
Abstract of “Code Generation for In-Memory Data Analytics” by Andrew Crotty, Ph.D., Brown University,

May 2019.

Recent advancements in hardware have caused a shift toward purely in-memory data processing, forcing a

complete redesign of the high-overhead abstractions (e.g., Volcano-style iterators) at the core of traditional,

disk-based systems. One popular replacement for these outdated query processing models is code generation,

which refers to the process of generating query-specific, machine-executable code to evaluate a query. In

general, code generation is highly efficient and enables a variety of low-level optimizations, yet it comes with

its own set of drawbacks.

This dissertation provides an in-depth exploration of code generation for in-memory data analytics. First, we

present two novel code generation strategies that jointly consider properties of the operators, data, and underly-

ing hardware to significantly improve performance compared to existing code generation approaches. Then, in

order to mitigate the main disadvantages associated with code generation, we propose a new, alternative query

processing model that achieves comparable performance while avoiding these downsides.
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Chapter 1

Introduction

The growing prevalence of big data across all industries and sciences is causing a profound shift in the nature

and scope of analytics. In order to extract value from this ever-increasing pool of data, a wide variety of

techniques—ranging from simpler online analytical processing (OLAP) queries to more complex machine

learning (ML) algorithms—have become an integral part of the data-driven decision-making process.

Most traditional, disk-based systems for performing these data analytics tasks utilize an iterator-based

query processing model (e.g., Volcano [64]) due to simplicity of design and ease of implementation, since

the inherent overheads of the iterator abstraction are masked by the high costs of disk I/O. However, recent

hardware advancements and the steady decline in memory prices have precipitated a transition toward purely

in-memory data processing, with all but the largest datasets fitting entirely in main memory. For these in-

memory systems, the iterators themselves can become a bottleneck, and code generation has emerged as a

popular replacement.

Code generation is the process of generating query-specific, machine-executable code in order to evaluate a

query. Although originally proposed as early as System R [25], code generation has recently enjoyed a renewed

interest, with a huge number of both academic and commercial systems [42, 49, 56, 75, 78, 81, 82, 90, 101]

demonstrating significant performance improvements for in-memory query processing. The query evaluation

code produced by these types of systems is typically much more efficient than traditional iterator-based

processing, since the generated code has been specialized and optimized specifically for a particular query,

with all additional sources of overhead removed.

Yet, while code generation is an attractive option because it enables substantially more flexibility and

specialization in query processing, it is complicated to implement, maintain, and debug. For example, IBM

actually abandoned code generation in System R because of how difficult it was to maintain [113]. Moreover,

the cost of performing on-the-fly code generation can become so expensive that recent work [79] proposed a

hybrid interpreted execution model where queries are incrementally generated, compiled, and optimized in the

background to avoid large up-front costs, but large query volumes can still result in cumulatively prohibitive

overhead. For these reasons, system designers must carefully weigh the performance benefits that can be

achieved via code generation against (1) implementation complexity, (2) codebase maintainability, and (3)

runtime overhead.

1
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This dissertation explores the intricacies of code generation for in-memory data analytics. Specifically, we

argue that, while code generation presents myriad opportunities for unique optimizations, many of the most

impactful of these optimizations can actually be replicated without needing to perform any code generation,

thereby drastically improving performance with none of the associated downsides. To that end, we begin by

presenting a wide range of novel code generation techniques that achieve significant improvements compared

to the state of the art, and then we show how these techniques can be implemented without relying on code

generation at all.

In the rest of this chapter, we explain the key concepts behind code generation using a concrete example,

followed by a discussion of the main pros and cons of code generation approaches. We conclude the chapter

by outlining the key contributions of our work.

The remainder of this document is organized as follows. Chapter 2 presents a novel code generation strategy

that jointly considers properties of the operators, data, and underlying hardware to generate optimized query

execution code on a case-by-case basis. Then, in Chapter 3, we introduce an extension of these techniques that

eschews traditional query operators in favor of laying out code optimized at the granularity of the entire query.

In Chapter 4, we revisit both of these code generation strategies and instead propose a new vectorized query

processing model that implements many of the same optimizations without resorting to any code generation.

Chapter 5 provides a detailed survey of the related work. Finally, we summarize our contributions and outline

interesting avenues for future work in Chapter 6.

1.1 Code Generation

Iterator-based execution, which was popularized by Volcano [64], is the most common query processing model

for traditional, disk-based DBMSs. In this paradigm, each operator (e.g., select, project, join) is implemented

as an iterator with a next function that returns the next tuple to the caller, and an execution engine can answer

an arbitrary query by nesting iterators to match the query plan. This abstraction is simple, flexible, and easy

for system developers to reason about.

However, with the advent of in-memory query processing, the high-overhead iterator model was abandoned

in favor of more efficient alternatives. One such alternative currently in vogue is code generation, which

involves generating query-specific, machine-executable code to evaluate a query.

In this section, we begin by providing a straightforward example to illustrate the core concepts of code

generation. Then, we outline some of the key advantages and major drawbacks of this approach.

1.1.1 An Illustrative Example

TPC-H [14] is perhaps the most well-known and widely utilized OLAP benchmark. The queries mimic an ad

hoc, decision support workload in a realistic business scenario. As such, we refer to several TPC-H queries

throughout this document in order to concretely illustrate different algorithms and approaches.

Figure 1.1 shows an example of code generation using TPC-H Q6. The SQL for the query appears in

Figure 1.1a, while an example of generated code appears in Figure 1.1b. Q6 is a “what-if” query that computes

the increase in revenue for a particular historical year that would have occurred by eliminating specified
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select
sum(l_extendedprice * l_discount) as revenue

from
lineitem

where
l_shipdate >= '1994-01-01'
and l_shipdate < '1995-01-01'
and l_discount between 0.05 and 0.07
and l_quantity < 24

(a) SQL for Q6

size_t i;
revenue = 0.0;
for (i = 0; i < l_len; i++)

if (l_shipdate[i] >= '1994-01-01'
&& l_shipdate[i] < '1995-01-01'
&& l_discount[i] >= 0.05
&& l_discount[i] <= 0.07
&& l_quantity[i] < 24)

revenue += l_extendedprice[i] * l_discount[i];

(b) Generated Query Evaluation Code (data-centric [95])

Figure 1.1: Example Query – TPC-H Q6

discounts. This query is structurally simple, involving only a single table (lineitem) and applying four

predicates before performing a straightforward scalar aggregation.

The generated code shown in Figure 1.1b is based on the data-centric [95] approach, which we use as a

simple and intuitive example of code generation. The data-centric implementation involves a for loop over

all tuples stored in the lineitem table in order to compute the revenue (i.e., sum(l extendedprice

* l discount)) of the subset of tuples that pass the selection criteria. Since this approach uses code

generation, all of the predicates are merged together into a single if conditional statement rather than being

handled independently by precompiled selection iterators. Similarly, the sum and multiply operations are

merged into a single statement.

Merging operations together in this way maximizes the benefits of short-circuit evaluation and data locality

while removing the overheads of the iterator model. However, the data-centric approach unfortunately prevents

many useful low-level optimizations (e.g., SIMD vectorization) due to the control dependency introduced by

the branching code.

It is fairly obvious why a code generation version is much more efficient than traditional, iterator-based

approaches. Specifically, the selection component of the query requires five comparison instructions and

four branching instructions, and merging them together into a single statement maximizes the benefits of

short-circuit evaluation. Moreover, there is no overhead from external function calls, indirections, or other

sources of inefficiency.

However, code generation comes with its own set of challenges. The question naturally arises, then: when

is it a good idea to use code generation? In the following two sections, we consider some of the key arguments

both for and against code generation.
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1.1.2 Code Generation Benefits

The performance benefits of code generation are very well-documented [42, 77, 82, 90, 95, 122]. This section

highlights some of the main sources of these performance benefits.

Type Specialization

Type specialization is an optimization that involves tailoring algorithms or data structures for specific data

types rather than in a generic fashion. For example, type specialization might help when performing a group-by

aggregation. When the group-by key is a 4-byte integer, a hash table would be a natural candidate. On the

other hand, if the group-by key is only 1-byte in size, it would be more efficient to allocate an array of size 256

and instead of using a hash-based approach, simply use the 1-byte keys as a direct offset into the array.

Since systems that use code generation know the full query specification, they can produce code that is

highly specialized for the data types used only in that particular query, rather than trying to piece together

generic operator building blocks in an interpreted execution model. Since all types are known at compile-

time, this approach can completely eliminate runtime casts or switch statements to determine type-specific

processing, as well as enable a variety of low-level optimization benefits at the compiler level, such as better

register and cache allocation.

However, code generation might not necessarily be required in order to perform type specialization for

DBMS operators. In fact, type specialization is quite straightforward to achieve in an interpreted system. For

example, it is possible to use macros for the C preprocessor to generate type-specific implementations or

template specialization of generic code in C++. We explore this possibility in later chapters.

Minimal Overhead

Another major benefit of code generation is the ability to completely remove much of the baggage associated

with high-level abstractions like Volcano-style iterators. By generating query-specific code, there is no longer

a need for polymorphism or dynamic dispatch of function calls. Moreover, the compiler can perform more

aggressive optimizations than would be possible in an interpreted environment, such as inline expansion for

functions and loop optimizations.

Again, as is the case with type specialization, these optimizations can be leveraged by implementing

static DBMS operators with code written in a way conducive to automatic compiler optimization, or even

by implementing hand-tuned and highly optimized versions of those operators. However, the types of

cross-operator optimizations enabled by code generation would still remain out of reach.

Holistic Optimization

One of the most important benefits of code generation that has not yet been replicated in an interpreted

query execution engine is holistic optimization, which is the ability of a query optimizer to reason about and

optimize across traditional operator boundaries. For example, whereas an iterator-based execution engine

would implement each selection operation from Q6 as a separate operator, a system that uses code generation

can seamlessly merge those selection predicates into a single conditional statement (Figure 4.1a). In the
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extreme case, a code generation engine can even merge all of the Q6 operations into a single imperative

statement, and we describe techniques that apply similar optimizations in later chapters.

Overall, the main advantage of holistic optimization is the restructuring of execution code tailored to

individual queries on a case-by-case basis to unlock opportunities for low-level optimizations (e.g., SIMD

vectorization, maintaining CPU register locality). Therefore, even though vectorized query processing can

often get close to the performance of code generation systems through careful implementation, the final mile

separating the two approaches can only be overcome through holistic optimization.

1.1.3 Code Generation Drawbacks

While the performance benefits of code generation are undisputed, they are accompanied by several clear

drawbacks that have been largely overlooked in the literature. This section describes some of these drawbacks.

Clean Slate

Since the creation of the earliest DBMSs in the 1960s, the area of data management has received widespread

attention from researchers in both academia and industry, as well as broad interest in the commercial arena.

These collective efforts have produced a rich and extensive body of work that forms the foundations of the

field, as well as a variety of battle-tested systems deployed in the wild.

Unfortunately, while attempts to integrate code generation techniques into legacy architectures like

PostgreSQL have succeeded in dramatically improving query performance from the interpreted baseline [34,

89], they still fall consistently short of the performance achieved by state-of-the-art code generation systems.

For example, the Peloton project [104] originally forked PostgreSQL as a starting point but eventually needed

to restart completely from scratch due to prohibitive legacy design decisions [103].

The bottom line of all these trials is that existing architectures and design paradigms, such as the iterator

model, break down completely in the context of code generation. Therefore, designers of code generation

systems necessarily need to throw out existing systems and start from scratch. While the enthusiasm for

yet another “complete rewrite” might benefit the academic paper-writing industry, this mentality completely

disregards the enormous costs associated with building a new DBMS from the ground up.

Compilation Overhead

In code generation systems, queries can be compiled either a priori (e.g., when declaring a stored procedure)

or just-in-time (JIT) compiled (e.g., at runtime when issuing an ad hoc query). Given the exploratory nature

of OLAP workloads, most queries will end up needing to be JIT compiled as they are issued to the system.

Unfortunately, this process can incur a significant amount of associated overhead, making it difficult to do

on-the-fly code generation and optimization in a timely fashion, particularly for short-lived queries, or large

query volume environments.

This problem is so pronounced that recent work actually proposed an adaptive execution strategy to switch

between an interpreted execution model and a code generation execution engine [79]. Not only does this

hybrid execution approach end up consuming additional system resources that could otherwise be used for
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query execution, but it leads to the additional problem of having to maintain two completely separate execution

engines that still need to remain fully interoperable, which is an enormous engineering challenge.

Difficulty of Implementation

The biggest drawback of code generation systems is that their design is difficult to reason about and they are,

consequently, hard for software engineers to implement, maintain, and extend. For example, code generation

as part of the System R project was abandoned by IBM because it was too complicated and brittle, not portable,

and prohibitively expensive [90, 113]. Moreover, code generated queries are even harder to debug, since

they are generated by machines in an often idiosyncratic manner that is not straightforward for humans to

understand.

Modern DBMSs are already highly sophisticated and intricate pieces of software, often written by hundreds

(or even thousands) of software engineers over a period of decades. For example, SQLite [12] is an extremely

lightweight DBMS, and its codebase already contains approximately 129, 000 lines of code [5]. Other DBMS

mainstays include PostgreSQL [11] and MySQL [10], which are, by now, implemented in well over a million

lines of code each. Given the added complexity of code generation, how many more lines of code and

man-hours would be required to build an equivalent code generation DBMS?

1.2 Key Contributions

The key contributions of this work are divided into three chapters, each of which tackles a different aspect of

code generation for in-memory data analytics. In the following, we provide a high-level summary of each of

these contributions, as well as their broader impact.

1.2.1 Operator-centric Code Generation

Chapter 2 presents TUPLEWARE, an architecture for compiling UDF-centric workflows, and proposes a

novel operator-centric code generation strategy that jointly considers properties of the operators, data, and

underlying hardware to generate optimized query execution code on a case-by-case basis. Unlike data-

centric code generation, which attempts to maximize data pipelining, our operator-centric approach looks for

opportunities to split fused operators into sub-pipelines and materialize vectors of intermediate results between

them. We demonstrate that TUPLEWARE provides significant performance improvements over state-of-the-art

alternatives.

1.2.2 Query-centric Code Generation

Chapter 3 introduces an extension of operator-centric code generation, called BESPOKE, that discards the

notion of traditional operators in favor of a more holistic, query-centric approach to code generation. Since code

generation systems are no longer constrained by traditional operators, we present several techniques to optimize

across operator borders, freely reordering operations at the granularity of the entire query. Contradictory to

the traditional wisdom, BESPOKE heavily leverages “predicate pullups” to produce more streamlined code
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that outweighs the penalties of performing wasted work. Our experiments show that our query-centric code

generation strategy is able to outperform both data- and operator-centric approaches over a diverse range of

queries.

1.2.3 Rethinking Code Generation

Based on the discussion of the pros and cons of code generation, Chapter 4 proposes ERSATZ, a new vectorized

query processing model that achieves similar performance to our novel code generation techniques while

avoiding the associated downsides. In particular, ERSATZ addresses the problem of holistic optimization,

which was previously impossible for traditional query processing approaches, by introducing a new set of

fused query operators. These fused operators allow ERSATZ to apply the exact same optimizations described

throughout Chapters 2 and 3, and our experimental evaluation demonstrates that we can achieve nearly identical

performance to code generation approaches without resorting to any code generation whatsoever.



Chapter 2

Operator-centric Code Generation

This chapter describes TUPLEWARE, a novel architecture for the automatic compilation of UDF workflows

for in-memory data analytics. Yet, while we focus here on the broader category of UDF workflows, many of

the techniques described as part of this work apply equally well to the more specialized subcategory of SQL

operators, as we show in later chapters.

In particular, we propose an operator-centric code generation strategy that, unlike static approaches, jointly

considers properties of the operators, data, and underlying hardware to generate optimized query execution

code on a case-by-case basis. The key idea of TUPLEWARE is to integrate high-level query optimization

techniques with low-level compiler techniques in order to unlock a new breed of code generation optimizations

that were previously impossible.

The remainder of this chapter is organized as follows. Section 2.1 provides a high-level overview of

TUPLEWARE’s architecture. In Section 2.2, we describe the important aspects of the user frontend. Section 2.3

explains our process for compiling UDF-centric workflows. In Section 2.4, we outline the key optimizations

that are part of our operator-centric code generation strategy. Section 2.5 briefly mentions some of the primary

distributed execution challenges. Finally, we present our evaluation in Section 2.6.

2.1 Tupleware

TUPLEWARE leverages the LLVM [87] compiler framework in a novel way to: (1) provide a language-agnostic

frontend that lets users choose from a wide variety of programming languages with minimal overhead;

and (2) allow our compilation process to introspect UDFs and gather statistics used for applying low-level

optimizations. While prior work has independently investigated LLVM for SQL query compilation [95] and

UDF introspection for high-level workflow optimizations [35, 68], TUPLEWARE is the first to combine these

two ideas in order to optimize UDF workflows at the code generation level. This section provides a high-level

overview of TUPLEWARE and introduces a running example that we reference throughout this chapter.

8
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2.1.1 Architecture

As shown in Figure 2.1, our proposed architecture consists of three parts. The Frontend (Section 2.2) allows

users to define workflows of UDFs directly inside any LLVM-supported host language using operators like

map and reduce. These workflows are translated to optimized, self-contained distributed programs during the

Compilation process (Section 2.3). Compiled workflows are then executed automatically on a cluster during

the Execution phase (Section 2.5).

This chapter primarily focuses on our novel process for compiling UDF workflows. Although other

systems [35, 68] introspect UDFs to infer high-level semantics (e.g., whether a UDF performs a selection)

for applying rewrite rules, our approach goes a step further by determining low-level characteristics (e.g., the

approximate number of CPU cycles) to generate better code.

2.1.2 Example Workflow

Figure 2.2 depicts the full lifecycle of a workflow. First, the user composes the workflow on the client-side

using operators from our API to transform an object called a T-Set, which is similar to a Resilient Distributed

Dataset (RDD) in Spark. The example workflow shown in the figure corresponds to k-means, an iterative

algorithm that groups instances into one of k clusters, which we use as a running example throughout this

chapter. This workflow constructs a T-Set from the data.csv file and transforms it using the specified UDFs

(e.g., distance, minimum). UDFs can be authored in the host language either as a named function (shown

in the figure) or inline as an anonymous function.

