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In today’s world data is ubiquitous. Increasingly large and complex datasets are gathered across

many domains. Data analysis - making sense of all this data - is exploratory by nature, demanding

rapid iterations, and all but the simplest analysis tasks require humans in the loop to effectively

steer the process. Current tools that support this process are built for an elite set of individuals:

highly trained analysts or data scientists who have strong mathematics and computer science skills.

This however presents a bottleneck. Qualified data scientists are scarce and expensive which makes

it often unfeasible to inform decisions with data. How do we empower data enthusiasts, stakeholders

or subject matter experts, who are not statisticians or programmers, to directly tease out insights

from data? This thesis presents work towards making data analysis more accessible. We invent

a set of user experiences with approachable visual metaphors where building blocks are directly

manipulatable and incrementally composable to support common data analysis tasks at the pace

that matches the thought process of a humans.

First, we develop a system for back-of-the-envelope calculations that revolves around handwriting

recognition - all data is represented as digital ink - and gestural commands. Second, we introduce

a novel pen & touch system for data exploration and analysis which is based on four core inter-

action concepts. The combination and interplay between those concepts supports a wide range of

common analytical tasks. The interface allows for incremental and piecewise query specification

where intermediate visualizations serve as feedback as well as interactive handles to adjust query

parameters. Third, we present a visual query interface for event sequence data. This touch-based

interface exposes the full expressive power of regular expressions in an approachable way and inter-

leaves query specification with result visualizations. Fourth, we present the results of an experiment

where we analyze how progressive visualizations affect exploratory analysis. Based on these results,

which suggest that progressive visualizations are a viable solution to achieve scalability in data ex-

ploration systems, we develop a system entirely based on progressive computation that allows users

to interactively build complex analytics workflows. And finally, we discuss and experimentally show

that using visual analysis tools might inflate false discovery rates among user-extracted insights and

suggest ways of ameliorating this problem.
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Chapter 1

Introduction

Thesis Statement: Most people who rely on data to make informed decisions are not statisticians

or computer scientists. However, tools that support data driven descision making are either targeted

towards such advanced users or limited in functionality or scale. We aim to make data analysis

more accessible by inventing a set of approachable user experiences that support data analysis

tasks ranging from simple spreadsheet calculations to complex machine learning workflows on large

datasets.

1.1 Motivation and Problem Statement

Data is everywhere. Companies store customer and sales information, researchers collect data by

running experiments and application or website developers store interaction logs. But all this data

is useless without the means to analyze it. Extracting actionable insights from data has been left

to highly trained individuals who have strong mathematics and computer science skills. They have

the background to query databases to create insightful reports and visualizations, develop statistical

models and implement scalable infrastructures to process large and complex data. For example, it

is common practice for corporations to employ teams of data scientists that assist stakeholders in

finding qualitative, data-driven insights to inform possible business decisions. Having such a high-

entry bar to data analysis however presents several challenges. For one, it presents a bottleneck.

While research is trying to understand and promote visualization and data literacy [9, 32] and

educational institutions are ramping up their data science curricula there is still a shortage of

1
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skilled data scientists. And second, and more importantly, restricting data analysis to those with a

computational background creates an inequality [23]. Small business owners without programming

skills or research domains where computational background might not be as prevalent are at a

disadvantage as they can not capitalize on the power of data.

We, as others [98, 63], believe that there is an opportunity for tool builders to create systems

for data enthusiasts - people who are “not mathematicians or programmers, and only know a bit of

statistics” [78]. Making sense of data is an exploratory process that demands for rapid iterations.

This work is about creating visual interfaces that support this process at a pace that matches the

thought process of human analysts and in ways that users can focus on applying their domain

knowledge without requiring programming skills.

This dissertation starts out by showing how simple analysis tasks on small datasets - back back-of-

the-envelope or spreadsheet-like calculations - can be exposed through a pen and paper like interface

that leverages pre-learned skills such as handwritten math notation instead of specialized formula

scripting languages, while still offering computational support. We then extend this style of direct

manipulation to data that is stored in databases by presenting an approachable visual language that

allows users to pose questions without writing SQL queries.

SQL databases are optimized for storing tabular data but are a notoriously bad fit for event

sequence data: a type of data found in many domains ranging from electronic health records to

telemetry and log data. We show a visual language that supports queries over such data through di-

rect manipulation. Our system exposes the power of regular expressions and enables data enthusiasts

to answer complex questions over event sequences.

The fluid [54] interaction style exhibited in all of our systems is designed to promote “flow” -

staying immersed in the current activity and not being distracted by the user interface - and relies

on prompt feedback and response times. However, datasets are often too large to process within

interactive time-frames. We empirically show that progressive visualizations and computations show

great promise as a viable solution for this problem. We build a progressive data processing backend

and a user interface that supports visualizations and more complex analytical workflows such as

building machine learning models to demonstrate the feasibility of this approach.

Empowering novice users to directly analyze data also comes with drawbacks. It exposes them

to “the pitfalls that scientists are trained to avoid” [63]. We study and discuss one such pitfall - the

multiple comparisons problem - and present some insights and techniques on how to address it.
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1.2 Thesis Organization and Contributions

This thesis includes eight chapters, six of which contain primary contributions. We summarize these

chapters and highlight their contributions in the following paragraphs. The bulk of this thesis has

been previously published in journal and conference papers. Disclaimers at the beginning of each

chapter highlight my personal contributions and the relevant publications are referenced here as well

as at the beginning of each chapter.

Chapter 2: Spreadsheet-like Calculations through Digital Ink

In this chapter we present Tableur, a spreadsheet-like pen- & touch-based system. The need for

back-of-the-envelope calculations, such as rough projections or simple budget estimations, occurs

frequently and oftentimes while being away from desktop computers. While major software vendors

have optimized their spreadsheet applications for mobile environments their generality still makes

them heavyweight for such tasks. We have built Tableur targeted towards these use cases. Our

design revolves around handwriting recognition - all data is represented as digital ink - and gestural

commands. Through a rethought cell referencing system and by incorporating standard math nota-

tion recognition Tableur allows for simple formula creation and we experiment with techniques that

support pattern-based prefilling of cells (Smart Fill) and exploration of what-if scenarios (Reverse

Editing).

Emanuel Zgraggen, Robert Zeleznik, and Philipp Eichmann

Tableur: Handwritten Spreadsheets

In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing

Systems

Chapter 3: Visual Data Exploration and Analysis through Pen & Touch

Interactively exploring multidimensional datasets requires frequent switching among a range of dis-

tinct but inter-related tasks (e.g., producing different visuals based on different column sets, cal-

culating new variables, and observing the interactions between sets of data). Existing approaches

either target specific different problem domains (e.g., data-transformation or data-presentation) or

expose only limited aspects of the general exploratory process; in either case, users are forced to
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adopt coping strategies (e.g., arranging windows or using undo as a mechanism for comparison in-

stead of using side-by-side displays) to compensate for the lack of an integrated suite of exploratory

tools. In this chapter we introduce PanoramicData (PD), a system which addresses these problems

by unifying a comprehensive set of tools for visual data exploration into a hybrid pen and touch

system designed to exploit the visualization advantages of large interactive displays. PD goes beyond

just familiar visualizations by including direct UI support for data transformation and aggregation,

filtering and brushing. Leveraging an unbounded whiteboard metaphor, users can combine these

tools like building blocks to create detailed interactive visual display networks in which each visu-

alization can act as a filter for others. Further, by operating directly on relational-databases, PD

provides an approachable visual language that exposes a broad set of the expressive power of SQL,

including functionally complete logic filtering, computation of aggregates and natural table joins. To

understand the implications of this novel approach, we conducted a formative user study with both

data and visualization experts. The results indicated that the system provided a fluid and natural

user experience for probing multi-dimensional data and was able to cover the full range of queries

that the users wanted to pose.

Emanuel Zgraggen, Robert Zeleznik, and Steven M Drucker

Panoramicdata: Data Analysis through Pen & Touch

IEEE Transactions on Visualization and Computer Graphics (InfoVis), 2014

Chapter 4: Visual Regular Expressions for Querying and Exploring Event

Sequences

Many different domains collect event sequence data and rely on finding and analyzing patterns

within it to gain meaningful insights. Current systems that support such queries either provide

limited expressiveness, hinder exploratory workflows or present interaction and visualization models

which do not scale well to large and multi-faceted data sets. In this paper we present (s|qu)eries

(pronounced “Squeries”), a visual query interface for creating queries on sequences (series) of data,

based on regular expressions. (s|qu)eries is a touch-based system that exposes the full expressive

power of regular expressions in an approachable way and interleaves query specification with result

visualizations. Being able to visually investigate the results of different query-parts supports de-

bugging and encourages iterative query-building as well as exploratory work-flows. We validate our
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design and implementation through a set of informal interviews with data scientists that analyze

event sequences on a daily basis.

Emanuel Zgraggen, Steven M. Drucker, Danyel Fisher, and Robert DeLine

(s|qu)eries : Visual Regular Expressions for Querying and Exploring Event Sequences

In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems,

CHI ’15, 2015

Chapter 5: The Case for Progressive Visualizations

The stated goal for visual data exploration is to operate at a rate that matches the pace of human

data analysts, but the ever increasing amount of data has led to a fundamental problem: datasets

are often too large to process within interactive time frames. Progressive analytics and visualizations

have been proposed as potential solutions to this issue. By processing data incrementally in small

chunks, progressive systems provide approximate query answers at interactive speeds that are then

refined over time with increasing precision. In this chapter we study how progressive visualizations

affect users in exploratory settings in an experiment where we capture user behavior and knowl-

edge discovery through interaction logs and think-aloud protocols. Our experiment includes three

visualization conditions and different simulated dataset sizes. The visualization conditions are: (1)

blocking, where results are displayed only after the entire dataset has been processed; (2) instanta-

neous, a hypothetical condition where results are shown almost immediately; and (3) progressive,

where approximate results are displayed quickly and then refined over time. We analyze the data

collected in our experiment and observe that users perform equally well with either instantaneous or

progressive visualizations in key metrics, such as insight discovery rates and dataset coverage, while

blocking visualizations have detrimental effects.

Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel Fekete, and Tim Kraska

How Progressive Visualizations Affect Exploratory Analysis

IEEE Transactions on Visualization and Computer Graphics, 2016
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Chapter 6: A System for Progressive Visualizations and Computations

In this chapter we present Vizdom, an interactive visual analytics system that scales to large datasets.

Vizdom’s design is informed by the findings from Chapter 5 which suggest that progressive visualiza-

tions are a viable solution to achieve scalability in visual data exploration systems. However, Vizdom

goes beyond “just” visualizations and extends the concept of progressiveness to other types of re-

occurring data analysis tasks such as building machine learning models. Vizdom scales seamlessly,

and transparent to the user, across dataset sizes ranging from thousands to hundreds of millions of

records. We present our system design, show how various data analysis tasks are supported within

our system and discuss the limitations and advantages of progressive computations in the context

of data analytics.

Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska

Vizdom: Interactive Analytics Through Pen & Touch

Proceedings of the VLDB Endowment, 2015

Chapter 7: Investigating the Effect of the Multiple Comparison Problem

in Visual Analysis

The goal of a visualization system is to facilitate dataset-driven insight discovery. But what if the

insights are spurious? Features or patterns in visualizations can be perceived as relevant insights,

even though they may arise from noise. We often compare visualizations to a mental image of what we

are interested in: a particular trend, distribution or an unusual pattern. As more visualizations are

examined and more comparisons are made, the probability of discovering spurious insights increases.

This problem is well-known in Statistics as the multiple comparisons problem (MCP) but overlooked

in visual analysis. We present a way to evaluate MCP in visualization tools by measuring the

accuracy of user reported insights on synthetic datasets with known ground truth labels. In our

experiment, over 60% of user insights were false. We show how a confirmatory analysis approach

that accounts for all visual comparisons, insights and non-insights, can achieve similar results as one

that requires a validation dataset.

Emanuel Zgraggen, Zheguang Zhao, Robert Zeleznik, and Tim Kraska

Investigating the Effect of the Multiple Comparison Problem in Visual Analysis In Proceedings of

the 36th Annual ACM Conference on Human Factors in Computing Systems, CHI ’18, 2018
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Zheguang Zhao, Emanuel Zgraggen, Lorenzo De Stefani, Carsten Binnig, Eli Upfal, and

Tim Kraska

Safe visual data exploration

In Proceedings of the 2017 ACM International Conference on Management of Data



Chapter 2

Spreadsheet-like Calculations

through Digital Ink

This chapter presents a system called Tableur, a spreadsheet-like pen- & touch-based system that

revolves around handwriting recognition. This chapter is substantially similar to [177], where I was

the first author and was responsible for the research direction, implementation and a majority of the

writing.

2.1 Introduction

Spreadsheet applications are programs that allow users to enter, manipulate and analyze data that

is represented in tabular form and through formulas that reference values in cells. They are widely

used for different tasks and support advanced data analysis through built-in scripting languages. The

need for simple calculations oftentimes occur while being in situations where a desktop computer is

unavailable such as during meeting or while being at lunch with a colleague. Although spreadsheets

are extremely powerful their complexity can be overwhelming especially while being in such mobile

environments.

In this paper we present Tableur a novel gesture-based pen & touch system that offers spreadsheet-

like functionality and is targeted towards back-of-the-envelope calculations on devices found in away-

from-desk situations such as phablets, tablets and interactive whiteboards. We designed our system

8
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(a)
(b)

(c)

Figure 2.1: Screenshot of the application depicting the resulting view assembled by Eve throughout
the introductory use case. a) Table with rows per month of estimates for income and expenses as
well as formulas to compute the total. b) Line chart of “Income”, “Expenses” and “Total” column.
c) Freeform Cells that compute the sum over the “Total” column as well as taxes owed based on a
constant “Tax Rate”.

by following the fluid design guidelines [54] which promote direct manipulation, minimization of

user interface clutter and advocate the integration of interface components directly into the visual

representation. In Tableur all data is represented, created and edited as handwritten ink. We offer a

set of gestures that manipulate and organize ink and incorporate handwriting recognition such that

formulas can be created through standard handwritten math notation. We present a label-based de-

sign for referencing content in formulas and discuss techniques that support fast creation of patterns

(Smart Fill), promote freeform workflows (Freeform Cells) and what-if scenarios (Reverse Editing).

2.2 Related Work

Numerous authors [27, 108, 109, 49, 107, 123] have emphasized the benefits of pen- & touch-based

interfaces with regards to data exploration and analysis. Drucker et. al. [49] for example find

that users not only subjectively prefer a touch interface over a traditional WIMP interface but also

perform better with it for certain data related tasks. Others built pen- & touch-based systems that

simplify story telling with data [108], allow users to gesturally create, label, filter and transform

charts [27, 109] or enter calculated fields through handwriting [176]. However all of these systems

focus on exploring and analyzing existing data and do not support standard spreadsheet functionality

like creating and editing new data or referenced-based formulas. In other domains, such as diagram
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drawing [174] or mathematical eduction [173, 172, 106], researchers have ported the immediacy and

fluidity of paper-based pencil-drawing to digital media and augmented it with computational power.

We adopted some of these approaches and techniques to the domain of spreadsheet calculations.

2.3 Tableur

We motivate our system through a use case throughout which we point to the appropriate sections

that describe the techniques in more detail. Figure 2.1 shows the resulting spreadsheet that is

assembled throughout the use case.

2.3.1 Use Case

Eve is the owner of a small business and wants to get a rough idea how her company will be

performing over the next few months. She decides to use Tableur to assist her with this task.

Tableur offers an unbounded zoom- and pan-able 2D canvas where ink can be placed anywhere with

the use of a digital stylus. Eve starts by writing down an outline of her tabular data with the

column headers “Income”, “Expenses” and “Total” and rows labeled “Jan” and “Feb” indicating

months she wants to analyze. She then performs a gesture (Gestural System) to signal that her

ink should be interpreted as a tabular structure (Ink Segmentation). After filling out the individual

cells with estimates of the respective incomes and expenses she realizes that she wants to expand

her spreadsheet beyond just January and February. Another gesture prefills the cells with ink up

until June (Smart Fill). Eve now wants to create a formula that computes the total (income minus

expense) for each month. She does so by combining references to the “Income” and “Expenses”

labels in the first row’s “Total” column through drag and drop and handwrites a minus sign in

between (Formulas). Propagating this formula to all cells of the “Total” column seems tedious so

Eve opts to use another gesture to do so (Smart Fill). She fills out the rest of the spreadsheet with

estimates for the respective months and then creates a free floating cell next to her table that she

labels “Profit 2016” (Freeform Cell). She drops the “Total” label into that new cell and the system

automatically calculates the sum over that column for her. In order to reinforce the numbers she

just wrote down and calculated Eve decided to visualize them. She drags all the column labels out

to free area of the canvas and the system shows her a simple line chart. A new supplier that Eve

was in contact with offers very competitive prices that would cut down her monthly expenses from
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roughly $60 to $40. To analyze this what-if scenario she edits the “Expenses” line in the chart by

over-drawing a new horizontal line (expenses are more or less constant across months) at roughly

the 40 mark (Reverse Editing). The system updates the numbers in her spreadsheet as well as her

“Profit 2016” cell and she realizes that she could more than double her profit by switching to this

new vendor. Eve finalizes her analysis by creating more Freeform Cells. She uses those to calculate

how much in taxes she estimates to owe for the first half of 2016 based on a “Tax Rate” that she

sets to 30%.

2.3.2 Gestural System

All commands within Tableur are triggered through gestures ranging from simple drag and drop

operations to ink-based scribble-erase gestures [174] that remove unwanted content. To distinguish

regular ink from gestures and to be able to overload gestures with multiple outcomes we imple-

mented a two-step gesturizer system. All new ink gets analyzed and as soon as a potential gesture is

recognized it gets highlighted and a pop-up menu is displayed. Selecting an option then triggers the

gesture while ignoring it or tapping outside fades the gesture stroke back to normal ink. The top im-

age in figure 2.2 illustrates this concept. The circular stroke has been recognized as a potential lasso

gesture and is highlighted in red. The pop-up menu in the lower right corner informs the user that

their gesture has two possible different outcomes. We are planning to incorporate techniques, like

the one presented in GestureBar [25], in future versions of our prototype to enhance discoverability

of our gesture set.

2.3.3 Ink Segmentation

Ink on the canvas is only interpreted and analyzed if the user chooses to transform it into an active

object. Tableur offers two types of such objects: tables and Freeform Cells. A lasso gesture around

existing ink (or a rectangular gestures for empty objects) is used to create such objects (figure 2.2

top). The system runs a segmentation algorithm that decides how to break the ink into a row

and column structure. The algorithm looks at the distribution of ink among the X and Y axis

and outputs a list of bounding boxes that represent individual cells. All ink is then assigned to its

corresponding cell and the system invokes handwriting recognition on the content of each cell (figure

2.2 center). Note that such tables can easily be edited and extended by either writing more ink onto
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(a)

(b)

Figure 2.2: Screenshots from the application. Top: Unsegmented ink outside of an active object with
ongoing lasso gesture. Center: Table after ink has been segmented and assigned to corresponding
cells. Bottom a) Expanded table to the right after adding ink. b) Ongoing expansion of table to the
bottom.

them (figure 2.2 bottom) or by a set of gestures that allow to correct the automatic segmentation

(splitting or merging of cells and columns).

2.3.4 Smart Fill

Standard spreadsheet applications usually offer functionality that helps users avoid doing repetitive

and tedious tasks such as propagating formulas to different cells or expanding number or date

patterns across columns or rows. Tableur incorporates similar functionality. A horizontal or vertical

gesture across multiple cells activates this smart filling. By analyzing the cells under the gesture-

stroke that contain content the system tries to extrapolate how to fill the remaining cells where the

length of the gesture-stroke determines which existing cells need to be filled or how many additional

cells need to be added. We currently support simple patterns such as dates (figure 2.3 left) or

ascending and descending numbers as well as propagation of formulas where reference to rows or

columns are updated accordingly (figure 2.3 right). Note that the added synthesized content is just

like any other regular ink: it can be manipulate or deleted with the same commands. We sample

letters or digits from a prerecorded alphabet that can be customized to match a user’s handwriting.
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Figure 2.3: Two examples of Smart Fill. Left: Propagation of a date pattern. Right: Propagation
of formulas with corresponding updates to row references.

