot protocol, a three-phase protocol that runs one

round of wait-free immediate snapshot, followed by a phase where each process waits for n + 1 − t

processes to catch up, and then some processes run a second round of wait-free immediate snapshot.

For a t-resilient asynchronous computability theorem, we see that this protocol (and its associated

complex) produces the desired carrier map, suggesting that t-resilient delayed snapshot is the correct

generalization of the wait-free immediate snapshot.

We also provide insight into the power of waiting. In a wait-free protocol, no process can wait for

others to take a step, because those others may have undetectably crashed. In a t-resilient protocol,

by contrast, it is safe to wait for all but t processes to take steps. We provide a proof that any task

that has a t-resilient protocol has a protocol with only a single waiting step: all steps before and

after can be executed wait-free.

6.1 Delayed Snapshot Protocol and Task

We begin by describing more precisely the topological structure of the candidate carrier map for the

t-resilient asynchronous computability theorem. As with the standard chromatic subdivision, which

itself is interpretable as a carrier map, this new map is defined by a family of boundary-consistent

simplicial complexes. These complexes are called the delayed snapshot complexes.

We denote the t-resilient, (n+ 1)-process delayed snapshot complex by Cht(∆
n), which is inten-

tionally suggestive of the standard chromatic subdivision. Informally, the complex Cht(∆
n) is the

subcomplex of the two-round immediate snapshot complex Ch2(∆n) obtained by removing parts of

the boundary of ∆n. More specifically, any simplexes that meet a low-dimensional skeleton of ∆n

are discarded. See Figure 6.1 illustrating the 1-resilient, 3-process delayed snapshot complex.

Let C be a simplicial complex with subcomplex B ⊆ C. Then recall that the deletion of B in C,

79

Figure 6.1: Ch1(∆2) as a subcomplex of Ch2(∆2). The grayed-out simplexes are discarded from
Ch2(∆2) to obtain Ch1(∆2). This corresponds to a 3-process, 1-resilient protocol.

written dl(B, C), is the subcomplex of C consisting of all simplexes that do not intersect B. We use

the deletion operation to formally define the family of delayed snapshot complexes.

Definition 6.1.1. The complex dl(Ch2(skeln−t−1(∆n)),Ch2(∆n)), denoted Cht(∆
n), is called the

delayed snapshot complex. It is the subcomplex of Ch2(∆n) obtained by stripping away all simplexes

of Ch2(∆n) that intersect skeln−t−1(∆n).

Similar to how the standard chromatic subdivision can be iterated, the delayed snapshot carrier

map can also be iterated, since it is boundary-consistent. The carrier map is iteratively applied to

simplexes in the complex. The Nth iterate is denoted ChNt .

The delayed snapshot complex can also be interpreted as a task. In the delayed snapshot task

(∆n,Cht(∆
n),Cht), each process starts on the vertex of ∆n labeled with its name, halts on a vertex

of Cht(∆
n) labeled with its name, and all processes converge on a single simplex of Cht(∆

n).

We provide a t-resilient protocol for solving this task, called the delayed snapshot protocol, shown

in Protocol 3. Processes share two (n+ 1)-element arrays, mem0 and mem1, and a shared variable,

done. Each process calls the wait-free immediate snapshot protocol to store its name in mem0 and

take a snapshot of that array (Lines 8-8). Here, the immediate block’s first line assigns to that

process’s element in mem0 and the second line immediately assigns an atomic snapshot of mem0 to

a local variable, snap0. If the process does not see at least n+ 1− t processes in snap0, it waits until

done is set to true. Otherwise, it stores snap0 in mem1, takes an immediate snapshot of mem1, sets

done to true, and then returns (Lines 14-16).

80

1 shared mem0[n+1];
2 shared mem1[n+1];
3 shared done;
4 done := false;
5 protocol DelayedSnapshot(id):
6 immediate
7 mem0[id] := id;
8 snap0 := snapshot(mem0);

9 if |snap0| ≤ n− t then
10 while not done
11 skip

12 immediate
13 mem1[id] := snap0;
14 snap1 := snapshot(mem1);

15 done := true;
16 return snap1 ;

Algorithm 2: Delayed snapshot protocol

We now show that the delayed snapshot protocol solves the delayed snapshot task.

Theorem 6.1.2. Protocol 3 is a t-resilient delayed snapshot protocol.

Proof. Since the protocol consists of two successive immediate snapshots on clean memory, the

processes converge to a simplex of Ch2(∆n), the second standard chromatic subdivision. We show

termination and validity of the protocol.

To show that any process executing the delayed snapshot protocol, in a t-resilient system, even-

tually finishes its execution, consider the set of all non-faulty processes. Because we are only con-

sidering t-resilient executions as valid executions, there must be at least n+ 1− t processes that are

non-faulty, otherwise too many processes would be faulty. Let p be the last non-faulty process to

execute the first immediate snapshot of the delayed snapshot protocol (Lines 8-8). Since p shows up

last among non-faulty processes, this process must observe the effects of at least n+ 1− t processes,

including itself, in the snapshot it obtains. Therefore p does not wait at Line 11 at the while loop,

since it has seen enough other participants to proceed. This process may then freely execute the

second immediate snapshot wait-free. Before process p finishes the protocol, it signals other waiting

processes by setting done to true. By setting this variable, any other process can move forward past

the intermediate barrier and continue wait-free, executing both immediate snapshots. Therefore

once process p finishes its execution, every other participating process can finish the protocol. This

shows that the protocol terminates.

Finally, we check that the processes collectively choose a valid simplex within the output complex

81

Cht(∆
n). Define process p as above, or the participant that is last in executing the first immediate

snapshot. Before setting the done variable, p must have written its view to mem1. Thus any process

blocked at Line 11 will see the view of p. But this view includes at least n+ 1− t processes, so any

subsequent process taking a snapshot of mem1 will see at least n+ 1− t processes as well. But the

vertices of Cht(∆
n) correspond exactly to the local views in which processes see at least n + 1 − t

processes, so each process will choose a vertex in Cht(∆
n).

It is clear that processes collectively choose some simplex in Ch2(∆), and we have shown that

they all choose vertices in Cht(∆
n). So the processes converge on a simplex in Cht(∆

n), hence

validity of the snapshot protocol is shown. This proves correctness of the protocol, and shows that

the delayed snapshot task is solvable t-resiliently.

We have now defined the delayed snapshot task and protocol. As previously suggested, this

protocol can be iterated on a sequence of clean memory arrays, which has the effect of iterating

the operator on each simplex obtained from previous iterators. The iterated complex is denoted

ChNt (∆n), and is called the N -round delayed snapshot complex.

As we see later in the chapter, the delayed snapshot protocol is used, in a manner similar to

immediate snapshots, so characterize t-resilient solvability of tasks. However before continuing with

this result, we first need to discuss and investigate certain connectivity and combinatorial properties

of the delayed snapshot complex. This is primarily where the topological analysis and character-

ization of wait-free computability versus t-resilient computability begin to diverge. As previously

noted, running an immediate snapshot protocol corresponds to subdividing the given input com-

plex, and more importantly, subdivisions do not fundamentally change the connectivity simplicial

complexes. However, executing the delayed snapshot protocol does not result in a subdivision of the

input complex; it may also remove parts of the boundary of each simplex. While removing parts of

the boundary leaves a single simplex fully connected, as depicted in Figure 6.2a, in general, it tears

holes in the input complex.

82

(a) Ch1(∆2) is (carrier-preserving) homotopy
equivalent with this topological space.

(b) By applying the 1-resilient delayed snapshot
protocol to a hexagonal input complex, we get a
hole in the middle.

Figure 6.2: As illustrated with the 3-process, 1-resilient delayed snapshot, Cht is capable of tearing
holes in simplicial complexes.

For example, see Figure 6.2b above, where each simplex in a hexagonal complex has been replaced

with a copy of Ch1(∆2). Since the corners of each 2-simplex have been removed, we have effectively

torn a hole in the middle of the complex. As we will see, connectivity of the protocol complex and

corresponding asynchronous computability theorem characterization are fundamentally related.

6.2 Connectivity Properties

The goal of this section is to show that ChNt (∆n) is link-connected; as suggested in the previous

chapter, link-connectivity of this complex is used to apply the corollary of the convergence algorithm

for link-connected tasks. Therefore, once we have link-connectivity, we can use the convergence

algorithm to instead reason about the topology of our simplicial complexes. Throughout this section

we use the 3-process, 1-resilient delayed snapshot complex, Ch1(∆2), as a running example.