To compute the result, the client sends a directed graph representing the workflow and the LLVM

intermediate representation (IR) for each UDF to the server. These pieces are then converted into a distributed

program during the Compilation process, which consists of the (1) UDF Analyzer, (2) Optimizer, and (3)

Linker. The UDF Analyzer introspects each UDF by examining the LLVM IR to gather statistics for predicting

execution behavior. The Optimizer translates the workflow graph into a distributed program by generating

execution code with embedded references to the associated UDFs. As shown in Figure 2.2, this execution code

includes all control flow (e.g., the inner for loop over a data block), communication (e.g., the getBlock()

data request mechanism), and synchronization (e.g., the sync() function) components necessary to form a

self-contained distributed program. During code generation, the Optimizer uses the UDF statistics to apply

low-level optimizations that specifically target the underlying hardware. The Linker then merges the LLVM IR

for the UDFs with the generated execution code, and the distributed program is then deployed for execution on

the cluster.

2.2 Frontend

In many regards, TUPLEWARE’s API is similar to other recent frameworks (e.g., Spark [3], Flink [1],

DryadLINQ [131]), where users compose workflows on a data-parallel abstraction directly inside a host

language. However, despite the importance of shared state for complex analytics tasks, few frameworks treat

shared state as a fundamental component of their programming models. We therefore make shared state
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Figure 2.1: An overview of our proposed architecture. The Frontend allows users to compose UDF
workflows in any LLVM-supported language (top boxes). These workflows are then translated to self-
contained distributed programs during the three-stage Compilation process. Finally, the Execution
phase deploys the distributed programs on a cluster, shown as 10 nodes (labeled boxes) each with four
cores (circles inside the boxes) that have specialized execution roles (GM, LM, E).

explicit by extending the traditional data-parallel abstraction to include global variables that are logically

shared across all nodes in the cluster. We call the resulting abstraction a T-Set.

Definition 1 (T-Set) A T-Set is a pair (R,C), where R is a relation, which is a set of n-tuples, and C is a

Context, which is a dictionary (i.e., set of key-value pairs) of shared state variables.

Users can chain together operators like map and reduce to define workflows that transform a T-Set. We

formally define an operator as a second-order function that takes zero or more T-Sets as input and produces a

new T-Set as output by invoking an associated first-order UDF. For example, a map operator returns a new

T-Set by applying the supplied UDF to each element of the input T-Set’s relation R. Table 2.1 shows some of

the most common operators in our API.

Although we incorporate the best features from other frameworks, our Frontend distinguishes itself through

(1) low-level optimizability, (2) explicit shared state, and (3) an LLVM foundation.
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ServerClient

C = getContext();
while (converge(C)) {
  while (hasBlock()) {
    blk = getBlock();
    for (i = 0; i < blk.size(); i++) {
      t0 = blk[i];
      t1 = distance(t0, C);
      t2 = minimum(t1);
      reassign(t2, C);
    }
  }
  recompute(C);
  sync();
}

   define i32 @distance(...) {
      ...
   }

1010101110101010010
1010100110101010011
0110010101101010100
1010101110101010011
0101110101011010110
1010001000110101011
...

load

map

map

reduce
loop

update

TSet ts = TSet("data.csv")
            .map(distance)
            .map(minimum)            
            .reduce(reassign)
            .update(recompute)
            .loop(converge)

WORKFLOW

LLVM IR

GENERATED CODE

EXECUTABLE

UDFS
def distance(t, C):
  dist[CENT] = {0}
  for (i = 0; i < CENT; i++):
    cent = C["k"][i]
    for (j = 0; j < ATTR; j++):
      d = cent[j] - t[j]
      dist[i] += d * d
    dist[i] = sqrt(dist[i])
  return dist

UDF

WORKFLOW GRAPH

Figure 2.2: The full lifecycle of a workflow.

Category Operator UDF Signature Optimizations

Apply
map(T )(λ) (t, C?)→ t′

Section 2.4.1flatmap(T )(λ) (t, C?)→ {t′}
filter(T )(λ) (t, C?)→ b

Aggregate reduce(T )(λ, k?)
(t1, t2)→ t′

Section 2.4.2
(t, C)→ ()

Relational
selection(T )(λ) t→ b

Section 2.4.3join(T1, T2)(λ) (t1, t2)→ b

Control
loop(T )(λ) C → b

-update(T )(λ) C → ()

Table 2.1: A subset of the operators in our API, showing their categories and UDF signatures. Opera-
tors take zero or more T-Sets T as input and apply a UDF λ to produce a new T-Set as output. The UDF
signatures specify the arguments and return types of each operator, with optional arguments denoted
by the ? symbol. For example, the expected signature of a map UDF is: (t, C?)→ t′ where t is an input
tuple, C? is an optional Context, and t′ is an output tuple.

2.2.1 Low-Level Optimizability

Our API includes many of the same operators offered by other frameworks, but we impose several additional

requirements that play a crucial role in our Compilation process. In contrast to traditional frameworks that

do not perform code generation for UDF workflows, our Optimizer leverages the nuances of the operator

semantics to generate different code on a case-by-case basis. Each of these subtle yet important differences

corresponds to an optimization heuristic described in Section 2.4. As shown in Table 2.1, we divide operators

into four categories.

Apply

Apply operators invoke a UDF on every tuple in a T-Set’s relation. Traditional MapReduce has a single map

operator that can return an arbitrary number of output tuples for each input tuple (i.e., 0-to-N mapping). More

recent frameworks already distinguish between a more restrictive map operator for a strict 1-to-1 mapping

(i.e., the UDF takes one input tuple t and must return exactly one output tuple t′), a flatmap operator for
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1-to-(0:N) mappings, and a filter operator for 1-to-(0:1) mappings. Unlike other frameworks that do not

compile UDF workflows, we leverage these more detailed semantics to generate more efficient control flow

code (Heuristic 1a).

As shown in Table 2.1, apply UDFs have read-only access to an optionally provided Context C?. For

example, the k-means distance UDF (Figure 2.2) reads the current centroid values from C["k"]. Since

these UDFs have read-only access to the Context, apply operators can execute safely in parallel without

conflicts.

Aggregate

Aggregate operators perform a group-by computation on a T-Set’s relation. Like Spark, our reduce operator

expects a commutative and associative UDF (e.g., sum, count) of the form: (t1, t2)→ t′ where input tuples t1
and t2 are combined to yield an output tuple t′. However, unlike Spark, which operates implicitly on RDDs

of key-value pairs, we allow users to specify an explicit key function k that defines the group-by semantics

(i.e., k takes a tuple t and returns its group-by key). Explicitly specifying a group-by key function allows us to

generate code that better utilizes the hardware based on the characteristics of k (Heuristic 1b).

Table 2.1 also includes an alternative UDF signature for a reduce: (t, C)→ () where t is an input tuple

and C is the Context. Instead of returning an output tuple t′, this alternative reduce UDF can aggregate values

by updating Context variables. Context aggregation variables are similar to Spark’s accumulator objects, but

they additionally (1) permit multiple keys; (2) can be read from within the workflow; and (3) have different

distributed update patterns. By performing an aggregation using Context variables when the result cardinality

(i.e., the number of distinct keys) is known a priori, we can generate more efficient code that replaces expensive

dictionary lookups with static memory addresses at compile time (Heuristic 2).

Relational

Like other frameworks, our Frontend benefits from including traditional SQL transformations. For example,

a selection expects a predicate UDF of the form: t → b where t is an input tuple and b is a Boolean value

specifying whether t satisfies the predicate; that is, the user defines a (potentially compound) predicate from

the set of operations {=, 6=, >,≥, <,≤} that returns true if t should be selected and false otherwise.

These semantics allow us to dynamically generate different selection code that considers both UDF complexity

and selectivity (Heuristic 3).

Relational operators interact only with a T-Set’s relation and can neither read nor update Context variables.

This restriction avoids dependencies that would otherwise prevent standard query optimization techniques

(e.g., predicate pushdown, join reordering). Note, however, that operators such as join merge the keys of two

Contexts without changing their values, performing SQL-style disambiguation of conflicting keys at runtime.

Control

In order to support iterative workflows, our API also includes a loop operator that models a tail-recursive

execution of the workflow; that is, the entire workflow is repeatedly reevaluated while the supplied loop
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continuation condition holds. For instance, the converge UDF from Figure 2.2 returns true until the

centroids have converged. This UDF has read-write access to Context variables for maintaining values across

iterations (e.g., loop counters, convergence criteria). By explicitly handling iterations as part of the workflow,

we can perform cross-iteration optimizations (e.g., caching loop invariant data, leveraging data locality) that

would be impossible with iterations managed by an external driver program.

Finally, our API provides an update operator that executes in a single thread to permit direct modification

of Context variables. The k-means example uses the update operator (recompute) to calculate the new

centroid values by computing the average from the sum and count Context variables.

2.2.2 Explicit Shared State

Shared state is an essential component of complex analytics tasks, but prior attempts to add distributed shared

state to existing frameworks restrict how and when UDFs can interact with global variables. For example,

Iterative Map-Reduce-Update [31] offers primitives designed for iterative refinement algorithms and cannot

model non-convex optimization problems (e.g., neural networks, maximum likelihood Gaussian mixtures), as

stated in their paper. Spark also provides several globally distributed primitives (e.g., accumulators, broadcast

variables), but these objects are read-only within a workflow and cannot be used to represent shared state that

changes frequently (e.g., ML models).

We overcome these limitations by providing three different update patterns for reduce UDFs that use

Context aggregation variables: (1) parallel (conflicting updates must be commutative and associative); (2)

synchronous (exclusive locks prevent conflicting updates); and (3) asynchronous (the algorithm must ensure

correctness). For example, an implementation of stochastic gradient descent can use synchronous updates

so that all changes to the shared model are immediately visible to all workers, while an implementation

of Hogwild! [114] could use asynchronous updates to improve performance. This work focuses only on

optimizations for parallel updates.

Our programming model uses monads, which can be thought of simply as “programmable semicolons,” to

define the order in which operators that access the shared state must be evaluated. More formally, monads

impose a happened-before relation [83] between operators; that is, an operator O that modifies Context

variables referenced by another operator O′ must be fully evaluated prior to evaluating O′. While interesting,

the precise monadic formalisms are not essential for the techniques discussed in this work.

2.2.3 LLVM Foundation

As previously mentioned, our architecture leverages the LLVM compiler framework to make our Frontend

language-agnostic, allowing users to compose workflows of UDFs in a variety of programming languages

(e.g., C/C++, Python, Julia, R) with minimal overhead. Adding a new LLVM-supported language is as simple

as writing the necessary wrappers to implement our API. This approach is in contrast to other frameworks that

pay a high boundary crossing penalty to support new languages (e.g., Spark must serialize objects between

Java and Python).

LLVM also enables UDF introspection (irrespective of host language) to provide certain correctness



14

UDF Type Vectorizable Compute Time Load TimePredicted Actual
distance map yes 30 28 3.75
minimum map yes 36 38 7.5
reassign reduce no 16 24 5.62
recompute update no 30 26 0

Table 2.2: UDF statistics for the k-means algorithm.

guarantees at compile time (e.g., if a selection UDF returns a Boolean value), though some requirements are

impossible to check (e.g., if a reduce UDF is commutative and associative). Like other frameworks, we rely on

the user to provide a correct UDF in these undecidable cases. Furthermore, our Optimizer can leverage UDF

statistics from the LLVM IR to generate better code, which we describe in the following section.

2.3 Compilation

The main goal of our approach is to improve the performance of compute-intensive, complex analytics

tasks by compiling UDF-centric workflows. We jointly consider characteristics of the data, UDFs, and

underlying hardware in order to apply low-level optimizations on a case-by-case basis. This section outlines

our Compilation process, which generates a distributed program from a workflow of UDFs. As shown in

Figure 2.1, this process consists of three parts: (1) UDF Analyzer, (2) Optimizer, and (3) Linker.

2.3.1 UDF Analyzer

Systems that treat UDFs as black boxes have difficulty making informed decisions about how best to execute a

given workflow. By leveraging the LLVM framework, we can look inside UDFs to gather statistics that help

the Optimizer generate better code. The UDF Analyzer examines the LLVM IR of each UDF to determine

several features, including vectorizability, computation cycle estimates, and memory access time predictions.

As an example, Table 2.2 shows the UDF statistics for the k-means example from Section 2.1.

Vectorizability

Vectorizable UDFs can use single instruction, multiple data (SIMD) registers to achieve data parallelism. For

instance, a 256-bit SIMD register on an Intel E5 processor can hold 8×32-bit floating-point values, offering

a potential 8× speedup. We can leverage the operator semantics from Section 2.2 to detect two types of

vectorizable UDFs: (1) 1-to-1 maps and (2) single-key reduces (i.e., scalar aggregations). In the k-means

example, only the distance and minimum UDFs are vectorizable.

Compute Time

CPI measurements [6] provide cycles per instruction estimates for the given hardware. Adding together these

estimates yields a rough overall estimate of the total UDF compute time, but runtime factors (e.g., instruction
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pipelining, out-of-order execution) can make these values difficult to predict accurately. Furthermore, the

compute time for UDFs containing data-dependent control flow code is impossible to predict; in these cases,

we make a conservative estimate that assumes the fewest number of cycles. For most UDFs, though, we find

that our predictions typically differ from the measured compute times by only a few cycles.

Load Time

Load time refers to the number of cycles necessary to fetch UDF operands from memory. If the memory

controller can fetch UDF operands faster than the CPU can process them, then the UDF is compute-bound;

otherwise, the CPU becomes starved, and the UDF is memory-bound. Load time is given by:

Load T ime =
Clock Speed×Operand Size

Bandwidth per Core
(2.1)

For example, the load time for the distance UDF as shown in Table 2.2 with 32-bit floating-point (x, y)

pairs using an Intel E5 processor with a 2.8GHz clock speed and 5.97GB/s memory bandwidth per core is

calculated as follows: 3.75 cycles = 2.8GHz×(2×4B)
5.97GB/s

.

2.3.2 Optimizer

The key idea of operator-centric code generation is to integrate high-level query optimization techniques with

low-level compiler techniques in order to apply new optimizations that were previously impossible. The

Optimizer translates a workflow into a distributed program by generating all of the necessary control flow,

synchronization, and communication code with embedded references to the UDFs, as shown in Figure 2.2.

While generating this code, our Optimizer can apply a broad range of optimizations that occur on both a logical

and physical level, which we divide into three categories.

High-Level

We utilize well-known query optimization techniques, including predicate pushdown and join reordering.

Additionally, our purely functional programming model allows for the integration of other traditional optimiza-

tions from the programming language community. All high-level optimizations rely on metadata and algebra

semantics, information that is unavailable to compilers, but are not particularly unique to our approach.

Low-Level

Unlike other systems that use interpreted execution models, Volcano-style iterators, or remote procedure calls,

our code generation approach eliminates much associated overhead by compiling in these mechanisms. We

also gain many compiler optimizations (e.g., inline expansion, SIMD vectorization) “for free” by compiling

workflows, but these optimizations occur at a much lower level than DBMSs typically consider.
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Combined

Some systems incorporate DBMS and compiler optimizations separately, first performing algebraic transfor-

mations and then independently generating code based upon a fixed strategy. On the other hand, our approach

combines an optimizable high-level algebra and statistics gathered by the UDF Analyzer with the ability to

dynamically generate code, enabling optimizations that would be impossible for either a DBMS or compiler

alone. In particular, our Optimizer considers (1) high-level algebra semantics, (2) metadata, and (3) low-level

UDF statistics together in order to generate different code on a case-by-case basis. We describe several of

these optimizations in Section 2.4.

2.3.3 Linker

After translating the workflow to a distributed program, the generated code has several embedded references

to the supplied UDFs. This code then needs to be merged with the LLVM IR for each referenced UDF. The

Linker performs the merging process, using an LLVM pass to combine them. It is often beneficial to perform

inline expansion, and the Linker replaces call sites directly with the UDF body, providing further performance

improvements over frameworks that require external function calls.

2.4 Operator-centric Optimizations

The most interesting and unique opportunities for optimizing a UDF workflow fall into the third category

described in Section 2.3, which combines high-level query optimization techniques with low-level compiler

techniques to produce a new class of optimizations that were previously impossible. This section describes a

novel optimization process that considers the data, UDFs, and underlying hardware together in order to generate

different code on a case-by-case basis. As a first step towards exploring this new class of optimizations, we

propose heuristics for the following three scenarios: (1) program structure, (2) aggregation, and (3) selection.

While these heuristics do not represent an exhaustive list of all optimizations that we perform, they apply

to many common use cases and contribute to the overall speedup over other systems in our benchmarks

(Section 2.6).

2.4.1 Program Structure

The first optimization we examine considers the most fundamental aspect of any code generation strategy, the

overall program structure, which refers to the organization of the generated control flow code. This section

describes two existing approaches to program structure and then presents our first heuristic, which allows our

Optimizer to dynamically construct a hybrid program structure based on low-level UDF characteristics. Then,

we propose an extension to this heuristic specifically for group-by aggregations.
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Existing Strategies

Existing systems that compile queries rely on a static code generation strategy. These approaches advocate for

a single dominant program structure and generate the same code in all situations.

Pipeline: The pipeline [95] (i.e., data-centric) strategy maximizes data locality by performing as many

sequential operations as possible per tuple. Operations called pipeline breakers force the materialization of

intermediate results. For example, a reduce forces materialization of an aggregation result, while consecutive

maps can be pipelined. The following pseudocode shows the pipeline approach to the k-means example from

Section 2.1.

data[N];

while (converge()) {

for (i = 0; i < N; i++) {

dist = distance(data[i]);

min = minimum(dist);

reassign(min);

}

recompute();

}

distance

minimum

reassign

recompute

The pipeline strategy has the major advantage of requiring only a single pass through the data. Additionally,

a tuple is likely to remain in the CPU registers for the duration of processing, resulting in excellent data

locality.

