
Abstract of “Quantifying Uncertainty in Data Exploration” by Yeounoh Chung, Ph.D., Brown Uni-

versity, April 2019.

In the age of big data, uncertainty in data constantly grows with its volume, variety and velocity.

Data is noisy, biased and error-prone. Compounding the problem of uncertain data is uncertainty

in data analysis. A typical end-to-end data analysis pipeline involves cleaning and processing the

data, summarizing different characteristics and running more complex machine learning algorithms

to extract interesting patterns. The problem is that all the steps are error-prone and imperfect.

From the input data to the output results, uncertainty propagates and compounds. This thesis

addresses a subset of the uncertainty problems in data exploration.

First, it is shown how uncertainty in the form of missing unknown data items can affect aggre-

gate query results, which are very common in exploratory data analysis. It is challenging to make

sure that we have collected all the important data items to derive correct data analysis, especially

when we deal with real-world big data; there is always a chance that some items of unknown impacts

are missing from the collected data set. To this end, sound techniques to derive aggregate queries

with the open-world assumption (the data set may or may not be complete) are proposed.

Next, uncertainty in the form of data errors is examined. It is almost guaranteed that any real-

world data sets contain some forms of data error. This is an important source of uncertainty in data

analysis because those errors would almost surely corrupt the final analysis results. Unfortunately,

there has not been much work to measure the quality of data in terms of the number of remaining

data errors in the data set. The data cleaning best practices basically employ a number of (orthog-

onal) data cleaning techniques, algorithms or human/crowd workers in a hope that the increased

cleaning efforts would result in a perfectly clean data set. To guide such cleaning efforts, techniques

to estimate the number of undetected remaining errors in a data set are proposed.

Lastly, an uncertainty problem related to machine learning (ML) model quality is addressed. ML

is one of the most popular tools for learning and making predictions on data. For its use, ensuring

good ML model quality leads to more accurate and reliable data analysis results. The most com-

mon practice for model quality control is to consider various test performance metrics on separate

validation data sets; however, the problem is that the overall performance metrics can fail to reflect

the performance on smaller subsets of the data. At the same time, evaluating the model on all

possible subsets of the data is prohibitively expensive, which is one of the key challenges in solving

this uncertainty problem.



Quantifying Uncertainty in Data Exploration

by

Yeounoh Chung

B.S., Cornell University 2008

M. Eng., Cornell University, 2009

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

April 2019



© Copyright 2019 by Yeounoh Chung



This dissertation by Yeounoh Chung is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Tim Kraska, Director

Recommended to the Graduate Council

Date
Peter J. Haas, Reader

(University of Massachusetts, Amherst)

Date
Eli Upfal, Reader

(Brown University)

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii



Vitae

Yeounoh Chung attended Cornell University, graduating with a B.S. in Electrical and Computer

Engineering and a M.Eng. in Computer Science. Before coming to Brown, he worked in the Korean

Information and Communications Technology (ICT) industy for several years. In 2014, he started

his Ph.D. program at Brown working towards “Quantifying Uncertainty in Data Exploration.”

Publications related to this thesis

“Automated Data Slicing for Model Validation: A Big data - AI Integration Approach, ” Yeounoh

Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang. IEEE Transac-

tions on Knowledge and Data Engineering (TKDE), 2019.

“Slice Finder: Automated Data Slicing for Model Validation,” Yeounoh Chung, Tim Kraska, Steven

E. Whang, and Neoklis Polizotis. IEEE International Conference on Data Engineering (ICDE), 2019.

“Towards Quantifying Uncertainty in Data Analysis & Exploration,” Yeounoh Chung, Sacha Servan-

Schreiber, Emanuel Zgraggen, and Tim Kraska. IEEE Data Engineering Bulletin, 2018.

“Estimating the Impact of Unknown Unknowns on Aggregate Query Results,” Yeounoh Chung,

Michael L. Mortensen, Carsten Binnig, and Tim Kraska. ACM Transactions on Database Systems

(TODS), 2018.

“A Data Quality Metric (DQM): How to Estimate the Number of Undetected Errors in Data Sets,”

Yeounoh Chung, Sanjay Krishnan, and Tim Kraska. Very Large Data Bases (VLDB), 2017.

“Estimating the Impact of Unknown Unknowns on Aggregate Query Results,” Yeounoh Chung,

Michael L. Mortensen, Carsten Binnig, and Tim Kraska. ACM Special Interest Group on Manage-

ment of Data (SIGMOD), 2016. [Best of SIGMOD 2016]

iv



Dedicated to my parents.

They have loved and raised me the best way they knew.



Acknowledgements

My small success today is attributed to many, including my advisor Tim. It is a very reflection of

Tim’s guidance and the skills that he has passed on. After studying for years under him, I now

better see how brilliant my advisor was. In a very real sense, In addition to his support throughout

my study, I would like to take this opportunity to thank him again for your VLDB’17 presentation;

”life is full of the unexpected.” I truly admire Tim’s commitments to excellence in research and

teaching. For that, I will always be grateful.

I am also thankful to the community of researchers, friends and mentors at Brown and Rhode

Island Central Korean Church. I’d like to thank Carsten Binnig, Eli Upfal and all the members

of Brown Data Management Research group for sharing their brilliant minds in my research work.

And special thanks to Peter J. Haas from UMass Amherst and Jee-Hyong Lee from Sungkyunkwan

University for your generous advice.

And I am ever grateful to my friends, family and God.

vi



Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Types of Uncertainty in Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Uncertainty as Missing Unknown Data Items . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Impact of Unknown Unknowns . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Goal and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Uncertainty as Undetected Data Errors . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Quantifying the Remaining Errors . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Goal and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Uncertainty as Model Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Automated Data Slicing for Model Validation . . . . . . . . . . . . . . . . . . 9

1.4.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Goal and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Uncertainty as Missing Unknown Data Items 13

2.1 The Impact of Unknown Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Unknown Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Data Integration As Sampling Process . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Sum Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Näıve Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Frequency Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Bucket Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Monte-Carlo Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



2.2.5 Other Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Estimation Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Using Confidence Interval of Chao Estimator . . . . . . . . . . . . . . . . . . 27

2.4 Other Aggregate Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Real Crowdsourced Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Synthetic Data Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.3 Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.4 Negative Publicity-Value Correlation . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.5 Number of Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.6 Streakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.7 Robustness of Monte-Carlo Estimator . . . . . . . . . . . . . . . . . . . . . . 37

2.5.8 Other Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.9 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.10 Other Base Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Uncertainty as Undetected Data Errors 44

3.1 Data Quality Metric (DQM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Crowdsourced Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Species Estimation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Chao92 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 vChao92 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Switch Estimation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Switch Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Remaining Switch Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Switch-Based Total Error Estimation . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Estimation With Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Prioritization and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Simple: Perfect Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.3 Harder: Imperfect Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Real-World Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.3 Trust In The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Uncertainty as Model Quality 64

4.1 Data Slicing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Problematic Slice as Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Slice Finder: An Automated Data Slicing Tool . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Automated Data Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 False Discovery Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Interactive Visualization Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Using Slice Finder For Model Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Problematic Slice Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Large Problematic Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.4 Adjusting Effect Size Threshold T . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.6 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.7 False Discovery Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusions 86

A Appendix for Chapter 2 87

A.1 Symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 Static Bucket Based Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3 The Increase in Count Estimate After Bucket Split . . . . . . . . . . . . . . . . . . . 88

A.4 Other Unknown Unknowns Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5 A Toy Example For Unknown Unknowns . . . . . . . . . . . . . . . . . . . . . . . . 90

B Appendix for Chapter 3 93

B.1 Symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C Appendix for Chapter 4 94

C.1 Symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix



Contents

x



List of Tables

1.1 More commonly-studied data analysis errors/uncertainty [1–7]. QUDE focuses on

other types of uncertainty that are crucial for safe and reliable data analysis, but

often overlooked in practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 UCI Census data slices. The overall metrics may be considered acceptable, since the

overall log loss is low for the entire data (see the “All” row). However, the individual

slices tell a different story. When slicing data by gender, the model is more accurate

for Female than Male . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Top-5 slices found by LS and DT from the Census Income and Credit Card Fraud

datasets. When denoting a slice from a decision tree, we use the → notation to order

the literals by level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1 Symbols used in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 SELECT SUM(employee) FROM K results with different unknown unknowns estimators;

bucket estimator gives the most accurate estimation of φD. . . . . . . . . . . . . . . 91

B.1 Symbols used in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.1 Symbols used in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



List of Figures

1.1 Data analysis & exploration workflow (top) and an example pipeline (bottom). . . . 2

1.2 Simple data integration scenario where multiple data sources overlap but are not

necessarily complete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Employees in the U.S. tech sector. The original SUM query result (Observed SUM)

never reaches the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Erroneous US home addresses: r1 and r2 contain missing values; r3 and r4 contain

invalid city names and zip codes; r1, r3, and r6 violate a functional dependency

(zip → city, state); r5 is not a home address, and r6 is a fake home address in a

valid format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 A sampling process for the integrated database. . . . . . . . . . . . . . . . . . . . . 14

2.2 Monte-Carlo simulation results to empirically justify the normality of the mean sub-

stitution (φK/c): quantile-quantile plots, (a) and (b), show that samples drawn from

skewed publicity distribution have approximately normally distributed mean values;

it can be seen in (c) that positive publicity-value correlation shifts the average value

distribution (e.g., negative publicity-value correlation shifts the distribution to the

left as smaller values are more likely to be sampled), without changing the shape of

CDF too much. The uniform publicity (λ = 0.0) samples have mean average value,

F (x = 504.87) = 0.5, close to the ground truth 505. . . . . . . . . . . . . . . . . . . . 27

2.3 Real data experiments with aggregate SUM query . . . . . . . . . . . . . . . . . . . 30

2.4 Synthetic data with varying number of sources (w), degrees of publicity skew (λ) &

publicity-value correlation (ρ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 The accuracy of the estimators are measured in SRMSE, which reflects the bias and

the variance of the estimates. Bucket is the most accurate estimator in both uniform

and skewed publicity cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Simulation (λ = 1.0, w = 20) results with positive (a) and negative (b) publicity-value

correlation. With the negative correlation, Bucket still converges to the ground truth

faster than the observed aggregates, but at a slower rate than the positive correlation

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xii



2.7 Synthetic data (λ = 4.0, ρ = 1.0: larger values are more likely) with varying number

of sources (w). Bucket estimator performs better with more independent sources due

to more overlaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Streaker effect experiments using a synthetic data (λ = 1.0, ρ = 1.0); Monte-Carlo is

the most robust estimator against streakers. . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 AVG query (d) and aggregate MAX/MIN queries (e)(f) experiments using a synthetic

data (λ = 1.0, ρ = 1.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Robustness of Monte-Carlo estimator under the gamma publicity distribution with

different shape parameter α. (a) α = 1 results in an exponentially distributed pub-

licity, and Monte-Carlo performs comparable to Bucket; (b) α = 20 and (c) α = 50

result in non-exponential publicity distributions with a mode in the middle of the item

value range. Monte-Carlo performs worse than before as the (exponential) parametric

assumption fails. Notice that our non-parametric Bucket estimator outperforms in all

three scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.11 We show the upper-bounds from Section 2.3 using a synthetic data set: (a) shows both

bounds on the same figure for a weak publicity-value correlation skew, (b) a closer

look at the results shown in (a), and (c) shows that the variances of the estimates are

still more tightly bounded by the CI-based upper bound, even with a highly skewed

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.12 Bucket estimation results with different base estimators; Chao92 is known to be one

of the more robust estimators, and the simulation results show that it is relatively

more robust even against high skew (λ = 4.0). . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Estimating the total number of errors: (a) Extrapolation results using four different

perfectly cleaned 2% samples; (b) extrapolation results with an increasing effort in

cleaning the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Total error estimation and positive and negative switch estimation results on Restau-

rant Data Set: there are more false positive errors, so VOTING monotonically de-

creases; hence, SWITCH provides the most accurate total error estimates based on

the negative swith estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Product Data Set contains more false negative errors and SWITCH uses the more

accurate positive switch estimation to yield the most accurate total error estimates. 57

3.4 Address Data Set contains both false positive and negative errors in fair amounts.

SWITCH uses positive switch estimates initially and overestimates further; however,

once the workers slowly begin to correct false positive errors, SWITCH quickly starts

to converge to the ground truth leveraging the accurate negative switch estimates. . 58

3.5 For a fixed number of tasks, we measure the scaled errors of the estimates as a function

of (a) worker quality (precision) and (b) number of items per task (coverage). . . . 60

3.6 Total error estimates using the simulated datasets; SWITCH is the most robust

estimator against all error types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



3.7 For a fixed error rate and 50 tasks, we measure the accuracy of the switch estimate

as a function of the quality of the heuristic (ε). . . . . . . . . . . . . . . . . . . . . . 62

4.1 The Slice Finder architecture: (a) Data is loaded into a Pandas DataFrame, and (b)

Slice Finder perform automated data slicing to find top-k large problematic slices.

(c) Slice Finder uses a false discovery control procedure to include only statistically

significant problematic slices (d) for interactive visualizations. . . . . . . . . . . . . . 68

4.2 A lattice hierarchy of slices. In contrast with a decision tree, the search is more

exhaustive and covers all possible feature combinations. . . . . . . . . . . . . . . . . 69

4.3 Slice Finder visualization tools help the user quickly browse through problematic slices

by effect size and by slice size on a scatter plot (A) and see slice summary by hovering

over any point (B); the user can sort slices by any metrics and select on the scatter

plot view or on the table view. The selections are highlighted on the linked views

(C). The user can also explore top-k large problematic slices by different effect size

threshold using the slider (min eff size) on the bottom left corner (D). . . . . . . . . 73

4.4 Accuracy comparison of finding problematic slices using (a) synthetic data and (b)

real data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Effect size comparisons between different data slicing approaches (T = 0.4). . . . . . 78

4.6 Average slice size (unit is 1000) comparisons between different data slicing approaches

(T = 0.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 The impact of adjusting the effect size threshold T on average slice size and average

effect size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Slice Finder (LS, DT) runtime (on a single node) and accuracy results using different

sample sizes (Census Income data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 (a) Slice Finder runtime results with increasing number of (a) parallel workers and

(b) recommendations (Census Income data). . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 (a) False discovery rate and (b) power comparison of the Bonferroni, Benjamini

Hochberg, and α-investing techniques (Census Income data). . . . . . . . . . . . . . 83

4.11 (a) Slice Finder runtime results with increasing number of (a) parallel workers and

(b) recommendations (Census Income data). . . . . . . . . . . . . . . . . . . . . . . . 84

A.1 (a) The best US tech-sector employment estimation with static buckets. Splitting

into more buckets improves estimation. Eq-width (6-bkt, 10-bkt) are missing due to

some of the buckets are empty; (b) Sum(1:10:1000) estimation with static buckets.

Splitting less (e.g., Naive) improves estimation. Data points are missing when some

buckets contain singletons only (i.e., infinite estimation). . . . . . . . . . . . . . . . 88

A.2 The best US tech-sector employment estimation with other estimators . . . . . . . . 90

A.3 A toy example for SELECT SUM(employee) FROM K . . . . . . . . . . . . . . . . . . . 90

xiv



Chapter 1

Introduction

In the age of big data, uncertainty in data constantly grows with its volume, variety and velocity.

Data is noisy, biased and error-prone. Compounding the problem of uncertain data is uncertainty

in data analysis. A typical end-to-end data analysis pipeline involves cleaning and processing the

data, summarizing different characteristics and running more complex machine learning algorithms

to extract interesting patterns. The problem is that all the steps are error-prone and imperfect.

From the input data to the output results, uncertainty propagates and compounds.

In this thesis, several potential uncertainty problems in data analysis are discussed along with

the proposed solutions. The works presented here are part of a project called, “Quantifying the Un-

certainty in Data Exploration” (QUDE; pronounced “cute”), which aims to automatically quantify

different types of uncertainty and errors within data exploration pipelines. On one hand, there are

the obvious types of uncertainty, such as outliers, which can be easily detected via simple visual-

izations (e.g., error bars, scatter plots). On the other hand, there are various types of uncertainty

that are critical for reliable analysis results, but often overlooked in practice. The goal is to provide

techniques for automatically detecting and quantifying such missed types of uncertainty. This can

help users without deep statistical or machine learning backgrounds to derive more safe and reliable

data analytical conclusions.

1.1 Types of Uncertainty in Data Analysis

A typical end-to-end data analysis pipeline involves collecting and cleaning data, summarizing dif-

ferent characteristics and running complex machine learning algorithms. At a high level, a data

analysis and exploration workflow involves multiple stages illustrated in Figure 1.1. Namely, it is

necessary to extract high quality data from multiple data sources (or samples), clean the data to

remove the inconsistency and merge the same entity in heterogeneous formats (i.e., de-duplication),

apply data analysis techniques (e.g., simple aggregate queries or more complex machine learning

algorithms) to extract useful information and extract interesting insights. Finally, one must present

the results in the right context for the interpretation.

1



2

Figure 1.1: Data analysis & exploration workflow (top) and an example pipeline (bot-
tom).

While such data analysis best practices can produce actionable insights and discoveries, one

should not take anything at face value. The size and complexity, noise and incompleteness with

big data not only impede the progress of the pipeline, but also make each step in the pipeline

more error-prone. The uncertainty around the quality of the intermediate results propagates and

compounds, making it even more difficult to validate the output results. Obviously, many quality-

related concerns exist in the entire pipeline from entity resolution problems up to Simpson-Paradox

problems for aggregated results.

As part of QUDE, this thesis focuses on the following forms of uncertainty around the data

analysis pipeline, that are less explored in the literature and/or no automatic technique exists to

control the uncertainty type. Addressing these forms of uncertainty, in turn, should provide various

measures to correct and validate the output results and discoveries.

A. Missing Unknown Data Items [8–10]: Incompleteness of the data is one of the most com-

mon sources of uncertainty in practice. For instance, if unknown data items are missing (i.e.,

one cannot tell if the database is complete or not) from the unknown target population, even

a simple aggregate query result, like SUM, can be questionable. It is challenging to make sure

that we have collected all the important data items to derive correct data analysis.

B. Undetected Data Errors [11]: Complicating the challenges of incomplete data is also the

quality of the collected data items. Real-world data is noisy and almost always comes with

a variety of errors. Such “dirty” data must be removed or corrected because errors can and

will bias the results. There are many techniques to identify and repair the errors, but no

single technique can guarantee a perfect error coverage. The challenge is that one would use

a number of orthogonal cleaning techniques or hire a lot of crowd-workers without knowing



3

Table 1.1: More commonly-studied data analysis errors/uncertainty [1–7]. QUDE fo-
cuses on other types of uncertainty that are crucial for safe and reliable data analysis,
but often overlooked in practice.

Data Extraction Data Integration Data processing Exploratory Queries & ML Interpretation

Sample selection bias Entity resolution Combination of error types Model selection Human involvement
Data source validity Un-/semi-structured data Data cleaning & coverage Hyper-parameter tuning Visualization selection

Disparate data sources Data enrichment Human involvement Model bias & variance Deceptive visualizations
Missing information Data under-/over-fitting

Feature engineering
Concept/distribution shift

when to stop. Thus, we want to estimate how many errors are still remaining in the data

set, without knowing the ground truth (a complete/perfect set of constraint rules or the true

number of errors in the data set).

C. Model Quality [12]: ML is one of the most popular tools for learning and making predictions

on data. For its use, ensuring good ML model quality leads to more accurate and reliable data

analysis results. The most common practice for model quality control is to consider various

test performance metrics on separate validation data sets (e.g., cross-validation); however, the

problem is that the overall performance metrics can fail to reflect the performance on smaller

subsets of the data. At the same time, evaluating the model on all possible subsets of the

data is prohibitively expensive, which is one of the key challenges in solving this uncertainty

problem.

This thesis focuses on these uncertainty types for two reasons: One, they are important for safe

and reliable data analysis; Two, they are overlooked by the common data analysis and data wran-

gling systems [13–17]. Table 1.1 lists other types of errors or uncertainty that are more commonly

considered in practice. The initial prototype of QUDE [18] also looks at false discovery control and

data sharing environment to enable more reliable data analysis.

1.2 Uncertainty as Missing Unknown Data Items

First, it is shown how uncertainty in a form of missing unknown data items can affects aggregate

query results, which are very common in exploratory data analysis. It is challenging to make sure

that we have collected all the important data items to derive correct data analysis, especially when

we deal with real-world big data; there is always a chance that some items of unknown impacts are

missing from the collected data set. To this end, sound techniques to derive aggregate queries with

the open-world assumption (the data set may or may not be complete) are proposed.

1.2.1 The Impact of Unknown Unknowns

In the past few years, the number of data sources has increased exponentially because of the ease of

publishing data on the web, the proliferation of data-sharing platforms (e.g., Google Fusion Table [19]



4

or Freebase [20]), and the adoption of open data access policies, both in science and government. The

success of crowdsourcing provides another virtually unlimited source of information [21–28]. This

deluge of data has enabled data scientists, both in commercial enterprises and in academia, to acquire

and integrate data from multiple data sources, achieving higher quality results than ever before. It

is therefore not surprising that industry and academia alike have developed highly sophisticated

systems and tools to assist data scientists in the process of data integration [29]. However, even

with a perfectly cleaned and integrated data set, two fundamental questions remain: (1) do the data

sources cover the complete data set of interest and (2) what is the impact of any unknown (i.e.,

unobserved) data on query results?

To answer such fundamental quetions, techniques to estimate the impact of the unknown data

on aggregate queries of the form SELECT AGGREGATE(attr) FROM table WHERE predicate are de-

veloped.

Database

Query

Source
1

Source 4Source 
2

Source 
3

....

Figure 1.2: Simple data integra-

tion scenario where multiple data

sources overlap but are not neces-

sarily complete.

For the purpose of this work, a simple data integra-

tion scenario is assumed, as depicted in Figure 1.2. Sev-

eral domain-related data sources are integrated into one

database, preserving the lineage information for each data

item or record. Naturally, these data sources overlap with

each other, but even when put together they might not

be complete. For example, all data sources in Figure 1.2

might list U.S. tech companies but some smaller compa-

nies might not be mentioned in any of the sources. This

data integration scenario applies to a wide range of use

cases ranging from crowdsourcing (where every crowd-

worker can be considered a single data source [22]) to data

extraction from web pages.

Estimating the impact of the unknown data (data items that are not observed in any data

source) is particularly difficult as both the number of missing unique data items and their values

are unknown; thus, we deal with unknown unknowns. This characteristic distinguishes our work

from what is generally known as missing data, or known unknowns, estimation in Statistics [30–32],

which tries to estimate the value of unknown (missing) attributes for known records. At a first

glance, it may seem impossible to estimate the impact of unknown unknowns; however, for a large

class of data integration scenarios, the analysis of overlap of multiple data sources makes it feasible.

1.2.2 An Illustrative Example

To demonstrate the impact of unknown unknowns, let us asssume a simple aggregate query to

calculate the number of all employees in the U.S. tech industry, SELECT SUM(employees) FROM

us tech companies, over a crowdsourced data set. For this experiment, techniques from [22] are



5

used to collect employee numbers from U.S. tech companies1 using Amazon Mechanical Turk (AMT).

The data was manually cleaned before processing (e.g., entity resolution, removal of partial answers).

Figure 1.3 shows the result.

Figure 1.3: Employees in the

U.S. tech sector. The origi-

nal SUM query result (Observed

SUM) never reaches the ground

truth.

The red line represents the ground truth (i.e., the to-

tal number of employees in the U.S. tech sector) for the

query, whereas the grey line shows the result of the ob-

served SUM query over time with the increasing number

of received crowd-answers. As the ground-truth, we used

the US tech sector employment report from the Pew Re-

search Center [33]. The gap between the observed and

the ground truth is due to the impact of the unknown un-

knowns, which gets smaller at a diminishing rate as more

crowd-answers arrive.

While the experiment was conducted in the context of

crowdsourcing, the same behavior can be observed with

other types of data sources, such as web pages. For in-

stance, suppose a user searches the Internet to create a

list of all solar energy companies in the U.S. The first few web pages will provide the greatest benefit

(i.e., more new solar companies), while after a dozen web pages the benefit of adding another web

page diminishes as the likelihood of duplicates increases. The rate of increasing overlap of data

sources is indicative of the completeness of the data set.

1.2.3 Goal and Approach

This work is a first step towards developing techniques to estimate the impact of the unknown

unknowns on query results.

We build upon the previous results [34] that proposed techniques to estimate the number of

unknowns, and extend it to be also able to estimate the value of the missing items for simple

aggregate queries, especially SUM-aggregates, but also other aggregates like AVG, MIN, and MAX.

We design techniques that can deal with the peculiarities of the data integration scenarios discussed

before, such as uneven contributions from different sources (bias of data sources).

In this work, we use crowdsourced data sets because they are easier to collect, but the techniques

are general and apply to almost all data integration scenarios that combine overlapping data sources.

While we do not argue that the proposed techniques can predict black-swan-like data items (i.e.,

extremely rare data items), we will show that our techniques can provide useful estimates under

more “normal” circumstances, which we will define more formally. For instance, in the example of

Figure 1.3, we can get an almost perfect estimate of the impact of the unknown unknowns after only

350 crowd-answers. In addition, by building upon recent work on the Good-Turing estimator [35],

1More precisely, we only asked for companies with a presence in Silicon Valley, as we found it provides more
accurate results.



6

we are able to provide an upper bound for our estimates under easy to understand conditions.

In this proposal, we make the following contributions:

• We formalize the problem of estimating the impact of unknown unknowns on query results

(Section 2.1.2) and describe why existing techniques for species estimation and missing data

estimation are not sufficient (Section 1.2.2).

• We develop techniques to estimate the impact of the unknown unknowns on aggregate query

results (Section 2.2).

• We derive a first upper bound for SUM-aggregate queries (Section 2.3).

• We examine the effectiveness of our techniques via experiments using both real and synthetic

data sets (Section 2.5).

1.3 Uncertainty as Undetected Data Errors

Next, uncertainty in the form of data errors is examined. It is almost guaranteed that any real-world

data sets contain some forms of data error. This is an important source of uncertainty in data analysis

because those errors would almost surely corrupt the final analysis results. Unfortunately, there has

not been much work to measure the quality of data in terms of the number of remaining data errors

in the data set. The data cleaning best practices basically employ a number of (orthogonal) data

cleaning techniques, algorithms or human/crowd workers in a hope that the increased cleaning efforts

would result in a perfectly clean data set. To guide such cleaning efforts, techniques to estimate the

number of undetected remaining errors in a data set are proposed.

1.3.1 Quantifying the Remaining Errors

While this is a seemingly simple question, it is actually extremely challenging to define data quality

without knowing the ground truth [36–41]; previous works define data quality through counting

the losses to gold standard data or violations of the constraint rules set forth by domain-specific

heuristics and experts [42–46]. In practice, however, such ground truth data or rules are not readily

available and are incomplete (i.e., there exists a “long tail” of errors).

In this work, we set out to design a statistical estimator to address both of the issues. That

is, we need to estimate the number of remaining errors without knowing the ground truth in the

presence of false negative and false positive errors. A simple approach is to extrapolate the number

of errors from a small “perfectly clean” sample (as in [47]): (1) we take a small sample, (2) perfectly

clean it manually or with the crowd, and (3) extrapolate our findings to the entire data set. For

example, if we found 10 new errors in a sample of 1000 records out of 1M records, we would assume

that the total data set contains 10000 additional errors. However, this nàıve approach presents a

chicken-and-egg paradox. If we clean a very small sample of data, it may not be representative and



7

thus will give an inaccurate extrapolation or estimates based off it. For larger samples, how can the

analyst know that the sample itself is perfectly clean without a quality metric?

To this end, we design a statistical estimator based on the principle of diminishing returns, which

basically states that every additional error is more difficult to detect. For example, with experts or

crowd sourcing, the first (crowd-)worker to pass over the data set finds more new errors than every

subsequent worker, and so on. The key insight is to estimate this diminishing return rate (i.e., fewer

errors are found in each pass) and project this rate forward to estimate the number of errors if there

were an infinite number of workers.

Note that, while we use crowd-sourcing as our motivation, the same observation also applies for

purely algorithmic cleaning techniques [48] (e.g., machine learned error classifiers). Each additional

data cleaning algorithm applied to a data set will have a diminishing utility to the analyst. However,

in this paper, we focus on crowd-sourced cleaning techniques because they empirically achieve high

quality results and are widely used in the industry [49]. Exploring pure algorithmic techniques,

which make some problems easier but others harder as explained later, is beyond the scope of this

paper. In this work, we present examples on entity resolution and malformed entities, although

our statistical techniques can also be applied to other types of data errors as long as the errors are

countable (i.e., independent workers provide the amount of dirty data or errors they could find in

the dataset).

1.3.2 An Illustrative Example

For instance, take a simple data cleaning task where we want to identify (and manually fix) mal-

formed US home addresses in the database, shown in Figure 1.4. As in Guided Data Repair

(GDR) [42], we might have a set of rules to propose repairs for missing values (r1, r2) and func-

tional dependency (r1, r3, r6), but not for US state/city name misspellings (r3, r4) or wrong home

addresses (r5, r6), in a seemingly valid format that only the most observant crowd-workers might

catch. Once errors are identified, a human can verify the proposed errors and automatic repairs.

Similarly, as in CrowdER [50], we can run inexpensive heuristics to identify errors and ask crowd-

workers to confirm. In both of these cases, the fallibility of the system in the form of false negative

(e.g., “long tail” or missed errors) and false positive (e.g., even humans can make mistakes) errors

is a big concern.

1.3.3 Goal and Approach

Our goal is to estimate the number of all (eventually) detectable errors. We are not concerned

with the errors that are not detectable even with infinite resources. In the case of our two-stage

data cleaning with crowd-sourcing, infinite resources means an infinite number of crowd-workers,

who would eventually reach the correct consensus decisions (i.e., dirty or clean) for all candidate

matches.

Maybe surprisingly, this problem is related to estimating the completeness of query results using



8

Figure 1.4: Erroneous US home addresses: r1 and r2 contain missing values; r3 and r4
contain invalid city names and zip codes; r1, r3, and r6 violate a functional dependency
(zip → city, state); r5 is not a home address, and r6 is a fake home address in a valid
format.

species estimation techniques as first proposed in [51]. We can think of our data quality problem as

estimating the size of the set containing all distinct errors that we would discover upon adding more

workers. Each worker marks a subset of records as dirty, with some overlaps with other workers.

The idea is to estimate the number of distinct records that will be marked erroneous if an infinite

number of workers, K →∞, are added.

