
Abstract of “Towards Improving the Effectiveness of Automated Program Repair” by Qi Xin, Ph.D.,

Brown University, May 2018.

Automated program repair (APR) aims to save people time and effort by repairing a faulty program

automatically. A significant branch of current APR techniques are search-based: they define a set

of modification rules to create a search space of patches first and then search in the space for a

correct patch. Current search-based APR techniques face two main problems: (1) the search space

problem and (2) the patch overfitting problem. For (1), they define a huge search space of patches

to support repairing a large set of bugs, but they are not effective in finding a correct patch within

such a huge space. For (2), they are prone to producing a patch that is overfitting. An overfitting,

patched program can pass the test suite but does not actually repair the bug.

To address (1), we developed our APR techniques ssFix and sharpFix. ssFix finds and reuses

existing code fragments (from a code database) that are syntactically related to the context of a

fault to produce patches for its repair. By leveraging such syntax-related code, ssFix potentially

creates a search space of patches whose size is reduced but is still likely to contain a correct patch.

We evaluated ssFix on 357 bugs in the Defects4J bug dataset. Our results showed that ssFix suc-

cessfully repaired 20 bugs with valid patches generated and that it outperformed five other repair

techniques for Java. sharpFix is an improved version of ssFix. Compared to ssFix, it uses different

code search and code reuse methods. For the 357 Defects4J bugs, sharpFix repaired in total 36 bugs

with correct patches generated.

To address (2), we developed our patch testing technique DiffTGen which identifies a patched pro-

gram to be overfitting by first generating new test inputs that uncover semantic differences between

the original faulty program and the patched program, then testing the patched program based on

the semantic differences, and finally generating test cases. We evaluated DiffTGen and found that

it identified 49.4% overfitting patches in our patch dataset and that it can help an APR technique

in producing less overfitting patches and more correct ones.
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Chapter 1

Introduction

In today’s world, software is used everywhere. Software is complex and often contains many faults

(or bugs1). At the release time in February 2000, Microsoft Windows 2000 had about 35M LOC and

contained over 63,000 known faults [4] (about two bugs per 1,000 LOC). Software faults can lead

to expensive failures which further lead to significant financial loss. According to the report [209]

in 2002, “Estimates of the economic costs of faulty software in the U.S. range in the tens of billions

of dollars per year and have been estimated to represent approximately just under 1 percent of the

nation’s gross domestic product (GDP)”. Such economic costs are likely to be higher today.

Debugging is the process that people take to remove bugs in software. Today’s debugging process

is largely manual: people often create printing statements in their programs or use a debugger (e.g.,

GDB [8]) to see program states during the failed execution to figure out what goes wrong and then

come up with a fix to resolve the failure. Manual debugging as such however is often laborious,

time-consuming, and error-prone. According to the report [35] in 2013, software developers spend

about 50% of their programming time for debugging. The estimated global cost of debugging per

year is 312 billion dollars. Kim and Whitehead [104] found that the median bug-fixing time of two

projects ArgoUML (from 01/2002 to 03/2003) and PostgreSQL (from 07/1996 to 11/2000) is about

200 days.

Within the past few decades, many automated techniques that look at making debugging easier

have been developed. A branch of such techniques called the fault localization techniques look at

identifying some parts of the program that are likely to contain the bug. A developer can then

save time by only focusing on the fault-located parts of the program for debugging. For example,

a branch of such techniques called the Spectrum-Based Fault Localization (SBFL) techniques [202]

calculate the suspiciousness of the program elements (as lines, statements, branches, or blocks) in

a program based on the coverage of those elements in the passing and failing testing runs (against

a set of test cases). Intuitively, a program element, for example as a statement, that is covered in

more failing runs and less passing runs is more likely to be suspicious. An SBFL technique ranks

1In this thesis, we use “bug” and “fault” interchangably.
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these program elements by the calculated suspiciousness and presents the ranked elements to the

developer for debugging. A developer can then examine the elements in the ranked order to possibly

identify the fault quickly for bug-fixing. Though such a technique is expected to make debugging

easier by suggesting highly suspicious elements of a program, its actual usefulness is limited. Parnin

and Orso [174] compared developers doing debugging tasks with and without a debugging tool that

generates ranked suspicious statements using an SBFL technique Tarantula [90]. They found that

the ranked suspicious statements only actually help expert developers on easy tasks and do not help

developers on hard tasks. They also found that changing the ranks of those statements can cause no

significant effects for debugging. In fact, fault localization is only one part of the debugging process.

Even given the located fault, a developer still needs to understand how the fault causes the failure

and then figure out how to make changes to remove the fault.

To significantly save people time and effort for debugging, within the past decade, researchers

look at developing automated program repair (APR) techniques [155] that can automatically repair

a fault with a patch generated. A typical APR technique accepts as input a faulty program and

a fault-exposing test suite which consists of a set of test cases at least one of which the program

failed. The test suite is actually used as a specification that encodes the expected behaviors that a

bug-fixed program should have. As output, the APR technique can generate a patch for the faulty

program such that the patched program passes the test suite (and thus satisfies the specification).

Many APR techniques have been developed over the past decade, they look at using different

approaches: genetic algorithms [116, 74, 219], random search [182], human-written templates [101],

existing bug-fixing instances [70, 113], program comparison [205], program synthesis [160, 152, 153,

53, 112, 197], condition synthesis [234, 232], repair templates plus condition synthesis [132], mod-

ifications with patch ranking models [134, 190], modifications based on monitored program states

[47], code search [97], learned transformations [187, 131], invariants [177], bug reports [128], statis-

tical analysis [95], and non-test-suite specifications [217, 73] for bug repair. A significant fraction of

current APR techniques adopt a search-based approach2 [74, 219, 182, 101, 132, 134, 113, 205, 190]:

they define a set of modification rules to generate a space of patches first and then search in the

space for plausible patches (the patched programs can pass the test suite). Compared to the APR

techniques [160, 152, 153, 112] that are synthesis-based, search-based techniques often have better

scalability, and have been actually applied to repair bugs for many real projects.

Current search-based APR techniques face two problems: (1) the search space problem and (2)

the patch overfitting problem. As pointed out by Long and Rinard in [133], a search-based technique

often defines a huge search space of patches to support repairing different types of bugs. However,

searching for a correct patch within a huge search space is often difficult. Long and Rinard also

found that the search space created by a search-based APR technique, though huge, still often fails

to cover a correct patch. For the 69 bugs selected from the GenProg’s bug dataset [74], the search

space of the state-of-the-art APR technique Prophet contains correct patches for only 19 (27.5%)

bugs. Using a 12-hour time budget for repairing one bug, Prophet repaired in total 39 (less than

2Such techniques are also called generate-and-validate (g&v) techniques.
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60%) bugs with plausible patches generated. In [133], Long and Rinard also found that the search

space created by a search-based APR technique often contains many overfitting patches. Using an

overfitting patch, one can produce a patched program that passes the test suite but does not actually

repair the bug. In Prophet’s search space, the number of overfitting patches is often hundreds of

times as many as the non-overfitting, correct patches. The existence of such overfitting patches can

block the finding of a correct patch. For the 69 bugs, Prophet produced more than 60% of first-found

plausible patches that are overfitting and incorrect. Early APR techniques are much more likely

to produce overfitting patches. In [183], Qi et al. show that the majority of the patches generated

by GenProg [116], AE [219], and RSRepair [182] are incorrect. Patch overfitting is a problem faced

by not only the search-based APR techniques but all APR techniques that use a test suite as the

correctness criterion for patch validation. A test suite, essentially as a set of input-output examples,

cannot completely encode all the expected behaviors a program needs to have. Using a test suite for

patch validation, an APR technique cannot avoid producing a patched program that passes the test

suite but does not actually repair the bug (such a patched program can somehow make sure it works

for the input-output examples used in the test suite but cannot generalize for other examples).

In this thesis, we propose new techniques to address the two problems as a way to improve the

effectiveness of automated program repair.

1.1 An Overview of Contributions

The contributions of this thesis are reflected in the techniques we developed to address the aforemen-

tioned two problems faced by current search-based APR techniques (and other APR techniques in

general). To address the search space problem, we developed two APR techniques ssFix and sharp-

Fix which find and reuse existing code fragments from existing programs for bug repair. To address

the patch overfitting problem, we developed a patch testing technique DiffTGen which generates

new test cases to identify an overfitting patch.

1.1.1 Leveraging Existing Code for Bug Repair

As suggested in [133], one solution to address the search space problem is to build a “targeted”

search space of patches whose size is reduced but still contains the correct patches. We developed

an APR technique ssFix which looks at finding and reusing existing code fragments from a code

database to build such a targeted search space. ssFix is built upon the assumption that existing

code fragments (in a large code database) that are similar to the bug context might contain the fix

ingredients (the statements/expressions that can be reused to produce the correct patches) for bug

repair. After doing fault localization to identify a faulty statement, ssFix first performs syntactic

code search to find existing code fragments that are similar to the bug context from a code database

that consists of the local faulty program and the non-local programs in a large code repository and

then reuses those retrieved code fragments to produce patches for bug repair. To produce patches,

ssFix looks at the syntactic differences between a retrieved code fragment and the bug context. For
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a code fragment that is similar to the bug context, the syntactic differences are small. By leveraging

such code fragments for bug repair, ssFix essentially creates a space of patches whose size is reduced

but is still likely to contain the correct patches. More details can be found in Chapter 3. The

experiments we conducted demonstrated the effectiveness of ssFix: ssFix repaired 20 of the 357

Defects4J bugs with valid patches generated with the median time of producing a plausible patch

being only about 11 minutes. ssFix outperformed five other APR techniques in producing more

correct patches with at least comparable (and often less) running time.

1.1.2 Revisiting ssFix for Better Bug Repair

ssFix was built upon the idea of reusing existing code fragments from a code database (that consists

of the local faulty program and the non-local programs in a code repository) for bug repair. It

implicitly makes the assumption that existing code fragments from the code database often contain

the fix ingredients (the statements/expressions needed for producing a correct patch). We conducted

an experiment to check how often the assumption holds in practice. ssFix performs syntactic code

search to find existing code fragments that are similar to the bug context and then reuses those code

fragments to produce patches for bug repair. We evaluated ssFix to see whether it is good at finding

useful code fragments for bug repair and whether it is good at reusing those code fragments to

produce the correct patches. ssFix largely relies on an existing technique [40] to do fault localization

which we found worked poorly in the experiment we performed to evaluate ssFix in Section 3.4.

Without working on the real faulty statement, ssFix would fail to produce the correct patch. We

conducted experiments to see whether ssFix can do better repair if the fault is accurately located.

For (1), we found that the idea of reusing existing code for bug repair is promising. We defined

the fix ingredient for a simple patch in the context of automated program repair (a patch is simple if

all the fixing changes are made within an expression or within a primitive statement which contains

no children statements). For our experiments, we looked at 103 Defects4J bugs whose patches are

simple from the Defects4J bug dataset (version 0.1.0). We found that the exact fix ingredients and

the parameterized fix ingredients (with the non-JDK variable, type, and method names in the fix

ingredients parameterized) exist for 50 and 80 of the 103 Defects4J bugs. For (2), we found that

ssFix retrieved code fragments that contain the parameterized fix ingredients for 61 bugs within the

top-500 retrieved results. After translation, for 38 bugs, the code fragments contain the exact fix

ingredients. ssFix reused the retrieved code fragments to produce correct patches for 23 bugs (see

Sections 5.3.1 and 5.3.2). For (3), we found that ssFix can produce 24% more correct patches if the

statement that contains the fault is known in advance and it can produce 23% more correct patches

if the method that contains the fault is known in advance. Based on our experimental observations,

we developed a new APR technique sharpFix as an improved version of ssFix. sharpFix improves

ssFix’s code search by using different code search methods for retrieving code fragments from the

local faulty program and from the non-local programs in the code repository. For patch generation,

sharpFix goes through the same steps used by ssFix: code translation, code matching (or component

matching in [230]), and modification. Each step however is different and improved. Our results show
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that sharpFix retrieved code fragments that contain the parameterized fix ingredients for 59 bugs.

After translation, for 42 bugs, the code fragments contain the exact fix ingredients. sharpFix reused

the retrieved code fragments to produce correct patches for 30 bugs (see Sections 5.4.2 and 5.4.3).

For the Defects4J bug dataset, sharpFix repaired in total 36 bugs with correct patches generated. To

our knowledge, it outperformed all the existing APR techniques that were evaluated on this dataset

in producing the largest number of correct patches so far. More details can be found in Chapter 5.

1.1.3 Generating New Test Cases for Identifying Overfitting Patches

Most of current APR techniques use a test suite as the correctness criterion for patch validation. A

test suite consists of a limited set of test cases and cannot fully specify all the expected behaviors

that a program should have. A patched program that passes the test suite might not actually repair

the bug. This is the patch overfitting problem. To address the problem, our solution is to generate

new test cases exposing the differential behaviors between a patched program and the faulty program

(such differential behaviors can be related to the patch) and furthermore identify the patch to be

overfitting using an oracle.

We developed our patch testing technique DiffTGen which accepts as input a faulty program,

a patched program, and an oracle. As output, DiffTGen can generate a test case exposing any

overfitting behavior of the patched program. To produce such a test case, DiffTGen first employs

a test generator to generate a test input (as a test method containing a sequence of statements for

testing) that exercises a syntactic difference between the faulty program and the patched program.

DiffTGen next instruments the faulty program and the patched program, executes the two programs

with the input to obtain two outputs, and checks whether the outputs are different. If the outputs

are different, DiffTGen asks the oracle to tell which output is correct. If the output of the patched

program is incorrect, DiffTGen determines the patched program to be overfitting and produces an

overfitting-indicative test case if the correct output could be provided by the oracle. Such a test case

can be added to the original test suite to make the test suite stronger. Using the augmented test

suite, a repair technique can avoid yielding a similar, overfitting patch again. We evaluated DiffTGen

on 89 patches generated by four APR techniques for Java. Among the 89 patches, we identified 10

patches to be non-overfitting and the other 79 patches to be possibly overfitting. Our results show

that DiffTGen identifies in total 39 (49.4%) overfitting patches and yields the corresponding test

cases. We further conducted a repair experiment using an APR technique together with DiffTGen.

Our results show that DiffTGen can help an APR technique in producing less overfitting patches

and more correct ones. More details can be found in Chapter 4.

The organization of the thesis is as follows. We discuss the related work in Chapter 2. We

present the APR technique ssFix in Chapter 3. We present the patch testing technique DiffTGen

in Chapter 4. In Chapter 5, we show the experiments we conducted to validate ssFix’s built-upon

assumption and to evaluate ssFix’s code search, code reuse, and repair abilities. In Chapter 5, we

also present the APR technique sharpFix which we developed as an improved version of ssFix and
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show the experiments we conducted for its evaluation. In Chapter 6, the final chapter, we show our

conclusions and discuss future research directions for making APR techniques more effective.



Chapter 2

Related Work

In this chapter, we discuss existing research work in the areas of debugging, automated program

repair, patch overfitting, code search, and test-generation-based differential testing that are related

to the thesis work.

2.1 Debugging

Debugging is the process of identifying and correcting the root cause of a software failure [246]. As a

very simple debugging method, people create printing statements in their programs for printing out

relevant program states for debugging. As a general method, people use a debugger (e.g., GDB [8])

to run the program under debug in a controlled condition for identifying and correcting bugs. Using

a debugger, a developer can run a program in single steps. In each step, the developer can examine

values available at that step to understand what the program is doing. In a debugging step, when

the code to be debugged involves a method call, a debugger often allows the developer to either go

into the call of the method to debug the code there or go over the method to see the executing

effect of the method call. Instead of debugging a program from the start, a debugger often allows a

developer to set up a breakpoint. Then the developer can debug the program from the breakpoint

and examine values in single steps thereafter.

Many techniques have been proposed to make debugging easier. Program slicing techniques [221,

213, 56, 78, 233] can identify all the parts of the program that affect the value computed at a certain

point. For debugging, given the point where a failure is observed, program slicing techniques can

identify all the program parts (e.g., as statements) that contribute to the failure. Then the developer

can focus on the identified parts for debugging. Existing program slicing techniques are categorized

as static or dynamic. Static slicing techniques [221, 169, 138, 82] look at the program in the form of

the control-flow graph (CFG) or the program dependence graph (PDG) and identify all the nodes

in the graph that have control-flow and/or data-flow dependency relationships and/or reachability

relationships with the target node. Such static techniques often provide to the developer too many

statements and predicates to look at and may not be too helpful. Dynamic slicing techniques [109, 26]

7
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can show only the statements and predicates that affect the target point for a cerain input. There

are also existing techniques that combine using static and dynamic slicing [214], use conditions for

computing slicing [41], etc. The Whyline tool developed by Ko and Myers [105, 106] allows a user to

ask why did and why didn’t questions related to a program’s behavior. For a questioned behavior,

Whyline builds a chain of runtime actions that caused the behavior (the causality chain) using

static [213] and dynamic [251] slicing techniques. The user can further look at the causality chain

for debugging.

Delta debugging [245, 248, 49, 247, 50, 166] is the technique that can be used to isolate the

minimal program input, user interactions, code changes, program states, etc. that caused a failure.

Delta debugging is based on dynamic testing. To work, it needs a testing function. Given some

program input for example, the testing function checks whether the input can cause the failure. Delta

debugging uses its search algorithm (that is based on binary search) to keep reducing the program

input and testing the reduced input. After multiple trials of testing, it can identify the minimal part

of the input that caused the failure. According to [246], delta debugging was successfully applied to

simplify an input that caused a Mozilla-cannot-print failure. The length of the original input HTML

code is 896 lines. Delta debugging successfully identified the <SELECT> tag from one line that caused

the failure.

A real software project often contains a test suite as a set of test cases. The program passes some

of the test cases and fails the others. The failed test cases indicate that the program contains a bug.

Fault localization [226] looks at automatically identifying the buggy part of the program that leads

to the failure exposed by the failed test cases. A branch of fault localization techniques leverage

program slicing to locate faults (in the survey [226], Wong et al. discuss many of such techniques).

Another branch of fault localization techniques called the Spectrum-Based Fault Localization (or

SBFL) techniques [202] look at leveraging the spectrum (the coverage of program elements such as

statements) obtained from running each of the test cases to locate faults. An early SBFL technique

proposed by Renieris and Reiss [186] compares the program spectra obtained from a failing run

and a passing run that is the most similar to the failing run (according to a distance measure)

and identifies program elements that are suspicious of being faulty based on the difference between

the two spectra. Going beyond, different SBFL techniques [90, 22, 21, 52, 157, 224] look at using

different formula to compute the suspiciousness of program elements based on the spectra obtained

from running the test cases. Though different formula were used, their basic ideas are similar: giving

more suspiciousness to program elements (e.g., statements) that are covered in more failing runs and

less passing runs. The effectiveness of using different formula for fault localization were compared

in [22, 21, 157, 24, 111, 224, 93, 236, 235, 110]. Though some formula (e.g., Ochiai [22]) are found

to be better than others for locating seeded faults, the study [242] shows that no formula can be

consistently better than another for all cases, and a “best” formula does not exist. Another study

by Pearson et al. [176] also found that formula is one of the least important factors determining

the effectiveness of SBFL techniques. More advanced SBFL techniques look at leveraging additional

information such as invariants [181, 191], method call sequences [52, 127], time [240], test case
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selection [76] and differentiation [249], execution frequency [20, 117], metamophic relations [228],

control-flows [252, 253], etc. There are also other fault localization techniques that are statistical-

based [123, 48, 126], machine learning-based [227, 225, 34], data mining-based [158, 43, 44, 250],

mutation-based [156, 173], model-based [147, 148], and others [194, 106, 91, 92, 72, 256, 189, 121].

In the survey [226], Wong et al. comprehensively discussed existing fault localization techniques.

Fault localization can identify suspicious program elements (e.g., statements) that are likely to

be buggy. By examining the highly suspicious program elements instead of the whole program, a

developer can save time and effort on examining bug-irrelevant parts of the program and thus save

time on debugging. This is however not practically true. Parnin and Orso conducted a user study

[174] comparing developers doing debugging tasks with and without a debugging tool that generates

ranked suspicious statements using an SBFL technique Tarantula [90] and found that these located

suspicious statements can only help experts on easy debugging tasks and do not help developers

on hard tasks and that changing the ranks of those statements can cause no significant effects for

debugging. Even with the fault accurately located, a developer still needs to understand how the

fault caused the failure given certain inputs and how to modify the original program to remove the

fault. Within the past decade, many automated program repair techniques [155] are developed.

Fault localization is commonly used by these techniques for identifying some small part(s) of the

original program for repair.

2.2 Automated Program Repair

Automated program repair (APR) [155] looks at automatically repairing a faulty program with

patches generated. A variety of different approaches to automated program repair have been taken.

Arcuri et al. [27, 28] proposed the idea of using Genetic Programming to automatically repair

bugs. As one early system, GenProg [220, 116, 74, 114] was developed based on such an idea. It

uses mutation and crossover operators to create program mutants at the statement level and uses a

genetic algorithm to search for any mutant program that passes the test suite. It is built upon the

assumption that a program itself is likely to contain the correct statements used for repairing a bug.

Debroy and Wang [57] investigated using an existing fault localization technique Tarantula [90] to

locate a fault in a statement and uses a limited set of mutation operations which look at changing

the operator of an expression (e.g., +) and negating an if/while condition to repair a bug. AE [219]

is a variation of GenProg. It uses an adaptive search algorithm and leverages program equivalence

analysis to reduce the search space. RSRepair [182] extends GenProg’s mutation operators but

uses a random search algorithm to repair the program. It also employs test case prioritization

techniques [241] to speed up the process of patch validation. After analyzing the generated patches

by GenProg, AE, and RSRepair, Qi et al. [183] found that the majority of the patches generated by

these techniques are equivalent to single modifications that delete functionality and are not correct.

They developed Kali that only does simple functionality deletions and showed that Kali is no worse

than the three tools in terms of producing correct patches. One of the reasons why these techniques
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can produce incorrect patches is that the test suites that they used for bug repair are weak. Using

stronger test suites, however, Qi et al. found that one of the techniques GenProg can produce no

more correct patches.

PAR [101] is a pattern-based approach for automated program repair. Instead of applying

genetic operations on a suspicious statement as GenProg does, PAR first analyzes the context of

the statement and then applies one of the 10 predefined fix templates to generate program variants.

In [154], Monperrus points out that the fix templates used by PAR do not address any defect class,

and most bugs seem to be fixed by only two of the templates.

To repair a bug, SPR [132] works in stages. It first applies its transformation schemas to produce

fixing templates for a suspicious program statement. SPR next performs value search or condition

synthesis to yield patches. Prophet [134] is an extension of SPR. It uses a trained probabilistic

model to rank the generated patches to possibly avoid reporting an overfitting patch (an overfitting,

patched program can pass the test suite but does not actually repair the bug). A further study [133]

of Prophet and SPR on 69 defects from the GenProg benchmarks by Long and Rinard shows that

(1) correct patches are sparse in the tools’ search spaces and the number of overfitting patches is

often hundreds of times as many as the non-overfitting, correct patches, therefore it is often difficult

to find the correct patches from the tools’ search spaces, and (2) increasing the search space would

not necessarily enhance the repair performance.

In [45], Chandra et al. proposed the idea of finding angelic values to identify suspicious expres-

sions that need to be fixed in a given scope of a faulty program. An angelic value for an expression is

a value the expression needs to take to make the program pass the failed test case. For a passed test

case, if the expression takes the angelic value (rather than the value it actually takes), the program

can still pass the test case. Chandra et al. looked at using symbolic execution and constraint-solving

for finding an angelic value for an expression. If the angelic value can be found, the expression is re-

ported as suspicious. SemFix [160], as a semantics-based approach, uses the idea to do bug repair. It

first employs a fault localization technique to obtain a list of suspicious statements. SemFix inspects

each statement in the list. Each time, it works on one statement to produce patches. For a suspi-

cious statement, SemFix assumes the defective part of the statement is an expression, so it replaces

the expression with a new symbolic variable and performs symbolic execution to yield constraints

encoding the expected semantics. SemFix employs component-based synthesis technique to produce

a new expression for the introduced symbolic variable so as to make the constraints satisfied. The

goal of DirectFix [152] is to produce simple patches that change the program in a minimal way. To

do so, DirectFix uses the hard and the soft constraints. The hard constraint encodes the expected

semantics of the program and must be satisfied. The soft constraint, however, encodes the structure

of the expressions to be modified and should be maximally satisfied. After generating the con-

straints, DirectFix applies a variant of the component-based synthesis technique [85] where a partial

MaxSMT solver is used to produce patches. Angelix [153] is a further improvement over SemFix and

DirectFix. Compared to the two previous techniques, it is more scalable and can make multi-line

changes. To repair a bug, Angelix replaces the most suspicious expressions with newly introduced
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variables and performs a variant of symbolic execution to find angelic values for those variables (i.e.,

the values for these variables that a correctly patched program would take) along different paths, or

the angelic paths. For each test case, Angelix obtains a set of angelic paths. Angelix encodes all the

angelic paths obtained from each test case into a constraint and employs component-based synthesis

to produce patches while maximally maintaining the structure of the original program. S3 [112]

is another synthesis-based repair technique. Given a faulty location (which it identifies using fault

localization [23]), S3 identifies the input-output examples for this location as the specification. The

input examples are the running values of the variables and methods that are syntactically available

at the location (S3 runs the faulty program against the test suite to obtain those values). To obtain

the output examples, S3 uses dynamic symbolic execution. One difference between S3 and Angelix

lies in the forms of constraints generated: Angelix specifies the actual output should be equal to

the expected output for a path condition as the constraint while S3 specifies that no run-time er-

rors (such as assertion errors, array index-out-of-bound errors, etc.) should occur by following a

path (i.e., satisfying a path condition). S3 does not use Angelix’s constraint form. As explained

in the paper [112]: “it usually requires users to instrument the output variables manually”. After

identifying the input-output examples as the partial specification for the faulty location, S3 uses an

enumeration-based technique to do synthesis for patch generation. It uses a relatively sophisticated

ranking model to rank patches to avoid patch overfitting [200].

Nopol [234] is another synthesis-based approach. It targets on repairing bugs that are condition-

related: it can either repair a buggy if-condition or insert a precondition, as an if-checker, for a

statement. Similar to Angelix, Nopol first finds the angelic values for the conditions to be repaired.

But different from Angelix, Nopol does not employ symbolic execution to find the values. Rather,

it uses value replacement [84] as a simpler approach. After identifying the angelic values, Nopol

uses a SMT-based synthesis approach to synthesize specific expressions to yield a patch. relifix [205]

targets on regression bugs. It accepts two versions of programs (a regression bug was introduced in

the later version) and a test suite as inputs. relifix uses eight mutation operators to modify the later

version of program and looks for any patch that is plausible (i.e., the patched program can pass the

test suite).

Antoni et al. [53] introduces the syntactic and semantic distances between a program and a

patch for it. The developed repair technique Qlose uses SKETCH [201] to produce patches and

selects a patch that has the minimum syntactic and semantic distances from the original program.

SearchRepair [97] performs semantic code search to find code fragments that are likely, but not

guaranteed, to be semantically correct from the established code database and leverages such code

fragments to produce patches. SearchRepair yields constraints for each code fragment via symbolic

execution encoding the semantics. For code search, SearchRepair uses constraint-solving technique

to find the code fragments that are likely to be useful for repair: they should yield the same output

yielded by the buggy fragment for any positive tests but should not produce any output yielded

by the buggy fragment for any negative tests. SearchRepair was only shown to work for small C

programs. Code Phage [196] does code search to find programs in a code repository that have the
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correct semantics and does code transfer to leverage code in the correct programs to fix three types

of errors: out-of-bounds, integer overflow, and divide-by-zero errors. QACrashFix [70] proposed by

Gao et al. leverages existing fixing instances from Q&A sites to repair crash bugs. To do the repair,

the technique uses the crash message to search the Q&A sites for similar crashing issues. For a

similar issue, it identifies and extracts the bug and fix code fragments. The technique compares the

extracted bug code fragment to the fault location identified from the faulty program and leverages

the extracted fix code fragments to do repair. Our repair technique ssFix [230] performs syntactic

code search to find existing code fragments (from the local faulty program and the external code

repository) that are syntax-related to the bug context and then reuses each retrieved code fragment

to produce patches. sharpFix is an improved version of ssFix. It uses different search methods to

do code search within different searching scopes: the local faulty program and the external code

repository. For patch generation, it performs three steps: candidate translation, code matching, and

modification as ssFix does. Each step however is different and improved. More details about ssFix

and sharpFix can be found in Chapter 3 and Chapter 5.

The history-driven repair technique HDRepair [113] developed by Le et al. uses a genetic algo-

rithm similar to what GenProg uses. The main differences between the two techniques are two-fold:

(1) the history-driven technique uses more mutation operators (12 in total) than GenProg (3 in

total) for creating program mutants and the history-driven technique does not use the crossover

operator and (2) the technique leverages 3,000 bug-fix instances mined from GitHub for computing

the fitness score during the patch search process whereas GenProg computes the fitness score based

on the test results.

The study by Tan et al. [206] applies anti-patterns as forbidden repair modifications to search-

based repair techniques for improving their performances. They developed seven types of anti-

patterns that forbid a repair tool to generate the seven types of non-sensical patches that essentially

delete important statements.

ACS [232] performs condition synthesis to produce two types of patches: (1) inserting either an

if-throw or if-return statement and (2) changing the condition of an existing if-statement (by either

widening or constraining the original if-condition) for bug repair. ACS does test case analysis,

document analysis, dependency analysis, and predicate mining to synthesize an if-condition and

produce a patch. Given a suspicious statement, JAID [47] monitors the program state at the position

of the statement during fault localization to identify suspicious state. It next modifies the program

in a way to avoid the suspicious state for bug repair. ELIXIR [190] uses eight types of modifications

to produce patches and uses a probabilistic model (a logistic regression model) to sort patches for

validation (based on contextual analysis, contextual comparison, and bug-report analysis).

R2Fix [128] leverages bug reports to do repair for three types of bugs: buffer overflows, null

dereferences, and memory leaks. Given the bug report, R2Fix first classifies the report as describing

one of the three bugs. It next extracts the target file to be modified from the bug report and applies

its fix patterns created for the bug type to do repair. Some of the fix patterns require parameters,

R2Fix leverages the bug report to extract parameters that are likely to be useful (via name scanning).



13

Refazer [187] is a technique that accepts a set of bug-fixing instances and works on synthesizing

fixing transformations that conform to these instances and can be further used for fixing similar

bugs. Refazer has been experimented with fixing bugs for introductory programming assignments.

Genesis [131] can learn from transformations from existing patches and generate specific patches

based on the transformations to repair three types of bugs: null-pointer, out-of-bounds, and class-

cast bugs.

AutoGrader [197] uses program synthesis to automatically provide feedbacks for student’s incor-

rect code. The focus of the technique is generating feedback rather than patches. For that purpose,

the approach requires the solution to the incorrect code and the correction rules. MintHint [95] ap-

plies statistical analysis in selecting expressions that are likely to be correct for a faulty statement,

and then synthesizes repair hints for it.

Many other repair approaches exist that are invariant-based [177], that are deep-learning-based

[77], that leverage test-input generation [161], that work on specific types of bugs [42, 164, 192,

199, 195, 165, 204, 88, 222, 211, 54, 25, 139, 68, 216, 243, 129, 163, 69, 100], and that require

specifications other than test suites [58, 73, 79, 218, 62]. The program repair website [13] keeps

track of publications that are relate to (automated) program repair.