We begin with arguing for the shellability of the first round complex.

6.2.1 Shellability of the Protocol Complex

While higher-round complexes are generally not fully connected, and therefore not shellable, the first

round complex is indeed shellable. Roughly speaking, a pure n-dimensional simplicial complex is

called shellable if it can be constructed by “gluing” facets together along their (n−1)-faces. Shellable

83

complexes are better understood by reasoning about how they are pieced together; for example, they

are amenable to arguments by induction on shelling order.

We begin with shellability of the standard chromatic subdivision, and use the shelling order in

subsequent arguments.

Theorem 6.2.1. Ch(∆n) is shellable.

Proof. Following Kozlov [?], the first immediate snapshot execution by processes p0, . . . , pn is de-

scribed by an ordered partition S0, . . . , Sm, where the Si are disjoint sets of processes. Operationally,

the processes in S0 all write and perform the immediate snapshot concurrently, followed by the pro-

cesses in S1, and so on.

Note that any simplex σ in Ch(∆n) represents one interleaving of processes executing the imme-

diate snapshot procotol. Let S0, . . . , Sm be the ordered partition whose simplex is given by σ. Then

we define Flipi(σ):

Flipi(σ) =


{pi} ∪ S1, . . . , Sm if S0 = {Pi}

{pi} , S0 \ {pi} , S1, . . . , Sm if |S0| > 1 and pi ∈ S0

Flipping an execution changes exactly one process’s view, so σ and Flipi(σ) share an (n− 1) face.

Let ∆n = (v0, . . . , vn) be the ordered vertex set of the standard simplex. Then define the extended

star of vi to be the union of St(vi,Ch(∆n)) with Flipi(σ) for each facet σ of St(vi,Ch(∆n)). Figure

6.3 shows an example of an extended star.

We inductively define a shelling order on Ch(∆n), by inducting on the dimension. The base case,

where n = 0, is trivial since there is just one simplex. So we inductively assume we have constructed

a shelling order on Ch(∆n). Observe that Lk(vi,Ch(∆n)) is isomorphic to Ch(∆n−1), which is

shellable by the induction hypothesis. Then this link’s shelling order in fact induces a shelling order

on the star St(vi,Ch(∆n)). A shelling order on the extended star is then constructed by appending,

in any order, the flipped simplexes of the star to the star’s shelling order. The shelling order for

Ch(∆n) is constructed by concatenating the shelling orders for the extended stars, and eliminating

duplicates that may results since extended stars have nontrivial intersection.

Every facet of Ch(∆n) is included in this order because every execution S0, . . . , Sm is either a

facet of some St(vi,Ch(∆n)) (if S0 is a singleton) or one flip away from some star. Therefore we

have a shelling order on Ch(∆n), so the complex is shellable.

84

The delayed snapshot complex is a subcomplex of the second standard chromatic subdivision.

We use the above shelling order to construct a shelling order for the delayed snapshot complex, in

parts. We introduce some additional notation to facilitate this component-wise construction.

Figure 6.3: The extended star of a vertex in Ch(∆2).

For every σ ∈ Ch(∆n), define Chσ(σ) = Ch2(σ)∩Cht(σ), the restriction of the delayed snapshot

complex Cht(∆
n) to σ. Intuitively, the complex Chσ(σ) is a subcomplex of the standard chromatic

subdivision of just one simplex σ. Note that Cht(∆
n) is then the union of all subcomplexes Chσ(σ),

for each σ ∈ Ch(∆n). We provide a shelling order on each of the Chσ(σ).

Theorem 6.2.2. Chσ(σ) is shellable.

Proof. Observe that Chσ(σ) is obtained by deleting a subset of vertices from the full subdivision

Ch(σ). So let the deleted vertices be the set {vi : i ∈ I}, for some index set I. Then notice that

Chσ(σ) is actually a union of the extended stars of the vertices that remain in the complex. This

complex can be constructed as a prefix of the shelling order on the full subdivision Ch(σ). In other

words, the shelling order is the concatenation of the shelling orders for the extended stars of all the

vertices not in I.

We have a shelling order on each individual subcomplex Chσ(σ) of Cht(∆
n), which collectively

exhaust all simplexes of the latter. So we use these shelling orders to define one combined shelling

order on the full complex Cht(∆
n).

Theorem 6.2.3. Cht(∆
n) is shellable.

85

Proof. A shelling order on Cht(∆
n) is constructed by concatenating the shelling orders for each

Chσ(σ). We induct on the components Chσ(σ) of Cht(∆
n).

Let ` be the shelling order on Ch(∆n) constructed in Theorem 6.2.1. We begin by enumerating

the facets of Ch(∆n), so that σi = `(i). The complex Cht(∆
n) is built up from the Chσ(σ), in the

order of the shelling order on Ch(∆n). The base case here is trivial, since each Chσ(σ) is shellable

and we start with only one component. Now inductively assume Chσi
(σi) has been attached to the

intermediate complex, and let Ci denote this intermediate complex, with shelling order `i. Then

σi+1 is the next simplex in the shelling order on Ch(∆n). Let α be any ordering on the vertices

of σi+1, such that every vertex v already contained in Ci precedes every vertex w not contained in

Ci. Let `α,σi+1
be the shelling order constructed earlier for Chσi+1

(σi+1), but with vertices ordered

by α instead of the ordering on ∆n. This ensures that simplexes may still be properly attached to

the complex while still ensuring the shellability condition. Then we append `α,σi+1
to `i to obtain

a shelling order `i+1 on Ci+1 = Ci ∪ Chσi
(σi).

Since the Chσ(σ) exhaust the delayed snapshot complex, then by induction, this defines a shelling

order on the entire complex Cht(∆
n).

Figure 6.4 shows the shelling order obtained on the facets of Ch0(∆2) by following the construc-

tion from the theorem.

86

7

8

9

10

11

12

13

1415

16

1718

19

20

21

22

23
24

25

26

27

28

29

30

31

32
33

34

35 36

37 38 39

40 41

42

43
44

45

46

47
48

49
50

51

52 53

54

55

56

57

58

59 60

61

62

63

64

65

66

67 68

69

70
71

72

73

74

75

76

77
78

79

80
81

8283

84

85
86

87

88

89

90

9192

93

94

95

96

97

1

2

3

4

5

6

Figure 6.4: A numbered shelling order on Ch0(∆2) (as before, darkened simplexes are absent).

Shellability gives us a coherent way of breaking up a complex into its simplexes, but as hinted

at in some of the proofs of this section, it can also be used as a tool for breaking up complex into

component subcomplexes In the next section, we do exactly this, by exploiting the shelling order on

Cht(∆
n) to show that ChNt (∆n) is always link-connected.

6.2.2 Link-connectivity of the Protocol Complex

We can use shellability to show that any iteration of the delayed snapshot protocol complex,

ChNt (∆n), is also link connected. This follows from a more general result in combinatorial topology,

which states that all combinatorial manifolds are link-connected.

Definition 6.2.4. A combinatorial manifold is a pure simplicial complex in which the link of any

simplex is either a topological disk or a sphere of the correct dimension.

Vertices satisfying the above condition are called regular. We state this as a definition below.

Definition 6.2.5. A vertex of a simplicial complex are regular if its link is a sphere (if the vertex

is interior) or a disk (if the vertex is on the boundary).

87

As proved in [], to show a complex is a combinatorial manifold, it suffices to show that all

of its vertices are regular. The link condition on higher-dimensional simplexes follows from the

requirement.

Due to the regularity condition on links of a combinatorial manifold, it is clear that any combi-

natorial manifold is also link-connected. Therefore to prove that ChNt (∆n) is link-connected, it is

enough to show that each vertex is regular. This is accomplished by gluing together ChNt (∆n) from

copies of ChN−1
t (∆n), according to the shelling order on Cht(∆

n). At each step, we ensure that

every vertex remains regular.

Theorem 6.2.6. ChNt (∆n) is link-connected.

Proof. We prove the stronger statement that Lk(v,ChNt (∆n)) is a combinatorial manifold. We

exhibit the shelling order on Cht(∆
n) to derive link-connectivity of the multi-round protocol complex.

Let ` be the shelling order on Cht(∆
n). We build up ChNt (∆n) by attaching copies of ChN−1

t (∆n)

as prescribed by the shelling order `.