Unfortunately, existing species estimation techniques [9, 51] to estimate the completeness of a

set, do not consider that workers can make mistakes. At the same time in any real data cleaning

scenario, workers can make both false negative errors (a worker fails to identify a true error) and

false positive errors (a worker misclassifies a clean item as dirty). It turns out that false positives

have a profound impact on the estimation quality of how many errors the data set contains. This is

because species estimators rely on the number of observed “rare” items as a proxy for the number

of remaining species, and this number can be highly sensitive to a small number of false positive

errors.

To address this issue, we reformulate the estimation problem to estimate the number of distinct

changes in the majority consensus. To the best of our knowledge, this is the first research done on

the diminishing return effect, in the context of consensus, and to develop techniques to estimate the

number of remaining errors in a data set, without knowing the true number of errors in the original

dataset or a complete set of rules to define a perfect dataset.

In this proposal, we make the following contributions:

• We formalize the link between data quality metrics and species estimation, which enables

estimation of the number of remaining errors without the knowledge of the ground truth

(Section 3.3).

• Analytically and empirically, we show that traditional species estimators are very sensitive to

errors from the crowd (Section 3.3.2, 3.6.2).

• We propose a variant of the species estimation problem that estimates the number of distinct

majority switching events, find that this new estimator is more accurate in the presence of



9

noise (e.g., misclassified errors), and show how this estimate can be used to determine the

quality of the data set (Section 3.4).

• We evaluate our switch-based quality metric using real- and synthetic data sets and find that

they provide much more accurate and reliable estimates with fallible crowds (Section 3.6).

1.4 Uncertainty as Model Quality

ML is one of the most popular tools for learning and making predictions on data. For its use,

ensuring good ML model quality leads to more accurate and reliable data analysis results. The

most common practice for model quality control is to consider various test performance metrics on

separate validation data sets; however, the problem is that the overall performance metrics can fail

to reflect the performance on smaller subsets of the data. At the same time, evaluating the model

on all possible subsets of the data is prohibitively expensive, which is one of the key challenges in

solving this uncertainty problem.

1.4.1 Automated Data Slicing for Model Validation

Machine learning (ML) systems [52] are becoming more prevalent thanks to a vast number of success

stories. However, the data tools for interpreting and debugging models have not caught up yet and

many important challenges exist to improve our model understanding after training [53]. One such

key problem is to understand if a model performs poorly on certain parts of the data, hereafter also

referred to as a slice.

The problem is that the overall model performance can fail to reflect that of smaller data slices.

Thus, it is important that the performance of a model is analyzed on a more granular level. While

a well-known problem [54], current techniques to determine under-performing slices largely rely on

domain experts to define important sub-populations (or at least specify a feature dimension to slice

by) [55, 56]. Unfortunately, ML practitioners do not necessarily have the domain expertise to know

all important under-performing slices in advance, even after spending a significant amount of time

exploring the data.

An underlying assumption here is that the dataset is large to the extent that enumerating all

possible data slices and validating model performance for each is not practical due to the sheer

number of possible slices. Worse yet, simply searching for the most under-performing slices can be

misleading because the model performance on smaller slices can be noisy, and without any safeguard,

this leads to slices that are too small for meaningful impact on the model quality or that are false

discoveries (i.e., non-problematic slices appearing as problematic). Ideally, we want to identify the

largest and true problematic slices from the smaller slices that are not fully reflected on by the

overall model performance metric.

There are more generic clustering-based algorithms in model understanding [57–59] that group



10

Slice Log Loss Size Effect Size

All 0.35 30k n/a
Sex = Male 0.41 20k 0.47
Sex = Female 0.21 10k -0.47

Workclass = Local-gov 0.43 1.7k 0.19
Race = White

Education = HS-grad 0.32 9.8k -0.09
Education = Bachelors 0.44 0.5k 0.27
Education = Masters 0.49 1.6k 0.40
Education = Doctorate 0.47 5k 0.32

Table 1.2: UCI Census data slices. The overall metrics may be considered acceptable,
since the overall log loss is low for the entire data (see the “All” row). However, the
individual slices tell a different story. When slicing data by gender, the model is more
accurate for Female than Male

similar examples together as clusters and analyze model behavior locally within each cluster. Simi-

larly, we can cluster examples by their similarities and check model performances across the clusters.

However, clusters of similar examples can still have high variance and high cardinality of feature

values, which are hard to summarize and interpret. In comparison, a data slice with a few common

feature values (e.g., Female slice contains all examples with Sex = Female) is much easier to interpret.

In practice, validating and reporting model performance on interpretable slices are much more useful

than validating on arbitrary (non-interpretable) slices (e.g., a cluster of similar examples with mixed

properties).

1.4.2 An Illustrative Example

Consider a Random Forest classifier that predicts whether a person’s income is above or below

$50,000 (UCI Census data [60]). Looking at Table 1.2, the overall metrics may be considered

acceptable, since the overall log loss (a widely-used loss metric for binary classification problem) is

low for all the data (see the “All” row). However, the individual slices tell a different story. When

slicing data by gender, the model is more accurate for Female than Male (the effect size defined in

Section 2.1 captures this relation by measuring the normalized loss metric difference between the

Male slice and its counterpart, the Female slice). The Local-gov White slice is interesting because the

average loss metric is on par with Male, but the effect size is much smaller (by convention, d ≤ 0.3

is small). A small effect size means that the loss metric on Local-gov White is similar to the loss

metric on other demographics (defined as counterparts in Section 4.1.2).

Once again, the main challenge is the scalability of the search. It is not feasible to evaluate every

possible data subset defined by different feature-value combinations.

1.4.3 Goal and Approach

A good technique to detect problematic slices for model validation thus needs to find easy-to-

understand subsets of data and ensure that the model performance on the subsets is meaningful and



11

not attributed to chance. Each problematic slice should be immediately understandable to a human

without the guesswork. The problematic slices should also be large enough so that their impact

on the overall model quality is non-negligible. Since the model may have a high variance in its

prediction quality, we also need to be careful not to choose slices that are false discoveries. Finally,

since the slices have an exponentially large search space, it is infeasible to manually go though each

slice. Instead, we would like to guide the user to a handful of slices that satisfy the conditions above.

In this paper we propose Slice Finder, which efficiently discovers large possibly-overlapping slices

that are both interpretable and actually problematic.

A slice is defined as a conjunction of feature-value pairs where having fewer features is considered

more interpretable. A problematic slice is identified based on testing of a significant difference of

model performance metrics (e.g., loss function) of the slice and its counterpart. That is, we treat

each problematic slice as a hypothesis and perform a principled hypothesis testing to check if it is a

true problematic slice and not a false discovery by chance. We discuss the details in Section 4.1.2.

One problem with performing many statistical tests (due to a large number of candidate slices) is an

increased number of false positives. This is what is also known as Multiple Comparisons Problem

(MCP) [61]: imagine a test of Type-I error (false positive: recommending a non-problematic slice

as problematic) rate of 0.05 (a common α-level for statistical significance testing); the probability

of having any false positives blows up exponentially with the number of comparisons (e.g., 1− (1−
0.05)8 = 0.34, even for just 8 tests, but then, we may end up exploring hundreds and thousands of

slices even for a modest number of examples). We address this issue in Section 4.2.2.

In addition to testing, the slices found by Slice Finder can be used to evaluate model fairness or

in applications such as fraud detection, business analytics, and anomaly detection, to name a few.

While there are many definitions for fairness, a common one is that a model performs poorly (e.g.,

lower accuracy) on certain sensitive features (which define the slices), but not on others. Fraud

detection also involves identifying classes of activities where a model is not performing as well as

it previously did. For example, some fraudsters may have gamed the system with unauthorized

transactions. In business analytics, finding the most promising marketing cohorts can be viewed as

a data slicing problem. Although Slice Finder evaluates each slice based on its losses on a model, we

can also generalize the data slicing problem where we assume a general scoring function to assess

the significance of a slice. For example, data validation is the process of identifying training or

validation examples that contain errors (e.g., values are out of range, features are missing, and

so on). By scoring each slice based on the number or type of errors it contains, it is possible to

summarize the data errors through a few interpretable slices rather than showing users an exhaustive

list of all erroneous examples.

The high-level contribution of this work is applying data mining algorithms to an important ML

problem. In summary, we make the following contributions:

• We define the data slicing problem and the use of hypothesis testing for problematic slice

identification (Section 4.1.2) and false discovery control (Section 4.2.2).

• We describe the Slice Finder system and propose three automated data slicing approaches,



12

including a näıve clustering-based approach as a baseline for automated data slicing (Sec-

tion 4.2).

• We present model fairness as a representative use case for Slice Finder (Section 4.3).

• We evaluate the three automated data slicing approaches using real datasets (Section 4.4).

1.5 Thesis Organization

The outline of this thesis will be as follows. Chapter 2 presents the case of unknown missing data

items in more detail and its impact on aggregate query results. The challenges of having missing

unknown data items are elaborated and novel techniques to quantify, and thus, correct for the

impact of unknown unknowns are proposed. Chapter 3 focuses on uncertainty as undetected data

errors. Detecting remaining errors is a critical in both data cleaning and data analysis in general.

In this work, a novel data quality metric based on the estimated number of undetected data errors

is proposed. The next two chapters discuss the uncertainty challenges related to model quality.

Chapter 4 presents an automated data slicing tool for model validation. Chapters 2, 3 and 4 are

self-contained with relevant experimental results, related work and summary for the specific topic.

Finally, Chapter 5 concludes with some interesting ideas for future work.



Chapter 2

Uncertainty as Missing Unknown

Data Items

It is common practice for data scientists to acquire and integrate disparate data sources to achieve

higher quality results. But even with a perfectly cleaned and merged data set, two fundamental

questions remain: (1) is the integrated data set complete and (2) what is the impact of any unknown

(i.e., unobserved) data on query results?

In this chapter, we formalize the problem and present techniques to estimate the impact of the

unknown data (a.k.a., unknown unknowns) on simple aggregate queries. The key idea is that the

overlap between different data sources enables us to estimate the number and values of the missing

data items. Our main techniques are parameter-free and do not assume prior knowledge about the

distribution; we also propose a parametric model that can be used instead when the data sources

are imbalanced. Through a series of experiments, we show that estimating the impact of unknown

unknowns is invaluable to better assess the results of aggregate queries over integrated data sources.

2.1 The Impact of Unknown Unknowns

In this Section, we define unknown unknowns, explain how data integration over multiple sources

can be regarded as a sampling process and formally define our estimation goal. For convenience

Appendix A.1 contains a symbol-table.

For the purpose of this work (Chapter 2), we treat data cleaning (e.g., entity resolution, data

fusion, etc.) as an orthogonal problem. Any data cleaning techniques can be applied to our problem

without altering the problem context [30, 62–66]. While data quality can influence the estimation

quality, studying it goes beyond the scope of this paper [34]. We assume that after a proper data

cleaning process we have one instance per observed entity and know exactly how many times the

entity was observed across multiple data sources.

13



14

Figure 2.1: A sampling process for the integrated database.

2.1.1 Unknown Unknowns

We assume that queries are of the form SELECT AGGREGATE(attr) FROM table WHERE predicate,

that table only contains records about a single entity class (e.g., companies) and that a record in

table corresponds to exactly one real-world entity (e.g., IBM). Thus, in the remainder of the paper

we use record, entity and data item interchangeably.

Definition 2.1. (Unknown Unknowns) Let Ω be the universe of unknown size of all valid unique

entities r for a given entity class, and let attrA(r) be the value of attribute A of r. Then the ground

truth D ⊆ Ω is defined as a set of entities that satisfy the predicate, i.e., D = {r ∈ Ω | predicate(r)},
where its size N = |D| is not known. Let S be a sample with replacement from D and c be the

number of unique entities in S. Unknown unknowns U refers to any unobserved entity r that exists

in D but not in S: U = D − S with size N − c.

For our running example, Ω would be the universe of all companies in the world, D all tech

companies in the US and
∑
r∈D attrempl(r) be the true number of U.S. tech sector employees. S

would be a sample with duplicates and unknown unknowns would be every company which is not

in S.

What we aim to achieve is a good estimate of the ground truth: SELECT AGGREGATE(attr) FROM

D, when we only have S. Note, that we drop the predicate from the query, since every item in D

already has to fulfill the predicate. In this work, we assume that we neither know all entities in

D nor its size (i.e., open world assumption). This distinguishes our problem from the problem of

missing data [2, 31, 67], which refers to incomplete data or missing attribute values.

2.1.2 Data Integration As Sampling Process

Data integration refers to the process of combining different data sources under a common schema

[62]. For the purpose of this work, we assume that data sources are independent samples (e.g., data



15

sources are not copies from each other and instead are independently created), and we model the

data integration process as a multi-stage sampling process as shown in Figure 2.1.

We assume l data sources s1...sl, each sampling nj = |sj | data items from the ground truth D

(e.g., the complete set of tech companies in the US with their respective number of employees),

without replacement, since a data source typically only mentions a data item once. We also

assume that every data item di ∈ D has a publicity likelihood pi of being sampled, following some

distribution X. Likewise, the attribute values (e.g., the number of employees) have a certain likeli-

hood to appear in the ground truth, referred to as value likelihood, again following some distribution

Y . These two distributions are possibly correlated (i.e,. the publicity-value correlation ρ is bigger

or smaller than 0: ρ 6= 0). For instance, more popular items are likely to have more frequent values;

if there is no correlation, more popular items could have less frequent or any values. Note that each

item appears only once in D, but multiple times in S depending on its publicity; value frequency in

D can be uncorrelated to the publicity distribution.

The l data sources are then integrated into a single integrated data set S of size nS =
∑l
j=1 nj .

Although each source samples without replacement from N = |D| different classes (i.e., unique data

item), S contains duplicates because every data source is sampling from the same underlying truth

D. This overlap between the data sources is important as it allows to estimate the frequency of the

unique items in S; a key requirement to be able to use species estimation techniques. Furthermore,

the larger the value of l and the smaller the size nj of every data source, the better S approximates

a sample with replacement, and the more accurate the resulting frequency estimate. We analyze the

effects of smaller l in Section 2.2.4 and 2.5.

Whereas S contains duplicates, the end-user only sees a view of S, referred to as the integrated

database K (for Known data), which contains only one entity per unique entity. Lastly, it is

interesting to observe that S is not necessarily a simple random sample, in that some data items

are more likely to appear in S due to the publicity-value correlation. The techniques proposed in

Section 2.2 account for this and we illustrate how different techniques perform in the face of such a

non-random sample in Section 2.5.2.

This data integration model covers a large class of use cases from web integration to crowdsourc-

ing. In the latter case, each crowd worker can be regarded as a separate data source sj since it is

known that workers also sample without replacement from D [34]. While extremely powerful, there

are scenarios where this sampling model does not apply. Most importantly, data sources are not

always independent [68]. Furthermore, the number of data sources l has to be large enough to have

sufficient overlap between the sources (see Section 2.5). If any of these assumptions are violated,

then only low-quality estimations are possible.

2.1.3 Problem Statement

We are interested in estimating the impact of unknown unknowns (U) to adjust aggregate query

results.



16

Definition 2.2. (The Impact of Unknown Unknowns) Given an integrated database K, the impact

of unknown unknowns is defined as the difference between the current answer φK of the aggregate

query over the database K and the answer over the ground-truth φD:

∆ = φD − φK (2.1)

Our goal is to estimate the answer on the ground-truth by estimating ∆ based on S:

φ̂D = φK + ∆̂(S) (2.2)

Note that this definition works for all common aggregates including MIN and MAX, where ∆̂

would be the positive or negative adjustment to the observed MIN /MAX value.

2.2 Sum Query

In this section, we focus on SUM-aggregates to illustrate our estimation techniques. We first formal-

ize the nàıve estimator (Section 2.2.1) and highlight its drawbacks. We then develop the frequency

estimator by making nàıve estimator more robust to the publicity-value correlation (Section 2.2.2).

Afterwards, we describe the more sophisticated bucket estimator (Section 2.2.3). Finally, we develop

a Monte-Carlo estimator which is better suited for a smaller set of data sources (Section 2.2.4).

2.2.1 Näıve Estimator

Estimating the impact of unknown unknowns for SUM queries is equivalent to solving two sub-

problems: (1) estimating how many unique data items are missing (i.e., the unknown unknowns

count estimate), and (2) estimating the attribute values of the missing data items (i.e., the unknown

unknowns value estimate). The nàıve estimator uses the Chao92 [69] species estimation technique

to estimate the number of the missing data items, and mean substitution [2] to estimate the values

of them.

Let φK =
∑
r∈K attr(r) be the current sum over the integrated database, then we can more

formally define our nàıve estimator for the impact of unknown unknowns as:

∆naive =
φK
c︸︷︷︸

Value estimate

· (N̂ − c)︸ ︷︷ ︸
Count estimate

(2.3)

N̂ is the estimate of the number of unique data items in the ground truth D, and c is the number

of unique entities in our integrated database K (thus, N̂ − c is our estimate of the number of the

unknown data items). φK/c is the average attribute value of all unique entities in our database K.

Chao92 estimator

Throughout the paper, we use the popular Chao92 estimator. Many species estimation techniques

exist [70, 71], but we choose Chao92 since it is more robust to a skewed publicity distribution (we



17

illustrate this further in Section 2.5.10). The Chao92 estimator uses sample coverage to predict N̂ .

The sample coverage C is defined as the sum of the probabilities pi of the observed classes. Since

the true distribution p1...pN is unknown, we estimate C using the Good-Turing estimator [72]:

Ĉ = 1− f1/n (2.4)

The f -statistics, e.g., f1, represent the frequencies of observed data items in the sample, where fj

is the number of data items with exactly j occurrences in the sample. f1 is referred as singletons,

f2 doubletons, and f0 as the missing data [73]. Sample coverage measures the ratio between the

number of singletons (f1) and the sample size (n). This ratio changes with the amount of duplicates

in the sample. The high-level idea is that the more duplicates that exist in our sample S compared

to the number of singletons f1, the more complete the sample is (i.e., higher sample coverage).

In addition, the Chao92 estimator explicitly incorporates the skewness of the underlying distri-

bution using coefficient of variation (CV ) γ, a metric that is used to describe the dispersion in a

probability distribution [69]. A higher CV indicates a higher variability among the pi values, while

a CV = 0 indicates that each item is equally likely (i.e., the items follow a uniform distribution).

Given the publicity distribution (p1 · · · pN ) that describes the probability of the i-th class being

sampled from D, with mean p̄ =
∑
i pi/N = 1/N , CV can be expressed as follows:

γ =

[∑
i

(pi − p̄)2/N

]1/2

/ p̄ (2.5)

However, since pi is not available for all data items, CV has to be estimated using the f -statistic:

γ̂2 = max

{
c
Ĉ

∑
i i(i− 1)fi

n(n− 1)
− 1 , 0

}
(2.6)

There is a bias-corrected estimator for CV , which works better than γ̂ when the true CV is relatively

large; however, γ̂ is superior when CV is moderate [69]. For this reason, we deem γ̂ a better fit

for real-world use cases, especially, when the true CV is not known in advance. The final Chao92

estimator for N̂Chao92 can then be formalated as:

N̂Chao92 =
c

Ĉ
+
n(1− Ĉ)

Ĉ
· γ̂2 (2.7)

The Estimator

N̂Chao92 is our estimate for N , and comparing this to c provides us with a means of evaluating the

completeness of S. By substituting N̂Chao92 for N̂ , the final nàıve estimator can be written as:

∆naive =
φK
c
· (N̂Chao92 − c) =

φK · f1 ·
(
c+ γ̂2n

)
c · (n− f1)

(2.8)

Note, that the nàıve estimator does not consider any publi-

city-value correlation and thus tends to over-estimate (or under-estimate) the ground truth.



18

Limitations

The nàıve approach has a couple of drawbacks. First, species estimation has very strict requirements

on how data is collected. Almost every data integration scenario violates these requirements, causing

the estimator to significantly over/underestimate the number of missing data items.

Second, it ignores the fact that the attribute values of the missing items may be correlated to

the likelihood of observing certain data items. For example, large tech companies like Google with

many employees are often more well known and thus, appear more often in data sources than smaller

start-ups, creating a biased data set. This is problematic since it also biases the mean and with it

the estimate.

In the statistics literature, this second problem is referred to as Missing Not At Random (MNAR)

[2, 31], where the missingness of a data item depends on its value. There are many statistical inference

techniques dealing with MNAR [30, 32, 74–76], but nearly all the techniques require at least partial

knowledge of the record. For example, in the case of surveys, people with a high salary might be

more reluctant to report their salary but have no problem stating their home address or how many

children they have. Existing MNAR techniques use the reported values (e.g., the address) to infer

the missing attributes. Unfortunately, this is not possible in the case of unknown unknowns, as we

miss the entire record.

2.2.2 Frequency Estimator

We developed a simple variation of the nàıve estimator, which makes direct use of the frequency

statistics to improve estimation quality. All coverage-based species estimation methods give special

attention to the singletons f1; the data items observed exactly once. The idea is that those rare

items, in relation to the sample size n, give a clue about how well the complete population is covered

(i.e., f1/n is a proxy to the number of unknown unknowns, see Equation 2.4). A ratio of f1/n close

to 1 means that almost every sample is unique, indicating that many items might still be missing.

Conversely, a ratio close to 0 indicates all unique values have been observed several times, decreasing

the likelihood of any unknown data. We use a similar reasoning to improve our value estimation.

The key idea is that singletons are the best indicator of missing data items, and that their average

value might be a better representation of the values of the missing items. Let φf1 be the sum of

all singletons,
∑
r∈singletons attr(r) and N̂Chao92 again be the Chao92 count estimate. Then the

estimator can be defined as:

∆freq =
φf1
f1
· (N̂Chao92 − c) =

φf1
(
c+ γ̂2n

)
n− f1

(2.9)

While this estimator still does not directly consider the publicity-value correlation, it is more

robust against popular high-impact data items (i.e., data items with extreme attribute values). For

example, in our running employee example, big companies that are highly visible like Google or IBM

can significantly impact the known value estimate φK/c. However, through using the average value

of the singletons, φf1/f1, it is reasonable to assume that those companies will not stay as singletons



19

very long in any sample and thus will not impact the average value for the unknown unknowns. This

estimator is surprisingly simple and becomes even simpler if we assume γ̂2 = 0:

∆freq =
φf1 · c
n− f1

(2.10)

Note, that γ̂2 = 0 makes it a Good-Turing estimate, which also converges to the ground truth

even for skewed publicity values; it might just take a bit longer [69]. While ∆freq is not the best

estimator (see Section 2.5) the simplicity makes it still useful to quickly test if an aggregate query

result might be impacted by any unknown unknowns.

2.2.3 Bucket Estimator

The problem with the previous two estimators is that they do not directly consider a correlation

between publicity and attribute values. We designed the bucket as a first estimator designed for

unknown unknowns with publicity-value correlation. The idea of the estimator is to divide the

attribute value range into smaller sub-ranges called buckets, and treat each bucket as a separate

data set. We can then estimate the impact of unknown unknowns per bucket (e.g., large, medium,

or small companies) and aggregate them to the overall effect:

∆bucket =
∑
i

∆(bi) (2.11)

Here ∆(bi) refers to the estimate per bucket and both the frequency or nàıve estimator could

be used. Using buckets has two effects: first, it provides more detailed estimates of what types

of companies are missing; second, it decreases the variance of item values per bucket, making the

estimate less prone to outliers (e.g., items with extreme low and high values can be “contained” in

separate buckets).

The challenge with the bucket estimator is to determine the right size for each bucket. If the

bucket size is too small, the bucket contains almost no data items. In an extreme case of having a

single data item per bucket, no count or proper value estimation is possible. If the bucket size is too

big, then the publicity-value correlation can still bias the estimate. In fact, the case with a single

bucket is equivalent to using just the nàıve or frequency estimator. In the following we describe two

bucketing strategies.

Static Bucket

An easy way to define buckets is to divide the observed value range into a fixed nb number of buckets

of size wi:

wi =
(amax − amin)

nb
(2.12)

where amin (amax) refers to the min (max) observed attribute value. Afterwards we apply ∆naive

per bucket. It is important to note that the estimate goes to infinity with buckets which only contain

singletons due to division-by-zero (n− f1 = 0, see equation 2.8), which can significantly increase the

error of the estimate for very small buckets.



20

The optimal number of buckets varies depending on the underlying publicity distribution (see

Appendix A.2); unfortunately, the true publicity distribution is not known and we cannot prede-

termine the right number (or size) of static buckets. To this end, we found that the estimation

approach using static buckets is of little practical value.

Dynamic Bucket

To overcome the previously mentioned issues, we developed several alternative statistical approaches

to determine the optimal bucket boundaries over time. The most notable are our uses of the

error estimate/upper bounds from Section 2.3 and of treating f1 as a random variable (see also

Section 2.2.5). Surprisingly, we achieve the best performance across all our real-world use cases and

simulations using a rather simple conservative approach, referred to as ∆Dynamic.

The core idea behind our dynamic strategy ∆Dynamic is to sort the attribute values of S and

then recursively split the range into smaller buckets only if it reduces the estimated impact of

unknown unknowns, i.e., the absolute ∆ value. Intuitively, this is controversial since either under-

or overestimation could be better for different use cases. However, there is a more fundamental

reason behind this strategy.

The Foundation: Whenever we split a data set into buckets, each bucket contains less data

than before the split, and the chance of an estimation error increases. To illustrate this, we consider

the simplest case of a uniform publicity distribution (γ̂ = 0) and an even bucket split. In this case,

the Chao92 estimate for N̂ is greater than or equal to the estimate before the split:

N̂Chao92 =
c

1− f1/n
=

Before split︷ ︸︸ ︷
n · c
n− f1

≤ nb1 · cb1
nb1 − f1b1

+
nb2 · cb2
nb2 − f1b2︸ ︷︷ ︸

After split

(2.13)

When we split the data exactly into halves, it follows that cb1 = cb2 = c/2 (i.e., we split in

regard to the unique values). With a uniform publicity distribution, every item is equally likely,

and therefore we can assume that both buckets contain roughly the same amount of data after the

split: nb1 = nb2 ≈ n/2. However, in contrast to n and c, the number of singletons (f1) can vary

significantly between the buckets. In fact, we know that the estimators only stabilize if every item

was observed several times [69] and as a consequence n has to be significantly larger than c and c

significantly larger than f1 (n � c � f1); if we split, there is a higher chance that we unevenly

distribute the f1 among the buckets.

To model the uneven distribution of f1 we introduce another parameter α ∈ [0, 1] and set

f1b1
= α · f1 and f1b2

= (1− α) · f1. As a result the inequality in equation 2.13 becomes:

n · c
n− f1︸ ︷︷ ︸

Before split

≤
n
2 ·

c
2

n
2 − α · f1

+
n
2 ·

c
2

n
2 − (1− α) · f1︸ ︷︷ ︸

After split

(2.14)



21

ALGORITHM 1: Dynamic bucket generation

Input : S
Output: List of buckets

1 b0 = (minV alue(S),maxV alue(S)) ; /* init bucket b0 */

2 todo = [b0]; /* list with b0 */

3 δmin = abs(∆(b0)) ; /* ∆ estimate over b0 */

4 bkts = [] ; /* final bucket list */

5 while !todo.empty do
6 b = todo.pop ; /* pop first bucket */

7 δtmp = δmin − abs(∆(b));
8 tmp = (null, null) ; /* empty pair */

9 for unique r ∈ b do
10 (t1, t2) = split(b, r.value) ; /* split b by r.value */

11 if δmin > δtmp + abs(∆(t1)) + abs(∆(t2)) then
12 δmin = δtmp + abs(∆(t1)) + abs(∆(t2)) ;
13 tmp = (t1, t2);

14 end

15 end
16 if tmp 6= (null, null) then
17 todo.add(t1, t2) ; /* replace b by t1, t2 to minimize δmin */

18 else
19 bkts.add(b) ; /* put b back: don’t split */

20 end

21 end

22 return bkts;

Appendix A.3 shows that the right hand side of the above inequality has its global minimum

at α = 0.5, which evaluates to nc/(n − f1) (N̂ before split), and that the inequality always holds.

Thus, it can be seen that splitting a data set into buckets not only potentially increases the error,

but it does so in a monotonic way.

Yet, this does not mean that the sum estimate ∆ always increases as well. Especially with a

publicity-value correlation, the overall estimate of ∆ over all buckets can still decrease as the average

attribute values per bucket differ. This is in line with our original motivation to use buckets, as we

wanted to get a more detailed unknown unknowns estimate (e.g., how many small companies vs.

large companies are missing). Bringing these two observations together, we can assume for many

real-world use cases that whenever our estimate of the impact of unknown unknowns ∆ increases

after a split, it has a significant chance of being caused by the increasing error in N̂ , whereas when

it decreases it potentially improves the estimate due to the more detailed unknown estimate. While

it does not always have to be the case (e.g., if the publicity-value correlation is negative) it is still an

indicator for many real-world use cases (see Section 2.5). Based on the observations, we have devised

the conservative bucket splitting strategy: only split a bucket if it reduces the overall estimate for

∆.

The Algorithm: Algorithm 1 shows the final algorithm. First we add a bucket which covers

the complete value range of S to the todo list (line 2) and calculate the current ∆ over S (line 3).

Note that we take the absolute values of all estimates (∆) to underestimate the impact of unknown



22

unknowns even for the case of having negative attribute values (e.g., net losses of companies). After-

wards, we check recursively if we can split the bucket to reduce ∆ until no further “underestimation”

is possible (line 5-21).

We therefore remove the first bucket from the todo list (line 6) and calculate the ∆ over S without

the impact of this bucket b (line 7). Note, that during the first iteration δtmp will be 0. Afterwards,

for every unique record in b, we split the current bucket b into two temporary buckets t1 and t2

based on the record’s attribute value (line 10). If the resulting estimate using this split is smaller

than any previously observed minimums (line 11), we set the new minimum to this value (line 12)

and store the new buckets (line 13). When the for-loop of line 9-15 finishes and if at least one new

bucket was found (line 16), tmp will contain the new split point, which reduces δ for the bucket,

and δmin the new minimum value of δ. These buckets are then added to the todo list (line 17) to

check, if splitting them again would further lower the estimate. On the other hand, if tmp is empty,

the algorithm wasn’t able to further split the bucket and the current bucket without any additional

splits is added to the final bucket list (line 19). If no buckets are left in the todo list, the algorithm

terminates and bkts contains the final list of buckets.

Discussion: The idea behind the Bucket estimator is to only split a bucket if it reduces the

estimated value. The reasoning behind it is two fold: on one hand, splitting increases the estimation

error and with it the estimate as explained above. On the other hand, many use cases have a positive

publicity-value correlation. For example, the more known companies are also the bigger ones, the

less known (missing) are smaller. In that case, a more pessimistic estimate is often more desired as

explained above.