Operator-at-a-time: In contrast, the operator-at-a-time (i.e., vectorized [30] 1) strategy performs a

single operation at a time for all tuples. This bulk processing approach maximizes instruction locality and

opportunities for SIMD vectorization. The pseudocode below shows the operator-at-a-time approach to

k-means.

data[N]; dist[N]; min[N];

while (converge()) {

for (i = 0; i < N; i++)

dist[i] = distance(data[i]);

for (i = 0; i < N; i++)

min[i] = minimum(dist[i]);

for (i = 0; i < N; i++)

reassign(min[i]);

recompute();

}

distance

minimum

reassign

recompute

However, the operator-at-a-time strategy requires materialization of intermediate results between each

operator, resulting in poor data locality. A tiled approach can perform each operation on a cache-resident

subset of the data, thus reducing materialization costs and saving memory bandwidth, but does not achieve the

same level of data locality as the pipeline strategy.

1MonetDB does not fully compile queries; rather, the system produces assembly-like language (MAL) for execution by a VM.



18

Hybrid Strategy

When considering UDF-centric workflows, neither the pipeline nor operator-at-a-time approach is a dominant

strategy. Since our Compilation process can introspect UDFs, we propose a hybrid strategy, called operator-

centric code generation, that dynamically combines the pipeline and operator-at-a-time approaches based on

low-level UDF statistics.

Our strategy first groups all operators into a single pipeline P in order to maximize data locality. Next, for

each operatorO in P , we leverage the UDF statistics gathered by the UDF Analyzer in order to partition P into

a set of vectorizable (i.e., can leverage SIMD) and nonvectorizable (i.e., cannot leverage SIMD) sub-pipelines

P ′. Intermediate results are materialized between sub-pipelines in cache-resident blocks to reduce the amount

of data transferred from memory to the CPU. Note that if the workflow contains no vectorizable UDFs, then

the original single-pipeline structure is preserved. By the end of the algorithm, all sub-pipelines should be

composed uniformly of either vectorizable or nonvectorizable UDFs.

The only exception to this rule arises when a group of one or more vectorizable UDFs appears at the

beginning of a pipeline because of the previously discussed memory bandwidth bottleneck. If the scalar

version is already memory-bound, then the vectorizable sub-pipeline should be merged with the adjacent

nonvectorizable sub-pipeline in order to benefit from data locality, since no additional performance increase

can be achieved with SIMD vectorization.

Consider again the k-means algorithm. Given the statistics provided by the UDF Analyzer (Table 2.2), we

notice that the distance and minimum UDFs are vectorizable because they (1) contain no data-dependent

control flow code and (2) have the appropriate apply operator semantics (i.e., they produce a strict 1-to-1

mapping). Therefore, these two UDFs can be split into a separate sub-pipeline, but, since this sub-pipeline

resides at the beginning of the workflow, we must also ensure that the computation is not memory-bound.

In this case, we see that Compute T ime > Load T ime, so this sub-pipeline is compute-bound and should

therefore be partitioned to yield the following program structure.

data[N]; min[N];

while (converge()) {

for (i = 0; i < N; i++) {

dist = distance(data[i]);

min[i] = minimum(dist);

}

for (i = 0; i < N; i++)

reassign(min[i]);

recompute();

}

distance

minimum

reassign

recompute

The pseudocode shown above has the major advantage of being able to vectorize the expensive distance

and minimum UDFs while also minimizing the amount of data materialized between operators. Hence, we

propose the following heuristic to summarize our hybrid program structure strategy.

Heuristic 1a An operator pipeline should always be partitioned into vectorizable and nonvectorizable sub-

pipelines, unless the first operator is memory-bound.
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Contribution: The competing pipeline and operator-at-a-time strategies each use a static program structure

pattern for compiling traditional SQL queries. However, for complex analytics tasks, UDF characteristics can

shift the bottlenecks to favor one of these strategies over the other. For instance, a memory-bound workflow

containing many simple UDFs would benefit most from the pipeline approach, whereas the operator-at-a-time

approach is better suited for compute-bound workflows with complex UDFs. Often, a combination of these two

strategies is optimal, and our approach introspects UDFs to dynamically generate a hybrid program structure

that best leverages the underlying hardware.

2.4.2 Aggregation

As described in Section 2.2, a reduce allows users to perform an aggregation in a workflow. Our Optimizer

can dynamically generate different code based upon high-level aggregate operator semantics and low-level

UDF features. In this section, we present heuristics specific to aggregations.

Group-by

In order to aggregate values grouped by key, reduces normally require a hash table to store keys and associated

aggregates. Since hash table lookups contain unpredictable memory accesses, reduce UDFs cannot be

vectorized. However, a group-by aggregation is actually comprised of three distinct steps: (1) apply an explicit

user-defined key function k; (2) compute the key’s hash value using a hash function h; and (3) retrieve/update

the associated aggregate value. Since the first two steps have no dependencies, the key/hash functions can be

performed in parallel using SIMD vectorization, followed by serial execution of the aggregate value update, as

shown below for a sum grouped by key.

data[N]; hash[TILE]; sum[M] = {0};

for (i = 0; i < N / TILE; i++) {

offset = i * TILE;

for (j = 0; j < TILE; j++) {

key = k(data[offset + j]);

hash[j] = h(key);

}

for (j = 0; j < TILE; j++)

sum[hash[j]] += data[offset + j];

}

The above pseudocode iterates over the data in cache-sized tiles. The first inner loop applies the key

function k and then the hash function h, storing the hash values in a temporary array. The second inner

loop performs the hash table lookup using the precomputed hash values and adds the data values to the

corresponding sum.

Separating a group-by aggregation into two loops introduces the additional overhead of materializing

the computed hash values. In many cases, compute-bound key/hash functions benefit greatly from SIMD

vectorization, outweighing this extra cost. However, very simple memory-bound functions will receive no

added benefit from SIMD vectorization and should instead be pipelined.
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The astute reader may notice that a reduce grouped by key logically consists of two 1-to-1 maps (i.e., the

key/hash functions) followed by the aggregation. We can then apply the algorithm from Heuristic 1a in order

to determine whether to partition the pipeline. Therefore, we propose the following extension to the original

heuristic.

Heuristic 1b All group-by reduce operations should be decomposed into two 1-to-1 map operations (the

key/hash functions) followed by the aggregation and then optimized using Heuristic 1a.

Contribution: The idea of vectorizing hash computations for group-by aggregations is not new [106, 107,

117]. Other work [106, 108, 111] explores the use of SIMD vectorization for interacting with specialized data

structures like Bloom filters. However, our approach can dynamically decide whether SIMD vectorization is

beneficial because we allow the user to explicitly provide a key function that our Compilation process can then

introspect to determine whether the key/hash functions are compute-bound.

Context Variables

Recall that reduce UDFs can also perform aggregations by updating shared state Context variables. Since the

data types and output cardinality (i.e., number of distinct keys) are known a priori, our Optimizer can generate

code that uses a form of distinct value encoding at compile time to translate Context variable dictionary

lookups into static memory addresses. For example, since the number of centroids is fixed up front in the

k-means workflow (Section 2.1), all lookups in the reassign UDF can be automatically replaced at compile

time with an offset into a one-dimensional array. The pseudocode for the original version is shown below on

the left, with the optimized version on the right.

//original

assign = t1[ATTR];

for (i = 0; i < ATTR; i++)

c["sum"][assign][i] += t1[i];

c["count"][assign]++;

//optimized

assign = t1[ATTR];

offset = assign * (ATTR + 1);

for (i = 0; i < ATTR; i++)

c[offset + i] += t1[i];

c[offset + ATTR]++;

Notice that in the optimized code, the Context variable lookups c["sum"] and c["count"] have

been automatically replaced with the static memory locations at the specified offsets. Not only do we avoid

expensive dictionary lookups every time this UDF is invoked, but we also improve cache line performance by

flattening the dictionary to a one-dimensional array. We therefore propose the following heuristic.

Heuristic 2 All references to Context variables inside UDFs should be replaced with static memory locations

at compile time by mapping distinct keys to physical address offsets.

Contribution: Aggregations grouped by key typically require resizable dictionary structures (e.g., hash

tables, binary trees) to handle an arbitrary number of keys. Spark uses a standard hash table to perform

reduce operations, but the user can achieve better performance in some simple cases with the aggregate

operator by manually mapping keys to array indices. On the other hand, our API allows users to specify the

output cardinality in advance with the Context, and we can leverage this information to generate code that

avoids expensive dictionary lookups and automatically handles the array index mapping.
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sd
b

if r is exact

d otherwise


︸ ︷︷ ︸

Result Strategy

(2.2)

2.4.3 Selection

Optimizing selections is a well-studied problem, but our operator-centric approach goes a step further by

pairing code generation techniques with data statistics to get better performance than either a traditional query

optimizer or compiler alone. In this section, we present a heuristic for optimizing selections on the code

generation level. We separately investigate (1) predicate evaluation and (2) result allocation, and we then

propose a cost model that considers several parameters (e.g., number of predicates, estimated selectivities) to

dynamically determine the best combination of strategies.

Predicate Evaluation

The initial step in performing a selection is to evaluate whether a particular tuple satisfies the predicate. We first

demonstrate existing evaluation strategies and then describe a novel prepass strategy. For now, all pseudocode

examples assume a sufficiently large result buffer, and we explore efficient result allocation strategies separately

in the following section.

Branch: The branch strategy is the most straightforward approach. For each input tuple, a conditional

statement checks to see whether that tuple satisfies the predicate. If the predicate is satisfied, then the tuple is

added to a result buffer; otherwise, the loop skips the tuple and proceeds to the next tuple. The branch strategy

is shown below.

data[N]; result[M]; pos = 0;

for (i = 0; i < N; i++)

if (pred(data[i]))

result[pos++] = data[i];

This strategy performs well for both very low and high selectivities, when the CPU can perform effective

branch prediction. For intermediate selectivities (i.e., closer to 50%), though, branch misprediction penalties

have a severe negative impact on performance.

No-branch: The no-branch strategy [116] (sometimes called “predicated” selection [30]) eliminates

branch mispredictions by replacing the control dependency with a data dependency. This approach maintains

a pointer to the current location in the result buffer that is incremented every time an input tuple satisfies the

predicate. If a tuple does not satisfy the predicate, then the pointer is not incremented and the previous value is

overwritten. The no-branch strategy is shown below.

data[N]; result[M]; pos = 0;

for (i = 0; i < N; i++) {

result[pos] = data[i];

pos += pred(data[i]);

}
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This strategy includes no conditional statements, which yields better performance than the branch strategy

for intermediate selectivities by avoiding CPU branch mispredictions.

Prepass: We additionally propose a novel two-phase strategy for selections that improves CPU utilization

by performing the predicate test and copy steps independently. Like group-by aggregations, predicate

evaluation also logically consists of two distinct steps: (1) testing if a tuple passes the selection criteria (i.e.,

the branch strategy’s if conditional and the no-branch strategy’s pos increment statement); and (2) copying

the tuple to the result buffer. Therefore, we can again decompose predicate evaluation into a vectorizable

1-to-1 map followed by a nonvectorizable, data-dependent operation. As shown below, this strategy performs

these two steps on cache-sized tiles.

data[N]; result[M]; bitmap[TILE]; pos = 0;

for (i = 0; i < N / TILE; i++) {

offset = i * TILE;

for (j = 0; j < TILE; j++)

bitmap[j] = pred(data[offset + j]);

for (j = 0; j < TILE; j++) {

result[pos] = data[offset + j];

pos += bitmap[j];

}

}

The first inner loop performs the predicate test and stores the result in a bitmap, while the second inner

loop copies tuples to the result buffer that have passed the selection criteria using either the no-branch (shown

above) or the branch strategy. With this technique, predicate evaluation can be partially vectorized because

there are no data dependencies in the testing step. Additionally, the resulting code contains tighter loops, thus

improving instruction locality.

Result Allocation

Result allocation is particularly difficult for selections, since the output size is not known a priori. We consider

three existing strategies and then describe a novel result allocation technique.

Tuple-at-a-time: The most conservative approach to result allocation is to allocate space for only a

single output tuple each time an input tuple satisfies the predicate. Tuple-at-a-time allocation minimizes the

amount of wasted space, but the overhead associated with allocating in such small increments quickly becomes

prohibitive for even relatively small data sizes.

Max: The other extreme would assume a worst-case scenario and allocate all possible necessary space,

thereby paying a larger allocation penalty once at the beginning to completely avoid result bounds checking.

This approach may work well for very high selectivities but wastes a lot of space for low selectivity cases.

Block: The block allocation strategy is a compromise between the tuple-at-a-time and max strategies. This

approach incrementally allocates space for blocks of tuples (e.g., 1024 tuples at a time) in order to balance the

required number of allocations and the amount of wasted space.

Exact: All of the previously described allocation strategies make blind decisions regarding result buffer

allocation; that is, the max strategy always assumes a selectivity of 100%, while the tuple-at-a-time and block
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strategies need to decide whether each tuple satisfying the predicate necessitates a new result buffer allocation.

Therefore, we can adapt the previously described prepass strategy to also maintain a simple counter when

computing the bitmap values, allowing us to generate code that only performs bounds checking if the result

buffer could overflow.

Cost Model

We propose a cost model in Equation 2.2 for choosing the optimal combination of evaluation and result

strategies given (1) data selectivity, (2) number of predicates, and (3) number of tuple attributes. Each term

models the important features of the various strategies, with a summary of notations shown in Table 2.3.

Symbol Description
e Evaluation strategy e ∈ {branch, no-branch}
r Result strategy r ∈ {max, exact, batch}
b Block size 1 ≤ b ≤ d
s Selectivity 0 < s < 1
m Wasted memory fraction 0 < m < 1
d Number of data elements
p Number of predicates
a Number of attributes
n SIMD parallelism

Table 2.3: Cost model notation.

Every component of the cost model has an associated weight (c1, ..., c5), which are constants representing

the approximate number of cycles for a particular operation (e.g., branch misprediction, comparison, data

copy). These constants are architecture-dependent and can be estimated a priori.

In the evaluation strategy component, the term following the c1 constant (i.e., 1
2|s−0.5|+ε ) considers the

cost of CPU branch misprediction using the absolute distance of the data selectivity from 50%. Conversely,

since the no-branch strategy cannot perform short-circuit evaluation, the term following the c2 constant models

the cost of evaluating all p predicates, while the term following the c3 constant considers the cost of extra

attribute copying that the no-branch strategy performs for tuples not satisfying the selection criteria.

In the result strategy component, the term containing the c4 constant expresses the cost of allocating the

necessary number of blocks of size b for all attributes a, where the cost of memory allocation scales with b

(i.e., allocating a single large piece of memory is less expensive than allocating the same amount of memory in

multiple smaller blocks). Lastly, the term following the c5 constant models the cost of result bounds checking

performed by each strategy.

The output of our cost model is a plan (e, r, b) representing the optimal predicate evaluation strategy e,

result allocation strategy r, and block size b within the user-specified wasted memory fraction m. We use this

cost model to derive our final heuristic.

Heuristic 3 For all selection operations, choose the combination of evaluation strategy, result strategy, and

block size that minimizes the cost for the given parameters (Equation 2.2).
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Contribution: We proposed a cost model that our Optimizer uses to generate different code for selections

on a case-by-case basis. Unlike other work [111, 116] that only examines the tradeoffs between the branch

and no-branch predicate evaluation strategies, our approach introduces a novel prepass strategy that achieves

better performance through SIMD vectorization and tighter loops, and we can perform these optimizations

only by combining UDF introspection with traditional DBMS techniques. Moreover, our cost model addition-

ally considers the impact of various result allocation strategies and related optimizations, whereas existing

approaches always assume a sufficiently large result buffer. Our cost model can also be easily extended to

consider additional operations (e.g., map, reduce) that might follow a selection in a workflow.

2.5 Execution

While the intricacies of distributed workflow execution are important, they are beyond the scope of this work.

This section briefly describes our approach to some of the main challenges.

2.5.1 Load Balancing

Our data request model is multitiered and pull-based, allowing for automatic load balancing with minimal

overhead. We dedicate a single thread on a single node in the cluster as the Global Manager (GM), which is

responsible for global decisions such as the coarse-grained partitioning of data across nodes and supervising

the current stage of the execution. In addition, we dedicate one thread per node as a Local Manager (LM).

The LM is responsible for fine-grained management of the local shared memory, as well as transferring data

between nodes. The LM also spawns new Executor (E) threads for running compiled workflows. These threads

request data in small cache-sized blocks from the LM, and each LM in turn requests larger blocks of data from

the GM, possibly from remote nodes. All remote data requests occur asynchronously, and blocks are requested

in advance to mask network transfer latency.

2.5.2 Memory Management

The LM is responsible for tracking all active T-Sets and performing garbage collection when necessary. UDFs

that allocate their own memory, though, are not managed by the LM’s garbage collector. TUPLEWARE also

avoids unnecessary object creations and data copying (e.g., performing updates in-place if the data is not

required in subsequent computations). Additionally, the LM can reorganize and compact the data while idle,

potentially even performing on-the-fly compression.

2.5.3 Fault Tolerance

TUPLEWARE further improves performance by forgoing traditional fault tolerance mechanisms for short-lived

jobs, where the probability of a failure is low and results are easy to fully recompute. Extremely long-running

jobs on the order of hours or days, though, might benefit from intermediate result recoverability. In these

cases, TUPLEWARE can perform simple k-safe checkpoint replication. By compiling workflows to distributed
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programs, TUPLEWARE can optionally generate these checkpointing mechanisms in individual cases based on

estimates of the expected runtime and likelihood of a hardware failure.

2.6 Evaluation

This section evaluates the techniques described in this chapter. First, we compare our TUPLEWARE prototype

in a distributed setting against Hadoop and Spark and on a single machine against HyPer, MonetDB, and

Spark. We then provide a detailed performance breakdown to measure the impact of each optimization from

Section 2.4 in realistic scenarios, further isolating their effects in detailed microbenchmarks. We conducted

all experiments on Amazon EC2 using either: (1) c3.8xlarge instances with Intel E5-2680v2 processors

(10 cores, 25MB cache), 60GB RAM, 2 × 320GB SSDs, and 10 Gigabit*4 Ethernet; or (2) m3.xlarge

instances with 4 vCPUs, 15GB RAM, and 2× 40GB SSDs.