2.3 The Performance of Current APR Techniques

GenProg [116] as an early APR technique was evaluated on a set of 105 real bugs selected from 8 C

projects: fbc, gmp, gzip, libtiff, lighttpd, php, python, and wireshark. As reported in [116], GenProg

repaired 55 bugs. It took GenProg about 1.6 hours to repair each of these 55 bugs. Since GenProg’s

repair uses randomness, it was actually run in 10 trials for repairing a bug. A bug was considered to

be repaired if at least one trial was successful. RSRepair [182] was evaluated on 24 bugs selected from

the GenProg’s dataset (which contains 105 bugs). RSRepair was run in 100 trials for repairing each

bug, and it repaired all the 24 bugs. For the same 24 bugs, GenProg was also run in 100 trials and

repaired all the bugs. For 23 of the 24 bugs, however, RSRepair was shown to outperform GenProg

in using fewer patch trials and test case executions for bug repair. AE [219] was also evaluated on the

GenProg’s dataset. Since AE is deterministic, it was run in one trial. Results in [219] showed that it

repaired 53 bugs. Running in one trial, GenProg only repaired 37 bugs. Qi et al. [183] examined the

patches generated by GenProg, RSRepair, and AE and found that the majority of these patches are

incorrect (they often introduce security vulnerabilities or delete program’s expected functionalities).

For the 105 bugs in the GenProg’s dataset, GenProg and AE actually produced correct patches

for only 2 and 3 bugs respectively. For the 24 selected bugs, RSRepair produced correct patches

for only 2 bugs. Kali is a repair technique developed by Qi et al. that deletes functionalities of a

program. The experiments in [183] showed that Kali produced as many correct patches as the three

techniques did. Long et al. developed SPR [132] and Prophet [134] and evaluated the two techniques

on the GenProg’s dataset. Out of the 105 bugs in the GenProg’s dataset, Long et al. found that

the developer patches for 36 bugs were not actually produced for bug repair but for functionality
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changes. For the other 69 bugs, SPR and Prophet produced plausible patches for 38 and 39 bugs and

correct patches (as the first found plausible patches) for 11 and 15 bugs respectively. For SPR, the

average running time of producing a correct patch is 89 minutes. For Prophet, the average running

time of producing a correct patch is 138.5 minutes. Long et al. found that patch validation (for

applying a patch on the faulty program to get a patched program, compilation, and running test

cases) is the most expensive part which takes more than 95% of the technique’s running time. SPR

and Prophet generated many more correct patches than GenProg, RSRepair, and AE did. Overall

SPR and Prophet generated plausible patches for less than 60% of these 69 bugs with more than

60% of the plausible patches being overfitting.

SemFix [160] is an early APR technique that performs program synthesis to produce patches.

SemFix was evaluated on 90 bugs from five C projects in the SIR dataset [59]: Tcas, Schedule,

Schedule2, Replace, and Grep. Each SIR program is associated with a test suite containing thousands

of test cases. The number of test cases (for each project) used for the repair experiments is limited to

50. Given the small number of test cases for each project, SemFix repaired 48 bugs, and outperformed

GenProg which repaired 16 bugs. SemFix was also shown to outperform GenProg on repairing a

small number of buggy programs (nine in total) for the GNU core utilities. DirectFix [152] was also

evaluated on the SemFix’s bug dataset. For some of the bugs, however, DirectFix was given the

buggy methods to work on. DirectFix was shown to repair 59% bugs with 56% of those repairs being

correct. DirectFix was shown to significantly outperform SemFix in producing more correct patches.

Angelix [152] was claimed to be better than SemFix and DirectFix in achieving better scalability.

Angelix was evaluated on 82 bugs from five C projects in the GenProg’s dataset: wireshark, php,

gzip, gmp, and libtiff. Angelix generated plausible patches for 28 bugs and correct patches for 10

bugs. Angelix’s performance was shown be comparable to SPR’s performance in repairing the 82

bugs: SPR produced plausible patches for 31 bugs and correct patches for 11 bugs. The average

running time for Angelix to produce a patch is 32 minutes.

Many APR techniques for Java were evaluated on the Defects4J bug dataset (version 0.1.0)

[94] which contains in total 357 bugs from five real Java projects: JFreeChart, Closure Compiler,

Commons Math, Joda-Time, and Commons Lang. Martinez and Monperrus developed ASTOR

[145, 16], a program repair library, which makes available the Java versions for GenProg [116], Kali

[183], and MutRepair (the repair technique developed by Debroy and Wang [57]) as JGenProg2,

JKali, and JMutRepair. In [143], Martinez et al. evaluated JGenProg (the previous version of

JGenProg2), JKali, Nopol (version 2015) on the selected 224 Defects4J bugs from four of the five

projects (except Closure Compiler). For experiments, they ran each tool to repair each bug with a

timeout set as 3 hours. Their results showed that jGenProg, jKali, and Nopol produced plausible

patches for 27, 22, and 35 bugs respectively and that jGenProg, jKali, and Nopol produced correct

patches for 5, 1, and 5 bugs respectively. The median running times for jGenProg, jKali, and Nopol to

repair a bug (with a plausible patch generated) are 61, 18, and 22 minutes respectively. The average

running times are 55, 23, and 33 minutes respectively. In 2017, Durieux et al. evaluated Nopol-

SMT (the version using SMT solver) on all the 395 bugs from the Defects4J dataset (version 1.1.0).
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The results in [60] showed that Nopol-SMT produced plausible patches for 103 bugs. The number

of correct patches was not reported (though all the plausible patches were released). HDRepair

[113] was evaluated on 90 simple bugs selected from the Defects4J dataset (version 0.1.0) containing

357 real bugs. HDRepair repaired 23 bugs with correct patches generated (HDRepair was run to

generate at most 10 plausible patches for repairing a bug). However, for only 13 bugs, HDRepair

produced correct patches as the first plausible patches. To repair these bugs, HDRepair was actually

given the faulty method to work on (rather than the whole program). It took HDRepair on average

20 minutes to produce a plausible patch. Le et al. also ran experiments to compare HDRepair

with PAR (which they re-implemented) and jGenProg and found that PAR and jGenProg produced

correct patches for 4 and 1 bugs respectively. ACS [232] was evaluated on the 224 Defects4J bugs

from four of the five projects (except Closure Compiler). For bug repair, ACS was given a 30-minute

timeout. ACS repaired in total 23 bugs with plausible patches generated. Among the 23 patches,

18 are correct. ACS was shown to be efficient (the median time of generating a patch is about

5.5 minutes) and relatively effective in producing non-overfitting patches (the non-overfitting rate is

18/23=78.3%). ACS was shown to significantly outperform jGenProg, Nopol, PAR, and HDRepair

in producing more correct patches and being more effective at producing non-overfitting patches.

S3 was evaluated on two bug datasets: Dataset-1 consists of 52 bugs from the IntroClass dataset

[115] (all the 52 bugs are related to one small program called smallest). Dataset-2 consists of 100

real bugs from 62 Java projects (the developer patches for these 100 bugs are simple: each patch

makes a fixing change that is fewer than 5 lines of code). S3 was shown to produce correct patches

for 22 bugs from Dataset-1 and 20 bugs from Dataset-2. S3 was shown to produce no overfitting

patches. Angelix however was shown to produce correct patches for only 4 bugs from Dataset-1

and 6 bugs from Dataset-2. More than 50% of Angelix’s generated plausible patches were shown to

be overfitting. The running time took by S3 and Angelix for producing a patch was not reported.

JAID [47] was evaluated on the selected 138 bugs from the 357 Defects4J bugs. JAID repaired

31 bugs with plausible patches generated. Among the 31 bugs, it repaired 25 bugs with correct

patches. However, not all the correct patches are the first-found plausible patches. For 9 bugs,

JAID actually produced the correct patches as the first-found plausible ones. JAID was shown to be

slow: the average running time it took to repair a bug is about 120 minutes. The median running

time is about 3 hours. ELIXIR [190] was evaluated on the 224 Defects4J bugs from four of the five

projects (except Closure Compiler). ELIXIR repaired 41 bugs with plausible patches generated.

Among the 41 bugs, it repaired 26 bugs with correct patches (as the first-found plausible patches)

generated. The median/average running time ELIXIR took to produce a plausible patch for bug

repair however was not reported, though the maximum running time for repair a bug was reported

to be 90 minutes. For bug repair, ELIXIR used bug reports to rank the generated patches. Without

using bug reports, ELIXIR was shown to be able to produce correct patches for 20 bugs. In [190],

the authors showed that the number of overlapped correct patches generated by ELIXIR and ACS

is only 4 (ACS produced in total 18 correct patches). ELIXIR was also evaluated on 127 bugs

sampled from the Bugs.jar dataset. It produced plausible patches for 39 bugs. Among these bugs,
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it produced correct patches for 22 bugs.

Our technique ssFix was evaluated on all the 357 bugs in the Defects4J dataset (version 0.1.0).

The code repository used is the Merobase repository [83] containing 58,219 projects. Our results

show that ssFix repaired 60 bugs with plausible patches generated. Among the 60 bugs, ssFix

produced valid patches (as the first-found plausible patches) for 20 bugs. A patch was considered

valid if it is plausible and does not break any expected behaviors of the original faulty program.

Among the 20 bugs, ssFix produced correct patches (as the first-found plausible patches) for 15

bugs. The median time ssFix took to produce a plausible patch is only 10.7 minutes. For technique

comparison, we ran jGenProg, jKali, Nopol (version 2015), HDRepair, and ACS on the same 357

bugs. We found ssFix outperformed these techniques in producing many more valid and correct

patches. In terms of the median running time, ssFix was comparable to jKali and Nopol, and was

faster than jGenProg, HDRepair, and ACS. More details can be found in Chapter 3. In Chapter 5,

we show an experiment for which ran ssFix on the same 357 bugs using the DARPA MUSE repository

[55] containing 66,341 projects. Compared to the experiment we did in Chapter 3, ssFix looked at

using more candidates (100 more, or two times as many) for repairing a fault-located statement.

Our results in Chapter 5 show that ssFix repaired 69 bugs with plausible patches generated. For 22

of the 69 bugs, it produced correct patches (as the first-found plausible patches). The median time

of producing a plausible patch is about 10 minutes. We also evaluated sharpFix on the same 357

bugs. sharpFix repaired 89 bugs with plausible patches. For 36 of the 89 bugs, it produced correct

patches (as the first-found plausible patches). The median time of producing a plausible patch is

11.3 minutes.

2.4 Patch Overfitting

Most APR techniques use test suites as the correctness criterion to evaluate their generated patches.

A generated, patched program can pass the test suite but may not actually repair the bug: the patch

often breaks some expected functional behaviors that the original, unpatched program has. Such a

patched program, or the patch, is called overfitting because it overfits the test suite used for bug

repair but fails to generalize to be a correct patch (which fully repairs the bug and does not break

any expected behaviors of the original, unpatched program).

Existing studies [200, 183] investigated the quality of the patches generated by early APR tech-

niques [116, 219, 182] and found that they are prone to producing overfitting patches. The study by

Smith et al. [200] looked at two APR techniques: GenProg [116] and RSRepair [182] and investi-

gated whether they are likely to produce overfitting patches for repairing small programs [115]. To

measure the overfittingness of an APR technique, they used a held-out test suite. They found that

the two techniques often generate patched programs that overfit the original test suite and do not

pass the held-out test suite. For programs to be repaired that are closer to be correct, the two repair

techniques are more likely to produce patches that break their expected behaviors. The study by

Qi et al. [183] investigated the generated patches for real bugs by three APR techniques: GenProg
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[116], AE [219], and RSRepair [182]. They found that the majority of their generated patches are

incorrect. In fact, most of the generated patches are equivalent to functionality deletion and are

harmful (because they delete a program’s expected behaviors). Qi et al. found that the tests used by

such tools are weak: they do not directly check the correctness of outputs of the patched programs

but instead check for the “weaker properties” (for example, they check whether the patched pro-

gram produces 0 as the exit code). Using stronger test suites, Qi et al. found that these techniques

produced no patches at all.

To address the overfitting problem, Tan et al. [206] look at using seven types of anti-patterns

as the forbidden repair modifications to avoid generating an overfitting patch (which for example

deletes an exit call). Existing techniques [244, 229, 238, 130] look at generating new tests or test cases

to possibly identify and avoid overfitting patches. The work by Yu et al. [244], as an initial effort,

investigated the possibility of combining a repair technique with a test case generator to improve the

ability of the repair technique in producing less overfitting and more correct patches. They found

however such a combination does not effectively help in addressing the overfitting problem. One

possible limitation is that they look at generating test cases for the buggy program. A test case that

is generated as such does not always specify the expected behavior a program should have and can

thus be problematic. Our technique DiffTGen [229] looks at generating new test inputs that expose

the differential behaviors of the faulty, unpatched program and the patched program. Assuming both

programs are deterministic, such differential behaviors are actually caused by the patch. DiffTGen

asks an oracle (a human for example) to judge the correctness of the two behaviors and determines

the patch to be overfitting if the patched program’s behavior is not correct. If the oracle could provide

an expected behavior (as an output) for the patched program, DiffTGen may produce a test case.

Such a test case exposes the overfitting behavior of the patched program. Using such a test case, a

repair technique can avoid generating a similar overfitting patch again. The technique Opad [238]

developed by Yang et al. has a similar idea and can be used to identify overfitting patched programs

that either crash or have memory-safety issues. Compared to DiffTGen, Opad uses automatic oracles

(for memory-safety oracles, Opad uses Valgrind [19]) but is limited to identifying only two types of

overfitting patches. The technique proposed in [130, 231] can automatically estimate the correctness

of a patch. To do that, the technique first generates a set of new test cases without actually using

an oracle. To do so, it employs an existing test generator Randoop [170] to generate a set of test

inputs. Using each generated test input, it runs the faulty program to obtain an execution trace. It

compares the new execution trace to the execution traces it obtained by running the faulty program

against the original test suite to estimate the passing/failing status for the new trace. By running

the faulty program and the patched program against each generated test case and comparing their

executions, the technique estimates the correctness of the patch. The estimation is based on what

follows: For a passing-status test case, if the execution of the patched program is much different

from the execution of the faulty program, the patch is estimated as incorrect. For a failing-status

test case, if the execution of the patched program is not much different from the execution of the

faulty program, the patch is estimated as incorrect. Otherwise, the patch is estimated as correct.
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Experiments from [130, 231] show that the technique successfully identified 56.3% incorrect patches.

In theory, the technique can be inaccurate at identifying a correct patch as incorrect.

As another way of addressing the overfitting problem, many current APR techniques use a

patch ranking model to possibly rank an non-overfitting patch before any overfitting patches to

be reported. SPR [132] uses heuristics (based on eight rules) to prioritize the generated patches.

Prophet [134], as an improvement of SPR, uses a probabilistic model trained from a large set of

existing human-patches to rank its generated patches. To train such a model, Prophet extracts

as features (1) the modification type, (2) the pair of statement types (for the unpatched and the

patched statements), and (3) the pair of value characteristics which capture how variables and

constants are used in the original program and in the patched program. In the patch synthesizing

process, SemFix [160], DirectFix [152], and Angelix [153] look at synthesizing simple patches for

the original faulty program that are possibly non-overfitting. Qlose [53] tries to synthesize a patch

to produce a patched program that can pass the test suite and are syntactically and semantically

similar to the original faulty program. In [53], the authors defined two types of distances: the

syntactic distance and the semantic distance. For syntactic distance, they look at the distances

(either boolean-based or size-based) for all the changed expressions between the faulty program

and the patched program. For semantic distance, they compare the execution traces between the

faulty program and the patched program for each test input. An execution trace is a sequence of

program configurations. A program configuration is made of a program location and a mapping from

variables associated with that location to the values they hold. For calculating the semantic distance,

Qlose looks at each pair of configurations between the two execution traces. ACS [232] leverages

dependency analysis, document analysis, and predicate mining to sort variables and predicates for

synthesizing conditions to produce patches. The ranking model used by our technique ssFix (and

also by sharpFix) looks at the types and sizes of the generated patches for patch sorting. A patch

generated by deletion has a lower rank than a patch generated by non-deletion. A complex patch

has a lower rank than a simple patch. JAID [47] ranks patches by the suspiciousness of the monitor

states, the fixing actions, and the patch simplicity. S3 [112] uses a relatively sophisticated patch

ranking method that is based on six ranking functions measuring the syntactic similarity between

the unpatched and the patched code, the locality of used variables and constants, the number of

formula-satisfying instances, output coverage, and anti-patterns. Similar to Prophet, ELIXIR [190]

uses a trained probabilistic model to rank patches based on the syntactic distance between the bug

and the repair code, the contextual similarity, the frequency of the used objects and variables in

the context, and the bug report. MintHint [95] performs statistical correlation analysis to rank the

expressions to be used for producing repair hints.

The proness of producing non-overfitting patches, i.e., non-overfittingness, is one measure for

evaluating the effectiveness of an APR technique. But it is not the only measure. Consider a

dummy APR technique X that generates no patches at all. The non-overfittingness for X is 1.

But such a technique is useless. Another measure for evaluating an APR technique’s effectiveness

is repairability : the ability of finding a plausible patch for a bug (a plausible, patched program
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can pass the test suite). A good APR technique should have both high repairability and high

non-overfittingness.

Currently, a common way to evaluate the non-overfittingness of an APR technique is by com-

paring the patches it generated to the developer patches available from the bug dataset. To be

considered as correct, a patch needs to be semantically equivalent to the developer patch. Defining

a correct patch this way can lead to an underestimate of a repair technique’s ability in producing

correct, non-overfitting patches. For example, ssFix generated a “valid” patch by changing the de-

clared type of a variable from int to float to avoid the precision loss. The developer patch changes

the type from int to double. Because the patch generated by ssFix is not semantically equivalent to

the developer patch, it is not considered as correct.

2.5 Code Search

Today’s code repositories contain a huge set of software projects. In 2017, GitHub claims to have

67 million projects (as the GitHub repositories) [7]. It is quite possible for one to search the code

repositories for relevant code to make his/her programming task easier. For example, instead of

writing code from scratch for software development, one may consider finding and reusing existing

code from a relevant project within the large code repositories. Existing code search engines like

Open Hub [12], Krugle [10], and SearchCode [14] allow a user to use keywords to specify the code

he/she wants, and they work on finding relevant code fragments containing those keywords. Current

code repository hosting platforms: GitHub [6], SourceForge [15], and BitBucket [3] also enable

keyword search for finding software projects and code files that a user wants. Sourcerer [124, 29] is

a software infrastructure that can be used for code search and mining. For code search, it is possible

to use Sourcerer to find code that contains certain syntactic structure (e.g., a switch statement and

three loops), that contains certain keywords, that is of certain size (in LOC), etc. using different

ranking schemes (e.g., a matched method name is assigned larger weight than a matched package

name). S6 [185] allows a user to specify the semantics of the program he/she wants using keywords,

signatures, test cases, contracts, and security constraints. S6 starts with keyword search to obtain

an initial set of code results. It applies transformations to these code results and then finds those

that can satisfy the static specifications such as the class/method signature. For each such code

result, it generates dependent code for checking whether the code result can satisfy the dynamic

specification, i.e., the test cases. S6 finally reports to the user any code results that can satisfy

the dynamic specification. CodeGenie [120] is a test-driven code search technique. Given the user-

provided test cases and a missing program feature exposed by the test cases as a missing method,

CodeGenie extracts information about missing method (e.g., the interface of the missing method)

from the test cases, produces the query, and performs code search to find code for the missing method.

CodeGenie can further integrate the retrieved code into the project, run the test cases, and show

the results to the user. Portfolio [150] accepts the user-provided keywords as input and performs

code search to find functions that not only match these keywords and but also are used in a way
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that is possibly relevant to these keywords using the PageRank and the spreading activation network

(SAN) algorithms. Exemplar [149] accepts the user-provided keywords as input and looks at the

application documentation, API documentation, and dataflow of the API calls used in applications to

locate relevant applications as the search results. Code search techniques that accept user-provided

keywords as the search query often suffer from vocabulary mismatch problem. Recent code search

techniques look at addressing the problem in different ways. Bajracharya et al. [30] investigated

the possibility of using words from semantics-relevant code to improve the search results. In their

research, they look for semantics-relevant code that has similar API usage. CodeHow [137] accepts

user-provided keywords and identifies relevant APIs based on matching the keywords with an API

name and its documentation. CodeHow uses the relevant APIs retrieved to create an expanded

query, and performs code search using the expanded query for finding code results. CoCaBu [198]

leverages the posts from Q&A sites for query expansion and then performs code search with the

expanded query to find better search results. Many other techniques exist [142, 135, 119, 237, 162]

that do query expansion/reformulation to improve code search results.

A branch of code search techniques look at finding code as API usage examples. PARSEWeb

[210] allows a user to provide the source and destination types as the query, and it works on finding

method call sequences that take the source type of object as input and produce a destination type of

object. Prospector [140] leverages code examples mined from real code to help synthesize the API

usage code as a way to produce the expected API type from the query API type. SNIFF [46] can

also recommend API usage code to the user. It only allows the user to use free-form English words to

describe the API he/she wants to use as the query. SNIFF matches the query against existing code

fragments in a code database. SNIFF annotates each of the code fragments in the code database

with the documents of the APIs used in the code fragment for indexing. This way, SNIFF’s code

search leverages the API documentation to effectively identify code fragments containing the API

usage that user expects. Each code fragment retrieved may contain irrelevant code pieces that are

very specific to their programs, SNIFF performs the type-based intersection of these code fragments

to identify their common interesting part to be presented to the user. MAPO is a technique [255]

that mines frequent API usage patterns for recommendation. Still other code search techniques exist

[80, 36, 159, 136] that look at code completion. For example, the technique Strathcona [80] accepts

the developer’s unfinished code at hand and works on recommending relevant code for completion

based on the class inheritance, method calls, and types of the partial code.

Recently, code search has been used for bug repair. The key is to find existing code pieces (from

the faulty program itself, from the earlier versions of the faulty program, or from existing programs

in a large code repository) that are, or are likely to be semantically correct. Then it might be possible

to leverage such code to produce correct patches for bug repair. There are some existing techniques

that look at doing code search for bug repair. QACrashFix [70] targets on repairing crash bugs. It

uses the crash message as the query to search for similar crash issues from a Q&A site (e.g., Stack

Overflow [18]). For each similar issue, it extracts and leverages the buggy and fixed code pieces

associated with the issue to generate patches. Code Phage [196] does code search to find correct
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code to be transferred to the faulty program for eliminating three types of errors: out-of-bounds

access, integer overflow, and divide-by-zero errors. Code Phage’s code search is based on program

execution. For code search, it needs two inputs: one triggers the error and the other does not. Given

the two inputs, Code Phage finds applications from a code database that can successfully process

the two inputs. SearchRepair [97] looks for code fragments within a large code repository that is

likely (but not guaranteed) to be semantically correct. Using the test cases, SearchRepair performs

fault localization to identify a faulty code fragment from the faulty program and generates the

input-output profile for this buggy code fragment as the specification. SearchRepair extracts code

fragments in comparable sizes from the code repository. For each code fragment, it does symbolic

execution to yield constraints for encoding the semantics of the code fragment. For code search,

SearchRepair does constraint-solving (by employing a SMT constraint-solver) to find code fragments

that can satisfy the input-output profile generated for the buggy code fragment as the specification.

SearchRepair further produces patches for the buggy code fragment using the found code fragments

that satisfy the input-output profile. In fact, SearchRepair can only find code fragments that are

likely to be semantically correct: For test cases that the original program passes, the input-output

profile specifies the expected output should be generated. However, for test cases that the original

program fails, the input-output only specifies the bad output should be avoided but does not specify

what should be the expected output. In general, symbolic execution has limited expressive power,

and constraint-solving can be expensive. Due to such reasons, SearchRepair was only shown to

be able to repair small, IntroClass-level programs. Compared to Code Phage and SearchRepair,

ssFix’s syntactic code search (Section 3.3.2 in Chapter 3) is more lightweight. It extracts two types

of tokens from the buggy code fragment (identified by faulty localization) and any candidate code

fragment (extracted from the code database) and performs token-matching using a Boolean model

and a vector space model to find candidate code fragments that are syntactically similar to the

buggy code fragment. ssFix looks at using such candidate code fragments to produce patches for the

buggy code fragment for bug repair. sharpFix’s code search (Section 5.4.2 in Chapter 5) improves

ssFix’s code search by using different code search methods for local code search (within the local

faulty program) and global code search (within the external code repository) and then merges the

results.

Prior to our work, the problem of how to do code search for finding useful code for bug repair had

not been well addressed. Code clone detection/search techniques are a very related branch of code

search techniques for solving the problem. Such techniques look at finding similar code fragments

as clones within or across software projects. Code clones are commonly categorized into four types

as the exact clones (Type-1): identical except for any differences in whitespace and comments; the

renamed/parameterized clones (Type-2): identical except for any naming differences; the near-miss

clones (Type-3): similar with modifications of statement changed, added, or deleted in addition to

any naming differences; and the semantic clones (Type-4): functionally similar but syntactically

non-similar. In fact, code clone detection/search techniques [188, 184] can be leveraged for finding

existing code fragments that are clones to the buggy code fragment. A repair technique can then
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leverage the syntactic differences between the buggy code fragment and its cloned code fragment to

produce patches. Current clone detection techniques can be categorized as token-based [96, 122],

tree-based [239, 32, 86], graph-based [107, 125], metrics-based [86], and others [102, 87]. Many of

such techniques are not well suitable for finding code from a large code database for bug repair

because (1) they are used for detection but not search, so they are not scalable for repository-level

code search and (2) they often set up a high “threshold” for identifying or searching for clones that

are too similar to the buggy code fragment. For a buggy code fragment that is of certain size and

is unique, it is not likely to find a code fragment from a code database that is too similar to it. To

address (1), there are already existing techniques [99, 98, 118] that are used for clone search. To

address (2), there are existing techniques [66, 81, 107, 125, 102] that can identify code fragments

that are semantically or functionally similar. Dynamic techniques like [87] however are still too

expensive. Recently, there emerge techniques like [103] that can search for functionally similar code

in a static way. It might be worth trying these techniques to retrieve code fragments to be used

for bug repair. Often times, the difference between a retrieved code fragment and a buggy code

fragment does not imply any bug-fix. To effectively identify a bug-fixing difference, it is possible

to leverage machine learning techniques to train a model based on any buggy code fragment and

a code fragment is similar to it but contains the fix code and then use the model to identify code

fragment that is useful for repair.

2.6 Generating New Tests for Differential Testing

Our patch testing technique DiffTGen (Chapter 4) identifies a patch to be overfitting through gen-

erating new test cases. Given the original faulty program and the patched program, it works on

generating new test inputs that expose any semantic differences between the faulty program and the

patched program. Assuming the two programs are deterministic, it is the patch that actually causes

the semantic differences exposed by the input. Based on the semantic differences, DiffTGen asks

an oracle to judge the correctness of the differential semantics and may further generate a new test

case showing the patch is overfitting if the exposed semantics of the patched program is incorrect.

DiffTGen is related to existing techniques that generate new tests to expose differential semantics

between the two programs. Evans and Saviora [63] proposed to generate new test cases for the

original program and for the patched program and do cross-running for differential testing, i.e.,

to run the original program against the test cases generated for the patched program and to run

the patched program against the test cases generated for the original program. The way DiffTGen

works is to generate a target program first with certain statements marked as the coverage goals.

Next it employs an existing test generator to generate test inputs that satisfy at least one of the

coverage goals. Such test inputs are interesting and are likely to expose differential semantics between

the original and the patched programs. Next DiffTGen runs the two programs with each of such

test inputs generated to see whether any actual differential behaviors of the two programs can be

detected. DiffTGen is related to TESTGEN [108], DiffGen [207] and BERT [167, 89] in producing
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a target program first and then employing an external test generator to generate test inputs for the

target program. Different from DiffTGen, TESTGEN and DiffGen encode the value comparisons

in the target program as conditions and use the corresponding branches as the coverage goals. For

example, they can generate code in the target program as if (x!=y) {s} and use the statement s

as the coverage goal. If the test generator can generate a test input that exercises s upon execution,

then the test input is guaranteed to expose the semantic difference as the different values taken by

x and y. DiffTGen and BERT employ a test generator to generate test inputs that exercise any

changed code between the original program and the patched program. Next they dynamically run

the two programs on the generate input to identify semantic differences. Such a target program

produced by BERT is the patched program. BERT employs a test generator to generate test

inputs that cover any changes made in the patched program as the coverage goals. The target

program produced by DiffTGen is not simply the patched program with the changes marked as

the coverage goals. When a change is made on an if-condition, DiffTGen can synthesize a new

if-condition with the guarded statement marked as the coverage goal. A generated test input that

can cover the statement guarded by the synthesized if-condition would expose differential branch-

taking behaviors. Compared to DiffTGen, TESTGEN, DiffGen, and BERT are used for identifying

regressions. DiffTGen however could identify not only regressions but also a patch’s other overfitting

behaviors. The three techniques only report to the user any differential behaviors detected. DiffTGen

does so but in addition generates actual test cases. The three techniques were tested on modified

programs where the modifications were randomly seeded or human-made. DiffTGen was tested in

the context of automated program repair.

There are other regression, differential or patch testing techniques that are based on symbolic

execution. DiSE [179] combines static program analysis and directed symbolic execution to find

inputs exercising a modification. The differential symbolic execution technique [178] uses method

summaries to characterize program semantic behaviors. With the support of a theorem prover, it

compares two method summaries to identify semantic differences. eXpress [208] combines dynamic

symbolic execution (DSE) and path pruning to generate tests revealing program behavioral differ-

ences. KATCH [141] starts with an existing test input that has the “best” potential to cover a

modification based on a defined reaching distance. Based on this input, KATCH uses either sym-

bolic execution or definition switching to generate new inputs to cover the modified code. The

shadow technique [39, 171] uses concolic execution to find test inputs uncovering the semantic dif-

ferences between two programs. For each if-condition after a change point in the original program,

the technique tries to find test inputs to force the original and the patched programs to have differ-

ent branch-taking behaviors if the concrete executions do not reveal such behaviors. To do so, the

shadow technique generates a constraint for such differing behaviors and then initiates a bounded

symbolic execution to further explore any new semantic differences going forward. DiffTGen’s syn-

thesized if-statement has a similar idea, but is only applied to the changed if-condition, not all the

if-conditions affected by a change. Compared to DiffTGen, the shadow technique that leverages

symbolic execution can potentially capture more differing, branch-taking behaviors. However, it
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is also more expensive. According to [171], it may take a few hours to finish. Compared to the

above testing techniques, DiffTGen is designed and has been evaluated in the context of automated

program repair. It performs differential testing, but goes one step further in producing test cases.

DiffTGen is more lightweight and has been shown to work fast. Again, it can not only identify

regressions but a patch’s other overfitting behaviors.

DiffTGen currently uses EvoSuite [65] to generate test inputs as the test methods. Within each

test method, EvoSuite uses an evolutionary algorithm to build up a sequence of method calls as the

testing statements. It uses mutation and crossover operations to evolve the test methods to make

them satisfy the highest coverage criterion for the unit-under-test. It is however also possible to use

many other existing test generation techniques to achieve test input generation such as Randoop

[170], JPF [215], SPF [175], CUTE/JCUTE [193], Korat [33], PEX [212], KLEE [38], DART [71],

and CREST [37].



Chapter 3

Leveraging Syntax-Related Code

for Automated Program Repair

In this chapter, we present our automated program repair (APR) technique ssFix which leverages

existing code (from a code database) that is syntax-related to the context of a bug to produce patches

for its repair. Given a faulty program and a fault-exposing test suite, ssFix does fault localization to

identify suspicious statements that are likely to be faulty. For each such statement, ssFix identifies

a code chunk (or target chunk) including the statement and its local context. ssFix works on the

target chunk to produce patches. To do so, it first performs syntactic code search to find candidate

code chunks that are syntax-related, i.e., structurally similar and conceptually related, to the target

chunk from a code database (or codebase) consisting of the local faulty program and an external

code repository. ssFix assumes the correct fix contained in the candidate chunks, and it leverages

each candidate chunk it retrieved to produce patches for the target chunk. To do so, ssFix first

translates the candidate chunk by unifying the names used in the candidate chunk with those in the

target chunk, then matches the chunk components (expressions and statements) in the translated

candidate chunk and the target chunk, and then produces patches for the target chunk based on

the matched and unmatched components. ssFix finally validates the patched programs it generated

against the test suite and reports the first patch whose corresponding patched program can pass the

test suite.