We first induct on the dimension n. The base case where n = 0 is trivial, since ∆0 is just a

point. So we inductively assume that ChNt (∆k) is a combinatorial manifold for some dimension k,

for all t and all N . Next, we continue with a nested induction on the number of rounds N to prove

that ChMt (∆k+1) is a combinatorial manifold. The base case here is M = 0, which is also trivial

since ∆k+1 is the standard simplex and clear a combinatorial manifold itself. Inductively assume

that ChMt (∆k+1) is a combinatorial manifold, for some number of iterations M . We use the shelling

order ` to put together ChM+1
t (∆k+1) using copies of ChMt (∆k+1).

Using a third level of induction, we induct on the shelling order ` to prove that any intermediate

step in the construction via the shelling is a combinatorial manifold. Let Ci denote the complex

obtained after attaching the ith copy of ChMt (∆k+1). The base case is trivial since we assumed

ChMt (∆k+1) to be a combinatorial manifold. Now, inductively assume that Ci is a combinatorial

manifold. To show that Ci+1 = Ci ∪ `(i + 1) is also a combinatorial manifold, it is enough to show

that the link of any vertex on the boundary of `(i+1) is regular, since no other link in Ci will change

upon attaching `(i+ 1).

Take any boundary vertex v in `(i+1), in which case v is also a boundary vertex of Ci. From the

inductive hypothesis on i, we know that Lk(v, Ci) is a (k−1)-disk, and from the inductive hypothesis

on M , we know that Lk(v, `(i+ 1)) is also a (k− 1)-disk. The union of these two links is the link of

88

v in Ci+1. Formally,

Lk(v, Ci+1) = Lk(v, Ci) ∪ Lk(v, `(i+ 1))

We calculate their intersection. There are two cases to consider: either v remains a boundary

vertex after attaching `(i + 1), or v is an interior vertex of Ci+1. First suppose v is an interior

vertex of Ci+1. Then Lk(v, Ci) and Lk(v, `(i + 1)) intersect on the boundary of Lk(v, `(i + 1)),

which is a (k − 2)-sphere. Since Lk(v, Ci) and Lk(v, `(i+ 1)) are (k − 1)-disks, this must mean that

Lk(v, Ci)∪Lk(v, `(i+1)) is a (k−1)-sphere, as required. In the second case, suppose v is a boundary

vertex of Ci+1. Then Lk(v, Ci) and Lk(v, `(i + 1)) intersect at a (k − 1)-disk. Since Lk(v, Ci) and

Lk(v, `(i+1)) are (k−1)-disks, this must mean that Lk(v, Ci)∪Lk(v, `(i+1)) is again a (k−1)-disk,

as required. So Ci+1 is also a combinatorial manifold.

u

v

w

Figure 6.5: Gluing two copies of Ch1(∆2) together, and the possible ways each vertex’s link may
change as a result. As an interior vertex, u has the same link, but the links of v and w change with
the new copy of Ch1(∆2).

We now wrap up all the inductive steps. By induction on i (the shelling order), we conclude that

ChM+1
t (∆k+1) is a combinatorial manifold for any t. By induction on M (the number of iterations),

we conclude that ChNt (∆k+1) is a combinatorial manifold for any t and N . Finally, by induction

on k (the dimension), we conclude that ChNt (∆n) is a combinatorial manifold for any t, N , and n.

Since combinatorial manifolds are link-connected, ChNt (∆n) is link-connected.

We can also exhibit the shellability of Cht(∆
n) to show that ChNt (∆n) is topologically connected

89

up to dimension t−1. We use this property to construct continuous maps into the N -round complex,

in effect yielding a wait-free simulation of the N -round task from the single-round task.

Topologically connectivity of the iterated delayed snapshot complex is a consequence of the

following corollary of the nerve lemma, which another celebrated theorem from combinatorial topol-

ogy. Statements of this corollary and the nerve lemma are found in Herlihy et al. [22], and in the

introduction of this thesis. The proof of the corollary can be found in the book.

Corollary 6.2.7. If K and L are k-connected complexes such that K∩L is (k− 1)-connected, then

K ∪ L is also k-connected.

Similar to the approach for link-connectivity, we can piece together ChNt (∆n) from copies of

ChN−1
t (∆n) and iteratively apply the above corollary to obtain that the N -round complex is suffi-

ciently connected. This is stated and proved brlow.

Theorem 6.2.8. ChNt (∆n) is (t− 1)-connected.

Proof. We induct on N , or the number of rounds. The base case we begin with in this proof N = 1.

We know that Cht(∆
n) is (t − 1)-connected because it is a known result that any pure, shellable

n-complexes are (n − 1)-connected and therefore (t − 1)-connected for t ≤ n. Now inductively

assume, on the number of rounds, that ChMt (∆n) is (t−1)-connected, for some M . Let ψ0, . . . ψs be

a shelling order on the facets of Cht(∆
n), the one-round complex. Let Lj =

⋃j
i=0 ψi, in which case

ChM+1
t (∆n) = ChMt (Ls). To prove that ChM+1

t (∆n) is (t− 1)-connected, we induct on the shelling

order of Cht(∆
n).

For the base case, we know from the above inductive hypothesis that ChMt (L0) = ChMt (ψ0) =

ChMt (∆n) is (t−1)-connected, so inductively assume that ChMt (Lk) is (t−1)-connected. Since {ψi}

is a shelling of Cht(∆
n), we know that Lk ∩ ψk+1 is a pure (n− 1)-dimensional subcomplex of ∆n.

We show that

ChMt (Lk+1) = ChMt (Lk ∪ ψk+1) = ChMt (Lk) ∪ ChMt (ψk+1)

is (t − 1)-connected via Corollary 6.2.7, which requires that ChMt (Lk) ∩ ChMt (ψk+1) is (t − 2)-

connected. This tells us that ChMt (Lk+1) is (t − 1)-connected, which by induction proves that

ChM+1
t (∆n) is (t−1)-connected, which again by induction proves that ChNt (∆n) is (t−1)-connected,

finishing the proof.

90

Note the following equality:

ChMt (Lk) ∩ ChMt (ψk+1) = ChMt−1(Lk ∩ ψk+1)

This fact follows from the boundary consistency of the Cht operator. We prove using the nerve

lemma that this complex is (t−2)-connected. Let C = Lk ∩ψk+1 ⊆ ∆n be the intersection on which

the new facet is attached, and let {Ki}i∈I be the cover of C consisting of all its facets. Then this

implies that {ChMt−1(Ki)}i∈I is a cover of ChMt−1(C). But for any nonempty indexing set J ⊆ I, the

set

σ =
⋂
j∈J
Kj ⊆ C

is a simplex of dimension n−|J |, since C is a pure (n−1)-dimensional subcomplex of ∆n. Therefore,

from the boundary consistency of Cht, we get the following equality:

⋂
j∈J

ChMt−1(Kj) = ChMt−|J|(σ).

If t − |J | < 0, then ChMt−|J|(σ) is empty, so there is nothing to prove, otherwise from the first

inductive hypothesis, ChMt−|J|(σ) is (t−|J |−1)-connected. So we can apply the nerve lemma to find

that the nerve N ({ChMt−1(Ki)}) is (t− 2)-connected if and only if {ChMt−1(C)} is (t− 2)-connected.

However, it is clear that N ({ChMt−1(Ki)}) ∼= skelt−1(N ({Ki})), since we discard all points in the

(t − 1)-skeleton of C when we apply Cht−1 to it. Furthermore, N ({Ki}) is (n − 2)-connected since

C is homeomorphic to either an (n− 1)-disc or an (n− 1)-sphere. So N ({Ki}) is (t− 2)-connected,

so ChMt−1(C) = ChMt (Lk) ∩ ChMt (ψk+1) is (t− 2)-connected.

This proves that ChMt (Lk+1) is (t − 1)-connected. By induction on the shelling order, the full

complex ChMt (Ls) = ChM+1
t (∆n) is (t−1)-connected. Finally, by induction on dimension, we arrive

at the conclusion that ChNt (∆n), for all N , t, and n.

We have shown that the N -round delayed snapshot complex is both link-connected and (t− 1)-

connected. The first property is used to translate our reasoning into purely topological terminology,

while the second lets us simulate the N -round protocol from the 1-round protocol. We go into more

detail in the next section.

91

6.3 Single-Round Waiting

In this section we prove the existence of a simulation Cht(∆
n)→ ChNt (∆n). Recall that one protocol

(I,P,Γ1) simulates another protocol (I,P2,Γ2) if there is a simulation φ : P1 → P2 which is a color

-preserving, simplicial map, such that Γ1(φ(σ)) ⊆ Γ2(σ) holds for all inputs σ.