2.6.1 Distributed Benchmarks

Algorithm
10×c3.8xlarge 100×m3.xlarge

Hadoop Spark TUPLEWARE Hadoop Spark TUPLEWARE
1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB

kmeans 1621 5023 36818 4.41 31.3 614 0.451 3.11 29.6 1439 4879 40188 5.89 30.5 274 0.998 4.37 28.9
pagerank 1438 2666 7019 56.6 119 1076 17.1 35.2 102 1456 2623 7290 89.7 183 1719 20.3 31.9 94.2

logreg 1197 1865 6201 2.08 2.45 6.21 0.125 0.431 2.79 1180 1769 6107 3.19 3.71 8.08 0.632 1.34 2.48
bayes 5.18 5.27 6.03 0.532 0.628 0.815 0.047 0.149 0.485 5.29 5.41 5.77 0.603 0.759 1.19 0.184 0.317 0.575

Table 2.4: Distributed benchmark runtimes (seconds).

We compared TUPLEWARE against two prominent distributed analytics frameworks (Hadoop 2.4.0 and

Spark 1.1.0) on a (1) small high-end cluster of 10×c3.8xlarge instances and (2) large commodity cluster

of 100×m3.xlarge instances.

Workloads and Data

We implemented a version of four common ML tasks for each system without using any specialized libraries

(e.g., Mahout [7], MLlib [9], BLAS [4]), as we wanted to evaluate the performance of the core frameworks.

We used synthetic datasets of 1GB, 10GB, and 100GB in order to test across a range of data characteristics

(e.g., size, dimensionality, skew). Our results report the total runtime of each algorithm after the input data has

been loaded into memory and parsed, with the caches warmed up 2. For all iterative algorithms, we always

perform exactly 20 iterations.

K-means: As described in Section 2.1, k-means is a clustering algorithm that iteratively partitions a

dataset into k clusters. Our test datasets were generated from four randomly selected centroids.

PageRank: PageRank is an iterative link analysis algorithm that assigns a weighted rank to each page in

a web graph to measure its relative significance. Our test dataset was generated with 1 million pages and a

normal distribution of links.
2Hadoop is disk-based, so the cache cannot be warmed up.
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Logistic Regression: Logistic regression aims to find a hyperplane that best separates two classes. Our

implementation uses batch gradient descent to classify generated data with 1024 features.

Naive Bayes: A naive Bayes classifier is a conditional model that uses feature independence assumptions

to predict class labels. Our generated dataset had 1024 features, each with 10 possible values.

Discussion

As shown in Table 2.4, TUPLEWARE outperforms Hadoop by up to three orders of magnitude and Spark by up

to two orders of magnitude for the tested ML tasks. In general, we find that the absolute runtimes are generally

lower for the 100-node cluster due to the larger number of cores (400 vCPUs vs. 320 vCPUs) and higher

aggregate memory bandwidth than the 10-node cluster, although the distributed coordination costs for more

machines impose a larger, constant overhead most noticeable in the small 1GB experiments.

Hadoop incurs substantial I/O overhead from materializing intermediate results to disk between iterations.

On the other hand, TUPLEWARE caches intermediate results in memory and performs hardware-level optimiza-

tions to improve CPU efficiency. For these reasons, we measure the greatest speedups over Hadoop on the

iterative tasks (i.e., k-means, PageRank, logistic regression), whereas the performance gap for naive Bayes is

much smaller.

Spark also outperforms Hadoop for iterative tasks by keeping the data memory-resident. Additionally,

Spark offers a richer API that allows the runtime to pipeline operators, improving data locality. However,

TUPLEWARE achieves additional speedups over Spark by compiling workflows into distributed programs

(Section 2.3) and employing low-level code generation optimizations (Section 2.4). These optimizations are

most beneficial in CPU-intensive tasks (e.g., k-means) because they allow TUPLEWARE to more efficiently

use the available hardware resources. For instance, Spark shows particularly poor performance in the 100GB

k-means case because the default internal data representation exceeds the aggregate 600GB memory. Other

tasks (e.g., logistic regression, naive Bayes) operate close to the memory bandwidth limit, but TUPLEWARE’s

code generation techniques can still show improvements over Spark’s approach.

Finally, we noticed that the more network-bound tasks (e.g., PageRank) show absolute runtimes for both

Spark and TUPLEWARE that tend to increase sublinearly compared to data size. We observed this effect

because the PageRank workloads used an increasing number of page links but a fixed number of distinct pages

(i.e., 1 million), and the ranks for those pages needed to be redistributed to all workers in the cluster on every

iteration. For algorithms like PageRank, TUPLEWARE’s Context variables are highly efficient for representing

an ML model that needs to be iteratively redistributed.

2.6.2 Single Node Benchmarks

We also compared TUPLEWARE on a single c3.8xlarge instance to a DBMS that uses query compilation

(HyPer), a column-store (MonetDB 5), and Spark. As mentioned in Section 2.4, HyPer compiles SQL queries

using the pipeline strategy, whereas MonetDB implements the operator-at-a-time strategy.
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Algorithm 1×c3.8xlarge
Spark HyPer MonetDB TUPLEWARE

kmeans 6.34 2440 8639 0.615
pagerank 212 1220 272 19.5

logreg 1.96 118 153 0.259
bayes 0.107 6.34 2.11 0.042
tpch1 3.29 0.127 1.71 0.341
tpch4 9.69 0.388 0.382 1.42
tpch6 0.971 0.048 0.128 0.105

Table 2.5: Single node benchmark runtimes (seconds).

Workloads and Data

In addition to the four previously described ML tasks, we also included three TPC-H queries (Q1, Q4, Q6).

Since the scale is smaller, we wanted to evaluate the performance of the ML tasks using real-world datasets.

For the DBMSs, we implemented the ML algorithms in SQL without UDFs, and all reported runtimes exclude

compilation time.

UK Crime: We ran k-means on a 240MB dataset [15] containing GPS coordinates of crimes in the UK

over the past five years.

Wikipedia Web Graph: We ran PageRank on a randomly sampled 1GB subset of Wikipedia’s complete

dump of articles, containing about 6 million pages and 130 million links [16].

Million Song Dataset: We used a randomly sampled 1GB subset of the Million Song Dataset [27]

containing 90 audio features and the release year for each song. Logistic regression and naive Bayes were

used to predict each song’s release year.

TPC-H: TPC-H is a popular OLAP benchmark that contains BI queries. Even though TUPLEWARE’s

focus is optimizing for UDF-centric workflows (e.g., ML), we wanted to show that some of the optimization

techniques we developed also apply to more traditional SQL analytics queries. We implemented three TPC-H

queries (Q1, Q4, Q6) in TUPLEWARE and compared the performance to HyPer, MonetDB, and SparkSQL

using a scale factor of 10. We selected these three queries because they do not focus on join optimizations,

which we have not explored in this chapter.

Discussion

As shown in Table 2.5, TUPLEWARE outperforms Spark, HyPer, and MonetDB for all ML tasks. In particular,

HyPer and MonetDB both perform poorly on the ML workloads because they are not designed to express or

optimize complex, iterative UDF workflows. On the other hand, the DBMSs can execute the TPC-H queries

very efficiently by applying well-known OLAP optimization techniques, including indexing, sorting, and

columnar compression, all of which TUPLEWARE does not currently implement. However, by tuning the

level of parallelism (i.e., number of threads) to optimally saturate memory bandwidth, TUPLEWARE can

achieve better performance than both HyPer and MonetDB on Q6, which is a simple scalar aggregation, but

we chose instead to match Spark’s level of parallelism in order to ensure a fair comparison for the performance

breakdown in the following section.
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Spark similarly outperforms the DBMSs for the ML tasks, but SparkSQL is slower than all other systems

for the TPC-H queries. Although Spark can handle UDF workflows better than the DBMSs, our previously

described code generation techniques and optimizations enable TUPLEWARE to achieve about an order-of-

magnitude speedup over Spark for all workloads. We further explore the source of these speedups in the

following section.

2.6.3 Performance Breakdown

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

90%	
  

100%	
  

kmeans	
   pagerank	
   logreg	
   bayes	
   tpch1	
   tpch4	
   tpch6	
  

%
	
  o
f	
  S

pe
ed

up
	
  

Code	
  GeneraCon	
   Compiler	
   H1	
   H2	
   H3	
   Other	
  

Figure 2.3: A performance breakdown with percentage speedups achieved by TUPLEWARE over Spark
from the single node benchmarks.

Since Spark is the closest in spirit to TUPLEWARE, we provide a detailed breakdown that highlights the

impact of different components on overall workflow runtime. We conducted all breakdown experiments

on a single c3.8xlarge instance to exclude factors that impact distributed performance (e.g., network

object serialization). Figure 2.3 shows the isolated percentage contribution of each component to the total

speedup of TUPLEWARE over Spark for the single node benchmarks from the previous section shown in

Table 2.5. To derive the absolute time saved by a particular optimization, one can take the percentage from

Figure 2.3 and multiply this value by Spark’s runtime in Table 2.5 (e.g., Heuristic 1 saves approximately

15%× 6.34s = 0.951s).
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Code Generation

In contrast to Spark’s JVM-based implementation that uses polymorphic iterators, TUPLEWARE directly gener-

ates LLVM code for workflow execution. Code generation provides substantial speedups for compute-intensive

UDF workflows by avoiding many sources of runtime overhead associated with high-level abstractions, includ-

ing dynamic dispatch of function calls, object creation penalties, and unnecessary loop bounds checking. As

shown in Figure 2.3, the performance impact of code generation is most noticeable in workflows containing

tight loops or complex instructions (e.g., sqrt in k-means). These speedups represent the baseline perfor-

mance improvements that can be achieved by applying our techniques to generate code that explicitly manages

memory, resolves polymorphic function calls at compile time, and performs type specialization, among other

advantages. We measured each of these components by comparing against a baseline of generated code to

isolate the various inefficiencies introduced by high-level abstractions like Java and iterators.

Compiler

By generating code, TUPLEWARE can also leverage a wide variety of modern compiler optimizations “for

free,” including inline expansion and SIMD vectorization. Inline expansion particularly benefits workflows

comprised of many UDFs (e.g., k-means, all TPC-H queries) by eliminating extra instructions associated

with external function calls and minimizing register spilling. On the other hand, SIMD vectorization can

improve the performance of UDFs that use vectorizable loops internally. For example, the compiler can

automatically vectorize the for loop used to compute the dot product for each data element in logistic

regression, yielding a substantial performance improvement for this task. We evaluated the impact of this

component by comparing runtime performance of the generated code to a baseline that used compiler flags to

disable individual optimizations.

Operator-centric Optimizations

All of the heuristics described in Section 2.4 combine high-level semantic information about the workflow

with low-level UDF statistics gathered by introspecting LLVM IR in order to further improve the performance

of the generated code. As shown in Figure 2.3, these optimizations offer additional speedups targeted to

characteristics of individual workloads. For example, Heuristic 1 (H1) selects a hybrid program structure to

alleviate the CPU bottlenecks in several workflows, which substantially outperforms Spark’s static pipeline

strategy in these cases. Similarly, the Context variable optimizations from Heuristic 2 (H2) help the most

in workflows with aggregate values that are frequently updated in a random order. Finally, for workflows

containing selections (i.e., the TPC-H queries), Heuristic 3 (H3) allows TUPLEWARE to generate more efficient

code by also considering data selectivities. We evaluated each individual heuristic by comparing the optimized

generated code to a baseline version that does not apply that heuristic.

Other

The remaining speedups in each workload can be attributed to various factors, including scheduling overhead in

Spark, garbage collection pauses, and intangible engineering differences. In some workloads (e.g., PageRank,
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logistic regression), the observed speedups are explained almost entirely by the application of our workflow

compilation techniques (Section 2.3). However, the performance improvements in other workloads are much

more difficult to quantify. In particular, TUPLEWARE’s speedup over SparkSQL in the TPC-H queries is less

straightforward, since inefficient data structure implementations or suboptimal plan selection for complex SQL

queries can have a significant performance impact.

2.6.4 Microbenchmarks
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Figure 2.4: Heuristic microbenchmarks.

As previously described, our operator-centric code generation strategy (Section 2.4) uses information

about the workflow, data, and UDFs in order to generate better code. In this section, we use a series of

microbenchmarks to study the benefits of each of our proposed heuristics. All microbenchmarks were

implemented in C++, compiled with Clang 3.4, and run on a single c3.8xlarge instance.
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Heuristic 1a

We compared our hybrid strategy to the pipeline and operator-at-a-time strategies using the previously

described k-means task. We tested each strategy with varying data sizes and show the results in Figure 2.4a.

The pipeline strategy provides excellent data locality but prohibits any SIMD vectorization due to the fact that

the reassign UDF cannot be vectorized. Conversely, the operator-at-a-time strategy benefits greatly from

bulk processing but fails to consider data locality. Using this approach, the distance and minimum UDFs

can be vectorized separately, but materializing intermediate results between each operator incurs significant

overhead. Our hybrid strategy outperforms both existing strategies by taking advantage of SIMD vectorization

when possible while also pipelining consecutive vectorizable operations for better data locality, achieving a

2-5× speedup.

Heuristic 1b

We compared standard scalar hashing to our vectorized hashing approach by performing a sum grouped by

key on 512MB of data. We varied the number of distinct, uniformly distributed keys and used a simple hash

function (mod10). Figure 2.4b shows a 20% performance increase in this simple case for vectorized hashing.

However, using a more complex hash function would achieve greater speedups with SIMD vectorization.

Heuristic 2

We compared our Context variable implementation to a standard hash table in order to compute a count

grouped by 10 distinct keys with varying data sizes. Figure 2.4c shows that Context variables can improve

performance by as much as 16×.

Heuristic 3

In order to evaluate our cost model, we conducted an extensive series of microbenchmarks that test all strategies

across a range of three parameters: (1) minimum predicate selectivity, (2) total number of predicates, and (3)

number of tuple attributes. We show the results of these experiments in Figure 4d, which we limit to only the

most salient cases. Each row of charts represents different numbers of predicates and tuple attributes, and each

column corresponds to a result allocation strategy. For each chart, we show all possible predicate evaluation

strategies. We measure the total runtime on the y-axis for the varying selectivities shown on the x-axis. In all

tested cases, our cost model correctly chose the strategy combination with the lowest runtime.



Chapter 3

Query-centric Code Generation

In the previous chapter, we discussed two different approaches to code generation: (1) data-centric and (2)

operator-centric. However, both of these categories share one key commonality, namely that they optimize

and generate code by reasoning at the level of traditional query operators. On one hand, the data-centric

approach optimizes across operator boundaries by merging distinct query operators into combined statements

to maximize data locality. On the other hand, operator-centric strategies group query operators together to

better enable low-level optimizations (e.g., SIMD, prefetching).

Unfortunately, by utilizing this traditional abstraction, existing approaches place an arbitrary restriction on

the variety of code that they can produce, and generated queries end up resembling amalgamations of clearly

delineated operator templates. In reality, though, systems that use code generation do not actually need to

adhere to this abstraction, since they have complete freedom to create ad hoc operators as necessary.

Therefore, in this chapter, we propose a new query-centric code generation strategy, called BESPOKE.

Unlike existing strategies that optimize for and generate code at the level of traditional query operators,

BESPOKE optimizes across traditional operator boundaries to produce code optimized at the level of the entire

query. In particular, we apply the concept of “predicate pullups” in order to produce more streamlined code

that outweighs the penalties of performing wasted work.

The remainder of this chapter is organized as follows. Section 3.1 presents BESPOKE, our query-centric

code generation strategy, and describes the key techniques we developed for this approach. Then, we provide

an extensive evaluation of all of these techniques in Section 3.2.

3.1 Bespoke

The “predicate pushdown” has long existed as a fundamental query optimization heuristic. The key idea of

this technique is to filter out tuples as early as possible during query processing to avoid having later operators

perform work that is ultimately discarded. In traditional disk-based systems, predicate pushdowns are an

effective way to reduce the amount of data that must be retrieved from disk, as well as to limit the amount of

processing performed by expensive operators (e.g., joins).

32
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However, for in-memory processing, the relatively simple relational comparisons (i.e., ==, !=, >, >=,

<, <=) that normally occur in selection predicates coupled with aggressive columnar compression calls the

traditional wisdom of the predicate pushdown into question. If the CPU has free cycles in many cases, then,

might a “predicate pullup” actually be better?

Predicate pullups have been previously proposed, including for delaying evaluation of expensive predi-

cates [66] and sharing work among continuous queries [38]. We extend this work and explore the application

of the predicate pullup technique to code generation. In the following, we discuss these extensions for (1)

scalar aggregation, (2) group-by aggregation, and (3) join.

3.1.1 Scalar Aggregation

The simplest form of aggregation is scalar aggregation, where the query has no group-by clause and outputs

a single aggregate value. Figure 3.1a shows TPC-H Q6 from Section 1.1.1, which calculates the sum of

l extendedprice * l discount after applying a predicate over the relation.

Again, the basic data-centric version of the generated code that performs a predicate pushdown for this

query is outlined in Figure 3.1b. As shown, this version evaluates the predicate before adding the product of

l extendedprice * l discount to the running sum, eliminating any wasted work for tuples that do

not satisfy the predicate.

Value Masking

On the other hand, our proposed predicate pushup version is shown in Figure 3.1c. In this version, the single

loop of the basic vectorized query processing approach is broken into a separate inner and outer loop. The

outer loop iterates over the input vector eight tuples at a time, while the inner loop stores the result of each

application of the predicate in the temporary cmp output mask. This is particularly efficient because the

selection can benefit from SIMD due to the lack of both control and data dependencies in the generated code.

Since predicate pullups perform wasted work (i.e., subsequent operators still process tuples that do not

pass the predicate), predicate selectivity plays an important role. More specifically, if the query contains one

or more highly selective predicates, the cmp bitmask in Figure 3.1c will contain mostly zeros, and the follow

up operator will perform a significant amount of wasted work for the tuples that fail the predicate. Therefore,

in such cases, it is valuable instead to switch to an offset-based approach that fetches only the tuples in the

bitmap that have a one instead of fetching all tuples and adding the result of the predicate to the mask.