2.3.5 Formulas

Formulas in Tableur live within cells of tables or Freeform Cells and consist of handwritten math,

references to other cells or combinations thereof. The content of all cells is analyzed automatically

as soon as it is inputed by the user. This step involves invoking two separate recognizers: a standard

handwriting recognizer to detect textual input and a custom math recognizer. Tableur’s math

recognition engine is based on prior work developed by colleagues at Brown University [173, 172, 106].

It supports most common math handwriting notations (see figure 2.4 d for some examples) and offers

a variety of customization settings to accommodate for user preferences and different handwriting

styles. If the system determines that a cell contains a formula, either with just constants (figure 2.4

a) or with references to other cells (figure 2.4 b), the user can toggle between formula view (figure

2.4 b) and result view (figure 2.4 c) by tapping on it. Tableur’s evaluation engine computes results

of formulas by either directly interpreting ink or by following references over possibly multiple hops.

Note that in case of cycles in formulas, illegal operations (e.g., division by 0) or invalid inputs (e.g.,

a reference to text) the system will display appropriate error messages.

Unlike traditional spreadsheet systems that use an abstract notation for cell references in formulas

we implemented a label-based approach in Tableur. Any content that a user wants to reference in

a formula needs to have a user-defined handwritten label. Users can label Freeform Cells through

gestures or convert row and column headers to label-handles. These handles (figure 2.4: ink with gray

background) can then be dragged onto other cells to create references. The underlying evaluation

engine interprets these references based on the origin of the label and the location of the formula.
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(a) (b) (c)

(d)

(e)

Figure 2.4: Screenshots from the application showing different examples of formulas. a) Labeled
Formula in Freeform Cell. b) a) Formula including a reference in Freeform Cell. c) a) Formula
in Freeform Cell showing its result view. d) a) Formula in Freeform Cell with more advanced
handwritten math notation. e) Formulas in a table.

In tables and when created through label-handles of row or column headers the appropriate cells

of the table are referenced (figure 2.4e: reference to column “abc”) while the same reference in a

Freeform cell gets evaluated as the sum of all values of the corresponding row or column (figure

2.4d: reference to column “abc”). All formulas are live. Changes to referenced values are directly

reflected in the result view of a formula.

2.3.6 Freeform Cell

For many cases creating a full tabular structure feels too heavyweight. Examples include writing

down a constant value that will get referenced in other formulas (e.g., π, “Tax Rate”) or doing a

simple single calculation (e.g., 38 ∗ 140). For these scenarios Tableur offers Freeform Cells, which

are created through a simple rectangular gesture, can be placed anywhere on the 2D canvas and

contain any kind of formula or value referenced by a label. Their freeform nature can be used to

break out of the rigid tabular structure of standard spreadsheets and promote more free flowing

working styles where the result of a tabular calculation can be summarized in a single Freeform Cell

and then reused in other calculations downstream. Figure 2.1 c shows an example of this where

multiple Freeform Cells are used to first capture an important result of a table (the sum of the

“Total” column in the cell labeled “Profit 2016”) and then calculate derivatives of it (“Tax Owed”

is based on “Profit 2016” and “Tax Rate”).
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2.3.7 Reverse Editing

The idea of Reverse Editing stems from the notion that it is sometimes easier to sketch the shape

of data rather than expressing it through other means. In the realm of data this could include

statements like “I want my data to be linearly interpolated between a and b” or “Our income will

increase in months with higher temperatures”. These statements can be easily illustrated by drawing

a straight line between a and b or by sketching a curve that starts low, increases constantly over the

summer months and then plateaus again. We support this notion by allowing users to edit tabular

data directly by drawing on top of line charts to express how they want their data to look like.

Figure 2.5 shows an example of this technique. In Tableur dragging and dropping row or column

label headers onto the 2D canvas creates simple low fidelity line charts of the corresponding data

(figure 2.5 top). By tapping the edit button of a line series users enter the reverse editing mode in

which lines drawn on top of the chart are interpreted as data-sketches. In the example (figure 2.5

middle) the user indicates that she wants the values of “b” to be linearly interpolated between 0

and 10. The system samples the ink the users drew at regular intervals and updates the values in

column “b” of the underlying table. This sampling strategy supports any arbitrary curve to edit

entire series as well as smaller scribbles or circles to move individual datapoints. While such sketches

are relatively imprecise they still allow for rapid exploration of different what-if scenarios such as

“What happens to our profit if our expenses are slightly higher or lower than expected?”.

2.3.8 Implementation Details

The current prototype of Tableur supports all the functionality described in this paper, is imple-

mented in C# and WPF (Windows Presentation Framework) and runs on pen- & touch-enabled

Windows 8 or 10 devices.

2.4 Discussion and Future Work

We presented Tableur a gestural spreadsheet-like system that is optimized for pen & touch devices.

Our system is based on digital ink where users input and edit data through handwriting and organize

and annotate ink through a set of gestures. We use handwriting segmentation and recognition to

transform digital ink into actionable and computable objects such as tables, constants and formulas.

Furthermore we rethink how to fit existing spreadsheet functionality like Smart Filling and cell
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Figure 2.5: Screenshots from the application showing Reverse Editing. Top: Table with correspond-
ing line chart. Center: The user wants the values of “b” to be linearly increasing from 0 to 10. She
draws a line directly on top of the line chart that indicates this. Bottom: The system has sampled
values along the user-drawn line and replaced the values of the “b” column correspondingly.

references for formulas into this new environment and describe novel functionality like Reverse

Editing that exploits the benefits of a gestural and sketch-based application. Limited initial user

testing hints at the benefits our approach might have over traditional WIMP interfaces especially

on tablets and interactive whiteboards. However, thorough quantitative user studies are needed to

analyze the effects in detail. We are currently planning a study where we will compare our prototype

to a traditional spreadsheet system on tablet devices through user performance measures for adhoc

back-of-the-envelope calculation tasks. Aside from evaluation work, we also intend to extend our

system by including more Smart Filling patterns, offer more flexibility when creating formulas by

supporting functions and labels to individual cells in tables and porting Reverse Editing to different

chart types.



Chapter 3

Visual Data Exploration and

Analysis through Pen & Touch

This chapter presents a system called PanoramicData, a novel pen & touch system for data explo-

ration and analysis which. PanoramicData provides an approachable visual language that exposes a

broad set of the expressive power of SQL, including functionally complete logic filtering, computation

of aggregates and natural table joins. This chapter is substantially similar to [176], where I was the

first author and was responsible for the research direction, implementation, running and analysis of

the user study and a majority of the writing.

3.1 Introduction

Visual data analysis - gaining insights out of a dataset through visualizations is an interactive and

iterative process where users need to switch frequently among a range of distinct but interrelated

tasks. The set of tasks that recur in visual data analysis, as well as the tools that support them,

is well understood [10, 83]. However, designing a system that supports this diversity of tasks in a

unified, understandable and approachable way is a non-trivial challenge itself.

Design approaches for visual data analysis typically fall into either the rich-general or strong-

specific categories. Rich general approaches are manifest in the form of programming languages, such

as SQL or Python, possibly in combination with a general purpose tool like Excel. The syntactic,

17
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(a)

(b)

(d)

(e)

(c)

Figure 3.1: Data panorama of the Titanic passenger data-set. (a) Map-view of passenger home
towns. (b) Pie-chart of passenger distribution from North-America and Europe (filtered by selection
in (a)) across passenger classes. (c) Annotated snapshot of average survival rate by passenger class.
(d) Average survival rate for passenger age bins. Brushed by selections in (a) and (b). (e, bottom)
Gender distribution for passengers selected in (d). (e, Top) Gender distribution for passengers not
selected in (d). Dashed line indicates inversion of selection.
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programming nature of these rich general systems creates learning and performance barriers for all

but the most dedicated users. Alternatively, strong specific approaches provide more accessible tools,

albeit for some narrower problem domain, such as data-transformations [97], data presentations [108],

or limited tasks within data exploration [150]. Unfortunately, this approach requires users to adopt

cumbersome workarounds, such as exporting data to other programs, to complete many common

tasks that fall outside the systems target domain.

Inspired by the metaphor of narrative panoramas, our research attempts an interactive rich-

general approach by providing a small set of simple visualization primitives which can be linked

in very direct, concrete ways through Boolean operations on an unbounded canvas to create so-

phisticated visualizations. These dynamic panoramas are expressive enough to represent interactive

visualizations for the scope of tasks required for detailed exploratory analysis of multi-dimensional

structured data. These dynamic panoramas are expressive enough to represent interactive visualiza-

tions for the scope of tasks required for detailed exploratory analysis of multi-dimensional structured

data. Although this approach requires that users understand how to piecewise compose a complex

visualization, we believe even beginning users can develop this mastery with minimal training be-

cause it corresponds to the incremental way in which questions generally form. For example, a

complex query might germinate from a simple question about a dataset, such as “how many women

died on the titanic?” Followed by, “show their age distribution,” and then by “compare those dis-

tributions by berthing class,” and so on. The totality of such a visualization chain can be a rather

complex acyclic graph. However, the panoramic approach to visually representing this working set

of composed queries is powerful [24, 51]. Not only is the step-by-step creation process approachable,

but it also affords interactive “handles” at each query stage to explore tangential queries, such as

switching from women to men in the example, or to simply verify that the question had been posed

correctly. During our iterative design of PanoramicData (PD), our embodiment of this rich-general

approach, we referred to Heer & Shneidermans [83] taxonomy of interactive dynamics for visual

analytics as well as the analytical task taxonomy of Amar, Eagan & Stasko [10] as a guide to ensure

that PD broadly covers exploration and analysis tasks. We observed that in order to support those

tasks in a comprehensible and unified way our most effective design choices clustered around a set of

four concepts (Derivable Visualizations, Exposing Expressive Data-Operations, Unbounded-Space,

and Boolean Composition). These concepts, which all have been discussed to some extent in the lit-

erature, both guided and encapsulated the critical reasoning behind our design decisions. Although
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we found that each of these concepts typically allowed for multiple different equivalent designs,

omitting any concepts had a significant negative impact on either usability or visualization power.

The strength of PD lies within the effective combination of those four concepts. We discuss these

concepts in detail and describe how these concepts, and compounds of them, provide a framework

that supports a wide range of data-exploration and analysis tasks.