However, it is also possible that there might be no or even a negative correlation, contradicting

our previous assumption. Interestingly, our bucket estimator in these cases should still be able to

provide an accurate estimate. The reason is, that — in expectation — the Bucket will not split any

buckets and act similar to the baseline estimator (e.g., nàıve estimator). This can be explained by

the fact that the value and count estimate with no or a negative correlation will — in expectation

— result in an higher estimate compared to before the split, and thus, prevent the split in the first

place. Yet, it is conceivable that from time to time, and by chance, a split might happen, which

reduces the estimate (e.g., an uneven distribution of values). We will study this effect in more detail

in Section 2.5.4.

2.2.4 Monte-Carlo Estimator

As our experiments show, the previous estimator actually performs very well (see Section 2.5).

However, what it does not consider is the effect of uneven contributions from data sources (i.e., one

data source contains much more data than another) and the peculiarities of the sampling process

itself. The Chao92 species estimation, like almost all other estimators, assumes sampling with

replacement, whereas our data sources sample without replacement from the underlying ground

truth. The reason why the Chao92 still works is that with a reasonably high number of data

sources, the integrated data source S approximates a sample with replacement [34]. However, with



23

either a small number of data sources or uneven contributions from sources (i.e., some sources

are significantly bigger than others), S diverges significantly from a sample done with replacement,

resulting in significant over- or under-estimation. In the case of crowd-sourcing, workers who provide

significantly more data items than other workers are referred to as streakers [34].

To address these issues, we present a Monte Carlo-based (MC) estimator for N̂ . The idea is that

we simulate the sampling process to find the most likely distribution with population size N , which

best explains the observed sample including how many items sj every data source j contributes. More

formally, given (s1, ..., sl) what we seek is a set of parameters Θ (e.g., the distribution parameters)

for the MC simulation, which minimize some distance function Γ between the observed data S and

the simulated data QΘ:

argmin
Θ

Γ(S,QΘ|l, [s1, ..., sl]) (2.15)

In the following we first describe the MC method for generating QΘ given a distance function Γ

and a search strategy to find the optimal parameter Θ [77].

Monte-Carlo Method

In contrast to the other estimators, the Monte-Carlo estimator requires an assumption about the

shape of the underlying publicity distribution; in this work, we use an exponential distribution for

publicity, from which data source j samples nj data items. Accordingly, the parameter Θ has two

components: θN specifies the assumed number of data items, and θλ governs the shape (skew) of

publicity distribution. Note, that the assumption of the exponential distributions makes the MC

method a parametric model. For future work, we could try a more general parametric model that

captures publicity-value correlation in any distributional shapes. The goal of the MC simulation is

to determine how well θN and θλ help to explain the observed S.

Algorithm 2 outlines our MC algorithm. First, we use a scaled exponential distribution with skew

θλ to sample publicity (p1 · · · pN̂ ) for θN̂ items (line 1); the exponential distribution has normalized

and scaled publicity probabilities of at least 0.1 for N̂ unique items (support size). And then we

initialize the distance to 0 (line 2). Afterwards, we repeat the following procedure nbRuns = 5000

times. For every data source (line 5) we sample nj data items according to E, but also without

replacement (line 6). The sampled items are added to Q to form a histogram (line 7) for the

particular run. After simulating l sources, Q contains the simulated version of S.

To finally compare the simulated sample Q with the observed sample S, we make use of the

discrete KL-divergence metric [78]. However, this requires transforming S and Q into a frequency

statistic and indexing them to ensure that the right items are compared with each other (line 9).

After the indexing we have two comparable frequency statistics for S and the simulation: FS

and FQ. However, S might contain less than N̂ unique data items, for which the KL-divergence is

not defined. We therefore adjust FS and assign a small non-zero probability to the missing extra

unique items (line 10). Finally, the two frequency statistics can be compared using the standard

KL-Divergence metric and added to the total distance (line 11). After all the simulation runs the

average distance is returned (line 13).



24

ALGORITHM 2: Monte Carlo method

Input : θN̂ , θλ, S, [n1, ..., nl], nbRuns
Output: Average distance

1 E = dist(θN̂ , θλ); /* publicity of N̂ items */

2 Γ = 0.0; /* default value */

3 for i = 1 to nbRuns do
4 Q = []; /* simulated model */

5 for j = 1 to l do
6 si = sample(nj , E); /* w/o repl */

7 Q.add(si);

8 end
9 (FS , FQ) = indexing(S,Q);

10 F ′S = smooth(FS , FQ);
11 Γ += klDiv(F ′S , FQ); /* KL-divergence */

12 end

13 return Γ/nbRuns;

Search Strategy

We can now simulate the observed sampling process leading to S, but we still need a way to find

the optimal Θ, which best explains the observed sample S. The difficulty is that even though

the KL-divergence cost function is convex, the integer variable N̂ prevents us from using tractable

optimization algorithms (e.g., gradient descent). Furthermore, the distance function can be quite

sensitive to small amounts of noise in D.

We therefore make the estimator more robust by first performing a grid search for Θ (line 5-

10). We vary θN between c ≤ N̂ ≤ N̂Chao92 with a step-size (N̂Chao92 − c)/10 and θλ between

−0.4 ≤ λ ≤ 0.4 (i.e., almost no to heavy skew) with a step-size 0.1 (line 2 and 3). The step sizes

are chosen to be small enough to efficiently model the convex curve, but large enough to be robust

to any noise. Afterwards, we fit a two-dimensional curve using least-squares curve fitting (line 11)

and return the N̂MC with the minimum DKL on the fitted curve as the final count estimate (line

11). As future work, we want to investigate more efficient search strategies, like discrete stochastic

optimization algorithms [79].

Finally, to estimate the total difference, we use our nàıve estimation technique with N̂MC . The

estimate is more robust and over-estimates less than the original nàıve estimator as our MC method

always penalizes any unmatched unique items in Q. In other words, the MC estimator favors

solutions where N̂ is closer to the number of observed unique items c.

2.2.5 Other Estimators

During the course of developing the above estimators, we explored various alternatives. For example,

we experimented with alternative static bucket strategies (see also Appendix A.2). Furthermore, we

noticed that many proposed techniques can be combined. For instance, we can use the frequency

estimator, instead of the nàıve estimator, with the bucket (i.e., Dynamic Bucket approach) estimator



25

ALGORITHM 3: Monte-Carlo based N̂ estimation

Input : [s1, ...sl],c, ˆNChao92,nbRuns
Output: Estimated number of unique data items, N̂

1 DKL = []; /* KL-divergence */

2 n = sizes([s1, ..., sl]); /* [n1, ..., nl] */

3 ΘN̂ = [c : (N̂Chao92−c)
10

: NChao92];
4 Θλ = [−0.4 : 0.1 : 0.4];

5 for θN̂ ∈ ΘN̂ do
6 for θN̂ ∈ Θλ do
7 Γ = monteCarlo(θN̂ , θλ, n, nr); /* Alg 2 */

8 DKL.add(Γ);

9 end

10 end

11 p = curveF it(ΘN̂ ,Θλ, DKL, 2); /* 2-D curve fit */

12 [N̂ , λ] = arg min{p(N̂ , λ)}
λ∈[−0.4,0.4],N̂∈[c, ˆNChao92]

; /* min on the curve */

13 return N̂ ;

or the Monte-Carlo estimator; furthermore, we can also combine the Monte-Carlo estimator with

the bucket estimator.

However, since the Monte-Carlo estimator requires larger sample size for accurate estimates,

applying it to a smaller bucket often degrades the estimation quality. Also, our experiences tell us

that the difference between the nàıve and frequency estimators does not help much for the bucket

approach (see Appendix A.4). Therefore, we focus on the original techniques for the evaluation of

this work.

2.3 Estimation Upper Bound

Because the foregoing estimators are based on a sample S, they are subject to uncertainty, which

should be taken into account. One approach is to supplement the estimators with a probabilistic

upper bound ∆ such that P (φD ≤ ∆) = α, where α is a specified probability. In this section, we

provide an approximate estimation upper bound based on the nàıve estimator (the product of count

estimate upper bound and value estimate upper bound). We treat this estimation upper bound

as an upper bound on the ground truth sum query result (φD) because nàıve estimator tends to

highly overestimate the ground truth (empirically shown in Section 2.5); the asymptotic estimate is

at least φD given non-zero publicity probabilities (p1...pN ) and positive item values (e.g., number of

employees).

The Chao92 count estimation is based on sample coverage plus a correction for the skew γ̂ > 0.

Recent work proposed an error bound of the Good-Turing estimator for the ground truth unknown

unknowns distribution mass (M0 =
∑
di∈U pi) [35]:

M0 ≤
f1

n
+ (2
√

2 +
√

3) ·
√

log 3/ε

n
(2.16)



26

which holds with probability at least 1 − ε over the choice of the sample with n = |S|. The

confidence parameter ε governs the tightness of this bound (we use ε = 0.01 for 99% confidence).

Based on equation 2.16, we bound Chao92:

N̂Chao92 =
c

Ĉ
+
n(1− Ĉ)

Ĉ
· γ̂2

≈ c

Ĉ
=

c

1−M0

≤ c

1− ( f1n + (2
√

2 +
√

3) ·
√

log log 3/δ
n )

(2.17)

Notice, that we omit γ̂ as we consider approximate upper bound for large n. It is as if we assume

non-zero publicity probabilities or that all items are eventually discovered. For future work, we

want to relax such asymptotic assumption and incorporate heterogeneous publicity probabilities

(i.e., γ̂ > 0) to more tightly bound the count estimate.

To provide an approximate bound on the mean substitution (φK

c ), we assumed that φK

c is normally

distributed and c → N as |S| gets large [9]; the worst case estimate of the ground truth attribute

mean value (φD

N ) is then defined with the help of the sample standard deviation (σK):

φD
N
≤ φK

c
+ z · σK (2.18)

Here z controls the confidence of the bound, and we use z = 3 to have nearly all values with 99.87%

confidence lie below the upper bound. However, it is highly non-trivial to establish the normality

assumption for a number of reasons. First, the standard Central Limit Theorem is not applicable

because c distinct items in K are not i.i.d. random variables. Even if we assume that c distinct items

are sampled independently into K, as K is integrated over a large number of sources independently

sampling a small subset of D, each item has different publicity to be sampled. Second, c is bounded

above by N which is finite, and thus, large-sample approximation is not possible unless N goes off

to ∞. Lastly, there is no guarantee that c → N as the sample size |S| gets larger, i.e., publicity

(p1 · · · pN ) could be heavily long-tailed. We therefore empirically justify the normality assumption

via Monte-Carlo simulation (Figure 2.2) using the same synthetic dataset from Section 2.5.2. The

sample size is 200 and it is integrated over 10 sources; the simulation is repeated 5000 times.

The final approximate upper bound is then the simple multiplication of the two worst case

estimators:

∆bound1 =
(φK

c + z · σK) · c

1− ( f1n + (2
√

2 +
√

3) ·
√

log log 3/δ
n )

(2.19)

This final bound holds if both the count estimate bound (Equation 2.17) and the value estimate

bound (Equation 2.18) hold with high probability. Let pcount = 0.99 (ε = 0.01) denote the probability

of the count estimate bound holds true and pvalue = 0.9987 (z = 3) the probability of the value

estimate bound holds true. Applying Bonferroni’s inequality, P (A ∩ B) ≥ 1 − P (Ac) − P (Bc), the

classical approximate confidence is

1− (1− pcount)− (1− pvalue) = 0.9887. (2.20)



27

−4 −2 0 2 4520

540

560

580

600

620

640

660

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 s
am

pl
e

(a) λ = 1.0

−4 −2 0 2 4720

740

760

780

800

820

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 s
am

pl
e

(b) λ = 4.0

300 400 500 600 700 800 9000

0.2

0.4

0.6

0.8

1

φK/c

F(
φ K/c

)

 

 

λ=−1.0
λ=0.0
λ=1.0
λ=4.0

(c) Empirical CDF

Figure 2.2: Monte-Carlo simulation results to empirically justify the normality of the
mean substitution (φK/c): quantile-quantile plots, (a) and (b), show that samples drawn
from skewed publicity distribution have approximately normally distributed mean val-
ues; it can be seen in (c) that positive publicity-value correlation shifts the average
value distribution (e.g., negative publicity-value correlation shifts the distribution to
the left as smaller values are more likely to be sampled), without changing the shape
of CDF too much. The uniform publicity (λ = 0.0) samples have mean average value,
F (x = 504.87) = 0.5, close to the ground truth 505.

2.3.1 Using Confidence Interval of Chao Estimator

Unfortunately, our experiences show that the previous “upper” bound estimate is very loose. To this

end, we developed another approximate estimation upper bound based on the confidence interval

of Chao84, which assumes that occurrence for each species follows a binomial distribution. The

variance estimate presented in the original paper of Chao84 is then as follows [80]:

σ̂2 = f2

[
1

2

(
f1

f2

)2

+

(
f1

f2

)3

+
1

4

(
f1

f2

)4
]

(2.21)

Assuming the normality of N̂Chao84 with variance σ̂2, the classical approximate confidence interval

for the estimate is [N̂Chao84−z′ · σ̂, N̂Chao84 +z′ · σ̂]. With z′ = 3, the confidence for the desired one-

sided bound (−∞, N̂Chao84 + z′ · σ̂] is 99.87%. However, in [81] an improved asymmetric confidence

interval was presented; assuming the normality of log(N̂ − c) instead of N̂ the author shows that

the following interval holds true: [
c+

(N̂ − c)
T

, c+ (N̂ − c) · T

]
(2.22)

with

T = exp(z′ ·
√
log(1 + σ̂2/(N̂ − c)2)]) (2.23)

The asymmetric confidence interval holds with high confidence (e.g., z′ = 3 for 99.73% confidence),

and so does the one-sided interval, (−∞, c + (N̂ − c) · T ] (e.g., z′ = 3 for confidence greater than

99.73%). Using this improved one-sided interval as count estimate upper bound, a tighter approxi-

mate upper bound is derived:

∆bound2 =

(
φK
c

+ z · σK
)
·
(
c+ (N̂ − c) · T

)
(2.24)



28

This bound holds true if both the count estimate confidence interval and the value estimate bound

hold true; we set z′ = 3 (in T ) and z = 3, to have ∆bound2 holds with at least 98% confidence (by

Equation 2.20). In Section 2.5.8, we show by means of simulation that this achieves a much tighter

bound than the previous method.

2.4 Other Aggregate Queries

In the following, we describe how the same techniques for SUM-aggregates can be applied to other

aggregates for estimating the impact of unknown unknowns.

COUNT: Estimating COUNT is easier than SUM as it only requires estimating the number of

unknown data items, but not their values. For instance, one could either directly use the Chao92

estimator or the techniques proposed in [34]. In addition, the bucket and Monte-Carlo approaches

can be used simply by skipping the second step, i.e., not multiplying the estimated count with the

value estimates.

AVG: The simplest way to estimate the AVG with unknown unknowns is to use the AVG over

the observed sample S (i.e., the law of large numbers). This is reasonable because of the law of large

numbers. However, S might be biased due to a publicity-value correlation and need to be corrected.

One way to deal with the bias is to use our bucket approach with a simple modification on how

the ∆b per bucket are aggregated (e.g., weighted average of averages by the number of unique data

items (N̂Chao92) per bucket).

MAX/MIN: At a first glance, it seems impossible to estimate MIN or MAX in the presence of

unknown unknowns. However, we can still do better than simply returning the observed extreme

values by reporting when we believe that the observed minimum or maximum value is the true

extreme value. This is already very helpful in many integration scenarios and easy to do with our

bucket estimator. The strategy divides the observed value range of S into consecutive sub-ranges

(i.e., buckets); the number of unknown unknowns as well as their values are estimated per bucket.

If the estimated unknown unknowns count in the highest (lowest) value range bucket is zero, then

we say that we have observed the true maximum (minimum) value and only then report the highest

(lowest) value.

2.5 Experiments

We evaluated our algorithms on several crowdsourced and synthetic data sets to test their predic-

tive power. Crowdsourcing allowed us to generate many real data sets and avoided the licensing

issues which often comes with other data sources. The source code and the crowdsourced data sets

are available at https://github.com/yeounoh/Query-Estimation. We designed our experiments to

answer the following questions:

• How does the estimation quality between the different estimators compare on real-world data

sets?



29

• What is the sensitivity of our estimators in regard to data skew (publicity distribution and

publicity-value correlation), and streakers/imbalance of data sources?

• How useful is the upper bound?

• How early are accurate MIN/MAX estimates possible?

2.5.1 Real Crowdsourced Data

We evaluated the estimation techniques on a number of real-world data sets, each gathered inde-

pendently using Amazon Mechanical Turk, following the guidelines in [22]. Here we chose four

representative data sets and four aggregate queries, which show different characteristics we encoun-

tered during the evaluation.

1. US tech revenue & employment: For the query: how much revenue does the US tech

industry produce?, i.e., SELECT SUM(revenue) FROM us tech companies, we used the crowd

to collect US1 tech company names and revenues. Similarly, in an independent experiment

we asked for US tech company names and number of employees, in order to answer the ques-

tion: how many people does the US tech industry employ?, i.e., SELECT SUM(employees) FROM

us tech companies. We selected the two data sets as they exhibit a steady arrival of unique

answers from crowd workers.

2. US GDP: As a proof-of-concept experiment, we asked crowd workers to enter a US state with

its GDP. This data set suffered from streakers.

3. Proton beam: Together with researchers from the field of Evidence Based Medicine (EBM)

at Brown university we created a platform for abstract screening and fact extraction and

spent over $6,000 on AMT, to screen articles about 4 different topics. Here we utilize the

results on one of these, namely Proton beam: a set of articles on the benefits and harms

of charged-particle radiation therapy for patients with cancer. Part of the abstract screening

asked workers to supply the number of patients being studied. The question we aim to answer is

how many people, in total, participated in these types of studies: SELECT SUM(participants)

FROM proton beam studies. This data set and research question is grounded in a real world

problem and unlike the other queries, this one does not have a known answer.

We paid between 2 and 35 cents per task. For the Proton beam experiment we designed a

qualification test to filter out bad workers, the other experiments were done without qualification

tests. Data cleaning was done manually: if workers disagreed on the value (e.g., the number of

employees of a company) we used the average.

1We asked for companies in Silicon Valley to get a representative sample of US tech companies; without restrictions we
received too many tiny computer shops and even non-US based companies.



30

(a) US Tech Employment (b) US Tech Revenue

(c) US GDP (d) Proton Beam

Figure 2.3: Real data experiments with aggregate SUM query

In the following we describe the results for every data set and the following estimators: Nàıve

(naive) (Section 2.2.1), frequency (Freq) (Section 2.2.2), bucket (Bucket) (Section 2.2.3), and Monte-

Carlo (MC) (Section 2.2.4) estimators (other estimators did not perform that well or had the same

performance and are only shown in Appendix A.2 and A.4).

US Tech-Sector Employment

Figure 2.3(a) shows the SUM estimates from the different estimators (colored lines) for our running

example SELECT SUM(employees) FROM us tech companies as well as the observed SUM (grey

line) over time (i.e., with an increasing number of crowd-answers). As the ground-truth (dotted

black line) we used the US tech sector employment report from the Pew Research Center [33].

Both the nàıve and frequency estimators heavily overestimate the impact of unknown unknowns.

The frequency estimator does slightly better than the nàıve estimator, which indicates that some



31

big companies have a high publicity likelihood and were observed early on by several sources.

In contrast, the MC estimator does well until it falls back to the observed query result. This can

be explained by a peculiarity of this experiment. After roughly 280 crowd-provided data items, all

remaining companies have a rather uniform publicity likelihood. In such a case, the MC estimator

has a tendency to favor count estimates that are similar to the number of observed items: N̂MC ∼ c.
This tendency is a major drawback of our MC estimation technique.

Finally, the bucket estimator provides the best estimate (4053160.57 at 500 crowd answers), which

is only ∼ 2.5% above the ground truth (3951730). While it is possible that the bucket estimator

might require more data to converge, it is also possible that the ground truth is inaccurate: the

employment statistics can vary widely based on many factors (e.g., inclusion or exclusion of part-

time employees). We also speculate that there exist many smaller start-ups overlooked by survey

agencies, due to the high data collection cost. In contrast, a school of crowd workers can more easily

find smaller start-ups and their number of employees on web-pages. Thus, the bucket estimate could

be closer to the ground truth than the one by the Pew Research Center. This is an astonishing result

as the cost of crowdsourcing (e.g., $50.00 per 500 crowd-answers for US tech revenue & employment

experiments) is probably only a small fraction of the cost of survey research by any major agency.

US Tech-Sector Revenue

Figure 2.3(b) shows the results for the US tech-sector revenue. In this data set, both the nàıve

and the frequency techniques overestimate the ground truth significantly because of the publicity-

value correlation. While both estimators will eventually converge to the ground truth, it requires

significantly more crowd-answers than what we collected.

Again, both Monte-Carlo and bucket estimators provide better estimates than nàıve and frequency

estimators. Yet, Monte-Carlo still overestimates, whereas bucket gives an almost perfect estimate

after 240 answers. However, it can also be observed that the bucket estimator slightly over-estimates

at the end of the experiment. This happens because one crowd worker suddenly reported a few unique

companies causing the estimator to believe that there were more. Again, we cannot say with 100%

certainty that our assumed ground-truth is actually the real ground truth and the bucket estimate

might or might not be the real value.

GDP per US State

Figure 2.3(c) shows the estimate quality for our GDP experiment. To clean the data, we substituted

the crowd reported GDP values with the values from [82]. This experiment suffered from streakers,

i.e., uneven contributions from crowd workers. A single crowd-worker reported almost all answers

in the beginning; this kind of aggressive behavior results in unusually high f1, which throws off the

estimators.

As the figure shows, only the Monte-Carlo based technique can actually deal with streakers

and provides a reasonable estimate even in the beginning. However, it should also be noted that



32

all estimators converge after 100 samples (for N = 50). Furthermore, except for the Monte-Carlo

estimator, there is no difference between the other estimators.

Proton Beam

Finally, results for Proton beam are shown in Figure 2.3(d). Again the Monte-Carlo estimator follows

the observed line, which makes the estimates less interesting. Furthermore, we suspect that the

nàıve and the frequency estimators overestimate with constantly increasing number of unique data

items (reviewed articles). By manually examining the data set, we confirm that this crowdsourcing

experiment did not encounter any streakers, which may cause our estimators (e.g., bucket) to fail.

Note that the bucket estimator converges to roughly 95k, which we consider to be the best estimate

of the number of participants for this particular type of cancer therapy effectiveness study.

Discussion

Overall, our bucket estimator has the highest accuracy. The only exception is when streakers are

present, making the Monte Carlo perform better. However, it should also be noted, that the run-time

of the Monte-Carlo estimator is significantly higher than the other estimators. While not a serious

issue for our experiments (roughly 3.5s for Monte-Carlo vs. 0.2s for bucket), it could be significant

for larger data sets, as the run-time scales linearly with sample size (the inner loop in Algorithm 2

depends on the sample size). In the remainder we analyze the different estimators in more depths

using simulations and make final recommendations about which estimator to use at the end of the

section.

2.5.2 Synthetic Data Experiment

To explore the estimation quality more systematically, we used a synthetic data set with N = 100

unique items, each having a single attribute-value ranging from 10 to 1000 (attr = 10, 20, 30, ..., 1000).

We further simulated the sampling process outlined in Section 2.1 and used a scaled exponential

distribution with parameter λ to model various publicity distributions ( λ = 0: uniform; λ = 4:

highly skewed). Finally, our simulation allowed us to vary the publicity-value correlation ( ρ = 0:

no correlation; ρ = 1: perfect correlation - the most frequent item also has the largest value).

Figure 2.4 shows the results for various synthetic data experiments, each of which is repeated 50

times and the results averaged (we omit the error bars for better readability). From left to right,

we vary the number of simulated crowd-workers (i.e., sources) from w = 100, 10 to 5. From top

to bottom, we first assume no publicity skew and no publicity-value correlation (λ = 0, ρ = 0), a

for species estimation techniques often ideal scenario, we then show the more realistic scenario with

skew and publicity-value correlation (λ = 4, ρ = 1), and finally simulate an environment where some

rare items might contain high values (λ = 4, ρ = 0).

Ideal: Looking at the top-left figure with a uniform publicity distribution and a hundred workers,

we can see that all estimators perform very well from the beginning. This is not surprising since all



33

Figure 2.4: Synthetic data with varying number of sources (w), degrees of publicity
skew (λ) & publicity-value correlation (ρ).

estimators work best with sampling with replacement from a uniform publicity distribution; having

many workers sampling without replacement from a uniform distribution approximates sampling

with replacement. With fewer numbers of workers sampling from the uniform distribution (top

row), all estimators start to overestimate slightly. We conclude that under the ideal conditions (i.e.,

the original assumptions of species estimation technique) all estimators perform equally well.

Realistic: The middle row shows the scenarios which best resemble real-world use cases with

a skewed publicity distribution and positive publicity-value correlation. In this case, the bucket

estimator always provides the best estimates. However, in contrast to the real-world experiments

the frequency estimator also performs well. This is due to a couple of reasons: Firstly, the publicity

is highly skewed and perfectly correlated to the values. Secondly, the item values are evenly spaced.

This helps the frequency estimator to under-estimate as singletons consist of only rare low-valued

items from the tail – a peculiarity of this simulation. Also, with 5 evenly contributing workers

almost all estimators perform about the same. However, the bucket estimator has less variance (not

shown). We conclude that under the more realistic conditions the bucket estimator performs the best

and does not over-estimate.

Rare events: Finally, we see in the bottom row that the bucket estimator is not the best choice.

This is the case where we have skewed publicity, but no publicity-value correlation. In fact, all

estimators perform poorly in this scenario, even with a lot of data sources (d). As the publicity



34

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 80  160  240  320  400  480

SR
M

SE

Sample Size

Naive
Freq

Bucket
MC

(a) λ = 0.0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 80  160  240  320  400  480

SR
M

SE

Sample Size

Naive
Freq

Bucket
MC

(b) λ = 1.0

Figure 2.5: The accuracy of the estimators are measured in SRMSE, which reflects the
bias and the variance of the estimates. Bucket is the most accurate estimator in both
uniform and skewed publicity cases.

distribution tail can take on any values (i.e., no publicity-value correlation, the tail (i.e., singletons)

can contain many high-impact values or “black-swan” events. In this case, because it conservatively

favors underestimation, the bucket estimator performs worse. In summary, none of the estimators

are able to predict black-swan events or the long tail; all the estimators underestimate the ground

truth.

2.5.3 Estimation Accuracy

Bias and precision define the performance of estimators. The more biased and the less precise an

estimator is, the worse is the performance. Accuracy (error) measures the overall/average distances

between the estimated and the true point estimates; there are accuracy measures, e.g., Scaled Root

Mean Squared Error (SRMSE), that explicitly combine bias and precision (variance): SRMSE =
1
D

√
variance+ bias2.

As shown in Figure 2.4 most estimators, except Bucket, fails with increasing skew; this is again

shown in Figure 2.5, using a synthetic data set with w = 20, λ = 1.0 and ρ = 1.0. Figure 2.5

illustrates how different estimators perform in terms of accuracy, and we see that Bucket is the best

performing estimator, and the gaps between Bucket and the others grow larger with the skewed

population.

2.5.4 Negative Publicity-Value Correlation

Many real-world scenarios assume positive publicity-value correlation, e.g., larger companies are

more well-known and likely to be sampled by sources; our Bucket estimator benefits the most

when the underlying population complies with such an assumption (i.e., Bucket splits to further



35

35 k

40 k

45 k

50 k

55 k

60 k

 80  140  200  260  320  380  440  500

Su
m

(1
:1

0:
10

00
)

Sample Size

Observed
Naive
Freq

Bucket
MC

Ground Truth

(a) Positive correlation

35 k

40 k

45 k

50 k

55 k

60 k

 80  140  200  260  320  380  440  500

Su
m

(1
:1

0:
10

00
)

Sample Size

Observed
Naive
Freq

Bucket
MC

Ground Truth

(b) Negative correlation

Figure 2.6: Simulation (λ = 1.0, w = 20) results with positive (a) and negative (b)
publicity-value correlation. With the negative correlation, Bucket still converges to the
ground truth faster than the observed aggregates, but at a slower rate than the positive
correlation case.

under-estimate).

In Figure 2.6, we illustrate how the proposed techniques perform with the negative publicity-

value correlation; we show that Bucket still provides valuable estimates over the observed aggregates.

However, notice how Bucket converges at a slower rate than in the case of positive correlation; this is

expected, as rare items would have larger values so more aggressive estimates would benefit the most

(e.g., Freq performs the best in the negative correlation scenario, with the largest value estimate

solely based on the rare items). In other words, Bucket is more conservative and tend not to split,

i.e., Bucket and Naive estimates overlap for the most part if the rare items tend to have large

extreme values.

2.5.5 Number of Sources

Bucket estimator is non-parametric and works well with with both uniform and skewed distributions;

however, it assumes a sample S sampled with replacement. This assumption is appropriate as long

as enough independent data sources contribute evenly to S.

In Figure 2.7, we illustrate this with a synthetic data (skewed publicity correlated to item attribute

values). In this particular example, more than 5 sources result in enough overlaps for bucket to

estimate accurately; however, the minimum number of sources would vary with the data set. In

addition, Monte-Carlo estimator converges faster as it does not assume sampling with replacement.



36

40 k

45 k

50 k

55 k

60 k

 50  100 150 200 250 300 350 400 450 500

Su
m

(1
0:

10
:1

00
0)

Sample Size

Observed
Bucket

MC
Ground Truth

(a) w = 2

40 k

45 k

50 k

55 k

60 k

 50  100 150 200 250 300 350 400 450 500

Su
m

(1
0:

10
:1

00
0)

Sample Size

Observed
Bucket

MC
Ground Truth

(b) w = 3

40 k

45 k

50 k

55 k

60 k

 50  100 150 200 250 300 350 400 450 500

Su
m

(1
0:

10
:1

00
0)

Sample Size

Observed
Bucket

MC
Ground Truth

(c) w = 4

40 k

45 k

50 k

55 k

60 k

 50  100 150 200 250 300 350 400 450 500

Su
m

(1
0:

10
:1

00
0)

Sample Size

Observed
Bucket

MC
Ground Truth

(d) w = 5

Figure 2.7: Synthetic data (λ = 4.0, ρ = 1.0: larger values are more likely) with vary-
ing number of sources (w). Bucket estimator performs better with more independent
sources due to more overlaps.