Indexed Access

Based on this tradeoff, we propose a fall-back that directly considers and attempts to eliminate the data

copying from the operator-centric approach. Instead of copying the values to intermediate result vectors

between operators, we access them by their indexes, similar to the MonetDB/X100 approach [30]. While

this leads to non-uniform accesses, it is more economical than the traditional data copying approach taken by

operator-centric code generation strategies (e.g., Tupleware, ROF).
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select sum(l_extendedprice * l_discount)
from lineitem
where l_shipdate >= '1994-01-01'

and l_shipdate < '1995-01-01'
and l_discount between 0.05 and 0.07
and l_quantity < 24

(a) TPC-H Q6

size_t i; sum = 0.0;
for (i = 0; i < l_len; i++)

if (l_shipdate[i] >= '1994-01-01'
&& l_shipdate[i] < '1995-01-01'
&& l_discount[i] >= 0.05
&& l_discount[i] <= 0.07
&& l_quantity[i] < 24)

sum += l_extendedprice[i] * l_discount[i];

(b) Pushdown

size_t i, j, len; cmp[]; sum = 0.0;
for (i = 0; i < l_len; i += TILE) {
len = l_len - i < TILE ? l_len - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = l_shipdate[i+j] >= '1994-01-01'
& l_shipdate[i+j] < '1995-01-01'
& l_discount[i+j] >= 0.05
& l_discount[i+j] <= 0.07
& l_quantity[i+j] < 24;

for (j = 0; j < len; j++)
sum += (l_extendedprice[i+j] * l_discount[i+j])

* cmp[j];
}

(c) Pushup

size_t i, j, len, pos; cmps[]; idxs[]; sum = 0.0;
for (i = 0; i < l_len; i += TILE) {
len = l_len - i < TILE ? l_len - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = l_shipdate[i+j] >= '1994-01-01'
& l_shipdate[i+j] < '1995-01-01'
& l_discount[i+j] >= 0.05
& l_discount[i+j] <= 0.07
& l_quantity[i+j] < 24;

pos = 0;
for (j = 0; j < len; j++) {

idx[pos] = j;
pos += cmp[j];

}
for (j = 0; j < pos; j++)

sum += l_extendedprice[i+idx[j]]
* l_discount[i+idx[j]];

}

(d) Indexed Access

Figure 3.1: Scalar Aggregation
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size_t i, j, len; cmps[]; tmps[]; sum = 0.0;
for (i = 0; i < l_len; i += TILE) {

len = l_len - i < TILE ? l_len - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = l_shipdate[i+j] >= '1994-01-01'
& l_shipdate[i+j] < '1995-01-01'
& l_quantity[i+j] < 24;

for (j = 0; j < len; j++)
tmp[j] = l_discount[i+j]

* (l_discount[i+j] >= 0.05
& l_discount[i+j] <= 0.07);

for (j = 0; j < len; j++)
sum += l_extendedprice[i+j] * tmp[j] * cmp[j];

}

(e) Access Consolidation

Figure 3.1: Scalar Aggregation (cont.)

In order to decide between the value masking and the indexed approach to accessing data items, we use

a cost model similar to the one previously described in Section 2.4. Based on the data and operations in

the query, we first determine if the computation is compute-bound or memory-bound. If the operation is

compute-bound, it is beneficial to use an index-based approach to pass data items between operators since it

reduces any unnecessary work. On the other hand, if the computation is memory-bound, the extra work is

masked by the data transfer and predicate pullups are beneficial. In Section 3.2, we show cases where each of

these approaches are beneficial.

Access Consolidation

OLAP queries frequently reference the same attributes in multiple places in a query. One notable example is

TPC-H Q1, which has the most computationally expensive SELECT clause of any TPC-H query.

Common Subexpression Elimination (CSE) is a common compiler technique to remove redundant compu-

tations by materializing intermediate values in temporary variables. CSE is straightforward when optimizing a

particular component of the query (e.g., the select clause), but can we go a step further by removing redundant

data accesses across the entire query?

Again, in TPC-H Q6, notice that l discount appears in both the SELECT and WHERE clauses of the

query. Based on this observation, we propose a new rewrite, called Access Consolidation, that removes

redundant data accesses across operator boundaries by directly merging together operators that work on the

same data. More specifically, in this query, the generated code shown in Figure 3.1e eliminates the need to

access the l discount attribute in two separate parts of the query (i.e., the SELECT and WHERE clauses).

Instead, this query only accesses the attribute once, reducing the overhead associated with unnecessary

load/store instructions and increased memory pressure.

3.1.2 Group-By Aggregation

Unlike scalar aggregation, a group-by aggregation produces multiple aggregate values that are grouped by the

attributes listed in the query’s GROUP BY clause.
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select l_returnflag, sum(l_quantity)
from lineitem
where l_shipdate < '1998-09-02'
group by l_returnflag

(a) TPC-H Q1

size_t i, j, len; cmp[]; sums = {0};
for (i = 0; i < l_len; i += TILE) {

len = l_len - i < TILE ? l_len - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = l_shipdate[i+j] < '1998-09-02';
for (j = 0; j < len; j++) {

key = l_returnflag[i+j];
sums[key] += l_quantity[i+j] * cmp[j];

}
}

(b) Mask the Value

size_t i, j, len; key[]; counts = {0};
for (i = 0; i < l_len; i += TILE) {

len = l_len - i < TILE ? l_len - i : TILE;
for (j = 0; j < len; j++) {

cmp = l_shipdate[i+j] < '1998-09-02';
key[j] = l_returnflag[i+j] * cmp + cmp;

}
for (j = 0; j < len; j++)

sums[key[j]] += l_quantity[i+j];
}

(c) Mask the Bucket

Figure 3.2: Group-by Aggregation
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The traditional hash-based aggregation first applies the query predicates using branching. Then, the system

looks up the bucket for the group by key for any tuples that satisfy the predicate and finally updates the

corresponding aggregate value. Although straightforward, this approach suffers from the same downfalls as

scalar aggregation (i.e., contains data and control dependencies) and therefore precludes SIMD vectorization.

In the following, we propose two novel branch-free implementations of a group-by operator that carefully

balance the predicate evaluation, group-by lookup, and aggregate computation.

Value Masking

The first branch-free variant of group-by aggregation involves masking the value to be combined with a

particular group-by aggregate. More specifically, for every data item, this approach first unconditionally

retrieves the current aggregate value from the hash table. Then, similar to the previously described value

masking technique for scalar aggregation, the returned value is updated by performing the aggregation and

multiplying by the predicate (zero or one).

As an example, consider the simplified version of TPC-H Q1 shown in Figure 3.2a and the resulting code

for the branch-free variant that masks the hash bucket value in Figure 3.2b. In this case, the predicate is first

evaluated and stored in the cmp bitmap. The code then increments the sum for a specific l returnflag

with l quantity multiplied by 1 (i.e., true) if the tuple passed the predicate and 0 (i.e., false) otherwise.

Bucket Masking

Another approach to generating code for a branch-free group-by aggregation can alternatively mask the

aggregation bucket instead of the value. The core idea is that our approach maps any keys that do not satisfy

the predicate into a single bucket, similar to Voodoo’s predicated lookup technique [105].

Figure 3.2c shows how our approach calculates the bucket to update after evaluating the predicate and

storing the result in the cmp variable. After calculating the bucket, the generated code performs the aggregation

on the value for the calculated bucket. Any key that does not pass the predicate (i.e., cmp is equal to 0) still

updates the returned bucket, but it is important to note that all keys which fail the predicate map to the same

bucket, which is then discarded.

This approach is more efficient because, oftentimes, the computations performed in the SELECT clause

can be overlapped with the hash table lookup. However, a similar problem to value masking occurs when

a query contains very complex project clauses (e.g., TPC-H Q1) which result in a large amount of wasted

work for a tuple that does not satisfy the predicate. To remedy this problem, we can again apply the same

optimization in the previously described scalar aggregation case, whereby we can fall back to an offset-based

aggregation approach, thereby avoiding the problem of reading in a lot of values only to discard them.

3.1.3 Join

Similar to group-by aggregations, joins are one of the most widely used operators in query processing. This

section describes predicate pullup optimizations for the well-known hash join algorithm. Although many
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int hmap_contains(hmap, key, cmp)
{

key = mask_key(key, cmp);
hash = hashfn(key);
k = hmap->ents[hash].key;
return k == key - (k != EMPTY) & (k != key);

}

(a) hmap contains

int bmap_contains(bmap, key, cmp)
{

return (bmap->bits[key/8] >> (key%8)) & cmp;
}

(b) bmap contains

Figure 3.3: Joins

complicated join algorithms have been proposed, simple hash joins are widely used and offer excellent

performance in many cases [77].

Fast Lookups

A similar technique of masking the output bucket also applies to operations, shown in Figure 3.3a. The core

idea behind this optimization is that instead of masking an aggregation bucket, we mask hash table lookups

for missing keys to a bucket that will later be discarded, similar to previously described technique for bucket

masking in group-by aggregations.

However, a key source of inefficiency in hash tables is chaining, since it requires conditional branching

statements as well as pointer following. Therefore, the hash tables that our generated code uses employ several

optimizations to ensure that common patterns are as fast and efficient as possible.

For example, Figure 3.3a shows the hmap contains function that the generated code uses in order to

check if an element is contained in a hash table. First, the function masks the bucket for the given key, using the

same techniques as group-by aggregations (i.e., masking the key value with a computed cmp value from the

query predicate). Then, once the correct bucket is found, the generated code uses as series of comparisons and

masks to detect whether the key is contained at the head of the chain in a branch-free way. More specifically,

the function returns 0 if the key is not equal (i.e., the bucket is empty), 1 if the key is equal (i.e., the key is at

the head of the chain), or -1 if neither is true, such that the key might be somewhere in the chain.

Therefore, importantly, the resulting code does not contain any branches in the two most common cases

(i.e., the hash bucket is empty or key is equal to the value at the head of the chain). In the unlikely event that

any tuple in the block requires traversing the chain, the generated code separately processes the block using

conditional statements.

Simple set inclusion techniques will be much more efficient in this case, since it eliminates the need to

traverse hash bucket chains to find elements that are not present. For example, HyPer uses a compact tag

similar to a Bloom filter to avoid having to scan hash bucket chains, since it can use the tag to first determine if

an element might be present somewhere in the chain [85]. However, the key idea of our approach is that we
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can completely remove branching in the common case (i.e., the bucket is empty or the key is located at the

head of the chain), which significantly improves performance.

Bit Vectors

Although the previously described join technique will work for any type of join, for the common case of

primary/foreign key joins, we can apply a more efficient approach based on an old technique [26] that was

recently rediscovered [102]. This join algorithm has three distinct steps, which we describe in the following.

The first step takes place at either data loading or schema definition time before any query processing has

even begun. During this time, the DBMS must enforce both primary and foreign key constraints.

A primary key constraint requires that a key must uniquely identify a tuple, which means that no two tuples

in a relation may share the same primary key. As such, we can internally (and transparently) replace references

to primary keys with the physical offsets of the memory addresses of tuples, which also uniquely identify each

tuple (i.e., each tuple is identified by the offset in the table where it is stored), similar to dictionary encoding.

On the other hand, foreign key constraints require that a key value in a foreign key column needs to exist

in the primary key column of another table. DBMSs typically perform this check when loading a tuple (or

when scanning an existing foreign key column) by probing an index on the primary key of the referenced table

in order to see if the value exists. In addition to this check for existence, our algorithm (transparently) converts

the foreign key value to the physical offset value that uniquely identifies each tuple on the primary key side.

Again, these actions occur during primary and foreign key constraint checking time and therefore do not incur

any additional overhead, since these checks need to be performed regardless.

The next step of our approach involves filtering down to only the selected tuples for the relation in what

would be considered the “build” phase of a traditional hash join algorithm. Essentially, we create a mask bit

vector, just as in our other predicate pullup techniques, on the smaller side of the join by applying a selection

predicate, where the value of a tuple is 1 if the tuple belongs in the join and 0 otherwise. The initial reaction to

this approach might be that, during the subsequent “probe” phase when the the bit vector is used, the same

cache miss problems that occur in a traditional hash join will come up. Surprisingly, though, even for relatively

large tables, the corresponding selection bit vector is still a very manageable size. For example, a table with

100M tuples requires only about 12.5MB of space, which is only half the size of most modern L3 CPU caches.

Furthermore, compression is another option for reducing size by run-length encoding long sequences of 0’s (or

1’s) in the selection bit vector.

The final step of the join algorithm is to actually perform the join by testing whether or not a particular

foreign key value appears in the corresponding mask array that contains the filtered set of primary keys, which

proceeds as follows. First, for every tuple in the probe (i.e., larger) side of the join, we check the corresponding

index in the join bit vector based on the offset of the join key. As shown in Figure 3.3b, this test returns a 1 if

the key is included and a 0 otherwise. After using bit manipulation operations to extract the value, the result is

stored back into an output bit vector that could either be (1) a bit vector intended to be passed locally to the

next operator or (2) a larger bit vector for the entire table to be used in a subsequent join.

Again, although space might seem like a concern, especially for queries with large numbers of joins, the

resulting bit vectors are relatively compact, and the space requirement in bytes never grows larger than the size
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select o_shippriority, count(*)
from orders, lineitem
where l_orderkey = o_orderkey
and o_orderdate < '1995-03-15'
and l_shipdate > '1995-03-15'

group by o_shippriority

(a) TPC-H Q3
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(b) Original Plan
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orders

(c) Rewritten Plan

Figure 3.4: Join Pullups

of the largest table divided by eight (i.e., the number of keys that can be represented by a single byte). For

example, TPC-H Q5 contains a six-way join. First, after a pass over the “probe” side of the join is complete

(orders in this example), the mask array constructed for the “build” side of the join can be safely freed if it

is no longer needed, making the memory again available. On the other hand, if the mask array is required

for later processing or another join, or if the system wishes to perform some kind of intelligent caching for

intermediate results, they can be paged out to main memory to make more space available in the CPU cache

until they are needed again.

Furthermore, this algorithm is much easier to parallelize than complex parallel algorithms that use radix

partitioning. Specifically, rather than having to radix partition both sides of the join, they can simply be range

partitioned, with the optional additional optimization of radix partitioning the “probe” side in cases when the

bit vector exceeds the size of the CPU cache in order to remain cache-conscious.

Join Pullups

A join between two tables is essentially a selection that returns all tuples on the probe side that have a match

on the build side. Traditionally, an equijoin first builds a hash table over one of the tables using the primary

key as the key and the query’s group-by key as the value. Then, for every tuple in the probe side, the algorithm

retrieves the value for the foreign key and performs a group-by over that retrieved value.

However, the main problem with this approach is that it requires a materialization of the group-by keys on

the build join in order to perform the final group-by on the probe side. Therefore, since a join is essentially a

selection, we propose instead to perform the same pullup technique.

More specifically, our proposed approach first performs the query’s aggregate for each foreign key over the

build side of the join. Then, for each tuple on the probe side that passes any predicates, our approach looks up
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the aggregated value for the tuple’s primary key and performs the final aggregation for the query’s group by

key.

As an example, consider the simplified version of TPC-H Q3 and the accompanying query plans in

Figure 3.4. In the original plan (Figure 3.4b), the group-by key o shippriority needs to be materialized

on the build side of the join, and then it is accessed by the probe side for the final aggregation. On the other

hand, the optimized plan (Figure 3.4c) switches the join order, performing a group-by on the build side by the

join key before the final aggregation takes place on the probe side.

3.2 Evaluation

This section presents a detailed experimental evaluation of the techniques described throughout this chapter.

To test the efficacy of our approach, we compare each of the techniques that we presented against baselines of

both data- and operator-centric code generation. We use a series of detailed microbenchmarks designed to

specifically isolate the different operators described throughout this chapter.

For fairness, all strategies are hand-implemented and use the same library code (e.g., hash table implemen-

tations) to ensure a fair, apples-to-apples comparison. This type of comparison is meant to eliminate any of the

overheads associated with system implementation differences or additional features (e.g., concurrency control,

recovery logging) that might be expected in a full-fledged DBMS.

Our hand-coded solutions use some common optimizations that have been proven to have a huge impact

for column stores (e.g., dictionary encoding, null suppression, fixed point arithmetic). For tiled approaches, we

use an intermediate vector size of 1024, as suggested by other studies [77, 90]. Additionally, our code does not

use any indexing or materialized data structures for query processing other than primary/foreign key indexes;

we only build data structures on the fly as needed during query processing.

All experiments were conducted on a single server with an Intel E5-2660 CPU (2.2GHz, 10 cores, 25MB

cache) and 256GB RAM.

3.2.1 Microbenchmarks

To evaluate the efficacy of our techniques, we created a microbenchmark that isolates each of the operations

described in the previous section. Figure 3.5 shows the full microbenchmark specification, including the table

schemas (3.5a) and four queries (3.5b).

In the following, we provide a detailed description of the microbenchmark results. Although many

variations of the benchmark queries are possible, we limit each query to two configurations that test each of

the extremes of the relevant operations.

Q1

This query (Figure 3.6a) tests simple scalar aggregation over different columns.