We begin by constructing a continuous map from the one-round delayed snapshot complex to

the N -round (iterated) delayed snapshot complex. This is turned into a simplicial map using the

fact that the N -round complex is link-connected together with invoking the convergence algorithm.

Operationally, finding such a simplicial map means that any task solvable t-resiliently can be

solved using only one delayed snapshot round, followed by some number of wait-free immediate

snapshot rounds, implying that only one waiting statement is necessary in any t-resilient protocol.

To find a continuous map |Cht(∆
n)| → |ChNt (∆n)|, we first retract the domain onto a topological

subspace. If Y ⊆ X are topological spaces, then a retraction [17] from X to Y is a continuous map

f : X → Y such that f restricted to X is the identity.

Define the complex

Baryt(∆
n) = {σ ∈ Bary(∆n) : ∀v ∈ σ, dim(Car(v,Bary)) ≥ n− t} .

That is, Baryt(∆
n) is the induced subcomplex of Bary(∆n) defined by vertices whose carriers have

dimension at least n − t. One can show that by retracting the holes in Cht(I), we can retract the

whole complex to Baryt(I).

Lemma 6.3.1. The space Bary◦t (I) = |Baryt(I)| − | skeln−t(I)| retracts to |Baryt−1(I)|.

Proof. This problem is reduced to one on facets. We retract each facet of Bary◦t (I) to the corre-

sponding facet in |Baryt−1(I)|. Let {σi} be an enumeration of the facets of Baryt(I). Then each

σi contains exactly one vertex vi of minimum carrier dimension. Define σ◦i = |σi| − {vi}, which is a

subspace, and define σ′i = σi − {vi}, which is a subsimplex. Then we define a retraction from σ◦i to

σ′i via projection along the line defined by vi onto σ′i. More specifically, take any x ∈ |σ◦i |, and let

Li ⊆ |σ◦i | be the unique line segment defined by the points x and vi. Note that Li is well-defined

since x 6= vi. Then define ri(x) to be the unique point contained in Li ∩ |σ′i|. Such ri is continuous,

and it is also clear that ri fixes |σ′i|. To see this, if we take x ∈ |σ′i|, then x ∈ Li ∩ |σ′i| = {ri(x)},

and hence ri(x) = x. We have defined a retraction ri for each σ◦i of Bary◦t (I).

92

We now use the classical pasting lemma to glue all the ri together. To apply the lemma, we

must argue that if σ◦i and σ◦j have a nonempty intersection in Bary◦t (I), then their retraction maps

ri and rj agree on their intersection. So choose any such σi and σj with σ◦i ∩ σ◦j 6= ∅. We consider

the two cases

1. vi 6= vj ,

2. vi = vj ,

where vi and vj are defined as above. Suppose the first case holds. Then take any point

x ∈ σ◦i ∩ σ◦j = |σi ∩ σj |. We know that σi ∩ σj is a simplex. Towards a contradiction, suppose that

x /∈ |σ′i|. Then the carrier of x must be σi, since σ′i = σi − {vi} and x 6= vi. But the carrier of

x is the unique simplex of least dimension that contains x, and x ∈ |σi ∩ σj |, so it must be that

σi = σi ∩ σj . But this is a contradiction since vj ∈ σj − σi. Therefore x ∈ |σ′i|, and by a symmetric

argument, x ∈ |σ′j |, so in fact x ∈ |σ′i ∩ σ′j |. However ri and rj are both the identity on |σ′i ∩ σ′j |, so

ri(x) = rj(x) = x.

The case where vi = vj is straightforward, since Li = Lj . In both cases we have ri(x) = rj(x),

so we apply the pasting lemma to get a continuous function r : Bary◦t (I) → |Baryt−1(I)|. This is

a retraction since all of its components are retractions. So Bary◦t (I) retracts to |Baryt−1(I)|.

The above lemma can be applied iteratively to reduce the dimension of the retract by one with

each step. This gives us a retraction from |Cht(I)| to |Baryt(I)| that is carrier-preserving. Figure

6.6 shows an example of such a retraction.

93

Figure 6.6: Retracting the two-dimensional space |Ch1(∆2)| to a one-dimensional subspace, in a
carrier-preserving way. This is possible since its corners have being deleted.

Theorem 6.3.2. There is a map f : |Cht(I)| → |Baryt(I)| that is continuous and carrier-

preserving.

Proof. We prove this theorem for I = ∆n, then use the pasting lemma to extend the result to

arbitrary I.

Let Bkt (∆n) = |Baryk(∆n)| − | skeln−t(∆n)| for any given k. Then Bkt (∆n) ⊆ Bary◦k(∆n) and

Btt(∆n) = Bary◦t (∆
n). Starting with Bnt , we can iteratively apply Lemma 6.3.1 to retract Bkt (∆n) to

Bk−1
t (∆n) and ultimately construct a retraction r : Bnt → |Baryt(∆

n)|. The map r itself is carrier-

preserving since it is the identity on Baryt(∆
n). We then restrict r to the subspace |Cht(∆

n)| ⊆ |∆n|

to obtain f : |Cht(∆
n)| → |Baryt(∆

n)|, which is also continuous and carrier-preserving since r is

continuous and carrier-preserving. So we obtain the desired retraction.

Since this map implicitly defines a carrier-preserving retraction for each facet of a given input

complex, the collection of retractions are glued together using the pasting lemma to get a continuous

f : |Cht(I)| → |Baryt(I)|.

We use topological connectivity of ChNt (I) to map Baryt(I) into the iterated complex. Therefore

the mapping |Cht(I)| → ChNt (I) define factors through the retracted subspace Baryt(I).

Theorem 6.3.3. There is a continuous, carrier-preserving map f : |Baryt(I)| → |ChNt (I)|.

Proof. We define a function f : |Baryt(I)| → |ChNt (I)|, for any given n, by induction on the skele-

tons of Baryt(I). Starting with the base case, we define a map f0 : | skel0(Baryt(I))| → |ChNt (I)|.

94

Take any v ∈ skel0(Baryt(I)), and let τ be its carrier in I, with d = dim(τ). Then d ≥ n− t. Define

the constant

t′ = t− n+ d

Note it follows that t′ ≥ 0. From Theorem 6.2.8, we know that ChNt′ (τ) is (t′ − 1)-connected, so the

complex is also at least (−1)-connected, or nonempty. This allows us to pick a point w ∈ ChNt′ (τ),

so that we may define f0(v) = w. Doing this for all such v gives us a function

f0 : | skel0(Baryt(I))| → |ChNt (I)|

which is clearly continuous since its domain consists of disconnected points. The constructed map

is also carrier-preserving since we chose w to be in the image of the carrier of v.

Inductively assume we have a continuous, carrier-preserving map

fk : | skelk(Baryt(I))| → |ChNt (I)|

and let {σi} be the facets of skelk+1(Baryt(I)). Take any σi and let τi be its carrier in I, with

d = dim(τi). As before, define t′ = t − n + d. Then t′ ≥ k + 1. By the inductive hypothesis, we

have defined the map fk on ∂σi. Restrict fk to each σi, so that fki = fk|σi . We extend each one

individually and then glue them all together.

Since fk is carrier-preserving, the image of ∂σi under fki is contained in |ChNt′ (τi)|. By Theo-

rem 6.2.8, the complex ChNt′ (τi) is (t′ − 1)-connected, so it is also k-connected from the inequality

in the previous paragraph. So we can extend fki to a continuous fk+1
i : |σi| → |ChNt′ (τi)|. Each

fk+1
i is carrier-preserving by the way it is constructed. We apply the pasting lemma to obtain a

continuous map fk+1 defined on all of | skelk+1(Baryt(I))|. Then fk+1 is carrier-preserving since

each of its components are, so the result follows.

By induction on k, we get a continuous, carrier-preserving map f : |Baryt(I)| → |ChNt (I)|.

95

(a) Bary1(∆2) is a retraction of |Ch1(∆2)|, of
strictly lower dimension.

(b) Bary1(∆2) maps into any |ChN
1 (∆2)|, in a

carrier-preserving way.

Figure 6.7: A mapping of Bary1(∆2) into |ChN1 (∆2)|.

We can compose the maps in the two theorems above to obtain a continuous map from the one-

round complex to the iterated complex. We can then apply the simplicial approximation theorem

to obtain a simplicial map. However, we still need to make this map color-preserving.

Recall Theorem 5.4.1, a corollary of the convergence algorithm described in the previous section.