0.0  

20.0 k

40.0 k

60.0 k

80.0 k

100.0 k

120.0 k

140.0 k

 80  100  120  140  160  180  200  220  240

Su
m

(1
0:

10
:1

00
0)

Sample Size

Observed
Naive
Freq

Bucket
MC

Ground Truth

(a) streakers only

0.0  

10.0 k

20.0 k

30.0 k

40.0 k

50.0 k

60.0 k

70.0 k

80.0 k

 80  100  120  140  160  180  200  220  240

Su
m

(1
0:

10
:1

00
0)

Sample Size

Observed
Naive
Freq

Bucket
MC

Ground Truth

(b) a streaker injected at n = 160

Figure 2.8: Streaker effect experiments using a synthetic data (λ = 1.0, ρ = 1.0); Monte-
Carlo is the most robust estimator against streakers.



37

400.0  

450.0  

500.0  

550.0  

600.0  

 100  200  300  400  500  600  700  800

AV
G(

10
:1

0:
10

00
)

Sample Size

Observed
Bucket

Ground Truth

(a) AVG (b) MAX (c) MIN

Figure 2.9: AVG query (d) and aggregate MAX/MIN queries (e)(f) experiments using
a synthetic data (λ = 1.0, ρ = 1.0)

2.5.6 Streakers

We have seen in Section 2.5.1 that the estimators can heavily overestimate in the presence of streak-

ers. We now examine the effects of streakers using the synthetic data set with w = 20, λ = 1.0 and

ρ = 1.0.

First, we consider an extreme case where each source successively provides allN = 100 data items;

first, one data source contributes n = 100 items and then the second source starts to contribute its

n = 100 items, and so on. Figure 2.8(a) shows that Monte-Carlo simply defaults to the observed

sum from one source (n = 100), whereas all other estimators fail. This is because of the fact that

all Chao92-based estimators assume a sample with replacement; an assumption which is strongly

violated in this case. Only Monte-Carlo is more robust against streakers as it tries to best explain

the observed S using simulation.

Next, we consider a more moderate case where we inject a single streaker (i.e., an overly ambitious

crowd-worker). In Figure 2.8(b), a streaker is injected at the sample size n = 160, contributing all

N = 100 unique data items directly afterwards. Similar to the previous case, all estimators, except

Monte-Carlo, heavily overestimate in the presence of a streaker. Again, the reason is that Monte-

Carlo uses simulation to explain the observed sample S instead of assuming that S was created using

sampling with replacement.

2.5.7 Robustness of Monte-Carlo Estimator

Monte-Carlo is more robust to imbalanced data sources (e.g., streakers), as shown in Section 2.5.6.

However, unlike bucket estimator, Monte-Carlo estimator is a parametric model in which the un-

derlying item publicity is expected to follow an exponential distribution. In this case, the simple

publicity-value correlation model (e.g., larger values are more likely or all item values are equally

likely) is overly favorable to the parametric assumption of the estimator. Here, we assess robustness

of Monte-Carlo under a non-exponential publicity distribution, namely, the gamma distribution.



38

35 k

40 k

45 k

50 k

55 k

60 k

 80  140  200  260  320  380  440  500

Su
m

(1
:1

0:
10

00
)

Sample Size

Observed
Bucket

MC
Ground Truth

(a) α = 1

35 k

40 k

45 k

50 k

55 k

60 k

 80  140  200  260  320  380  440  500

Su
m

(1
:1

0:
10

00
)

Sample Size

Observed
Bucket

MC
Ground Truth

(b) α = 20

35 k

40 k

45 k

50 k

55 k

60 k

 80  140  200  260  320  380  440  500

Su
m

(1
:1

0:
10

00
)

Sample Size

Observed
Bucket

MC
Ground Truth

(c) α = 50

Figure 2.10: Robustness of Monte-Carlo estimator under the gamma publicity distribu-
tion with different shape parameter α. (a) α = 1 results in an exponentially distributed
publicity, and Monte-Carlo performs comparable to Bucket; (b) α = 20 and (c) α = 50
result in non-exponential publicity distributions with a mode in the middle of the item
value range. Monte-Carlo performs worse than before as the (exponential) parametric
assumption fails. Notice that our non-parametric Bucket estimator outperforms in all
three scenarios.

Figure 2.10 illustrates that Monte-Carlo performs better when the underlying publicity distribu-

tion is exponentially distributed (e.g., larger companies are more well-known). Such a parametric

assumption is brittle (Figure 2.10(b)(c)), but still reasonable for our real crowdsourced data exper-

iments. It would have been better for the Monte-Carlo estimator to use a more flexible parametric

model. Developing a robust estimator in any circumstances is an important area of future work.

2.5.8 Other Queries

In this subsection we present results for other aggregate queries than SUM using the techniques

from Section 2.4. As before we use synthetic data with 100 unique data items (e.g., with values

{10, 20, 30, ..., 1000}) integrated over 20 sources with λ = 1.0 and a publicity-value correlation ρ =

1.0. The experiments are repeated 1000 times.

AVG: Figure 2.9(a) shows the observed (gray line) and estimated (blue line) for a simple average

query of the form SELECT AVG(attr) FROM table. We only show the bucket estimation, as other

estimates exactly overlap the observed AVG query results (i.e., when all unknown unknowns assume

the same observed mean value, the AVG query result is the same as the observed). As with the

sum-aggregates, our dynamic bucket estimator is able to correct the bias of the average because of

the publicity-value correlation and provides an almost perfect estimate in this scenario.

MIN/MAX: Figure 2.9(b)(c) compactly visualizes the observed MIN or MAX query results.

The heat-map shows when the real MIN/MAX value was observed in the data set (the darker the

color the more often the result was observed given a number of samples over the 1000 repetitions).

The green line shows on average, which value was reported if the unknown unknowns count estimate

for the highest (MAX) / lowest (MIN) bucket was zero. The text next to the green line shows how

often over the 1000 repetitions the MIN/MAX value was reported for a given sample size. As it is

shown, the average is almost perfect for both MAX and MIN (note the actual minimum value is 10).



39

(a) λ = 1.0 (b) λ = 1.0 (c) λ = 4.0

Figure 2.11: We show the upper-bounds from Section 2.3 using a synthetic data set:
(a) shows both bounds on the same figure for a weak publicity-value correlation skew,
(b) a closer look at the results shown in (a), and (c) shows that the variances of the
estimates are still more tightly bounded by the CI-based upper bound, even with a
highly skewed data set.

That is, whenever our estimation technique for MAX/MIN reports a value, the user can have more

trust in it. It should be noted, though, that it is impossible to estimate rare extreme values (black

swans). Thus, it is only possible to improve upon the confidence but not eliminate any doubts in

the results.

2.5.9 Upper Bound

Finally in Figure 2.11(a) we show the upper-bounds from Section 2.3 using the same synthetic data

set. As it can be seen, the worst-case estimation upper bound is very loose (i.e., very large compared

to our estimates) and becomes tighter as we observe more data (the real data set results are similar

and omitted for space constraints); while the upper bound provides a valuable insight, it may still

be too loose for many real-world scenarios and we hope to improve it in the future.

On the other hand, the improved confidence interval-based upper bound is tighter as shown in

Figure 2.11(a-c). Once again, such intervals would capture the ground truth with a high confidence

(e.g., 99.95% of the times if repeatedly generated).

2.5.10 Other Base Estimators

There are a number of techniques for asymptotic species richness estimation; a handful of nonpara-

metric estimators (i.e., model or underlying population assumption free), including Chao92, have

gained increasing popularity over the past years [83].

In Figure 2.12, we compare the more widely-used (nonparametric) species estimators [69, 83, 84]

and show how different base estimators perform at different skew-levels (e.g., low and high) with

Bucket. For the comparison, we combine Bucket with Chao92 (described in Section 2.2.1; Chao84 is

excluded for it performs worse than Chao92 for skewed data), improved Horvitz-Thompson estimator

(HT ) [84, 85], Abundance-based Coverage Estimator (ACE) [86], or First-Order Jackknife (JK1)



40

0.0  

10.0 k

20.0 k

30.0 k

40.0 k

50.0 k

60.0 k

70.0 k

 80  160  240  320  400  480

Su
m

(1
:1

0:
10

00
)

Sample Size

Observed
Naive (Chao92)

Naive (ACE)
Naive (JK1)
Naive (JK2)
Naive (HT)

Ground Truth

(a) λ = 1.0

0.0  

10.0 k

20.0 k

30.0 k

40.0 k

50.0 k

60.0 k

70.0 k

 80  160  240  320  400  480

Su
m

(1
:1

0:
10

00
)

Sample Size

Observed
Naive (Chao92)

Naive (ACE)
Naive (JK1)
Naive (JK2)
Naive (HT)

Ground Truth

(b) λ = 4.0

Figure 2.12: Bucket estimation results with different base estimators; Chao92 is known
to be one of the more robust estimators, and the simulation results show that it is
relatively more robust even against high skew (λ = 4.0).

and Second-Order Jackknife (JK2) estimators [87]. In the simulation results, we see that Chao92-

based Bucket (in Green) is most accurate and efficient (i.e., converges faster with a smaller sample);

we chose Chao92 as the base estimator for the proposed approaches, since it is one of the more

robust estimators that explicitly considers data skew (e.g., publicity-value correlation). It is also

interesting to see that the Jackknife estimators (JK1 and JK2) are not robust to data skew and

either heavily over- or under-estimate.

Additionally, a recent study [88] found that estimating species richness using incidence-data (i.e.,

each species is noted if it is presented in a sample) instead of abundance-data (i.e., each species is

noted how many times it is presented in a sample) yield more accurate estimates with lower sample

coverage. This is interesting for Bucket since it estimates per bucket (i.e., a smaller value range

with possibly lower sample coverage); however, our sampling model (see Section 2.1.2) assumes that

each source is sampling without replacement. That is, the incidence-data is not distinguishable from

the abundance-data in our integrated data set S, i.e., the aggregated incidences is the abundances

of species.

2.5.11 Discussion

Which Estimator To Use: While the Monte Carlo or bucket estimators always dominate all the

others, there is no clear winner between them. The bucket estimator performs exceptionally well

unless the data sources are imbalanced. It provides the best performance on the real-world use

cases (except on the GDP experiment, which suffers from streakers); furthermore, it performs at

least as good as other estimators in the simulations from Section 2.5.2 (except for the rare event

case, in which all estimators fail to predict black-swan events). However, when the data sources are

imbalanced the Monte Carlo estimator wins.



41

Bucket estimator is a Chao92 based method, and thus, a nonparametric model, which does

not require assumptions about the underlying distribution. However, it assumes a single sample

without replacement, which is not an issue as long as enough independent data sources exist (in our

simulations, 5 sources are often sufficient, see Section 2.5.5) and contribute evenly (i.e., no streakers).

Also, the authors of [69] found that Chao92 estimator is inaccurate with very low sample coverage

C (i.e., observed items are mostly singletons) and reported results for cases with C ≥ 0.395 only. On

the other hand, Monte-Carlo estimator is a ‘data analytic method’ [77] and really good at adjusting

to the specifically observed sampling scenario (i.e., streakers), but at a cost of being a parametric

model. The method assumes an exponential distribution to model the publicity distribution, which

can be good or bad depending on the true shape of the underlying distribution.

Thus, our recommendation is to use bucket estimator, if the predicted sample coverage Ĉ (Equa-

tion 2.4) is greater than 40%, and when the analyst knows that enough data sources contribute

evenly to the sample, and, otherwise, to use the more conservative Monte Carlo method.

Trust In The Results: With any types of estimators the main question arises: How can we

trust the estimate? In 1953, Good, who worked with Turing on the estimators, already pointed

out that “I don’t believe it is usually possible to estimate the number of species ... but only an

appropriate lower bound to that number. This is because there is nearly always a good chance that

there are a very large number of extremely rare species”[70]. In estimating the Impact of unknown

unknowns, this statement is even more critical as the rare items can have extreme values.

Nonetheless, species estimation techniques are extensively used in biology and even helped to

decipher the Enigma machine [72]. We actually believe that it comes down to a simple question:

What do you trust more? A potentially wrong answer as no missing data is considered or a potentially

wrongly corrected result. Now, knowing that with enough data sources and no streakers, our bucket

estimator tends to under-estimate the ground truth; in this case, one can generally say that it can

only improve the estimates (see the simulations and real-world experiments). Unfortunately, without

enough sources or in the presence of streakers, the answer is less obvious since the estimators might

over-estimate more often. Thus, the answer to the question actually lies somewhere in the middle;

to this end, the estimation upper bound can guide the decision. Overall, we believe that user should

not stay on the blind-side; instead, user should be informed of the hidden ground truth (or a best

guess) when a query result is incomplete.

In this work, we made a first step in the direction, while a lot remains to be done including

developing tighter bounds, better ways to deal with the imbalance of sources, and easier ways to

convey the meaning (and assumptions) of the estimates to the user.

2.6 Related Work

Traditional query processing assumes the database to be complete (i.e., closed world assumption).

Furthermore, nearly all sampling-based query processing techniques assume knowledge of the pop-

ulation size [89]; hence, none of these are suitable for our problem with unknown unknowns. To



42

the best of our knowledge, [9] is the first work on estimating the impact of the unknown unknowns

on query results (i.e., aggregate query processing in the open world). Most related to this work is

[34], which first proposed to use species estimation techniques to estimate the completeness (i.e.,

the number of missing items) on query results. In this work, we extended these techniques and

went further to also estimate the impact of the value of the missing data items (i.e., the unknown

unknowns).

Species estimation: This work leverages the vast amount of work on species estimation tech-

niques, like Chao92 [69, 70, 90]. Recent work [91] in this area even tries to estimate the shape of the

population (e.g., support size, N). We could use these techniques in place of Chao92 to estimate the

number of unknown unknowns, but not to directly estimate the impact of unknown, as the shape

does not concern the values of unknown unknowns.

Species estimation techniques have also been used to estimate the size of search engine indexes

and the deep web [92]. The problem is similar to our unknown unknowns count estimation [93]. Yet

again, this line of work does not consider the unknown unknowns value.

Similar species estimation techniques have been used in the context of distinct value estimation

for a database table [89, 94]. However those techniques leverage the knowledge of the table size to

avoid over-estimation.

Survey Methodology & Missing Data: There is a vast body of literature on sampling-based

statistical inferences to estimate population statistics [95–97] or techniques to deal with missingness

of values [30, 31, 74–76].

However, unknown unknowns is different from the missing data; missingness refers to the case

when the existence of record is known, but one or more attribute values are missing; most of the

techniques assume the knowledge of population size to categorize something as missing (e.g., among

this many people asked, only that many people responded, etc.). In addition, the cause of missingness

(e.g., missing completely at random, missing at random, missing not at random) needs to be known to

select appropriate techniques. The statistical inference techniques (e.g., multiple imputation based

EM/maximum likelihood estimation [30, 74], propensity score estimation [75], or Markov Chain

Monte Carlo simulation [30, 76]) used to fill the missing attributes make their inference based on the

known non-missing attributes of the record. In the case of unknown unknowns, these assumptions

are violated as the entire record (i.e., all attributes) are missing.

Missing data is also studied in the database community with respect to data cleaning [2, 32, 98];

however, since traditional RDBMS query processing function under the closed world assumption,

they do not consider unknown unknowns as part of query processing.

Recent works defined database completeness in a partly open world semantic (i.e., database can

be incomplete, which causes incorrect query results) and use the completeness information to denote

the completeness of query [98, 99]. Similar in spirit to our work, they investigate the impact on

query results of entire database records that may be missing [99]; however, they also assume the

knowledge of population size (e.g., there are 7 days in a week) to define the completely missing

records and measure the completeness.



43

Sampling-Based Query Processing: To cope with aggregates over large data sets, sampling

based estimation techniques have been proposed as part of query processing [100–102]. One limiting

aspect of any sampling based estimation techniques, though, is that they assume a complete database

(i.e., closed world).

2.7 Summary

Integrating various data sources into a unified data set is one of the most fundamental tools to achieve

high quality answers. However, even with the best data integration techniques, some relevant data

might be missing from the integrated data set. In this work, we have developed techniques to

quantify the impact of any such missing data on simple aggregate query results. The challenge lies

in the fact that the existence and the value of the missing data is unknown. To our knowledge, this

is the first work on estimating the impact of unknown unknowns on query results.

By nature, our techniques cannot predict black swan events (i.e., extremely rare data items).

However, based on our evaluation results, we believe that the proposed techniques can provide

valuable insights for users; rather than blindly believing a query result over an integrated data

source, the user gets an idea of what the true answer might be.

There are several interesting future directions. Currently, none of our estimators works best

under all circumstances. The Monte-Carlo estimator is robust against streakers, whereas the bucket

estimator provides the most accurate results without streakers. Developing a robust estimator in

any scenario is an important area of future work. Similarly, developing tighter error-bounds for the

techniques is important. Finally, extending the results to more complex aggregate queries (e.g., with

joins) also remains for future work.

This work is an important step towards providing higher quality query results. After all, we live

in a big data world where even an integrated data set over multiple sources is possibly incomplete.



Chapter 3

Uncertainty as Undetected Data

Errors

Data scientists report that data cleaning, including resolving duplicates and fixing inconsistencies,

is one of the most time-consuming steps when starting a new project [1, 103]. A persistent challenge

in data cleaning is coping with the “long tail” of errors, which can affect algorithmic, manual, and

crowdsourced cleaning techniques. For example, data integrity rules can be incomplete and miss

rare problems, and likewise, crowd workers that are not familiar with a particular domain might

miss subtle issues. Consequently, even after spending significant time and/or money to clean and

prepare a dataset, there may still be a large number of undetected errors.

3.1 Data Quality Metric (DQM)

We want to estimate the number of undetected errors in a data set and use the estimate as a data

quality metric. In this section, we formalize our assumptions about the cleaning process and the

problem setup. For convenience, Appendix B.1 contains a symbol-table.

3.1.1 Crowdsourced Data Cleaning

Most practical data cleaning tools rely on humans to verify the errors or repairs [16], and Crowd-

based cleaning techniques use humans to identify errors in conjunction with algorithmic pre-processing.

To overcome human error, the prevailing wisdom is to hire a sufficient number of workers to guar-

antee that a selected set of records is reviewed by multiple workers. This redundancy helps correct

for false positives and false negatives, and there are many well-studied techniques to do so (e.g.,

Expectation Maximization and Voting [104, 105]). The core idea of all these techniques is that with

more and more workers, the majority of the workers will eventually agree on the ground truth.

Consider a two-stage entity resolution algorithm as proposed in CrowdER [50]. During the first

stage, an algorithmic similarity-based technique determines pairs that are likely matches (potential

44



45

errors), unlikely matches, and critical candidates for crowd verification. For example, likely matches

could be the records pairs with a Jaccard distance of 1, unlikely matches as the ones with a similarity

below 0.5, and everything in between as uncertain (i.e., the candidate matches). During the second

stage, a crowd-worker is assigned to one of the candidate matches and determines if the pair is a

match or not. However, assigning a pair to a single worker is risky since he or she can make a

mistake. To improve the quality, we could assign a second and third worker to check the same items

again. Although the quality of the cleaned data set improves, the impact of every additional worker

decreases.

In this work, we also assign multiple workers to each item to verify and fix the errors, but at

random. This enables our technique to leverage the diminishing utility of workers for the estimation.

In other words, instead of assigning a fixed number of workers (e.g., three to form a quorum) to

all items, we distribute a small subset of the dataset to each worker uniformly at random. Such

redundancy in worker assignment gives rise to a reliable quality metric based on the number of

remaining error estimations; however, it seems wasteful from the data cleaning perspective. In

Section 3.6, we empirically show that the added redundancy, due to the random assignment, is

marginal compared to the fixed assignment (exactly three votes per item).

3.1.2 Problem Statement

Every data set R consists of a set of records {r1, ..., rN}. Some subset of R is erroneous Rdirty ⊆
R. Let W = {w1, ..., wK} be the set of “fallible” workers, and each worker wi ∈ W observes a

subset of records S(i) ⊆ R and identifies those records that are dirty S
(i)
dirty and clean S

(i)
clean, with

some unknown error rates. Workers might have different error rates as well as a different set of

internal rules to identify errors, but a sufficient number of workers would correctly identify errors in

consensus [104, 105].

Therefore, we have a collection of sets Sdirty = {S(1)
dirty, ..., S

(K)
dirty} of all the records that the

crowd identified as dirty and a collection of sets of all the records that the crowd identified as clean

Sclean = {S(1)
clean, ..., S

(K)
clean}. The worker responses can be concisely represented in a N×K matrix I,

where every column represents the answers from a worker k, and which entries are {1, 0, ∅} denoting

dirty, clean, unseen respectively.

Problem 1 (Data Quality Estimation). Let I be a N × K worker-response matrix with entries

{1, 0, ∅} denoting dirty clean, unseen respectively. The data quality estimation problem is to estimate

|Rdirty| given I.

This model is general enough to handle a variety of crowd-sourced cleaning operations such as

missing value filling, fixing common inconsistencies, and removing irrelevant or corrupted records;

the errors only need to be identifiable and countable by some of the fallible workers in W . Notice

that the model does not require the ground truth (e.g., a complete set of rules/constraints to identify

all errors in the dataset), and simply collects the votes from somewhat reliable, independent sources.

It turns out that we can also describe entity resolution problems in this way by defining R to be



46

a relation whose records are pairs of possibly duplicate records. Suppose we have a relation Q where

some records refer to the same real-world entity. We can define R = Q×Q to be the set of all pairs

of records from Q. A pair of records (q1 ∈ Q, q2 ∈ Q) is defined as “dirty” if they refer to the same

entity, and are clean if otherwise. Therefore, Rdirty is the set of all duplicated pairs of records (remove

commutative and transitive relations to avoid double-counting, e.g., {q1−q2, q1−q4, q2−q1, q2−q4} 7→
{q1 − q2, q1 − q4}). To quantify the number of entity resolution errors in a dataset, we estimate the

cardinality of this set. In this paper, we use items, records, and pairs interchangeably.

Some pairs will be obvious matches or non-matches and do not require crowd-sourcing, and in

Section 3.5, we describe how to integrate this basic model with algorithmic prioritization. Further-

more, the above problem definition concerns estimating the ground truth number of dirty items in

a data set, but does not necessarily correct them. While in practice, identifying and correcting are

often done together as part of this work we consider them as orthogonal problems.

3.2 Baselines

Based on Problem 1, we describe some existing approaches as our baselines. We consider crowd-

sourced approaches, in the context where the true number of errors (or a complete set of constraints

to identify all violations) is not available. We categorize these approaches as descriptive or pre-

dictive. Descriptive approaches only consider the first K workers (or worker response or task) to

clean the dataset, and predictive approaches consider the impact of the future K ′ (possibly infinite)

workers.

Nominal (descriptive): The most basic estimate for the number of errors, is to count the

number of records marked as error by at least one worker:

c = nominal(I) =

N∑
i

1[n+
i > 0]

The number of positive votes on record i (marking it as dirty or an error), n+
i , as well as the number

of total votes ni are at most K > 0. We refer to the estimate as nominal estimate. However, this

estimate is neither forward looking nor tolerant of inconsistency, cognitive biases, and fatigue of

workers, and this estimate may be far from the true number |Rdirty|.
Voting (descriptive): A more robust descriptive estimate is the majority consensus:

cmajority = majority(I) =

N∑
i=1

1[n+
i −

ni
2
> 0]

If the number of workers who marked record i as dirty (n+
i ) is more than those who marked it as

clean (n−i = ni − n+
i ), then we label the record as dirty. If we assume that workers are better than

a random-guesser (i.e., correctly identify dirty or clean records with probability > 50%), then this

procedure will converge as we add more workers. However, for a small number of workers, especially

if each worker sees only a small sample of records, even the majority estimate may differ greatly



47

Figure 3.1: Estimating the total number of errors: (a) Extrapolation results using four
different perfectly cleaned 2% samples; (b) extrapolation results with an increasing
effort in cleaning the sample.

from |Rdirty|. Adding more workers may further improve the quality of the dataset, and accordingly,

the data quality estimation problem is to estimate the value of adding more workers given I.

Extrapolation (predictive): Unlike the previous descriptive methods, extrapolation is a sim-

ple technique to predict how many more errors exsit in the dataset if more workers were added.

The core idea of the extrapolation technique is to “perfectly” clean a small sample of data and to

extrapolate the error rate for the whole data set. For example, if a sample of s = 1% would contain

errs = 4 errors, we would assume that the whole data set has errtotal = 1
serrs = 400 errors or

errremaining = 1
serrs − errs = 396 remaining/undetected errors as we already have identified the 4

from the sample.

However, this technique has fundamental limitations: (1) How can one determine that the sample

is perfectly clean (i.e., a chicken and egg problem) and (2) the sample might not be representative.

More surprisingly, these two problems are even related. If the sample is small enough, one can

probably put enough effort and resources (e.g., leverage several high-quality experts) to clean the

sample. However, the smaller the size, the higher the chance that the sample is not representative of

the original dataset. Worse yet, de-duplication requires comparing every item with the every other

in the data set (we refer to one comparison between two tuples as an entity pair). This makes

it even harder to determine a representative subset as we need to retrieve a representative (large

enough) sample from an exponential number of combinations (N ∗ (N − 1)/2).

To illustrate such limitations, we ran an initial experiment using the restaurant data set (also

used in [50, 106]). The restaurant data set contains 858 records of restaurants with some additional

location information:

Restaurant(id, name, address, city, category)

Some of the rows of this dataset refer to the same restaurant, e.g., “Ritz-Carlton Cafe (buckhead)”

and “Cafe Ritz-Carlton Buckhead”. Each restaurant was duplicated at most once. For this data set,

we also have the ground truth (the true number of errors), so we are able to quantify the estimation

error of different techniques.

First, we run a simulated experiment of directly applying the extrapolation approach to 858 ×



48

858 = 367653 entity-pairs (Figure 3.1(a)). Of the 367653 entity pairs, only 106 of them are duplicate

errors, which makes sampling a representative sample (with the representative number of errors)

very difficult. This is related to the known problem of query selectivity in approximate query

processing [107, 108]. We randomly sampled 2% (about 7300 pairs) four times and used an “oracle”

to perfectly clean the data and extrapolated the found errors. Figure 3.1(a) shows how for relatively

rare errors, this estimate is highly dependent on the particular sample that is drawn.

This is clearly impractical as cleaning 7300 pairs perfectly is not trivial, since workers are fallible.

Worse yet, even with a perfectly clean sample, the perfect estimate is not guaranteed. Figure 3.1(b)

depicts a more realistic scenario with the previously mentioned 2-stage CrowdER algorithm [50]. We

used a normalized edit distance-based similarity and defined the candidate pairs as the ones with

similarity between 0.9 and 0.5. Then, we took 4 random samples of size 100 out of the remaining

1264 pairs; we used Amazon Mechanical Turk to have each worker reviewing 10 to 100 random pairs

from the candidate pairs, taking the majority consensus on items as true labels. Unfortunately for

this particular experiment, the (average) estimate moves away from the ground truth as we use more

workers to clean the sample. This is because the earlier false positive errors are corrected with more

workers.

3.3 Species Estimation Approach

The previous section showed that the nàıve extrapolation technique does not provide a good estimate.

The main reason is that it is very challenging to select a good representative sample (errors are

relatively rare). Furthermore, perfectly cleaning the sample might be so expensive that it outweighs

the benefits of knowing how clean the data set really is. In this section, we pose the problem as a

species estimation problem, for which a number of well-accepted estimation techniques exist (e.g.,

Chao92 estimator [109]). The ultimate goal is to use species estimation to estimate the diminishing

return and through it, the number of remaining errors in the data set.

3.3.1 Overview

In the basic species estimation problem, we are given n observations drawn with replacement from

a population P . Suppose, we observe that there are c distinct values in the n samples, the species

estimation problem is to estimate |P |. This problem mirrors the problem of predictive data quality

estimates. Consider a finite population of records (or pairs in the case of entity resolution) a

hypothetical infinite pool of workers and for simplicity no false positive errors (i.e., workers might

miss an error but not mark a clean record as dirty). If we then assume that each worker goes over

the whole data set R and marks records in that subset as clean or dirty, the votes from a worker

can be seen as “discoveries” of dirty items, i.e, the “species”. The species estimation problem is to

estimate the total number of distinct erroneous records.

Unfortunately, it is often unrealistic to assume that every worker goes over all records. However,

without loss of generality we can also present every worker with a random, even differently sized,



49

sub-set of the records. As more workers go over R, we will still see redundant dirty records marked as

dirty by multiple workers as the sample coverage increases. That is, the resulting sample contributed

by all the workers remains a sample with replacement.

3.3.2 Chao92 Estimator

There are several species estimation techniques, and it is well established that no single estimator

performs well in all of the settings [107]. In this work, we use the popular Chao92 estimator, which

is defined as:

D̂noskew =
c

Ĉ
(3.1)

Here, c is the number of unique items (e.g., errors) we observed so far, C the sample coverage,

and Dnoskew our estimate for the total number of unique items. As true sample coverage is not

known, it is estimated using Equation 2.4, where f1 refer to all singletons, the errors which were

exactly observed ones, whereas the f2, refer to all doubletons, the errors which were exactly observed

twice.

While it is obvious that f1 refers to the number of times a rare error was observed, it is less clear

how n should be defined in this context. One might argue that n should refer to the number of total

votes by the workers. However, we are not interested in votes which declare an item as clean (also

recall, that we do not consider any false positives for the moment). In fact, as we assume that all

items are clean and no false positive errors by workers, a negative vote (i.e., clean) is a no-op. Thus,

n should consist of positive votes n+ =
∑N
i=1 n

+
i only. This also ensures that n = n+ =

∑∞
i=1 fi,

yielding to the following estimator:

D̂noskew =
c

Ĉ
=

c

1− f1/n+
(3.2)

We can also explicitly incorporate the skewness of the underlying data as follows:

D̂Chao92 =
c

1− f1/n+
+

f1 · γ̂2

1− f1/n+
(3.3)

where γ is coefficient of variation estimated using Equation 2.6.

Examples and Limitations

In the following, we show by examples how false positives and false negatives impact the prediction

accuracy.