In three of the four query flights, data-centric (DC) code generation exhibits the well-known curve due

to CPU branch misprediction for intermediate selectivities [116]. Flight Q1.2 replaces the multiplication
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R (r )
SF * 10M tuples

r a int64 [0, 100)
r b int64 1
r c1 uint8 [0, 4)
r c2 uint8 [0, 32)
r c3 uint32 [0, 100k)
r x int8 [0, 100)
r y int8 1
r s1 uint32 [0, |S1|)
r s2 uint32 [0, |S2|)

S1 (s1 )
100 tuples

s1 pk uint32 [0, |S1|)
s1 c uint8 [0, 32)
s1 x int8 [0, 100)

S2 (s2 )
SF * 1M tuples

s1 pk uint32 [0, |S2|)
s1 c uint8 [0, 32)
s1 x int8 [0, 100)

(a) Schema
Query # SQL Args

Q1
select sum(COL1 OP COL2)
from R
where r_x < SEL and r_y = 1

OP, COL1, COL2, SEL

Q2

select C, sum(r_a * r_b)
from R
where r_x < SEL and r_y = 1
group by C

OP, C, SEL

Q3
select sum(r_a * r_b)
from R, S
where r_S = S_pk and PRED

S, PRED

Q4

select C, sum(r_a * r_b)
from R, S
where r_S = S_pk and r_x < 70

and S_x < SEL
group by C

S, C, SEL

(b) Queries
Flight Args
Q1.1 OP=∗, COL1=r a, COL2=r b
Q1.2 OP=/, COL1=r a, COL2=r b
Q1.3 OP=∗, COL1=r x, COL2=r b
Q1.4 OP=∗, COL1=r x, COL2=r y
Q2.1 OP=∗, C=r c1
Q2.2 OP=/, C=r c1
Q2.3 OP=∗, C=r c2
Q2.4 OP=∗, C=r c3
Q3.1 S: s1, PRED: s1 x < ?
Q3.2 S: s1, PRED: s1 x < 70 and r x < ?
Q3.3 S: s2, PRED: s2 x < ?
Q3.4 S: s2, PRED: s2 x < 70 and r x < ?
Q4.1 S: s1, C: s1 c
Q4.2 S: s2, C: s2 c
Q4.3 S: s1, C: s1 pk
Q4.4 S: s2, C: s2 pk

(c) Query Flights

Figure 3.5: Microbenchmark
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Figure 3.6: Microbenchmark Results
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Figure 3.6: Microbenchmark Results (cont.)
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operator with a division, which is about an order-of-magnitude more expensive to compute. Therefore, the line

continues upward as more data is selected.

Operator-centric (OC) avoids the branch misprediction problem using branch-free data copying, resulting

in a steadily increasing runtime as selectivity increases. However, DC is slightly better on very low and high

selectivity queries due to good CPU branch prediction.

As expected, value masking (VM) runs in constant time, irrespective of the selectivity. For the simple

multiplication operator, it outperforms all others. However, the more expensive division operator in Q1.2 is

an order of magnitude more expensive to compute, making VM prohibitively expensive for all but the least

selective predicates. The additional access consolidation (AC) optimization applied in flights Q1.3 and Q1.4

provides a non-negligible speedup by merging redundant accesses in the selection and projection.

Finally, indexed access (IA) exhibits similar performance to OC, since it uses the same idea of passing

cache-resident vectors of intermediate results between operators. Unlike OC, though, IA avoids the overhead

associated with data copying for intermediates, thus allowing it to have better performance in almost all cases.

IA generally performs worse than the predicate pullup techniques (i.e., VM and AC) except, notably, in Q1.2,

where it exhibits the best performance because it avoids performing the expensive division unnecessarily.

Q2

This query (Figure 3.6b) tests group-by aggregation with a varying number of keys (i.e., 4, 32, and 100k).

Flights Q2.1, Q2.2, and Q3.3 strongly resemble the results from Q1. DC is somewhat better relative to the

alternative approaches because it can leverage the CPU’s out-of-order execution capabilities to interleave the

key lookup with the aggregate computation.

Unlike Q1, though, there is now a much clearer tradeoff between predicate pullups (i.e., VM and BM)

and IA. These two approaches switch places at approximately 50% selectivity, which makes sense given the

amount of wasted work.

Moreover, Q2.3 looks nearly identical to Q2.1, such that a relatively small number of buckets (in this case,

4 vs 32) has almost no impact on query performance. Group-by keys regularly fluctuate in this range from a

few to a few dozen distinct keys.

Flight Q2.4, which tests a large number of group-by keys (100k), is notably different than the other flights.

With a much larger number of keys, OC and IA start to blend together because query runtime is dominated by

random memory accesses into the hash table for both approaches. Again, there is a narrow tradeoff between IA

being better at lower selectivites while predicate pullups are better at higher selectivities, but BM outperforms

all other approaches in the high (i.e., > 75%) range. OC is slightly better than IA for some lower selectivities

(about 15-20) because of a more consistent access pattern.

Q3

This query (Figure 3.6c) tests a two-way equijoin with a subsequent scalar aggregation. On the probe side,

the query selects most (i.e., 75%) of the tuples in order to stress the join operator; otherwise, the relative

importance of the join operator diminishes as more tuples are filtered out before the join.
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Yet again, the results of Q3.1 strongly resemble Q1.1, with VM clearly outperforming all other approaches.

As shown, for a small number of keys, the query-centric code generation strategy substantially outperforms

the generic hash table version, both for the smaller and larger sizes of S. On the other hand, the technique

tends to perform less well relative to the hash join-based algorithms for a larger number of keys. The exact

number of keys where this technique no longer pays off is, however, hardware- and data-dependent, requiring

the application of the memory-bandwidth calculations from Tupleware.

At larger scale factors, the join hash table falls out of the CPU cache and all lines blend together, as the

join time becomes bound by random memory access on the probe side. This pattern does not hold true for

BESPOKE, however, which remain inside the CPU cache due to the fact that they are much more compact.

Even at these larger than cache sizes, the fast-lookup inclusion test still achieves a moderate (around 10%)

speedup over alternatives in the middle (25% to 75%) selectivity range.

Q4

This query tests a two-way equijoin followed by a group-by aggregation. Again, 75% of tuples are selected on

the probe side to stress the join operator.

Interestingly, for flight Q4.1, DC outperforms OC, due to tighter code that is more amenable to certain

CPU features (e.g., out-of-order execution, prefetching). Otherwise, DC and OC are not contenders, except

where OC outperforms all other approaches for moderate to high selecitivies in Q4.4. This is because of

OC’s access patterns, where it separates hash table lookups from the actual aggregation step, allowing time

for the values to be fetched rather than stalling on them. Other approaches exhibit behavior similar to their

performance in previous queries.

In all flights except Q4.4, the join pullup (JP) technique performs better for almost all selectivities. It

performs worst, however, in Q4.4, since the disparity between distinct join keys and group-by keys (1M vs

100) is quite large.



Chapter 4

Rethinking Code Generation

As we have demonstrated throughout this dissertation, code generation can provide excellent performance

compared to traditional query execution approaches. Based on our discussion in Section 1.1.2, though, it is

relatively straightforward to achieve the type specialization and low overhead benefits of code generation in a

vectorized model with precompiled operators simply by using careful design techniques. However, the unique

advantage that code generation still holds over traditional vectorized query processing is the ability to apply

holistic optimizations, where the DBMS can optimize across query operator borders.

In this chapter, we present ERSATZ, an extension of the vectorized query processing model that attempts

to mimic the advantages of holistic optimization without needing to perform code generation in order to

overcome the key limitations discussed in Section 1.1.3. ERSATZ starts with highly tuned implementations of

traditional vectorized query processing operators and then adds a new class of precompiled fused operators,

which reflect commonly occurring operator patterns. Simply by adding a handful of these new fused operators,

ERSATZ unlocks a number of opportunities for holistic optimization that would otherwise be impossible in

traditional vectorized approaches.

The remainder of this chapter is organized as follows. Section 4.1 summarizes the state of the art for code

generation by revisiting the example from Chapter 1. Then, in Section 4.2, we describe our vectorized query

processing model, called ERSATZ, that can mimic several of the optimizations of code generation without

having to resort to using code generation. Each subsection of Section 4.2 takes an in-depth look at individual

query operators that are important for OLAP queries, including (1) select, (2) join, and (3) project & aggregate.

4.1 Revisiting TPC-H Q6

Recall again TPC-H Q6, which was the example query from Section 1.1.1. While we presented a simple

data-centric version of this query to illustrate the key ideas behind code generation, we have seen throughout

this dissertation that many improvements on this basic approach are possible.

Figure 4.1 provides a comparison of three code generation versions of Q6 that we have discussed throughout

47
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this dissertation: (1) data-centric [95] from HyPer [75]; (2) operator-centric from Chapter 2; and (3) query-

centric from Chapter 3. In the following, we explain the key differences between these approaches.

4.1.1 Data-centric Code Generation

Figure 4.1a shows the data-centric generation strategy, which produces a single for loop over all tu-

ples stored in the lineitem table in order to compute the revenue (i.e., sum(l extendedprice

* l discount)) on the subset of tuples that pass the predicate. Whereas an iterator-based approach would

apply each operation as a separate next call, each of the different predicate operations (i.e., five comparison

and four branching instructions) is merged together into a single if conditional statement, just as the sum and

multiply operations are merged into a single imperative statement.

Merging operations together in this way maximizes the benefits of short-circuit evaluation and data locality

while removing the overheads of the iterator model. However, the data-centric strategy unfortunately prevents

many useful low-level optimizations (e.g., SIMD vectorization) due to the control dependency introduced by

the branching code.

4.1.2 Operator-centric Code Generation

Unlike data-centric code generation, operator-centric strategies apply heuristics or build cost models to generate

different code to group together operators on a case-by-case basis. Figure 4.1b shows the operator-centric

code generation strategy presented in Chapter 2. The outer for loop iterates over the lineitem table in tiles (i

+= TILE), while the inner for loops handle the processing for each tile. Based on the results of the prepass

predicate evaluation (first loop), tuple values that pass the predicate are copied to intermediate result vectors

(second loop), and then the final computation of revenue is performed using those intermediate vectors

(third loop).

By removing the control flow (i.e., if statement) from the loop, the compiler can now apply SIMD

autovectorization on the first and third loops, which yields a 3x performance improvement over the data-centric

approach for Q6.

4.1.3 Query-centric Code Generation

Figure 4.1c shows the query-centric code generation strategy from Chapter 3. Here, we see the techniques of

(1) predicate pullups and (2) access consolidation. Specifically, the first inner loop stores a mask for every

tuple in the cmp buffer by taking the bitwise & of the predicate comparisons, each of which will produce a 1

(i.e., true) or 0 (i.e., false). Then, the second loop uses the cmp values to mask the result of each multiplication

before updating revenue. Again, as shown in our experimental evaluation, these techniques achieve almost

a 5.5x and 2x performance improvement over the data- and operator-centric variants, respectively.
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size_t i; revenue = 0.0;
for (i = 0; i < l_len; i++)

if (l_shipdate[i] >= '1994-01-01'
&& l_shipdate[i] < '1995-01-01'
&& l_discount[i] >= 0.05
&& l_discount[i] <= 0.07
&& l_quantity[i] < 24)

revenue += l_extendedprice[i] * l_discount[i];

(a) Data-centric

size_t i, j, len, pos; cmp[TILE];
tmp1[TILE]; tmp2[TILE]; revenue = 0.0;
for (i = 0; i < l_len; i += TILE) {

len = l_len - i < TILE ? l_len - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = l_shipdate[i+j] >= '1994-01-01'
& l_shipdate[i+j] < '1995-01-01'
& l_discount[i+j] >= 0.05
& l_discount[i+j] <= 0.07
& l_quantity[i+j] < 24;

pos = 0;
for (j = 0; j < len; j++) {

tmp1[pos] = l_extendedprice[i+j];
tmp2[pos] = l_discount[i+j];
pos += cmp[j];

}
len = pos;
for (j = 0; j < len; j++)

revenue += tmp1[j] * tmp2[j];
}

(b) Operator-centric

size_t i, j, len; cmp[TILE]; tmp[TILE]; revenue = 0.0;
for (i = 0; i < l_len; i += TILE) {

len = l_len - i < TILE ? l_len - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = l_shipdate[i+j] >= '1994-01-01'
& l_shipdate[i+j] < '1995-01-01'
& l_quantity[i+j] < 24;

for (j = 0; j < len; j++)
tmp[j] = l_discount[i+j]

* (l_discount[i+j] >= 0.05
& l_discount[i+j] <= 0.07);

for (j = 0; j < len; j++) {
tmp[j] *= l_extendedprice[i+j] * cmp[j];
revenue += tmp[j];

}
}

(c) Query-centric

Figure 4.1: Code generation variants of Q6.
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4.2 Ersatz

This section describes our ERSATZ approach, which is a vectorized query processing model that mimics the

benefits of holistic code generation while avoiding the downsides of actually performing code generation.

All of the optimization techniques described as part of ERSATZ have been presented in earlier parts of this

dissertation, and the core contribution of this work is to demonstrate how to integrate these optimizations into

a vectorized query processing model, thereby achieving state-of-the-art OLAP performance while avoiding the

downsides of code generation. Since the techniques for holistic optimization were originally proposed in the

context of code generation, translating them to a vectorized query processing model is not straightforward.

This section presents a detailed description of ERSATZ. First, we begin by providing an overview of the

vectorized query processing model, as well as how we tune traditional vectorized operators (Section 4.2.1).

Then, we describe how ERSATZ extends the traditional vectorized query processing model in order to mimic the

holistic optimizations applied by code generation approaches for both core (Section 4.2.2) and less frequently

used (Section 4.2.3) vectorized operators.

4.2.1 Vectorized Query Processing

ERSATZ is based on the concept of vectorized query processing, which refers to the bulk application of

one operator at a time to vectors of tuples, materializing the intermediate results between each operator.

In order to evaluate a query, a vectorized query processing engine translates SQL into either a tree of

vectorized iterators [138] or assembly-like bytecode to be executed by an interpreter (e.g., MonetDB’s MAL

interpreter [8]).

Every operation necessary for query processing is encapsulated by a precompiled, type-specialized operator.

We show a subset of the vectorized query operators most relevant to TPC-H in Table 4.1, with the operator

name and operands (left) followed by the computation performed on those operands (right).

As an example, consider again the first date comparison from Q6 (l shipdate >= ‘1994-01-01’),

which ERSATZ would execute using the vectorized greater than or equal to operator (ge) from Table 4.1. In

the following, we start by first examining a basic implementation of the ge function and then building upon

this basic version with additional layers of optimizations to produce a heavily tuned version. Then, we discuss

the limitations that this traditional vectorized approach imposes on the query optimization process.

A Basic Version

Figure 4.2a shows a basic version of ge from Table 4.1. The function has three parameters: (1) a pointer to

the column col on which to perform the comparison (e.g., l shipdate); (2) a constant value val against

which to compare values from col (e.g., ’1994-01-01’); and (3) a pointer to a selection vector vec that stores

the indexes (i.e., offsets) of values from col that pass the selection condition. The vec parameter is then

passed to subsequent operators as a way to communicate which tuples passed the predicates applied by earlier

selection operators.

The for loop iterates over each of the indexes stored by vec and copies that index back to vec at offset

pos, which will always be less than or equal to i. Then, the comparison col[idx] >= val tests the
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Type Name Operation

Select

eq(x,y,v) v = x == y
ne(x,y,v) v = x != y
gt(x,y,v) v = x > y
ge(x,y,v) v = x >= y
lt(x,y,v) v = x < y
le(x,y,v) v = x <= y
le(x,y,v) v = x <= y

bet(x,lo,hi,v) v = lo <= x <= hi

Join & Group
build(m,k,v) m.put(k,hashfn(k))
probe(m,k,v) v = m.in(k,hashfn(k))
group(k,g,v) g = get(k,h)

Project & Aggregate

add(x,y,t,v) t = x + y
sub(x,y,t,v) t = x - y
mul(x,y,t,v) t = x * y
div(x,y,t,v) t = x / y

concat(x,y,t,v) t = x::y
cast(x,t,v) t = (typeof(t)) x
count(n,t,v) n++
sum(n,x,v) n += x
min(n,x,v) n = x < n ? x : n
max(n,x,v) n = x > n ? x : n

gcount(n,g,v) n[g] += v
gsum(n,x,g,v) n[g] += x * v
gmin(n,x,g,v) n[g] = x < n[g] ? x : n[g]
gmax(n,x,g,v) n[g] = x > n[g] ? x : n[g]

Table 4.1: List of traditional vectorized operators.
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void ge_dt(dt_t *col, dt_t val, vec_t *vec)
{

size_t i, pos = 0;
for (i = 0; i < vec->len; i++) {

size_t idx = vec->idxs[i];
vec->idxs[pos] = idx;
pos += col[idx] >= val;

}
vec->len = pos;

}

(a) Basic Implementation

void ge_dt(dt_t *col, dt_t val, vec_t *vec)
{

size_t i, pos = 0;
if (vec->len == TILE) {

int cmp[TILE];
for (i = 0; i < TILE; i++)

cmp[i] = col[i] >= val;
for (i = 0; i < TILE; i++) {

vec->idxs[pos] = i;
pos += cmp[i];

}
}
else

for (i = 0; i < vec->len; i++) {
size_t idx = vec->idxs[i];
vec->idxs[pos] = idx;
pos += col[idx] >= val;

}
vec->len = pos;

}

(b) Optimized Implementation

Figure 4.2: Basic and optimized versions of the vectorized greater than or equal to operator (ge)
specialized for the date data type (dt t).
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data value at the specified index, which produces an integer output of either 1 (i.e., true) or 0 (i.e., false). If

the outcome of the comparison is true, then pos is incremented to point to the next index value in vec on

the following iteration. Otherwise, if the outcome of the comparison is false, then pos is not incremented

and the index value stored in vec at that offset is overwritten on the following iteration. This “no-branch”

implementation of a selection [116] (sometimes referred to as “predicated” selection [30]) transforms the

control dependency from the branching code in Figure 4.1a into a data dependency, thereby eliminating the

overhead incurred by CPU branch mispredictions.

In this chapter, we assume that all vectorized operators utilize the no-branch approach. However, by

implementing both branch and no-branch alternatives, a query optimizer could make even lower-level decisions

based on selectivity estimates during physical plan construction or adaptively at query runtime [111].

A cursory examination of the code in Figure 4.2a might suggest that the vectorized implementation will

actually perform extra work relative to the pipelined code from Figure 4.1a, since no obvious if statement

exists to enable short-circuit predicate evaluation. In the vectorized approach, however, as more tuples are

filtered out by each successive selection operator, later operators will need to perform less work than earlier

ones, thereby achieving a similar effect to short-circuit evaluation. While a simple concept, this observation

forms the basis for several of the optimizations proposed by ERSATZ, which we describe in later sections.