We evaluated ssFix on 357 bugs in the Defects4J bug dataset. Our results show that ssFix

successfully repaired 20 bugs with valid patches generated using a code repository containing 58,219

projects and that it outperformed five other APR techniques for Java.

3.1 Introduction

A significant fraction of current APR techniques adopt a search-based approach [74, 219, 101, 182,

132, 134, 205, 113]: they define a set of modification rules to generate a space of patches first and

25
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then search in the space for patches that are correct. The search space is often very huge which

makes searching for a correct patch difficult. Long and Rinard [133] investigated the search spaces

of two state-of-the-art search-based APR techniques, SPR [132] and Prophet [134], and found that

(1) their search spaces, though huge, often fail to contain a correct patch and (2) the plausible-but-

incorrect patches in their search spaces are often hundreds of times as many as the correct patches.

The large amount of such incorrect patches can easily block the finding of a correct one.

To address the problem, the study [133] suggests leveraging repair information beyond the test

suite to create a search space that is likely to contain a correct patch and is targeted so that the

correct patch could be effectively identified. One idea is to leverage existing code fragments to

produce effective patches. We call the code fragments that contain the correct forms of expressions,

statements, etc. and can be used for generating a correct patch the repair code fragments. GenProg

assumes the faulty program itself contains the repair code fragments at the statement level for patch

generation. The study by Barr et al. [31] demonstrated the feasibility of this assumption. If the

repair code fragments may exist in the local program, they may also exist elsewhere in many non-

local programs. The study by Sumi et al. [203] supports this assumption. They found up to 69%

of the repair code fragments (in the form of code lines) can be obtained (possibly with identifier

renaming) from either the local program or the non-local programs. The study is based on the UCI

dataset [168] containing 13,000 Java projects. We believe it is more likely to find the repair code

fragments for bug repair in smaller granularity (e.g., at the expression level) and from a larger code

database (e.g., GitHub, which is huge and is still rapidly growing).

A repair code fragment could possibly exist in the faulty program itself and/or in non-local pro-

grams. The question is how to find and leverage such a code fragment to produce patches. One idea

is to use semantic code search, i.e., finding code fragments that are likely to be semantically correct.

However, semantic code search is often expensive and it may fail to find many repair code frag-

ments that do not represent the correct implementation (they may contain more functional features

than the correct implementation does, they may use different data types or side-effect processing

mechanisms, etc.) but can be leveraged to produce a correct patch. Code Phage (CP) [196] and

SearchRepair [97] are two repair techniques that use semantic code search. CP’s code search relies

on code execution, and it can only find code that can process the given inputs. SearchRepair uses

symbolic execution to encode program semantics as constraints. Symbolic execution, however, has

limited expressive power for program semantics. SearchRepair’s code search is based on constraint

solving which is undecidable in general and is often expensive. Currently SearchRepair was only

shown to work for small C programs.

If semantic code search is still limited, the natural question would be: does syntactic code search

work? The answer is yes. We propose a novel APR technique ssFix which performs syntactic code

search to find and leverage existing code fragments from a codebase (which consists of the local faulty

program and an external code repository) to produce patches for bug repair. We assume a repair

code fragment that can be effectively leveraged for bug repair to be syntax-related (i.e., structurally

similar and conceptually related) to the fault-located part of the faulty program. Intuitively, such a
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repair code fragment is likely to implement a coding task similar to what is implemented in the faulty

code fragment (e.g., both as iterating a list of data items to look for certain values having similar

names) and implements it correctly. Compared to SearchRepair and CP, ssFix is not directly targeted

at finding code fragments that are semantically correct. In fact, code fragments that contain the fix

may not represent the correct implementation: they may contain more or less functional features

than the correct implementation does, they may use different data types or side-effect processing

mechanisms, etc. So instead, ssFix uses a lightweight syntactic code search (based on a Boolean

model and a TF-IDF vector space model) to find syntax-related code fragments where a repair code

fragment is likely to exist. Given such a fault-related code fragment (as a candidate code chunk),

ssFix translates the code chunk by unifying the identifier names in it with those in the faulty code

fragment (the target code chunk), matches the components (statements and expressions) between the

two chunks, and produces patches for the target chunk based on the syntactic differences that exist

between the matched and unmatched components. For a candidate chunk that is syntax-related

to the target chunk, the syntactic differences are small, and the search space is largely reduced.

Through experiments, we demonstrated the feasibility of the assumption on which ssFix is built and

the effectiveness of ssFix for bug repair.

We evaluated ssFix on all the 357 bugs in the Defects4J dataset. Our results show that ssFix

successfully repaired 20 bugs with valid patches generated. The median time for producing a patch

is about 11 minutes. Compared to five other repair techniques for Java: jGenProg [145] (available

at [16]) which is a Java version of GenProg [116, 74], jKali [145] (available at [16]) which is a Java

version of Kali [183], Nopol (version 2015) [234] (available at [17]), HDRepair [113] (available at [9]),

and ACS [232] (available at [1]), our results show that ssFix has a better repair performance. ssFix

is currently available at https://github.com/qixin5/ssFix.

3.2 Overview

In this section, we show an overview of ssFix and explain how it works with an example. ssFix

accepts as input a faulty program, a fault-exposing test suite, and a codebase consisting of the

faulty program and a code repository (we used the Merobase repository [83] which contains 58,219

projects and about 2.5 million Java source files). As output, ssFix either produces a patched program

that passes the test suite or nothing if it cannot find one within a given time budget. Figure 3.1 is an

overview of ssFix’s repair process. ssFix goes through four stages to repair a bug: fault localization,

code search, patch generation, and patch validation.

We use an example to go through the four stages. The faulty method as shown in Figure 3.2 is

from a faulty program (bug id: L21 ) in the Defects4J bug dataset. It accepts as parameters two

calendar objects cal1 and cal2 and checks whether they represent the same time. The fault is at

Line 8 where the 12-hour calendar field Calendar.HOUR is used for comparing two local hours. Given

two calendar objects whose hour fields are different (e.g., one is 4 and the other is 16) but all the other

fields are identical, the faulty program may treat them as identical although they represent different
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Figure 3.1: An Overview of ssFix

1 public static boolean isSameLocalTime(Calendar cal1 , Calendar cal2) {

2 if (cal1 == null || cal2 == null){

3 throw new IllegalArgumentException(‘‘The date must not be null’’);

4 }

5 return(cal1.get(Calendar.MILLISECOND )== cal2.get(Calendar.MILLISECOND) &&

6 cal1.get(Calendar.SECOND )== cal2.get(Calendar.SECOND) &&

7 cal1.get(Calendar.MINUTE )== cal2.get(Calendar.MINUTE) &&

8 cal1.get(Calendar.HOUR )== cal2.get(Calendar.HOUR) &&

9 cal1.get(Calendar.DAY_OF_YEAR )== cal2.get(Calendar.DAY_OF_YEAR) &&

10 cal1.get(Calendar.YEAR )== cal2.get(Calendar.YEAR) &&

11 cal1.get(Calendar.ERA )== cal2.get(Calendar.ERA) &&

12 cal1.getClass ()== cal2.getClass ());

13 }

Figure 3.2: The faulty method of L21 (the faulty expression is shown in red)
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times (one is early morning and one is late afternoon). For bug repair, the following modification

should be made

- cal1.get(Calendar.HOUR) == cal2.get(Calendar.HOUR)

+ cal1.get(Calendar.HOUR_OF_DAY) == cal2.get(Calendar.HOUR_OF_DAY)

where the 24-hour calendar field Calendar.HOUR_OF_DAY is used. The modification is relatively

simple, but none of the repair tools that ssFix is compared to succeeded for this bug. By leveraging

existing code that is syntax-related to the bug context, ssFix successfully repaired the bug with the

correct patch generated.

3.2.1 Fault Localization

In the first stage, ssFix does fault localization to identify a list of suspicious statements in the

program that are likely to be faulty. The statements in the list are ranked from the most suspicious

to the least. For bug repair, ssFix goes through the list: each time it looks at one statement (the

target statement) and works on generating patches for a local code area (as a code chunk) including

the statement (we will explain how to generate such a code chunk later). Currently, ssFix can only

produce patches that make local changes (i.e., within the local code chunk) in the faulty program,

though this may involve modifying more than one statement.

ssFix employs the fault localization technique GZoltar (version 0.1.1) [40] to identify a list of

suspicious statements in the program that are likely to be faulty. The statements in the list are

ranked by their suspiciousness (measured by scores) from high to low. If the testing process of the

faulty program (i.e., the process of running the faulty program against the test suite) did not print

any stack trace, ssFix simply uses the list of statements yielded by GZoltar as the fault localization

result. Otherwise, ssFix first produces a list of statements from the printed stack traces by following

each stack trace and adding to the list each statement from the fault program that is on the stack

trace. ssFix then produces the fault localization result by appending the list of suspicious statements

yielded by GZoltar to the list of statements it produced from the stack traces (GZoltar does not use

the stack trace information to compute a statement’s suspiciousness. To repair a failure which causes

the stack trace to be printed, we assume the statements from the stack trace are more suspicious

than the other statements in the faulty program). The faulty return statement starting at Line 5 in

Figure 3.2 is ranked No. 2 in the list of suspicious statements identified by ssFix.

3.2.2 Code Search

Given a target statement identified as suspicious, ssFix goes through three steps to find syntax-

related code fragments from the codebase: target chunk identification, token extraction, and candi-

date retrieval. As the first step, ssFix generates a code chunk tchunk including the statement itself

and possibly its context. ssFix then searches for code fragments in the codebase as cchunks that

are syntax-related, i.e., structurally similar and conceptually related, to tchunk. A tchunk to be

used as the query for code search should not be too small (e.g., including only a simple statement
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1 GregorianCalendar calEnd = new GregorianCalendar ();

2 calEnd.setTimeInMillis(end.getTime ());

3 if (calStart.get(Calendar.HOUR_OF_DAY)== calEnd.get(Calendar.HOUR_OF_DAY)

4 && calStart.get(Calendar.MINUTE)== calEnd.get(Calendar.MINUTE)

5 && calStart.get(Calendar.SECOND)== calEnd.get(Calendar.SECOND)

6 && calStart.get(Calendar.MILLISECOND)== calEnd.get(Calendar.MILLISECOND)

7 && calStart.get(Calendar.HOUR_OF_DAY)==0

8 && calStart.get(Calendar.MINUTE)==0

9 && calStart.get(Calendar.SECOND)==0

10 && calStart.get(Calendar.MILLISECOND)==0

11 && start.before(end))

12 return true;

Figure 3.3: A candidate code chunk retrieved from the Merobase repository (the fix expression is
in purple). The chunk’s enclosing method isAllDay checks whether the two time values obtained
by start.getTime() (not shown) and end.getTime() both as milliseconds represent the starting time
of two days (from 00:00 of one day to 00:00 of the next day). The full class name of the chunk is
org.compiere.util.TimeUtil.

as return x) because it does not include enough context. On the other hand, it should also not be

large. The study by Gabel and Su [67] shows that a code fragment with more than 40 tokens can be

too unique in general to have similar code fragments retrieved for code search at the repository level.

Based on this result, we develop a simple chunk generation algorithm (Algorithm 1 in Section 3.3.2)

to generate a tchunk including the target statement and its local context if the statement is not

too large (to determine its size, we use a threshold based on the LOC of the statement). For our

example, ssFix uses this algorithm to produce a tchunk with only the return statement included.

As the second and third steps in code search, ssFix extracts the structural k-gram tokens and the

conceptual tokens from tchunk and invokes the Apache Lucene search engine [2] to do a document

search to obtain a list of indexed code fragments (treated as documents) from the codebase. The

retrieved list of code fragments (which we call the candidate code chunks, or cchunks) are ranked

from the ones that are the most syntax-related to tchunk to the least (measured by the scores

computed by Lucene’s default TF-IDF model from high to low). Later, ssFix goes through the list

and leverages each cchunk to produce independent patches for tchunk. More details can be found

in Section 3.3.2. The retrieved cchunk shown in Figure 3.3 is what ssFix later uses to produce a

correct patch for tchunk. This cchunk is ranked No. 6 among all the retrieved chunks.

3.2.3 Patch Generation

ssFix leverages a candidate chunk cchunk to produce patches for tchunk in three steps: candidate

translation, component matching, and modification. tchunk and cchunk may use different identifier

names for variables, fields, types, and methods that are syntactically (and semantically) related. For

example, the two chunks in Figure 3.2 and in Figure 3.3 use different names: cal2 and calEnd for

a related variable. As the first step, ssFix translates cchunk (if it was retrieved from a non-local

program) by unifying the identifier names in cchunk with those that are syntactically related in
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tchunk. Without such a translation, ssFix would often fail to directly use statements and expressions

from cchunk to produce patches for tchunk: the patched program could simply fail to compile for

using unrecognized names. We developed an heuristic algorithm (Algorithm 2 in Section 3.3.3)

which ssFix uses to match variables, fields, types, and methods between tchunk and cchunk based

on how they are used in the two chunks. ssFix then renames the variables, fields, types, and methods

in cchunk to their matched counterparts in tchunk to achieve the translation. For our example,

ssFix determines calStart to match cal1 and calEnd to match cal2 based on pattern-matched

expressions like the following three pairs.

cal1.get(Calendar.MILLISECOND) == cal2.get(Calendar.MILLISECOND)

calStart.get(Calendar.MILLISECOND) == calEnd.get(Calendar.MILLISECOND)

cal1.get(Calendar.SECOND) == cal2.get(Calendar.SECOND)

calStart.get(Calendar.SECOND) == calEnd.get(Calendar.SECOND)

cal1.get(Calendar.MINUTE) == cal2.get(Calendar.MINUTE)

calStart.get(Calendar.MINUTE) == calEnd.get(Calendar.MINUTE)

ssFix creates a translated version of cchunk as rcchunk by renaming the two variables calStart

and calEnd to their respective matched ones cal1 and cal2 in tchunk.

The translated chunk rcchunk may not represent the correct patch but may contain the correct

forms of components (expressions and statements) to be used in tchunk or indirectly suggest a faulty

statement in tchunk to be deleted for producing a correct patch. Instead of replacing tchunk with

rcchunk at the chunk level for patch generation, ssFix matches components that are syntactically

related between the two chunks and produces patches based on the syntactic differences that exist

between the matched components and unmatched components. Specifically, ssFix uses a modified

version of the tree matching algorithm used by ChangeDistiller [64] to do component matching, and

it modifies tchunk to produce patches using three types of operations: replacement, insertion, and

deletion. More details can be found in Section 3.3.3. For our example, ssFix found the following

pair of components (and 26 others) from tchunk and rcchunk to match.

cal1.get(Calendar.HOUR) == cal2.get(Calendar.HOUR)

cal1.get(Calendar.HOUR_OF_DAY) == cal2.get(Calendar.HOUR_OF_DAY)

In tchunk, it then replaces the first component with the second (from rcchunk) to produce the

correct patch.

3.2.4 Patch Validation

For each cchunk, ssFix produces a set of patches. It filters away patches that are syntactically

redundant (for such patches, the corresponding patched programs generated are syntactically equiv-

alent) and patches that have been tested earlier (generated by other cchunks). ssFix next sorts the

filtered patches based on the modification types and the modification sizes to make a correct patch
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Table 3.1: The Four Metrics Associated with a Statement for Fault Localization

Count Description
n00(s) the number of passing runs where s is not covered
n01(s) the number of failing runs where s is not covered
n10(s) the number of passing runs where s is covered
n11(s) the number of failing runs where s is covered

likely to be found before an overfitting patch (such a patched program can pass the test suite but

does not actually repair the bug). More details can be found in Section 3.3.4. ssFix reports the first

patched program that passes the test suite. If no such program can be found, ssFix looks at the

next cchunk from the retrieved list and repeats the patch generation and patch validation processes.

For our example, ssFix successfully found the correct patch after validating 202 individual patched

programs that failed the testing (the majority of those simply failed the fault-exposing test case).

It took ssFix less than seven minutes to find this patch.

3.3 Methodology

In this section, we elaborate on the four stages that ssFix takes to do bug repair.

3.3.1 Fault Localization

ssFix uses the approach described in Section 3.2.1 to do fault localization to identify a list of sus-

picious statements in the faulty program that are likely to be buggy. ssFix assumes the bug to be

contained in one of these statements, and in the later stages, it looks at each suspicious statement in

the list to produce patches independently. (To repair a complex bug, a repair technique may need

to look at multiple statements within multiple different methods of the faulty program and make

changes for all of them to produce a patch. Currently ssFix cannot do that type of repair, though

it is possible for ssFix to make multiple changes for more than one statement within a small local

code chunk, see Section 3.3.3.)

For fault localization, ssFix uses an existing spectrum-based fault localization technique GZoltar

[40] (version 0.1.1). GZoltar calculates the suspiciousness of a statement (i.e., a score representing

the likelihood of the statement being faulty) based on the coverages of the statement in the testing

runs of the faulty program (in a testing run, GZoltar runs the faulty program against a test case).

More specifically, to do fault localization, GZoltar first instruments the faulty program and then

runs the instrumented faulty program against the test suite. After doing so, for each statement s,

it obtains four counts: n00(s), n01(s), n10(s), and n11(s) as described in Table 3.1. n00(s) is the

number of all passing runs where s is not covered (in a passing run, the faulty program passes the

test case). n01(s) is the number of all failing runs where s is not covered (in a failing run, the faulty

program fails the test case). n10(s) is the number of all passing runs where s is covered. n11(s) is

the number of all the failing runs where s is covered. Based on the four counts, GZoltar uses the
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Ochiai formula [22] as shown below to calculate a suspiciousness score susp(s) which ranges from 0

to 1 inclusive with 1 being the most suspicious and 0 being not suspicious at all. (GZoltar does not

calculate a suspiciousness score for a statement s if there is no failing run or s is not covered by any

testing run. This makes sure the denominator of the formula is not zero.)

susp(s) =
n11(s)√

(n11(s) + n01(s))× (n11(s) + n10(s))

Intuitively, a statement is more suspicious than another statement if it is covered in more failing

runs but less passing runs.

3.3.2 Code Search

The code search stage of ssFix starts with a target statement s identified as suspicious in the first

stage. ssFix generates a local code chunk tchunk including s itself and possibly the local context of

s. ssFix then extracts the structural and conceptual tokens from the text of tchunk. ssFix treats the

extracted tokens as a vector of terms and uses Lucene’s Boolean Model and its TF-IDF vector space

model to find candidate code chunks cchunks that are syntax-related to tchunk from the codebase.

Chunk Generation

Algorithm 1 Generating a Local Target Code Chunk

Input: s, th . s: target statement, th: LOC (we use 6)
Output: tchunk . A target code chunk
1: function ChunkGen(s,th)
2: tchunk ← {s}
3: if getSize(tchunk) ≥ th then return tchunk

. getSize returns the LOC of a code chunk
4: s0 ← get the parent statement of s
5: if s0 exists then
6: tchunk0 ← {s0}
7: if getSize(tchunk0) ≤ th then return tchunk0

8: s1 ← get the statement before s in its block
9: s2 ← get the statement after s in its block

10: if both s1 and s2 exist then
11: tchunk1 ← {s1, s, s2}
12: if getSize(tchunk1) ≤ th then return tchunk1

13: else if s1 exists but s2 does not exist then
14: tchunk2 ← {s1, s}
15: if getSize(tchunk2) ≤ th then return tchunk2

16: else if s1 does not exist but s2 exists then
17: tchunk3 ← {s, s2}
18: if getSize(tchunk3) ≤ th then return tchunk3
19: else
20: return tchunk

A tchunk with some context of s included could provide information about what s intends

to do with the semantics potentially common to a large amount of existing code fragments in the

codebase. Although it is often necessary to include some context of s (especially when s is too simple

as return x for example), it can be a bad idea to include a large context (e.g., a whole method that

implements multiple tasks). As the study [67] shows, for repository code search, significant syntactic

redundancies were observed for code containing only up to 40 tokens (or 5-7 lines approximately).
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A larger code fragment is likely to be too unique. Based on this observation, we developed a simple

algorithm chunkgen (Algorithm 1) which generates a tchunk including s possibly with its local

context: if the size of s is equal to or larger than a chunk-size threshold th (6 LOC), ssFix simply

produces a tchunk including s itself (Lines 2-3 in Algorithm 1). Otherwise, ssFix produces a tchunk

including either the enclosing parent statement of s up to the declared method (not inclusive), if

any exists (Lines 5-7), or a maximum of s and its two neighboring statements (Lines 8-18) as long

as the size of tchunk is no larger than th.

The way ssFix generates cchunks is similar: For each Java source file in the codebase, ssFix

looks at every method defined in every class defined in the file. It extracts the following code

fragments within the method as cchunks: (1) every compound statement which contains children

statements and (2) every sequential three statements within each code block (e.g., a body block of a

for-statement). (Note that for any compound statement which has a non-block single statement as

its body, ssFix will create a new block as the body containing the statement. Also note that if a code

block contains no more than three statements, all the statements are then included in the chunk).

ssFix produces a cchunk using (1) and (2) to cover the two cases it produces a tchunk using the

target statement’s parent statement and the target statement itself plus its neighboring statements.

Note that ssFix does not use any chunk-size threshold to produce a cchunk. This makes ssFix be

able to find a cchunk that is smaller or larger than tchunk (for statement deletion and insertion).

Token Extraction

Given either tchunk or cchunk, ssFix extracts the structural k-gram tokens and the conceptual

tokens from the text of the chunk. For every generated cchunk in the codebase, ssFix employs

Lucene [2] to create an index for the extracted tokens to facilitate code search. Given tchunk, ssFix

searches in the codebase for cchunks that have “similar” tokens using Lucene’s Boolean model and

its TF-IDF vector space model.

Extracting the structural k-gram tokens: ssFix first tokenizes the text of a chunk and gets

a list of tokens. To mask names, number constants, and literals that are program specific, ssFix

symbolizes different types of tokens: ssFix uses the symbol $v$ for non-JDK variables and fields,

$t$ for non-JDK & non-primitive types, $m$ for non-JDK methods, $lb$ for boolean literals (true

or false), $ln$ for number constants, and $ls$ for string literals that contain whitespace characters

(e.g., as an exceptional message). ssFix does not symbolize JDK tokens, primitive types, character

literals, or string literals that do not contain whitespace characters since they are often semantics-

indicative. We call the symbolized tokens the code pattern tokens and we call the string of these

tokens concatenated by single spaces the code pattern. ssFix next splits the list of code pattern

tokens into sub-lists by curly brackets and semicolons to avoid generating k-grams that are not very

interesting (e.g., a k-gram that starts at the end of one statement but ends at the start of another).

Finally, ssFix concatenates (with no space in between) every sequential k (we set k=5) tokens within

every sub-list of tokens to get the structural k-gram tokens. (Note that if a sub-list contains less

than k tokens, ssFix would produce a less-than-k-gram token.) As an example, for the expression
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shown at Line 6 in Figure 3.2, ssFix produced in total 13 structural tokens (as 5-grams in angle

brackets) as shown below.

The Expression:

cal1.get(Calendar.SECOND )== cal2.get(Calendar.SECOND)

The Structural Tokens (13 in total):

<$v$.get(Calendar >, <.get(Calendar.>, <get(Calendar.SECOND >,

<(Calendar.SECOND)>, <Calendar.SECOND)==>, <.SECOND )==$v$ >,

<SECOND )== $v$.>, <)==$v$.get >, <==$v$.get(>,

<$v$.get(Calendar >, <.get(Calendar.>, <get(Calendar.SECOND >,

<(Calendar.SECOND)>

To produce such structural tokens, ssFix splits the expression into a list of tokens, symbolizes the

tokens by changing cal1 and cal2 to $v$ (note that ssFix does not symbolize get, Calendar, and

SECOND since they are from the JDK library), and produces a list of 13 5-gram tokens.

Extracting the conceptual tokens: Two chunks that are conceptually related often use

common tokens such as “time”, “iterator”, or “buffer”. ssFix extracts such conceptual tokens as

follows: ssFix first tokenizes the text of a chunk and gets a list of tokens containing Java identifiers

only. For any token that is camel-case or contains underscores or numbers, ssFix splits the token

into smaller tokens and appends them to the list. ssFix finally changes each token in the list into

lower-case. For each lower-case token in the list, ssFix creates a stemmed token using the Porter

Stemming algorithm [180]. If the stemmed token is different from the original token, ssFix inserts

it into the list after the original token. Finally, ssFix eliminates any tokens whose string lengths are

less than 3 or greater than 32 as well as the stop words and the Java keywords. For example, the list

of conceptual tokens for the expression shown at Line 6 in Figure 3.2 is {“cal1”, “cal”, “calendar”,

“second”, “cal2”, “cal”, “calendar”, “second”} (note that “get” is a stop word that is eliminated).

Candidate Retrieval

For candidate retrieval, ssFix invokes Lucene’s query search with the query tokens being the ex-

tracted tokens from tchunk1. It uses Lucene’s default TF-IDF vector space model which uses

Lucene’s Practical Scoring Function shown below (as defined in [11]) to retrieve cchunks,

overlap(tts, cts) · qnorm(tts)·∑
t∈tts

(tf(t ∈ cts) · idf(t)2 · getBoost(t) · norm(t, cts))

where t is a token (either a structural or a conceptual token), tts is the token list of tchunk, cts is

the token list of cchunk, overlap(tts, cts) is a score factor based on how many tokens in tts are found

in cts, tf(t ∈ cts) is the token frequency of t that appears in cts, idf(t) is the inverse document

frequency of t. qnorm, getBoost, and norm are the normalization and boosting functions defined in

1It is also possible to invoke Lucene’s query search twice using the structural tokens and the conceptual tokens
independently and then merge the results, but we did not experiment this.
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Lucene’s default model. The retrieval process ignores any cchunk whose number of matched tokens

(the tokens that are matched with those in tchunk) is less than n/8 where n is the total number of

tokens in tchunk. To do so, ssFix uses Lucene’s Boolean model.

For each tchunk, ssFix obtains a list of cchunks that have the highest relatedness scores ranked

from high to low. Currently, it only looks at the top 100 (at most) cchunks that are not syntactically

redundant for bug repair.

3.3.3 Patch Generation

In this stage, ssFix leverages a candidate chunk cchunk to produce patches for tchunk in three steps:

candidate translation, component matching, and modification.

Candidate Translation

Algorithm 2 Creating an Identifier Mapping

Input: tchunk, cchunk
Output: imap[idBind→ idBind] . idBind is an identifier binding
1: imap[idBind→ idBind]← empty
2: cmap[(idBind, idBind)→ int]← empty
3: tcompts, ccompts ← get the lists of non-trivial components from tchunk & cchunk (components visited in pre-order in

the ASTs of tchunk & cchunk)
4: . Non-trivial components do not include number constants, literals, or identifiers
5: matched compts← match components (one-to-one) between tcompts and ccompts by code pattern equality
6: for all (tcompt, ccompt)∈ matched compts do
7: tptokens, cptokens ← get the code pattern tokens of tcompt, ccompt
8: . tptokens & cptokens are two lists having identical elements
9: for all (tptoken, cptoken)∈ (tptokens, cptokens) at every list index do

10: if tptoken and cptoken are both identifier symbols then
11: tidbind← get the identifier binding of tptoken
12: cidbind← get the identifier binding of cptoken
13: if (cidbind, tidbind) is an entry in cmap then
14: c← cmap.get(cidbind, tidbind)
15: cmap.add((cidbind, tidbind), c+ 1)
16: else
17: cmap.add((cidbind, tidbind), 1)

18: for all cidbind from cmap do
19: tidbind ← get the mapped identifier with the max value of c (tie breaking by the Levenshtein Similarity between

identifier strings)
20: imap.add(cidbind, tidbind)

21: return imap

A candidate chunk cchunk and the target chunk tchunk may use different identifier names for

variables, fields, types, and methods that are syntactically and semantically related, especially when

they are not from the same program (for example, the two chunks in Figure 3.2 and in Figure 3.3

use different names: cal2 and calEnd for a related variable). We developed an heuristic algorithm

shown in Algorithm 2 to map variable, field, type, and method identifiers appeared in cchunk to

those in tchunk that are syntactically related (and may thus be semantically related) based on

matching the code patterns of their contexts. (The code pattern used here is identical to what we

defined in Section 3.3.2 but with all non-JDK identifiers, number constants, and literals symbolized

to increase matching flexibility). Given a cchunk that is not from the local, faulty program (where

tchunk is from), ssFix uses the algorithm to match their identifiers and renames every identifier

in cchunk (which has a match) as its matched identifier in tchunk to get a translated version of
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cchunk as rcchunk. Since a cchunk and a tchunk from the same faulty program use identifier names

consistently, ssFix does not create a translated version for such a cchunk.

Algorithm 2 accepts as input tchunk and cchunk. It outputs an identifier mapping imap that

maps an identifier that appears in cchunk, as a reference binding (or a binding), to an identifier

that appears in tchunk, also as a binding. (ssFix matches and renames all identifiers that have

the same binding consistently.) The algorithm starts by collecting in pre-order a list of components

(statements and expressions) in the tree structure of the chunk (for either tchunk or cchunk) that

are non-trivial, i.e., that are not number constants, literals (boolean, null, character, and string

literals), or identifiers (Line 3). These components represent all the contexts of all the identifiers in

the chunk. The algorithm then matches the components (Line 5) by comparing their code patterns.

One component in tchunk can match at most one component in cchunk, and one component in

cchunk can match at most one component in tchunk. Two components can match if and only

if their code patterns (as two strings) are identical. For every matched components whose code

patterns are identical (and thus share an identical list of code pattern tokens), the algorithm obtains

the two lists of code pattern tokens (Line 7). At every index where the two code pattern tokens

are both identifiers, the algorithm gets the identifier bindings, matches them, and saves this match

with a count in a map cmap (Lines 9-17). For example, ssFix finds the following two components

to match. It then creates two matches between cal1 and calStart and between cal2 and calEnd

with a count saved for each.

cal1.get(Calendar.MILLISECOND) == cal2.get(Calendar.MILLISECOND)

calStart.get(Calendar.MILLISECOND) == calEnd.get(Calendar.MILLISECOND)

Finally, the algorithm iterates cmap, for each identifier binding in cchunk (cidbind), it finds its

matched identifier binding in tchunk (tidbind) with the maximum matching count. If there are more

than one such matched tidbinds, the algorithm breaks the ties by comparing the string similarity of

the identifier bindings (Lines 18-20).

Component Matching

ssFix matches components between tchunk and rcchunk to identify their syntactic differences at

the component level. Later it leverages the syntactic differences that exist between the matched and

unmatched components to produce patches for tchunk. ssFix extends the tree matching algorithm of

ChangeDistiller (as shown in Figure 3.4 copied from Fig 9. in [64]) to do component matching based

on the component types, structures, and contents. The original algorithm performs tree matching at

the statement level and is used for code evolutionary analysis. The algorithm used by ssFix follows

its basic idea to match leaf nodes first (using the match1 function as shown in Figure 3.5 copied

from Section 3.4 in [64]) and then inner nodes (using the match2 function as shown in Figure 3.6

copied from Section 3.4 in [64]) in a bottom-up way. We make changes to the original algorithm on

the definitions of leaf and inner nodes, node compatibility, and node similarity.

Specifically, we define a leaf node to be either a simple statement which has no children statements

or an expression that is not a number constant, a literal, or an identifier. We define an inner node



38

Figure 3.4: ChangeDistiller’s Tree Matching Algorithm

Figure 3.5: The match1 function used in Figure 3.4

Figure 3.6: The match2 function used in Figure 3.4



39

Table 3.2: Compatibility Rules for Certain Types of Leaf Nodes (two leaf nodes that have the same
component type may need to satisfy the specified rule for matching)

Component Type Rule
ArrayAccess Compatible array types
ArrayCreation Compatible array types
ClassInstanceCreation Compatible class types
InfixExpression Same operator
PostfixExpression Same operator
PrefixExpression Same operator
MethodInvocation Same method name
Assignment Same assignment operator

a An array type is incompatible with a non-array type.
b Two array types are compatible iff (a) the array di-
mensions are equal and (b) the element types are equal.
c Two class types are compatible if they are equal.

to be a compound statement that has children statements.