A large part of our design efforts were targeted towards offering a fluid interaction model [54]

which serves as the overarching structure of PD and unifies those four concepts in a comprehensible

way. Inspired by recent work suggesting the benefits of pen and / or touch for analysis work

[27, 49, 108, 165], we specifically designed PD for interactive whiteboards and pen-enabled tablets.

By considering what can easily be accomplished through the use of pen and touch, we were able to

combine the aforementioned concepts in a way that avoids explicit mode switching, minimizes UI

cluttering, reduces indirection in the interface and provides effortless switching between the variety

of interrelated tasks that data exploration and analysis require. Even though we emphasize the

modalities of pen & touch, the entire UI could still be conveniently operated through standard

mouse and keyboard interaction.

In this paper we present PD a novel pen & touch system for data exploration and analysis which

is based on four core concepts, Derivable Visualizations, Exposing Expressive Data-Operations, Un-

bounded Space and Boolean Composition. The combination and interaction between those concepts

presents an approachable interface that allows for incremental and piecewise query specification

where intermediate visualizations serve as feedback as well as interactive handles to adjust query

parameters. PD supports a wide range of common tasks.

We evaluated PD through a formative user study with both data and visualization experts. The

results support our belief that PD, and the combination of the design- concepts it embodies, provides

a fluid and intuitive user experience while still being expressive enough to answer the range of queries

that users are likely to pose.

3.2 Related Work

We relate and contrast our work to research efforts in the areas of Pen & Touch Visualizations,

Linked and Coordinated Views and Database Interaction.
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3.2.1 Pen & Touch Visualization

Our work has been inspired by the research of Elmqvist et al. [54] and Lee et al. [107], which

emphasize the importance of interaction to Information Visualization and propose to investigate new

interaction models that go beyond traditional WIMP (windows, icons, menus, pointers) interfaces.

More specifically, [27, 108, 165] have transposed insights about the usefulness of whiteboards in

supporting thinking, collaborating and general problem solving processes [122, 164] to interactive

whiteboards; an emerging class of hardware. SketchStory [108] focuses on the insight dissemination

aspect of data-analysis. It supports presentation of pre-recorded data-related insights through a

gestural pen & touch UI. Another pen & touch based whiteboard UI is presented in SketchVis [27].

It allows users to draw and label charts which the system fills in correspondingly and offers gestures

to filter objects. Furthermore it offers a set of mnemonic gestures to specify data-transformations

and mapping of visual elements. While similar to our work, we focus less on gestures for chart

creation and more on gestural approaches to coordinate multiple visualizations.

Another direction of recent research investigates the usefulness of touch interaction for data

exploration and analysis tasks. The TouchViz paper [49] presents FLUID, a touch interface for

manipulating data-visualizations. The techniques presented focus on a single visualization rather

than on a network of linked and coordinated views and filters.

3.2.2 Linked and Coordinated Views

The notion of coordinating visualizations manually in order to construct custom exploration inter-

faces has been introduced by [126]. SnapTogether Visualization allows users to coordinate views in

order to support a set of common tasks, such as Brushing-and-linking, Overview and detail view,

Drill-down, Synchronized scrolling and Details on demand. While this idea serves as a fundamental

building block in PD, we expanded this concept through exposing finer-grained control in view coor-

dination by allowing views to have multiple inputs that are combinable through Boolean operators

and by propagating filtering operations across multiple hops. By rethinking the concept of snappable

visualizations in terms of a gestural UI and by abstracting the underlying database-schema we are

able to reduce the mental overhead that the heavy-weight view-coordination dialogs of SnapTogehter

Visualization impose on users.

GraphTrail [51] is a system that allows exploration of large network datasets while preserving
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exploration history. The system is optimized to work with network oriented data such as social

networks and scientific collaborations. One of the core-concepts of Derivable Visualizations, being

able to create visualizations out of existing ones in order to create query-chains, has been explored by

GraphTrail. However, GraphTrail displays these chains statically whereas PD offers more flexibility

through interactive modification of these chains and their elements. DataMeadow [55] presents an

interactive visual analytics system based on DataRoses; a parallel coordinate starplot that exposes

filtering along its axes and linking. We expand on their notion of linking by providing different

types of links and base our implementation on familiar charts that allow for a higher degree of

customizability and data-transformations.

Yuan et al [171] introduce a system that allows users to build up a visualization tree through a di-

vide and conquer strategy. While this approach is similar to our piecewise query specification, it does

not allow for manual rewiring of linked visualizations nor does it support data-transformations such

as grouping or aggregation functions. Lark [155] links visual elements through a meta-visualizations

which supports the creation of multiple variations of a view. However, linking between views from

different data-attributes is not possible and it also supports limited data-types and operations. The

Stacknflip UI presented in [151] uses links between visualization to show exploration histories and

to guide users through an analysis based on a pre-defined setup model. VisLink [37] presents a

visualization technique where 2D visualizations can be organized in 3D planes and relationships

between views are displayed through edges. VisLink however does not address view-creation or

data-transformation.

PDs filter-chains are comparable to dataflow networks. It is therefore similar to [4, 160], but

offers specialized building-blocks which are targeted towards data-centered tasks.

3.2.3 Database Interaction

Tableau Software and its research predecessor Polaris [150] are systems to visually analyze large

datasets. They offer support to create visually appealing and print-ready visualization of large

datasets with a high degree of customizability, but have limited functionality to link multiple visu-

alizations together.

dbTouch [89] presents a UI that enables users to touch and manipulate data intuitively and

suggests the need for new database systems which are optimized for fluid interaction with data.

While its UI is limited in its support for common analysis tasks and does not expose familiar
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visualizations, it coins the term Schema-less Querying. PD supports this notion of abstracting the

complexity of the underlying database schema by offering implicit table-joins.

Approaches to create visual query languages have been an active research topic [4, 170]. Those

systems have limited ability to incorporate interactive visualizations or coordinate visualizations and

often require users to understand the underlying database-schema in detail.

3.3 Core Concepts

PD’s design emerged from a series of implementation iterations in which we explored the relative

value of exposing different levels of data functionality, and of different interaction styles and tech-

niques for creating customized, interactive and coordinated visualizations. Our intent was to create

a system that was approachable and predictable for untrained users yet comprehensive enough to

support the complex queries of advanced users. Over time, we observed that our more effective

design choices clustered around a handful of concepts, all of which have been discussed to some

degree in the literature, and that by being aware of these patterns, we were better able to identify

and prune design alternatives. Ultimately, we resolved upon a set of four core concepts which we

feel depict the fundamentally important characteristics of our approach.

3.3.1 Derivable Visualizations (C1)

Since visualizations are the focal components of any visual analysis system, users spend signifi-

cant effort creating views of underlying data attributes. While several methods address this view-

specification step [83], each with their own set of benefits and trade-offs, we believe, similar to

approaches exposed in GraphTrail [51], that visualizations must additionally be derivable. Deriv-

able visualizations are new, tangential visualizations made by directly referencing or reusing part of

existing visualizations. By effortlessly deriving visualizations from existing ones, users can fluidly

explore what-if scenarios of related data without disrupting the relevant context of their existing

visualizations. In addition, derivable visualizations can reduce the complexity of creating an initial

visualization, since modifying is typically easier than creating. In some ways, they become a form of

“suggested visualization” [74]. An important consideration for derivable visualizations is to main-

tain visual consistency (e.g., same color or size) between data attributes that are shared in different

visualizations.
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3.3.2 Exposing Expressive Data-Operations (C2)

Manipulating data into a format capable of visualization requires data transformation (e.g., aggrega-

tion, grouping-operations) and derivation tools (e.g., calculating new field values from existing data)

tools [150]. Further, these tools need to be available directly in the context where they are needed

to avoid the cognitive disruption of searching. In the limit, every possible transformation could be

needed at any point, requiring the full power of a complete scripting or programming language.

Although such completeness should be a goal, providing a sufficiently large subset of possible data-

operations may be sufficient, particularly if achieving completeness comes at the cost of obscuring

or confounding the more frequent simple tasks.

3.3.3 Unbounded Space (C3)

Managing display space is a requirement of any interactive system. However, for cognitively heavy-

weight tasks, the distraction of having to switch between views to see the components of a working

set of information can significantly impact task performance [24]. By providing unbounded space

including simple techniques for managing that space, several critical analytic tasks can be simplified

to implicit, familiar activities. Multiple visualizations can simply be juxtaposed for comparison;

reasoning chains can be reviewed to validate results; and maintaining prior queries in the periphery

provides temporal context [17, 51].

3.3.4 Boolean Composition (C4)

They key concept for creating visualization networks is that each visualization’s output must be

combinable with the output of other visualizations [126]. We believe that having simple operations

between visualizations affords complex results while imposing only the cognitive burden of under-

standing basic Boolean logic [143]. This requirement is not equivalent to typical data flow because

what flows between visualizations is not data records themselves, but rather the data selection spec-

ifications used by the visualizations. That is, one visualization showing a filtered selection of data

column “x”, could be linked to another visualization showing data column “y”. With data flow,

this wouldn’t make sense, but with our notion of composition, the second visualization would do

the equivalent of a database join of column “y” with column “x” and then apply the “x” column

filter before projecting to just column “y”. This approach allows for multiple visualizations to be
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Figure 3.2: Different parts of a data panorama create by a user exploring Census data. The different
parts are described in Section 3.4.1.

linked to a single new visualization, where Boolean logic operators determine which data records the

new visualization receives. For generality and in particular to support the notion of visualization

brushing, we extend this composition requirement to include an operator for preserving all the input

data selection specifications as an array instead of always combining them with Boolean logic into

single data selection specification.

3.4 The PanoramicData Prototype System

We developed PD, the embodiment of a rich-general approach to data analysis which unifies the

aforementioned four design concepts in a comprehensible way, through an iterative process in which

we steadily added and refined features in order to support a wide range of exploration and analysis

tasks. We will motivate our approach through an introductory use-case and will then highlight
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Data & View
Specification

Visualize data by choosing visual encodings.
Filter out data to focus on relevant items.
Sort items to expose patterns.
Derive values or models from source data.

View Manipulation Select items to highlight, filter, or manipulate them.
Navigate to examine high-level patterns and low-level detail.
Coordinate views for linked, multi-dimensional exploration.
Organize multiple windows and workspaces.