Additionally, note that the function is specialized for the date data type (dt t), which is crucial for

maximizing query performance. As suggested in Section 1.1.2, we use C macros to write a single, generic

version of each operator that then expands into the various type-specialized versions.

An Optimized Version

While the code in Figure 4.2a depicts a straightforward implementation of the vectorized ge operator,

Figure 4.2b instead shows a more optimized version of the same operator, which incorporates a variant of the

prepass optimization described in Chapter 2.

In this implementation, the if statement first checks to see whether the input tile is full by comparing the

length of vec to TILE. Again, since this operator happens to evaluate the first selection condition applied in

Q6, the input vector will always be full unless the length of the lineitem table is not evenly divisible by

TILE, which would result in a partially full final tile. Similarly, if the operation were to appear later in the

query plan, then earlier operators may have already filtered some tuples, which would also result in a partially

full tile. The else branch therefore handles the processing of these partially full tiles and is equivalent to the

basic variant from Figure 4.2a.

The first for loop in the if branch iterates over every value in the tile, performing the comparison and

storing the result (i.e., 0 or 1) in the temporary array cmp. Then, the second for loop stores the index i

in vec at offset pos, and then pos is incremented with the corresponding value from cmp. By using two

separate loops over a tile with statically known length, the optimized version of the ge operator permits

important low-level optimizations (e.g., SIMD vectorization, loop unrolling).
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Type Name Operation

Select

lbet(x,lo,hi,v) v = lo <= x < hi
rbet(x,lo,hi,v) v = lo < x <= hi
xbet(x,lo,hi,v) v = lo < x < hi
nbet(x,lo,hi,v) v = !(lo <= x <= hi)

Join & Group
hash(k,h,v) h = hashfn(k)

hbuild(m,k,h,v) m.put(k,h)
hprobe(m,k,h,v) m.in(k,h)
hgroup(k,h,g,v) g = get(k,h)

Project & Aggregate

addOP(x,y,z,t,v) t = (x + y) OP z
subOP(x,y,z,t,v) t = (x - y) OP z
mulOP(x,y,z,t,v) t = (x * y) OP z)
divOP(x,y,z,t,v) t = (x / y) OP z)
OPsum(n,x,y,v) n += x OP y
OPmin(n,x,y,v) n = (x OP= y) < n ? x : n
OPmax(n,x,y,v) n = (x OP= y) > n ? x : n

OPgsum(n,x,y,g,v) n[g] += (x OP= y)
OPgmin(n,x,y,g,v) n[g] = (x OP= y) < n[g] ? x : n[g]
OPgmax(n,x,y,g,v) n[g] = (x OP= y) > n[g] ? x : n[g]

Table 4.2: List of added ERSATZ operators.

Query Optimization Limitations

Given the optimized vectorized operator variant, we are well on our way to matching the performance of state-

of-the-art code generation systems. However, unlike the code generation versions, the vectorized approach

cannot benefit from holistic query optimization. Since operators are implemented as distinct functions, and

they are capable of being strung together to execute an arbitrary SQL query, the optimizer cannot perform any

optimizations that merge or rewrite the distinct operators, as is possible with code generation. This inability to

optimize across operators can consequently add additional overhead to vectorized query processing that is not

present in the code generation version, accounting for much of the remaining performance gap.

4.2.2 Core Operators

In order to overcome this major limitation of traditional vectorized query processing, our ERSATZ approach

attempts to unlock opportunities for holistic optimization without resorting to code generation. As mentioned,

ERSATZ adds a handful of new fused operators that implement explicitly merged versions of commonly

occurring operator patterns, as shown in Table 4.2. The addition of these new operators consequently enables

ERSATZ to apply holistic optimization rewrite rules previously only possible for code generation systems.

This section describes how ERSATZ integrates holistic optimization techniques for the three core operator

types shown in Tables 4.1 and 4.2, each using an example TPC-H query to illustrate the key differences

between the traditional vectorized approach and ERSATZ. Section 4.2.3 explains ERSATZ’s optimizations for

other, less frequently used operators separately.

The sample code shown in Figures 4.3-4.5 appears as assembly-like bytecode that represents the query

plan produced by (1) the traditional vectorized approach and (2) ERSATZ. For each example, we explain how
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vec = init()
tmp = init()
agg = 0.0
ge(l_shipdate, '1994-01-01', vec)
lt(l_shipdate, '1995-01-01', vec)
bet(l_discount, 0.05, 0.07, vec)
lt(l_quantity, 24, vec)
mul(l_extendedprice, l_discount, tmp, vec)
sum(agg, tmp, vec)

(a) Vectorized

vec = init()
agg = 0.0
ge(l_shipdate, '1994-01-01', vec)
lt(l_shipdate, '1995-01-01', vec)
ge(l_discount, 0.05, vec)
le(l_discount, 0.07, vec)
lt(l_quantity, 24, vec)
mulsum(agg, l_extendedprice, l_discount, vec)

(b) Ersatz

Figure 4.3: TPC-H Q6

ERSATZ conceptually applies rewrite rules to the basic vectorized version to produce the holistically optimized

result.

Select

The select operator retrieves a filtered subset of tuples from a table based on a specified predicate. In this

section, we focus on conjunctive selection predicates comprised of basic relational comparisons (i.e., ==, !=,

>, >=, <, <=), which form the overwhelming majority of predicates in TPC-H queries. We discuss disjunctive

predicates, as well as other more complex predicate operators, in Section 4.2.3.

As an example, recall TPC-H Q6 from Section 1.1, which involves applying several selection predicates

before computing a simple scalar aggregation over the lineitem table. Figure 4.3 shows the vectorized and

ERSATZ versions of this query.

The bytecode for the vectorized version (Figure 4.3a) is a fairly straightforward translation from the SQL

for Q6 to the operators in Table 4.1. The code first initializes some variables (vec, tmp, agg), applies four

selection operators (ge, lt, bet, lt), and finally performs the scalar aggregation on the filtered values (mul,

sum).

Figure 4.3b shows the ERSATZ version of the bytecode for Q6. The differences between the ERSATZ

bytecode and the vectorized version from Figure 4.3a are subtle yet important. Foremost, the between operator

(bet) is split into separate greater than or equal to (ge) and less than or equal to (le) operators. This

rewrite may seem minor, but the observation that an operator can be split in this way allows ERSATZ to make

finer-grained decisions about whether to use a fused operator (for memory-bound cases by doing more work

per data item) or to use split operators (for CPU-bound cases by doing less work per data item), as proposed in

Chapters 2 and 3.

While the combination of this query and data distribution benefit from a split bet operator (i.e., separate le
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and ge operators), a different data distribution might change the optimization decision. For example, consider

the ge and lt operators that filter tuples based on l shipdate; they are currently CPU-bound and benefit

from being split. However, if the data distribution were different causing them to become memory-bound, we

would want to replace them with a fused operator, but none exists for this operator pattern.

ERSATZ therefore introduces a new left-inclusive between operator (lbet) that could be used to replace

the ge and lt operators to optimize this memory-bound case. Similarly, we also add a right-inclusive (rbet),

exclusive (xbet), and negated (nbet) variant of between, thereby expanding the types of query rewriting

that we can perform. While not as flexible as code generation, this ability to optimize across operators enables

ERSATZ to apply some of the most important holistic query optimizations without the downsides of code

generation.

Additionally, note that the ERSATZ version merges the mul and sum operators from Figure 4.3a into a

single operator: mulsum. This type of optimization is conceptually similar to the example of the between

operator, and we discuss this type of optimization for projection and aggregation in greater detail later in this

section.

Join & Group

Next, we consider the join and group operators, which organize tuples in a hash table. Specifically, we focus

on equijoin, which is a binary operator that combines tuples from two relations that match the join criteria.

Although other types of joins appear infrequently in OLAP queries, equijoins are by far the most common, as

is demonstrated by their inclusion in almost every TPC-H query.

As a concrete example of the join and group operators, consider Q3, which retrieves the highest valued

unshipped orders. This query represents the prototypical example of a join. First, the customer table is fil-

tered to only the ’BUILDING’ market segment. Then, the orders table is filtered based on o orderdate

and joined with the previously filtered customer table. Finally, the lineitem table is filtered based on

l shipdate, with a sum aggregation grouped by l orderkey, o orderdate, and o shippriority.

Note that, in this last aggregation step, the aggregation hash table does not require a compound key, since

l orderkey functionally determines the other two group-by attributes.

Figure 4.4 shows the two alternative implementations for Q3. The vectorized approach (Figure 4.4a) again

uses the familiar select and project operators seen previously in Q6. However, Q3 requires the introduction of

some new operators: (1) build and probe to handle the build and probe phases, respectively, of a hash join;

and (2) group and gsum to perform the final group-by sum aggregation.

The operators for the build side of the hash join first insert the key into a hash table. Likewise, on the

probe side, the operator again tests to see whether that key exists in the hash table. Note that, unlike a code

generation version, the vectorized approach must perform each selection and join probe separately rather than

merging them into a single conditional statement. Similar to the join operators, the group operator retrieves

the appropriate value to pass to the group-by sum operator gsum.

Figure 4.4b shows the ERSATZ alternative, which again tries to mimic the holistic optimization opportu-

nities of code generation. This time, by splitting the hbuild, hprobe, and hgroup operators each into

two distinct operators (e.g., hbuild is replaced with separate hash and build), ERSATZ has finer-grained
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vec = init()
joina = init()
joinb = init()
tmpa = init()
tmpb = init()
tmpc = init()
agg = init()
eq(c_mktsegment, 'BUILDING', vec)
build(joina, c_custkey, vec)
lt(o_orderdate, '1995-03-15', vec)
probe(joina, o_custkey, vec)
build(joinb, o_orderkey, vec)
gt(l_shipdate, '1995-03-15', vec)
probe(joinb, l_orderkey, vec)
group(l_orderkey, tmpa, vec)
sub(1, l_discount, tmpb, vec)
mul(l_extendedprice, tmpc, vec)
gsum(agg, tmpc, tmpa, vec)

(a) Vectorized

vec = init()
joina = init()
joinb = init()
tmpa = init()
tmpb = init()
tmpc = init()
tmpd = init()
tmpe = init()
agg = init()
eq(c_mktsegment, 'BUILDING', vec)
hash(c_custkey, tmpa, vec)
hbuild(joina, c_custkey, tmpa, vec)
lt(o_orderdate, '1995-03-15', vec)
hash(o_custkey, tmpb, vec)
hprobe(joina, o_custkey, tmpb, vec)
hash(o_orderkey, tmpc, vec)
hbuild(joinb, o_orderkey, tmpc, vec)
gt(l_shipdate, '1995-03-15', vec)
hash(l_orderkey, tmpd, vec)
hprobe(joinb, l_orderkey, tmpd, vec)
hgroup(l_orderkey, tmpd, vec)
submul(1, l_discount, l_extendedprice, tmpe, vec)
gsum(agg, tmpe, tmpd, vec)

(b) Ersatz

Figure 4.4: TPC-H Q3
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control over how the operators are organized and can make different decisions based on whether an operation

is CPU- or memory-bound. In particular, by separating these operators in this way, we can take advantage of

SIMD to speed up the hash computations, which would otherwise have been prevented by data dependencies

introduced by needing to access hash-based data structures, as described in Chapter 2. If, on the other hand,

the hash computations are not so expensive, ERSATZ can instead use the default combined operators.

Another benefit of this approach becomes clear in this query, where the key from the probe side of the

lineitem join is later used as the key for the group-by aggregation. By separating the hash function, ERSATZ

can reuse the intermediate hash values of the (potentially expensive) hash computation from the probe side of

the join without having to re-hash the keys for the final group-by aggregation (somewhat similar to the idea of

groupjoin [91]).

As mentioned, equijoins are by far the most common join operator, both in the research literature and

in practice. Moreover, many equijoins use integers that represent a surrogate primary key. Compound and

string-based keys are not uncommon, but with minor adjustments (e.g., multi-dimensional hash tables, hashing

to an integer), the same algorithms used for integer key joins can be used in these cases as well. Other join

operators (e.g., theta join, outer join, anti-join) also use well-defined algorithms and data structures, making

them amenable to highly efficient, precompiled implementations, with type-specific optimizations where

appropriate.

Finally, the EXISTS operator, which tests to see if at least one matching tuple exists in another relation, is

highly similar to how ERSATZ would handle a join, and query optimizers will often rewrite an EXISTS clause

as a join (e.g., in TPC-H Q4). Therefore, ERSATZ can apply the same exact techniques previously described

for join optimizations.

Project & Aggregate

Finally, the last two operators we examine are projection and aggregation.

To concretely explore these operators, we reference Q1, which provides a sales summary report aggregated

over all lineitems that had shipped by the specified date. Q1 is a good example of a query with relatively

complex project and aggregate operations. The query involves only a single table (lineitem) but filters very

few tuples such that almost all of the tuples are contained in the final result. Most importantly, Q1 includes

a very complex and expensive to compute projection/aggregation component, which helps to highlight the

differences between the different approaches shown in Figure 4.5.

By default, both versions perform common subexpression elimination (CSE) to avoid the wasted work of

recomputing multiple equivalent intermediate values. The benefits of the holistic optimization are particularly

noticeable in this query. For example, consider the l discount attribute used to compute the subexpression

(1 - l discount), which can be materialized and reused in both sum disc price and sum charge.

An approach using code generation could easily compute the subexpression concurrently with the average,

which would be much more efficient. Similarly to l discount, l extendedprice would need to be

looked at by a total of four different operators (i.e., sum base price, sum disc price, sum charge,

avg price) in an interpreted version, since no reuse is possible.

ERSATZ again addresses this problem by mimicking holistic optimization and merging projection operators
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vec = init()
tmpa = init()
tmpb = init()
tmpc = init()
tmpd = init()
tmpe = init()
agg = init()
le(l_shipdate, '1998-12-01' - interval '90' day, vec)
concat(l_returnflag, l_linestatus, tmpa, vec)
group(tmpa, tmpb, vec)
gcount(agg, tmpb, vec)
gsum(l_extendedprice, tmpb, vec)
gsum(l_quantity, tmpb, vec)
gsum(l_discount, tmpb, vec)
sub(1, l_discount, tmpc, vec)
mul(l_extendedprice, tmpc, tmpd, vec)
gsum(agg, tmpd, tmpb, vec)
add(1, l_tax, tmpe, vec)
mul(tmpd, tmpe, tmpf, vec)
gsum(agg, tmpf, tmpb, vec)

(a) Vectorized

vec = init()
tmpa = init()
tmpb = init()
tmpc = init()
tmpd = init()
agg = init()
le(l_shipdate, '1998-12-01' - interval '90' day, vec)
concat(l_returnflag, l_linestatus, tmpa, vec)
group(tmpa, tmpb, vec)
gcount(agg, tmpb, vec)
gsum(l_extendedprice, tmpb, vec)
gsum(l_quantity, tmpb, vec)
gsum(l_discount, tmpb, vec)
submul(1, l_discount, l_extendedprice, tmpc, vec)
gsum(agg, tmpc, tmpb, vec)
addmul(1, l_tax, tmpc, tmpd, vec)
gsum(agg, tmpd, tmpb, vec)

(b) Ersatz

Figure 4.5: TPC-H Q1
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void or_ge_dt(dt_t *col, dt_t val, vec_t *pass, vec_t *fail)
{

size_t i, pos = ppos = 0, fpos = 0;
if (vec->len == TILE) {

int cmp[TILE];
for (i = 0; i < TILE; i++)

cmp[i] = col[i] >= val;
for (i = 0; i < TILE; i++) {

pass->idxs[ppos] = i;
ppos += col[i] >= val;
fail->idxs[fpos] = i;
fpos += col[i] < val;

}
}
else

for (i = 0; i < vec->len; i++) {
size_t idx = pass->idxs[i];
pass->idxs[ppos] = idx;
ppos += col[idx] >= val;
fail->idxs[fpos] = idx;
fpos += col[idx] < val;

}
pass->size = ppos;
fail->size = fpos;

}

Figure 4.6: OR Operator

where possible, cutting the number of required intermediate value materializations for Q1 in half. As shown in

Figure 4.5b, ERSATZ merges the adjacent operators into the fused submul and addmul operators.

4.2.3 Other Operators

In addition to the most prominent OLAP operators we have covered throughout this section, there are many

other operators available in SQL. Some of these operators have been historically difficult for interpreted

execution paradigms to handle, so we focus in particular on those operators in this section in order to squeeze

out the remaining performance difference between vectorized and code generated approaches.

Or

The previous section covered in detail our techniques for handling conjunctive predicates composed using the

AND logical operator, but we have not yet discussed how to deal with disjunctive predicates that use the OR

operator. Although not as common as conjunctive predicates (the OR operator is used in only three of the 22

TPC-H queries, specifically Q7, Q12, and Q19), efficient strategies for dealing with disjunctive predicates are

crucial for implementing a general-purpose DBMS.

Historically, disjunctive predicates have been a problem for vectorized query processing models, where

they often suffer from the need to perform extra work. Essentially, each predicate in the OR clause is evaluated

separately on the same tile-sized input vector, and the results are then merged together to produce the union of

all of the individual outputs. This way of individually processing each of the predicates is in stark contrast to

the data-centric code generation case, which has the opportunity to merge all of the predicates into a single

conditional statement and benefit from short-circuit evaluation.
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The ERSATZ approach avoids performing this redundant work by only processing each tuple in the input

vector exactly once, as shown in Figure 4.6. The basic idea is based on the bypass method [74], but we have

tailored a simplified version that keeps separate true and false streams for expressions in a predicate.

The or ge dt function is structurally very similar to the conjunctive ge dt implementation shown in

Figure 4.2b. Again, the if statement checks whether the input tile is full, iterating either over the entire tile

or only the value indexes idxs that were selected in the else. However, now instead of a single selection

vector, note that there are two selection vectors: pass and fail. As their names suggest, the pass selection

vector stores the indexes of the tuples that pass the predicate, in this case the >= operator, and the fail

selection vector stores the indexes of the tuples that do not pass the predicate (i.e., <). Finally, the sizes of

each of the selection vectors are set to the ending position.