This allows us to turn a carrier-preserving, simplicial map into a color-preserving, provided that the

image of any simplex under the carrier map is link-connected. But link-connectivity of ChNt (∆n)

guarantees this condition, so we may apply Theorem 5.4.1. We obtain the following theorem:

Theorem 6.3.4 (Wait Reduction). For any N > 0, there is a chromatic, carrier-preserving, sim-

plicial map φ : ChM (Cht(I)) → ChNt (I) for some sufficiently large M .

Proof. From Theorems 6.3.3 and 6.3.2, we get the composition of maps:

|Cht(I)| → |Baryt(I)| → |ChNt (I)|

Let this composition be f : |Cht(I)| → |ChNt (I)|. Then applying the Corollary 5.4.1, we get a

color-preserving, simplicial map φ : ChM (Cht(I))→ ChNt (I) respecting the task specification.

So there is a t-resilient read-write protocol that simulates N rounds of delayed snapshots with

only a single delayed snapshot, followed by some number of wait-free immediate snapshots. The

one-round protocol simulates the N -round protocol. This simulation is used to present a more

topological version of an asynchronous computability theorem for t-resilient systems.

96

6.4 Asynchronous Computability Theorems

There are two versions of the t-resilient asynchronous computability theorem: a discrete version,

which characterizes solvability in terms of the existence of a color-preserving simplicial map, and

a similar continuous version, which provides a characterization for link-connected tasks in terms of

the existence of a continuous function. We begin with the discrete version.

Theorem 6.4.1 (Discrete t-resilient ACT). A task (I,O,Γ) has a t-resilient read-write protocol if

and only if there exists a color-preserving, carrier-preserving, simplicial map φ : ChNt (I) → O

for some natural number N .

Proof. Given such a map, consider the following protocol. Each process with input vertex v runs

N delayed snapshot rounds, choosing a vertex w in ChNt (I). The the process decides on x = φ(w).

This protocol satisfies the task specification because φ is carried by Γ.

In the other direction, we argue that any t-resilient protocol can be put into normal form as

an equivalent sequence of t-resilient delayed snapshots. It is known that any wait-free read-write

protocol can be expressed in normal form as a layered immediate snapshot protocol [22, Ch.14]: Each

layer has its own array, where each process writes its current state, takes an immediate snapshot,

and the value returned by that snapshot becomes the process’s new state.

In a t-resilient model, we can guarantee that each layer’s immediate snapshot returns states

written by at least n + 1 − t distinct processes by waiting until enough processes have finished the

prior layer (as in Line 11 of Algorithm 3). We call such a layer a barrier layer. Given a t-resilient

protocol expressed as a sequence of barrier layers, we can add a wait-free layer between each pair of

barrier layers without reducing the protocol’s computational power. A sequence of 2L layers that

alternates wait-free and barrier layers is a sequence of L delayed snapshot layers.

We could choose to replace ChNt (I) in the discrete t-resilient ACT with the complex

ChM (Cht(I)), using the wait reduction theorem. Doing this would mean that the task is solvable

by one round of the delayed snapshot protocol, followed by some number of wait-free immediate

snapshots. Though we do not do this for the discrete t-resilient ACT, we will do so for continuous

t-resilient ACT.

While the discrete t-resilient ACT provides a clean characterization of t-resilient solvability, there

97

is an even more succinct statement replacing simplicial maps with continuous functions. The main

difference is that we lose any notion of process names, since there is no clear continuous analog of

chromatic simplicial maps. To address this, we give an alternative to the discrete t-resilient ACT,

subject to a link-connectivity condition on the output complex.

Theorem 6.4.2 (Continuous t-resilient ACT). Let T = (I,O,Γ) be an (n + 1)-process task such

that Γ(σ) is link-connected for all σ ∈ I. Then there is a t-resilient read-write protocol for T if and

only if there is a continuous, carrier-preserving f : |Cht(I)| → |O|.

Proof. First suppose we have a t-resilient protocol for task T . The discrete t-resilient ACT ensures

there is a chromatic, carrier-preserving, simplicial map φ : ChNt (I) → O. We apply Theorem 6.3.4

to turn φ into a color-preserving, carrier-preserving, simplicial map φ′ : ChM (Cht(I)) → O. Then

let f = |φ′|, the geometric realization of φ′. Recalling that ChM does not change the topology of

simplicial complexes, we get a continuous, carrier preserving f : |Cht(I)| → |O|.

In the other direction, given a continuous, carrier-preserving f : |Cht(I)| → |O|, there is a color-

preserving, carrier-preserving simplicial map φ : ChM (Cht(I))→ O. Operationally, this provides us

a t-resilient protocol for solving T , in which each process executes one round of delayed snapshot,

followed by M rounds of immediate snapshots, halting on a vertex v in ChM (Cht(I)). The process

decides φ(v), which is correct because φ is carrier-preserving.

6.5 Applications of the t-resilient ACT

In this section we provide a simple application of the t-resilient ACT to the test-and-set task, which

models the common test-and-set synchronization hardware primitive.

Lemma 6.5.1. If K and L are chromatic complexes, K is link-connected, and φ : K → L is

color-preserving, then the subcomplex φ(K) ⊆ L is also link-connected.

Proof. Color-preserving maps between chromatic complexes must be injective, hence such a map

is isomorphic onto its image. So in particular, it preserves links. Therefore the complex φ(K) is

link-connected.

In the following two tasks, processes have only their names as inputs. In the test-and-set task,

exactly one participating process decides 0, and the rest decide 1. Figure 6.8 shows this task’s

98

02

0
0

1
1

1
2

2

0

0

0

0

00 1

1 1

Figure 6.8: Test-and-set and fetch-and-increment tasks

output complex O. If there were a t-resilient test-and-set protocol, there would be a color-preserving

simplicial map φ : Chnt (∆n) → O. It is not hard to see that the image of Chnt (∆n) must be all of

O. But Chnt (∆n) is link-connected, while O is not, contradicting Lemma 6.5.1.

In the fetch-and-increment task, if k processes participate, they decide distinct integers between

0 and k − 1. Figure 6.8 shows this task’s output complex O. By the same argument, there can be

no a color-preserving simplicial map φ : Chnt (∆n)→ O because O is not link-connected.

In the k-set agreement task, each process has a private input, each process decides some process’s

input, and no more than k distinct inputs can be decided. We can use the t-resilient ACT to see

that there is a t-resilient (t + 1)-set agreement protocol. Without loss of generality, assume each

process’s input is its own name, so the task’s input complex is the simplex ∆n. Simply assign each

vertex v in Cht(∆) the least process name in v’s carrier.

We can also use the t-resilient ACT to see that there is no t-resilient t-set agreement protocol.

Omitting details, start by “coloring” each vertex of Cht(∆) with its decision value. We can extend

this coloring from Cht(∆
n) to all of Ch2(∆n) simply by assigning each additional vertex a decision

value from its carrier. The result is called a Sperner coloring, and the classical Sperner’s Lemma [22,

Ch.4] states that at least one n-simplex in Ch2(∆n) has all n+ 1 colors. Going back from Ch2(∆n)

to Cht(∆
n) requires discarding at most n− t vertices from any simplex, leaving at least t+ 1 colors

on some simplex of Cht(∆
n). This simplex corresponds to an execution where (t+ 1) distinct values

are chosen, violating the t-set agreement condition. It is straightforward to extend this construction

to any ChNt (∆) by considering the N -fold relative subdivision [35] of Cht(∆
n) in Ch2(∆n).

99

6.6 Concluding Remarks

In this chapter we generalized the asynchronous computability theorm to the t-resilient model of

fault-tolerance, given topological and combinatorial conditions analogous to the original theorem

characterizing wait-free solvability. This work highlights to power of the convergence algorithm in

reducing a combinatorial or algorithmic problem into a topological one, which allows the application

of more mathematical machinery from classical algebraic topology. It further evidences the thesis

that there is much potential from classical methods in topology to be discovered in the context of

distributed computability.

Chapter 7

Computability against Adversaries

In the previous chapter we demonstrated how the asynchronous computability theorem can be

generalized to the t-resilient model of fault-tolerance. As mentioned in the introduction though,

the t-resilient model assumes that failures are, in some sense, uniform, with maximal failure sets all

being the same size. In real-world distributed systems, failures may be less symmetric, and more

correlated, if certain sets of processes depend on common infrastructure.