Example 3.1 (No False Positives). Suppose there are 1000 critical pairs with 100 duplicates. Each

task assigned to a worker contains 20 randomly selected pairs. Workers have error detection rate

of 0.9, but make no mistakes (e.g., wrongly mark a clean pair as a duplicate). We simulated this

scenario and found that after 100 task, approximately c = 83 unique errors with n+ = 180 positive

votes and f1 = 30 errors, which were only identified by a single worker. The basic estimate (without

the correction factor γ) for the number of remaining errors is then:

D̂Chao92 − c =
83

1− 30/(180)
− 83 = 16.6,



50

which is almost a perfect estimate. This is not surprising as our simulated sampled uniformly with

replacement and thus, the Good-Turing estimate will, on average, be exact1.

Example 3.2 (With False Positives). Unfortunately, it is unrealistic to assume that there will be

no false positives. Even worse as errors are rare the number of false positives might be relatively

high compared to the number of actual found errors. Let’s assume 1% chance of false positive error

(wrongly classify as dirty). Our simulation shows that on average that would add 19 wrongly marked

duplicates, increases the f1 count to 46 and n+ = 208. With the false positives the estimate changes:

D̂Chao92 − c =
83 + 19

1− (46)/(208)
− (83 + 19) ≈ 131

Overestimating the number of true errors by more than 30%.

The Singleton-Error Entanglement

The reason why the false positives have such a profound impact on the species estimator is two-fold:

First, they increase the number of unique errors c. Thus, if we estimate the number of remaining

errors, we already start with a higher value. Second, and worse yet, the (number of) singletons,

f1, are the best indicator for of many errors are missing, while, at the same time, it is also the

best indicator of erroneously classified items (i.e., false positives). We refer to this problem as the

singleton-error entanglement.

3.3.3 vChao92 Estimator

In order to make the estimator more robust, we need a way to mitigate the effect of false positives

on the estimate. First, we could use cmajority instead of c to mitigate the impact on the number of

found unique items. However, recall that the Chao92 estimate without the correction for the skew

is defined as c/(1− f1/n). That is the estimator is highly sensitive to the singletons f1 as discussed

before. One idea to mitigate the effect of false positives, is to shift the frequency statistics f by

s and treat f1+s as f1, etc. For instance, with a shift of s = 1 we would treat doubletons f2 (i.e.,

the items which were observed twice) as singletons f1 and tripletons f3 as doubletons f2. Shifting

f also means that we need to adjust n+,s = n+ −
∑s
i=1 fi, to ensure the equality of n =

∑∞
i=1 fi.

These statistics are more robust to false positives since they require more workers to mark a record

as dirty, but at the cost of some predictive power. Taking the above ideas into account, we derive a

new estimator:

D̂vChao92 =
cmajority

1− f1+s/n+,s
+

f1+s · γ̂2

1− f1+s/n+,s
(3.4)

vChao92 is more robust to false positives and estimate the size of the remaining errors; however,

it converges more slowly than the original sample coverage-based estimators (Chao92 ) due to the

singleton-error entanglement. Not only the rare errors f1 are the best indicator for a false positive

1Note, that we do not have a perfect uniform sample, since every task samples the pairs without replacement;
however, our results in Section 3.6 show that this is negligible if the number of tasks is large enough.



51

(i.e., since nobody else marked the same error, it might as well be a mistake), but also they hint on

how many more errors are remaining (i.e., if there are many true errors that are hard to identify,

then there might be more errors that are undetected because they are relatively more difficult to

spot). Furthermore, vChao92 requires to set s, which is hard to tune. Worse yet, the estimator

violates an important (often desired) estimator property: it might not converge to the ground truth.

In the next section we present another technique, which is parameter free and does not suffer from

this problem.

3.4 Switch Estimation Approach

In this section, we show how we can estimate a slightly different quantity to avoid the shift parameter

s and with better convergence guarantees.

3.4.1 Switch Estimation Problem

Ideally, we want to estimate how many errors are still remaining in a data set. In the previous

section, we tried to estimate the total number of errors based on the initial “dirty” data set

and the votes (i.e., {1, 0, ∅}) from multiple crowd-workers. Now, we ask an alternative question to

estimate the total number of switches: After we used a cleaning technique (e.g., workers or an

automatic algorithm), how many of the initially identified “clean” or “dirty” items are incorrect?

This is a different problem since we are no longer trying to just estimate the total number of

errors (“dirty” items). Instead, we estimate the wrongly marked items: At any given time, how

many wrongly marked items (false positives and false negatives) does the data set still

contain? Assuming that workers are, on average, better than a random guesser, the majority

consensus on each item will eventually be correct with a sufficient number of workers and their

responses. This observation allows us to rephrase the original problem in terms of the consensus:

At any given time, how many of the majority vote decisions for any given record do

we expect to switch?

Problem 2 (Switch Estimation). We estimate the number of expected switches for the current

majority consensus vector V ∈ {0, 1}N to reach the ground truth vector E ∈ {0, 1}N . The data

quality estimation problem is to estimate |{(vi, ei) : vi 6= ei, vi ∈ V, ei ∈ E}| given V, but not E.

Switches act as a proxy to actual errors and, in many cases, might actually be more informative.

However, since a record can switch from clean to dirty and then again from dirty to clean, it is not

the same as the amount of dirty records or remaining errors in the data set. We define the number

of switches in I as follows:

switch(I) =

N∑
i=1

 K∑
j=2

1[n+
i,1:j = n−i,1:j ]︸ ︷︷ ︸

(a)

+ 1[n+
i,1 = 1]︸ ︷︷ ︸
(b)

 (3.5)



52

Here, n+
i,1:j (or n−i,1:j) denotes the number of positive (or negative) votes on item i among workers

1 through j. We assume that the consensus on i flips (i.e., a switch happens) whenever there is a tie

(part (a) of equation 3.5). For example, i is initially assumed to be clean, and after the first positive

(dirty) vote we say i is dirty. And with another negative (clean) vote we have a tie and i is said

to be clean because we flips the previous consensus on tie. Yet special attention has to be given to

the beginning (i.e., the first vote). Here, we assume that all data items in the beginning are clean,

and that if the first vote for a record is positive (e.g., marks it as dirty), the record switches (part

(b) of equation 3.5). However, it is easy to extend the switch counting definition to consider various

policies (e.g., tie-breaking).

3.4.2 Remaining Switch Estimation

While problem re-formulation is promising (Problem 2: it better reflects the number of remaining

errors in the presence of human errors), it poses one significant challenge to our species estimation

techniques: How should we define the f -statistics in the problem context? Surprisingly, there exists

a simple and sound solution. Whenever a new switch occurs on item i, it is a singleton. If we

receive an additional vote on i without flipping the consensus, we say the switch is rediscovered, and

it changes to a doubleton. If another vote, yet again, does not flip the consensus, the same switch

gets rediscovered again (e.g., changes it from a doubleton to a tripleton). On the other hand, if the

consensus on i flips from, say, clean to dirty and then clean again, we do not rediscover the same

switch, but a new one.

It naturally follows that we define n as the sum of the frequencies of the switch frequencies,

n =
∑∞
i=1 fi. While this preserves the relationship between f1 and n in the original species estimation

technique, we found that this definition has a tendency to overestimate the number of switches. The

reason is that, with every new switch, it is implicitly assumed that the sampling for the item resets

and starts sampling for a new switch (although it is still for the same item) from scratch again.

Therefore, we use a small modification and simply count all votes as n.

Finally, we need to, again, pay special attention to the first votes. Ideally, we would first get at

least three votes for every item before doing any estimation. However, in practice we often want

to start estimating based on the default labels (e.g., all records are assumed to be clean) before

receiving a lot of votes for every record. The question is how votes that stay with the default labels

(i.e., votes before the first switch) should be counted. Again, the solution is rather simple: The first

k votes, which do not cause the default label to switch, do not re-discover a switch, and thus, they

are no-ops (i.e., do not contribute to f -statistics as well as to n). Hence, we need to adjust n based

on this new assumption and subtract all no-ops:

nswitch = n−
N∑
i=1

(argmin
j∈[1,K]

{n+
i,1:j ≥ n

−
i,1:j} − 1)

The last term of the equation removes all the no-ops before the first switch on each items (i.e., votes

prior to the first switch do not contribute to the f -statistics, so they also should not contribute to



53

n).

We can now estimate the total number of switches as K →∞, using the same Chao92 estimation

technique:

D̂Switch =
cswitch

1− f ′1/nswitch
+

f ′1 · γ̂2

1− f ′1/nswitch
(3.6)

where cswitch is the number of records with any consensus flips, i.e., switches:

cswitch =

N∑
i=1

1[switch(Ii,1:K) > 0].

Using this estimator, then the expected number of switches needed for the current majority consensus

to reach the ground truth is

ξ = D̂Switch − switch(I).

This estimator has several desired properties. First, it is parameter-free, and there is no s to

adjust. Furthermore, the estimator is guaranteed to converge to the ground truth. This is because of

our main assumption, where the majority consensus will eventually become the correct labels (i.e.,

workers are better than a random guesser). And fewer switches are observed as the size of consensus

on each item grows, and the estimator will predict the lower number of remaining switches (consider

the definition of our f ′-statistic). Lastly, as the estimator is more robust against false positives, it

becomes less likely that, as the number of votes per item increases, a false positive would flip the

consensus.

3.4.3 Switch-Based Total Error Estimation

Interestingly, although we changed the estimation problem from trying to estimate the total number

of errors (Problem 1) to how many switches we expect from the current majority vote (Problem 2),

we can still use the switch estimation to derive an estimate for the total number of errors (Problem 1).

The idea is that we adjust majority by the number of positive and negative switch estimates:

majority(I) + ξ+ − ξ−

where positive switch ξ+ is defined as switches from the “clean” label to the “dirty” label and

negative switch ξ− as switches from “dirty” to “clean.” This only requires that we count cswitch and

f ′1 based on positive (or negative) switches only and estimate ξ+ (or ξ−) using the switch estimator

(Equation 3.6) .

This makes sense, except that a separate estimation of positive and negative switches can cause

either the positive or negative switch estimation to fail due to a lack of observed switches. To

mitigate this problem, we make a key observation that majority tends to improve monotonically

with more task responses. Therefore, if we detect an increasing trend in majority, then it means

that we have more positive switches and would have even more due to the monotonicity. If this is

the case, then we focus on the positive switch estimates to adjust majority total error estimate as:

majority(I) + ξ+



54

Similarly, if we observe a decreasing majority trend, then we can focus on the negative switch

estimate:

majority(I)− ξ−

Our final total error estimation technique makes this decision dynamically to improve the estimates.

3.5 Estimation With Prioritization

A common design paradigm for data cleaning methods is “propose-verify”. In a first step, a heuristic

identifies candidate errors and proposes repairs. Then, a human verifies whether the proposed repair

should be applied. This can further be extended where a human only verifies ambiguous or difficult

repairs. In this section, we discuss the case where the data are not sampled uniformly.

3.5.1 Prioritization and Estimation

For some types of error, randomly sampling records to show first to the crowd will be very inefficient.

Consider a crowdsourced Entity Resolution scenario, where the crowd workers are employed to

verify matching pairs of records. Out of N total records, suppose k have exactly one duplicate in

the dataset. This means that out of N(N−1)
2 pairs only k are duplicate pairs–meaning that even

though the probability of sampling a record that is duplicated is k
N , it is roughly k

N2 to sample

a duplicated pair. It would be infeasible to show workers a sufficiently rich random sample for

meaningful estimation in large datasets.

It is often the case the crowd sourced data cleaning is run in conjunction with algorithmic

techniques. For example, in Entity Resolution, we may merge records that are sufficiently similar

automatically, and reserve the ambiguous pairs for the crowd. To formalize, there exists a function

H : R 7→ R+ that is a measure of confidence that a record is erroneous. We assume that we are

given a set of ambiguous records selected by the heuristic RH = {∀r ∈ R : α ≤ H(r) ≤ β}, and this

section describes how to utilize RH in our estimates.

3.5.2 Simple: Perfect Heuristic

First, we consider the case where the heuristic H is perfect, that is, {r ∈ R : H(r) > β}∩Rcdirty = ∅
and {r ∈ R : H(r) < α}∩Rdirty = ∅. Note that the number of true errors in RH is less than or equal

to |Rdirty|, i.e., RH does not contain any obvious cases, RcH = {∀r ∈ R : H(r) < α or H(r) > β}. It

turns out that this is the straight-forward case, and the problem is essentially as same as the original

estimation problems (Problem 1, 2).

In the case of perfect heuristic, we randomly select a sample of p pairs from RH and assign a

number of workers to the sample; overall with K workers, we have n = p ·K pairs/records marked

by workers. Now, the target estimate is: D̂(RH) = |Rdirty − RcH | instead of |Rdirty|. This result

is easy to interpret as the perfect heuristic guarantees that {r ∈ R : H(r) > β} ∩ Rcdirty = ∅ and

{r ∈ R : H(r) < α} ∩Rdirty = ∅:



55

|Rdirty| = D̂(RH) + |{r ∈ R : H(r) > β}| (3.7)

D̂(RH) can be either D̂vChao92 or D̂switch on RH . Note that, depending on the qualities of workers,

we still have false positive and false negative errors; the workers might make more mistakes as less

obvious are asked. The obvious cases are efficiently classified by algorithm techniques.

3.5.3 Harder: Imperfect Heuristic

Next, we consider the harder case where the heuristic is imperfect: {r ∈ R : H(r) > β} ∩Rcdirty 6= ∅
and {r ∈ R : H(r) < α} ∩Rdirty 6= ∅. In this case, we would not only have false positives and false

negatives on RH due to the workers, but also have false negatives in RcH missed and false positives

in RcH incorrectly identified by the heuristic itself.

In particular, we cannot use the simple approach (Equation 3.7) as with perfect heuristic, since

|{r ∈ R : H(r) > β}| might contain false positives by algorithm techniques. For example, if the

heuristic’s upper threshold α is too loose (with many false positives), we may not see any new errors

in RH . Moreover, we also need to include false negatives in {r ∈ R : H(r) > β} to get the ground

truth |Rdirty|.
To address this problem, we employ randomization. Workers see records from RH with some

probability 1− ε and see records from RcH with probability ε. This allows us to estimate remaining

errors in RH and RcH using the proposed techniques:

|Rdirty| = D̂(R) (3.8)

Although we are estimating over R, we still ask workers to look at mainly examples from RH . The

idea is that RcH still contains a few true errors compared to RH , and we need fewer crowd answers

to perform accurate species estimation. ε can be thought of as a measure of “trust” in the heuristic.

As ε goes to zero, the model assumes the perfect case. On the other hand, as ε goes to 1 − |RH |
|R|

the model assumes the random sampling case2. Thus, ε defines a family of tunable data quality

estimators that can leverage user-specified heuristics. In our experiments, we found that ε = 0.1 is

a good value to use.

3.6 Experiments

We evaluate our estimation technique using real world crowd-sourced data sets as well as synthetic

ones. We designed our experiments to address the following questions:

• Do techniques perform on real-world data sets?

• What is the sensitivity of our estimators to false positive and false negative errors?

• Is reformulated switch estimation more robust to false positive errors?

• How useful is prioritization in error/switch estimation?

21− |RH |
|R| < ε < 1 implies that the Heuristic is negatively correlated with errors



56

Figure 3.2: Total error estimation and positive and negative switch estimation results on
Restaurant Data Set: there are more false positive errors, so VOTING monotonically
decreases; hence, SWITCH provides the most accurate total error estimates based on
the negative swith estimation.

3.6.1 Real-World Data Sets

We used Amazon Mechanical Turk (AMT) to crowd-source entity resolution tasks. Each worker

receives a task consisting of a number of candidate records sampled from a data set R; the worker

identifies which of the records are duplicates (label as dirty), for $0.03 per task (e.g., $3.00 per 100

tasks). Each task contains 10 records and a worker may take on more than a single task. In an effort

to reduce noise in the collected responses, we designed a qualification test to exclude workers who are

not familiar with the contexts of the data sets. When presenting results, we also randomly permute

the workers and average the results over r = 10 such permutations. This averages out any noise in

the particular order of tasks seen by workers. We consider the following approaches: V-CHAO, the

voting and shift-based estimator with shift s = 1 (Section 3.3.3); SWITCH, a total error estimate

derived from the switch estimator (Section 3.4.2); VOTING, the current majority vote over all

items (Section 3.2); and Ground Truth, the true number of errors (or switches needed). We also

show EXTRAPOL (Section 3.2) as a range of +/- 1-std around the mean of extrapolation results

based on a perfectly clean 5% sample (assuming it was provided by an oracle). Lastly, we also show

what we call Sample Clean Minimum (SCM), or the minimum number of tasks needed to clean the

sample with a fixed number of workers per record:

3 worker × S records

p records/task × 1 task/worker
,

where we assume three workers to each record in the sample of size S << N , and each task contains p

records and is assigned to a single (independent) worker. The point is to illustrate that the proposed

DQM is comparable in the cost (the number of tasks) to actually cleaning the sample with a fixed

number of workers, without the added redundancy of worker assignment. Of course, a perfectly

clean sample does not provide reliable estimates like the proposed technique.

Restaurant Data set

We experimented on the restaurant dataset described earlier in the paper. The heuristic that we

used to filter the obvious matches and nom-matching pairs was a normalized edit distance-based

similarity > 0.9 and < 0.5. The remaining candidate pairs among 858 × 858 total pairs are 1264



57

Figure 3.3: Product Data Set contains more false negative errors and SWITCH uses
the more accurate positive switch estimation to yield the most accurate total error
estimates.

pairs, with 12 pairs being true duplicates. Each task consists of ten random pairs from the 1264

critical pairs, which is given to a worker. Figure 3.2 shows how different estimation techniques work

on the data set.

Given samples from the candidate pairs, the workers make a lot of false positive errors; the species

estimation technique V -CHAO fails because the f1 and f2 counts are over-inflated. However, the

switch estimation is more robust to false positives; thus SWITCH traces the ground truth very nicely

and with a fewer number of tasks than the current majority vote (VOTING). So, even before all the

pairs have been marked as clean or dirty (duplicate), we can already make a good prediction about

the number of errors (duplicates). EXTRAPOL and its one standard deviation band illustrates that

extrapolation based on a small perfectly clean sample does not provide reliable estimates due to the

high variability. Unless you take many perfectly clean samples to average out the estimates, this is

expensive and impractical; other estimates (e.g., SWITCH ) are based on just a single sample, with

some false positive and false negative labels. Lastly, the species estimation techniques require added

redundancy due to the random assignment of workers with overlaps. But because SWITCH can

estimate the number of remaining/total errors correctly, even before covering all the pairs within

the sample, the number of tasks needed for SWITCH to provide good estimates is comparable to

SCM. This is encouraging, especially because cleaning a sample perfectly and efficiently without

redundancy would not guarantee good estimates.

Figure 3.2(b) and (c) show the number of positive and negative switches over time (i.e., tasks).

The ground truth in switch estimation is defined as the number of switches needed (split in positive

and negative) for the current consensus on all candidate pairs to reach the true labels. As it can

be seen, there are more negative switches than positive switches left. This implies that we have

more false positives (i.e., wrongly marked duplicate pairs) than false negatives. Another indication

of the number of increased false positives is that VOTING in Figure 3.2(a) decreases over time. As

we described in Section 3.4.3, SWITCH uses the number of estimated negative or positive switches

to adjust the current majority consensus result. For the restaurant data set, we observe that the

SWITCH estimates starts to exclusively use the estimate for the negative switches early on as the

number of records marked as dirty is monotonically decreases. Figure 3.2(b) and (c) show that this is

also the right choice. The estimation mechanism of SWITCH exploits the fact that the dataset error



58

Figure 3.4: Address Data Set contains both false positive and negative errors in fair
amounts. SWITCH uses positive switch estimates initially and overestimates fur-
ther; however, once the workers slowly begin to correct false positive errors, SWITCH
quickly starts to converge to the ground truth leveraging the accurate negative switch
estimates.

rate monotonically improves (aka diminishing utility of error cleaning) over the increasing cleaning

efforts; SWITCH uses either positive or negative switch estimates to correct VOTING. This results

in a couple of nice properties for SWITCH. First, SWITCH makes the correction based on more

reliable switch estimates. Tasks often consist of a single type of switch, which means that only

positive or negative switch estimates are more reliable. Second, the monotonicity allows SWITCH

to be at least as good as the baseline, since it uses positive switch (adding errors) only if VOTING is

increasing and negative switch (subtracting errors) if VOTING is decreasing. This also means that,

SWITCH can converge with the help of only one-sided switch estimates (negative switch estimation

in this case).

Product Data Set

The product data set [50, 106] contains 2336 records by Amazon and 1363 records by Google in the

form:
Product(retailer, id, name1, name2, vendor, price)

Each row belongs to either Amazon or Google (retailer = {Amazon,Google}), and the size of

possible pairs is 1363× 2336. Each product has at most one other matched product. The heuristic

we used to filter the obvious matches and non-matching pairs was a normalized edit distance-based

similarity > 0.7 and < 0.4. Thus, the prioritized candidate pairs contain 13022 pairs, of which 607

pairs are true duplicates. Because the matching task is more difficult than that of the restaurant

data set, we observed more mistakes from workers.

Unlike the Restaurant dataset, the Product dataset contains more false negative errors; hence,

VOTING exhibits an increasing trend, and we observe more positive switches. Therefore, SWITCH

leverages remaining positive switch estimates. Figure 3.3 shows SWITCH outperforms all other

estimators. Compared to the current majority votes, it provides a good estimate for the total

number of errors early on. It is interesting to see that V -CHAO performs reasonably well in the

early stage (< 1200 tasks); however, its error sharply increases as we add more tasks. This can be

attributed to the fact that we have a few difficult pairs on which more than just a single worker make

mistakes. In this case, a fixed shift s = 1 cannot prevent V -CHAO from overestimating. Coming up



59

with the optimal shift parameter s a priori is a challenge, especially as it will vary across different

data sets and worker responses.

Figure 3.3(b) and (c) show, as before, the separate estimates for the number of remaining positive

and negative switches. This time, the positive switch estimation is more accurate; the negative

switch estimation over-estimates and has rather large error bars. This indicates a low number of

existing negative switches observed to perform reliable estimations. Therefore, as VOTING increases

monotonically, SWITCH uses only the remaining positive switch estimates, and the heuristic yields

a good total/remaining number of errors estimates as seen in Figure 3.3(a). EXTRAPOL, visualized

through the shaded area in Figure 3.3(a), highly varies in the quality. The reason is that, again,

the relatively small random sample may or may not be representative of the true error distribution.

Furthermore, it should be noted that perfectly cleaning even a small 5% sample (13022 · 0.05 ≈ 651

pairs) is often already impractical (i.e., chicken-and-egg problem); how do we know after cleaning if

the sample is perfectly clean?

Address Data Set

The address data set contains 1000 registered home addresses in Portland, OR, USA, which confirms

to the following format in the given order:

< number street unit, city, state, zip >

The house number (unit) is optional, and the task is to identify any malformed address entries.

The data set contains 90 errors (misformatted records). Since the task does not require pairwise

comparison and the number of candidate entries is reasonable, we did not impose any prioritization

rules.

This experiment is interesting for a couple of reasons. First, it deals with a different type of

error (i.e., misformatted data entry). Second, the data set contains both false positives and false

negatives in fair amounts, so VOTING does not improve much initially, for up to 300 tasks. In

response, SWITCH uses positive switch estimates initially and overestimates further. However,

once the workers slowly begin to correct false positive errors, SWITCH quickly starts to converge

to the ground truth. Figure 3.4 illustrates this, along with both positive and negative remaining

switch estimation results.

As a result, SWITCH estimates first based on the number of remaining positive switches and

then on the remaining negative switches later. But it has a tendency to overestimate early on due

to the large number of initial false positives. However, after gathering enough tasks (SCM ), the

SWITCH estimates converge to the true number of errors in the dataset.

3.6.2 Simulation Study

Next, we evaluate the different estimation techniques in a simulation based on the Restaurant data

set. For all simulations, we used a subset with 1000 candidate pairs, among which 100 pairs are true

duplicates. We randomly generated tasks and worker responses with the desired worker accuracy



60

(precision) and task sampling rate (coverage); there are three types of workers: namely, a false

positive errors only-worker, false negative errors only-worker, or worker that make both types of

errors. When a direct comparison of the original estimates is not appropriate (e.g., Chao92 heavily

overestimates with false positives), we used a scaled error metric, SRMSE = 1
D

√
1
r

∑
r (D̂ −D)2,

to compare widely varying total error estimates of different techniques. Again, we permute the

simulated data to repeat the experiments r = 10 times.

Sensitivity of Total Error Estimation

One of the central claims of this paper is that species estimation is not robust to false positive errors.

To illustrate this point, we first explore exactly where the trade-off point would be between the two

types of errors.

Figure 3.5: For a fixed number of tasks, we measure the scaled errors of the estimates as
a function of (a) worker quality (precision) and (b) number of items per task (coverage).

In Figure 3.5(a), we vary precision (i.e., the failure rate of workers) for the given 50 tasks,

each containing 15 items; in (b), we vary the number of items per task from 0 to 100. What

can be seen in Figure 3.5(a) is that the Chao92 is very sensitive to the number of false positives

whereas SWITCH follows VOTING more closely. Furthermore, with a higher precision, SWITCH

does slightly better than VOTING (e.g., it has the correct predictive power). But once workers

becomes more fallible (precision < 50%), VOTING becomes slightly better because there is really

nothing that the SWITCH estimator can do (i.e., our main assumption that the majority consensus

eventually converges to the ground truth is violated).

On the other hand, Figure 3.5(b) shows that if there are no false positives, Chao92 does very well.

This is not surprising as the estimation technique is forward looking (i.e., robust to false negatives).

However, only SWITCH is capable of dealing with both false positives and false negatives.

Switch Estimation Is More Robust

We now study how the switch estimator behaves in comparison to the original species estimatiors

(Chao92, V -CHAO). We consider three scenarios: 1) only with a false negative rate of 10% (e.g., a



61

Figure 3.6: Total error estimates using the simulated datasets; SWITCH is the most
robust estimator against all error types.

10% chance that a worker overlooks a true error), 2) only with a false positive rate of 1%, and 3)

with both false negative and false positive errors at rates of 10% and 1%, respectively. Each task

contains 15 items.

Figure 3.6(a) shows, without any false positives, that Chao92 performs the best, and all other

estimators converge more slowly. However, SWITCH still converges much faster than V -CHAO. The

picture changes quite a bit in the case of false positive errors (b). Chao92 now strongly overestimates,

whereas V -CHAO and SWITCH provide accurate estimates. Here, V -CHAO actually performs

surprisingly well. The reason is that, in our simulation, the error is evenly distributed across the

items, making the (f-statistics) shifting more effective; an assumption that, unfortunately, rarely

holds in practice as our real-world datasets experiments have demonstrated. Finally, in the case of

both type of errors (c), SWITCH again performs well while Chao92 again strongly overestimates

and V -CHAO takes longer to converge and also slightly overestimates.

Prioritization

In our experiments on real data, we showed how our estimation techniques can be coupled with

heuristics to prioritize what to show to the workers. However, sometimes, the heuristics may be

imperfect (Section 3.5.3). To address this issue, we employ randomization. Workers see records

from RH , with some probability 1 − ε, and records from RcH with probability ε. We measure the

sensitivity of our best approach (SWITCH ) to the choice of ε in Figure 3.7. For a fixed error rate

and 50 tasks, we measure the accuracy of the estimator as a function of ε, the quality of the heuristic.

We have a heuristic that has a 10% error rate and one that has a 50% error rate. When the heuristic

is mostly accurate (10% heuristic error) small settings of ε suffice, and it is better to set ε lower.

On the other hand, when the heuristic is very inaccurate (50% heuristic error), random sampling

(ε ≈ 0.5) would minimize the estimation error. In our real experiments, we found that standard

similarity metrics work very well as heuristics for de-duplication tasks.

3.6.3 Trust In The Results

The proposed data quality metric (DQM) is the first step to measure data quality, in terms of any

undetected remaining errors, without the ground truth (e.g., prior set of rules or constrainsts to



62

Figure 3.7: For a fixed error rate and 50 tasks, we measure the accuracy of the switch
estimate as a function of the quality of the heuristic (ε).

define the perfect state of the perfect dataset). This is an important problem in data exploration

as data scientists often lack the complete domain knowledge or such constraints to cover any types

of errors. In this work, we demonstrated that DQM or SWITCH performs much better than any

feasible baselines. Note that without the ground truth, there are not many ways to work with

possibly fallible data cleaning approaches (e.g., algorithm or crowd workers). However, one question

still remains: How much trust can an analyst place in our estimates?

We believe that the SWITCH estimator actually provides valuable information, in addition to

the currently observed crowdsourced cleaning results (VOTING), to assess the quality of data when

the ground truth is not available. However, it should be noted that SWITCH is not able to estimate

very hard-to-detect errors (i.e., black swan events) and assumes that the workers are better than a

random guesser, which holds true in practice [104, 110, 111].

3.7 Related Work

To the best of our knowledge, this is the first work to consider species estimation for data quality

quantification. Species estimation has been studied in prior work for distinct count estimation and

crowdsourcing [9, 51, 107]. However, the previous work only considered species estimation on clean

data without false positive and false negative errors, which is inherent to the data quality estimation

setting. There are also several other relevant lines of work related to this problem:

Label Estimation In Crowdsourcing: The problem of estimating true labels given noisy

crowds is well-studied. For example, CrowdDB used majority votes to mitigate the effects of worker

errors [110]. There have also been several proposed statistical techniques for accounting for biases

between workers [104, 111]. Other approaches leverage gold-standard data to evaluate the differences

between workers [112]. While the work in this area is extensive, all of the prior work studies the

problem of recovering the true values in the already cleaned data. In contrast, we explore the

problem of estimating the number of errors that may be missed in the uncleaned or sparsely cleaned

dataset.



63

Progressive Data Cleaning: When data cleaning is expensive, it is desirable to apply it pro-

gressively, where analysts can inspect early results with only k � N records cleaned. Progressive

data cleaning is a well studied problem especially in the context of entity resolution [113–116]. Sim-

ilarly, sampling is now a widely studied in the context of data cleaning [47, 117]. A progressive

cleaning approach would assume a perfectly clean sample of data, and infer rules from the sample

of data to apply to the rest of the dataset. This is similar to the extrapolation baseline evaluated

in this paper. These techniques often assume that their underlying data cleaning primitives are

infallible (or at least unbiased). When these techniques are integrated with possibly fallible crowds,

then we arrive at the species estimation problems described in this paper.