ChangeDistiller uses the two functions match1 and match2 (as shown in Figure 3.5 and Fig-

ure 3.6) to match leaf nodes and inner nodes respectively. For node matching, the two functions

both look at node compatibility (the l functions used in match1 and match2) and node similarity

(the sim2g functions used in match1 and match2 and the overlap similarity |common(x,y)|
max(|x|,|y|) used in

match2). We give a new definition for the node compatibility (the l functions) as follows.

1. A leaf node is not compatible with an inner node.

2. Two leaf nodes are compatible if (a) their node types are equal (e.g., both as return statements)

and (b) they follow the node-type-specific rules as shown in Table 3.2.

3. Two inner nodes are compatible if their node types are equal or they are both loop statements

(for, while, or do statements).

ChangeDistiller uses different similarity metrics in match1 and match2 to measure node similar-

ities.

• For leaf nodes, the similarity metric used in match1 looks at their bigram string similarity (the

sim2g function). Two leaf nodes can only match if the similarity score is above some threshold

f . In [64], f is set as 0.6.

• For inner nodes, the similarity metric used in match2 looks at the overlap similarity of their

children nodes and the bigram string similarity of their conditions (as either if-conditions or

loop conditions). A threshold t is used for the overlap similarity and the threshold f is used

for the bigram string similarity. In [64], f is 0.6, and different values (0.6, 0.8, and 0.4) are

used for t under different conditions.

We make changes to the similarity metrics used in match1 and match2:
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if (x) { s0; } //Buggy Statement

if (y) { s1; } else { s2; } // Candidate Statement

1. if (y) { s1; } else { s2; }

2. if (y) { s0; }

3. if (x) { s1; }

4. if (x) { s0; } else { s2; }

5. if (x && y) { s0; }

6. if (x || y) { s0; }

Figure 3.7: The Six Patches Generated for Two Matched If-Statements

1. We decrease the values of f and t, and we use the same, decreased value of t for all cases.

2. We ignore the bigram string similarity part for the similarity metric in match2.

ChangeDistiller was designed to match nodes that are highly similar for evolutionary analysis. In

our context, we decrease the thresholds f and t to allow components that are syntactically related

but are not highly similar to match, and we use the same decreased value of t for all cases for inner

node matching. Currently ssFix uses 0.2 for f and 0.4 for t and it works reasonably well with these

thresholds for our experiments. We do not consider the similarity of two conditions (as if-conditions

or loop conditions) as a factor to match two compound statements (as two inner nodes) because a

bug could make one condition dissimilar to the other. In such case, we still allow the two statements

to match as long as they have similar children according to the overlap similarity used in the match2

function in [64] so that the faulty condition has a chance of being repaired.

Modification

In the final step of patch generation, ssFix modifies tchunk based on the matched and unmatched

components between tchunk and rcchunk to yield an initial set of patches using three types of

modifications: replacement, insertion, and deletion. We next discuss each in turn.

Replacement: For every matched components (tcpt, ccpt) where tcpt is a component from

tchunk and ccpt is a component from cchunk, ssFix replaces tcpt with ccpt and the sub-components

of tcpt with the sub-components of ccpt to produce patches (it does not actually do the replacement

if the component to be replaced is syntactically identical to the one as the replacement). Specifically,

ssFix first replaces tcpt with ccpt to produce a patch if tcpt is not syntactically identical to ccpt. ssFix

may do more replacements on the sub-components of tcpt and ccpt based on their types following the

rules we created in Table 3.3. (Recall that if tcpt matches ccpt, either they have the same component

type or they are both loop statements.) For each row in Table 3.3, there is more than one rule.

ssFix follows the rules to produce patches independently: each time, it follows one rule to produce

one patch (it would not produce a patch if the replacement makes no actual syntactic changes.) For

example, ssFix produces six patches for the two if statements shown in Figure 3.7 (suppose x, y, s0,

s1 and s2 are all different). Note that ssFix may make multiple changes using one replacement. For
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Table 3.3: Sub-Component Replacement Rules for Certain Types of Matched Components

Component Rule

If Statements

1. Replace condition
2. Replace then-branch
3. Replace else-branch
4. Combine conditions with &&
5. Combine conditions with ||

For Statements

1. Replace initializers
2. Replace condition
3. Replace updaters
4. Replace initializers, condition, & updaters
5. Replace body

Loop Statements
(not both as for-statements)

1. Replace condition
2. Replace body

Switch Statements
1. Replace expression
2. Replace body

Try Statements
1. Replace try-body
2. Replace catch-clauses
3. Replace finally-body

Synchronized Statements
1. Replace synchronized expression
2. Replace body

Return Statements
(with boolean returned expressions)

1. Combine the expressions with &&
2. Combine the expressions with ||

Catch Clauses
1. Replace caught exception
2. Replace body

Assignments/Infix Expressions
1. Replace left-hand side
2. Replace operator
3. Replace right-hand side

Method Calls/Super Method Calls
1. Replace caller expression
2. Replace method name
3. Replace arguments∗

Constructor Calls (i.e., this(...)) 1. Replace arguments∗

Super Constructor Calls
1. Replace caller expression
2. Replace arguments∗

Prefix/Postfix Expressions
1. Replace operator
2. Replace operand

∗ ssFix may produce multiple patches by replacing each individual argument of tcpt with
the corresponding argument of ccpt in the same argument index. This only happens
when the two components have the same number of arguments.
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example, it may follow Rule 2 for loop statements to replace a loop body with another which may

make changes to several statements within the body.

Algorithm 3 The Insertion Algorithm

Input: cstmt, cptmap[ccpt→ tcpt] . cptmap maps rcchunk’s component to tchunk’s component
Output: plist . a list of patches
1: plist←{}
2: if cptmap.get(cstmt)!=null then
3: return plist

4: cstmt children← get all children statements of cstmt
5: for all cstmt child ∈ cstmt children do
6: if cptmap.get(cstmt child)!=null then
7: return plist

8: cstmt siblings← get the sibling statements of cstmt from its parent block
9: cstmt i← get the index of cstmt in cstmt siblings

10: cstmt siblings size← get the size of cstmt siblings
11: csl← null, csh← null
12: for all i from 0 to cstmt i− 1 do
13: cstmt sibling ← cstmt siblings.get(i)
14: if cptmap.get(cstmt sibling)!=null then
15: csl← cstmt sibling

16: for all i from cstmt i+ 1 to cstmt siblings size− 1 do
17: cstmt sibling ← cstmt siblings.get(i)
18: if cptmap.get(cstmt sibling)!=null then
19: csh← cstmt sibling

20: tsl← cptmap.get(csl), tsh← cptmap.get(csh)
21: if tsl!=null && tsh!=null && tsl and tsh are from the same block then
22: tsiblings← get all the sibling statements of tsl (or tsh)
23: i← get the index of tsl in tsiblings
24: j ← get the index of tsh in tsiblings
25: l← min(i, j); h← max(i, j)
26: for all k from l to h− 1 do
27: p← create a patch by inserting s after tsiblings.get(k)
28: plist.add(p)

29: else if tsl!=null then
30: tsiblings← get all the sibling statements of tsl
31: i← get the index of tsl in tsiblings
32: for all k from i to tsiblings.size()− 1 do
33: p← create a patch by inserting s after tsiblings.get(k)
34: plist.add(p)

35: else if tsh!=null then
36: tsiblings← get all the sibling statements of tsh
37: i← get the index of tsh in tsiblings
38: for all k from i to 0 (decreasing) do
39: p← create a patch by inserting s before tsiblings.get(k)
40: plist.add(p)

41: return plist

Insertion & Deletion:

ssFix does insertions to insert unmatched statement components from rcchunk in tchunk. The

algorithm is shown in Algorithm 3. It accepts a component cstmt (as a statement) from rcchunk and

a map cptmap which maps a component from rcchunk to another component from tchunk (ssFix can

simply produce such a map based on the component matching result it produced earlier). As output,

it produces a list of patches generated by insertion. For every component cstmt from rcchunk, ssFix

uses the algorithm to possibly produce a list of patches. Given a component cstmt from rcchunk,

ssFix first checks whether it is qualified for insertion, i.e., (1) whether it is a statement that is not

matched (i.e., has no mapped component in cptmap) and (2) whether it has no matched children

statements (Lines 2-7). For (2), if s is a statement that has matched children statements, ssFix

ignores the insertion of s because the potential occurrence of s in tchunk could lead to statement

redundancy caused by its children statements. If s is a qualified statement that satisfies (1) and
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(2), ssFix computes estimated positions where s is likely to fit in tchunk and later inserts s at every

estimated position to yield patches. Specifically, ssFix first finds the two sibling statements of s

in its parent block (as csl and csh) that are closest to s and have matches (Lines 11-19). ssFix

gets their matched statements tsl and tsh in tchunk (Line 20). If they both exist and are from the

same block, ssFix inserts s at every position between tsl and tsh (Lines 21-28). Otherwise, if at

least one of tsl and tsh exists, ssFix inserts s at every position after tsl in its block (Lines 29-34)

and/or at every position before tsh in its block (Lines 35-40) to yield patches. If neither tsl nor tsh

exists, ssFix ignores the insertion for s since there is no matching evidence that shows s is needed

for tchunk.

For deletion, ssFix deletes any statement component in tchunk that has no matched statement in

rcchunk. Similar to insertion, if the unmatched statement has matched children statements, ssFix

ignores its deletion.

3.3.4 Patch Validation

ssFix leverages a cchunk retrieved from the codebase to produce a set of patches for tchunk. In this

stage, ssFix first filters aways patches that are syntactically redundant (two patches are syntactically

redundant if their generated, patched programs are syntactically identical) and patches that have

been tested earlier (generated by other cchunks). ssFix next sorts the patches by the modification

types and sizes, then validates each patched program against the test suite, and finally reports

the first one (if any) that passes the test suite. Like every repair technique that uses a test suite

as the correctness criterion for patch evaluation, it is possible that ssFix produces an overfitting,

patched program that passes the test suite but does not actually repair the bug. Studies [183, 152]

have shown that (1) a repair technique is more likely to produce an overfitting patch using deletion

than using other types of modifications and (2) a simple patch is less likely to be overfitting than

a complex patch. Based on these results, we developed the algorithm used by ssFix as shown in

Algorithm 4 for comparing the generated patches. Using the algorithm, ssFix ranks the generated

patches to make a non-overfitting patch likely be found first.

Algorithm 4 Patch Comparison Algorithm

Input: p1(t1, h1, d1), p2(t2, h2, d2) . t: type, h: tree height, d: edit distance
Output: order . order ∈ {−1, 0, 1}
1: if t1 ∈ {R, I} and t2 ∈ {D} then return −1 . R: replacement, I: insertion, D: deletion

2: if t1 ∈ {D} and t2 ∈ {R, I} then return 1

3: if h1 < h2 then return −1

4: if h1 > h2 then return 1

5: if d1 < d2 then return −1

6: if d1 > d2 then return 1

7: return 0

The algorithm accepts as input two patches p1 and p2 and outputs a numeric ordering order ∈
{−1, 0, 1} showing p1 has a rank higher than, equal to, and lower than p2 respectively. Each patch

is associated with a modification type t ∈ {R, I,D} where R is replacement, I is insertion, and D

is deletion, and two types of modification sizes h and d: Given a component cpt and its modified
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version cpt′ that a patch involves (either cpt or cpt′ can be null for a deletion and an insertion), we

compute h as the maximum heights of the tree structures of cpt and cpt′ and d as the edit distance

of their content strings. As the algorithm shows, a patch whose modification type is non-deletion

always ranks higher than a patch whose modification type is deletion (Lines 1-2). If the types

cannot differentiate them, the algorithm then looks at their tree heights (for insertion and deletion,

if a component is null, the height is 0): the patch with a smaller h ranks higher than the other

(Lines 3-4). If the tree heights still cannot differentiate them, the algorithm further looks at their

edit distances (we define an edit distance of a patch to be the edit distance between the content

strings of cpt and cpt′, and if a component is null, the content string is empty): the patch with

a smaller edit distance ranks higher than the other (Lines 5-6). ssFix follows the algorithm to do

patch sorting and produces a list of sorted patches for tchunk using cchunk.

Next ssFix looks at the patches in the sorted order for validation. It first applies the patch on

the faulty program to produce a patched program, next checks whether the program compiles. If

it compiles, ssFix next tests the patched program against the test cases that the original, faulty

program failed. If the patched program succeeds, ssFix finally tests it against the whole test suite.

Note that ssFix may produce hundreds of patches given a cchunk that is dissimilar to tchunk. For

efficiency, ssFix only selects a maximum of the top-sorted k (we set k = 50) patches for validation.

3.4 Empirical Evaluation

To evaluate the performance of ssFix, we used the Defects4J bug dataset (version 0.1.0) [94] which

contains a set of 357 real bugs. We ask two research questions.

• RQ1: How does ssFix work on repairing these 357 bugs?

• RQ2: Compared to other APR techniques, how effective is ssFix?

We conducted two experiments to answer them. We next show each experiment in turn.

3.4.1 RQ1

We implemented ssFix and ran it to repair all the 357 real bugs in the Defects4J bug dataset.

Our results show that ssFix repaired 20 bugs with valid patches generated. The median time for

generating a plausible patch is about 11 minutes. The minimum time for generating a plausible

patch is about 2 minutes. The maximum time for generating a plausible patch is about 101 minutes.

Experimental Setup

Bug Dataset The Defects4J dataset (version 0.1.0) [94] as shown in Table 3.4 consists of 357

real bugs from five Java projects: JFreeChart (C), Closure Compiler (Cl), Commons Math (M),

Joda-Time (T), and Commons Lang (L). Each bug in the dataset is associated with a developer

patch showing how the bug can be correctly repaired. The dataset has been commonly used for

evaluating an automated repair technique for Java [145, 234, 113, 232].
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Table 3.4: The Defects4J Dataset (version 0.1.0)

Bug Projects Abbrv #Bugs #Tests #Bugs Selected
JFreeChart C 26 2,205 6

Closure Compiler Cl 133 7,927 38
Commons Lang L 27 2,245 19
Commons Math M 106 3,602 24

Joda-Time T 27 4,130 6
Total - 357 20,109 93

The table except the column Abbrv is copied from Table 1 in [94].

Table 3.5: All Plausible Patches Generated by ssFix

Project
(#Bugs)

Time (in minutes)
#P #V∗ #Correct

Sem(Syn)∗
CChunk Rank CChunk Locality #Tested Patch

min max med min max med #L #NL min max med

C (26) 3.4 77.9 8.8 7 3 2(2) 1 65 34 2 5 2 4337 132

Cl (133) 7.6 34.8 12.8 11 2 1(1) 1 51 1 9 2 2 489 84

M (106) 2.2 100.5 14.8 26 10 7(6) 1 91 7 12 14 1 5609 171.5

T (27) 1.8 8.1 4.0 4 0 0(0) 1 24 5 1 3 3 426 61.5

L (65) 3.4 56.4 6.1 12 5 5(5) 1 60 8 1 11 3 2454 34.5

Total (357) 1.8 100.5 10.7 60 20 15(14) 1 91 6.5 25 35 1 5609 99

We show the projects in their abbreviations: C is JfreeChart; Cl is Closure Compiler; M is Commons Math; T is Joda-Time; and L is Commons
Lang. #P is the number of plausible patches generated. #V is the number of valid patches generated. #L is the number of local cchunk (retrieved
from the local faulty program) used. #NL is the number of non-local cchunk (retrieved from the non-local programs in the code repository) used.
∗We manually compared a generated patch to the developer patch to determine its validity and correctness.

ssFix’s Running Setup Our implementation of ssFix used the Merobase repository [83] which

contains 58,219 projects (about 2.5 million Java source files, or about 180 million LOC) as the

external code repository and five versions of the projects (C8, Cl14, L6, M33, and T4) as the local

faulty programs2. To avoid using a fixed version of a bug to produce patches, in the code search

stage, ssFix ignores any candidate chunk cchunk retrieved from the codebase if (1) the full-class

name of cchunk’s located class is the same as that of the target chunk’s (or tchunk’s) located class3

and (2) the signature of cchunk’s enclosing method is the same as that of tchunk’s method.4 We

ran ssFix to repair each bug within a time budget of 120 minutes on machines with eight AMD

Phenom(tm) II processors and 8G memory.

Results

Table 3.5 is a summary5 of the repair performance of ssFix. From left to right, the table shows the

project name and the number of bugs in the project, the repairing time (min, max, and median),

the number of bugs for which plausible patches were generated (a patch is plausible if the patched

program passes the test suite), the number of valid patches generated (we consider a patch to be

valid if the patched program passes the test suite and does not introduce any new bugs which the

2For each of the three bugs: M53, M59 and M70, the fault’s located class contains a repair statement. The repair
statement, however, is not contained in the class of M33 whose class name is identical to that of the fault’s located
class. So we additionally indexed the fault’s located class for each bug (three classes in total).

3The Commons Lang & the Commons Math projects may use either lang3 & math3 or lang & math as parts of
their package names respectively. We unified these name differences for comparing two class names.

4Even doing so, we still manually found, in our initial experiments, the two cchunks (for L43 and L33 ) that
ssFix used to yield patches are suspicious to be from the fixed versions of the two faulty programs. We created a
black-list for the enclosing methods of those cchunks.

5The complete result can be found at https://github.com/qixin5/ssFix/blob/master/expt0/rslt.
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test suite does not expose), the number of correct patches generated (we consider a patch to be

correct if it is semantically equivalent to the developer patch associate with the bug, in a stricter

case, such a patch can be syntactically equivalent to the developer patch), the ranks (in min, max,

and median from 1 to 100) of the candidate chunks used for generating the patches, the numbers

of chunks retrieved from the local project and from the external code repository, and the number

of failed patches ssFix created and tested (against at least one test case) before finding a plausible

patch.

As shown, ssFix produced plausible patches for 60 bugs in total (a patch is plausible if the

patched program passes the test suite). The running time (in minutes) for repairing these 60 bugs

ranges from 1.8 to 100.5 with the median being 10.7. A plausible patch is produced and identified

by ssFix automatically. To determine whether a generated, plausible patch is correct and/or valid,

we manually compared the patch with the corresponding developer patch contained in the Defects4J

dataset. Among the 60 plausible patches generated (for the 60 bugs), we determined 20 patches to

be valid. Among the 20 valid patches, we determined 15 patches to be semantically equivalent to

the developer patches associated with their repaired bugs, and 14 of the 15 patches to be not only

semantically but also syntactically equivalent to the corresponding developer patches. In terms of

passing the test suite without introducing any new bugs, we determined 5 patches to be valid though

they are not semantically equivalent to the developer patches. Below is one such patch generated

for the bug M57 :

+ double sum=0; (by developer)

+ float sum=0; (by ssFix)

- int sum =0;

ssFix patched the program by changing the declared type of sum from int to float to avoid preci-

sion loss. The patched program now passes the test suite. Although the patch is not semantically

equivalent to the developer patch, we consider it as valid. We manually determined 7 of the 60

plausible patches to be defective (and thus overfitting): they introduce new bugs to their origi-

nal programs and are thus invalid and incorrect. For four of them, ssFix deleted the expected

program semantics. For the remaining 33 (60-20-7) patches, it is not easy for us to manually de-

termine their validity since the patches are not syntactically equivalent or similar to the developer

patches. All the 60 plausible patches and the corresponding candidate chunks can be found under

https://github.com/qixin5/ssFix/tree/master/expt0. For each of the 20 valid patches, we provided

an explanation as to why we believe it is valid/correct.

Our results show the feasibility of leveraging existing code from a codebase to repair bugs.

Section 4.2 shows an example of how ssFix finds and reuses a candidate code chunk from an external

code repository to produce a correct patch. It is also possible for ssFix to leverage a candidate code

chunk retrieved from the local faulty program to produce a correct patch. As an example, below is

a faulty code fragment (bug id: M33) as a part of the implementation for the phase-1 stage of the

simplex method. The method compareTo at Line 4 misuses the irrelevant threshold maxUlps which

is intended to be used as the amount of error for floating-point comparison and is much greater than
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the correct threshold epsilon that should have been used here for checking the general optimality.

1 for (...) {

2 ...

3 + if (Precision.compareTo(entry ,0d,epsilon )>0) {

4 - if (Precision.compareTo(entry ,0d,maxUlps )>0) {

5 columnsToDrop.add(i);

6 }

7 }

For repair, ssFix found a candidate chunk as shown below from the local program.

1 for (...) {

2 ...

3 if (Precision.compareTo(entry ,0d,epsilon )<0) {

4 return false;

5 }

6 }

It matched the two method calls compareTo(...,maxUlps) and compareTo(...,epsilon) and

replaced maxUlps with epsilon to produce the correct patch.

Our results also show that ssFix is efficient in producing patches by leveraging a candidate

chunk cchunk (retrieved from our codebase) that is syntax-related to the target chunk tchunk: the

median rank of the candidate chunks ssFix used to produce patches is 6.5 and the median time to

produce a plausible patch is only 10.7 minutes. ssFix is efficient because it leverages the syntactic

differences between tchunk and cchunk to produce patches. For a cchunk that is syntax-related

(i.e., structurally and conceptually similar) to tchunk, such differences are small, and the search

space is much reduced.

ssFix failed 297 (357-60) bugs with no patches generated. To understand the failures, we manually

examined the developer patches for all the 357 bugs and found that there are 263 complex bugs for

which the correct patches are not within the search space of ssFix (recall that ssFix can currently

only repair relatively simple bugs by making modifications within a relatively small code chunk).

Among the 297 failed bugs, there are 221 such complex bugs for which ssFix cannot produce correct

patches. (But note that ssFix did produce valid patches for 2 of the 263 complex bugs: Cl115 &

M30. Each such patch makes and only makes some but not all of the changes made by the developer

patch, and the corresponding patched program passes the test suite.)

Among the other 94 (357-263) simple bugs, ssFix produced plausible patches for 33 bugs, and it

failed 61 bugs with no patches generated. One challenge lies in the accuracy of fault localization.

We found GZoltar simply failed to identify the target faulty statements for 15 bugs (among the 61

failed ones). We also found there are 19 bugs for which the suspicious ranks of the target statements

are greater than 50 (with the median rank being 159), and ssFix did not actually looked at any of

these target statements under the current running setup.

Another challenge lies in ssFix’s code search ability in finding effective candidates. The current
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way ssFix does code search is not effective for all cases. The bug Cl10 is one example. ssFix produces

a target chunk as shown below.

if (recurse) {

- return allResultsMatch(n, MAY_BE_STRING_PREDICATE );

+ return anyResultsMatch(n, MAY_BE_STRING_PREDICATE );

} else { return mayBeStringHelper(n); }

Since all the identifier names are locally defined by the faulty program, ssFix creates a code pattern

with all the names symbolized, and extracts a list of structural tokens that are a little too gen-

eral (which roughly say that the code chunk contains an if-statement and two method calls to be

returned). The extracted conceptual tokens together are a little too unique to be used for finding

related candidate chunks in the codebase. As a result, ssFix failed to find candidate chunks that are

truly syntax-related from Merobase. The candidate chunks found from the local program however

do not contain the correct expression to be used for bug repair. So ssFix failed to repair the bug.

ssFix’s candidate translation, component matching, and modification can also be the limitations for

producing a valid/correct patch. We conducted more experiments to evaluate ssFix’s code search

and code reuse abilities in Section 5.3 of Chapter 5.

Since ssFix uses a test suite (as opposed to a formal specification) as the correctness criterion

for patch evaluation, it can generate a defective patch which introduces new bugs. An inaccurate

fault localization technique and an ineffective candidate could both lead to a defective patch being

generated. We actually found that it can be problematic to produce patches by deletion using a

candidate chunk that is not very related to the target chunk. ssFix produced four defective patches

by deleting the non-buggy statements.

3.4.2 RQ2

We compared ssFix to five other repair techniques for Java: jGenProg [145] (available at [16]) which

is a Java version of GenProg [116, 74], jKali [145] (available at [16]) which is a Java version of Kali

[183], Nopol (version 2015) [234] (available at [17]), HDRepair [113] (available at [9]), and ACS [232]

(available at [1]) on the same dataset. ssFix produced larger numbers of patches that are valid and

correct with the efficiency of producing a plausible patch being either comparable or better. We did

not compare ssFix to other repair techniques that are written for C (e.g., SearchRepair [97], Code

Phage [196], SPR [132], Prophet [134], and Angelix [153]) or are not publicly available as of August,

2017 (e.g., PAR [101]).

Experimental Setup

We ran jGenProg, jKali, Nopol, HDRepair, and ACS each to repair all the 357 bugs in the Defects4J

dataset on machines that have the same configurations with the ones on which we ran ssFix. The

time budget for repairing a bug is two hours (the same for ssFix). Since jGenProg and HDRepair
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Table 3.6: All Plausible Patches Generated by ssFix and Five Other Techniques (see Figure 3.8 for
the specific bugs for which valid patches were generated by the six techniques)

Tool
Time (in minutes)

#Plausible #Valid
#Correct

min max med sem syn
ssFix 1.8 100.5 10.7 60 20 15 14

jGenProg 10.8 78.5 30.5 19(27) 3 3(5) 2
jKali 4.4 81.6 8.5 18(22) 1 1(1) 1
Nopol 1.6 101.3 12.6 33(35) 0 0(5) 0

HDRepair 8.2 87.7 52.3 16(23†) 5 4(10†) 3
ACS 88.8 113.1 93.9 7(23‡) 3 3(18‡) 2

The numbers in parentheses (in the 5th and 7th columns) are copied from the
results reported in [61, 113, 232] (where the reported results in [61, 232] are based
on four of the five projects except the Closure Compiler project, and the reported
result in [113] is based on all the five projects). Our results (not in parentheses)
are based on all the five projects.
† The results reported in [113] are based on a repair experiment on 90 selected
bugs using a fault localization technique performed at the method level (with a
faulty method known in advance). For each bug, the authors of [113] looked for a
correct patch within the top 10 generated patches (if any). Our results are based
on all the 357 bugs. The fault localization was performed at the project level. For
a consistent comparison, we only checked the validity and correctness of the first
generated patch (if any).
‡ In our experimental setup, we found that ACS (available at [1]) took longer than
what is reported in the paper [232] to produce a plausible patch, and we did not
reproduce many correct patches reported in [232].

ssFix	

M50	

M53	

M70	

M75	L51	
M94	

M79	

C1	Cl14	L43	L59	C20	C24	
M30	L21	L6	Cl115	M33	
L33	M80	M57	M41	M59	

jGenProg	

jKali	 HDRepair	

L24	M85	T15	

ACS	

NoPol	(Empty)	

Figure 3.8: Valid Patches Generated by Different Techniques

use randomness for patch generation, we ran the tool (either jGenProg or HDRepair) in three trials6

to repair a bug, and we considered the tool to have a valid/correct patch generated if it did so in

at least one trial. For the other three techniques, we ran them each only in one trial to repair each

bug.

Results

Table 3.6 shows the repairing time (min, max, and median) and the numbers of plausible, valid, and

correct patches generated by all the six techniques. Figure 3.8 shows the ids of the bugs for which

the techniques produced valid patches. Our results show that ssFix significantly outperforms jGen-

Prog, jKali, and Nopol: ssFix produced many more valid patches (using either less or comparable

6Note that our experiment was very expensive and we only ran jGenProg/HDRepair in three trials. We believe our
current running setup is sufficient to show that ssFix outperforms the two tools: the number of valid and correct
patches generated by ssFix in one trial is about four times larger than the number of those patches generated by
jGenProg or HDRepair in three trials.
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time) than these techniques did. All the valid patches generated by these techniques were actually

generated by ssFix. M50 is a bug whose fix needs the deletion of a statement. jGenProg, jKali,

and ssFix all produced the correct patch by deleting the statement. For M53 and M70, jGenProg

successfully found the correct statements in the original program and did insertion and replacement

to produce the respective correct patches. ssFix also found the candidate code chunks including

the correct statements using the local contexts of the faulty statements and produced the correct

patches using the candidate code chunks. According to our results, jGenProg, jKali, and Nopol have

relatively poor performances. We found they have their own limitations in repairing most of the bugs

with valid patches generated. jGenProg cannot practically produce a correct patch when the repair

statement does not exist in the faulty program. It deletes a statement with high probability and this

often leads to a defective patch generated. jKali can only delete a statement, so it is not expected

to produce any correct patch that does not involve statement deletion. Nopol uses a conditional

synthesis technique to produce patches related to an if-statement. Our results show that it is prone

to producing a patch with a synthesized condition being too constrained or too loose. An example

(M85) is shown below.

if (fa * fb >= 0.0) { ... } //The faulty statement

if (fa * fb > 0.0) { ... } //The correct patch

if (fa * fb >= 1) { ... } //Nopol ’s patch

Although Nopol created a patch by constraining the original if-condition to make the test suite pass,

it is overly constrained and would not be correct in general.

HDRepair is an extension of GenProg. It uses more modification operations than GenProg

does but leverages the bug-fix patterns mined from existing bug-fixing instances to guide the patch

search process. However, our results show that HDRepair’s bug-fix-pattern driven algorithm is not

truly effective. Compared to jGenProg, it only produced two more valid patches with the median

repairing time being longer. Overall, ssFix outperforms HDRepair. But HDRepair did produce

three valid patches that ssFix failed to produce. For example, to produce one of such patches

(for M75), HDRepair reused a statement return getPct(Long.valueOf(v)) from the class of the

faulty statement return getCumPct((Comparable<?>) v); and applied a modification to replace

getCumPct with getPct. ssFix did not find the repair statement since its local context is not similar

to that of the faulty statement.

ACS is a recently developed technique that also uses condition synthesis to repair a program.

It leverages techniques of test case analysis, document analysis, dependency analysis, and predicate

mining to produce an if-statement with a synthesized condition that is likely to be correct. Our

results show that ACS generated valid patches for three bugs that none of the other techniques

successfully repaired. Below is an example (T15):

case -1:

+ if (val1==Long.MIN_VALUE) { //A correct patch

+ throw new ArithmeticException ();

+ }
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return -val1;

ACS analyzes the failed test case and figures out that the faulty program does not handle a boundary

case where an ArithmeticException needs to be thrown. It creates an if-statement to throw that

exception, synthesizes the condition val1==Long.MIN VALUE (the boundary case), and inserts it

in the faulty program to yield the patch. M85 is another example that ACS successfully repaired by

synthesizing a correct if-condition as fa*fb>=0.0 && !(fa*fb==0.0): it first identified a target

expression (fa*fb), then performed keyword search over the GitHub repositories to find relevant

predicates and produced the expression !(fa*fb==0.0), and it finally produced the correct condition

by conjoining this expression with fa*fb>=0.0. Through using relevant expressions from GitHub,

ACS synthesized a correct condition that is neither too constrained nor too loose. Although ACS

produced three valid patches that no other techniques produced, our results show that ssFix still

outperforms ACS in terms of the number of valid patches generated and the repairing time. Since

ACS is designed to repair bugs related to if-conditions, it is not easy for ACS to produce a direct,

valid patch for bugs like L59 for which ssFix produced a correct patch by replacing a method

argument strLen with another width as shown below.