The introduction discuss a more general model of fault-tolerance, called resilience against an

adversary, that captures non-uniform failures such as these. In a distributed system, recall that an

an adversary is an entity capable of failing certain subsets of processes [9], but not others. Any

adversary considered in this chapter is superset-closed, or one satisfying the following condition: if

it capable of failing a set F of processes, then it can also fail any proper subset F ′ ⊂ F . We focus

on these kinds of adversaries because they capture many realistic settings respecting the principle

that fault-tolerant algorithms should continue to be correct if run in a system that displays fewer

failures than anticipated. We also show that superset-closed adversaries exhibit nicer mathematical

properties.

As before, it is natural to ask whether or how the asynchronous computability theorem generalizes

to characterizing solvability of a task in a system with an adversary. In this chapter, we discuss

how one would approach generalizing this theorem for computability against adversaries. As with

previous work on wait-freedom and t-resilience, we define a snapshot protocol, called the adversarial

snapshot, as a potential building block for protocols resilient against a given adversary. Furthermore,

we show that it is not possible to approach this problem simply by generalizing the t-resilient

100

101

approach; that is, the one-round adversarial snapshot does not simulate multiple rounds. We explore

ways in which to characterize resilience against an adversary, and present evidence supporting the

hypothesis that two rounds of adversarial snapshot can simulate any higher number of rounds.

7.1 Characterizing Adversaries

For this chapter, we fix a set of n+ 1 processes called Π, and consider these processes running in a

system with an adversary A, which has the ability to control whether certain subsets of processes

fail. There are a handful of ways to characterize such an adversary. The most straightforward is

by enumerating its faulty sets, or sets of processes that may fail together in some execution. We

assume that faulty sets are downward closed, since this is essentially what is meant for an adversary

to be superset-closed (closed under taking supersets of non-faulty processes).

For this work, it is more convenient to characterize adversaries in terms of their cores and

survivor sets [26]. Recall that a core is a minimal sets of processes C ⊆ Π that the adversary cannot

simultaneously fail. Dual to the notion of cores are survivor sets (sometimes called hitting sets),

which are minimal sets of processes that intersect every core. Just like with maximal failure sets,

cores and survivor sets each completely determine an adversary.

In any execution, the set of non-faulty processes within that execution always contains a survivor

set, so it is safe for any process to wait for all members of some survivor set to show up.

Adversaries generalize the t-resilient model by capturing non-uniform failures, so that maximal

faulty sets may have different sizes. The cores of the t-resilient adversary, denoted At, are the sets

of size t+ 1, and while its survivors sets are those of size n+ 1− t. The wait-free adversary has one

core given by the entire set of processes Π; its survivor sets are singleton sets of processes.

7.1.1 Core Complexes

Next, we define the core complex, which is a more topological way of characterizing and discussing

adversaries. The core complex is a useful construction in defining the adversarial snapshot task and

protocol, and also completely determines an adversary.

Definition 7.1.1 (core complex). Let A be an adversary in a system of n + 1 processes Π. Then

the core complex of A, denoted C(A), is the subcomplex of ∆n whose facets are given by simplexes

Π− C, for each C a core of Π.

102

Adversary 1-resilient
p and q non-
faulty

p non-faulty, q
or r non-faulty
(B)

Cores {p, q}, {p, r}, {q, r} {p}, {q} {p}, {q, r}
Survivor sets {p, q}, {p, r}, {q, r} {p, q} {p}, {q, r}

Core complex

p

q r

p

q r

p

q r

Figure 7.1: Examples of three-process adversaries and their cores, survivor sets, and core complexes.

That is, the core complex of an adversary A is constructed by taking each the complement of

each core C, and letting Π − C be a maximal simplex in the core complex. Since the set of cores

and set of core complements determine one another, it is clear that the core complex is another way

to characterize adversaries.

For example, if At is the t-resilient adversary, then its core complex is given by skeln−t−1(∆n).

This is because the cores of At are the subsets of Π of size t + 1, so the cores’ complements are

all sets of size n − t − 1. An adversary that is not a t-resilient adversary is called irregular. See

the table in Figure 7.1, illustrating the three-process, 1-resilient adversary, and two other, irregular

adversaries. We name the adversary in the third column as adversary B, and use it as a running

example for the rest of this chapter.

When only a subset of processes are active in a system with an adversary, it is useful to define a

new adversary that captures the power of the original against this subset of processes. We define the

restriction of an adversary A, where A operates only against processes that are non-faulty. This is

technically useful in later sections, since adversaries have an inductive structure given by restricting

to subsets of processes.

Definition 7.1.2 (restricted adversary). Let A be an adversary in a system with processes Π,

and suppose Π′ ⊆ Π have been failed by the adversary. Then the restricted adversary A|Π′ is one

that operates against the non-faulty processes Π − Π′, and has cores C − Π′, for each core C of

A (redundant sets obtained this way are discarded). A restricted adversary with an empty core is

degenerate.

Using the concept of a core complex, we define the adversarial snapshot protocol. We define it

103

as a task to be solved, and give an adversary-resilient protocol to solve it.

7.2 Adversarial Snapshot Protocol

The adversarial snapshot is defined as a subtask of the two-round immediate snapshot. Recall the

definition of deletion within a simplicial complex: if K ⊆ L are simplicial complexes, then the

deletion of K in L, denoted dl(K,L), is the subcomplex of L containing all simplexes that do not

intersect K. Then the adversarial snapshot complex is defined as a deletion of the second standard

chromatic subdivision.

Definition 7.2.1 (Adversarial snapshot task). Let A be an adversary. Then the adversarial protocol

complex is defined as ChA(∆n) = dl(Ch2(C(A)),Ch2(∆n)), or the complex obtained by removing

all simplexes of Ch2(∆n) that intersect C(A). The adversarial snapshot task is the task given by

(∆n,ChA(∆n),ChA).

Note that adversarial protocol complex induces an adversarial snapshot operator ChA on arbi-

trary input complexes I, given by applying ChA to each n-simplex σ = ∆n in I. This is due to the

boundary consistency of ChA. Recalling the adversary B as a running example, see how ChB(∆n)

is constructed in Figure 7.2.

p

q r

(a) The core complex of adver-
sary B, which is a subcomplex
of ∆2.

(b) The complex Ch2(∆2), rep-
resenting the two-round imme-
diate snapshot protocol for pro-
cesses {p, q, r}.

(c) ChB(∆2) is a subcomplex of
Ch2(∆2), where simplexes inter-
secting C(B) are deleted (grayed
out).

Figure 7.2: Adversary B has cores {p} and {q, r}. Pictorially, ChB(∆2) is obtained by overlaying
C(B) on top of Ch2(∆2) and deleting simplexes in their intersection.

We define a two-round immediate snapshot protocol for this task, where the first and second

snapshots are separated by the following barrier. If a survivor set of processes has not completed

the first snapshot, then the processes must wait for a survivor set before proceeding to the second

104

snapshot. Once a survivor set has been observed by some process, this process opens the barrier

allowing all other processes to continue wait-free. Pseudocode is given in Algorithm 3.

1 shared mem0[n+1];
2 shared mem1[n+1];
3 shared done;
4 done := false;
5 protocol AdversarialSnapshot(id):
6 immediate
7 mem0[id] := id;
8 snap0 := snapshot(mem0);

9 if ∃ core c : snap0 ∩ c = ∅ then
10 while not done
11 skip

12 immediate
13 mem1[id] := snap0;
14 snap1 := snapshot(mem1);

15 done := true;
16 return snap1 ;

Algorithm 3: The adversarial snapshot protocol.

Theorem 7.2.2. The adversarial snapshot protocol solves the adversarial snapshot task.

Proof. Let A be the adversary in question. To show correctness, we prove two statements: (1) the

protocol terminates, and (2) it returns outputs compliant with the adversarial snapshot task. To

verify termination, consider an execution in the presence of A. The set of non-faulty processes in

the execution must contain a survivor set S. The last process p ∈ S to perform its first immediate

snapshot observes the entire survivor set S in its snapshot, so it proceeds past the wait barrier, al-

lowing all waiting and subsequent processes to continue wait-free. Therefore all non-faulty processes

eventually return with outputs, proving (1).