Process &
Provenance

Record analysis histories for revisitation, review and sharing.
Annotate patterns to document findings.
Share views and annotations to enable collaboration.
Guide users through analysis tasks or stories.

Table 3.1: Taxonomy of interactive dynamics for visual analysis [83].

PDs key features in the context of their relation to the four concepts and how they are used to

perform common exploration and analysis tasks. We will point directly to specific items of Heer &

Shneiderman’s (HS) taxonomy of interactive dynamics for visual analysis [83] (Table 3.1).

3.4.1 Introductory Use-Case

Figure 3.2 shows different parts of a rich, dynamic visualization panorama that a user constructed

with PD while exploring and analyzing a random sample of census data (10,000 records). By double-

tapping on the background the user opens up the schema-viewer which displays all the attributes of

the data-set (Figure 3.2 (a)). The user drags two attributes, marital-status and salary-over-50K, out

of the schema-viewer and drops them anywhere on the 2D canvas (C3). To analyze the relationship

between the two attributes the user uses the pen to connect the two (C4) (Figure 3.2 (b)). Tapping

on a slice in the marital-status pie-chart filters the second pie-chart to only show those records

that satisfy the marital-status selected in the first chart. He toggles through the different marital

statuses to observe if any of those have a higher chance of earning more than $50K annually than the

rest. By dragging and dropping he derives two new visualizations and connects them again by using

the pen (C1) (Figure 3.2 (c)). He has now arranged (C3, C4) a custom exploration interface that

lets him analyze the correlation between employer-type and marital-status and how those reflect on

people’s annual salaries. He gains the insight that people who are married and work for the federal

government have a significantly higher chance of earning more than $50K than other groups. By
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flipping one of the visualizations around and using handwritten input he tags people in that group

with the keyword “rich” (C2). This will facilitate later referral to this insight.

The user wants to explore some more attributes of this data-set; age and education-level (Figure

3.2 (d)). He draws an “L” type-shape (indicating X and Y axes) on the canvas and drops attributes

from the schema-viewer to label the axes of his graph. By writing a “C” onto the label of the Y-axis

he transforms the data to display the aggregate-count of the attribute instead of the raw value (C2).

He changes the grouping context of this aggregate function to use a binning strategy instead of

distinct values. He now sees the distribution of people’s ages. By dropping another attribute onto

the graph’s color drop-target he splits the rendering into separated series. Now the chart visualizes

age histograms for each education-level in a different color. To understand the meaning of the colors

and to be able to filter on specific series he derives a legend-visualization by dragging off the color

icon. Once again, he connects the visualizations with the pen so that he brushes the chart to see the

probability of earning more than $50K individually for each data-point (C4). Doctorates are above

this threshold even early-on in their career, while most High-school graduates are below it.

Our user creates another similar chart by first using a multi-touch copy gesture and then modify-

ing it through drag and drop operations. He has colored this second chart by dropping his previously

created “rich” tag onto the color-drop target. He now sees two age distributions, as a running total

after applying a data-transformation through a radial menu accessible on the Y-axis (C2) (Figure

3.2 (e) top), one for people that match his tag and the second one for people who do not match

his tag. By additionally selecting people who are self-employed in the tagged query he updates his

definition of the “rich” tag and the age-histogram chart updates accordingly (C2, C4). To preserve

an interesting insight seen in this chart he creates a static snapshot of it (C1) and annotates it with

handwriting ((Figure 3.2 (e) bottom).

3.4.2 Pen & Touch and Gestural Interaction

Many analysis systems [150] offer a rich set of functionality that is exposed trough traditional

WIMP (Windows, Icons, Menus, Pointer) interfaces and are prone to come with the drawbacks of

this UI-metaphor [161]. The interaction design of a data analysis system should reduce the mental

overhead and should not distract from the fundamental task. As others have argued for Information

Visualization in general [54, 107], we believe that especially visual data analysis systems could heavily

benefit from advances made in interaction technologies. Being able to offload user interface reasoning



28

(e.g., when searching for a tool) to sub-conscious natural interactions promises a significant benefit

for data analysis work which is already cognitively overloaded. Gestural interactions for managing

space with touch gestures are well known and effective. However, touch alone is not expressive

enough to disambiguate certain interactions, such as performing a selection on data vs. moving the

container of the data. By combining both pen and touch in the UI, we believe expressive power

can be enhanced without increasing cognitive load since users can learn to subconsciously associate

certain interaction, such as manipulation with touch, and others such as region selection with the

pen. In addition, pen gestures offer the possibility of affording very efficient, easily remembered

modeless shortcuts for abstract operations, such as writing a sigma symbol over a column of data

to view its sum (C2). To achieve the cognitive offloading benefits of gesturing, interactions must be

consistent across the entire system so that users will feel comfortable performing interactions with

just muscle memory.

By considering what can easily be accomplished through the use of pen and touch, we were able

to focus on an uninterrupted experience. Having two input modes eliminates the need for many

mode changes and provides a consistent selection metaphor. Recognizing pen-input also obviates

keyboard-input and reinforces PDs whiteboard metaphor. Using a pen to handwrite annotations

on the background or on a snapshot of a visualization feels natural (HS “Annotate”). The pen is

also used when precise control is needed, for example when selecting only a few data-points within a

large scatterplot or when pointing to a narrow slice in a pie-chart (HS “Select”, “Filter”) We also use

the pen to enable fluid interactions through shortcuts of commonly used actions within the system.

Two visualizations can be linked together by drawing a line between them (C4, HS “Coordinate”)

or sorting within a table-view is performed by performing an up- or down-flick gesture (HS “Sort”)

similar to [133]. Additionally, selections within a visualization can be inverted by using a flick-

gesture or transformations to data-attributes can be performed through a set of symbolic gestures

(C4, HS “Filter”, “Select”, “Derive”). Similar to [27] PD offers pen-gestures to create new views.

An “L”-shape drawing on the background is used to create scatter-, line- or bar-charts, a circle

gesture for pie-charts and a rectangular gesture for tables. Finally, PD uses a scribble-erase gesture

as a way to support deletion of unwanted content or links [174].

Touch allows for a fluid interaction with all visual elements within PD. For example all the drag

& drop operations that PD expose can be performed through touch-interactions. We make extensive

use of drag & drop operations in order to create, derive or modify visualizations (HS “Visualize”).
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Additional touch gestures include, a double-tap gesture anywhere on the 2D canvas go gain access to

all attributes of the dataset, a press-and-hold gesture to get quick-previews of visualizations within

a table-viewer or a two-finger gesture to create copies of visualizations. We also expose well-known

direct-manipulation touch gestures to pan and zoom the 2D canvas or to change the viewports of

visualizations (C3, HS “Navigate”, “Organize”).

3.4.3 SQL Mapping

PD operates directly on relational-databases. To make a dataset accessible within PD it needs to

be annotated with a small set of meta-data. This includes explaining relationships between different

tables (cardinality of relationship, primary and foreign keys), providing some information about the

columns of the tables (data-types, preferred visualizer, aliases and human-understandable labels if

needed) and meta-data about the tables themselves (aliases). All the data-related operations within

PD are mapped to their corresponding SQL function. PD is therefore a visual language to SQL that

exposes a broad set of its expressive power (C2, HS: “Derive”). Database-joins are done implicitly

when needed and rely on the meta-data information (i.e., primary-foreign key relationships between

tables). Users do not need to struggle with the complexity of SQL-joins, but this also limits PD to

only expose part of the full expressive power of SQL (i.e., only natural joins). Different join types

or joins on non-key-columns of tables are not supported yet. We plan to expose that functionality

as part of our future modifications.

Within the system each visualization is represented as an abstracted model. This model includes

the data-attributes needed to construct the visualization, the transformation applied to them, the

incoming filtering or brushing relations, the items currently selected in the visualization, as well as a

few visual properties that do not affect the SQL layer (e.g., rendering style or color mappings). It is

important to note that no data flows between linked visualizations; instead they share information

contained in their abstract visualization models. Triggering operations that affect the abstract model

forces a particular visualization to refresh by generating and executing SQL queries. PD does not

perform any data-related computations in memory; all computations are delegated to the underlying

database system.
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3.4.4 Schema-Viewer

Users need to be able to access attributes of the data-set. While being widely used and powerful, re-

lational databases come with the potential caveat of having a complex schema that are hard to grasp

for untrained users. Finding an intuitive and approachable way to expose the structure of the under-

lying database-schema has been a challenging aspect of the PDs design. Since database-schemas are

essentially graphs, there could be multiple ways to “connect” two attributes from different tables.

This ambiguity needs to be solved in order for the system to automatically assemble SQL joins.

Consider the database-schema in Figure 3.3. Imagine a user wants to create a visualization that

displays an attribute from the “Player” table and an attribute from the “Team” table. Without

specifying a path that encapsulates how the two tables should be connected the system does not

know which of the three possible options the user intended (Player Contract Team, Player Game

Team (Home) or Player Game Team (Away)). Each of the paths has a semantically significant

different meaning. The same problem arises and is further complicated when linking two visualiza-

tions together. In the case that a user is looking at two visualizations - one that displays a list of

players and one that displays a list of teams - the user must connect the two together to perform a

filter or brushing operation. Without further specification the meaning of this connection is again

ambiguous.

In our current version we address this problem by presenting the database-schema in a tree-view

that is always rooted at the same table. If a user now drags an attribute out of this tree-view the path

of how to connect the root table to the table from which the attribute comes is unambiguous. The

same applies for linked visualizations. Because they are initially created by dragging attributes from

the schema tree-view we can always use the root-table as the lowest common denominator when

performing SQL joins. This approach offloads the problem to choosing a root table. Databases

that are laid out in star-schema form, with a single fact-table, are therefore a naturally good fit

for PanoramicData. It intuitively makes sense to use such a fact-table as the starting point and

therefore as the root element in our schema-viewer. In other cases, we let the user choose a root-

table at the beginning of an exploration or analysis session. Our current prototype does not support

re-rooting during a session and therefore diminishes some of the expressiveness of SQL in order to

reduce the cognitive burden on users. The schema-viewer in PD (Figure 3.2 (a)) is brought up by

a double-tap gesture anywhere on the 2D canvas. This allows users to quickly gain access to the



31

Figure 3.3: Simplified database-schema for sports statistics.

underlying dataset in whatever context they currently are. Dragging and dropping data-attributes

from the schema-viewer is used throughout the system to create or modify visualizations.