Using this approach, we will end up doing some extra work but at the benefit of avoiding having to reprocess

tuples that have already been examined. This tradeoff presents an interesting optimization opportunity,

depending on the selectivity of the predicate. For instance, in the case of a predicate where many tuples pass,

this technique will save considerable work by avoiding reprocessing a large part of the input vector. On the

other hand, if the predicate selects very few tuples, most of the tuples in the input vector will need to be

processed again anyway, so the extra overhead incurred by this technique would not make sense; rather, the

traditional separate evaluation followed by merge approach would be superior. Therefore, ERSATZ can decide

which version of the OR operator to use at query planning time in a type of holistic optimization, similar to

how a traditional query optimizer would order predicates depending on relative selectivities.

In

The IN operator tests whether an attribute value is included in a set that is either statically defined in the query

or dynamically determined during query execution. If the IN clause refers to a small, statically defined set

of values (e.g., Q12, Q16, Q19), then the query optimizer can instead use several related OR statements to

cover each possible value, applying exactly the same techniques we use to optimize disjunctive predicates.

On the other hand, if the IN clause is large (e.g., generated by an automatic querying tool) or the values are

dynamically determined (e.g., Q18, Q20), the query optimizer can instead use a hash-based set data structure

to test for inclusion, similar to the previously described treatment of the EXISTS operator.

Case

The CASE operator is a logical switch statement that applies different processing logic based on the result

of evaluating a Boolean condition. Interestingly, the CASE statement also bears strong similarities to the

processing of multiple OR operators (or a statically defined IN clause). These similarities become readily

apparent if one imagines each condition of the CASE statement as an individual predicate in an OR clause,

where we need to determine whether each tuple passes that predicate. Just as with multiple OR predicates, we

can reprocess the entire tile-sized vector of tuples to evaluate each CASE condition before doing the processing

for that particular branch. However, by applying the previously described work-saving techniques, we avoid

redundant processing for tuples that have already been examined and dealt with.
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Related Work

This chapter provides a detailed review of the literature. In the first section, we discuss work related to query

processing for data analytics, which is the core focus of this dissertation. Then, in the second section, we

highlight some of the more tangentially related areas that overlap with specific parts of our work.

While many of the references are prior art, a number of cited publications appeared either concurrently with

or subsequent to the work conducted as part of this dissertation. We indicate cases where these publications

were inspired by or directly built upon our work.

5.1 Query Processing

The two primary query processing models addressed in this dissertation are (1) code generation and (2)

vectorization. In the following, we discuss each of these approaches, as well as attempts to combine them into

a hybrid query processing model.

5.1.1 Code Generation

Using code generation for query evaluation is not a recent proposal. In fact, System R [25] originally compiled

SQL statements directly to machine code by stitching together code fragments from a fragment library [36].

While beneficial for avoiding the overhead associated with interpreted query execution, this approach was

eventually abandoned due to issues with software maintenance and debuggability [113], as well as poor

portability [90].

Over two decades later, Daytona [65] pioneered the translation of queries into C programs, which could

then be compiled into an executable and linked with the necessary libraries. Compared to machine code, the

generation of relatively high-level C code avoided many of the main issues encountered with System R.

Similarly, JAMDB [113] translated queries to Java code while applying operator type specialization and ag-

gressive expression inlining. Unlike the statically compiled C programs produced by Daytona, though, JAMDB

sought to leverage the capability of the Java Virtual Machine to dynamically apply low-level optimizations at

runtime.

62
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HIQUE [82] used template-based code generation to compile queries into C programs with explicit data

staging. Unlike past attempts at code generation, HIQUE’s approach removed the overheads associated with

traditional data access methods and iterator-based execution, which emerged as a key bottleneck for in-memory

DBMSs. Later systems that also used template-based code generation include Hekaton [49, 59], H2O [21],

and RAW [73].

Data-centric [95] code generation was proposed as the query execution framework for HyPer [75]. The

key idea is to use a push-based, pipelined query processing model that attempts to maximize data locality,

with data items remaining in CPU registers as long as possible. LLVM glue code is generated to stitch

together precompiled operators, and then the query is JIT-compiled. Several newer systems (e.g., Tenzing [80],

Impala [81, 126], ViDa [72], Proteus [71]) have similarly leveraged LLVM for query compilation, and

LLVM-based JIT compilation has even been integrated into PostgreSQL [34, 89, 120].

LegoBase [78] includes a query engine written in Scala that generates specialized C code and allows for

continuous optimization. This approach is based on the idea of “abstraction without regret,” whereby a system

implemented in a high level language does not sacrifice performance by leveraging generative programming.

The popularity of the Spark [3] distributed computing framework has prompted a number of attempts

to augment performance using code generation. Initial versions of Spark SQL [23], for example, compiled

query expressions into Java bytecode. Project Tungsten [18, 130] extended this capability by generating

data-centric Java bytecode for executing the entire query. More recently, Flare [55, 56] was developed as a

drop-in accelerator for Spark that generates more efficient C code.

Code generation has also been explored in a variety of other settings, including stream processing

(e.g., SPADE [61, 62], DBToaster [19, 20, 76]), distributed execution (e.g., DryadLINQ [131], Steno [93],

Radish [94]), and specialized hardware (e.g., MapD [92, 115], YDB [128], Hawk [32], HetExchange [41]).

Vectorization

Vectorization attempts to overcome the inefficiency of iterator-based execution models by amortizing the costs

of this abstraction over a vector of tuples. The idea originated as part of the MonetDB/X100 project [30],

which would eventually be commercialized as Vectorwise [138] (currently known as Actian Vector [17]).

The vectorized query processing model naturally lends itself to single-instruction, multiple data (SIMD)

processing, where the same operation is applied simultaneously to different data elements. Widely available

architectures currently support 128-, 256-, and 512-bit SIMD operations. A vast body of work has explored

how to leverage SIMD processing for data analytics [40, 67, 69, 70, 106–109, 117, 118, 121, 123, 129, 136].

In particular, many of the techniques presented throughout Chapters 2 and 3 were inspired by the seminal

work [136] on using SIMD instructions to implement query operators.

Other systems that utilize vectorized query processing include DB2 BLU [112], SQL Server 11 (De-

nali) [86], HANA [57, 58], and Quickstep [102].
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5.1.2 Combined Approaches

Since code generation and vectorization are both highly efficient query processing models, the idea of

combining them has received considerable attention. The first systematic comparison [122] of these two

approaches examined three core query operators: (1) projection, (2) selection, and (3) hash join. The study

concluded that neither approach was dominant and advocated instead for a combination of the two in order to

achieve the best performance.

TUPLEWARE [42–45] proposed an operator-centric code generation strategy as a hybrid between data-

centric code generation and vectorization. This strategy jointly considers properties of the operators, data,

and underlying hardware in order to generate code that minimizes intermediate result materialization while

maximizing opportunities for SIMD processing. We described these techniques at length in Chapter 2 and

extended them to the query-centric strategy in Chapter 3.

Data Blocks [85] are a compressed columnar storage format in which code generation and vectorization are

each used for different parts of query execution. Specifically, precompiled vectorized scan operators perform

certain operations (e.g., decompression, selection) before passing the results to generated data-centric code

for the remainder of query processing. Whereas TUPLEWARE introduced the prepass strategy (Chapter 2) to

enable SIMD processing for selection operators, the Data Blocks approach uses a precomputed lookup table to

shuffle selected values in a SIMD register into contiguous lanes.

Voodoo [105] is a vector algebra with a backend that generates OpenCL kernels. This abstraction allows

for both portability and tunability, such that the backend can produce highly specialized code irrespective of

the target hardware. Additionally, Voodoo’s predicated lookup technique inspired several of the optimizations

presented in Chapter 3.

Relaxed operator fusion [90] (ROF) is a different operator-centric code generation strategy that, like

TUPLEWARE, blends data-centric code generation and vectorization by materializing intermediate results

at staging points during query execution. Compared to TUPLEWARE, ROF has three main differences: (1)

operating on full intermediate result vectors rather than partially full vectors; (2) using the precomputed lookup

table technique from Data Blocks to enable SIMD for selection operators; and (3) embedding explicit prefetch

instructions to mask data access latencies, in particular for operators that need to access a hash table (e.g., join,

group-by aggregation).

An even more recent study [77] provided an in-depth, apples-to-apples comparison of data-centric code

generation and vectorized query processing. Like previous studies, the main conclusion is that no clear winner

between the two exists, with each approach performing better in certain cases. However, the choice to consider

only the data-centric approach to code generation is a major limitation of this study. As this dissertation

clearly demonstrates, more advanced code generation strategies like operator- (Chapter 2) and query-centric

(Chapter 3) code generation can significantly outperform the simple data-centric strategy, thereby calling this

main conclusion into question.
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5.2 Other Related Areas

This section provides an overview of some areas of related work that are not at the heart of this dissertation but

have some overlap with our proposed techniques.

5.2.1 Analytics Frameworks

The widespread success of the Hadoop [2] framework, which is based on the MapReduce [48] programming

model, cemented the role of distributed data processing. Numerous extensions have been proposed to support

iteration and shared state within MapReduce [22, 33, 53], and some projects (e.g., SystemML [63]) go a step

further by providing a high-level language that is translated into MapReduce tasks.

Spark [3] and Flink [1] (formerly Stratosphere) built on Hadoop’s success by making this type of processing

more efficient in memory. These systems have taken steps in the right direction by providing richer APIs

that can supply an optimizer with additional information about the workflow, permitting high-level workflow

optimization [68].

5.2.2 Bit-Level Storage & Indexing

BitWeaving [88] is an alternative data storage format intended to alleviate memory bandwidth pressure and

work better with modern CPUs. Specifically, BitWeaving comes in two varieties: (1) BitWeaving/V and (2)

BitWeaving/H. BitWeaving/V physically stores data values as transposed bit vectors (i.e., columnar storage for

the bits of values within a column) such that selection operators can operate on more tuples at once (however

many bits fit into a register) and abort early if no matches are found, thus reducing the required memory

bandwidth by excluding tuples without necessarily having to bring in the entire attribute values. BitWeaving/H

better aligns non-transposed attribute values around word boundaries to prevent values from being split across

words, thereby slowing down efficient CPU processing. These techniques are collectively implemented in

Quickstep [102].

Bitmap indexes are used internally for query processing by many popular DBMSs in order to test existence

or set inclusion, and various techniques that leverage bitmap indexes for query processing have also been

proposed [97, 98].

5.2.3 Operator Specialization & Fusion

Operator specialization refers to tailoring a query operator for specific data types and usages, as we described

in Chapter 1. MonetDB/X100 [30], for instance, leveraged precompiled vectorized primitives highly tuned for

individual data types. Similarly, micro-specialization [133–135] replaces generic query processing functions

with much more efficient, type-specialized code.

Another form of operator specialization involves choosing different low-level implementations on a case-

by-case basis, such as choosing between a branch vs no-branch [116] implementation of a selection operator.

Micro Adaptivity [111] takes this idea of specialization a step further and switches operator implementations

on the fly depending on query statistics.
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Operator fusion is an optimization that involves merging two separate operators into a single operator,

which plays a key role in many of the techniques presented in this work. Although we have discussed this

technique specifically in the context of code generation, operator fusion is widely leveraged in a variety of data

processing systems. For example, the Weld [99, 100] project enables cross-library operator fusion. Similarly,

SPOOF [29, 54] proposes rewrite rules to fuse linear algebra operators.



Chapter 6

Conclusion and Future Work

Throughout this dissertation, we have explored how to push code generation to the limit for in-memory data

analytics. We presented several novel code generation techniques, as well as a new vectorized query processing

framework that can mimic the benefits of these techniques in many instances using only precompiled operators.

Overall, our work has inspired many extensions of our techniques for code generation [18,55,56,90,94,105,130]

and operator fusion [29, 54, 99, 100] in this new context.

First, we described TUPLEWARE, a novel architecture for compiling the types of complex analytics

tasks that have become commonplace for a wide variety of users. As part of this project, we developed the

operator-centric code generation strategy, which generates code to fuse query operators on a case-by-case

basis. This work opened the door for an entire new breed of optimizations that consider data statistics, UDF

characteristics, and the underlying hardware in order to better optimize generated code. Our experiments

demonstrated that our TUPLEWARE prototype can achieve orders-of-magnitude speedups over alternative

systems and showed that the proposed heuristics can further improve performance.

We then expanded upon our operator-centric code generation strategy with BESPOKE in Chapter 3. Instead

of organizing the generated code at the granularity of traditional operators, BESPOKE takes a more holistic,

query-centric approach that freely optimizes across operator boundaries. In particular, our techniques heavily

leverage “predicate pullups” to reorder operators in unconventional ways, and our experiments demonstrated

clear performance improvements over both data- and operator-centric code generation strategies.

However, despite the clear performance benefits, there are also many obvious drawbacks associated with

code generation for query evaluation. We summarized several of the main pros and cons of code generation

techniques in Chapter 1, but the major concern that could prevent widespread adoption is the need for a

complete rearchitecting of current systems. Moreover, the need to modify query optimizers to handle edge

cases in the code generation process introduces significantly more complexity.

After a critical reexamination of code generation techniques, which have recently become a perceived

necessity for implementing a state-of-the-art DBMS, we concluded that the overhead of starting from scratch

to build a code generation system is not worth the return on investment for many traditional OLAP workloads.

Informed by these concerns, we developed ERSATZ (Chapter 4), a vectorized query processing model that

achieved performance close to code generation on the well-known TPC-H decision support benchmark. We
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hope that this work serves as a resource for researchers and system designers to achieve state-of-the-art OLAP

performance without having to pay the costly price of implementing a code generation system completely

from scratch.

Yet, while we have shown that ERSATZ can (nearly) match code generation performance for OLAP queries,

it remains unclear whether this finding generalizes to other types of workloads or problem domains. Further

investigation will therefore be required in order to determine whether our techniques apply in these other

settings. As such, obvious avenues for future work include reexamining our techniques for specialized hardware

(e.g., RDMA [28], coprocessors [50]) and new workloads (e.g., interactive data exploration [46, 47, 60, 132],

time series analysis [51, 52]).

Besides these obvious extensions of our techniques, we believe that code generation has a bright future in

the overall data management landscape. In the following, we discuss what we consider to be three of the most

impactful directions for future work.

6.1 Dynamic Code Generation

Just-in-time (JIT) compilation allows programming languages like Java to apply adaptive optimizations [24]

based on runtime profiling. In contrast, nearly all state-of-the-art code generation approaches for query

evaluation, including those presented in this dissertation, involve a static process of first creating an optimized

query plan and then translating that plan to executable code in full before query execution begins. Even for

techniques that incrementally compile and optimize their generated code [79], optimization passes apply only

low-level optimizations and do not fundamentally impact the high-level code structure.

However, the ability to dynamically switch between different operator implementations based on runtime

statistics (e.g., Micro Adaptivity [111]) has demonstrable benefits for traditional query processing paradigms.

Therefore, we believe that applying the same idea to dynamically regenerate and redeploy query execution

code optimized using runtime statistics (i.e., on-stack replacement) could open the door for an entirely new

class of code generation techniques.

Going a step further, a system could even incrementally generate code in a lazy fashion, using statistics

gathered during earlier stages of query execution to optimize later stages. For instance, queries with blocking

operators (e.g., joins) could gather runtime statistics that were unknown prior to execution and leverage those

statistics to generate highly specialized code. This type of lazy code generation also presents many interesting

opportunities to directly embed instance-specific information (e.g., literal values) based not only on metadata

from the system catalog but even from derived intermediate results that are unknown until runtime.

6.2 Multi-query Code Generation

Techniques to optimize across multiple concurrently executing OLAP queries have been extensively explored

in traditional query processing settings. For example, multiple-query optimization [119] attempts to minimize

redundant computation by finding common subexpressions or other opportunities to share intermediate results

across different queries. Similarly, shared scans try to best utilize the available bandwidth by attaching multiple
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queries with possibly disjoint predicates to the same cooperative scan over the data, and they are implemented

in a number of DBMSs (e.g., DB2 [84], MonetDB [137], Blink [110], Crescando [125]). Not surprisingly,

these techniques have also been explored in the context of MapReduce-style systems [96, 124, 127].

However, state-of-the-art code generation strategies, including those proposed as part of this dissertation,

optimize for the execution of a single query running in isolation. While single-query performance is important,

most real-world settings have multiple users issuing queries concurrently. Furthermore, modern visual data

exploration tools (e.g., Tableau [13], Vizdom [46]), might issue several dozen queries at the same time

triggered by just one single user interaction. While many of the code generation techniques we have discussed

throughout this dissertation will apply equally well when considering concurrently executing queries, we

believe that an entirely new research challenge emerges related to generating code that optimizes across

multiple queries.

Code generation may, in fact, permit significantly more fine-grained opportunities for sharing work across

multiple queries than is possible with traditional query processing models. For example, since code generation

systems are no longer bound by traditional operator boundaries, they can arbitrarily reorder and interleave

operations from different queries, merging computations as necessary.

Moreover, code generation presents a solution for a common shortcoming of traditional multi-query

optimization approaches, namely the need to wait for multiple queries to arrive in order to perform efficient

batch execution. Instead, by combining these ideas with dynamic code generation, we could redeploy multi-

query code as new queries arrive, rather than waiting for batches of queries, while still exploiting the maximum

optimization potential.

6.3 Online Transaction Processing

This dissertation has addressed code generation exclusively for data analytics, including OLAP and complex

UDF workflows. Similarly, the other two areas proposed as promising directions for future work (i.e., dynamic

and multi-query code generation) focus on data analytics workloads.

We believe, though, that code generation holds enormous potential for other core data management prob-

lems, including online transaction processing (OLTP). Whereas data analytics workloads involve computing

high-level summaries over large amounts of data, OLTP deals instead with short-lived, repetitive updates to

small pieces of the database state (e.g., banking transactions, retail purchases).

This completely different setting presents a multitude of opportunities for low-level code generation

optimizations. For example, a system could leverage code generation to streamline execution by including

only the required functionality in a RISC-style fashion [37], or even by producing a highly tuned executable

that is specific to the workload and data [39]. Additionally, while this dissertation has focused on the problem

of generating code, OLTP workloads may benefit from actually generating different data layouts or specialized

data structures tailored to data access patterns.
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