To prove (2), first notice that processes executing the protocol choose a simplex in Ch2(∆n),

since the protocol consists of two successive immediate snapshots on clean memory (albeit separated

by a wait barrier). We must further show that each process chooses a vertex in ChA(∆n). Toward

a contradiction, suppose process q completes the protocol, but choose a vertex not contained in

ChA(∆n). Then its carrier is colored only by processes in Π−C, for some core C of A. Operationally,

this means that in its entire execution, q did not observe any process in C. In particular, if Vq is

the set of processes contained in the first snapshot of q, then we have Vq ∩C = ∅. However, for q to

have proceeded past the wait barrier, Vq must have contained some survivor set S, or S ⊆ Vq. From

the definition of a survivor set, S intersects every core C, so S ∩C 6= ∅. But from the containment

105

S ⊆ Vq, it follows that S ∩C ⊆ Vq ∩C, which is a contradiction, since Vq ∩C is empty and S ∩C is

not. This proves property (2).

We conclude that processes executing the adversarial snapshot protocol against A will collectively

choose a simplex in ChA(∆n), thus solving the adversarial snapshot task.

As with other snapshot algorithms, one can sequentially compose several instances of the adver-

sarial snapshot to obtain an iterated adversarial snapshot protocol. The operator for N instances of

adversarial snapshot is denoted by ChNA .

If the adversarial snapshot protocol is restricted to the t-resilient model, we get precisely the

delayed snapshot protocol by Saraph et al. [39]. In their work, they show that t-resilient protocols

can be built from successive delayed snapshots. In the process, they prove that one delayed snapshot

can wait-free simulate several rounds of the protocol. One may conjecture that their simulation easily

translates to the adversaries; however as we will see, it fails to hold in general. The next section

exploits adversary B to demonstrate this failure.

7.3 Impossibility of Single-Round Waiting

Recall that any t-resiliently solvable task can be solved with a t-resilient protocol that uses only one

wait barrier. Stated another way, any number of rounds of delayed snapshots may be simulated in

shared memory from just one round. This result, called the wait reduction theorem, was used to

prove a topological statement of the t-resilient asynchronous computability theorem, one which only

used one wait barrier. Unfortunately, the wait reduction theorem does not immediately generalize

to adversaries; that is, there are adversaries for which iterated adversarial snapshot cannot be

simulated from one round. The wait reduction theorem for the t-resilient model is given below, in

both combinatorial and operational terms:

Theorem 7.3.1 (t-resilient wait reduction). There is a wait-free simulation of the N -round delayed

snapshot protocol from one round of the protocol. Combinatorially, for any input complex of I of

some task, and any N > 0, there exists a color-preserving simplicial map φ : ChM (ChAt(I)) →

ChN (I).

It is then natural to ask whether this theorem still holds if the t-resilient adversary At is replaced

106

with an arbitrary adversary A. However as previously noted, the general case fails to hold. As

a counterexample, recall the three-processes adversary B characterized by cores {p} and {q, r}.

Then one B-resilient snapshot cannot simulate two using only wait-free immediate snapshots. This

statement can be posed as a question of whether a distributed task is solvable wait-free in read-write

memory.

Theorem 7.3.2 (one-round impossibility). There is no wait-free read-write protocol that solves the

task (ChB(∆2),Ch2
B(∆2),ChB).

p

q r

σ τ

(a) Three-process input complex ∆2, with sim-
plexes σ = {p, q} and τ = {p, r}.

x

yλ

(b) Points x ∈ ChB(σ) and y ∈ ChB(τ), and a
path λ in Ch2

A(∆2) that join them. The lightly
shaded regions are those removed from |∆2| after
applying ChB.

p

q r

r

r

q

q

(c) Zooming in on the image around a vertex
v ∈ ChB(∆2) colored by p, after applying the
second ChB. The components of Ch2

B(∆2) are
punctured disks.

f(x)

f(y)

(d) Points f(x) ∈ Ch2
B(σ) and f(y) ∈ Ch2

B(τ).
The dashed path between f(x) and f(y) signifies
its non-existence.

Figure 7.3: Impossibility of simulating two rounds of B-resilient snapshot from one round.

Proof. Towards a contradiction, suppose that this task is wait-free solvable. Then by the

wait-free asynchronous computability theorem, there is a color-preserving simplicial map δ :

ChN (ChB(∆n))→ Ch2
B(∆n) carried by ChB.

107

Consider the induced continuous map f = |δ|, and let σ = {p, q} and τ = {p, r} be 1-simplexes in

∆2 as shown in Figure 7.3a. Choose any points x ∈ |ChB(σ)| and y ∈ |ChB(τ)|. Then as illustrated

in Figure 7.3b, there is a path λ in |ChB(∆2)| connecting x and y. Now consider the points f(x)

and f(y) in |Ch2
B(∆2)|. Since f is carried by ChB, f must map x into |Ch2

B(σ)| and y into |ChB(τ)|.

Moreover, f maps the path λ to a path in Ch2
B(∆2), connecting f(x) and f(y). We argue that such

a path cannot exist.

See the schematic in Figure 7.3d, depicting |Ch2
B(∆2)|. It is technically not an accurate depiction

of Ch2
B(∆2), since Ch2

B(∆n) is a subcomplex Ch4(∆2). But Ch4(∆2) has 28, 561 simplexes, so clearly

it is not feasible to accurately illustrate it within the confines of this paper. Instead, Figure 7.3d

captures essential topological properties of Ch2
B(∆2), namely that the complex is disconnected. This

can be understood by looking at Figure 7.3c, which illustrates a zoomed-in view of a hypothetical

component in Ch2
B(∆n). If v is a vertex in ChB(∆2) colored by process p, then its neighborhood

becomes disconnected when applying ChB to ChB(∆n) (yielding Ch2
B(∆n)), since the {q, r} edges

have be stripped away.

Looking at Figure 7.3d, notice that there is no connected component intersecting both |Ch2
B(σ)|

and |Ch2
B(τ)|, since the only possible such component was deleted from ∆2 upon applying the first

ChB operator to it. So f(x) and f(y) must be in different components, so there cannot be a path

between f(x) and f(y). This contradicts the existence of the constructed path f(λ). Thus one round

of B-resilient snapshot fails to simulate two rounds of B-resilient snapshot.

Therefore for the irregular adversary B, one adversarial snapshot cannot simulate multiple snap-

shots wait-free. This is fundamentally due to the topological asymmetry of the protocol complex

in question. If one were to follow the argument in the t-resilient wait reduction theorem, then we

would retract the one-round protocol complex to a low-dimensional subspace, and then map it into

higher-round complexes by using topological connectivity. But in this instance, we can only retract

ChB(∆2) to a one-dimensional subspace, due to the constraint that the retraction must be carrier-

preserving. However, when looking at the higher round complexes, we have a space that is only

(−1)-connected, and not one that possesses the 0-connectivity required to allow the argument to go

through. In summary, there is a mismatch in the lowest dimensional retraction of ChB(∆n), and

the connectivity of ChNB (∆n).

108

7.3.1 More Rounds

The results in this section motivate the following question: if a single round of adversarial snapshots

is not sufficient to simulate arbitrarily many snapshots wait-free, then how many rounds are enough?

Evidence suggests that in all cases, two rounds are enough to simulate any larger number of rounds of

adversarial snapshot. Indeed, for the adversary B, two rounds of adversarial snapshots can simulate

N -rounds.

In order to prove such a result, one cannot take the retraction approach for t-resilient adversaries.

Instead, studying the “hole” spaces of the two-round and N -round complexes, or their respective

complements within ∆n, may be more useful. For the adversary B, the key intuition is that the

two-round Ch2
B(∆n) has the same connectivity properties as any higher-round complex. Informally,

after applying ChA twice, no new kinds of holes are produced in any subsequent round, the only

difference is that more holes appear in higher rounds. Thus we are be able to take a characteristic

hole in Ch2
B(∆n) and “wrap it around” every hole in ChNB (∆n). Contrast this with the one-round

ChB(∆n), which is always connected in every dimension, thus restricting the protocols it is capable

of simulating.

While the adversary B provides an example of a task which is solvable with two rounds of

adversarial snapshots, even two rounds may not suffice in all cases. In systems with more processes

than three, there are adversaries that require at least three rounds of adversarial snapshot before

one may proceed wait-free.

7.4 Concluding Remarks

This chapter discussed how the delayed snapshot for the t-resilience model of fault-tolerance may be

generalized to a building block protocol for adversaries, called the adversarial snapshot. Previous

work on cores and survivor sets was used to develop the adversarial snapshot. In future work, one

may consider how to characterize stability of the adversarial snapshot, or after how many rounds of

adversarial snapshots are necessary before processes proceed wait-free. In the t-resilient model, the

question of stability is trivial, since it was shown that processes only require one wait barrier before

they can continue wait-free. However, in this chapter, we gave an example of an irregular adversary

where this is not the case. Furthermore, it is hypothesize that there are adversaries for which not

even two rounds suffice. Intuitively, this is because more subdivisions are required to realize the full

109

amount of disconnectedness that the adversarial snapshot is able to produce.