3.4.5 Data-Transformers

Data-transformers, such as group-by aggregates (e.g., sum, count, max, min, avg) or sorting opera-

tors, are applied directly to every data-attribute in PD and can immediately update the rendering

of a visualization (C2, HS: “Derive”). PD exposes data attributes wherever it makes intuitive sense

for a given visualization. Scatter-plots for example place visual handles to their data-attributes on

the X- and Y-axis, whereas table-viewers expose them as column-headers. Common transformers

can be triggered through a set of gestures (see section 3.4.2) but are also accessible through a more

traditional radial-menu for discoverability. Additionally each visualization exposes two drop targets:

a group target and a color target. Dropping attributes on the group target specifies the context of

aggregate calculations (e.g., what are we summing over?), whereas the color target is used to specify

coloring of data-points within the visualization.

3.4.6 Calculated Fields

PD offers support to use well-known mathematical notations [173] to create calculated fields from

any attribute (C2, HS: “Derive”). This functionality is exposed through the schema-viewer. A

calculated field is no different than other attributes and can be used in exactly the same way as

data-attributes to create or modify visualizations or to calculate group-by aggregates. PD further

allows the user to create new attributes by transforming a chain of visualizations into a Boolean

attribute that indicates if a data-record is part of this sub-set. This technique, described as tagging in

the introduction use-case, is useful to create custom groupings within a visualization or to condense
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a complicated filtering operation into a single attribute. Again, such set-attributes can be used as

any other data-attribute, for example for coloring a graph or for filtering or brushing a visualization.

3.4.7 Zoomable Canvas

PD features an unbounded pan- and zoom 2D Canvas in which visual elements can be arranged

in a free-form fashion (C3, HS: “Coordinate”, “Organize”). Such a 2D canvas offers a couple of

advantages. Firstly, users can manifest their elements in a way that matches their mental model.

Secondly, logically corresponding elements can be arranged spatially near each-other without forcing

them into a limited area. Furthermore, open space to fluidly explore what-if scenarios or tangentially

related data-attributes is available within a set of simple pan and zoom gestures. Finally, this

whiteboard metaphor offers an intuitive way to label findings or important parts of the exploration

or analysis process by using handwritten annotations on the background (HS: “Annotate”). Figure

3.1 (c) provides examples of such annotations. This approach also offers a way to record the users

exploration history. The filter-chains that are constructed during the exploration process can be

conveniently revisited by locating them on the 2D canvas (HS: “Record”). While this is not as

structured or automated as [82, 144] it enables users to decide which part of the exploration history

they want to keep and allows them to layout and annotate exploration histories in a free-form fashion.

Even though PD works well on pen-enabled tablets, it leverages this whiteboard metaphor best when

used on an interactive whiteboard. In a single-user scenario the extra screen-real-estate is useful for

exploring visualizations in full detail. Furthermore, in collaborative-scenarios a whiteboard offers

a natural way of compiling or discussing data insights (HS: “Share”) and it turns PD into a tool

to disseminate knowledge in presentation scenarios while benefiting from its interactive nature to

quickly answer questions from the audience similar to [108].

3.4.8 Creating Visualizations

PD’s central visual elements are visualizations and creating them is one of the most common tasks

within the visual data analysis process (HS: “Visualize”). We encourage fast and easy creation of

visualization through drag & drop interaction (C1). Every visual element that represents a data-

attribute can be dropped anywhere on the 2D canvas to create a default visualization of its values.

Similar to [118], the default visualizations are based on simple heuristics such as the data-type of
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Figure 3.4: Scatter-plot with interactive legend directly derived from plot.

the attribute and the number of unique elements in the data and can be changed by adding hints

to the pre-defined meta-data information. A geographic attribute, for example, is displayed in a

map-visualization whereas a categorical or binary attribute gets rendered as a histogram showing

the distribution of its unique values. PD supports a manageable set of familiar visualizations such

as pie-, bar-, scatter- and line-charts as well as table- and map-viewers, but other visualizations

could be included. Each visualization can be customized through dropping data-attributes on pre-

defined drop targets. 2D plots for example expose drop targets on their X- and Y-axis or on a

special color shelf. On the other hand, a table -viewer allows dropping of attributes anywhere on its

column-headers to extend the columns they show.

Following our design concept of “Derivable Visualizations” (C1) led to some interesting design

choices. For example we completely eliminate any sort of built-in legends within a visualization.

Legends instead are visualizations themselves and can be derived from an existing visualization by

dragging from its color drop-target. Legends are therefore fully interactive [135] and can be further

customized if needed. This function works in part because PD offers consistent coloring of data-

points across the system even for visualizations that are not linked. Figure 3.4 exemplifies such a

legend.

Since Grammel et al. [74] showed that users of visualization systems often thought about data

without any “processed” visual structures or visual attributes, we also include a gesture for deriving

a table-view from any visualization (C1). Exposing the raw-data can serve as a valuable validation

mechanism to avoid misinterpreting complex visualizations, and can be a more effective way to
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(a) (b) (d)(c)

Figure 3.5: Four ways to compose two visualizations to show different relationships between at-
tributes. (a) No relationship. (b) Top filters bottom. (c) Bottom brushes top. (d) Top brushes
bottom.

identify certain patterns or to perform computations.

3.4.9 Linking

Being able to coordinate views is a powerful tool that addresses a lot of different common exploration

and analysis tasks (C4, HS: “Coordinate”) In PD two visualizations can be linked through a one-way

directed connection. Links indicate that the target visualization is influenced in some form by the

source visualizations. A link can be in one of two states: filtering or brushing. When using filter-links

the target visualization is filtered to the set of items that is selected in the source visualization. A

visualization can have multiple incoming filter-links and the user can choose how to combine filters

(AND or OR). Additionally the output of any filter is invertible (NOT). Thus PD offers functionally

complete visual filtering logic. In Figure 3.4.1, the middle pie-chart displays the distribution of

passenger classes for passengers that are NOT over 30 (selection in the top left age-histogram and

inverted filter-link visible by the dashed line) OR are males. Brushing-links are used to highlight the

same data within a different context. In simple cases, for example when two scatter-plots showing

the same data points but on different axes are linked together, this enables standard brushing and

linking, where a selection in one chart highlights the corresponding data points in the other. Figure

3.4.1(e) shows a more complex example. The top plot is brushed by the purple pie-chart on the

bottom. Notice that because the plot displays aggregated data-points (passengers are binned by
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age ranges) brushing is more nuanced. It reveals what percentage of the passengers within the

aggregation would fit the query specified by the purple filter. It is also important to mention that

the purple visualization is fully interactive and that a selection change would automatically update

the dependent visualization. A user can switch between those two link states (filter or brushing)

through simple touch or pen gestures. This feature of PD provides a powerful tool for fluid data-

analysis. Even just two simple visualizations of two attributes can be examined in a variety of ways.

Consider a user trying to find an unknown relationship between two attributes, age and passenger-

class, of passengers on the Titanic (Figure 3.5). The user starts with two visualizations (Figure

3.5 (a)), one showing the age histogram of all passengers and the other depicting their distribution

according to passenger-classes. These are the default-visualizations for those attributes, which were

attained by dragging the corresponding attributes from the schema-viewer. A pen gesture connects

the two visualizations. Touching the slices of the pie-chart selects them and filters the age-histogram.

After swiftly toggling through all the different passenger-classes the user thinks they noticed a slight

shift in distributions for the first class (Figure 3.5 (b)). The user changes the link to a brushing-link

and one now sees the age histogram of first class passengers relative to all passengers (Figure 3.5

(c)),. Indeed, it seems that there may be a shift in the distribution. With another pen-gesture the

link flips in the opposite direction and the user pen lasso-select the passengers over 40. The little

bars on the side of the pie-slices show the number of passengers within the class that the selection

in the age histogram (Figure 3.5 (d)). It appears that older passengers were most likely in the first

class.

Notice that PD allows configuration of these transformations within this scenario with one or

two touch and pen gestures.

3.4.10 Copying and Snapshotting

PD offers two ways to create copies of visualizations. The first-one derives an exact live copy of the

visualization that is fully interactive. The second-one takes a static snapshot of the visualization that

can then be annotated (HS: “Annotate”, “Record”). We included this feature based on feedback we

received through our user-study. In some cases user wanted to “keep” or “save” a visualization and

disable automatic updating through filtering or selection changes.
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3.4.11 Selections

All visualizations manage selection states. Selections in PD are represented as queries over the

data (HS: “Select”). For 2D plots those queries are represented as ranges over the space of the

data-attributes. This allows the system to keep selections even if the underlying data has changed

(e.g., through a filtering operation). To speed up the calculation of those selection queries, especially

for multi-dimensional-charts (X, Y and color) with a large number of data-points, we use spatial

data-structures (i.e., Octrees). 2D chart types, such as scatter-plots or maps, allow free-form lasso

selection with the pen to allow for fine-grained selection control

3.4.12 Scalability

Our system currently works best for databases up to 30,000 records. Performance of rendering and

database querying, especially for large visualization networks across multiple database-tables, drops

to a non-interactive level for data-sets with over 80,000 rows.

3.5 Evaluation

We evaluated PD through a formative user study with both data and visualization experts. The

goal of this study was to understand PDs utility and its approachability, to gain some insight about

how its features are used and to explore the type of queries user pose. The study involved five

participants, three PhD students (conducting research in the fields of Databases or Visualization)

and two advanced Undergraduates (Teaching Assistants for a Data Science class). None of the

participants had any prior knowledge of our tool.

The results of this study support our belief that PD, and the design- concepts it embodies,

provides a fluid and intuitive user experience while still being expressive enough to answer the range

of queries that users are likely to want to pose. The study also suggests that users are able to use

the system with a minimal training amount.

3.5.1 Procedure

Our participants were given a 10 minute introduction to PD. In this introduction we used a small

example data-set and gave the participants a brief overview of all the features and gestures in the
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(a)

(b) (c)

(d)

(e)

(f)

Figure 3.6: Data panorama that a user built up during our evaluation to investigate different aspects
of the Titanic data-set. (a) The user started of exploring the relationship between passengers that
survived and their passenger class. (b) He then tested different hypothesis (i.e., are there correlations
between survival and home towns of passengers (b), their ages (c) and their gender (d). He kept
an unfiltered distribution of gender (d) to compare the ratios. (f) In order to obtain more accurate
numbers and to confirm what he visually inferred, he built a table containing average survival rates
for each passenger class and gender combination.