Data Quality Metrics: There have also been a number of different proposals for both quantitative

and qualitative data quality metrics [36–46]. Most of the techniques rely on assessing the number of

violated constraints or tests designed by the user, or qualitatively measure the number of erroneous

decisions made by programs using the data; the major drawback of these techniques is that they

work on the basis of having the ground truth. On the other hand, our statistical approaches are

designed to work without the ground truth for any/mixed types of errors that are countable. In

terms of probabilistic techniques, Sessions et al. [39] learn a Bayesian Network model to represent

the data and measured how well the model fits the data. This formulation is not sufficient for our

problem where we consider large number of missing data. We explore a statistical formalism for

data quality assessment (during progressive cleaning) when the data cleaning algorithms are fallible,

and there is no available ground truth.

3.8 Summary

In this paper, we explored how to quantify the number of errors that remain in a data set after

crowd-sourced data cleaning. We formalized a surprising link between this problem and the species

estimation problem. However, we found that the direct application of species estimation techniques

is highly sensitive to false positives during cleaning, and we proposed an alternative estimator,

SWITCH, to address the issue. Our experimental results suggest that this new estimator, which is

based on switches in worker consensus on records, is more robust to both false positives and false

negatives.

We believe that variants of our approach could also apply to pure algorithmic cleaning (e.g., var-

ious machine learned error classifiers [48]). That is, instead of semi-independent workers, one could

use several semi-independent automatic algorithms. One challenge will be to relax the assumption

that workers are drawn from a single infinite population (i.e., workers are identical and consistent

in their skill levels, with some noise). The finite-sample species estimation problem is discussed

in [107], and we are interested in exploring such approaches in the future.



Chapter 4

Uncertainty as Model Quality

As machine learning (ML) systems become democratized, helping users easily debug their models

becomes increasingly important. Yet current data tools are still primitive when it comes to helping

users trace model performance problems all the way to the data. We focus on the particular problem

of slicing data to identify subsets of the training data where the model performs poorly. Unlike

general techniques (e.g., clustering) that can find arbitrary slices, our goal is to find interpretable

slices (this is important because users need to take an action based on their interpretation and

understanding of the problem) that are problematic and large. We propose Slice Finder, which is an

interactive framework for identifying such slices using statistical techniques. The slice finder can be

used for applications like diagnosing model fairness and fraud detection.

4.1 Data Slicing Problem

In this section, we provide a formal definition of the data slicing problem. To find interpretable

slices that are also problematic and large, we treat each slice S and its complement as a hypothesis

test. This allows Slice Finder to identify real problematic slices, where the input model significantly

performs worse than on the rest of the data. For convenience, Appendix C.1 contains a symbol-table.

We assume a dataset D with n examples and a model h that needs to be tested. Following common

practice, we assume that each example x
(i)
F contains features F = {F1, F2, ..., Fm} where each feature

Fj (e.g., country) has a list of values (e.g., {US, DE}) or discretized numeric value ranges (e.g., {[0,

50), [50, 100)}). We also have a ground truth label y(i) for each example, such that D = {(x(1)
F , y(1)),

(x
(2)
F , y(2)), ..., (x

(n)
F , y(n))}. The test model h is an arbitrary function that maps an input example

to a prediction using F , and the goal is to validate if h is working properly for different subsets of

the data.

A slice S is a subset of examples in D with common features and can be described as a predicate

that is a conjunction of literals
∧
j Fj op vj where the Fj ’s are distinct (e.g., country = DE ∧

gender = Male), and op can be one of =, <, ≤, ≥, or >. For numeric features, we can discretize

their values (e.g., quantiles or equi-height bins) and generate ranges so that they are effectively

64



65

categorical features (e.g., age = [20,30)). Numeric features with large domains tend to have fewer

examples per value, and hence do not appear as significant. By discretizing numeric features into

a set of continuous ranges, we can effectively avoid searching through tiny slices of minimal impact

on model quality and group them more sizable and meaningful slices.

We also assume a classification loss function ψ(S, h) that returns a performance score for a set

of examples by comparing h’s predictions h(x
(i)
F ) with the true labels y(i). A common classification

loss function is logarithmic loss (log loss).

4.1.1 Model Validation

We consider the model validation scenario of pointing the user to “problematic” slices on which a

single model performs relatively poorly. That is, we would like to find slices where the loss function

returns a significantly higher loss than the rest of the examples in D. At the same time, we prefer

these slices to be large as well. For example, the slice country = DE may be too large for a model

to perform significantly worse than other countries. On the other hand, the slice country = DE ∧
gender = Male ∧ age = 30 may have a high loss, but may also be too specific and thus small to

have much impact on the overall performance of the model. Finally, we would like the slices to be

interpretable in the sense that they can be expressed with a few literals. For example, country = DE

is more interpretable than country = DE ∧ age = 20-40 ∧ zip = 12345.

Finding the most problematic slices is challenging because it requires a balance between how

significant the difference in loss is and how large the slice is. Simply finding a slice with many

classification errors will not work because there may also be many correct classifications within the

same slice (recall that a slice is always of the form
∧
j Fj op vj). Another solution would be to score

each slice based on some weighted sum of its size and difference in average losses. However, this

weighting function is hard to tune by the user because it is not clear how size relates to loss. Instead,

we envision the user to either fix the significance or size.

4.1.2 Problematic Slice as Hypothesis

We now discuss what we mean by significance in more detail. For each slice S, we define its

counterpart S′ as D−S, which is the rest of the examples. We then compute the relative loss as the

difference ψ(S, h)− ψ(S′, h). Without loss of generality, we only look for positive differences where

the loss of S is higher than that of S′.

A key question is how to determine if a slice S has a significantly higher loss than S′. Our

solution is to treat each slice as a hypothesis and perform two tests: determine if the difference in

loss is statistically significant and if the effect size of the difference is large enough. Using both tests

is a common practice [118] and necessary because statistical significance measures the existence of an

effect (i.e., the slice indeed has a higher loss than its counterpart) while the effect size complements

statistical significance by measuring the magnitude of the effect (i.e., how large the difference is).

To measure the statistical significance, we use hypothesis testing with the following null (Ho)



66

and alternative (Ha) hypotheses:

Ho : ψ(U, h) ≤ ψ(U ′, h)

Ha : ψ(U, h) > ψ(U ′, h)

Here both U (or U ′) should be viewed as all the possible examples in the world that satisfy (or

does not satisfy) the given predicate. This includes the training data and even the examples that

the moel might serve in the future (i.e., S ⊂ U and S′ ⊂ U ′). We then use Welch’s t-test, which is

designed for the case where two populations have unequal variances and sizes.

To measure the magnitude of the difference between the distributions of losses of S and S′, we

compute the effect size φ, which is defined as follows:

φ =
√

2× ψ(S, h)− ψ(S′, h)√
σ2
S + σ2

S′

Intuitively, if the effect size is 1.0, we know that the two distributions differ by one standard

deviation. According to Cohen’s rule of thumb [119], an effect size of 0.2 is considered small, 0.5 is

medium, 0.8 is large, and 1.3 is very large.

4.1.3 Problem Definition

For two slices S and S′, we say that S ≺ S′ if S precedes S′ when ordering the slices by increasing

number of literals, decreasing slice size, and decreasing effect size. Then the goal of Slice Finder is

to identify problematic slices as follows:

Definition 4.1. Given a positive integer k, an effect size threshold T , and a significance level α,

find the top-k slices sorted by the ordering ≺ such that:

(a) Each slice S has an effect size at least T ,

(b) The slice is statistically significant,

(c) No slice can be replaced with one that has a strict subset of literals and satisfies the above two

conditions.

The top-k slices do not have to be distinct, e.g., country = DE and education = Bachelors overlap

in the demographic of Germany with a Bachelors degree. In a user’s point of view, setting the effect

size threshold T may be challenging, so Slice Finder provides a slider for T that can be used to

explore slices with different degrees of problematicness (see Section 4.2.3).

4.2 Slice Finder: An Automated Data Slicing Tool

Underlying the Slice Finder system is an extensible architecture that combines automated data

slicing and interactive visualization tools. The system is implemented in Python (for a single node

processing and the front-end) and C++ (to run the Slice Finder lattice search on a distributed

processing framework such as Flume [120]).



67

Slice Finder loads the validation data set into a Pandas DataFrame [121]. The DataFrame sup-

ports indexing individual examples, and each data slice keeps a subset of indices instead of a copy

of the actual data examples. Slice Finder provides basic slice operators (e.g., intersect and union)

based on the example indices; Slice Finder accesses the actual examples only when evaluating the ML

model. The Pandas library also provides a number of options to deal with dirty data and missing

values. For example, one can drop NaN (missing values) or any values that deviate from the column

types as necessary.

Once data is loaded into a DataFrame, Slice Finder processes the data to identify the problem-

atic slices and allow the user to explore them. This process comprises three major components,

summarized below.

Slice Finder searches for problematic slices either by training a CART decision tree [122] around

mis-classified examples or by performing a more exhaustive search on a lattice of slices. Both

search strategies progress in a top-down manner until they find top-k large problematic slices with

φ ≥ T . The decision tree approach materializes the tree model and traverses to extract nodes for

different request queries (with different k and T ). In lattice searching, Slice Finder materializes all

the candidate slices, even non-problematic slices. This allows Slice Finder to quickly respond to a

new request with different T or continue searching with more filter clauses.

As Slice Finder searches through a large number of slices, some slices might appear problematic

by chance (i.e., multiple comparisons problem [123]). Slice Finder controls such a risk, by applying a

marginal false discovery rate (mFDR) controlling procedure [123]. Slice Finder compiles a final top-k

recommendation list with only statistically significant problematic slices.

Lastly, even a handful of problematic slices can still be overwhelmingly large, since the user needs

to take an action (e.g., deeper analyses or model debugging) on each slice. Hence, it is important

to enable the user to quickly browse through the slices by their impacts (size) and scores (effect

size). To this end, Slice Finder allows the user to explore the recommended slices with interactive

visualization tools.

The following subsections describe the Slice Finder components in detail. Section 4.2.1 intro-

duces the automated data slicing approaches without false discovery control, Section 4.2.2 discusses

the false discovery control, and Section 4.2.3 describes the interactive visualization. Section 4.4.5

explains optimization techniques to get around the scalability issues in exploring many slices.

4.2.1 Automated Data Slicing

As mentioned earlier, the goal of this component is to automatically identify problematic slices for

model validation. To motivate the development of the two techniques that we mentioned (decision

trees and lattice search), let us first consider a simple baseline approach that identifies the problem-

atic slices through clustering. And then, we discuss two automated data slicing approaches used in

Slice Finder that improve on the clustering approach.



68

Figure 4.1: The Slice Finder architecture: (a) Data is loaded into a Pandas DataFrame,
and (b) Slice Finder perform automated data slicing to find top-k large problematic
slices. (c) Slice Finder uses a false discovery control procedure to include only statistically
significant problematic slices (d) for interactive visualizations.

Clustering

The idea is to cluster similar examples together and take each cluster as an arbitrary data slice. If

a test model fails on any of the slices, then the user can examine the data examples within or run a

more complex analysis to fix the problem. This is an intuitive way to understand the model and its

behavior (e.g., predictions) [57–59]; we can take a similar approach to the automated data slicing

problem. The hope is that similar examples would behave similarly even in terms of data or model

issues.

Clustering is a reasonable baseline due to its ease of use, but it has major drawbacks: first,

it is hard to cluster and explain high dimensional data. We can reduce the dimensionality using

principled component analysis (PCA) before clustering, but many features of clustered examples (in

its original feature vector) still have high variance or high cardinality of values. Unlike an actual data

slice filtered by certain features, this is hard to interpret unless the user can manually go through

the examples and summarize the data in a meaningful way. Second, the user has to specify the

number of clusters, which affects crucially the quality of clusters in both metrics and size. As we

want slices that are problematic and large (more impact for model quality), this is a key parameter

which is hard to tune.

The two techniques that we present next overcome these deficiencies of clustering. The first

technique is based on decision-trees that capture the distribution of classification results. Here the

effect sizes are large, but the slices may be smaller as a result. In contrast, the second technique,

called lattice searching, focuses on slices that are neither too small nor large, but have large-enough

effect sizes.



69

Sex=Male

All

Sex=Female Edu=Bachelors Edu=Doctorate ...

Sex=Female & 
Edu=Bachelors

...

Sex=Female & 
Edu=Doctorate

Sex=Male & 
Edu=Bachelors

Sex=Male & 
Edu=Doctorate

... ...

...
Figure 4.2: A lattice hierarchy of slices. In contrast with a decision tree, the search is
more exhaustive and covers all possible feature combinations.

Decision Tree Training

To identify more interpretable problematic slices, we train a decision tree that can classify which

slices are problematic. The output is a partitioning of the examples into the slices defined by the

tree. For example, a decision tree could produce the slices {A > v, A ≤ v & B > w, A ≤ v

& B ≤ w}. For numeric features, this kind of partitioning is natural. For categorical features, a

common approach is to use one-hot encoding where all possible values are mapped to columns, and

the selected value results in the corresponding column to have a value 1.

To use a decision tree, we first identify the bottom-most problematic slices (leaves) with the

highest effect size (i.e., highest error concentration). Then we can go up the decision tree to find

larger (and more interpretable) slices that generalize the problematic slices, which still have effect

size larger than a user-specified effect size threshold, T .

The advantage of decision trees is that they have a natural interpretation, since the leaves

correspond directly to slices. The downside of using a tree is that it only finds non-overlapping slices

that are problematic. In addition, if the decision tree gets too deep with many levels, then it starts

to become uninterpretable as well [124].

The Decision Tree approach can be viewed as “greedy” because it optimizes on the classification

results and is thus not designed to exhaustively find all problematic slices according to Definition 4.1.

For example, if some feature is split on the root node, then it will be difficult to find single-feature

slices for other features. In addition, a decision tree always partitions the data, so even if there are

two problematic slices that overlap, at most one of them will be found. Hence, a more exhaustive

approach is needed to ensure all possibly-overlapping problematic slices are found.

Lattice Searching

The lattice searching approach considers a larger search space where the slices form a lattice, and

problematic slices can overlap with one another. We assume that slices only have equality predicates,



70

e.g.,
∧
i Fi = vi. A value range for a feature can be expressed as a union of values of the feature,

and we discretize any numeric (continuous) features. We search for larger problematic slices by

expanding only non-problematic slices (filter predicates) with one additional literals at a time. In

contrast with the decision tree training approach, lattice searching can be more expensive because

it searches overlapping slices (slices can have different predicates, but still common examples).

Figure 4.2 illustrates how the slices are organized as a lattice. The key intuition is to perform a

breadth-first search and efficiently identify problematic slices as shown in Algorithm 4.

ALGORITHM 4: Lattice Searching Algorithm

Input : Lattice L, max. number of slices to return k, effect size threshold T , significance level α, the set
of all possible features F

Output: Problematic slices S

1 S = []; /* problematic slices */

2 Q = PriorityQueue(); /* priority queue sorted by the ≺ ordering */

3 Q.push(L.root);

4 while |S| ≤ k and Q not empty do
5 s = Q.pop(); /* s =

∧
i∈I Fi = vi */

6 if EffectSize(s) ≥ T && IsSignificant(s, α) then
7 S.append(s);
8 UpdateWealth(α, 1);

9 end
10 else
11 Q.push({

∧
i∈I Fi = vi ∧G = v|G ∈ F − {F1, . . . , F|I|}, v ∈ G′s values});

12 UpdateWealth(α, 0);

13 end

14 end

15 return S;

The input is the training data, a model, an effect size threshold T , and a significance level α.

As a pre-processing step, Slice Finder takes the training data and discretizes numeric features. For

categorical features that contain too many values (e.g., IDs are unique for each example), Slice

Finder uses a heuristic where it considers up to the N most frequent values and places the rest into

an “other values” bucket. The possible slices of these features form a lattice where a slice S is a

parent of every S with one more literal.

Slice Finder finds the top-k interpretable and large slices by traversing the slice lattice in a

breadth-first manner using a priority queue. The priority queue contains the current slices being

considered sorted by the ordering ≺. For each slice
∧
i∈I Fi = vi that is popped, Slice Finder checks

if it has an effect size at least T and is statistically significant. The statistical significance testing

can be done using α-investing, which we discuss in Section 4.2.2. If the condition holds, the slice is

added to the top-k list. Otherwise, the slice is expanded where the slices {
∧
i∈I Fi = vi ∧G = v|G ∈

F − {F1, . . . , F|I|}, v ∈ G′s values} are added to the queue. Slice Finder optimizes this traversal

by avoiding slices that are subsets of previously identified problematic slices. The intuition is that

any subsumed (expanded) slice contains a subset of the same exact examples of its parent and is

smaller with more filter predicates (less interpretable); thus, we do not expand larger and already



71

problematic slices. By starting from the base slices whose predicates are single literals and expanding

only non-problematic slices with one additional literal at a time (i.e., top-down search from lower

order slices to higher order slices), we can generate a superset of all candidate slices. This is similar

to the Apriori fast frequent itemset mining algorithm [125], where only large (d − 1)-itemsets are

joined together to generate a superset of all large d-itemsets. Depending on whether the condition

(line 6) holds or not, we either increase or decrease the α-wealth accordingly (details on the updating

strategy are discussed in Section 4.2.2). This process repeats until the top-k slices have been found

or there are no more slices to explore.

Example 4.1. Suppose there are three features A, B, and C with the possible values {a1}, {b1, b2},
and {c1}, respectively. Also say k = 2, and the effect size threshold is T . For simplicity, we assume

all slices are statistically significant and thus do not update the α-wealth. Initially, the priority queue

Q contains the entire slice. This slice is popped and expanded to the slices A = a1, B = b1, B =

b2, and C = c1, which are inserted back into the queue. Among them, suppose A = a1 is the largest

slice with an effect size at least T . Then this slice is popped from Q and added to the top-k result.

Suppose that no other slice has an effect size at least T , but B = b1 is the largest. This slice is then

expanded to B = b1 ∧ C = c1 (notice that B = b1 ∧ A = a1 is unnecessary because it is a subset of

A = a1). If this slice has an effect size at least T , then the final result is [A = a1, B = b1 ∧ C =

c1]. Finally, there are no ties to break in terms of effect size.

The following theorem formalizes the correctness of this algorithm for the slice-identification

problem.

Theorem 4.2. The Slice Finder slices identified by Algorithm 4 satisfy Definition 4.1.

Proof. Since we only add slices with effect size at least T and statistically significant, given α-level,

to the priority queue, the first and the second conditions are satisfied trivially. The third condition

can be proven to hold using contradiction. Suppose a slice S that is popped from the queue has a

large enough effect size, but there is another slice S′ that has not yet been added to the result, but

has the strict subset of literals (predicates) of S and should have been added to the result first. S′

must have been all popped and expanded before S was popped, like any other ancestors of S. In

addition, since S′ has fewer features than S, it should have been placed before S in the queue (hence

the contradiction).

Scalability

Slice Finder optimizes its search by expanding the filter predicate by one additional feature/value at a

time (top-down strategy). Unfortunately, this does not solve the scalability issue of the data slicing

problem completely, and Slice Finder could still search through an exponential number of slices,

especially for big high-dimensional data sets. To this end, Slice Finder implements two approaches

that can speed up the search.

Parallelization: For lattice searching, evaluating a given model on a large number of slices one-

by-one (sequentially) can be very expensive. So instead, Slice Finder distributes the slice evaluation



72

jobs (lines 5–10 in Algorithm 4) by keeping separate priority queues Qd for the different numbers of

filter predicates d. The idea is that workers take slices from the current Qd in a round-robin fashion

and evaluate them asynchronously; the workers push the next candidate slices {
∧
i∈I Fi = vi ∧G =

v|G ∈ F − {F1, . . . , F|I|}, v ∈ G′s values} with one additional filter clause G to Qd+1 as they finish

evaluating the slices. Once done with Qd (i.e., Qd is empty and |S| ≤ K), Slice Finder moves onto

the next queue Qd+1 and continue searching until |S| ≥ K. Keeping slices of different d in separate

queues allows multiple workers to evaluate multiple slices in parallel, without having to worry about

redundant discoveries because only slices with d + 1 predicates can be subsumed by slices with d

predicates. The added memory and communication overheads are negligible, especially, with respect

to the slice evaluation time.

On the other hand, for decision tree training approach (DT), our current implementation does

not support parallel learning algorithms for constructing trees. But, there exist a number of highly

parallelizable learning processes for decision trees [126], which Slice Finder could implement to make

DT more scalable.

Sampling: We take a smaller sample to run Slice Finder if the original data set is too large. Note

that the run time is linearly proportional to the size of sample, assuming that the run time for the

test model is constant for each example. Taking a sample, however, comes with a cost. Namely, we

run the risk of false positives (non-problematic slices that appear problematic) and false negatives

(problematic slices that appear non-problematic or completely disappear from the sample) due to

a decreased number of examples. Since we are interested in large slices that are more impactful

to model quality, we can disregard false negatives that disappeared from the sample. Furthermore,

we perform significance testing to filter slices that falsely appear as problematic or non-problematic

(Section 4.2.2).

It is interesting to further investigate the tradeoff between the cost of sampling (e.g., increased

false positive rate) and its benefit (e.g., performance gain).

4.2.2 False Discovery Control

As Slice Finder finds more slices for testing, there is also the danger of finding more “false positives,”

which are slices that are not statistically significant. Slice Finder controls false positives (Type-1

errors) in a principled fashion using α-investing [123]. Given an alpha-wealth (overall Type I error

rate) α, α-investing spends this over multiple comparisons, while increasing the budget α towards

the subsequent tests with each rejected hypothesis. This so called pay-out (increase in α) helps the

procedure become less conservative and puts more weight on null hypotheses that are more likely

to be faulty. More specifically, an alpha-investing rule determines the wealth for the next test in a

sequence of tests. This effectively controls marginal false discovery rate at level α:

E(V )

E(R)
≤ α



73

Figure 4.3: Slice Finder visualization tools help the user quickly browse through prob-
lematic slices by effect size and by slice size on a scatter plot (A) and see slice summary
by hovering over any point (B); the user can sort slices by any metrics and select on
the scatter plot view or on the table view. The selections are highlighted on the linked
views (C). The user can also explore top-k large problematic slices by different effect
size threshold using the slider (min eff size) on the bottom left corner (D).

Here, V is the number of false discoveries and R the number of total discoveries returned by the

procedure. Slice Finder uses α-investing, mainly because it allows more interactive multiple hypoth-

esis error control with an unspecified number of tests in any order. On the contrary, more restricted

multiple hypothesis error control techniques, such as Bonferroni correction and Benjamini-Hochberg

procedure [61] fall short as they require the total number of tests m in advance or become too

conservative as m grows large.

There are different α-investing policies for testing a sequence of hypotheses. In particular, we

use an exploration strategy called β-farsighted [127] does not assume any order of the slices and

tests hypotheses believed most likely to be rejected. We test the seemingly more significant slices

with more power, and continue testing the rest only if we have left over α-wealth. The successful

discovery of significant slices earns extra testing power (alpha-wealth), helping us to continue testing

until there is no remaining wealth.

4.2.3 Interactive Visualization Tool

Slice Finder interacts with users through the GUI in Figure 4.3. A: On the left side is a scatter

plot that shows the (size, effect size) coordinates of all slices. This gives a nice overview of top-

k problematic slices, which allows the user to quickly browse through large and also problematic

slices and compare slices to each other. B: Whenever the user hovers a mouse over a dot, the slice



74

description, size, effect size, and metric (e.g., log loss) are displayed next to it. If a set of slices are

selected, their details appear on the table on the right-hand side, C: On the table view, the user can

sort slices by any metrics on the table.

On the bottom, D: Slice Finder provides configurable sliders for adjusting k and T . Slice Finder

materializes all the problematic slices (φ ≥ T ) as well the non-problematic slices (φ < T ) searched

already. If T decreases, then we just need to reiterate the slices explored until now to find the top-K

slices. If T increases, then the current slices may not be sufficient, depending on k, so we continue

searching the slice lattice. This is possible because Slice Finder looks for top-k problematic slices in

a top-down manner.

4.3 Using Slice Finder For Model Fairness

In this section, we look at model fairness as a use case of Slice Finder where identifying problematic

slices can be a preprocessing step before more sophisticated analysis on fairness on the slices.

As machine learning models are increasingly used in sensitive applications, such as predicting

whether individuals will default on loans [128], commit crime [129], or survive intensive hospital

care [130], it is essential to make sure the model performs equally well for all demographics to avoid

discrimination. However, models may fail this property for various reasons: bias in data collection,

insufficient data for certain slices, limitations in the model training, to name a few cases.

Model fairness has various definitions depending on the application and is thus non-trivial to

formalize (see recent tutorial [131]). While many metrics have been proposed [128, 132–134], there

is no widely-accepted standard, and some definitions are even at odds. In this paper, we focus on

a relatively common definition, which is to find of data where the model performs relatively worse

using some of these metrics, which fits nicely into the Slice Finder framework.

Using our definition of fairness, Slice Finder can be used to quickly identify interpretable slices that

have fairness issues without having to specify the sensitive features in advance. Here, we demonstrate

how Slice Finder can be used to find any unfairness of the model with equalized odds [128]. Namely,

we explain how our definition of problematic slice using effect size also conforms to the definition of

equalized odds. Slice Finder is also generic and supports any fairness metric that can be expressed

as a scoring function. Any subsequent analysis of fairness on these slices can be done afterwards.

Equalized odds requires a predictor Ŷ (e.g., a classification model h in our case) to be independent

of protected or sensitive feature values A ∈ {0, 1} (e.g., gender = Male or gender = Female) conditional

on the true outcome Y [128]. In binary classification (y ∈ {0, 1}), this is equivalent to:

Pr{Ŷ = 1|A = 0, Y = y} = Pr{Ŷ = 1|A = 1, Y = y} (4.1)

Notice that equalized odds is essentially matching true positive rates (tpr) in case of y = 1 or false

negative rates (fnr) otherwise.

Slice Finder can be used to identify slices where the model is potentially discriminatory; an

ML practitioner can easily identify feature dimensions of the data, without having to manually



75

consider all feature value pair combinations, on which a deeper analysis and potential model fairness

adjustments are needed. The problematic slices with φ > T suffer from higher loss (lower model

accuracy in case of log loss) compared to the counterparts. If one group is enjoying a better rate of

accuracy over the other, then it is a good indication that the model is biased. Namely, accuracy is a

weighted sum of tpr and fnr by their proportions, and thus, a difference in accuracy means there are

differences in tpr and false positive rate (fpr = 1− tpr), assuming there are any positive examples.

As equalized odds requires matching tpr and fpr between the two demographics (a slice and its

counterpart), Slice Finder using log loss ψ can identify slices to show that the model is potentially

discriminatory. In case of the gender = Male slice above, we flag this as a signal for discriminatory

model behavior because the slice is defined over a sensitive feature and has a high effect size.

There are other standards, but equalized odds ensures that the prediction is non-discriminatory

with respect to a specified protected attribute (e.g., gender), without sacrificing the target utility

(i.e., maximizing model performance) too much [128].

4.4 Experiments

In this section, we compare the two Slice Finder approaches (decision tree and lattice search) with

the baseline (clustering). For the clustering approach, we use the k-means algorithm. We address

the following key questions:

• How accurate and efficient is Slice Finder ?

• What are the trade-offs between the slicing techniques?

• What is the impact of adjusting the effect size threshold T?

• Are the identified slices interpretable enough to understand the model’s performance?

• How effective is false discovery control using α-investing?

4.4.1 Experimental Setup

We used the following two problems with different datasets and models to compare how the three

different slicing techniques – lattice search (LS), decision tree (DT), and clustering (CL) – perform

in terms of recommended slice quality as well as their interpretability.

• Census Income Classification: We trained a random forest classifier to predict whether income

exceeds $50K/yr based on the UCI census data [135]. There are 15 features and 30K examples.

• Credit Card Fraud Detection: We trained a random forest classifier to predict fraudulent

transactions among credit card transactions [136]. This dataset contains transactions that

occurred over two days, where we have 492 frauds out of 284k transactions (examples), each



76

with 29 features. Because the data set is heavily imbalanced, we first undersample non-

fraudulent transactions to balance the data. This leaves a total of 984 transactions in the

balanced dataset.

As we shall see, the two datasets – Census Income and Credit Card Fraud – have different

characteristics and are thus useful for comparing the behaviors of the decision tree and lattice search

algorithms. In addition, we also use a synthetic dataset when necessary. The main advantage of using

synthetic data is that it gives us more insights into the operations of Slice Finder . In Sections 4.4.2–

4.4.6, we assume that all slices are statistically significant for simplicity and separately evaluate

statistical significance in Section 4.4.7.

Accuracy Measure: Since problematic slices may overlap, we define precision to be the fraction

of examples in the union of the slices identified by the algorithm being evaluated that also appear

in actual problematic slices. Similarly, recall is defined as the fraction of the examples in the union

of actual problematic slices that are also in the identified slices. Finally, accuracy is the harmonic

mean of precision and recall.

4.4.2 Problematic Slice Identification

An important question to answer is whether Slice Finder can indeed find the most problematic slices,

in the user’s point of view. Unfortunately for the real datasets, we do not know what are the true

problematic slices, which makes our evaluation challenging. Instead, we add new problematic slices

by randomly perturbing labels and focus on finding those slices. While Slice Finder may find both

new and existing problematic slices, our evaluation will only be whether Slice Finder finds the new

problematic slices.

We first experiment on a synthetic dataset and compare the performances of LS, DT, and CL.

We then experiment on the real datasets and show similar results.

Synthetic Data

We generate a simple synthetic dataset where the generated examples have two discretized features

F1 and F2 and can be classified into two classes – 0 and 1 – perfectly. We make the model use

this decision boundary and do not change it further. Then we add problematic slices by choosing

random possibly-overlapping slices of the form F1 = A, F2 = B, or F1 = A∧F2 = B. For each slice,

we flip the labels of the examples with 50% probability. Note that this perturbation results in the

worst model accuracy possible.

Figure 4.4(a) shows the accuracy comparison of LS, DT, and CL on synthetic data. As the

number of recommendations increases, LS consistently has a higher accuracy than DT because LS

is able to better pinpoint the problematic slices including overlapping ones while DT is limited in

the sense that it only searches non-overlapping slices. For CL, we only evaluated the clusters with

effect sizes at least T . Even so, the accuracy is much lower than those of LS and DT.



77

0 10 20 30 40
Numb. of Recommendations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy LS

DT
CL

(a) Synthetic data

0 20 40 60 80 100
Numb. of Recommendations

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy LS

DT
CL

(b) Census Income Data

Figure 4.4: Accuracy comparison of finding problematic slices using (a) synthetic data
and (b) real data.