+ str.getChars(0, width , buffer , size);

- str.getChars(0, strLen , buffer , size);

3.4.3 Discussion

In our experiments, we referred to the developer patch associated with a bug to manually determine

the validity and correctness of a patch generated by a repair technique. There can be in general

other ways to define the validity and correctness of a patch. For a fraction of plausible patches

generated by ssFix and other techniques, we cannot easily determine their validity or correctness,

but it is possible that some of the generated patches are valid and correct even though they are not

syntactically equivalent or similar to the developer patches. Even so, we do not believe there can be a

significant fraction of valid/correct patches among such plausible ones, and we released all the plau-

sible patches at https://github.com/qixin5/ssFix/tree/master/expt0/patch. Though possibly biased,

a manual evaluation method like ours is commonly used to evaluate the quality of patches generated

by current automated repair techniques. The problem however can be mitigated through using a

held-out test suite (to quantify overfitting) and/or other approaches that can identify overfitting

patches (e.g., [229, 238]).

ssFix is built upon the assumption that existing code from a code database contains the repair

code needed for producing the correct patch. In Chapter 5, we show an experiment we conducted

to test the assumption to see how often it holds in practice. ssFix is a relatively complicated repair

system. Its repair performance depends on its components for doing fault localization, code search,

and code reuse (for patch generation and validation). In Chapter 5, we conducted experiments to

evaluate ssFix’s code search and code reuse abilities. ssFix relies on an existing technique GZoltar

to fault localization, and we showed in this chapter (in Section 3.4.1) that GZoltar works poorly. In
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Chapter 5, we conducted more experiments to see whether ssFix can work well given the fault being

accurately located (at the statement and method levels). ssFix can produce overfitting patches. To

possibly avoid producing such patches, ssFix can leverage techniques like [206, 244, 229, 238, 130]).

3.5 Summary

In this chapter, we presented our automated repair technique ssFix which performs syntactic code

search to find existing code from a code database that is syntax-related to the context of a bug and

further leverages such code to produce patches for bug repair. Our experiments have demonstrated

the effectiveness of ssFix in repairing real bugs. In Chapter 5, we show the experiments we conducted

to test ssFix’s built-upon assumption (i.e., the repair code needed for bug repair often exists in the

code database) and to evaluate ssFix’s code search and code reuse abilities.



Chapter 4

Identifying Test-Suite-Overfitted

Patches through Test Case

Generation

A typical automated program repair (APR) technique that uses a test suite as the correctness

criterion can produce a patched program that is test-suite-overfitted, or overfitting, which passes

the test suite but does not actually repair the bug. In this chapter, we propose DiffTGen which

identifies a patched program to be overfitting by first generating new test inputs that uncover

semantic differences between the original faulty program and the patched program, then testing

the patched program based on the semantic differences, and finally generating test cases. Such a

test case could be added to the original test suite to make it stronger and could prevent the repair

technique from generating a similar overfitting patch again. We evaluated DiffTGen on 89 patches

generated by four APR techniques for Java with 79 of them being possibly overfitting and incorrect.

DiffTGen identifies in total 39 (49.4%) overfitting patches and yields the corresponding test cases.

With the fixed version of a faulty program being the oracle, the average running time is about 7

minutes. We further show that an APR technique, if configured with DiffTGen, could avoid yielding

overfitting patches and potentially produce correct ones.

4.1 Introduction

Given a faulty program and a fault-exposing test suite (which the faulty program failed), an APR

technique can generate a patched program that passes the test suite. However the patched program

may not actually repair the bug. It may introduce new bugs which the test suite does not expose.

Such a patched program, or the patch, is test-suite-overfitted and is called overfitting [200]. Studies

[183, 200] have shown that early repair techniques suffer from severe overfitting problems. According

to [183], the majority of patches generated by GenProg [74], AE [219] and RSRepair [182] are

53
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incorrect.More recent techniques look at many other methods (e.g., using human-written patches

[101], repair templates and condition synthesis [132], bug-fixing instances [134, 113], and forbidden

modifications [206]) for repair. However, their repair performances are still relatively poor. Within

a 12-hour time limit, the state-of-the-art repair techniques SPR [132] and Prophet [134] generated

plausible patches that pass the test suite for less than 60% bugs in a dataset containing 69 bugs,

with more than 60% of the plausible patches (the first found ones) being incorrect.

The low quality of a test suite is a critical reason why an overfitting patch might be generated.

Unlike a formal specification, the specification encoded in a test suite is typically weak and incom-

plete. For example, the fault-exposing test case in the test suite associated with the bug Math 85

from the Defects4J dataset [94] simply checks whether a method returns a result without any excep-

tion thrown, but does not check the correctness of the result. A patch generated by jGenProg (the

Java version of GenProg [74]) simply removes the erroneous statement that triggers the exception

without actually repairing it. The patch avoids the unexpected exception but deletes the expected

functionality of the original program and thus introduces new bugs. It is not surprising that a test

suite sometimes contains such weak test cases since the test suite is designed for humans but not for

machines, and a human seldomly makes an unreasonable patch by deleting the desirable functional-

ity of a program. However, such a weak test suite harms the performance of an APR technique, e.g.,

jGenProg. When a patched program that passes the test suite is generated, jGenProg would simply

accept it as there is no extra knowledge other than the given test suite to validate its correctness.

In this chapter, we first give a formal definition of an overfitting patch, and then propose DiffT-

Gen, a patch testing technique to be used in the context of automated program repair. DiffTGen

identifies overfitting patches generated by an APR technique through test case generation. Based

on the syntactic differences between a faulty program and a patched program, DiffTGen employs

an external test generator to generate test methods (test inputs) that could exercise at least one

of the syntactic differences upon execution. To actually find any semantic difference, DiffTGen in-

struments the two programs, runs the programs against the generated test method, and compares

the running outputs. If the outputs are different, DiffTGen reports the difference to the oracle for

correctness judging. If the output of the patched program is incorrect, DiffTGen determines the

patch to be overfitting. If a correct output could be provided by the oracle, DiffTGen would produce

an overfitting-indicative test case by augmenting the test method with assertion statements. (Note

that it is not interesting when the running outputs are identical, since they are not related to any

changes the patch makes.)

DiffTGen can be combined with an APR technique to enhance its performance. After a patch is

generated by the repair technique, DiffTGen may produce a test case showing the patch is overfitting.

Such a test case could be added to the original test suite to make the test suite stronger. Using the

augmented test suite, the repair technique avoids yielding a category of patches that have similar

overfitting properties, and could potentially produce a correct patch (See Section 4.4.2).

The main contributions we make are as follows:
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Figure 4.1: The Overview of DiffTGen. faultprog: the faulty program; patchprog: the patched pro-
gram; ∆syn: the syntactic differences between faultprog and patchprog; targetprog: the test target
program; faultprog1, patchprog1: the output-instrumented versions of faultprog and patchprog;
faultprog2: the test-case-instrumented version of faultprog.

• We built a patch testing tool DiffTGen which could identify an overfitting patch gener-

ated by an APR technique through test case generation. The tool is currently available at

https://github.com/qixin5/DiffTGen.

• We empirically evaluated DiffTGen on a set of 89 patches generated by four APR techniques

for Java: jGenProg [145] (available at [16]) which is a Java version of GenProg [116, 74],

jKali [145] (available at [16]) which is a Java version of Kali [183], Nopol (version 2015) [234]

(available at [17]), and HDRepair [113] (available at [9]). Among the 89 patches, we identified

10 patches to be non-overfitting and 79 patches to be possibly overfitting (and thus incorrect).

DiffTGen identified 39 (49.4%) patches to be overfitting with the corresponding test cases

generated. With a bug-fixed program as the oracle, the average running time is only about 7

minutes.

• We empirically evaluated the effectiveness of DiffTGen in the context of automated program

repair. Our results show that an APR technique, if configured with DiffTGen, could avoid

generating overfitting patches and generate correct patches eventually.

4.2 Overview

In this section, we go over how DiffTGen works with an example. DiffTGen accepts as input a faulty

program faultprog, a patched program patchprog, a set of syntactic differences ∆syn between the

two programs, and an oracle. A syntactic difference δsyn ∈ ∆syn is a tuple < faultstmt, patchstmt >

where faultstmt and patchstmt are the respective statements in faultprog and patchprog that are

related to the change. Note that a δsyn could have a null value for either faultstmt or patchstmt (but

not both) to represent an insertion or a deletion. If neither faultstmt nor patchstmt is null, δsyn is a

replacement. In the context of automated program repair, a repair technique often produces a patch

report containing what changes it has made, and ∆syn could be obtained by a simple report analysis.

As output, DiffTGen either produces a test case showing patchprog is overfitting or produces nothing
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1 public static boolean toBoolean(String str) {

2 if (str=="true") return true;

3 if (str==null) return false;

4 switch (str.length ()) {

5 case 2: { ... }

6 case 3: {

7 char ch = str.charAt (0);

8 if (ch==’y’)

9 return

10 (str.charAt (1)==’e’||str.charAt (1)==’E’)

11 && (str.charAt (2)== ’s’||str.charAt (2)== ’S’);

12

13 if (ch==’Y’)// Changed to "if (str!=null)" (Overfitting Patch)

14 return

15 (str.charAt (1)==’E’||str.charAt (1)==’e’)

16 && (str.charAt (2)== ’S’||str.charAt (2)== ’s’);

17

18 // Inserted "return false ;" (Correct Patch)

19 }

20 case 4: {

21 char ch = str.charAt (0);

22 if (ch==’t’) {

23 return

24 (str.charAt (1)==’r’||str.charAt (1)==’R’)

25 && (str.charAt (2)== ’u’||str.charAt (2)== ’U’)

26 && (str.charAt (3)== ’e’||str.charAt (3)== ’E’);

27 }

28 if (ch==’T’) { ... }

29 }

30 }

31 return false;

32 }

Figure 4.2: The Lang 51 Bug & an Overfitting Patch

if no such test cases can be found. (For a generated test case, DiffTGen also produces a test-case-

instrumented version of faultprog. For testing, one needs to run this version against the test case.

In the instrumented version, the original semantics of faultprog is preserved, see Section 4.3.4.)

Intuitively, an overfitting, patched program passes the original test suite but either does not fully

repair the bug or repairs the bug but introduces new bugs which the test suite does not expose (see

Section 4.3.1 for a formal definition of an overfitting patch). DiffTGen goes through three stages to

produce a test case: Test Target Generation, Test Method Generation, and Test Case Generation.

In the first stage, DiffTGen produces a target program targetprog on which a test generator works

to generate test inputs. In the second stage, DiffTGen employs a test generator to actually generate

test methods (as test inputs) that uncover semantic differences between faultprog and patchprog.

In the third stage, DiffTGen produces test cases, if any, showing patchprog is overfitting based on

the semantic differences. Figure 4.1 shows an overview of DiffTGen.

We use the example shown in Figure 4.2 to explain the three stages. The faulty program (in
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Java) is a real bug (Lang 51 ) in the Defects4J bug dataset [94]. The functionality of the program

is to convert a string into a boolean value. The fault-exposing test case from the test suite as-

sociated with the bug invokes the method toBoolean with the string “tru” as the value for str.

Upon execution with str="tru", the method toBoolean is expected to return false as the output.

However, without the correct return statement inserted at Line 17, the branch of case 4 is executed

where an IndexOutOfBoundsException is thrown at Line 26. A patched program that modifies the

if-condition at Line 13 (from ch==‘Y’ to str!=null) is generated by an APR technique Nopol [234]

in the repair experiments conducted by Martinez et al. [143]. The patched program now works fine

for the input “tru” (it returns false after executing the return statement starting at Line 14) and

passes the original test suite, but it does not actually repair the bug. For this example, DiffTGen

generates a new test case with the input string “@es” which exposes a new failure: the expected

output is false but the patched program returns true. With a fixed version of the program being

the oracle, it only took DiffTGen about 3.8 minutes to generate the test case.

4.2.1 Test Target Generation

In the first stage, DiffTGen generates a program which we call the test target program, or targetprog,

based on faultprog, patchprog, and the syntactic differences ∆syn between them. targetprog is the

actual program on which a test generator later works to generate test inputs. It is an extended

version of patchprog with dummy statements inserted as the coverage goals. A test input that is

generated by a test generator with at least one of the coverage goals satisfied can lead to a differential

execution between faultprog and patchprog. Such an input is likely to uncover a semantic difference

δsem between the two programs and further expose an overfitting behavior of patchprog.

To obtain patchprog, for each δsyn ∈ ∆syn, DiffTGen inserts a dummy statement in patchprog.

For simple cases, where a patching modification does not involve changing an if-condition, DiffTGen

simply inserts a dummy statement before the modified statement (for insertion or replacement)

or in place of the removed statement (for deletion). For more complicated cases, where a patching

modification is related to an if-statement and effectively modifies an if-condition (which is a common

situation [172, 144]), DiffTGen produces a synthesized if-statement containing a dummy statement

and inserts it in patchprog. The advantage of such a synthesized if-statement is as follows: a test

input that covers the dummy statement (the coverage goal) would expose different branch-taking

behaviors related to a modified if-statement between faultprog and patchprog. Such a test input is

thus likely to uncover a δsem between the two programs.

For the example in Figure 4.2, DiffTGen creates a targetprog by inserting a newly synthesized

if-statement (which is a dummy statement) before Line 13. The synthesized if-statement is as shown

below.

if (((ch==‘Y’)&&!( str!=null ))||(!( ch==‘Y’)&&( str!=null ))) {

int delta_syn_3nz5e_0 = -1;

}
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1 @Test public void test078 () throws Throwable {

2 boolean boolean0 = BooleanUtils.toBoolean("@es");

3 }

Figure 4.3: A Test Method Generated by EvoSuite

1 public static boolean toBoolean(String str) {

2 Object o_7au3e = null;

3 String c_7au3e =

4 "org.apache.commons.lang.BooleanUtils";

5 String msig_7au3e =

6 "toBoolean(String)" + eid_toBoolean_String_7au3e;

7 try {

8 o_7au3e = toBoolean_7au3e(str);

9 FieldPrinter.print(o_7au3e , eid_toBoolean_String_7au3e ,

10 c_7au3e , msig_7au3e , 0, 5);

11 } catch (Throwable t7au3e) {

12 FieldPrinter.print(t7au3e , eid_toBoolean_String_7au3e ,

13 c_7au3e , msig_7au3e , 0, 5);

14 throw t7au3e;

15 } finally {

16 eid_toBoolean_String_7au3e ++;

17 }

18 return (boolean) o_7au3e;

19 }

Figure 4.4: The Output-Instrumented Version of faultprog.

In the context of the program, the if-condition is equivalent to if (ch!=‘Y’). In this example,

for any input str that covers the dummy statement in targetprog, it would lead to a differential

execution between faultprog and patchprog: the input would not exercise the return statement in

faultprog (starting at Line 14) but would exercise the one in patchprog.

4.2.2 Test Method Generation

In the second stage, DiffTGen employs an external test generator (we use EvoSuite [65]) to generate

test methods (test inputs) for targetprog that can cover at least one of the dummy statements upon

execution. (Note that a test method contains no assertion statements, but there is at least one

assertion statement in a test case.) For our example, one of the generated test methods is shown in

Figure 4.3.

A generated test method can exercise a δsyn between faultprog and patchprog upon execution,

but may or may not be able to uncover a δsem. To tell whether a test method can uncover a δsem,

DiffTGen creates instrumented versions of faultprog and patchprog (called the output-instrumented

versions), runs them against the test method to obtain running outputs, and compares the outputs.

In an output-instrumented version of a program (either faultprog or patchprog), DiffTGen creates

statements that print as outputs values that can be affected by δsyn.
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1 //The output of the faulty program (instrumented)

2 Test Method: test078

3 PRIM_LOC :(E)0,(C)org.apache.commons.lang.BooleanUtils ,(MSIG)toBoolean(

↪→ String)0,(I)0

4 TYPE:Boolean

5 VALUE:false

6

7 //The output of the patched program (instrumented)

8 Test Method: test078

9 PRIM_LOC :(E)0,(C)org.apache.commons.lang.BooleanUtils ,(MSIG)toBoolean(

↪→ String)0,(I)0

10 TYPE:Boolean

11 VALUE:true

Figure 4.5: The outputs of running the faulty program and the patched program (both instrumented)
against the test method in Figure 4.3 (the input).

For our example, DiffTGen creates an output-instrumented version of toBoolean shown in Fig-

ure 4.41 (which can be used for either faultprog or patchprog). Essentially, the code calls the original

version of the method at Line 8 (the one shown in Figure 4.2, now renamed as toBoolean 7au3e)

and prints the returned value o 7au3e at Lines 9-10. Along with the return value, the code also

prints other values (e.g., one of them is the full class name of the method c 7au3e) which DiffTGen

later uses to retrieve the output value for producing an assertion statement for a test case. If any

exceptions are thrown, DiffTGen would also print the exceptional information (Lines 12-13). More

details can be found in Section 4.3.3.

DiffTGen runs the output-instrumented versions of faultprog and patchprog against the test

method shown in Figure 4.3 to obtain two outputs in Figure 4.5. (To do so, DiffTGen first removes

the test method’s annotation @Test and runs a class containing a main method where the test

method is called.) The outputs basically show that for the first execution (indicated by (E)0 at

Lines 3 & 9) of the toBoolean method in the BooleanUtils class, the return values (indicated by

(I)0 at Lines 3 & 9) are different: one being false and the other being true. In the next stage,

DiffTGen produces a test case based on the two different outputs.

4.2.3 Test Case Generation

In the third stage, DiffTGen compares the two outputs generated in the previous stage to identify

specific values that are different, and then asks the oracle to tell which is correct. If the value

generated by patchprog is incorrect, DiffTGen determines patchprog to be overfitting with a test

case generated.

Given the generated output strings shown in Figure 4.5, DiffTGen found that output values

(at Lines 5 & 11) are different and are comparable since their location properties (the PRIM LOC

values at Lines 3 & 9) are the same. DiffTGen then asks an oracle to determine which output value

1The code needs a JDK version higher than 1.5 to compile.
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1 public static boolean toBoolean(String str) {

2 Object o_7au3e = null;

3 String c_7au3e =

4 "org.apache.commons.lang.BooleanUtils";

5 String msig_7au3e =

6 "toBoolean(String)" + eid_toBoolean_String_7au3e;

7 try {

8 o_7au3e = toBoolean_7au3e(str);

9 addToORefMap(msig_7au3e , o_7au3e );

10 addToORefMap(msig_7au3e , null);

11 addToORefMap(msig_7au3e , null);

12 } catch (Throwable t7au3e) {

13 addToORefMap(msig_7au3e , t7au3e );

14 throw t7au3e;

15 } finally {

16 eid_toBoolean_String_7au3e ++;

17 }

18 return (boolean) o_7au3e;

19 }

Figure 4.6: The Test-Case-Instrumented Version of faultprog.

1 @Test public void test078 () throws Throwable {

2 BooleanUtils.clearORefMap ();

3 boolean boolean0 = BooleanUtils.toBoolean("@es");

4 List obj_list_7au3e = (List) BooleanUtils.oref_map

5 .get("toBoolean(String )0");

6 Object target_obj_7au3e = obj_list_7au3e.get (0);

7 assertFalse(

8 "(E)0,(C)org.apache.commons.lang.BooleanUtils ," +

9 "(MSIG)toBoolean(String )0,(I)0",

10 (( Boolean) target_obj_7au3e ). booleanValue ());

11 }

Figure 4.7: Test Case Generated by DiffTGen

is correct. For this example, we used the fixed version of the faulty program (the manually fixed

version available in the Defects4J dataset) and found that the output value of faultprog (which

is false) is correct but the output value of patchprog (which is true) is incorrect. (To do so, we

created an output-instrumented version for the fixed version and ran it against the test method to

obtain the expected output. In general, a human oracle would be needed and DiffTGen needs to be

amenable to a human. The research of involving a human oracle for test case generation is left as

future work.)

With the expected output provided by an oracle, DiffTGen creates a test-case-instrumented

version for faultprog (Figure 4.6) and produces a test case (Figure 4.7) by augmenting the test

method with an assertion statement and other statements for creating the assertion. In the test-

case-intrumented version of faultprog, DiffTGen saves the reference to the object o 7au3e, the

target object whose value to be asserted, in a static map field oref map in the class of toBoolean.
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In the test case (Figure 4.7), DiffTGen creates two statements (Lines 4-6) obtaining the target object

and one assertion statement (Lines 7-10) asserting the value to be false as expected. More details

can be found in Section 4.3.4. DiffTGen finally reports the patch to be overfitting with the generated

test case as an evidence.

4.3 Methodology

In this section, we first give the definition of an overfitting patch, and then elaborate on the three

stages that DiffTGen takes to identify an overfitting patch with a test case generated.

4.3.1 The Definition of an Overfitting Patch

Let faultprog be the faulty program which we assume contains only one bug and I be the input

domain of faultprog. I can be divided into two sub-domains I0 and I1 on which faultprog has the

correct and incorrect behaviors respectively. Let fixprog be a correct version of faultprog that only

repairs the bug and does not contain any new features. Assuming both programs are deterministic,

then we have ∀i0 ∈ I0.faultprog(i0) = fixprog(i0) ∧ ∀i1 ∈ I1.faultprog(i1) 6= fixprog(i1) where

we use p(i) to denote the program behavior of p on a specific input i. Let patchprog be a patched

program that was generated by a repair technique and can pass a test suite that faultprog failed.

Assuming patchprog is also deterministic, then we have ∃i1 ∈ I1.patchprog(i1) = fixprog(i1). A

repair technique can produce an overfitting patch which does not actually repair the bug. An

overfitting patch (or a patched program) can be categorized into two types:

• Overfitting-1: The patch repairs some (or even all) of the incorrect behaviors of the original

program but breaks some of its correct behaviors.

• Overfitting-2: The patch repairs some (but not all) of the incorrect behaviors of the original

program and does not break any of its correct behaviors.

For a patchprog that is overfitting-1, we have

∃i0 ∈ I0.∃i1 ∈ I1.patchprog(i0) 6= fixprog(i0) ∧ patchprog(i1) = fixprog(i1)

For a patchprog that is overfitting-2, we have

∀i0 ∈ I0.patchprog(i0) = fixprog(i0)∧

∃i10 ∈ I1.∃i11 ∈ I1.i10 6= i11∧

patchprog(i10) 6= fixprog(i10)∧

patchprog(i11) = fixprog(i11)

Our definition2 is consistent with the definition of a bad fix given by Gu et al. [75]: a bad fix either

introduces disruptions (regressions) or does not cover all the bug-triggering inputs or both. A patched

2We note a very similar definition given by Yu et al. in their work [244].
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program that is overfitting-1 introduces regressions and is not acceptable, but a patched program

that is overfitting-2 does not introduce regressions (though it only makes a partial repair) and may

thus be considered as still valid. DiffTGen can identify a patched program3 to be overfitting-1 by

finding an input that exposes a semantic difference between faultprog and patchprog and further

showing the semantics of patchprog is incorrect while the semantics of faultprog is correct with the

assistance of an oracle. However, it cannot directly identify a patched program to be overfitting-

2. Identifying such a patched program involves two steps: (1) showing ∃i1 ∈ I1.patchprog(i1) 6=
fixprog(i1) (Overfitting-2a) and (2) showing ∀i0 ∈ I0.patchprog(i0) = fixprog(i0) (Overfitting-

2b). DiffTGen can achieve (1) by finding a test input exposing a semantic difference between

faultprog and patchprog and further showing the semantics are both incorrect4. However, it cannot

achieve (2) by proving the patched program contains no regressions.

4.3.2 Test Target Generation

In the first stage, DiffTGen creates a test target program, or targetprog, based on the syntactic

differences ∆syn between faultprog and patchprog. targetprog is the program on which a test

generator later works to generate test inputs that uncover semantic differences between faultprog

and patchprog.

DiffTGen creates targetprog by extending patchprog with dummy statements inserted (one for

each δsyn). The inserted dummy statements do nothing but can be detected by a test generator

as the coverage goals. DiffTGen inserts dummy statements into targetprog in such a way that at

least a dummy statement would be executed if and only if the execution of faultprog and patchprog

would differ.

For simple cases, where a patching modification δsyn does not involve modifying an if-condition

(e.g., it modifies an assignment), DiffTGen simply creates a dummy statement and inserts it in front

of the modified statement (for insertion or replacement), or in place of the deleted statement (for

deletion) in patchprog. If a generated test input can cover the dummy statement upon execution, the

input would cover the modified statement in patchprog but the unmodified statement in faultprog,

and would thus lead to a differential execution between faultprog and patchprog.

The more complicated cases arise when δsyn is related to an if-statement and effectively modifies

an if-condition. (This is a common situation [172, 144]. In fact, there exist repair techniques that

only look at condition-related bugs [234, 232].) In such cases, it might be ineffective just to insert a

dummy statement in front of an if-statement whose condition is modified. Figure 4.8 is an example

where the faulty program faultprog and the patched program patchprog are shown at the top

and in the middle. The faulty if-condition x<999 at Line 2 was changed to x<1000 at Line 5. If

DiffTGen simply creates a dummy statement and inserts it before the if-statement at Line 5 as the

3A patched program is known to have something repaired, since it passed the test suite that the original program
failed.

4Note that DiffTGen does not find an input showing the semantics of the two programs are identical but incorrect.
Such an input is not directly related to what changes a patch makes.
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1 int faultprog(int x) {

2 if (x < 999) { x++; } //the faulty statement

3 return x; }

4 int patchprog(int x) {

5 if (x < 1000) { x++; } //the patched statement

6 return x; }

7 int targetprog(int x) {

8 if ((!(x <999)&&(x <1000))||((x <999)&&!(x <1000))){

9 int delta_syn_3nz5e_0 = -1; } //a dummy statement

10 if (x < 1000) { x++; }

11 return x; }

Figure 4.8: A Test Target Example

coverage goal, then a test generator could quite possibly end up with finding an input x taking a

random value, say 33, to make the dummy statement covered. However, such an input can expose

no semantic difference between the two programs.

To address the problem, DiffTGen creates a synthesized if-statement and inserts it before the

modified statement or at the modification place in targetprog. The new if-statement contains a

new if-condition. It also contains a dummy statement as its then-branch. The advantage of such a

synthesized if-statement is as follows: a generated test input that can cover the dummy statement

would expose different branch-taking behaviors between the unmodified statement in faultprog and

the modified statement in patchprog. For example, in Figure 4.8, DiffTGen creates a synthesized

if-statement starting at Line 8. For the dummy statement at Line 9 to be covered, a test input x

has to satisfy the condition at Line 8 which is essentially x==999. Such an input can expose different

branch-taking behaviors between faultprog and patchprog: Given x==999, faultprog does not

execute its then-branch x++, but patchprog does. This input further exposes a semantic difference

between the two programs, the return value of faultprog is 999, but the return value of patchprog

is 1000.

DiffTGen considers in total 10 different types of modifications to produce dummy statements

to be inserted in targetprog. Table 4.1 shows the 10 cases with code examples. The three cases

Non-partial-if Insertion, Non-partial-if Deletion, and Other Change cover the simple cases where

DiffTGen simply inserts dummy statements into patchprog to produce targetprog. For each of the

other cases where the modification effectively changes an if-condition, DiffTGen creates a synthesized

if-statement to be inserted in patchprog. (Note that some of the cases can be considered as changing

if-conditions. For example, inserting a partial if-statement if(c){s} can be considered as changing

the condition of an if-statement if(false){s} from false to c.) To create a target program, for

each δsyn ∈ ∆syn, DiffTGen looks at the 10 change cases in the same ordering as listed in Table 4.1

(from top to bottom), finds the first change case that is matched, produces the new statement, and

inserts it in targetprog.
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Table 4.1: Test Target Generation of 10 Change Cases

change case faultstmt patchstmt targetprog

Partial-if Insertion null if(c){s} patchprog with if(c){dummystmt} inserted before patchstmt

Non-parial-if Insertion null s patchprog with dummystmt inserted before patchstmt

Partial-if Deletion if(c){s} null patchprog with if(c){dummystmt} inserted where faultstmt is deleted

Non-partial-if Deletion s null patchprog with dummystmt inserted where faultstmt is deleted

If-Guard Insertion s if(c){s} patchprog with if(!c){dummystmt} inserted before patchstmt

If-Guard Deletion if(c){s} s patchprog with if(!c){dummystmt} inserted before patchstmt

If-Cond Change if(c1){s} if(c2){s} patchprog with if(!c1&&c2||c1&&!c2){dummystmt} inserted before patchstmt

If-Cond-Else Change if(c1){s} if(c2){s}else{e2} patchprog with if(!(c1&&c2)){dummystmt} inserted before patchstmt

If-Cond-Then Change if(c1){s1}else{e} if(c2){s2}else{e} patchprog with if(c1||c2){dummystmt} inserted before patchstmt

Other Change s1 s2 patchprog with dummystmt inserted before patchstmt

A partial-if-statement does not have an else branch.

4.3.3 Test Method Generation

In this stage, DiffTGen employs a test generator EvoSuite to generate test methods (test inputs)

for targetprog with at least one of the coverage goals satisfied (i.e., with at least one of the dummy

statements covered). Such a test method can exercise at least a δsyn and can cause the executions

of faultprog and pathprog to differ. However, the test method may not be able to expose any

semantic difference δsem between the two programs. To determine whether a test method can

expose a δsem, DiffTGen creates instrumented versions of faultprog and patchprog, runs the two

instrumeted versions against the test method to obtain running outputs, and compares the outputs.

We call such an instrumented program on which DiffTGen executes to obtain outputs an output-

instrumented program. For the rest of the section, we focus on explaining how to create an output-

instrumented version of a program.

Creating an Output-Instrumented Version

DiffTGen needs to be able to detect whether a given test run exposes a semantic change between

faultprog and patchprog. In the simplest case, a test method (as a test driver) runs a patched

method directly and any difference is seen in the return value of the method. However, real-world

patches are seldom that simple: a test method might call other methods which in turn call the

patched method; the difference between two executions might not be reflected in the return value,

but might be reflected in a changed field accessible from an argument passed to the method.

To accommodate these various possibilities, DiffTGen creates an output-instrumented version of

a program by augmenting the program with printing statements. We assume a patching modification

is made within a method and a semantic change can propagate to the “input” and “output” elements

of the method. We define the input elements of a method to be the arguments (including the this

argument) that are passed to the method on entry, and we define the output elements to be the

return value and any exceptions thrown on exit5. For each δsyn ∈ ∆syn, DiffTGen looks at the

input and output elements of the method where the change is made (also called the delta-related

method), and prints the values of the elements and the types. (Note that DiffTGen does not print

any input argument that is of a primitive type, a String type, or is passed as a final type, since a

change cannot propagate to such an argument after the method execution.)

5Note that a change can also propagate to a static class field which currently we not handle. Handling this type
of changes is left as future work.
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DiffTGen actually calls a printer (FieldPrinter) that we created to print values and types. For

an element that is of a primitive type or a String type, the printer simply prints its value and type;

For an element that is an array, a list, a set, or a map, the printer creates a list for the element, and

prints the list elements in turn; For an element that is of a Java Throwable type, the printer calls the

toString method and prints the returned string as the value, and it prints the keyword “Throwable”

as the type; For an element that is of other types, the printer uses Java reflection6 to explore the

structure of the element7 (as an object) and prints the fields in a depth-first approach for which we

use 5 as the maximum depth for exploration.

At the implementation level, for each delta-related method mδ, DiffTGen creates a stub method

m′δ whose method signature, method name, and parameter names are equal to those of mδ. DiffTGen

then renames mδ. In m′δ, it creates a statement calling the renamed mδ in a try statement. After

calling mδ, DiffTGen creates statements calling FieldPrinter.print to print the input and output

elements of mδ. In the catch clause, it creates a statement printing the thrown exception. The

printer accepts six arguments. The first argument is the element to be printed. The printer either

simply prints the value of the element and its type or explores the element’s internal structure to

print a sequence of values and the corresponding types. For each value, the printer also prints the

retrieval information showing how the value can be retrieved from an execution (e.g., indicating the

printed value is the return value of the method in its first execution). For printing the retrieval

information, the printer also accepts as arguments the call count (which is associated with m′δ), the

class name, the extended method signature (which is a string consisting of the method signature of

mδ and the call count), and the property of the element to be printed (indicating, e.g., it is a return

value). The final argument the printer accepts is the maximum printing depth (we use 5). In the

finally clause, DiffTGen creates a statement increasing the call count. In m′δ, DiffTGen also creates

other statements that define variables and return the final result (if needed).

To obtain outputs, DiffTGen creates a test class, copies each test method (with the annotation

@Test removed) to the class, creates a main method in the class, and calls the main method to run

each test method over the output-instrumented versions of faultprog and patchprog. An output is

printed in a stylized form so that the corresponding lines can be easily compared.