(a)

(b)

(c)

Figure 3.7: An example from our evaluation where a user first described the data he wanted to see
in tabular form (a) and then created a chart by dragging and dropping the column headers to the
x and y axis (b). To understand the colors he derived a legend (c) from his chart.
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system. After that we briefly allowed the participants to familiarize themselves with the tool and

the UI, before we exposed them to the Titanic dataset. This dataset contains 14 attributes about

the passengers of the Titanic [86]. We instructed the participants to freely explore the dataset and

to use a “think-aloud” protocol. This open-ended exploration lasted 40 minutes on average. The

examiner provided suggestion in cases where the users did not know what aspects of the data to

look at. The participants were also instructed to explain and present any interesting findings to the

examiner. At the end we asked them to reflect on their experience with PD and to answer a set of

questions, either targeted towards specific features in PD (e.g., How did you like the pen and touch

interface?) or more free-form questions about their experience with data-analysis tasks (e.g., Do

you have any data, work or private, that you analyze or explore? What tools do you currently use

to do so?).

3.5.2 Results

During the opened-ended exploration phase of our study all the participants were able answer the

questions they posed with the help of PD. They created sophisticated queries even within the limited

amount of time (Figure 3.6, 3.7). All users mentioned that they particularly liked the fact that

visualizations can be linked together to create filters. However, only two of our participants made

use of brushing-links. Two of the users initially mentioned that they have problems distinguishing

when to use the pen and when touch. This confusion was cleared up by telling them that touch

is used to “move” objects while the pen allows for shortcut gestures or fine-grained selections. All

of the users valued the fluid nature of the UI. More specifically, they thought that the UI was not

distracting them from the question they wanted to answer and that it was easy to switch between

different tasks (e.g., creating a visualization and linking / filtering). The mnemonic pen gestures for

fast access of data-transformation operations were rarely used, while others, such as scribble-delete,

the linking of visualization gesture or lasso-selection, were adopted instantaneously by all users.

Three of the participants mentioned that they forgot how to perform those mnemonic gestures but

would have liked to use them. Discoverability of gestures is a point that we would like to address in

future versions of the system [25]. Four out of five participants indicated that they would use PD

for their own analysis tasks. One user pointed out that the lack of statistical hypothesis-testing and

machine learning methods lessens the value of PD for his own work.

We observed that none of the users had any issues with the touch-gestures. Even without prior
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demonstration, most users would walk up to the whiteboard and naturally expected that they could

drag visualizations around with their fingers or perform pinch-zoom gestures within graphs or maps.

Users were able to decompose compound queries into sequences of simple linked visualization, which

was a strategy we never explicitly explained. Users rarely created visualizations form scratch and

instead modified visualizations that they derived from existing ones. The notion of deriving a

visualization in order to display its legend was initially not clear to participants (e.g., “What do

the colors in this graph mean?”, “How can I display a legend for this graph?”) but especially the

reusability of those visualization-legends was appreciated after comprehending the concept (“Ah,

now I can just use my legend to filter this other visualization.”).

3.5.3 Anecdotal Insights

We would like to point to two anecdotal instances where participants used a table-view as a fallback

solution. In one example our user tried to validate his hypothesis that people from less wealthy

countries were more likely to be staying in the third class. He approached this by creating a map-

visualization showing the passengers home countries, selected countries that he conceived as being

less wealthy and linked it to a pie-chart showing the passenger distribution according to classes.

The pie-chart showed that most of those passenger were staying in either the first or second class

and therefore our user discarded his hypothesis. He noted that in the general population of all

passengers is heavily biased towards the third class. Our participant wanted to find out where those

third-class passengers came from. Different selections of countries still all offered a similar passenger

class distribution (mostly first and second class). After quibbling with this for a while and expressing

distrust in what the visualization was showing him, he decided to use a table-view to calculate the

exact count of passengers per passenger-class and country. He then realized there was no record

of where a majority of the passengers came from and that most of those unknowns were actually

staying in the third class. We are planning to address this flaw (not dealing with unknown values

properly) in a future version.

In a second example, this time from our pilot-study, a user wanted to display average survival

rates for passengers in different age-bins. Furthermore he wanted to see two series that were colored

differently for male and female passengers. He expressed concerns that he did not know how to

create this plot. However, he said that he knew exactly what data he would like to have plotted.

He started to create a table-view with the two columns and applied the appropriate operations to



40

transform the data and color the rows. After finishing, his table-view depicted the data he was

interested in and he realized that it should be simple to plot it now (“Maybe I can actually just

plot those two columns against each-other”). He used the axis-gesture, labeled the X- and Y-axis by

dragging and dropping columns from his table and got the visualization he initially intended (Figure

3.6).

Those two anecdotes provide some interesting insight. They hint at a concept discussed by [74]

and that we summarized as “Data Duality”. Users frequently think about data in its raw form and

tend to separate data from visual elements. In cases where they either do not trust a visualizations

or have problem formulating a visualizations they use raw-data views as a fallback approach.

3.6 Conclusion

PD supports a limited set of chart types (bar-, pie-, scatter-, line-charts, table- and map-views),

but it could be extend to include others. The current version PD also only exposes a subset of

data-operations. Calculated fields in PD are based on mathematical expressions but there is no

way to specify more involved operations (e.g. if, else statements). Additionally, users within PD

are limited to compute aggregates over either distinct groups or evenly-spaced bins. More complex

grouping schemes such as user-defined or data-type specific groups (e.g., grouping by state or county

in geographic attributes or grouping by day, month or year in dates) are not supported yet. There are

some exploration interface patterns (e.g., small-multiples of charts [157]) that are used commonly in

the set of tasks that PD tries to support. While users in PD could technically layout such interfaces

manually through a set of view-creation, linking and filtering operations, it would be a cumbersome

task. We are planning to include shortcuts to such patterns in future version so PD.

While some more complete or commercial systems, like Tableau, do address some of the limi-

tations mentioned above, they often lack support for simultaneous viewing and creation of custom

exploration interfaces through flexible view-coordination. Furthermore they do not expose a model

to incrementally build up complex and modifiable queries where intermediate views serve as inter-

active handles. In this paper we introduced PanoramicData (PD), a novel pen & touch interface

for exploring and analyzing multi-dimensional data-sets. PD is based on a set of four core-concepts:

Derivable Visualizations, Exposing Expressive Data-Operations, Unbounded Space and Boolean

Composition. By unifying these concepts through a gestural pen & touch UI we are able support
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a wide range of common exploration and analysis tasks in a way that avoids explicit mode switch-

ing, minimizes UI cluttering, reduces indirection in the interface and provides effortless switching

between the variety of interrelated tasks that data exploration and analysis require. PD allows for

incremental and piecewise query specification where intermediate visualizations serve as feedback as

well as interactive handles to adjust query parameters. A formative user study indicates that our

approach provides a fluid and intuitive user experience while exposing a comprehensive set of tools

to answer a wide range of data-related questions.



Chapter 4

Visual Regular Expressions for

Querying and Exploring Event

Sequences

This chapter presents a system called (s|qu)eries (pronounced “Squeries”), a visual query interface

for creating queries on sequences (series) of data, based on regular expressions. (s|qu)eries is a

touch-based system that exposes the full expressive power of regular expressions in an approachable

way and interleaves query specification with result visualizations. Being able to visually investigate

the results of different query-parts supports debugging and encourages iterative query-building as

well as exploratory work-flows. This chapter is based on [178], which is joint work with Microsoft

Research - I was the first author and lead of the project.

4.1 Introduction

Event sequence data sets are collected throughout different domains: electronic health records in

medical institutions, page hits on websites, personal data from “Quantified Self” technologies, eye

tracking and input device logs during usability studies or program execution logs through telemetry

systems to name just a few. The ability to efficiently explore and analyze such sequential data can

42
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Figure 4.1: Two queries on a fictional shopping website web log. Left: Query to explore checkout
behaviors of users depending on direct referral versus users that were referred from a specific website.
Right: Query to view geographical location of customers that used the search feature.

generate deep insights and support informed decision making. Examples range from understand-

ing application usage patterns, optimizing marketing campaigns, detecting anomalies, to testing of

research driven hypotheses. HCI researchers and practitioners in particular can benefit from event

sequence analysis, since usability issues and user performances can be identified and extracted from

telemetry data or other logs [67]. The complexity and size of such data sets is continuously increasing

and insights might be hidden within the natural ordering or relationships between events, at different

levels of detail and in different facets of the data. For example, consider a smart phone application

that logs user interactions. A usability manager might want to see high-level aggregations of user

flows to uncover possible UX related issues, whereas an engineer might be interested in what led to

the triggering of an obscure error code in the few specific sessions where it happened.

While the types of questions analysts and researchers might want to pose vary drastically across

domains and scenarios, they often can be reduced to finding patterns of events and being able to

inspect the results of such queries. Visualizations are a great way of leveraging the human visual

system to support pattern finding. However, for large data sets it is hard to detect insights that

are hidden within sub-populations or even single instances or to spot patterns with some degree of

variation. Other systems that support querying more directly are either not well suited for this type

of sequential data (i.e., SQL), offer limited expressiveness, are hard to learn, or discourage fluid,

iterative and interactive exploration.
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In this paper we introduce (s|qu)eries, a system that transforms the concepts of regular expres-

sions into a visual query language for event sequences. By interleaving query specification with

result visualizations, this integrated interface allows users to incorporate the output from an ex-

isting query into the parameters for the next query. We developed (s|qu)eries with a touch-first

mindset which resulted in a design where visual elements are a direct component of the interface

and indirection is kept to a minimum. Queries, such as the ones in Figure 4.1, can be built and

manipulated fluidly with direct manipulation based touch gestures. While our sample application

and users focused on telemetry data, the concepts translate to other domains where users need to

both spot and investigate patterns.