Real Data

We also perform a similar experiment using the Census Income dataset where we generate new

problematic slices on top of the existing data by randomly choosing slices and flipping labels with

50% probability. Compared to the synthetic data, the existing data may also have problematic

slices, which we do not evaluate because we do not know what they are. Figure 4.4(b) shows similar

comparison results between LS, DT, and CL. The accuracies of LS and DT are lower than those in

the synthetic data experiments because some of the identified slices may be problematic slices in the

existing data, but are considered incorrect when evaluated.

4.4.3 Large Problematic Slices

Figures 4.5 and 4.6 show how LS and DT outperform CL in terms of average slice size and average

effect size on the real datasets. CL starts with the entire dataset where the number of clusters (i.e.,

recommendations) is 1. CL produces large clusters that have very low effect sizes where the average

is around 0.0 and sometimes even negative, which means some slices are not problematic. The CL

results show that grouping similar examples does not necessarily guide users to problematic slices.

In comparison, LS and DT find smaller slices with effect sizes above the threshold T = 0.4.

LS and DT show different behaviors depending on the given dataset. When running on the

Census Income data, both LS and DT are able to easily find up to k = 10 problematic slices with

similar effect sizes. Since LS generally has a larger search space than DT where it also considers

overlapping slices, it is able to find larger slices as a result. When running on the Credit Card Fraud

data, DT has a harder time finding enough problematic slices. The reason is that DT initially finds a

large problematic slice, but then needs to generate many levels of the decision tree to find additional



78

2 4 6 8 10
Numb. of Recommendations

0.0

0.2

0.4

0.6

0.8

Av
g.

 E
ffe

ct
 S

ize

LS
DT
CL

(a) Census Income Data

2 4 6 8 10
Numb. of Recommendations

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 E
ffe

ct
 S

ize

LS
DT
CL

(b) Credit Card Fraud Data

Figure 4.5: Effect size comparisons between different data slicing approaches (T = 0.4).

problematic slices because it only considers non-overlapping slices. Since a decision tree is designed

to partition data to minimize impurity, the slices found deeper down the tree tend to be smaller and

“purer,” which means the problematic ones have higher effect sizes. Lastly, DT could not find more

than 7 problematic slices because the leaf nodes were too small to split further. These results show

that, while DT may search a level of a decision tree faster than LS searching a level of a lattice, it

may have to search more levels of the tree to make the same number of recommendations.

4.4.4 Adjusting Effect Size Threshold T

Figure 4.7 shows the impact of adjusting the effect size threshold T on LS and DT. For a low T

value, there are more slices that can be problematic. Looking at the Census Income data, LS indeed

finds larger slices than those found by DT, although they have relatively smaller effect sizes as a

result. As T increases, LS is forced to search smaller slices that have high-enough effect sizes. Since

LS still has a higher search space than DT, it does find slices with higher effect sizes when T is at

least 0.4. The Credit Card Fraud data shows a rather different comparison. For small T values,

recall that DT initially finds a large problematic slice, which means the average size is high, and

the effect size small. As T increases, DT has to search many levels of the decision tree to find

additional problematic slices. These additional slices are much smaller, which is why there is an

abrupt drop in average slice size. However, the slices have higher effect sizes, which is why there is

also a corresponding jump in the average effect size.

4.4.5 Scalability

We evaluate the scalabilities of LS and DT against different sample fractions, degree of paralleliza-

tion, and the number of top-k slices to recommend. All experiments were performed on the Census



79

2 4 6 8 10
Numb. of Recommendations

5

10

15

20

25

30

Av
g.

 Si
ze

 (th
ou

sa
nd

s)

LS
DT
CL

(a) Census Income Data

2 4 6 8 10
Numb. of Recommendations

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 Si
ze

 (th
ou

sa
nd

s)

LS
DT
CL

(b) Credit Card Fraud Data

Figure 4.6: Average slice size (unit is 1000) comparisons between different data slicing
approaches (T = 0.4).

0.2 0.4 0.6 0.8
Min. Effect Size (T)

0

20

40

60

80

100

Av
g.

 S
ize

 (h
un

dr
ed

s)

LS
DT

0.2 0.4 0.6 0.8
Min. Effect Size (T)

0.4

0.6

0.8

1.0

1.2

1.4

Av
g.

 E
ffe

ct
 S

ize

LS
DT

(a) Census Income Data

0.2 0.4 0.6 0.8
Min. Effect Size (T)

0

1

2

3

4

5

Av
g.

 S
ize

 (h
un

dr
ed

s)

LS
DT

0.2 0.4 0.6 0.8
Min. Effect Size (T)

0.2

0.4

0.6

0.8

Av
g.

 E
ffe

ct
 S

ize

LS
DT

(b) Credit Card Fraud Data

Figure 4.7: The impact of adjusting the effect size threshold T on average slice size and
average effect size.

Income dataset.

Figure 4.8 shows how the runtimes of LS and DT change versus the sampling fraction. For both

algorithms, the runtime increases almost linearly with the sample size. We also measure the relative

accuracy of the two algorithms where we compare the slices found in a sample with the slices found

in the full dataset. For a sample fraction of 1/128, both LS and DT maintain a high relative accuracy

of 0.88. These results show that it is possible to find most of the problematic slices using a fraction

of the data, about two orders of magnitude faster.

Figure 4.11(a) illustrates how Slice Finder can scale with parallelization. LS can distribute the

evaluation (e.g., effect size computation) of the slices with the same number of filter predicates to

multiple workers. As a result, for the full Census Income data, increasing the number of workers

results in better runtime. Notice that the marginal runtime improvement decreases as we add more

workers. The results for DT are not shown here because the current implementation does not support

parallel DT model training.



80

10 3 10 2 10 1 100

Sampling Fraction

100

101

102
 

LS
DT

Ru
nt

im
e 

(s
ec

)

(a)

10 3 10 2 10 1 100

Sampling Fraction
0.0

0.2

0.4

0.6

0.8

1.0

LS
DT

Re
la

tiv
e 

Ac
cu

ra
cy

(b)

Figure 4.8: Slice Finder (LS, DT) runtime (on a single node) and accuracy results using
different sample sizes (Census Income data).

Figure 4.11(b) compares the runtimes of LS and DT when the number of top-k recommendations

increase. For small k values less than 5, DT is faster because it searchers fewer slices to find k

problematic ones. However, as k increases, DT needs to search through many levels of a decision

tree and starts to run relatively slower than LS. Meanwhile, LS only searches the next level of the

lattice if k is at least 70 at which point DT is again relatively faster. Thus, whether LS or DT is

faster depends on k and how frequently problematic slices occur.

4.4.6 Interpretability

An important feature of Slice Finder is that it can find interpretable slices that can help a user

understand and describe the model’s behavior using a few common features. A user without Slice

Finder may have to go through all the misclassified examples (or clusters of them) manually to see

if the model is biased or failing.

Table 4.1 shows top-5 problematic slices from the two datasets using LS and DT. Looking at

the top-5 slices found by LS from the Census Income data, the slices are easy to interpret with a

few number of common features. We see that the Marital Status = Married-civ-spouse slice has the

largest size as well as a large effect size, which indicates that the model can be improved for this

slice. It is also interesting to see that the model fails for the people who are husbands or wives,

but not for other relationships: own-child, not-in-family, other-relative, and unmarried. We also

see slices with high capital gains tend to be problematic in comparison to the common case where

the value is 0. In addition, the top-5 slices found by DT from the Census Income data can also be

interpreted in a straightforward way, although having more literals makes the interpretation more

tedious. Finally, the top-5 slices from the Credit Card Fraud data are harder (but still reasonable)

to interpret because many feature names are anonymized (e.g., V14).



81

S
li

c
e

#
L

it
e
ra

ls
S

iz
e

E
ff

e
c
t

S
iz

e

L
S

sl
ic

es
fr

o
m

C
en

su
s

In
co

m
e

d
a
ta

M
ar
it
al

S
ta
tu
s
=

M
ar
ri
ed
-c
iv
-s
p
ou

se
1

1
4
0
6
5

0
.5

8
R
el
at
io
n
sh
ip

=
H
u
sb
an
d

1
1
2
4
6
3

0
.5

2
R
el
at
io
n
sh
ip

=
W
if
e

1
1
4
0
6

0
.4

6
C
ap
it
al

G
ai
n
=

31
03

1
9
4

0
.8

7
C
ap
it
al

G
ai
n
=

43
86

1
6
7

0
.9

4
D

T
sl

ic
es

fr
o
m

C
en

su
s

In
co

m
e

d
a
ta

M
ar
it
al

S
ta
tu
s
=

M
ar
ri
ed
-c
iv
-s
p
ou

se
1

1
4
0
6
5

0
.5

8
M
ar
it
al

S
ta
tu
s
6=

M
ar
ri
ed
-c
iv
-s
p
ou

se
→

C
ap
it
al

G
ai
n
≥

72
98
→

C
ap
it
al

G
ai
n
<

86
14
→

E
d
u
ca
ti
on

-N
u
m
<

13
4

7
0
.5

8
M
ar
it
al

S
ta
tu
s
6=

M
ar
ri
ed
-c
iv
-s
p
ou

se
→

C
ap
it
al

G
ai
n
<

72
98
→

E
d
u
ca
ti
on

-N
u
m
≥

13
→

A
ge
≥

28
..
.

5
8
5
5

0
.4

3
→

H
ou

rs
p
er

w
ee
k
≥

44
M
ar
it
al

S
ta
tu
s
6=

M
ar
ri
ed
-c
iv
-s
p
ou

se
→

C
ap
it
al

G
ai
n
<

72
98
→

E
d
u
ca
ti
on

-N
u
m
≥

13
→

A
ge
<

28
..
.

5
5

1
.0

7
→

C
ap
it
al

L
os
s
≥

22
31

M
ar
it
al

S
ta
tu
s
6=

M
ar
ri
ed
-c
iv
-s
p
ou

se
→

C
ap
it
al

G
ai
n
<

72
98
→

E
d
u
ca
ti
on

-N
u
m
≥

13
→

A
ge
≥

28
..
.

6
1
0
1

0
.4

7
→

H
ou

rs
p
er

w
ee
k
<

44
→

E
d
u
ca
ti
on

-N
u
m
≥

15
L

S
sl

ic
es

fr
o
m

C
re

d
it

C
a
rd

F
ra

u
d

d
a
ta

V
14

=
-3
.6
9
–
-1
.0
0

2
9
8

0
.4

5
V
7
=

0.
94

–
23
.4
8
∧
V
10

=
-2
.1
6
–
-0
.8
7

3
2
9

0
.4

1
V
1
=

1.
13

–
1.
74
∧

V
25

=
0.
48

–
0.
71

4
2
8

0
.5

4
V
7
=

0.
94

–
23
.4
8
∧
A
m
ou

n
t
=

27
0.
54

–
42
48
.3
4

4
2
8

0
.5

3
V
10

=
-2
.1
6
–
-0
.8
7
∧
V
17

=
0.
92

–
6.
74

5
2
7

0
.4

4
D

T
sl

ic
es

fr
o
m

C
re

d
it

C
a
rd

F
ra

u
d

d
a
ta

V
14

<
−

2
.1

7
→

V
10
≥
−

1.
52

2
3
1

0
.6

0
V
14
≥
−

2
.1

7
→

V
4
≥

0.
76
→

V
12

<
−

0.
42

3
5
9

0
.4

8
V
14
≥
−

2
.1

7
→

V
4
<

0.
76
→

V
14

<
−

0.
93
→

V
2
<

1
.0

4
4

2
3

0
.4

2
V
14
≥
−

2
.1

7
→

V
4
<

0.
76
→

V
14
≥
−

0.
93
→

A
m
ou

n
t
≥

3
2
0

4
1
8

0
.5

2
V
14
≥
−

2
.1

7
→

V
4
≥

0.
76
→

V
12
≥
−

0.
42
→

A
m
ou

n
t
≥

1
→

V
17
≥

1.
6
8

5
6

0
.6

3

T
a
b

le
4
.1

:
T

o
p

-5
sl

ic
e
s

fo
u

n
d

b
y

L
S

a
n

d
D

T
fr

o
m

th
e

C
e
n

su
s

In
c
o
m

e
a
n

d
C

re
d

it
C

a
rd

F
ra

u
d

d
a
ta

se
ts

.
W

h
e
n

d
e
n

o
ti

n
g

a
sl

ic
e

fr
o
m

a
d

e
c
is

io
n

tr
e
e
,

w
e

u
se

th
e
→

n
o
ta

ti
o
n

to
o
rd

e
r

th
e

li
te

ra
ls

b
y

le
v
e
l.



82

1 2 3 4
Number of Workers

80

100

120

140
Ru

nt
im

e 
(s

ec
)

LS

(a) Parallelization

0 20 40 60 80 100
Numb. of Recommendations

100

200

300

400

Ru
nt

im
e 

(s
ec

)

LS
DT

(b) # Recommendations

Figure 4.9: (a) Slice Finder runtime results with increasing number of (a) parallel workers
and (b) recommendations (Census Income data).

4.4.7 False Discovery Control

Even for a small data set (or sample), there can be an overwhelming number of problematic slices.

The goal of Slice Finder is to bring the user’s attention to a handful of large problematic slices;

however, if the sample size is small, most slices would contain fewer examples, and thus, it is likely

that many slices and their effect size measures are seen by chance. In such a case, it is important

to prevent false discoveries (e.g., non-problematic slices appear as problematic where φ ≥ T due to

sampling bias). For evaluation, we use the Census Income data and compare the results of Bonferroni

correction (BF), the Benjamini-Hochberg procedure (BH), and α-investing (AI) using two standard

measures: false discovery rate, which was described in Section 4.4.7, and power [? ], which is the

probability that the tests correctly reject the null hypothesis.

The results in Figure 4.10 show that, as the α-value (or wealth when using AI) increases up

to 0.01, AI and BH have higher FDR results than BH, but higher power results as well. When

measuring the accuracy of slices, AI slightly outperforms both BH and BF because it invests its α

more effectively using the Best-foot-forward policy. In comparison, BF is conservative and has a

high false-discovery rate (which results in lower accuracy), and BH does not exploit the fact that

the earlier slices are more likely to be problematic as AI does. The more important advantage of AI

is that it is the only technique that works in an interactive setting.

4.5 Related Work

In practice, the overall performance metrics can mask the issues on a more granular-level, and it

is important to validate the model accordingly on smaller subsets/sub-populations of data (slices).

While a well-known problem, the existing tools are still primitive in that they rely on domain experts



83

10 16 10 13 10 10 10 7 10 4

-value

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38
FD

R
AI
BF
BH

(a) False Discovery Rate

10 16 10 13 10 10 10 7 10 4

-value

0.7

0.8

0.9

1.0

Po
we

r

AI
BF
BH

(b) Power

Figure 4.10: (a) False discovery rate and (b) power comparison of the Bonferroni,
Benjamini Hochberg, and α-investing techniques (Census Income data).

to pre-define important slices. State-of-art tools for ML model validation include Facets [137], which

can be used to discover bias in the data, TensorFlow Model Analysis (TFMA), which slices data by

an input feature dimension for a more granular performance analysis [56], and MLCube [55], which

provides manual exploration of slices and can both evaluate a single model or compare two models.

While the above tools are manual, Slice Finder complements them by automatically finding slices

useful for model validation.

There are also several other relevant lines of work related to this problem, and here we list the

most relevant work to Slice Finder.

Data Exploration: Online Analytical Processing (OLAP) has been tackling the problem of

slicing data for analysis, and the techniques deal with the problem of large search space (i.e., how to

efficiently identify data slices with certain properties). For example, Smart Drilldown [138] proposes

an OLAP drill down process that returns the top-K most “interesting” rules such that the rules

cover as many records as possible while being as specific as possible. Intelligent rollups [139] goes

the other direction where the goal is to find the broadest cube that share the same characteristics of a

problematic record. In comparison, Slice Finder finds data slices, on which the model under-performs,

without having to evaluate the model on all the possible slices. This is different from general OLAP

operations based on cubes with pre-summarized aggregates, and the OLAP algorithms cannot be

directly used.

Model Understanding: Understanding a model and its behavior is a broad topic that is being

studied extensively [58, 59, 124, 140–142]. For example, LIME [58] trains interpretable linear models

on local data and random noise to see which feature are prominent. Anchors [59] are high-precision

rules that provide local and sufficient conditions for a black-box model to make predictions. In

comparison, Slice Finder is a complementary tool to provide part of the data where the model is



84

1 2 3 4
Number of Workers

80

100

120

140
Ru

nt
im

e 
(s

ec
)

LS

(a) Parallelization

0 20 40 60 80 100
Numb. of Recommendations

100

200

300

400

Ru
nt

im
e 

(s
ec

)

LS
DT

(b) # Recommendations

Figure 4.11: (a) Slice Finder runtime results with increasing number of (a) parallel
workers and (b) recommendations (Census Income data).

performing relatively worse than other parts. As a result, there are certain applications (e.g., model

fairness) that benefit more from slices. PALM [57] isolates a small set of training examples that have

the greatest influence on the prediction by approximating a complex model into an interpretable

meta-model that partitions the training data and a set of sub-models that approximate the patterns

within each pattern. PALM expects as input the problematic example and a set of features that are

explainable to the user. In comparison, Slice Finder finds slices with high effective sizes and does

not require any user input. Influence functions [143] have been used to compute how each example

affects model behavior. In comparison, Slice Finder identifies interpretable slices instead of individual

examples. An interesting direction is to extend influence functions to slices, to quantify the impact

of each slice on the overall model quality.

Feature Selection: Slice Finder is a model validation tool, which comes after model training. It

is important to note that this is different from feature selection [3, 144] in model training, where

the goal is often to identify and (re-)train on the most correlated features (dimensions) to the

target label (i.e., finding representative features that best explain model predictions). Instead, Slice

Finder identifies a few common feature values that describe subsets of data with significantly high

error concentration for a given model; this, in turn, could help the user to interpret hidden model

performance issues that are masked by good overall model performance metrics.

4.6 Summary

We have proposed Slice Finder as a tool for efficiently finding large, problematic, and interpretable

slices. The techniques are relevant to model validation in general, but also to model fairness and fraud

detection where human interpretability is critical to understand model behavior. We have proposed



85

two methods for automated data slicing for model validation: decision tree training, which is efficient

and finds slices defined as ranges of values, and slice lattice search, which can find overlapping slices

and are more effective for categorical features. We also provide an interactive visualization front-end

to help user quickly browse through a handful of problematic slices.

In the future, we would like to improve Slice Finder to better discretize numeric features and

support the merging of slices. We would also like to deploy SliceFinder to products and conduct a

user study on how helpful the slices are for explaining and debugging models.



Chapter 5

Conclusions

In this thesis, we present several cases for the uncertainty in data exploration (QUDE). First, the

uncertainty in the form of missing unknown data items is addressed in Chapter 2. The initial work

was done to estimate the impact of unknown unknowns on simple aggregate queries; later, the

proposed techniques were expanded to work with arbitrary feature space (i.e., more than a single

attribute) to define unknown unknowns in the context of machine learning. Chapter 3 discusses the

number of undetected data errors in a data set as a data quality metric. The quality of data itself

is an important source of uncertainty around any data exploration pipeline; being able to quantify

the quality of data is an important step forward. Chapter 4 presents an automated data slicing tool

(Slice Finder ) for model validation. Model validation in general is critical to minimize uncertainty

around the model performance. This work focuses on a common mistake in model validation, and

Slice Finder can help user quickly identify problematic slices, which can be masked by a good overall

performance. In addition to what we have addressed in this thesis, there are also other types of

uncertainty problems, such as multiple comparisons problem [127] and Simpson’s paradox [145] in

interactive data exploration, that were also addressed in the QUDE project.

Our overarching goal is to quantify all types of uncertainty in data analysis and exploration,

and in turn, provide measures to correct and validate the analysis results and discoveries. As such,

QUDE is part of a larger system, called “Northstar” [18]: an interactive data science system. The

goal of Northstar is to advanced analytics more accessible and, thus, democratize data science. The

techniques developed in QUDE can protect users without deep statistical and ML backgrounds form

making some of the common mistakes in data exploration.

86



Appendix A

Appendix for Chapter 2

A.1 Symbol table

Ω Universe of all valid entities (unknown size)

r A valid unique entity or data item

D Ground truth or the underlying population

S Observed sample of size n = |S|, with duplicates

K Integrated database with only unique entities from S

U Unknown unknowns that exist in D, but not in S or K

M0 Unknown unknowns distribution mass in D

c The number of unique data items in S; c = |K|
sj Source j with nj = |sj | data items

N The size of the ground truth; N = |D|
φ The aggregated query result: e.g., φD (over D)

∆ The impact of unknown unknowns: ∆ = φD − φK
fj A frequency statistic, i.e., the number of data items

with exactly j occurrences in S.

F The set of frequency statistics, {f1, f2, ..., fn}
ρ The correlation between publicity and value distribut-

ions, i.e., publicity-value correlation

γ Coefficient of variance (data skew measure)

C Sample coverage, also C = 1−M0

Table A.1: Symbols used in Chapter 2

A.2 Static Bucket Based Estimator

In Section 2.2.3, we state that the optimal number of buckets depends on the underlying publicity

distribution. Here, we elaborate on this with the two examples.

Figure A.1(a) shows the US tech-sector employment estimates by various estimators: Naive

(1-bucket), Bucket (a.k.a., Dynamic Bucket), and Static Bucket (Eq-width and Eq-height). In

87



88

(a) US Tech Employment

0.0  

10.0 k

20.0 k

30.0 k

40.0 k

50.0 k

60.0 k

70.0 k

80.0 k

 80  160  240  320  400  480

Su
m

(1
0:

10
:1

00
0)

Sample Size

Observed
Naive (1-bkt)

Bucket (Dynamic)
Eq-width (2-bkt)
Eq-width (6-bkt)

Eq-width (10-bkt)
Eq-height (2-bkt)
Eq-height (6-bkt)

Eq-height (10-bkt)
Ground Truth

(b) Uniform publicity, uncorrelated to values

Figure A.1: (a) The best US tech-sector employment estimation with static buckets.
Splitting into more buckets improves estimation. Eq-width (6-bkt, 10-bkt) are miss-
ing due to some of the buckets are empty; (b) Sum(1:10:1000) estimation with static
buckets. Splitting less (e.g., Naive) improves estimation. Data points are missing when
some buckets contain singletons only (i.e., infinite estimation).

this particular example, splitting into more buckets improves estimation, as the underlying publicity

distribution is skewed and correlated to the values (i.e., larger companies are more well known).

In contrast, in the simulated case in Figure A.1(b), splitting into less (e.g., Naive) improves

estimation as the underlying publicity is uniform. Notice, that in both examples above, the bucket

estimator yields the best estimates, dynamically resizing buckets on its own.

Also notice, that we consider two variants of static buckets: the one described in the paper,

equi-width, which divides the observed value range into a fixed number of buckets, and another

obvious variant, equi-height, which divides the observed sample, sorted by value, evenly into a

fixed number of buckets. Both static bucket types are simple to use, but they require parameter

tuning for the optimal number of buckets, which is hard to predict without knowing the true publicity

distribution.

A.3 The Increase in Count Estimate After Bucket Split

In equation 2.14, we claimed that the count estimation (N̂Chao92 = nc/(n−f1)) of a bucket increases

after splitting the bucket, if data items are evenly distributed over the attribute value range, and

there is no publicity-value correlation:

N̂Chao92 =
c

1− f1/n
=

Before split︷ ︸︸ ︷
n · c
n− f1

≤
n
2 ·

c
2

n
2 − α · f1

+
n
2 ·

c
2

n
2 − (1− α) · f1︸ ︷︷ ︸

After split



89

The α parameter governs the split of the original singleton count (f1) into a pair of smaller

buckets. We assume n and c are evenly distributed between the split buckets, as items are evenly

distributed over the value range, and all values are equally likely (no value-publicity correlation).

We now show that the above inequality holds by showing that the right hand side (after split) is

minimized at nc/(n− f1). Note that nc/(n− f1) is a positive number as n ≥ f1 ≥ 0 and c ≥ 0.

To find the minimum, we take the first derivative of the right hand side (denoted by R) with

respect to α:

R′ =
−c · f1 · n

4(−(1− α) · f1 + n
2 )2

+
−c · f1 · n

4(−α · f1 + n
2 )2

Solving R′ = 0, we get α = 0.5; we have R(0.5) = nc/(n− f1) as shown below:

R(0.5) =
n
2 ·

c
2

n
2 − 0.5 · f1

+
n
2 ·

c
2

n
2 − (1− 0.5) · f1

=
n
2 ·

c
2 + n

2 ·
c
2

n
2 − 0.5 · f1

=
n · c
n− f1

Finally, we show R(0.5) = nc/(n− f1) is the minimum by ensuring R′′(0.5) > 0:

R′′ =
c · f2

1 · n
2(−(1− α) · f1 + n

2 )3
+

c · f2
1 · n

2(−α · f1 + n
2 )3

R′′(0.5) =
c · f2

1 · n
2(−(1− 0.5) · f1 + n

2 )3
+

c · f2
1 · n

2(−0.5 · f1 + n
2 )3

=
c · f2

1 · n
(−0.5 · f1 + n

2 )3
=

8c · f2
1 · n

(−f1 + n)3

Note that n ≥ f1, and this makes R′′ > 0; R is minimized at nc/(n− f1) and the inequality holds

true:

Before split︷ ︸︸ ︷
n · c
n− f1

≤
n
2 ·

c
2

n
2 − α · f1

+
n
2 ·

c
2

n
2 − (1− α) · f1︸ ︷︷ ︸

After split

A.4 Other Unknown Unknowns Estimators

Many proposed techniques can be combined: we can use the frequency estimator, instead of the nàıve

estimator, with the bucket (i.e., Dynamic Bucket approach) estimator or the Monte-Carlo estimator.

We can also combine the Monte-Carlo estimator with the bucket estimator.

However, as the Monte-Carlo estimator requires large sample sizes to be accurate, combining it

with bucket estimator often results in lower estimation quality (i.e., each bucket contains a smaller

sample). Furthermore, each bucket (a smaller value range) entails a part of the underlying pub-

licity distribution; hence, the publicity distribution per bucket appears more uniform. As a major



90

Figure A.2: The best US tech-sector employment estimation with other estimators

drawback, the Monte-Carlo estimator exhibits a tendency to favor its count estimate N̂MC ∼ c (see

Section 2.5.1). Such tendency gets more imminent in Monte-Carlo with Bucket estimator as seen in

Figure A.2. Similarly, we found that the difference between the nàıve and frequency estimators is

not significant for the bucket estimator (i.e., uniform publicity).

A.5 A Toy Example For Unknown Unknowns

(a) Multiple sources si sampled without replacement from the un-
known population D. s5 is added later to the original integrated
database.

(b) Integrated Database K, before
(top) and after (bottom) adding s5

Figure A.3: A toy example for SELECT SUM(employee) FROM K

In this section, we walk through the different estimators step by step using a simple toy example.

Again, we use the same query, SELECT SUM(employee) FROM K, from the introduction but over a

very simplistic data set, shown in Figure A.3. It should be noted, that this toy example can not

convey any statistical properties because of its small size, but we can explain the general reasoning

behind the techniques using the example.

Figure A.3 shows the data integration scenario of our example. We assumes that the ground

truth D consists of 5 companies {A,B,C,D,E} (the bubble on the top), with different numbers of



91

before adding s5 after adding s5
(n = 7, c = 3, f1 = 1, γ̂2 = 0.1667) (n = 10, c = 4, f1 = 1, γ̂2 = 0)

Ground Truth φD = 1000 + 2000 + 900 + 10000 + 300 = 14200

Observed φK = 1000 + 2000 + 10000 = 13000 1000 + 2000 + 10000 + 300 = 13300

φK + ∆naive

= φK +
φK · f1 ·

(
c+ γ̂2n

)
c · (n− f1)

= 13000 +
13000 · 1 · (3 + 0.1667 · 7)

3 · (7− 1)

≈ 16009

= 13300 +
13300 · 1 · (4 + 0 · 9)

4 · (9− 1)

≈ 14962

φK + ∆freq

= φK +
φf1

(
c+ γ̂2n

)
n− f1

= 13000 +
1000 (3 + 0.1667 · 7)

7− 1

≈ 13694

= 13300 +
300 (4 + 0 · 9)

9− 1

= 13450

φK + ∆bucket

= φK + ∆b1:{A,B} + ∆b2:{D}

= φK + {∆naive}b1 + {∆naive}b2

= 13000 +
3000 · 1 · (2 + 0 · 3)

2 · (3− 1)

+
10000 · 0 · (1 + 0 · 4)

1 · (4− 0)

= 14500

= φK + ∆b1:{A,E} + ∆b2:{B}

+ ∆b3:{D}

= φK + {∆naive}b1 + {∆naive}b2
+ {∆naive}b3

= 13300 +
1300 · 1 · (2 + 0 · 3)

2 · (3− 1)

+
2000 · 0 · (1 + 0 · 2)

1 · (2− 0)

+
10000 · 0 · (1 + 0 · 4)

1 · (4− 0)

= 13950

Table A.2: SELECT SUM(employee) FROM K results with different unknown unknowns esti-
mators; bucket estimator gives the most accurate estimation of φD.

employees (e.g., company A has 1000, whereas company B has 2000). In the beginning we have four

data sources {s1, s2, s3, s4} and they sample without replacement from D. For instance data source

s1 lists companies A, B, and D. In the example we also assume a publicity-value correlation; that is,

the biggest company D appears in all data sources ({s1, s2, s3, s4}), while smaller companies appear

in fewer sources. To show how the estimates improve, we assume that the data source s5 is added

later on (visualized through the plus). The tables in Figure A.3(b) show the integrated database

before (top) and after (bottom) adding the fifth data source. For convenience, the last column shows

the number of times each company was observed.

Table A.2 shows the estimates by different estimators before and after adding the fifth data source.

We exclude Monte-Carlo estimator due to its simulation based nature. The top row contains the

relevant statistics of K. For instance, with 4 data sources, the number of observed items / sample

size is n = 7, the number of observed unique items is c = 3 (i.e., companies A, B, and D from

the top table in Figure A.3(b)), the number of singletons f1 = 1 (i.e., company D as it is the only

company, which was observed exactly ones across the data sources). and the calculated coefficient

of variation (CV ) γ = 0.1667 calculated over the sample.

Before adding the fifth data source, the observed total sum is φK = 1000+2000+10000 = 13000,

after adding the fifth data source φK = 1000 + 2000 + 10000 = 13300. In this example, the observed



92

total sum does not converge to the ground truth of 14200

Table A.2 shows the values with calculations for the different estimators. As it can be seen, the

nàıve estimator performs the worse; the estimator is quite far off, especially with 4 data sources.