4.3.4 Test Case Generation

In the previous stage, DiffTGen runs the output-instrumented versions of faultprog and patchprog

against a test method to obtain running outputs. In this stage, DiffTGen compares the outputs to

identify specific values that are different, and then asks the oracle to tell which is correct. When

the value generated by patchprog is incorrect, DiffTGen determines patchprog to be overfitting. If

a correct value could be provided by the oracle, DiffTGen performs two steps to produce a test

case: (1) creating a test-case-instrumented version (for the original faultprog for which a test case

6We use FieldUtils from the apache package commons-lang3-3.5.

7DiffTGen ignores an element that is declared to be a final or a static type which usually does not contain a
semantic change.
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is created) and (2) augmenting the test method. DiffTGen uses the two steps mainly to create an

assertion in the test case that asserts the value (that was checked and compared) to be equal to the

expected one provided by the oracle.

Comparing the Running Outputs

DiffTGen compares the running outputs of faultprog and patchprog to identify comparable values

that are different8. Two values are comparable if the two pieces of retrieval information associ-

ated with the values (indicating how the values can be generated) are identical. More specifically,

DiffTGen goes through the two outputs (as two strings) line by line in parallel. When the two lines

examined both start with VALUE (e.g., Lines 5 & 11 in Figure 4.5), DiffTGen obtains the corre-

sponding value items which we call the check values. DiffTGen also obtains the retrieval information

by looking at two lines before the current lines that start with PRIM LOC. We call the correspond-

ing value items the loc values. When the two loc values are identical but the two check values are

different, DiffTGen successfully identifies comparable values that are different, and it provides to the

oracle (1) the test method, (2) the loc value, (3) the two check values, and (4) the types of the check

values (obtained from one line before the check value lines that start with TYPE ). DiffTGen asks

the oracle to determine which value is correct (and if the value types are different, what is the correct

type). If neither is correct, DiffTGen further asks the oracle to provide a correct value (possibly with

a value type). An oracle may not provide a correct value or a type (correctness judging between two

values might not be easy for a human oracle). In that case, DiffTGen discards the current check

values and keeps looking for other check values in the outputs. (For our experiments in Section 4.4,

DiffTGen uses a fixed version of faultprog as the oracle.)

Generating a Test Case

Given an expected value (possibly with an expected type) and a loc value used to generate the

value to be asserted, DiffTGen produces a test case mainly by augmenting the test method with

an assertion statement. To create the assertion statement, DiffTGen needs to do three things:

(1) obtain the input/output element to be asserted; (2) obtain the value to be asserted from the

input/output element; and (3) produce an assertion statement asserting the value to be equal to the

expected value.

(2) and (3) are easy to do. Once an input/output element is available, DiffTGen parses the

loc value to obtain the access path which it needs to follow to obtain the value to be asserted

(or the target value). With the access path being ready, DiffTGen uses Java reflection to explore

field structure of the element, creates statements that follow the path to obtain the target value

syntactically, and inserts the statements in the test method. Then DiffTGen simply creates an

assertion statement asserting the target value to equal to the expected value.

The difficulty lies in (1): how to obtain the input/output element to be asserted (or the target

8DiffTGen currently does not produce any test case based on output values that are not comparable.
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element). For the simple test method as shown in Figure 4.3, the target element (i.e., the return

value boolean0) is syntactically available. In general, however, the target element might not be

syntactically available in the test method: consider the case where the delta-related method (where

a patching modification is made) is a private method called by a public method called in the test

method. To still be able to syntactically obtain the target element in the test method, DiffTGen

creates an instrumented version of faultprog, which we call the test-case-instrumented version, that

keeps track of the input/output elements of a delta-related method by storing the elements in a

map (as a static field of the method’s located class). Later, to syntactically obtain an input/output

element in the test method, DiffTGen simply creates a statement that refers to the field map to get

the element.

For the rest of the section, we first explain how to create a test-case-instrumented version of a

program, then explain how to augment a test method to produce a test case.

Creating a Test-Case-Instrumented Version In a test-case-instrumented version, the parent

class of each delta-related method contains a static field map named oref map that stores the input

and output elements of the method. The key of the map is a string consisting of the signature of

the delta-related method and a call count associated with the method (i.e., the extended method

signature). The value of the map is a list of the input/output elements.

Creating a test-case-instrumented version is similar to creating an output-instrumented version:

DiffTGen looks at each delta-related method mδ (where a patching modification is made), creates

a stub method m′δ, renames mδ, and creates a try-statement within m′δ where mδ is called. Here,

after this method call, instead of creating statements printing the input/output elements, DiffTGen

creates statements calling a static method addToORefMap it creates to store the elements in the

map oref map. addToORefMap accepts two arguments: (1) the extended method signature of mδ

(before it is renamed, as a key stored in oref map) and (2) the input/output element (stored in a

list as the value of the key). DiffTGen calls addToORefMap to store in a list the return value, the

this argument, and the method arguments in turn. (If an element is not available, it stores null.)

Similarly, in the catch clause, DiffTGen calls addToORefMap to store the thrown exception.

Augmenting the Test Method Given the expected value provided by the oracle, the loc value

obtained from the running output, and a test-case-instrumented version created, DiffTGen finally

produces a test case by augmenting the test method. In the test case, DiffTGen mainly creates

statements that (1) syntactically obtain the target element (i.e., the input/output element to be

asserted) by referring to the static field map (oref map) created in the test-case-instrumented version,

(2) syntactically obtain the target value (i.e., the value to be asserted) by following the access path

contained in the loc value to explore the target element, and (3) assert the target value to be equal

to the expected value.

More specifically, DiffTGen creates a test case whose method signature is identical to that of

the test method and contains an extra @Test. In the test case, DiffTGen first creates a statement

clearing the map oref map contained in the test-case-instrumented version. Next it copies all the
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1 Object target_obj_7au3e = null;

2 boolean not_thrown = false;

3 try {

4 <CLASS NAME >. clearORefMap ();

5 <TESTING CODE GENERATED BY EVOSUITE >

6 not_thrown = true;

7 fail ();

8 } catch (Throwable t) {

9 if (not_thrown) { fail("Throwable Expected!"); }

10 else {

11 target_obj_7au3e =...;//get the input/output element

12 assertEquals(<MESSAGE >, <EXPECTED VALUE >,

13 (( Throwable) target_obj_7au3e ). toString ());

14 }

15 }

Figure 4.9: Augmenting a Test Method with an Expected Throwable

statements from the test method. Next it creates statements to syntactically obtain the target

element by referring to oref map using the extended method signature and the property value it

obtained from the loc value (the property value is actually the index of the target element in the

element list stored in oref map). Next it creates statements to syntactically obtain the target value

from the target element. Again, when the target element is not of a primitive, a String, or a

Throwable type, DiffTGen uses Java reflection to explore the structure of the target element and

follows the access path (contained in the loc value) to get the target value. Finally, DiffTGen creates

a JUnit statement asserting the target value to be equal to the expected value.

Note that when the element to be asserted is an exception, DiffTGen uses the template shown in

Figure 4.9 to produce a test case. Essentially, DiffTGen creates a try statement and copies the testing

statements from the test method to the try-body. DiffTGen creates the augmented statements in

the catch clause.

4.4 Empirical Evaluation

To empirically evaluate the effectiveness of DiffTGen, we ask two questions:

• RQ1: Could DiffTGen identify overfitting patches generated by APR tools? What is its

performance?

• RQ2: Could DiffTGen enhance the reliability of an APR technique and guide the technique

to produce correct patches?

We conducted two experiments to answer the two questions. We next show each experiment in turn.



69

4.4.1 RQ1

To evaluate the performance of DiffTGen in identifying overfitting patches, we created a patch

dataset containing 89 patches (the patched programs) generated by four APR techniques for Java:

jGenProg [145] (available at [16]) which is a Java version of GenProg [116, 74], jKali [145] (available

at [16]) which is a Java version of Kali [183], Nopol (version 2015) [234] (available at [17]), and

HDRepair [113] (available at [9]). Among the 89 patches, we identified 10 patches to be correct

and non-overfitting and the other 79 patches to be possibly overfitting. We ran DiffTGen on each

patched program and its original faulty program. Our results show that DiffTGen found 39 out of

the 79 patches (49.4%) to be overfitting with the corresponding test cases generated.

Experimental Setup

Patch Dataset. The current implementation of DiffTGen is in Java. To evaluate its performance,

we collected 89 patches generated by four APR techniques: jGenProg, jKali, Nopol, and HDRepair

for bugs in the Defects4J dataset [94]. Martinez et al. did an experiment [143] running three repair

tools: jGenProg, jKali, and Nopol on the Defects4J bugs and generated in total 84 patches. We

included all these patches in our dataset. For patches generated by HDRepair, we contacted Le et

al. (the authors of [113]) and obtained a set of 14 patches (for each of the 14 repaired bugs, we

used the first found patch reported by HDRepair). We also included these patches in our dataset.

Among the 84+14=98 patches, we found 9 patches are syntactically repetitive. We removed them

and obtained a final dataset containing 89 individual patches9. It turns out each patch makes only

a small change on only one statement.

Among the 89 patches, we determined 10 patches to be correct by syntactically comparing each

of the 89 patches against the correct human patch (the fixed version) associated with the bug in

the dataset (the syntactic comparisons are easy and the correctness of these 10 patches are obvious,

see our provided links below for what they are). For the remaining 79 patches, we consider them as

possibly incorrect10.

DiffTGen. To test if a patch is overfitting or not, we ran DiffTGen with the faulty program

faultprog, the patched program patchprog, and the syntactic changes between the two as input. For

a syntactic change, we manually identified the two change-related statements from faultprog and

patchprog respectively. As the oracle, we used the human-patched program (the fixed version) in

the Defects4J bug dataset associated with the bug11. For correctness judging, DiffTGen created an

output-instrumented version for a bug’s fixed version and ran it against any test method generated by

EvoSuite twice to mark any printed fields whose values are inconsistent during the two executions.

9See github.com/qixin5/DiffTGen/tree/master/expt0/dataset for all the 89 patches we used (including the ones
we identified to be correct) and the patches we removed.

10It is not easy to determine the correctness of the 79 patches by hand since they are not syntactically identical to
the corresponding human patches (this is a reason why a tool like DiffTGen is needed). The rate of overfitting
patches identified by DiffTGen (49.4%) is actually a lower bound.

11Note that the human patches only make changes about bug repairs and do not add any new features for the
original bugs. This makes sure a test case generated by DiffTGen specifies the correct behavior of a bug but not
any new features expected.
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Table 4.2: The Running Result of DiffTGen (#Bugs: 89, #Bugs that are likely to
be incorrect: 79)

Running Setup Time #SynDiff #SemDiff #Overfitting
#Regression #Defective

(Overfitting-1) (Overfitting-2a)

trial30 time60 6.9m 72 61 39 34 18
trial10 time180 8.0m 73 59 36 32 13
trial3 time600 11.4m 73 56 32 28 12
trial1 time1800 30.6m 69 48 27 23 8

For a running setup, DiffTGen ran the trials in parallel.
Note that DiffTGen cannot identify an Overfitting-2 patch, but can identify a patch to have an Overfitting-2a behavior.

DiffTGen considers the marked fields as non-deterministic and does not use them for test case

generation. By using a fixed version of the bug as the oracle, DiffTGen runs automatically to

produce a test case.

DiffTGen employs EvoSuite-1.0.2 to generate test methods. (We did not use EvoSuite’s func-

tionality to generate assertions in a test method because we found the generated assertions often do

not expose any semantic differences between faultprog and patchprog.) EvoSuite uses an evolution-

ary search algorithm and allows the user to specify a searching timeout. For our experiments, as the

default setup, DiffTGen generates test methods by calling EvoSuite in 30 trials with the searching

timeout being 60s for each trial (or the setup trial30 time60 ). We implemented DiffTGen to run the

trials in parallel. In Section 4.4.1, we compared the performances of DiffTGen running in different

setups. We ran all the experiments on a machine with 8 AMD Opteron 6282 SE processors and 8G

memory.

Results

The Performance of DiffTGen. DiffTGen’s running result can be found in Table 4.212 (the

first row corresponds to the default running setup). From left to right, the table shows the run-

ning setup (Running Setup); the average running time in minutes (Time); the numbers of bugs for

which the syntactic difference between the two programs (the patch and the bug) has been exer-

cised (#SynDiff ); a semantic difference between the two programs has been found (#SemDiff );

overfitting-indicative test cases have been generated (#Overfitting); regression-indicative test cases

have been generated (#Regression); and defective-indicative test cases (the semantics of the two

programs are both incorrect) have been generated (#Defective). Note that we consider the time

duration of a run to be from the start of the run to the time when an overfitting-indicative test

case is generated or when DiffTGen terminates with no such test case is generated (but we did not

actually stop running DiffTGen until it terminated).

As shown, DiffTGen identified 39 patches to be overfitting (see Table 4.3 for what they are)

with the corresponding test cases generated. For 34 patches, DiffTGen generated test cases showing

they contain regressions (i.e., showing the semantics of the patch is incorrect but that of the bug

is correct). For 18 patches, DiffTGen generated test cases showing they are defective (i.e., the

semantics of faultprog and patchprog are both incorrect). Note that DiffTGen could generate two

12Table 4.2 only shows a summary of the results. The complete result tables can be found at
https://github.com/qixin5/DiffTGen/tree/master/expt0/result.
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different test cases for a patch showing it not only contains regressions but also is defective. This

explains why the sum of the last two columns in Table 4.2 can be greater than the fifth column. Our

results show that DiffTGen is efficient: it takes about 7 minutes on average to test a patch (with or

without test cases generated).

For 72 (80.9%) patches, DiffTGen found at least a test method for each patch that exercises the

syntactic change between the patched and the original programs. For the other 17 patches, we found

EvoSuite generated no test method at all for 4 of the patches. This could happen either because

EvoSuite failed to generate anything within the time limit or because an error occurred during its

run. For the other 13 of the 17 patches, although EvoSuite generated test methods, they do not

exercise the syntactic changes and would not be useful to reveal any semantic differences. We think

the reason could be that the overall goal of EvoSuite is to generate test methods to achieve a high

coverage of the class under test, and it is not designed to generate test methods to cover a certain

statement in particular.

A test method that exercises the syntactic change may or may not reveal a semantic difference.

Using the underlying search algorithm of EvoSuite plus the synthesized if-statements created in the

test target, for 84.7% (61/72) of the patches, DiffTGen obtained test methods that uncover some

semantic differences. For 11 of the 72 patches, however, the test methods do not reveal any semantic

difference. In general, finding a test that uncovers a semantic difference between two programs is

undecidable: there could be a large number of paths exercising a syntactic change but only a small

fraction of them may reveal a real semantic difference. Below is an example. For the bug Chart 1,

jGenProg creates a patch by deleting the first if-statement.

1 if (dataset != null) { return result; } //Patch by deletion.

2 ... //The code here may change the value of "result ".

3 //But no change would be made if "dataset" is empty & non -null.

4 return result;

To test the patch, DiffTGen creates a test target program by inserting a newly synthesized if-

statement if (dataset!=null){dummystmt} at Line 1 (i.e., at the place where the original if-

statement is deleted). Using EvoSuite, DiffTGen found a test method which initializes dataset to

be a new empty object (non-null), and the dummy statement is exercised. However, since the object

is empty, no changes are made to result, and no semantic difference is actually made (the code

for this is not shown). The problem here is that the search algorithm of EvoSuite tends to build

“simple” objects to satisfy its coverage goals. A simple object here (the empty dataset) would not

reveal any semantic difference although the syntactic difference is exercised.

When a semantic difference is found, DiffTGen asks the oracle for semantic checking. DiffTGen

found 34 patches that contain regressions with the corresponding test cases generated. For 18

patches, DiffTGen generated test cases showing they are defective (the outputs of faultprog and

patchprog are both incorrect), though they may or may not contain regressions. We use a simple

example shown below to explain this.

1 int foo(int x) {
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2 x = x + 1; //Bug. Should be x = x * 2;

3 //x = x + 2; (Patch)

4 return x; }

A patch changes the buggy statement at Line 2 to a new statement at Line 3. The patched program

works fine for an input x = 2. We know it contains regressions because the program fails for an

input x = 1 for which the original program works fine. But we also know the patched program is

generally defective, since for many other inputs (e.g., when x = 3), both the original and the patched

programs fail.

There are 22 cases where the found semantic differences do not reveal any overfitting properties of

a patch. For 5 cases, DiffTGen only produced repair-indicative test cases (we found they correspond

to the correct patches, for the other 5 correct patches, DiffTGen does not produce any test cases).

For 17 cases, the semantic differences are not interesting or cannot be leveraged by DiffTGen for

semantic checking. For example, the semantic difference between the faulty program and a patched

program generated by jGenProg (for Chart 7 ) is related to a class field named time whose type

is long. Such a field is time-related, and is not reliable for semantic checking. DiffTGen runs the

oracle program twice to identify such fields and refuses to use them for semantic checking. For this

example, DiffTGen generated no test cases. There are also forms of semantic changes that DiffTGen

currently does not support for correctness judging. For example, a list has one more element added

in the patched program. Since the values of the new element added have no comparable values in

the faulty program, DiffTGen would not produce any test case based on the new element which

causes the semantics to be different.

Setup Comparison. DiffTGen employs EvoSuite to generate test methods. To do so, Evo-

Suite uses evolutionary algorithms. To investigate how EvoSuite affects DiffTGen’s results, we

compared the default setup of DiffTGen trial30 time60 (i.e., running EvoSuite in 30 trials with

the search time of each trial limited to 60s) to three other setups: trial1 time1800, trial3 time600,

and trial10 time180 (we limit EvoSuite’s overall search time to be 30 minutes to have these setups

created). As the results in Table 4.2 show, DiffTGen needs to run EvoSuite in more than one trial

to obtain better results. Sacrificing the search time (e.g., from 600s to 60s) for more trials (e.g.,

from 3 to 30) would cause the number of change-exercised test methods to slightly decrease (from

73 to 72) but would enhance the overall testing performance: the running time reduces (by about

40%) and the number of generated overfitting-indicative test cases increases (from 32 to 39).

4.4.2 RQ2

DiffTGen identified 39 patches to be overfitting with test cases generated. In the context of au-

tomated program repair, we want to know whether DiffTGen could work together with an APR

technique to make the repair technique avoid generating overfitting patches and produce correct

patches eventually. So in this experiment, we ran the four repair tools (jGenProg, jKali, Nopol,

and HDRepair) on the 39 bugs for which DiffTGen generated new test cases showing the original

patches are overfitting (we augmented the corresponding test suites associated with the bugs with
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Table 4.3: 39 Overfitting Patches Identified by DiffT-
Gen

Repair Tool Bug ID

jGenProg M2, Ch3∗, M40, Ch5, M80∗, Ch15, M78, T4, M8, M95,
M81

jKali M32, M2, Ch13, Ch26, M40, Ch5, Ch15, T4, M95, M81,
M80

Nopol Ch21, L51, L53, M33†, Ch13, M40, M87, M97, M57,
M104, Ch5, M80∗, M105, M81∗

HDRepair C10†, L6†, M50∗†
Ch: Chart, C: Closure, L: Lang, M: Math, T: Time.
ID with †: The correct patch exists in the tool’s search space.
ID with ∗: Only defective-indicative test cases were generated.

Table 4.4: Repair Experiment 0

ID Time #Patch #SynDiff Patch #Correct Patch

Math 95 jGenProg 1.8m 10 2∗ 0
Chart 15 jKali 28.7m 5 1 0
Chart 26 jKali 81.2m 2 1 0
Chart 13 Nopol 3.3m 10 1 0

Math 50 HDRepair 88m 7 6 4

∗: The two generated patches are invalid since they do not pass the test cases generated
by DiffTGen. We believe it is a failure of jGenProg.

the new test cases). If new patches were generated, we ran DiffTGen again, and if new test cases

were generated, we augmented the test suites and ran the repair techniques again, so on and so

forth.

Figure 4.10 is a summary of the results. It shows that the repair techniques with DiffTGen config-

ured avoid yielding any incorrect patches for 36 bugs eventually. For 33 of the 36 bugs, we find that

there do not exist correct patches in the repair tools’ search spaces. So the best the tools can do is

to yield no patches, and DiffTGen makes them achieve that. For 3 of the bugs (Math 33 Nopol, Clo-

sure 10 HDRepair, and Lang 6 HDRepair), the corresponding repair tools could potentially produce

a correct patch, but they did not since their search spaces of patches are too large and the correct

patches were not actually found. For Math 50, HDRepair eventually produced four correct patches

with the assistance of DiffTGen. For 3 of the 39 bugs (Math 95 jGenProg, Chart 13 Nopol, and

Math 50 HDRepair), there were incorrect patches generated eventually. jGenProg produced two in-

valid patches for Math 95 which did not pass the test cases generated by DiffTGen. DiffTGen failed

to generate overfitting-indicative test cases for three patches: Chart 13 Nopol, Math 50 HDRepair 0,

and Math 50 HDRepair 1 which are overfitting and incorrect.

Experimental Setup

For each patch in Table 4.3, DiffTGen generated an overfitting-indicative test case. We added

the test case to the test suite associated with the bug and obtained an augmented test suite (if

multiple test cases have been generated for a patch, we added the one showing the patch contains

regressions). For each bug, we next ran the repair technique (the one produced its initial patch)

with the augmented test suite to try to find a new patch. For each of the four repair techniques, we

ran it in 10 trials with the time limit being two hours for each trial. The original repair experiments

reported in [113] ran HDRepair to repair a bug with a buggy method provided manually. To be

consistent, we provided HDRepair with same buggy methods provided in [9] for repairing three of
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Table 4.5: DiffTGen Experiment 0

ID Time SynDiff SemDiff Overfitting
Regression Defective

(Overfitting-1) (Overfitting-2a)

Chart 26 jKali 23.4m true true true∗ true false
Chart 15 jKali 22.8m true true true∗ true false
Chart 13 Nopol 11.0m true true false false false

Math 50 HDRepair 0 11.2m true false false false false
Math 50 HDRepair 1 16.7m true true false false false

∗: A following repair experiment shows that jKali failed to produce any patches using the test suite augmented with
the newly generated overfitting-indicative test case.

33	

3	

1	
3	

No	patch	generated	
eventually	(expected)	

No	patch	generated	
eventually	(unexpected)	

Correct	Patch	Generated	
Eventually	

Incorrect	Patch	Generated	
Eventually	

Figure 4.10: The numbers of bugs for which no patches (expected or unexpected), correct patches
and incorrect patches were eventually generated. (For Math 50 HDRepair, both correct and incorrect
patches were generated.)

the bugs Closure 10, Lang 6, and Math 50. For any new patches generated, we ran DiffTGen again

to generate new test cases. In this experiment, we used the default setup of DiffTGen for test case

generation. Currently, we do not have an integrated version of a repair technique and DiffTGen. So

each time we ran a repair technique, we manually added the newly generated test case to the test

suite, and each time we ran DiffTGen, we manually provided it with the syntactic changes that the

patch makes.

The Potential Of Producing a Correct Patch

We analyzed the fixed version (the human patch) for each of the bugs listed in Table 4.3 and found

that for only 4 bugs (marked with †), the corresponding repair techniques could potentially produce

correct patches. For the other bugs, the correct patches do not exist in the tools’ search spaces.

We find that jGenProg, jKali, and Nopol have their own limitations. jGenProg fails to produce

a correct patch if the fix statements do not exist in the original faulty program. jKali can only

produce patches that remove statements. Nopol can only repair an if-condition-related bug whose

fix needs a simple change (on only one condition). Compared to the other techniques, HDRepair

could potentially generate correct patches for its three bugs. Its search space is much larger, but it

leverages historical repair data to make the search guided.

Results

As Figure 4.10 shows, there are in total 36 bugs for which no patches were generated by the repair

techniques. For 33 of the bugs, the corresponding repair techniques do not have the abilities in
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producing correct patches, and the fact that no patches were eventually generated is expected.

For three of the bugs (Math 33 Nopol, Closure 10 HDRepair, and Lang 6 HDRepair), although the

corresponding repair techniques can potentially produce correct patches, they failed to do so since

the search spaces are large and the correct patches were not actually found.

For 5 of the bugs, there were patches generated by the repair techniques. In Table 4.4, the first

column shows the bugs and the repair techniques. The fourth column shows that there were in total

11 different patches generated. Among the 11 patches, we found 4 patches generated by HDRepair

for Math 50 are correct: they essentially remove the faulty statement x0 = 0.5 * (x0 + x1 - delta) (see

https://github.com/qixin5/DiffTGen/tree/master/expt1 for these 4 patches, all the other generated

patches and all the generated test cases). We also found two patches generated by jGenProg for

Math 95 are invalid: they did not pass the test cases previously generated by DiffTGen. We next ran

DiffTGen again for the other five (11-4-2) patches and the corresponding bugs. As the result shown

in Table 4.5, DiffTGen identified two overfitting patches, Chart 26 jKali and Chart 15 jKali, with

the corresponding test cases generated. We added each test case to the bug’s test suite, and then

ran jKali to repair the two bugs again. This time, no patches were generated by jKali. For the other

three patches (Chart 13 Nopol, Math 50 HDRepair 0, and Math 50 HDRepair 1 ), we believe they

are overfitting and incorrect, but DiffTGen did not produce any overfitting-indicative test cases13.

4.4.3 Discussion

We conducted two experiments showing the feasibilities of (1) using DiffTGen to identify overfitting

patches within a short amount of time (a few minutes) and (2) combining DiffTGen with a repair

technique to enhance the technique’s reliability.

In the experiments, DiffTGen used a bug-fixed version as the oracle. In general, however, we

need a human oracle, and DiffTGen should provide testing information that is human-amenable.

DiffTGen employs EvoSuite to generate test methods. There are cases where EvoSuite failed to

generate any test methods exercising any changes that the patch makes. We think using more

sophisticated techniques (e.g., [179]) may improve this but may also take more time to run and

make DiffTGen less scalable. Given the fact that the current version of DiffTGen runs fast, we

believe it could always be used for a first trial.

4.5 Summary

Automated program repair techniques often produce overfitting patches which do not actually repair

the bugs. In this chapter, we presented a patch testing technique DiffTGen which could identify

overfitting patches through test case generation. We demonstrated through experiments the feasi-

bility of using DiffTGen in the context of automated program repair: DiffTGen can identify about a

half of the overfitting patches with test cases generated in only a few minutes. An APR technique,

13Two of the three patches (Chart 13 Nopol & Math 50 HDRepair 0 ) make changes on statements created for
instrumentation. It could be avoided but involves modifying a repair technique.
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if configured with DiffTGen, could produce less overfitting patches and more correct patches. Fu-

ture work may look at (1) using DiffTGen to identify overfitting patches generated by other APR

techniques (including our techniques ssFix and sharpFix), (2) checking whether DiffTGen can help

many other APR techniques in producing less overfitting patches and more correct patches, (3)

optimizing DiffTGen with more sophisticated test generation techniques, and (4) making DiffTGen

more practical by using a human oracle.



Chapter 5

Revisiting ssFix for Better

Program Repair

In Chapter 3, we showed our APR technique ssFix which finds and reuses existing code fragments

from the local faulty program and an external code repository to do bug repair. We demonstrated

through experiments that ssFix was reasonably effective and outperformed five other APR techniques

in producing more valid patches for the Defects4J bugs. Nevertheless, ssFix was only able to repair a

small fraction of the Defects4J bugs (it repaired 20 of the 357 bugs with valid patches generated), and

we do not know much about its potential since (1) it is not clear whether its built-upon assumption,

i.e., reusing existing code for bug repair generally works and (2) whether ssFix’s code search and

code reuse methods are truly effective. In the first part of the chapter, we show the experiments we

conducted to answer (1) and (2). For (1), we found the idea of reusing existing code for bug repair

is promising. For (2), we evaluated ssFix’s code search and code reuse, and found that there is

still room for improvement. We developed sharpFix as an improved version of ssFix. In the second

part of the chapter, we elaborate on how sharpFix works and show the experiments we conducted

for its evaluation. We found that compared to ssFix, sharpFix has better code search, code reuse,

and repair abilities. For the 357 Defects4J bugs, sharpFix repaired in total 36 bugs with correct

patches generated, and outperformed existing techniques (that were evaluated on the same dataset)

in producing more correct patches.

5.1 Introduction

One major problem faced by current search-based APR techniques is the search space problem [133].

A search-based APR technique often defines a huge search space of patches to support repairing

different types of bugs. However, searching for a correct patch in such a huge search space is often

difficult [133]. To address the problem, we proposed our APR technique ssFix in Chapter 3 which

performs syntactic code search to find existing code fragments (from the local faulty program and

77
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an external code repository) that are similar to the bug context and reuses those code fragments

to produce patches for bug repair. In Chapter 3, we showed that ssFix worked reasonably well: it

generated valid patches for 20 bugs in the Defects4J bug dataset with the median running time for

generating a patch being only about 11 minutes and it outperformed five other APR techniques for

Java [116, 183, 234, 113, 232].

Though ssFix seems like a promising repair technique, we do not know much about its potential.

For bug repair, ssFix implicitly makes the assumption that existing programs (the local faulty

program and the non-local programs in the code repository) contain the fix ingredients as the

statements/expressions that are needed for producing a correct patch. However, we do not really

know how often the assumption holds in practice. Furthermore, assuming the fix ingredients do exist

in existing programs, we do not know whether ssFix is truly effective at finding the fix ingredients

and reusing them to produce a correct patch.

In the first part of the chapter, we show the experiments we conducted to (1) test the fix-

ingredient-assumption (i.e., to investigate whether the fix ingredients for bug repair often exist)

and to (2) evaluate ssFix’s abilities in finding and reusing the fix ingredients for bug repair. We

looked at real bugs in the Defects4J bug dataset [94] for our experiments. For (1), we defined

the fix ingredient for a bug in the context of automated program repair (we looked at six types of

modifications commonly used by existing APR techniques and defined the fix ingredient for each

modification, see Section 5.2.1) and we performed syntactic code search to check whether the fix

ingredient exists (with and without any parameterization) in the local faulty program and in the

non-local programs in a code repository. There are existing studies that also test the fix-ingredient-

assumption. Some of the studies [31, 203] only looked at whether the fix ingredient exists at the level

of code lines. A fix ingredient does not have to be an entire code line to be reused for bug repair (we

will use an example to explain this in Section 5.2.1). The others [146, 160] do not actually fit our

context (for example, Martinez et al. [146] studied whether the fix ingredient exists in any previous

versions of the current program. The previous versions of a faulty program may not be available at

the repair time, and ssFix does not look at using any previous versions of the faulty program for

bug repair). For (2), we conducted multiple experiments looking at (a) whether ssFix can effectively

find the fix ingredients that do exist in existing programs, (b) whether ssFix can effectively reuse

the fix ingredients it found to do bug repair, and (c) whether ssFix can do effective repair with the

fault being accurately located.

For (1), our results show that the idea of reusing existing code for bug repair is promising

(Section 5.2): For the 103 simple bugs we experimented with, we retrieved the exact fix ingredients

(needed for producing the correct patches) for 50 bugs and the parameterized fix ingredients for 80

bugs. This implies that a possibly effective approach for producing patches is to reuse existing code

(at least as an initial effort) rather than to create artificial code from scratch. For (2), our results

show that ssFix retrieved code fragments that contain the parameterized fix ingredients for 61 simple

bugs. After translation, for 38 bugs, the retrieved code fragments contain the exact fix ingredients

(Section 5.3.1). Our results show that ssFix reused the retrieved code fragments to produce correct
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patches for 23 bugs (Section 5.3.2).

Based on our experimental observations, we developed a new repair technique sharpFix. sharpFix

uses different code search methods to retrieve code fragments from the local faulty program and from

the non-local programs in the code repository. For patch generation, sharpFix goes through the

same steps used by ssFix: code translation, code matching, and modification. Each step however

is different and improved. We evaluated sharpFix and found that compared to ssFix, sharpFix

has better code search and code reuse abilities: sharpFix targets on repairing relatively simple

bugs and it retrieved code fragments that contain the parameterized fix ingredients for 59 bugs.