Bibliography

[1] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg, and Rudiger Reis-

chuk. Achievable cases in an asynchronous environment. pages 337–346, October 1987.

[2] Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Upper bound on the com-

plexity of solving hard renaming. In Proceedings of the 2013 ACM Symposium on Principles of

Distributed Computing, PODC ’13, pages 190–199, New York, NY, USA, 2013. ACM.

[3] O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the distributed 1-solvable

tasks. Journal of Algorithms, 11:420–440, 1990.

[4] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient asyn-

chronous computations. May 1993.

[5] Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of wait-

free computations. In Proceedings of the 16th Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 189–198, August 1997.

[6] Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed

simulation algorithm. Distributed Computing, 14(3):127–146, 2001.

[7] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology upper and lower

bounds for renaming. In PODC ’08: Proceedings of the twenty-seventh ACM symposium on

Principles of distributed computing, pages 295–304, New York, NY, USA, 2008. ACM.

[8] Soma Chaudhuri. Agreement is harder than consensus: set consensus problems in totally

asynchronous systems. pages 311–234, August 1990.

110

111

[9] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann. The

disagreement power of an adversary. In Distributed Computing, 23rd International Symposium,

DISC 2009, Elche, Spain, September 23-25, 2009. Proceedings, pages 8–21, 2009.

[10] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive

consistency. Information Processing Letters, 14(4):183–186, June 1982.

[11] E. Gafni and E. Koutsoupias. Three-processor tasks are undecidable. SIAM J. Comput.,

28(3):970–983, 1999.

[12] Eli Gafni, Yuan He, Petr Kuznetsov, and Thibault Rieutord. Read-Write Memory and k-

Set Consensus as an Affine Task. In Panagiota Fatourou, Ernesto Jiménez, and Fernando

Pedone, editors, 20th International Conference on Principles of Distributed Systems (OPODIS

2016), volume 70 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–6:17,

Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[13] Eli Gafni and Petr Kuznetsov. On l-resilience, hitting sets, and colorless tasks. In Proceedings of

the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC

’10, pages 81–82, New York, NY, USA, 2010. ACM.

[14] Eli Gafni and Petr Kuznetsov. Turning adversaries into friends: Simplified, made constructive,

and extended. In Proceedings of the 14th International Conference on Principles of Distributed

Systems, OPODIS’10, pages 380–394, Berlin, Heidelberg, 2010. Springer-Verlag.

[15] Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability

theorem. In ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris,

France, July 15-18, 2014, pages 222–231, 2014.

[16] Rachid Guerraoui and Petr Kuznetsov. Two faces of the asynchronous computability theorem.

In The 4th Workshop in Geometry and Topology in Concurrency and Distributed Computing,

2004.

[17] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[18] M. P. Herlihy and S. Rajsbaum. The decidability of distributed decision tasks. In Proceedings of

the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97, pages 589–598,

1997.

112

[19] M. P. Herlihy and S. Rajsbaum. A classification of wait-free loop agreement tasks. Theor.

Comput. Sci., 291(1):55–77, 2003.

[20] M. P. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In

Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’93,

pages 111–120, 1993.

[21] M. P. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free compu-

tation. In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing,

STOC ’94, pages 243–252, 1994.

[22] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through Com-

binatorial Topology. Elsevier, 2013.

[23] Maurice Herlihy and Sergio Rajsbaum. The topology of distributed adversaries. Distributed

Computing, 26(3):173–192, 2013.

[24] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.

ACM, 46(6):858–923, 1999.

[25] Maurice P. Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient

tasks. pages 111–120, May 1993.

[26] Flavio Junquiera and Keith Marzullo. A framework for the design of dependent-failure algo-

rithms. Concurrency and Computation: Practice and Experience, 19(17):2255–2269, 2007.

[27] D. N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and computation in

mathematics. Springer, 2008.

[28] Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy, and

Applications, 1(14):1–13, 2012.

[29] Dmitry N. Kozlov. Structure theory of flip graphs with applications to weak symmetry breaking.

CoRR, abs/1511.00457, 2015.

[30] Dmitry N. Kozlov. Topology of the view complex. Homology, Homotopy, and Applications, 17,

2015.

113

[31] Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem

for fair adversaries. In Proceedings of the 2018 ACM Symposium on Principles of Distributed

Computing, PODC ’18, pages 387–396, New York, NY, USA, 2018. ACM.

[32] S. Mac Lane. Categories for the Working Mathematician. Springer Verlag, 1998.

[33] X. Liu, J. Pu, and J. Pan. A classification of degenerate loop agreement. In Fifth IFIP

International Conference On Theoretical Computer Science, volume 273 of IFIP, pages 203–

213. Springer, 2008.

[34] X. Liu, Z. Xu, and J. Pan. Classifying rendezvous tasks of arbitrary dimension. Theor. Comput.

Sci., 410(21-23):2162–2173, 2009.

[35] J. R. Munkres. Elements Of Algebraic Topology. Addison Wesley, Reading MA, 1984.

[36] Michel Raynal and Julien Stainer. Increasing the power of the iterated immediate snapshot

model with failure detectors. In Structural Information and Communication Complexity - 19th

International Colloquium, SIROCCO 2012, Reykjavik, Iceland, June 30-July 2, 2012, Revised

Selected Papers, pages 231–242, 2012.

[37] Michael Saks and Fotis Zaharoglou. Wait-free k-set agreement is impossible: The topology of

public knowledge. May 1993.

[38] Vikram Saraph and Maurice Herlihy. The relative power of composite loop agreement tasks. In

19th International Conference on Principles of Distributed Systems, OPODIS 2015, December

14-17, 2015, Rennes, France, pages 13:1–13:16, 2015.

[39] Vikram Saraph, Maurice Herlihy, and Eli Gafni. Asynchronous computability theorems for t-

resilient systems. In Distributed Computing - 30th International Symposium, DISC 2016, Paris,

France, September 27-29, 2016. Proceedings, pages 428–441, 2016.

[40] Vikram Saraph, Maurice Herlihy, and Eli Gafni. An algorithmic approach to the asynchronous

computability theorem. Journal of Applied and Computational Topology, 1(3):451–474, Jun

2018.

	Introduction
	Modeling a Distributed System
	Thesis at a Glance
	Loop Agreement
	The Convergence Algorithm
	t-Resilient Asynchronous Computability
	Computability against Adversaries

	Related Work

	Operational Model
	Processes and Communication
	Read-Write Memory and Snapshots
	Immediate Snapshots

	Failures and Fault Tolerance
	Crash Failures
	Wait-freedom
	t-Resilience
	Resilience against Adversaries

	Mathematical Model
	Combinatorial Topology
	Basics of Simplicial Complexes
	Point-set Topology
	Carrier Maps and Subdivisions
	Stars, Links and Connectivity
	Shellability

	Classical Topology and Homotopy
	Homotopy and the Fundamental Group
	Gluing
	Simplicial Approximation
	The Nerve Lemma

	Distributed Tasks and Protocols
	Tasks
	Protocols
	Immediate Snapshot Protocol

	Loop Agreement
	The Class of Loop Agreement Tasks
	Composing Loop Agreement Tasks
	Combining Simplicial Complexes
	Implementation by Multiple Tasks
	Relative Power of Multiple Task Implementation
	Composite Loop Agreement

	A Categorical Interpretation
	Category Theory
	The Category of Loop Agreement Tasks

	The Lattice of Loop Agreement Tasks
	Concluding Remarks

	The Convergence Algorithm
	The Asynchronous Computability Theorem
	Proof Approaches

	Non-chromatic Simplex Agreement
	The Convergence Algorithm
	Solving Chromatic Simplex Agreement
	Bookkeeping
	Link-based Non-chromatic Simplex Agreement
	Termination and Validity

	Application to General Tasks
	Concluding Remarks

	t-Resilient Asynchronous Computability
	Delayed Snapshot Protocol and Task
	Connectivity Properties
	Shellability of the Protocol Complex
	Link-connectivity of the Protocol Complex

	Single-Round Waiting
	Asynchronous Computability Theorems
	Applications of the t-resilient ACT
	Concluding Remarks

	Computability against Adversaries
	Characterizing Adversaries
	Core Complexes

	Adversarial Snapshot Protocol
	Impossibility of Single-Round Waiting
	Two Rounds

	Concluding Remarks

	Bibliography