The reason is the value estimator (mean substitution ) used. The average number of employees is

φK/3 ≈ 4333. Thus all missing companies (i.e., unknown unknowns) are also assumed to be that

big. Now knowing that bigger companies are more likely to be sampled, now the nàıve estimator

heavily over-estimates.

In contrast, the frequency estimator performs much better than the nàıve estimator because it

assumes that the missing companies have the average value over singletons, which includes A, but not

the extremely big company D; the missing companies are assume to have a value of φf1/1 = 1000.

Because less popular companies are more likely to be smaller (i.e., the publicity-value correlation),

this yields to a much better estimate.

Finally, the bucket estimator performs the best. Before adding the fifth source, the algorithm

creates two buckets: b1 : {A,B} and b2 : {D}. The estimate quality of bucket persists even after we

add s5 (i.e., Bucket is the best). In this case, the bucket estimator generates b1 : {A,E}, b2 : {B} and

b3 : {D}. The bucket estimator automatically groups the small companies (A and E) together and

uses their average number of employees for the missing companies (all other buckets have unknown

count estimation of 0); in this example, the bucket estimator has a smoothed value in between 300

and 1000. This is particularly more desirable compared to the case of the frequency estimator: E is

the new one and only singleton and φf1 is now 300.



Appendix B

Appendix for Chapter 3

B.1 Symbol table

Q A relation Q where some records refer to the same real-world
entity.

R A data set with a set of N records {r1, ..., rN}.
Rdirty A subset Rdirty ⊆ R of errorneous records.

W A set of K workers {w1, ..., wK}
S

(i)
dirty A set of items marked as dirty/error by wi.

S
(i)
clean A set of items marked as clean by wi.

I a N ×K matrix where every column represents the answers from
a worker k, and which entries are {1, 0, ∅} denoting dirty, clean,
unseen respectively.

ni number of votes (worker responses) on item i. n+
i refers to

the number of positive (dirty) votes on i and n+
i

the number of clean votes.

c The number of unique errors observed so far from R.

D The true number of unique errors exist in R.

ξ the expected number of switches needed for the current
majority consensus to reach D. ξ = ξ+ + ξ−, where ξ+

is the number of positive switches (clean to dirty) and ξ− for
negative switches.

fj A frequency statistic, i.e., the number of data items
with exactly j occurrences in S.

γ Coefficient of variance (data skew measure)

C Sample coverage.

H a function H : R 7→ R+ that is a measure of
confidence that a record is erroneous.

RH a set of ambiguous records selected by the heuristic
RH = {∀r ∈ R : α ≤ H(r) ≤ β}.

Table B.1: Symbols used in Chapter 3

93



Appendix C

Appendix for Chapter 4

C.1 Symbol table

D a data set with n examples D =

{(x(1)F , y(1)), (x
(2)
F , y(2)), ..., (x

(n)
F , y(n))}.

F features F = {F1, F2, ..., Fm} where each feature Fj (e.g., country)
has a list of values (e.g., {US, DE}) or discretized numeric
value ranges (e.g., {[0, 50), [50, 100)}).

h a machine learning model under testing.

S A slice is a subset of examples in D with common features and
can be described as a conjunction of the common feature-value pairs∧
j Fj op vj .

S′ A complment slice of S, S′ = D − S.

ψ A classification loss function ψ(S, h) that returns a performance score

for a set of examples by comparing h’s prediction h(x
(i)
F ) with

the true label y(i).

H A hypothesis in problematic slice testing.

φ a standardized score φ of the difference by the pooled standard
deviations of ψ(S, h) and ψ(S′, h), σS and σS′ respectively
(a.k.a., effect size)

T An effect size threshold

K Top-K large problematic slices to return.

V The number of false discoveries (problematic slices).

R The number of total discoveries (problematic slices).

fpr false positive rate, which is V/R.

tpr true positive rate, which is also tpr = 1− fpr.

Table C.1: Symbols used in Chapter 4

94



Bibliography

[1] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. Data cleaning: Overview and

emerging challenges. In Proceedings of SIGMOD, pages 2201–2206, 2016. doi: 10.1145/

2882903.2912574. URL http://doi.acm.org/10.1145/2882903.2912574.

[2] Jason W Osborne. Best practices in data cleaning: A complete guide to everything you need

to do before and after collecting your data. Sage, 2012.

[3] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal

of machine learning research, 3(Mar):1157–1182, 2003.

[4] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model

selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-

gence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, pages 1137–1145,

1995. URL http://ijcai.org/Proceedings/95-2/Papers/016.pdf.

[5] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal of electronic imaging,

16(4):049901, 2007.

[6] Çağatay Demiralp, Peter J Haas, Srinivasan Parthasarathy, and Tejaswini Pedapati. Foresight:

Rapid data exploration through guideposts. arXiv preprint arXiv:1709.10513, 2017.

[7] Xin Luna Dong and Divesh Srivastava. Big data integration. In Data Engineering (ICDE),

2013 IEEE 29th International Conference on, pages 1245–1248. IEEE, 2013.

[8] Beth Trushkowsky, Tim Kraska, Michael J. Franklin, Purnamrita Sarkar, and Venketaram

Ramachandran. Crowdsourcing enumeration queries: Estimators and interfaces. In to appear

at IEEE Transactions on Knowledge and Data Engineering (TKDE), 2015.

[9] Yeounoh Chung, Michael L. Mortensen, Carsten Binnig, and Tim Kraska. Estimating the

impact of unknown unknowns on aggregate query results. In Proceedings of ACM SIGMOD,

pages 861–876, 2016.

[10] Yeounoh Chung, Michael L. Mortensen, Carsten Binnig, and Tim Kraska. Estimating the

impact of unknown unknowns on aggregate query results. TODS, 43, 2018.

95



96

[11] Yeounoh Chung, Sanjay Krishnan, and Tim Kraska. A data quality metric (dqm): how to

estimate the number of undetected errors in data sets. Proceedings of the VLDB Endowment,

10(10):1094–1105, 2017.

[12] Yeounoh Chung, Tim Kraska, Steven Euijong Whang, and Neoklis Polyzotis. Slice finder:

Automated data slicing for model interpretability. arXiv preprint arXiv:1807.06068, 2018.

URL http://arxiv.org/abs/1807.06068.

[13] The 6 components of open-source data science/ machine learning ecosystem;

did python declare victory over r? https://www.kdnuggets.com/2018/06/

ecosystem-data-science-python-victory.html, 2018.

[14] Lessons from next-generation data wrangling tools. https://www.oreilly.com/ideas/

lessons-from-next-generation-data-wrangling-tools, 2015.

[15] Michael Stonebraker, Daniel Bruckner, Ihab F Ilyas, George Beskales, Mitch Cherniack, Stan-

ley B Zdonik, Alexander Pagan, and Shan Xu. Data curation at scale: The data tamer system.

In CIDR, 2013.

[16] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas, Mourad Ouz-

zani, Paolo Papotti, Michael Stonebraker, and Nan Tang. Detecting data errors: Where are

we and what needs to be done? PVLDB, 9(12):993–1004, 2016. URL http://www.vldb.org/

pvldb/vol9/p993-abedjan.pdf.

[17] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. Vizdom:

interactive analytics through pen and touch. Proceedings of the VLDB Endowment, 8(12):

2024–2027, 2015.

[18] Tim Kraska. Northstar: An interactive data science system. Proc. VLDB Endow., 11(12):

2150–2164, August 2018. ISSN 2150-8097. doi: 10.14778/3229863.3240493. URL https:

//doi.org/10.14778/3229863.3240493.

[19] Hector Gonzalez, Alon Y Halevy, Christian S Jensen, Anno Langen, Jayant Madhavan, Re-

becca Shapley, Warren Shen, and Jonathan Goldberg-Kidon. Google fusion tables: web-

centered data management and collaboration. In Proceedings of ACM SIGMOD, pages 1061–

1066, 2010.

[20] Google. Freebase. https://www.freebase.com, 2015. Accessed: 2015-07-08.

[21] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing systems on the

world-wide web. Commun. ACM, 54(4):86–96, April 2011. ISSN 0001-0782.

[22] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin.

Crowddb: Answering queries with crowdsourcing. In Proceedings of ACM SIGMOD, pages

61–72, 2011.



97

[23] Adam Marcus, Eugene Wu, Samuel Madden, and Robert C. Miller. Crowdsourced databases:

Query processing with people. In Proceedings of CIDR, pages 211–214, 2011.

[24] Adam Marcus, Eugene Wu, David R. Karger, Samuel Madden, and Robert C. Miller. Demon-

stration of qurk: a query processor for humanoperators. In Proceedings of ACM SIGMOD,

pages 1315–1318, 2011.

[25] Aditya Parameswaran and Neoklis Polyzotis. Answering Queries using Humans, Algorithms

and Databases. In Proceedings of CIDR, 2011.

[26] Sihem Amer-Yahia, AnHai Doan, Jon Kleinberg, Nick Koudas, and Michael Franklin. Crowds,

clouds, and algorithms: Exploring the human side of ”big data” applications. In Proceedings

of ACM SIGMOD, pages 1259–1260, 2010. ISBN 978-1-4503-0032-2.

[27] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. Crowdsearch: Exploiting crowds for accu-

rate real-time image search on mobile phones. In Proc. of MobiSys, pages 77–90, New York,

NY, USA, 2010. ACM. ISBN 978-1-60558-985-5.

[28] Daniel Haas, Matthew Greenstein, Kainar Kamalov, Adam Marcus, Marek Olszewski, and

Marc Piette. Reducing error in context-sensitive crowdsourced tasks. In First AAAI Confer-

ence on Human Computation and Crowdsourcing, 2013.

[29] Matteo Magnani and Danilo Montesi. A survey on uncertainty management in data integration.

Journal of Data and Information Quality, 2(1):1–33, 2010.

[30] Paul D Allison. Handling missing data by maximum likelihood. In SAS global forum, pages

1–21, 2012.

[31] Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[32] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches. IEEE

Data Eng. Bull., 23(4):3–13, 2000.

[33] Pew Research Center. How u.s. tech-sector jobs have grown, changed in 15 years. http:

//pewrsr.ch/PtqZDA, 2014. Accessed: 2015-07-08.

[34] Beth Trushkowsky, Tim Kraska, Michael J. Franklin, and Purnamrita Sarkar. Crowdsourced

enumeration queries. In Prodeedings of ICDE, pages 673–684, 2013.

[35] David A McAllester and Robert E Schapire. On the convergence rate of good-turing estimators.

In COLT, pages 1–6, 2000.

[36] Leo Pipino, Yang W. Lee, and Richard Y. Wang. Data quality assessment. Commun. ACM,

45(4):211–218, 2002. doi: 10.1145/505248.5060010. URL http://doi.acm.org/10.1145/

505248.5060010.



98

[37] You-Wei Cheah and Beth Plale. Provenance quality assessment methodology and framework.

J. Data and Information Quality, 5(3):9:1–9:20, 2015. doi: 10.1145/2665069. URL http:

//doi.acm.org/10.1145/2665069.

[38] Adir Even and Ganesan Shankaranarayanan. Dual assessment of data quality in customer

databases. J. Data and Information Quality, 1(3), 2009. doi: 10.1145/1659225.1659228. URL

http://doi.acm.org/10.1145/1659225.1659228.

[39] Valerie Sessions and Marco Valtorta. Towards a method for data accuracy assessment utilizing

a bayesian network learning algorithm. J. Data and Information Quality, 1(3), 2009. doi:

10.1145/1659225.1659227. URL http://doi.acm.org/10.1145/1659225.1659227.

[40] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering conditional functional

dependencies. IEEE Trans. Knowl. Data Eng., 23(5):683–698, 2011. doi: 10.1109/TKDE.

2010.154. URL http://dx.doi.org/10.1109/TKDE.2010.154.

[41] Kimberly Keeton, Pankaj Mehra, and John Wilkes. Do you know your iq?: a research agenda

for information quality in systems. SIGMETRICS Performance Evaluation Review, 37(3):

26–31, 2009. doi: 10.1145/1710115.1710121. URL http://doi.acm.org/10.1145/1710115.

1710121.

[42] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani, and Ihab F.

Ilyas. Guided data repair. PVLDB, 4(5):279–289, 2011. URL http://portal.acm.org/

citation.cfm?id=1952378&CFID=12591584&CFTOKEN=15173685.

[43] Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. A cost-based model and

effective heuristic for repairing constraints by value modification. In Proceedings of SIGMOD,

pages 143–154, 2005.

[44] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple

deletions. Information and Computation, 197(1-2):90–121, 2005.

[45] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Improving data quality:

Consistency and accuracy. In PVLDB, pages 315–326, 2007.

[46] Andrei Lopatenko and Loreto Bravo. Efficient approximation algorithms for repairing incon-

sistent databases. In Proceedings of ICDE, pages 216–225, 2007.

[47] Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Tim Kraska, and Tova

Milo. A sample-and-clean framework for fast and accurate query processing on dirty data. In

Proceedings of SIGMOD, pages 469–480, 2014.

[48] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, practice & open chal-

lenges. PVLDB, 5(12):2018–2019, 2012.



99

[49] Adam Marcus and Aditya Parameswaran. Crowdsourced data management industry and

academic perspectives. Foundations and Trends in Databases, 2015.

[50] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. Crowder: Crowdsourc-

ing entity resolution. PVLDB, 5(11):1483–1494, 2012. URL http://vldb.org/pvldb/vol5/

p1483_jiannanwang_vldb2012.pdf.

[51] Beth Trushkowsky, Tim Kraska, and Purnamrita Sarkar. Answering enumeration queries

with the crowd. Commun. ACM, 59(1):118–127, 2016. doi: 10.1145/2845644. URL http:

//doi.acm.org/10.1145/2845644.

[52] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem

Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. Tfx: A tensorflow-based production-scale

machine learning platform. In KDD, pages 1387–1395, 2017.

[53] F. Doshi-Velez and B. Kim. Towards A Rigorous Science of Interpretable Machine Learning.

ArXiv e-prints, February 2017.

[54] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady,

Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click prediction: a view

from the trenches. In KDD, pages 1222–1230, 2013.

[55] Minsuk Kahng, Dezhi Fang, and Duen Horng Polo Chau. Visual exploration of machine

learning results using data cube analysis. In HILDA, page 1. ACM, 2016.

[56] Introducing tensorflow model analysis. https://medium.com/tensorflow/

introducing-tensorflow-model-analysis-scaleable-sliced-and-full-pass-\

\metrics-5cde7baf0b7b, 2018.

[57] Sanjay Krishnan and Eugene Wu. Palm: Machine learning explanations for iterative debug-

ging. In HILDA, pages 4:1–4:6, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5029-7.

doi: 10.1145/3077257.3077271. URL http://doi.acm.org/10.1145/3077257.3077271.

[58] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust you?”: Explain-

ing the predictions of any classifier. In KDD, pages 1135–1144, 2016. doi: 10.1145/2939672.

2939778. URL http://doi.acm.org/10.1145/2939672.2939778.

[59] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-

agnostic explanations. In AAAI Conference on Artificial Intelligence (AAAI), 2018.

[60] M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

[61] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and pow-

erful approach to multiple testing. Journal of the Royal Statistical Society Series B (Method-

ological), 57(1):289–300, 1995. URL http://dx.doi.org/10.2307/2346101.



100

[62] Daniela Florescu, Daphne Koller, and Alon Y. Levy. Using probabilistic information in data

integration. In Proceedings of VLDB, pages 216–225, 1997. ISBN 1-55860-470-7.

[63] Ulf Leser and Felix Naumann. Query planning with information quality bounds. Flexible

Query Answering Systems, pages 85–94, 2001.

[64] Felix Naumann, Johann-Christoph Freytag, and Ulf Leser. Completeness of integrated infor-

mation sources. Inf. Syst., 29(7):583–615, September 2004. ISSN 0306-4379.

[65] Mat Tis Neiling and Hans-Joachim Lenz. Data integration by means of object identification in

information systems. In Proceedings of European Conference on Information Systems, page 69,

2000.

[66] Weiyi Meng, King-Lup Liu, Clement Yu, Wensheng Wu, and N Naphtali Rishe. Estimating

the usefulness of search engines. In Proceedings of ICDE, pages 146–153, 1999.

[67] Barna Saha and Divesh Srivastava. Data quality: The other face of big data. In Proceedings

of ICDE, pages 1294–1297, 2014.

[68] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava. Truth finding

on the deep web: Is the problem solved? In Proceedings of the VLDB, pages 97–108, 2012.

[69] Anne Chao and Shen-Ming Lee. Estimating the Number of Classes via Sample Coverage.

Journal of the American Statistical Association, 87(417):210–217, 1992.

[70] John Bunge and M Fitzpatrick. Estimating the number of species: a review. Journal of the

American Statistical Association, 88(421):364–373, 1993.

[71] Anne Chao. Species estimation and applications. In Encyclopedia of Statistical Sciences, 2nd

Edition, pages 7907–7916. Wiley, New York, 2005.

[72] Irving J. Good. The Population Frequencies of Species and the Estimation of Population

Parameters. Biometrika, 40(3/4):237–264, 1953.

[73] K. P. Burnham and W. S. Overton. Estimation of the Size of a Closed Population when

Capture Probabilities vary Among Animals. Biometrika, 65(3):625–633, 1978.

[74] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the royal statistical society. Series B (methodological),

pages 1–38, 1977.

[75] Ralph B D’Agostino Jr and Donald B Rubin. Estimating and using propensity scores with

partially missing data. Journal of the American Statistical Association, 95(451):749–759, 2000.

[76] Yang C Yuan. Multiple imputation for missing data: Concepts and new development (version

9.0). SAS Institute Inc, Rockville, MD, 2010.



101

[77] W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.

Biometrika, 57(1):97–109, 1970.

[78] Michael Lexa. Useful facts about the kullback-leibler discrimination distance. https:

//scholarship.rice.edu/bitstream/handle/1911/20061/Lex2004Dec8UsefulFact.PDF?

sequence=1&isAllowed=y, 2004. Accessed:2015-07-08.

[79] Michael Fu et al. Handbook of simulation optimization, volume 216. Springer, 2015.

[80] Anne Chao. Nonparametric estimation of the number of classes in a population. Scandinavian

Journal of statistics, pages 265–270, 1984.

[81] Anne Chao. Estimating the population size for capture-recapture data with unequal catcha-

bility. Biometrics, pages 783–791, 1987.

[82] Wikipedia. List of u.s. states by gdp. https://en.wikipedia.org/wiki/List_of_U.S.

_states_by_GDP, 2015. Accessed: 2015-07-08.

[83] Nicholas J Gotelli and Robert K Colwell. Estimating species richness. Biological diversity:

frontiers in measurement and assessment, 12:39–54, 2011.

[84] Anne Chao and Tsung-Jen Shen. Nonparametric estimation of shannon’s index of diversity

when there are unseen species in sample. Environmental and ecological statistics, 10(4):429–

443, 2003.

[85] Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement

from a finite universe. Journal of the American statistical Association, 47(260):663–685, 1952.

[86] Anne Chao and Mark CK Yang. Stopping rules and estimation for recapture debugging with

unequal failure rates. Biometrika, 80(1):193–201, 1993.

[87] Samuel Zahl. Jackknifing an index of diversity. Ecology, 58(4):907–913, 1977.

[88] Harshana Rajakaruna, D Andrew R Drake, Farrah T Chan, and Sarah A Bailey. Optimizing

performance of nonparametric species richness estimators under constrained sampling. Ecology

and Evolution, 6(20):7311–7322, 2016.

[89] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Lynne Stokes. Sampling-based estimation

of the number of distinct values of an attribute. In Proceedings of VLDB, pages 311–322, 1995.

[90] Anne Chao. Nonparametric Estimation of the Number of Classes in a Population. SJS, 11(4),

1984.

[91] Gregory Valiant and Paul Valiant. Estimating the unseen: an n/log (n)-sample estimator for

entropy and support size, shown optimal via new clts. In Proceedings of the forty-third annual

ACM symposium on Theory of computing, pages 685–694. ACM, 2011.



102

[92] Jie Liang. Estimation Methods for the Size of Deep Web Textural Data Source: A Survey.

cs.uwindsor.ca/richard/cs510/survey_jie_liang.pdf, 2008. Accessed: 2015-07-08.

[93] Jianguo Lu and Dingding Li. Estimating deep web data source size by capture—recapture

method. Inf. Retr., 13(1):70–95, February 2010. ISSN 1386-4564.

[94] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Towards esti-

mation error guarantees for distinct values. In Proceedings of ACM PODS, pages 268–279,

2000.

[95] Roger Sapsford. Survey research. Sage, 2006.

[96] James T McClave, P George Benson, and Terry Sincich. Statistics for business and economics.

Pearson Essex, 2014.

[97] Leslie Kish. Survey sampling. John Wiley and Sons, 1965.

[98] Willis Lang, Rimma V Nehme, Eric Robinson, and Jeffrey F Naughton. Partial results in

database systems. In Proceedings of ACM SIGMOD, pages 1275–1286, 2014.

[99] Simon Razniewski, Flip Korn, Werner Nutt, and Divesh Srivastava. Identifying the extent

of completeness of query answers over partially complete databases. In Proceedings of ACM

SIGMOD, pages 561–576, 2015.

[100] Frank Olken and Doron Rotem. Simple random sampling from relational databases. In In

proceedings of VLDB, volume 86, pages 25–28, 1986.

[101] Peter J Haas. Hoeffding Inequalities for Join Selectivity Estimation and Online Aggregation.

IBM, 1996.

[102] John Rice. Mathematical statistics and data analysis. Cengage Learning, 2006.

[103] For big-data scientists, ’janitor work’ is key hurdle to insights. https://nyti.ms/2jNUfHo, 2014.

[104] Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. Spec-

tral methods meet EM: A provably optimal algorithm for crowdsourcing. In

Proceedings of NIPS, pages 1260–1268, 2014. URL http://papers.nips.cc/

paper/5431-spectral-methods-meet-em-a-provably-optimal-algorithm-for\

\-crowdsourcing.

[105] Rense Lange and Xavier Lange. Quality control in crowdsourcing: An objective measurement

approach to identifying and correcting rater effects in the social evaluation of products and

services. In AAAI Spring Symposium: Wisdom of the Crowd, pages 32–37, 2012. URL http:

//www.aaai.org/ocs/index.php/SSS/SSS12/paper/view/4322.



103

[106] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan Rampalli,

Jude W. Shavlik, and Xiaojin Zhu. Corleone: hands-off crowdsourcing for entity matching.

In Proceedings of SIGMOD, pages 601–612, 2014. doi: 10.1145/2588555.2588576. URL http:

//doi.acm.org/10.1145/2588555.2588576.

[107] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. Sampling-based estimation

of the number of distinct values of an attribute. In PVLDB, pages 311–322, 1995. URL

http://www.vldb.org/conf/1995/P311.PDF.

[108] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion

Stoica. Blinkdb: queries with bounded errors and bounded response times on very large data.

In Proceedings of EuroSys, pages 29–42, 2013.

[109] Anne Chao and Shen-Ming Lee. Estimating the number of classes via sample coverage. J. the

American statistical Association, 87(417):210–217, 1992.

[110] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin.

Crowddb: answering queries with crowdsourcing. In Proceedings of SIGMOD, pages 61–72,

2011. doi: 10.1145/1989323.1989331. URL http://doi.acm.org/10.1145/1989323.1989331.

[111] Qiang Liu, Jian Peng, and Alexander T. Ihler. Variational inference for crowdsourc-

ing. In Proceedings of NIPS, pages 701–709, 2012. URL http://papers.nips.cc/paper/

4627-variational-inference-for-crowdsourcing.

[112] David Oleson, Alexander Sorokin, Greg P Laughlin, Vaughn Hester, John Le, and Lukas

Biewald. Programmatic gold: Targeted and scalable quality assurance in crowdsourcing. Hu-

man computation, 11(11), 2011.

[113] Yasser Altowim, Dmitri V. Kalashnikov, and Sharad Mehrotra. Progressive approach to rela-

tional entity resolution. PVLDB, 7(11):999–1010, 2014. URL http://www.vldb.org/pvldb/

vol7/p999-altowim.pdf.

[114] Steven Euijong Whang and Hector Garcia-Molina. Incremental entity resolution on rules and

data. VLDB J., 23(1):77–102, 2014. doi: 10.1007/s00778-013-0315-0. URL http://dx.doi.

org/10.1007/s00778-013-0315-0.

[115] Thorsten Papenbrock, Arvid Heise, and Felix Naumann. Progressive duplicate detection.

TKDE, 27(5):1316–1329, 2015. doi: 10.1109/TKDE.2014.2359666. URL http://dx.doi.

org/10.1109/TKDE.2014.2359666.

[116] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. Incremental record linkage. PVLDB,

7(9), 2014. URL http://www.vldb.org/pvldb/vol7/p697-gruenheid.pdf.

[117] Arvid Heise, Gjergji Kasneci, and Felix Naumann. Estimating the number and sizes of fuzzy-

duplicate clusters. In Proceedigns of CIKM, 2014. doi: 10.1145/2661829.2661885. URL http:

//doi.acm.org/10.1145/2661829.2661885.



104

[118] Gail M. Sullivan and Richard Feinn. Using effect size—or why the p value is not enough.

Journal of Graduate Medical Education, 4(3):279–282, 2012.

[119] Jacob Cohen. Statistical power analysis for the behavioral sciences . hilsdale. NJ: Lawrence

Earlbaum Associates, 2, 1988.

[120] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert

Bradshaw, and Nathan Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In

Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 363–375,

2010. doi: 10.1145/1806596.1806638. URL http://doi.acm.org/10.1145/1806596.1806638.

[121] Wes McKinney. pandas: a foundational python library for data analysis and statistics. Python

for High Performance and Scientific Computing, pages 1–9, 2011.

[122] Leo Breiman. Classification and regression trees. Routledge, 2017.

[123] Dean Foster and Bob Stine. Alpha-investing: A procedure for sequential control of expected

false discoveries. Journal of the Royal Statistical Society Series B (Methodological), 70(2):

429–444, 2008.

[124] Alex A. Freitas. Comprehensible classification models: A position paper. SIGKDD Explor.

Newsl., 15(1):1–10, March 2014. ISSN 1931-0145. doi: 10.1145/2594473.2594475. URL http:

//doi.acm.org/10.1145/2594473.2594475.

[125] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association rules.

In VLDB, volume 1215, pages 487–499, 1994.

[126] Anurag Srivastava, Eui-Hong Han, Vipin Kumar, and Vineet Singh. Parallel formulations

of decision-tree classification algorithms. In High Performance Data Mining, pages 237–261.

Springer, 1999.

[127] Zheguang Zhao, Lorenzo De Stefani, Emanuel Zgraggen, Carsten Binnig, Eli Upfal, and Tim

Kraska. Controlling false discoveries during interactive data exploration. In Proceedings of the

2017 ACM International Conference on Management of Data, pages 527–540. ACM, 2017.

[128] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised

learning. In NIPS, pages 3315–3323, 2016. URL http://papers.nips.cc/paper/

6374-equality-of-opportunity-in-supervised-learning.

[129] Machine bias. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing,

2016.

[130] Marzyeh Ghassemi, Tristan Naumann, Finale Doshi-Velez, Nicole Brimmer, Rohit Joshi, Anna

Rumshisky, and Peter Szolovits. Unfolding physiological state: Mortality modelling in intensive



105

care units. In KDD, KDD ’14, pages 75–84, New York, NY, USA, 2014. ACM. ISBN 978-1-

4503-2956-9. doi: 10.1145/2623330.2623742. URL http://doi.acm.org/10.1145/2623330.

2623742.

[131] Solon Barocas and Moritz Hardt. Fairness in machine learning. NIPS Tutorial, 2017.

[132] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness

through awareness. In ITCS, pages 214–226, New York, NY, USA, 2012. ACM. ISBN 978-1-

4503-1115-1. doi: 10.1145/2090236.2090255. URL http://doi.acm.org/10.1145/2090236.

2090255.

[133] Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the

fair determination of risk scores. In ITCS, pages 43:1–43:23, 2017. doi: 10.4230/LIPIcs.ITCS.

2017.43. URL https://doi.org/10.4230/LIPIcs.ITCS.2017.43.

[134] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-

subramanian. Certifying and removing disparate impact. In KDD, pages 259–268, 2015. ISBN

978-1-4503-3664-2.

[135] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In

KDD, volume 96, pages 202–207, 1996.

[136] Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Calibrating

probability with undersampling for unbalanced classification. In SSCI, pages 159–166. IEEE,

2015.

[137] Facets overview. https://research.googleblog.com/2017/

07/facets-open-source-visualization-tool.html, 2017.

[138] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. Interactive data explo-

ration with smart drill-down. In ICDE, pages 906–917. IEEE, 2016.

[139] Gayatri Sathe and Sunita Sarawagi. Intelligent rollups in multidimensional olap data. In

VLDB, pages 531–540, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

ISBN 1-55860-804-4. URL http://dl.acm.org/citation.cfm?id=645927.672366.

[140] Paolo Tamagnini, Josua Krause, Aritra Dasgupta, and Enrico Bertini. Interpreting black-

box classifiers using instance-level visual explanations. In HILDA, pages 6:1–6:6, New York,

NY, USA, 2017. ACM. ISBN 978-1-4503-5029-7. doi: 10.1145/3077257.3077260. URL http:

//doi.acm.org/10.1145/3077257.3077260.

[141] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting blackbox models via model

extraction. CoRR, abs/1705.08504, 2017. URL http://arxiv.org/abs/1705.08504.



106

[142] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Interpretable & ex-

plorable approximations of black box models. CoRR, abs/1707.01154, 2017. URL http:

//arxiv.org/abs/1707.01154.

[143] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.

In ICML, pages 1885–1894, 2017. URL http://proceedings.mlr.press/v70/koh17a.html.

[144] Moses Charikar, Venkatesan Guruswami, Ravi Kumar, Sridhar Rajagopalan, and Amit Sa-

hai. Combinatorial feature selection problems. In Foundations of Computer Science, 2000.

Proceedings. 41st Annual Symposium on, pages 631–640. IEEE, 2000.

[145] Yue Guo, Carsten Binnig, and Tim Kraska. What you see is not what you get!: Detect-

ing simpson’s paradoxes during data exploration. In Proceedings of the 2Nd Workshop on

Human-In-the-Loop Data Analytics, HILDA’17, pages 2:1–2:5, New York, NY, USA, 2017.

ACM. ISBN 978-1-4503-5029-7. doi: 10.1145/3077257.3077266. URL http://doi.acm.org/

10.1145/3077257.3077266.