After translation, for 42 bugs, the code fragments contain the exact fix ingredients (Section 5.4.2).

sharpFix reused the retrieved code fragments to produce correct patches for 30 bugs (Section 5.4.3).

An APR technique may consider using sharpFix’s code search to obtain a search space of fix code (or

the fix space) and then leveraging code in the fix space to produce patches (for example, GenProg

[116] may obtain the fix space using sharpFix’s code search, and leverages its genetic algorithms

to produce patches using code in the fix space). An APR technique that can identify its fix space

may also use sharpFix’s code reuse method to actually produce patches. Our results also show

that sharpFix is better than ssFix in doing bug repair (Section 5.4.4). For a full repair experiment,

sharpFix produced correct patches for 36 of the 357 Defects4J bugs. To our knowledge, compared

to existing APR techniques that were evaluated on this dataset, it produced the largest number of

correct patches.

5.2 Testing the Fix-Ingredient-Assumption

For bug repair, ssFix was built upon the assumption that existing code from the code database

(which consists of the local faulty program and the non-local programs in a large code repository)

contains the fix ingredient needed for producing a correct patch. After identifying a suspicious

statement in the faulty program using fault localization, ssFix performs syntactic code search to

find code that contains the fix ingredient from the database to be reused for repair. We conducted

experiments to test the fix-ingredient-assumption, i.e., to check how often the fix ingredient for bug

repair exists in the local and non-local programs. In this section, we first give the definition of a fix

ingredient, then show the experiments we conducted and the results we got. For our experiments,

we looked at relatively simple patches. We consider a patch to be simple if the fixing changes are

made within an expression or a primitive statement which contains no children statements. A more

complex patch can be considered as being made of more than one simple patch.

5.2.1 Defining the Fix Ingredient

Some Possible Definitions

For bug repair, there can be different ways of defining a fix ingredient. In the simplest case, we

can define the fix ingredient as the exact change(s) between the faulty program and the correctly
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patched program. But this definition is often not ideal. Consider the correct patch for the bug M85

as shown below (this is the developer patch provided by Defects4J).

- if (fa*fb >=0.0) {

+ if (fa*fb >0.0) {

throw new ConvergenceException (...);

}

For this bug, we may consider the exact change, i.e., the operator >, as the fix ingredient. Then we

can find lots of code fragments from the code database that contain >. But very few of those code

fragments can actually be useful for repair since very few of those code fragments that contain > are

indeed relevant to the bug context.

Another way of defining a fix ingredient is to consider the fix ingredient as the patched statement.

However, this definition is not ideal either. The patched statement might be too project-specific,

and it is not likely to find the exact statement from the code database (either from the local program

or from any non-local programs in the code repository). For the example above, it is not likely to

find the exact patched statement that (1) compares the multiplication of two variables (i.e., fa*fb)

and 0.0 and (2) throws the correct type of exception (possibly with the exact exceptional message)

from existing programs.

Another way of defining a fix ingredient (as used in [146, 31, 203]) is to consider the fix ingredient

as the patched line(s). This was used for analyzing how many of the patched lines for a bug-fix can

be found from existing code. A fixing change as multiple patched lines or even as a single patched

line can be too unique and not ideal to be used as the fix ingredient. For the above example, using

the patched code line as the fix ingredient, we would miss any opportunities of finding the correct

expression as a non-if-condition.

For the example shown above, we define the fix ingredient to be the conditional expression

fa*fb>0.0, and we successfully found the exact fix ingredient from the local faulty program in

the following loop statement. (For this bug, this is the only statement in the local project where

fa*fb>0.0 is contained.)

do {

...

} while ((fa*fb >0.0) && ...);

Comparing the loop statement with the faulty if-statement, it is relatively easy for a repair technique

(e.g., ssFix) to identify fa*fb>=0.0 and fa*fb>0.0 to be related. Then a simple modification by

changing >= to > would produce the correct patch.

Our Definition

We now give our definition of a fix ingredient. For bug repair, we looked at six types of repairing

modifications. For each type of modification, we defined the corresponding fix ingredient. The six

types of modifications (M0-M5) are as shown below.
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• M0: Combining a Boolean condition with another Boolean condition using && or || (e.g., if

(c0) {...} → if (c0 || c1) {...})

• M1: Changing an expression (as a non-if-condition) to another expression (also as a non-if-

condition)1 (e.g., e0 → e1)

• M2: Changing an if-condition to another if-condition (e.g., if (c0) {...}→ if (c1) {...})

• M3: Adding an if-condition for one or more statements (e.g., s → if (c) {s})

• M4: Replacing a statement with another statement (e.g., s0 → s1)

• M5: Inserting a statement (e.g., s → s0; s)

We used the above six types of modifications to model a general repair modification. The six types

of modifications are commonly used by current APR techniques [116, 132, 134, 232, 230]. In fact, for

all the bugs we used in our experiments, the repairing modifications can be successfully modeled by

at least one of the six types. (Note that the deletion of a statement can be modeled by M4 through

replacing the statement with an empty statement.)

After defining the six types of repairing modifications, we defined the corresponding fix ingredi-

ents (FIs) as shown below.

• FI0: The Boolean condition that is combined with the original Boolean condition (c1 in M0’s

example)

• FI1: The parent statement/expression2 of the changed expression (the parent statement/ex-

pression of e1 in M1’s example)

• FI2: The changed if-condition (c1 in M2’s example)

• FI3: The added if-condition (c in M3’s example)

• FI4: The replaced statement3 (s1 in M4’s example)

• FI5: The inserted statement (s0 in M5’s example)

For M0, M2, and M3, we consider the combined, changed, and added if-conditions as the fix ingre-

dients respectively. For M4 and M5, we consider the replaced and inserted statements as the fix

ingredients respectively. For M1, it is often not ideal to simply consider the changed expression (i.e,

e1 in M1’s example) as the fix ingredient since the changed expression can be too small and thus be

lack of context (consider e1 to be a variable argument of a method call). So instead, we consider the

parent statement/expression of the changed expression as the fix ingredient (in the abstract syntax

tree, this is the parent node of the changed expression node).

1If the changed expressions are if-conditions, we use M2 to model the repair.

2This is the statement/expression that represents the parent node in the abstract syntax tree of the node that is
represented by the changed expression.

3Note that such a statement can be empty. Replacing a statement with an empty statement is equivalent to
deleting the statement.
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5.2.2 Experiment for Assumption Testing

Setup

We used the Defects4J bug dataset (version 0.1.0) [94] as our experimental dataset. The dataset

contains 357 real bugs in total. For each bug, the dataset provides a developer patch which we

considered as the correct patch. We manually examined all the 357 developer patches and identified

103 simple patches. Each of the 103 patches does only simple modifications and creates only one

patched statement. In other words, for each such simple patch, we can identify one (and only

one) statement as the first parent statement for all the modifications that the patch makes. Our

experiment is to check whether the fix ingredient for each such patch exists. (Note that a simple

patch may delete a statement but we ignored such patches. We consider the fix ingredients for such

patches to always exist.) For each of the 103 simple patches, we manually identified the fix ingredient

by first classifying the patch as one of the six types of modifications that we introduced earlier and

then extracting the fix ingredient associated with the classified modification type. In fact, there can

be more than one modification type as which a patch can be classified. To do the classification,

we looked at the modification types in an sequential order from M0 to M5, and identified the first

type as which the patch can be classified. For example, a patch that changes the condition of an

if statement can be classified as either M2 or M4, and we actually classified such a patch as M2.

For each of the 103 simple patches, we performed code search to see whether the fix ingredient is

contained in either the local faulty program or any non-local program in a code repository for which

we used the DARPA MUSE code repository [55] consisting of 66,341 Java projects (about 81G).

Search Methodology

For each simple patch, using the identified fix ingredient as query, we performed syntactic code

search to check whether the fix ingredient can be found in the code database (the local faulty

program plus all the programs in the code repository). In our definition, a fix ingredient can only

be an expression or a statement. So we extracted every statement within every method in the code

database. We tokenized the fix ingredient and every extracted statement. The goal is to check

whether the fix ingredient’s tokens are a subsequence of any extracted statement’s tokens. Ideally,

the exact fix ingredient can be found. But this may be too strong since different programs may

use different names for variables, types, and methods. So in addition to searching for the exact fix

ingredient, we also searched for the parameterized fix ingredient. The parameterization only replaces

program-specific (i.e., non-JDK) variables, types, and methods with special symbols (we used $v$

for variables, $t$ for types, and $m$ for methods).

To find the fix ingredient within the local faulty program, we checked whether the fix ingredient’s

tokens are exactly a subsequence of any extracted statement’s tokens with and without parameter-

ization. To find the fix ingredient within the code repository, we could do the same, but this can

be very expensive (for each of the 103 bugs, we would have to iterate every statement in the large

code repository). So instead, we indexed every statement in the code repository using ssFix, and we
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Figure 5.1: Fix Ingredient Retrieval Result (The x-axis shows the search types. L/G/LG-EM repre-
sents the Exact Match within the local program/the code repository/both; L/G/LG-PM represents
the Parameterized Match within the local program/the code repository/both. The y-axis shows the
numbers of bugs for which the fix ingredients were found. The label for each search type shows the
number of bugs for which we found the fix ingredients using that search type and the percentage of
the number of bugs (out of the 103 bugs) in parenthesis.

performed two steps to find the fix ingredient: (1) we did ssFix’s code search using the fix ingredi-

ent’s enclosing statement as the query to have the top-500 statements retrieved4 and (2) we checked,

for each of the retrieved statements, whether the fix ingredient’s tokens are a subsequence of the

statement’s tokens. Although in theory, this type of code search may fail to find some statements in

the code repository that contain the fix ingredient, we think it can be a reasonable approximation.

For code search within the repository, we filtered away any statement whose enclosing method’s sig-

nature is identical to the faulty method’s signature and whose enclosing package’s name is identical

to the faulty method’s enclosing package’s name. We did so to ignore any fix ingredients that simply

come from any bug-fixed versions of the faulty program. (In Chapter 3, ssFix filters away bug-fixed

programs in the same way.)

Results

Our results are shown in Figures 5.1 and 5.2. We found that reusing existing code for bug repair can

be a promising approach. As shown in Figure 5.1, for 50 (48.5%) of the 103 bugs, we retrieved the

exact fix ingredients from existing programs (either the local faulty program or any non-local program

in the code repository). If the fix ingredient can be found within a code fragment that is reasonably

small, a repair technique can possibly leverage the fix ingredient to produce a correct patch. Given

the faulty statement of M85 (shown in Section 5.2.1), our developed technique sharpFix successfully

found a small code fragment (i.e., the loop statement shown in Section 5.2.1) that contains the

fix ingredient fa*fb>0.0. sharpFix identified the buggy if-condition fa*fb>=0.0 to be related to

4Since a fix ingredient can be an expression, it would be better if we can index every expression in the code
repository and then search for the fix ingredient at the expression level. We however chose not to do that simply
because there are too many expressions contained in our repository.
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Figure 5.2: The Fix Ingredient Overlap Between L-EM & G-EM (left) and Between L-PM & G-PM
(right)

fa*fb>0.0 and produced the correct patch by condition replacement. For a total of 80 (77.7%) of

the 103 bugs, we retrieved the fix ingredients in the parameterized forms. For 50 of the 80 bugs,

we retrieved the fix ingredients not only in the parameterized forms but also in the exact forms.

For the other 30 bugs, we retrieved the fix ingredients that are not in the exact forms but only in

the parameterized forms. A repair technique may not be able to directly leverage a parameterized

fix ingredient to produce a patch. Such a fix ingredient, however, can be leveraged with some

translation (e.g., through identifier renaming). Below is the developer patch for M27. For this

bug, we found a fix ingredient 100 * getItemCount() from a return statement in the Java method

named getSizeBytes.

- return multiply (100). doubleValue ();

+ return 100 * doubleValue ();

A repair technique may leverage the fix ingredient to repair the bug by first renaming getItemCount

as doubleValue and then replacing the faulty expression with the renamed fix ingredient.

According to our results, looking for a fix ingredient within the local faulty program (or the local

search) only is insufficient. For only 25 and 58 bugs, the exact and parameterized fix ingredients

exist in the local program respectively. In comparison, looking for a fix ingredient within the non-

local programs in the code repository (or the global search) is more likely to succeed. However, as

Figure 5.2 shows, there are fix ingredients that only exist in the local faulty program. So it might

be better to perform both local and global searches to possibly find a fix ingredient.

Note that it is possible for a repair technique to produce a correct patch for a bug although it

failed in finding the fix ingredient we defined. So our results actually provide a lower-bound. To un-

derstand this, for repairing the bug Cl10, the technique we developed sharpFix found a method call

anyResultsMatch(n.getFirstChild().getNext(), p). Though we did not recognize this method

call as the fix ingredient anyResultsMatch(n, MAY BE STRING PREDICATE) because of the argu-

ments, sharpFix did successfully reuse this method call to produce the correct patch (by replacing

the buggy method call’s name allResultsMatch with anyResultsMatch).

For our experiments, we only looked at simple patches. One may apply our method to deal with
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a more complex patch by first dividing the complex patch into simple patches and then searching for

the fix ingredient for each simple patch. This corresponds to a natural way of repairing a complex

bug which requires multiple simple patches: It is not likely for a repair technique to produce the

simple patches all at once, but to produce them one by one. Hopefully the repair technique can

identify some progress it has made after producing each simple patch.

5.3 Analyzing ssFix

ssFix is a recent APR technique that finds and reuses existing code fragments from a code database

(that consists of the local buggy program and non-local programs in a large code repository) for bug

repair. In Chapter 3, the results of our repair experiments showed that ssFix was relatively effective

and outperformed existing techniques in repairing more bugs in the Defects4J dataset. However,

the overall repair ability of ssFix was still limited: it failed to repair more than 90% of the bugs.

For a better understanding of ssFix, we conducted more experiments to evaluate ssFix’s code search

and code reuse abilities. ssFix relies on an existing technique [40] to do fault localization which was

shown (in Section 3.4 of Chapter 3) to work poorly. To understand its repair potential, we conducted

repair experiments with accurate fault localization results provided at the statement level and at the

method level, and compared the results to those obtained from a fully automatic repair experiment.

5.3.1 Evaluating ssFix’s Code Search

Given a faulty program and a fault-exposing test suite, ssFix does fault localization to identify a list

of suspicious statements in the program that are likely to be faulty. For each suspicious statement, it

performs code search to find candidate code chunks in the code database to be reused for bug repair.

As one way to evaluate ssFix’s code search, we looked at the 103 bugs used in Section 5.2.2 whose

developer patches are simple. For each bug, we provided ssFix with the real faulty statement and

checked whether ssFix can effectively retrieve any candidates that contain the fix ingredient (that we

identified earlier in Section 5.2.2). We call a candidate (possibly after translation) that contains the

exact fix ingredient promising. Our results show that ssFix retrieved promising candidates within

the top-500 results for 38 bugs.

Experiment

For each of the 103 bugs whose fix ingredients we identified in Section 5.2.2, we identified the faulty

statement5 in the faulty program, provided ssFix with the statement, ran its code search to retrieve

a list of ranked candidates (as code chunks) from the code database, translated the candidates using

ssFix’s code translation (otherwise it may not be able to reuse the fix ingredient for repair), and

checked whether any of the candidates is promising, i.e., contains the exact fix ingredient. The

5For a bug whose patch inserts a statement in between two contiguous statements, we used each of the two
statements as the faulty statement, ran ssFix’s code search twice (once for each statement), and used the better
result.
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Figure 5.3: The Retrieval of Candidates that Contain the Fix Ingredients (We looked at the top-
50, 100, 200, and 500 candidates. The column shows the number of bugs for which we retrieved
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code database we used consists of the DARPA MUSE code repository (as used in Section 5.2.2)

as the external code repository and the five projects used in Section 3.4 of Chapter 3 (i.e., the

projects of C8, Cl14, L6, M33, and T4) as the local programs. We filtered away candidates that are

syntactically redundant and those that are simply from the bug-fixed versions. We looked at the

top-500 candidates as the retrieval results.

Result

Figure 5.3 shows the numbers of promising candidates retrieved by ssFix within the top-k results

(with k being 50, 100, 200, and 500 respectively). Within the top-500 results, ssFix retrieved

promising candidates for 38 bugs: it retrieved in total 61 candidates that contain the fix ingredients

in the parameterized forms, among the 61 candidates, 38 are promising, i.e., contain the exact

fix ingredients after translation. In Section 5.2.2, we found the fix ingredients that exist in the

parameterized forms in our code database for as many as 80 bugs. ssFix retrieved promising fix

ingredients for 38/80=47.5%6 of such bugs.

5.3.2 Evaluating ssFix’s Code Reuse

ssFix looks at a candidate it retrieved and tries to reuse the candidate to produce a plausible patch

for the target code chunk (which contains the located suspicious statement). To reuse the candidate

for bug repair, ssFix first translates the candidate (by renaming the identifiers used in the candidate

as those that are related in the target), matches the statements and expressions between the target

and the translated candidate, and performs three types of modifications: replacement, insertion, and

deletion to produce a set of patches. Next, ssFix sorts the patches by their types and sizes, validates

6Note that this is only a lower bound because not all the parameterized fix ingredients for the 80 bugs can be
reasonably translated and reused for bug repair.
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Figure 5.4: Understanding ssFix’s Code Reuse Failures

each patch in the sorted order, and reports the first plausible patch (if found) whose patched program

can pass the test suite.

To evaluate ssFix’s code reuse ability, we looked at the 61 bugs for which ssFix retrieved candi-

dates that contain the fix ingredients in the parameterized forms. For each bug, we provided ssFix

with the target (that it produced for code search & repair) and the retrieved candidate, and checked

whether ssFix can produce a plausible patch that is correct (i.e., semantically equivalent to the

developer patch). Our results show that ssFix reused the retrieved candidates to produce correct

patches for 23 bugs.

Experiment

For each of the 61 bugs, we provided ssFix with the target and the retrieved candidate, and ran

ssFix’s patch generation and patch validation automatically to possibly produce a plausible patch.

If ssFix produced such a patch, we manually checked whether the patch is correct (by comparing

the patch to the developer patch provided by Defects4J).

Result

Our results show that ssFix produced 25 plausible patches among which 23 are correct. It successfully

reused 23/61=37.7% candidates for bug repair. Note that this is a lower bound because not all the

candidates can be reasonably reused for bug repair. We found that the exact fix ingredients (without

any translation) are contained in 38 candidates, and we expect ssFix to be able to reuse those fix

ingredients in producing the correct patches. For other 23 (61-38) candidates which only contain the

fix ingredients in the parameterized forms, we manually determined whether they can be reasonably

reused for bug repair. We identified only 3 candidates to be reasonable for reuse (it may not be

reasonable for a repair technique to translate an arbitrary, parameterized fix ingredient into the

exact one to be reused for repair). We analyzed the failure of ssFix in reusing the 18 (38+3-23)

reasonable candidates for producing the correct patches. We looked into its reusing processes to



88

understand the failures. Figure 5.4 shows our analyzing results for the 18 failures. We found that

7 candidates are not ideal to be reused for bug repair. As an example, for the bug Cl119, ssFix

retrieved a candidate containing the exact fix ingredient case Token.CATCH: as a statement to be

inserted in the target for producing the correct patch. However, the fix ingredient is embedded in

a big switch statement, and it is therefore difficult for ssFix to leverage the fix ingredient to do the

correct repair. For the other failures, we found that ssFix yielded bad candidate translations for 3

cases, it created bad code matching results for 2 cases, and its modifications are not sophisticated

enough to produce the correct patches for 6 cases. We identified the key shortcomings of ssFix in

translation, code matching, and modification, and developed sharpFix as an improvement. More

details can be found in Section 5.4.

5.3.3 Evaluating ssFix’s Repair

Based on the fix ingredients we retrieved in Section 5.2.2, we conducted experiments in Section 5.3.1

and Section 5.3.2 to evaluate ssFix’s code search and code reuse abilities respectively. We also

conducted experiments to evaluate ssFix’s repair abilities. We conducted one experiment to evaluate

ssFix’s full repair ability. In this experiment, we ran ssFix to repair all the 357 Defects4J bugs

automatically. We conducted two experiments to evaluate ssFix’s partial repair abilities. For the

experiments, we identified two sets of bugs (that contain 112 and 201 bugs respectively) for which

we can identify single faulty statements and single faulty methods respectively. We provided ssFix

with the fault-located statement and method and ran ssFix to do bug repair. We compared the

results to those we obtained in the full repair experiment for the two sets of bugs, and found that

with the faults known in advance as the faulty statement and the faulty method, ssFix can produce

correct patches for 24% and 23% more bugs respectively.

Experiment

For the full repair experiment (E0), we ran ssFix to repair all the 357 Defects4J bugs. For the first

partial repair experiment (E1), we manually identified 112 Defects4J bugs for repair. For each of

the 112 bugs, the developer patch provided by Defects4J makes changes for only one statement7,

and we manually identified a single faulty statement and provided ssFix with the statement for bug

repair8. In the case where the developer patch inserts a statement for bug repair, we identified the

inserted statement’s two adjacent statements (at most) in the inserted statement’s block, considered

each adjacent statement as the faulty statement, ran ssFix to repair the statements each, and used

the better result. For the 112 bugs, we identified in total 128 faulty statements, and ran ssFix to

repair each. For E2, we manually identified 201 bugs. For each of the 201 bugs, the developer patch

7Note that we considered only the first parent statement (in the faulty program) where a fixing change was made.
A developer patch can make multiple changes for a single if-statement on its multiple children statements. In
such case, we ignored the bug.

8Note that the bugs we used for E1 are not the same bugs we used for testing the fix-ingredient-assumption in
Section 5.2.2. In Section 5.2.2, we looked at bugs whose patches are simple. But here for E1, we looked for every
bug for which we can identify a single faulty statement.
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Table 5.1: The Results of E0 (the Full Repair Experiment)

Project
(#Bugs)

sharpFix ssFix
Time (min.)

#P #C
Time (min.)

#P #C
Min Max Med Avg Min Max Med Avg

C (26) 0.8 115.7 7.2 19.2 9 4 1 80.7 12.4 20.7 7 2

Cl (133) 1.8 96.1 21.3 26 17 4 2.5 54.9 10.1 16.3 14 2

M (106) 0.7 118.5 11.3 33.2 33 13 1 119.3 14.7 30.2 26 8

T (27) 1.6 30 12.2 15.1 5 0 1.4 37.3 7.5 13.5 4 0

L (65) 0.8 116.1 4.8 18 25 15 0.8 117.8 4.3 13.1 18 10

Sum (357) 0.7 118.5 11.3 25.1 89 36 0.8 119.3 10.1 21 69 22

We show the projects in their abbreviations: C is JfreeChart; Cl is Closure Compiler; M is Commons
Math; T is Joda-Time; and L is Commons Lang. #P is the number of plausible patches generated. #C
is the number of correct patches generated.

Table 5.2: Comparing the Results of E0 & E1 on the 112 bugs

EID
sharpFix ssFix

Time (min.)
#P #C

Time (min.)
#P #C

Min Max Med Avg Min Max Med Avg

E0 0.8 118.5 6.8 18.3 48 29 0.8 91 9.8 16.5 38 21

E1 0.8 42.7 2.8 4.2 50 39 0.8 15.5 1.9 3 42 26

In E1, for each bug, the repair technique (either sharpFix or ssFix) only targeted on repairing the
faulty statement we provided without doing any fault localization. This explains why the running
times of E1 (for either technique) are much shorter than the running times of E0.
For some bugs in E1, we provided two faulty statements for repair. For each of these bugs, either
sharpFix or ssFix produced two repairing results (one on each statement). We took the better one
as the repairing result for this bug. One result is better than the other if, for example, it can show
that the repair technique produced a correct patch but the other result cannot.

makes changes within only one method. We manually identified such a method, ran ssFix’s fault

localization to obtain a list of suspicious statements within the method, and provided the list of

statements as the fault localization result to ssFix.

As in Section 5.3.1 and Section 5.3.2, ssFix used a code database that consists of the DARPA

MUSE code repository plus the five local Java projects used in Section 3.4 of Chapter 3. ssFix did

not use any candidates that are from the bug-fixed versions of the faulty programs. We set the

maximum number of candidates used by ssFix for repairing each suspicious statement to be 200.

We set the time budget and memory budget for repairing each bug as two hours and 8G for all the

three experiments. We ran all the experiments on a machine with 32 Intel-Xeon-2.6GHz CPUs and

128G memory.

Results

The results of the three repair experiments can be found in Tables 5.1 to 5.3. For E0, ssFix produced

in total 69 plausible patches with the median and average time of producing a plausible patch being

about 10 and 21 minutes respectively. Among the 69 plausible patches, 22 are correct. We define a

patch to be correct if it is semantically equivalent to the developer patch provided by Defects4J. We

manually determined the correctness of a plausible patch by comparing it to the developer patch.
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Table 5.3: Comparing the Results of E0 & E2 on the 201 bugs

EID
sharpFix ssFix

Time (min.)
#P #C

Time (min.)
#P #C

Min Max Med Avg Min Max Med Avg

E0 0.8 118.5 9.1 25 69 36 0.8 119.3 10.6 22.8 54 22

E2 0.6 114.8 3.8 11.8 77 43 0.6 117.1 3.5 13 61 27

In E2, for each bug, the repair technique (either sharpFix or ssFix) only targeted on repairing the
faulty statements we provided within the real faulty method. This explains why the running times
of E2 (for either technique) are often shorter than the running times of E0.

Table 5.2 shows ssFix’s running result for the 112 bugs used for E1. In the table, we provided the

repairing results of these bugs from E0 for comparison. For these 112 bugs, in E0, ssFix produced

correct patches for 21 bugs, but in E1 with the located faulty statement provided, ssFix produced

correct patches for 5 (5/21=23.8%) more bugs. In E1, the running time for producing a plausible

patch is much smaller (compared to E0) because ssFix only worked on one statement.

Table 5.3 shows ssFix running result for the 201 bugs used for E2. In the table, we provided

the repairing results of these bugs from E0 for comparison. Compared to E0, ssFix produced

correct patches for 5 (5/22=22.7%) more bugs. Compared to E0, the running time for producing a

plausible patch is smaller in E2 because ssFix only worked on the suspicious statements within only

one method.

5.4 sharpFix

In earlier sections of the chapter, we conducted an experiment to test the fix-ingredient-assumption

and found that it is promising to reuse existing code for bug repair. We also conducted experiments

to evaluate ssFix’s code search, code reuse, and repair abilities, and found that ssFix can still be

improved. We developed the new APR technique sharpFix as an improved version of ssFix and

demonstrated through experiments it has better code search, code reuse, and repair abilities. In this

section, we show how sharpFix works, the experiments we conducted, and the results we got. For

a full repair experiment, sharpFix produced correct patches for 36 of the 357 Defects4J bugs. To

the best of our knowledge, it outperformed all existing APR techniques that were evaluated on the

Defects4J bug dataset in terms of the number of bugs that are successfully repaired (with correct

patches generated).

5.4.1 Overview

sharpFix is an APR technique that reuses existing code fragments from a code database (which

consists of the local faulty program and the non-local programs in a code repository) to do bug

repair. Similar to ssFix, it goes through four stages: fault localization, code search, patch generation,

and patch validation to possibly produce a plausible patch. sharpFix uses ssFix’s method to do

fault localization. Its methods for code search and code reuse (i.e., patch generation and patch
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1 + if (r!=null) {

2 Collection c = r.getAnnotations ();

3 Iterator i = c.iterator ();

4 while (i.hasNext ()) { ... }

5 + }

Figure 5.5: The Developer Patch for the C4 Bug

validation) however are different from ssFix’s methods. For code search, sharpFix uses different

methods for searching candidates from the local faulty program and from the code repository and

combines the results (i.e., the retrieved candidates) for reuse. For patch generation, sharpFix goes

through the same steps used by ssFix: code translation, code matching, and modification, but each

step is different. For patch validation, sharpFix’s method is identical to ssFix’s method except that

sharpFix performs the static resolving technique used by S6 [185] as an extra step to check the

validity of a patch (e.g., whether it used an undeclared variable) before dynamically compiling the

patched program and testing it against any test cases.

We next elaborate on sharpFix’s code search and code reuse methods and show the experiments

we conducted for evaluation. We will use the Defects4J bug C4 (shown in Figure 5.5) as an example to

explain how sharpFix works. For this bug, the developer patch (provided by Defects4J) produced an

if-condition (at Line 1) to guard the three statements (at Lines 2-4) to avoid a null-pointer exception.

Though the repair is relatively easy, ssFix and other existing techniques [116, 183, 234, 113, 232, 47]

that were evaluated on the Defects4J bugs all failed to produce the correct patch (we looked at

their generated patches from [143, 60, 9, 1, 47, 230]). sharpFix successfully produced the correct

patch (i.e., the developer patch) in about 9.7 minutes9. For this bug, sharpFix’s (also ssFix’s) fault

localization identified the statement at Line 2 as the top suspicious statement for repair.

5.4.2 Code Search

Motivation for Improving ssFix’s Code Search

For code search, ssFix uses relatively small code chunks. For producing the target, it looks at

the located suspicious statement, and produces a code chunk that contains the statement possibly

with its two neighbouring statements (if the suspicious statement is not too large, i.e., within six

lines of code). For candidates, it produces code chunks that contain (1) every sequence of three

contiguous statements within every block and (2) every compound statement (which contain children

statements) from every Java method in the code database. ssFix uses the same search method for

both local (within the local faulty program) and global (within the code repository) code search.

It is possible to obtain better code search results using code chunks that are smaller or larger (than

ssFix’s code chunks) and using different search methods for local and global code search (a possibly

9Although sharpFix successfully repaired the bug, it is not specifically designed to repair null-pointer errors. For
this example, we believe a repair technique that targets on such errors (e.g., [51]) can be more effective at repairing
this bug (e.g., it may work faster).
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Figure 5.6: Comparing Different Search Methods (the x-axis shows the search methods and the
y-axis shows the numbers of bugs whose fix ingredients were retrieved)

better way to do local code search, compared to global code search, is to use less parameterization

for names). To investigate these possibilities, we conducted experiments comparing a set of different

code search methods.

More specifically, we re-ran ssFix’s code search experiments (Section 5.3.1) using different sizes

of code chunks: we created six code search methods K5WC1, K5WC2, K5WC3, K5WC4, K5WC5,

and K5WMD that look at using code chunks containing one to five statements (K5WC1 to K5WC5)

and the entire method (K5WMD). Note that these search methods are equivalent to ssFix’s search

method except that the used chunks are in different sizes. For each search method, we counted

the number of bugs whose exact fix ingredients can be found from any retrieved candidate (with

and without ssFix’s translation10). Our results can be found in Figure 5.6: We retrieved the most

candidates (44 within the top-500 results) that contain the fix ingredients using chunks at the

method level (i.e., using K5WMD). ssFix extracts structural tokens as k-grams (where k=5) from

the target and the candidate for calculating their similarity score. We investigated using different

values of k: we created two more search methods K3WMD and K7WMD and ran ssFix’s code

search experiment with each. We found that K3WMD yielded the best results. It retrieved the most

candidates containing fix ingredients. However, K3WMD is not significantly better than the other

two methods: K5WMD and K7WMD. Compared to the second-best method K5WMD, K3WMD

retrieved the same amount of candidates that contain the fix ingredients within the top-50 and

top-500 results, and it retrieved only one more candidate within the top-100 and top-200 results

each.

We investigated using three search methods: LCS0, LCS1, and LCS2 for local code search (within

the local faulty program only). Given a code chunk (either the target or the candidate), the methods

extract different tokens as shown below.

10We also checked whether the exact fix ingredient can be found in the original candidate (without doing any
translation) because it is possible for ssFix to yield a bad translation.
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• LCS0: The tokens are the textual contents (in the compacted forms with no whitespaces) of

all the children expressions of the chunk statement(s).

• LCS1: The tokens are all the conceptual tokens that ssFix extracts11 from the chunk state-

ment(s) (with the Java keywords, stop words, and short and long words filtered by ssFix

actually kept).

• LCS2: The tokens are all the conceptual words that ssFix extracts from the chunk statement(s)

(with the Java keywords, stop words, and short and long words filtered by ssFix actually kept)

plus any symbols that are non-Java-identifiers (e.g., +=).

Given the tokens (as two lists) extracted from the target and the candidate by LCS0, LCS1, or

LCS2, sharpFix does token matching and uses the Dice Similarity12 to calculate a similarity score.

For each search method, we show below as an example, the extracted tokens (in angle brackets) of

the statement at Line 2 in Figure 5.5.

LCS0 (7 in total ):

<Collectionc=r.getAnnotations ();>, <Collection >, <c=r.getAnnotations ()>,

<c>, <r.getAnnotations ()>, <r>, <getAnnotations ()>

LCS1 (7 in total ):

<collection >, <collect >, <c>, <r>,

<getannotations >, <get >, <annotations >

LCS2 (12 in total ):

<collection >, <collect >, <c>, <=>, <r>, <.>,

<getannotations >, <get >, <annotations >, <(>, <)>, <;>

Note that the code chunk (either the target or the candidate) used for local code search contains

only one statement. This is because within the local program, the uniqueness of code chunks

containing multiple, sequential statements is high (much higher than the uniqueness of such code

chunks within a large code repository). To evaluate the three search methods, we ran each search

method to retrieve candidates within the local faulty program of each of the 103 bugs and checked

whether the fix ingredient (with and without any translation) can be found in any candidate from

the top results. Our results can be found in Figure 5.6. We learned that LCS1 yielded the best

result: it retrieved 22 candidates containing the fix ingredients from the top-500 results, though it

is not significantly better than LCS0. Figure 5.7 shows that the best local search method LCS1 can

complement the best global search method K3WMD in finding more candidates that contain the fix

ingredients.

11We used ssFix’s method for extracting conceptual tokens as described in Section 3.3.2.

12The original measure is used for sets. We changed it to be used for lists. Given two lists of tokens l1 and l2, we
create a one-to-one mapping of tokens from l1 to l2. A token is mapped to another token that is identical to it.
We use n to denote the number of mapped tokens in the two lists, n1 to denote the number of tokens in l1, and
n2 to denote the number of tokens in l2. The Dice Similarity is computed as (2 × n)/(n1 + n2).
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Figure 5.7: The Overlap of the Retrieved Candidates (by K3WMD & LCS1 within the top-500
results) that Contain the Fix Ingredients

Methodology

In Section 5.4.2, we showed that K3WMD and LCS1 yielded the best searching results for global

and local code search respectively and that it is possible to combine the two to yield better results.

Based on our findings, we developed sharpFix’s code search method: sharpFix performs K3WMD

and LCS1 to do code search and merge the searching results to obtain a list of candidates to be

reused for bug repair.

More specifically, given a suspicious statement s, sharpFix produces two target code chunks:

tchunk0 which contains the enclosing method of s and tchunk1 which contains s itself. Next it

performs K3WMD using tchunk0 as the query to obtain a list of candidate code chunks cchunks0

(ranked by scores from high to low) from the code repository and it performs LCS1 using tchunk1

as the query to obtain a list of candidate code chunks cchunks1 (also ranked) from the local faulty

program. Each cchunk0 ∈ cchunks0 is actually a Java method. sharpFix does not reuse all the code

from the whole method to produce patches because it can generate too many patches for validation

if the method is not too small. So instead, it identifies statements within the method that are

relevant to s and might thus be useful for repair (we will show the evaluation of sharpFix’s code

search in the next sub-section) and reuses such statements (and possibly the statements in their

local context) to produce patches. To obtain such code fragments, sharpFix first translates cchunk0

into rcchunk0 (using the translation method explained in Section 5.4.3), and uses LCS1 to identify

two statements cs0 and cs1 in rcchunk0 that are most similar to s. So for each cchunk0 ∈ cchunks0,

sharpFix obtain two statements cs0 and cs1. Each statement is associated with the searching score

of cchunk0. Next sharpFix normalizes separately the searching scores of (1) the statement identified

from cchunks0 and (2) the candidates from cchunks1, merges the candidates together, and ranks

them by the normalized scores. This way, sharpFix obtains a list of candidates (as statements)

retrieved from both the local faulty program and the code repository. For code reuse, sharpFix looks

at each candidate in the list to possibly produce a plausible patch for the target which contains the
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1 if (r!=null) {

2 result = r.getUpperBound ();

3 }

Figure 5.8: A Candidate for the C4 Bug

suspicious statement s only.

For our example shown in Figure 5.5, given the suspicious statement (at Line 2) identified by

fault localization, sharpFix performed code search and found a candidate (ranked as 105) that

contains the single statement shown at Line 2 in Figure 5.8. sharpFix reused the if-condition from

the statement’s enclosing if-statement to produce the correct patch. We will explain the code reuse

process in Section 5.4.3.

Evaluation

To evaluate sharpFix’s code search, for the 103 bugs whose fix ingredients we identified in Sec-

tion 5.2.2, we provided sharpFix with the faulty statements that we used for ssFix’s code search

experiments, and ran sharpFix’s code search on each faulty statement to obtain a list of candidate

statements. As we did in Section 5.3.1, we filtered away candidates that are syntactically redun-

dant13 and those that are simply from the bug-fixed versions, and we looked at the top-500 retrieved

candidates. For each candidate (that contains a single statement), we performed sharpFix’s trans-

lation to translate its enclosing method, and checked whether the exact fix ingredient is contained

in the translated statement, its two neighbouring statements (because sharpFix may use the neigh-

bouring statements to do insertion), and the enclosing if-condition if the enclosing statement is an

if-statement (because sharpFix may use the enclosing if-condition to produce a new if-statement to

replace the current statement).

Our results can be found in Figure 5.3. We can see that sharpFix’s code search method is better

than ssFix’s. It retrieved promising candidates (which contain the exact fix ingredients) for 39 bugs

within the top-50 results and for 42 bugs within the top-500 results. Compared to ssFix’s code

search, though sharpFix’s code search retrieved only four more promising candidates within the

top-500 results, it retrieved 39 candidates within the top-50 results which are more than all the

candidates ssFix retrieved within the top-500 results. In Section 5.2.2, we found fix ingredients that

exist in the code database in the parameterized forms for 80 bugs. sharpFix retrieved promising fix

ingredients for 42/80=52.5%14 bugs.

13Note that we looked at the candidate statement plus its two neighbouring statements to identify redundancy.
sharpFix may a candidate statement’s two neighbouring statements to do insertion for patch generation.

14This is a lower bound because not all the parameterized fix ingredients for the 80 bugs can be reasonably translated
and reused for bug repair.
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5.4.3 Code Reuse

We analyzed the failures in ssFix’s code reuse steps: code translation, code matching, and mod-

ification (as shown in Figure 5.4), identified possible ways to improve each step, and developed

sharpFix’s method for each step. We next elaborate on sharpFix’s code translation, code matching,

and modification and show at last the experiments we conducted to evaluate sharpFix’s code reuse

and the results we got.

Code Translation

To do code translation, ssFix maps identifiers in the candidate to the related identifiers in the target,

and then renames those candidate identifiers as the mapped target identifiers. We identified two

weaknesses of the current method ssFix uses to identify related identifiers and create an identifier

mapping: (1) ssFix only maps candidate identifiers to identifiers that are used in the target. A

candidate identifier can be related to an identifier that is not used in the target but is accessible

there; (2) ssFix identifies two identifiers to be related only based on matching the code patterns of

their usage contexts. This can be not enough: Two identifiers can be highly related but their usage

contexts are not identical (though very similar). Identical usage contexts may also not imply that

the two identifiers being compared are the most related.

Algorithm 5 Creating an Identifier Mapping

Input: tchunk, cchunk
Output: imap[id→ id] . id is an identifier binding
1: imap[id→ id]← empty
2: cids← collect all the non-JDK candidate identifiers (those appear in cchunk’s method)
3: tids← collect all the non-JDK target identifiers (those appear in tchunk’s method and appear as the declared fields and

methods of tchunk’s class)
4: for all cid ∈ cids do
5: if !shortName(cid) then . the string length is greater than 2
6: tid← find the first tid ∈ tids whose name is equal to cid’s name
7: if tid exists and is compatible with cid then
8: imap.add(cid,tid)

9: cmid← get cchunk’s enclosing method identifier
10: tmid← get tchunk’s enclosing method identifier
11: ccid← get cchunk’s enclosing class identifier
12: tcid← get tchunk’s enclosing class identifier
13: if !imap.containsKey(ccid) && !imap.containsValue(tcid) then
14: imap.add(ccid,tcid)

15: if !isConstructorId(cmid) && !imap.containsKey(cmid) && !imap.containsValue(tmid) then
16: imap.add(cmid,tmid)

17: imap← mapIdsByContexts(cids,tids,imap) . using ssFix’s method
18: umcids← get all cids that are currently unmapped
19: umtids← get all tids that are currently unmapped
20: for all umcid ∈ umcids do
21: bestmatch ← find the umtid in umtids that is compatible with umcid and share the most conceptual tokens with

umcid (measured by Dice Similarity)
22: if bestmatch exists then
23: imap.add(umcid,bestmatch)

24: return imap

To address the two problems, we developed a new heuristic algorithm for mapping identifiers

(shown in Algorithm 5). sharpFix uses the algorithm to create an identifier mapping and then

renames each candidate identifier as its mapped target identifier to produce a translated candidate.

To address (1), sharpFix looks for candidate identifiers that appear in the candidate’s enclosing
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method and it looks for target identifiers that not only appear in the target but (a) appear in the

target’s enclosing method, (b) appear as the declared fields of the target’s class, and (c) appear as the

declared methods of the target’s class. sharpFix collects candidate identifiers that not only appear in

the candidate itself but its enclosing method because it may use those identifiers to produce a patch.

sharpFix collects target identifiers from (a), (b), and (c) to represent a set of accessible identifiers in

the target to which a candidate identifier can be mapped. To address (2), sharpFix identifies related

identifiers based on not just their usage contexts but their string lengths, string equality, locations,

usage contexts, and shared concepts (measured by the overlap of the extracted conceptual tokens).

To create a name mapping, sharpFix accepts the target chunk tchunk and the candidate chunk

cchunk as input. As output, sharpFix creates an identifier mapping imap. sharpFix first collects

two lists of non-JDK identifiers cids and tids (Lines 2 & 3) which are actually identifier bindings

(e.g., representing a variable declaration and its use). (Note that sharpFix does not collect JDK

identifiers for translation.) cids are all the identifiers that appear in cchunk’s enclosing method

and tids are all the identifiers that appear in tchunk’s enclosing method, appear as the declared

fields of tchunk’s class, and appear as the declared methods of tchunk’s class. sharpFix visits the

ASTs in pre-order to collect the identifiers (as did by ssFix). To collect tids, sharpFix first visits

tchunk’s enclosing method, then the class fields, and then the class methods. Next sharpFix finds

each cid in cids whose string is not short (i.e., the string length is greater than 2) and is equal to the

string of some compatible tid from tids (two identifiers are compatible if they are both variables,

types, or methods), and maps such cid to the found tid (Lines 4-8). Intuitively, if two identifiers

share a long name (e.g., getSize), sharpFix treats them as related and maps one to the other.

Next, sharpFix gets the identifiers of cchunk’s enclosing class and method. If they are not mapped,

sharpFix maps them to the identifiers of tchunk’s enclosing class and method (Lines 9-16). (If

cchunk’s enclosing method is a constructor, sharpFix does not map it to any method identifier.)

Next, sharpFix maps the unmapped identifiers from cchunk to the unmapped ones from tchunk by

usage contexts (Line 17). Here sharpFix uses ssFix’s method and compares the code patterns of two

identifiers’ usage contexts to map identifiers. Finally, for each unmapped name umcid from cids,

sharpFix finds the unmapped compatible umtid from tids that shares the most conceptual words

(to extract such words, sharpFix uses ssFix’s method described in Section 3.3.2), and then maps

umcid to umtid (Lines 20-23). As an example, for the bug M69, sharpFix extracted two conceptual

words t and distribution from the candidate identifier tDistribution and successfully mapped it to

another identifier distribution. To measure the overlap of the extracted conceptual words, sharpFix

uses the Dice Similarity.

The translated version yielded by sharpFix for the candidate shown in Figure 5.8 is just as itself

(sharpFix did change the candidate’s enclosing method’s name and the name of a method call that

do not appear in the candidate). For the variable identifier result in the candidate, sharpFix found

an identifier in the target’s method that has the same name, mapped result to this identifier, and

renamed result as itself. For the variable r in the candidate, sharpFix mapped it to the identifer r

in the target based on their matched usage contexts (e.g., as both r!=null). sharpFix did not map
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getUpperBound to any target identifier and thus did not change it (note that sharpFix did not map

getUpperBound to getAnnotations since they only share a stop word get which was not counted

as a conceptual word).

Code Matching

ssFix’s code matching method is based on matching rules and thresholds that are human-created.

We found this makes ssFix’s code matching not very flexible sometimes. As an example, for

the bug M75, ssFix failed to match the two method calls: getCumPct((Comparable<?>)v) and

getPct(Long.valueOf(v)) simply because this is not supported by its matching rule: two method

calls can only match if the method names being called are identical. Due to this code matching

failure, ssFix failed to produce the correct patch by replacing getCumPct with getPct.

Algorithm 6 Code Matching Algorithm

Input: tchunk, rcchunk
Output: cmap[se→ se] . se is a statement or a non-trivial expression (not an identifier, a number constant, or a literal)
1: cmap[se→ se]← empty
2: tses← collect all statements & non-trivial expressions from tchunk
3: cses← collect all statements & non-trivial expressions from rcchunk
4: for all tse ∈ tses do
5: bestscore← 0, bestcse← null
6: tse tks← extract the LCS2 tokens from tse
7: for all cse ∈ cses do
8: if canMatch(tse,cse) then . Check if tse and cse are compatible
9: cse tks← extract the LCS2 tokens from cse

10: score← DiceSimilarity(tse tks,cse tks)
11: if score > bestscore then
12: bestscore← score
13: bestcse← cse
14: if bestcse is not null then
15: cmap.add(tse,bestcse)

16: return cmap

sharpFix uses a heuristic method (Algorithm 6) that we developed to do code matching. Com-

pared to ssFix’s code matching method, the new method uses simplified matching rules and uses

no thresholds. It matches statements/expressions based on the extracted conceptual tokens and

symbols, i.e., the LCS2 tokens shown in Section 5.4.2. To do code matching, sharpFix accepts

the target tchunk and the translated candidate rcchunk as input. As output, it produces a code

mapping cmap that maps each statement/expression in tchunk to its matched statement/expression

in rcchunk. To create such a mapping, sharpFix starts by collecting two lists of statements and

expressions tses and cses from tchunk and rcchunk respectively (Lines 2-3). It visits the ASTs in

pre-order to collect the statements and expressions. The collected expressions are non-trivial and do

not include identifiers, number constants, or literals (as boolean, null, character, or string literals).

For each statement/expression tse in tses, sharpFix finds a cse in cses that is compatible with tse

(determined by the method canMatch at Line 8) and shares the most LCS2 tokens with tse (mea-

sured by the Dice Similarity) and maps tse to cse (Lines 4-15). We defined the method canMatch

to check whether two ses (statements/expressions) are compatible. Given two ses that are both

statements, canMatch checks whether they are both loops. If so, it returns true. Otherwise, it only
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returns true if their statement types15 are equal (e.g., both as if-statements). Given two ses that are

both expressions, canMatch returns true if and only if their expression types are equal. Given one

se as a statement and the other as an expression, canMatch only returns true if the statement’s type

is VariableDeclarationStatement and the expression’s type is one of Assignment and VariableDecla-

rationExpression. sharpFix extracts the LCS2 tokens from tse and cse and calculates a score based

on the extracted tokens using the Dice Similarity.

For the bug example, sharpFix maps the target statement at Line 2 in Figure 5.5 to the matched

(also translated) candidate statement at Line 2 in Figure 5.8. The extracted tokens and the similarity

calculation are shown below.

LCS2 Tokens from the Target Statement (12 in total ):

<collection >, <collect >, <c>, <=>, <r>, <.>,

<getannotations >, <get >, <annotations >, <(>, <)>, <;>

LCS2 Tokens from the Candidate Statement (11 in total ):

<result >, <=>, <r>, <.>,

<getupperbound >, <get >, <upper >, <bound >, <(>, <)>, <;>

Overlapped Tokens (7 in total ):

<=>, <r>, <.>, <get >, <(>, <)>, <;>

Dice Similarity: (2*7)/(12+11)=0.609

Modification

ssFix uses three types of modifications: replacement, insertion, and deletion to produce patches

based on the matched and unmatched statements/expressions between the target and the translated

candidate. sharpFix extends ssFix by using two more modifications: adding if-guard and method

replacement. To produce patches using the modification adding if-guard, sharpFix looks at a target

statement s (which appears in the target) and its mapped candidate statement s′ (which appears in

the translated candidate). If the parent of s′ is an if-statement with a condition e′, sharpFix creates

new if-statements with the condition e′ to guard existing statements in the target and in its enclosing

method. To do so, sharpFix needs to decide what statements should be guarded. Currently, it selects

two sets of statements: (1) the target statement s itself and (2) s plus the following statements its

block, and it produces two patches: (1) it creates a new if-statement if(e’){s} and replaces s with

the new statement and (2) it creates a new if-statement if(e’){s,s0,...,sk} where the statements

from s0 to sk are all the statements that follow s in its block, it next replaces the statements from

s to sk with the new if-statement. To produce patches using the modification method replacement,

sharpFix replaces the enclosing method of the target with the enclosing method of the translated

15The type of a statement/expression is the node type of the statement/expression in the abstract syntax tree that
sharpFix builds using the Eclipse JDT library [5].
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candidate. It uses this modification to possibly support making multiple changes within a method

for bug repair.

sharpFix uses the same method used by ssFix to do replacement (as described in Section 3.3.3).

For insertion, sharpFix looks at the candidate statement s′ to which the target statement s is

mapped, identifies the adjacent statements of s′ in its block: s0′ and s1′ that come before and after

s′, and inserts s0′ before s and s1′ after s to yield two patches. (Note that sharpFix looks at target

and candidate code chunks each containing only one statement, so it does not use the same insertion

method used by ssFix to do insertion.) sharpFix does not use ssFix’s deletion method which was

shown in Section 3.4.1 to be likely to produce defective patches.

For the bug example, sharpFix produces two patches using the modification adding if-guard. As

one patch, sharpFix uses the if-condition r!=null to guard the target statement (Line 2 in Figure 5.5)

only. The patched program fails to compile because variable c at Line 3 becomes undeclared (its

declaration is now in the then-branch of the newly created if-statement). As another patch, sharpFix

uses the if-condition to guard the target statement plus all its following statement in the block. This

is actually the patch shown in Figure 5.5 and is correct (identical to the developer patch).

Evaluation

To evaluate sharpFix’s code reuse ability, we looked at the 59 bugs for which sharpFix retrieved

candidates that contain the fix ingredients in the parameterized forms. For each bug, we provided

sharpFix with the target and the retrieved candidate and checked whether it can produce a plausible

patch that is correct.

Experiment For each of the 59 bugs, we provided ssFix with the target and the retrieved candi-

date, and ran sharpFix’s patch generation and patch validation automatically to possibly produce

a plausible patch. If sharpFix produced such a patch, we manually checked whether the patch is

correct (by comparing the patch to the developer patch provided by Defects4J).

Results Our results show that sharpFix produced 30 plausible patches which are all correct.

sharpFix successfully reused 30/59=50.8% candidates for bug repair. This is actually a lower bound

because not all the candidates can be reasonably reused for bug repair. We found that the exact

fix ingredients (without any translation) are contained in 39 candidates, and we expect sharpFix

to be able to reuse those fix ingredients in producing the correct patches. For the other 20 (59-

39) candidates which only contain the fix ingredients in the parameterized forms, we manually

determined whether they can be reasonably reused for bug repair. We identified only 3 candidates to

be reasonable for reuse. We analyzed the failures of sharpFix in reusing the candidates for repairing

the 12 (39+3-30) bugs. We found that the candidates are not ideal to be reused for repairing 9 bugs

(we gave an example of such a candidate in Section 5.3.2). To successfully reuse the candidates to

repair the other 3 bugs, we found that sharpFix’s modification is still not sophisticated enough. For

example, to repair the bug M101, we need to change the faulty if-condition d to a||b||d. For this
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bug, we found a candidate that contains the if-condition a||b||c (after translation). Currently,

sharpFix cannot apply its modification method to produce the correct patch in one step. It is

however possible to use two steps by replacing replacing d with a||b||c and then replacing c with

d (to successfully perform the second step, sharpFix needs to identify c and d are related). Though

it is possible to make sharpFix’s current modification method more sophisticated, doing so may not

actually improve sharpFix’s overall repair performance (as suggested by [133]).

5.4.4 Repair

We conducted the three experiments (E0, E1, and E2) used in Section 5.3.2 to evaluate sharpFix’s

repair abilities. The result of the full repair experiment E0 can be found in Table 5.1, sharpFix

produced plausible patches for 89 bugs among which it produced correct patches for 36 bugs. (Recall

that a patch is plausible if the patched program can pass the test suite and a patch is correct if it

is semantically equivalent to the developer patch.) The median and average times for producing a

plausible patch are about 11 and 25 minutes respectively. Compared to ssFix, sharpFix produced

correct patches for 14 more bugs with the times (median and average) of producing a patch being

comparable. To our knowledge, among all the existing APR techniques that were evaluated on the

Defects4J dataset (by the time we ran the experiments), sharpFix produced correct patches (as the

first-found plausible patches) for the largest number of bugs. The results of the experiments E1

and E2 can be found in Table 5.2 and in Table 5.3. For E1 and E2, with the faulty statement and

the faulty method manually provided, sharpFix produced correct patches for (39-29)/29=34.5% and

(43-36)/36=19.4% more bugs.

5.5 Summary

In this chapter, we revisited ssFix: the recent APR technique which finds and reuses existing code

fragments to do bug repair. We conducted the experiment to test the fix-ingredient-assumption

upon which ssFix was built. We found that the assumption is reasonable and that doing bug repair

through reusing existing code is promising. We evaluated ssFix’s code search, code reuse, and repair

abilities, identified possible ways for improvement, and developed sharpFix as a new APR technique.

We showed that compared to ssFix, sharpFix has better code search, code reuse, and repair abilities.

For the full repair experiment, our results showed that sharpFix produced correct patches for 36

Defects4J bugs, and outperformed existing APR techniques in producing correct patches for the

largest number of bugs.



Chapter 6

Conclusions & Directions for

Future Research

As mentioned in Chapter 1, current search-based automated program repair (APR) techniques face

two problems: (1) the search space problem and (2) the patch overfitting problem. For bug repair, a

search-based APR technique uses pre-defined modification rules to create a search space of patches

and works by searching within the space for finding a correct patch. The search space however is

often very huge which makes finding a correct patch hard. Using a test suite, an APR technique can

somehow produce a patched program that passes the test suite with the bug however not repaired

in a valid way: the patch may not fully repair the bug or may repair the bug but introduce new

bugs which the test suite does not expose.

In this thesis, we discussed three pieces of work (from Chapters 3 to 5) that we did to address

the two problems for improving the effectiveness of automated program repair. The three pieces of

work are the main contributions of the thesis.

In Chapter 3, we presented the APR technique ssFix which finds and reuses existing code frag-

ments (from the local faulty program and the non-local programs in a large code repository) to do

bug repair. By finding code fragments that are syntactically similar/related to the bug context and

leveraging the small syntactic differences between the bug context and each similar/related code

fragment to produce patches, ssFix essentially creates a search space that is reduced in size but

can still contain the correct patches. Our experiments show that ssFix produced valid patches (as

the first found plausible patches) for 20 of the 357 bugs with median time of producing a plausible

patch being only about 11 minutes. ssFix was shown to outperform five other APR techniques in

producing more correct patches.

In Chapter 4, we presented the patch testing technique DiffTGen which generates new test cases

to expose any overfitting behaviors of a patched program. Given a faulty program and a patched

program, DiffTGen calls a test generator to generate new test inputs to expose the differential

behaviors between the two programs. Such test inputs are interesting because the exposed differential

102



103

behaviors are related to the patch (given the two programs are deterministic). DiffTGen asks an

oracle to judge the correctness of the differential behaviors. If the behavior of the patched program

is incorrect, the patch is overfitting. With an expected behavior possibly provided by the oracle,

DiffTGen can produce an overfitting-indicative test case. Such a test case can be added to the

original test suite for augmentation. Using the augmented test suite, an APR technique can avoid

producing a similar overfitting patch again. We evaluated DiffTGen on 89 patches generated by four

APR techniques for Java. We manually identified 10 of the 89 patches to be non-overfitting (and the

other 79 patches are possibly overfitting). DiffTGen identified about 39 (49.4%) overfitting patches

and generated the corresponding test cases exposing their overfitting behaviors. We further showed

that the four APR techniques configured with DiffTGen produced less overfitting patches and more

correct ones.

In Chapter 5, we conducted experiments to test ssFix’s built-upon assumption and found that

it is often possible to find the fix ingredients (the statements and expressions that can be used

for producing the correct patches for bug repair) from the local faulty program and the non-local

programs in a large code repository. We also conducted experiments to evaluate ssFix’s code search,

code reuse, and repair abilities. We identified possible ways to improve ssFix and developed sharpFix

as an improved version of ssFix. sharpFix improves ssFix’s code search by using different search

methods for retrieving code fragments from the local faulty program and from the non-local programs

in the code repository. For patch generation, sharpFix improves the ssFix’s three steps: code

translation, code matching, and modification. We evaluated sharpFix and found that compared to

ssFix, sharpFix has better code search, code reuse, and repair abilities. sharpFix produced correct

patches for 36 bugs in the Defects4J bug dataset. Compared to existing APR techniques that were

evaluated on this dataset, sharpFix repaired more bugs with correct patches generated.

6.1 Directions for Future Research

Automated program repair is challenging. Current APR techniques are still far from maturity. They

are only able to produce relatively simple patches. Their repair processes are often very expensive.

And they are prone to producing overfitting patches. Due to these reasons, no current APR technique

has been extensively applied in practice. We propose five research directions for making automated

program repair more practical by improving its repairability (the ability of producing a patch for

a bug in general), accuracy (the proneness of producing an non-overfitting patch rather than an

overfitting patch), and efficiency.

• Using more sophisticated code search for bug repair: Our APR techniques ssFix and

sharpFix reuse existing code fragments (from a large code database) that are syntactically

similar to the context of a bug to do repair and have been shown to be promising. In fact, code

fragments that are syntactically similar to the bug context are not necessarily semantics-related

and may not be useful for bug repair. Using such code fragments, either ssFix or sharpFix may

spend much of its repairing time generating patches that are not likely to be correct. It might be
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worth investigating using semantics-based code search to improve ssFix’s and sharpFix’s code

search performances and further to improve their repair performances. Standard semantics-

based code matching and code search techniques like [107] are too expensive for retrieving

code at the repository level. However, it is possible to combine using such standard techniques

with ssFix’s or sharpFix’s syntactic code search to achieve better scalability. For example, it is

possible to run ssFix’s or sharpFix’s code search to obtain an initial (large) set of code fragments

that are syntactically similar to the bug context and then use standard semantic techniques

to re-rank those code fragments to identify those that are the most semantics-related to the

bug context for repair. It is also possible to apply approximated but scalable semantics-based

code search techniques (e.g., based on PDG-based vectors [66], based on identifying similar

API usage [30], based on finding similar code from Q&A sites for query expansion and further

using expanded query code for finding more similar code [103]) to do a better job. A possibly

better approach is to leverage machine learning techniques to train a model based on a set of

pairs of buggy code and candidate code that is similar to it but contains the fix ingredients.

Then we can further use the model to re-rank the candidates retrieved by code search.

• Combining using multiple repair techniques: Many automated repair techniques have

been developed over the past decade. There has been increasing evidence [47, 190, 223] showing

that different repair techniques are good at repairing different types of bugs. It is thus possible

to combine using these techniques in a dynamic way to achieve better repair than using any

particular technique alone. (For example, Genesis [131] uses specialized repair transformations

mined from existing bug-fixes to produce patches and was shown to work reasonably well to

repair three types of bugs caused by null pointer, out of bound, and class cast exceptions. If

we can somehow tell that the program failure is caused by one of the three types of bugs, we

may try using Genesis to produce patches first. If Genesis fails, then we may consider using

another repair technique, e.g., ssFix, to do the repair.) It is also possible to learn (e.g., through

machine learning) the “best” repair strategy (i.e., the best repair technique to be used) for a

bug based on the bug context, the failure information, etc. and then apply the learned strategy

to do effective repair.

• Human intervention: Achieving effective program repair in a fully automated way can be

too hard. Doing semi-automated program repair by involving a human in the repair process

of an automated repair technique can be a better option. A recent study [121] demonstrated

the feasibility of involving a human in the fault localization process to improve the fault

localization accuracy. It is also possible to involve a human in the patch testing process to

identify an overfitting patch generated by the repair technique. Our patch testing technique

DiffTGen [229] demonstrated the feasibility of doing so. DiffTGen works by generating new

test inputs uncovering the semantic difference between a patched program and the original

unpatched program, presents the differential semantics as different outputs to an oracle (a

human), and asks for correctness judging. To be practical, DiffTGen needs to be improved
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to be more human amenable: It needs to try finding and presenting outputs that are high-

level and can be easily understood by a human (e.g., the return value of a public method

as opposed to the value of a local variable from a private method), it needs to provide more

testing information (related to the outputs) to a human to make correctness judging easier,

etc.

• Speeding up patch validation: An automated repair technique that uses a test suite to

validate patches spends a significant fraction of its repairing time on patch validation, i.e., on

compiling and testing patches. Speeding up the patch validation process would make a repair

technique work more efficiently. Current APR techniques do patch validation by first compiling

the patched programs, next testing it against the test case(s) that the original program failed,

and finally testing it against the whole test suite. It is possible to do some static analysis prior

to patch compilation to avoid spending time on compiling an invalid patched program (which

for example uses an undeclared variable). Testing patches is expensive, and it is possible

to speed up this process. For example, after validating a patched program using the test

case(s) the original program failed, instead of directly testing it against the whole test suite

to determine whether the program introduced regressions, a repair technique can first identify

relevant test cases that were affected by the patch (e.g., using the coverage information) and

then test the program against these test cases. By doing so, a repair technique can save time

testing a patch on irrelevant test cases. It is also possible to reason about the behavioral

equivalence between two patches. If we can somehow identify two patches to be semantically

equivalent, then we only need to validate one of the two patches (there are some initial research

efforts [219, 151] that look at this direction).

• Handling complex bugs: Current techniques can only do simple bug repair: they often use

a single repair action to produce a patch. The study by Zhong and Su [254] showed that the

fix for more than 70% of the real bugs requires more than one repair action. Therefore, to

be practical, an automated repair technique needs to support using multiple repair actions to

repair a complex bug. GenProg [116, 74] implements using multiple repair actions through

iterations. At each iteration, it applies single repair actions to produce a set of patches and

copies the “promising” patches to the next iteration to produce more complex patches. A

promising patch does not fully repair the bug but makes some progress and can be further

modified to produce a correct patch. Currently, GenProg uses a simple method to identify a

promising patch by computing a fitness score based on the number of test cases the patched

program passed and failed. This has been shown to be not very effective. However, it is

possible to consider using more information (e.g., the failure information, the context of the

located bug, etc.) in addition to what GenProg does to make the identification of a promising

patch more effective to be able to repair a complex bug in practice.

We believe it is possible to further improve the effectiveness of automated program repair by

making progress in the research directions we proposed (and in other directions). In the future, we
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hope to see an APR technique that can work fast and can generate high-quality patches for a large

fraction of real bugs.
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