We started off by analyzing the results of a recent internal study that interviewed 10 data analysts

across different functions (UX designers and researchers, program managers, engineers and business

stakeholders) from a telemetry group, discussing common formats for log data, understanding the

tools that they currently use and, most importantly, finding the types of questions that they typically

attempt to answer from their logs. From this point, we iteratively designed the (s|qu)eries system to

ensure that it was flexible enough to answer their questions, but also fit into their current workflow.

We validated our approach through detailed interviews with members of five different data sci-

ence groups within a large data-driven software company. All of the participants analyze event

sequences frequently as part of their function within the company. During the interviews we asked

the participants to explore their own data through (s|qu)eries. Even though questions, data and

backgrounds varied greatly between those teams, we found that all of them were able to uncover

previously unknown insights after minimal initial training.

The contributions of this paper are three-fold. First, we present a design for a visual query

language for event sequences based on the full power of regular expressions. Second, we incorporated

visualizations that allow users to interactively explore the results of both their overall queries as well

as individual parts of the queries. These visualizations can be used, in turn, to further add to or

refine their queries. Third, we investigate the effectiveness of the system through an informal study

with five different data science groups within a large, data-driven software company.
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4.2 Related Work

We relate and contrast this work to research efforts in the areas of Event Sequence analysis, Temporal

Data Visualizations, Query Languages for Event Sequence & Temporal Data, and Touch-based

Interfaces for Visual Analytics.

4.2.1 Event Sequence & Temporal Data Visualizations

Much of the work on event sequences visualization is in the domain of electronic health records. Work

in this area is applicable to other event sequence domains like telemetry data, where the payloads of

events are different but the visualization strategies are not. While in the medical domain, questions

might be about what combination of treatments eventually lead to a stroke, in software telemetry,

data scientists might pose similar questions about what events lead to a crash of the application.

They both require users to find and analyze sequential patterns within event sequences.

LifeLines [131, 132] is seminal work on how to depict the medical history of a single patient. The

tool allows users to visually spot trends and patterns within a single patient’s history, or a session

when looking at telemetry data. Many other systems [100, 79, 14] have used analogical time-line

based representations to visualize single event sequences. By ordering pattern-parts from left to

right, (s|qu)eries visualizes sequential patterns in a way that is similar to time-lines, but aggregates

across multiple event sequences.

LifeLines2 [166] extends this concept to multiple patient records. Spotting patterns within the

data can be achieved by aligning all records according to a sentinel event. However, users are still

burdened with visually scanning the entire data set, which often makes pattern detection across large

data sets, a cumbersome and error prone task. Other systems [169] address this issue by offering

time or category based aggregation techniques. While these approaches scale better to moderately

sized data sets, they might hide interesting outliers or pattern variations within the aggregations and

are susceptible to noisy input. (s|qu)eries aggregates based on patterns and therefore allows users

to explore event sequences at different levels of detail (i.e., from high-level aggregates to individual

event sequences) and to capture and hide noise within single nodes.

Sankey diagrams [136] statically illustrate flows and sequential dependencies between different

states, however aggregation and alignment techniques are needed to make Sankeys useful for spotting

patterns and to reduce visual complexity. (s|qu)eries uses aspects of Sankeys (such as scaling the
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width of links between nodes) to help visualize queries as well as the results.

Commercial products for web log analysis or log analysis in general such as Google Analytics1

or Splunk2 are built to scale to big data sets and to accommodate data from various sources.

Their aggregated dashboard-like visualizations often hide patterns of sub populations and hinder

exploratory and interactive workflows. SessionViewer [104] proposes a multiple coordinate-view

approach to bridge between different levels of web log aggregations and supports state-based pattern

matching through a textual language. However, SessionViewer’s pattern language does not support

simultaneous exploration of multiple queries nor is it directly coupled to result viewing.

4.2.2 Query Languages for Event Sequence & Temporal Data

While some systems rely on the human visual system to spot patterns in sequential data, others take

a more query driven approach. The expressiveness of query systems varies greatly and is dependent

on the type of supported data (point or interval events). Most work in this area is based on the

concept of temporal logic proposed by Allen [8], which introduces 13 unique operators that describe

temporal relationships between intervals. Currently, unlike other systems, (s|qu)eries focuses on

sequences of point events (e.g., “a happens after b”) instead of temporal queries (e.g., “a happens

within x minutes of b”).

Jensen et. al. [91] and Snodgrass et. al. [147] both propose extensions to SQL to support

predicates for querying time periods. While offering a high degree of expressiveness, their command-

based query languages come with a steep learning curve and are not well suited to exploratory

workflows.

Jin et. al [92, 93] have addressed some of those problems by proposing a visual query lan-

guage that is easily understood and specified by users. However, their comic strip metaphor

is not well suited for expressing longer repetitions or parallel (alternate) paths. Numerous ef-

forts [57, 105, 120, 121, 35] originated from work in the domain of electronic health records and

present visual query languages with varying degrees of expressiveness and for different tasks. For

example, PatternFinder [57] describes temporal patterns through events and time spans and visual-

izes the result in a ball-and-chain visualization. Others, such as Lan et. al. [105] propose extensions

to Monroe’s et. al. query language [120], including repetition and permutation constraints on point

1http://www.google.com/analytics
2http://www.splunk.com/
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and interval events and absences thereof. Query specification in all of those systems is done through

dialog heavy user interfaces and none of them directly interleaves query specification with result

viewing.

In a complementary approach from the data mining community, work by Agrawal and Srikant [6,

148] in this domain introduces algorithms to automatically extract common sequential patterns from

logs, rather than using user specified patterns to query the data. Such extracted patterns could serve

as a starting points for further interactive exploration within (s|qu)eries.

4.2.3 Touch-based Interfaces for Visual Analytics

While we have not deeply explored the potentials for touch first interaction in this paper, their

influence on the design came up numerous times. This ’touch-first’ mindset (keep indirection at

a minimum, animate changes to the UI, and make sure that interactive visual elements can be

interacted with directly) was inspired by the work of Elmqvist et. al. [54] and Lee et. al. [107],

who emphasize the importance of interaction for information visualization and visual analytics and

propose to investigate new interaction models that go beyond traditional WIMP (windows, icons,

menus, pointers) interfaces. “Fluid” interfaces, as proposed by [54], are not only subjectively

preferred by users, but also enhance their performance (speed and accuracy) for certain data related

tasks [49].

(s|q)ueries’s visual query language makes extensive use of the direct manipulation paradigm [141].

Nodes, the main visual element in (s|qu)eries, can be manipulated to build queries as well as to

analyze query results - they are direct handles to specify input as well as to interact with output.

All interactions within the system are made through simple touch gestures. For example, in order to

update a pattern, a user simply adjusts the physical layout of nodes by dragging on the node. Other

such interactions include using the visualizations to constrain or build new queries or inspecting

nodes to investigate the match set at various positions.

4.3 The (s|qu)eries System

We started the design process of (s|qu)eries by analyzing the results of a recent internal study at a

large software firm. The study included 10 data analysts across different functions (UX designers

and researchers, program managers, engineers and business stakeholders) from a telemetry group.
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Question

What is the typical first interaction when users open the application?
What is the most/least often used component of the application?
What is the frequency with which the different features are accessed?
What is the frequency for feature X per user?
How many users perform workflow X?
How long does it take users to perform workflow X?
What are common technical problems?
What leads to common technical problems?
What are common attributes about users of the system that exploit a particular feature?

Table 4.1: Sample of common questions gathered by interviewing data scientists who explore software
telemetry data.

It discuses common formats for log data, tools or combination of tools that are being used, and,

most importantly, lists questions that stakeholders would like to answer from their logs. A portion

of these are shown in Table 4.1.

The two key findings we extracted from analyzing questions like the ones in Table 4.1 are:

• Providing answers to questions is a two step process. First, the pattern of interest must be

found across the full data set. Second, the relevant attributes of pattern matches need to be

presented in an interpretable way.

• Question come in batches. Questions are often related to each other and / or are built upon

answers from the previous ones.

These two findings manifest themselves directly within (s|q)ueries’s design. (s|qu)eries exposes

the power of regular expressions as a pattern finding language for sequential data through a visual

language and interaction design such that users can interactively explore results of matches and use

them as starting points for successive queries.

4.3.1 Introductory Use Case

We motivate our approach through an introductory use case that is based on some of the sample

questions. Adam is a data scientist at a big e-commerce firm. The company just released a new

smart phone application where users can search and browse for products and buy them directly.

Adam wants to check if the company’s expectations in terms of acquiring new customers were met

and if there were any problems with the application. He got a dump of last week’s client side

telemetry data that the application logs. The sessions, or event sequences, within this data set look
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something like this:

Session,User,TimeStamp,Attributes

4,3,8/1/14 3:01,action=AppStart

4,3,8/1/14 3:02,action=Search&query=Helmets

4,3,8/1/14 3:11,action=ViewProduct&query=Red Bottle

4,3,8/1/14 3:13,action=AppClose

Adam starts (s|qu)eries on his touch-based laptop, double-taps the background to create an

unconstrained query node that matches any type of events and inspects the node by opening up its

result view (Figure 4.2a). Adam sees a histogram showing the most common actions in the data

set. Since he is interested in customers who buy products, he decides to drag out the “Checkout”

action (Figure 4.2b). The system creates a new node pre-constrained on “Action = Checkout”.

Immediately, he sees that 14.2% of sessions resulted in successful checkouts.

a

b

Figure 4.2: Opening up visualization view of a node and dragging from histogram to create a new
constrained node.

Naturally he wants to know what led to users successfully checking out. He creates another node

and links the two nodes together. This query allows him to look at all the events that happened

immediately before people checked out.
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Figure 4.3: Linking of two nodes.

He opens up the visualization view again. Most commonly people added something to their

shopping cart before they checked out which seems reasonable.

Figure 4.4: Inspecting part part of a sequential two node query.

But what about after checking out? Did users perform any other actions after they bought

something? He switches the ordering of the two nodes and the visualization updates.
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Figure 4.5: Rearranging nodes to create a new query.

Interestingly enough, there are some people that added other items to their cart even though they

already checked out - that seems odd. He selects the “AddToCart” item, which in turn constrains

the second node and allows Adam to further explore this unexpected user pattern to check if it is

an error in the application or some other anomaly. This leads to more fruitful exploratory analyses.

Figure 4.6: Selecting item in histogram to constrain a node.

4.3.2 Data Model

Like Splunk and other systems, (s|qu)eries operates on event sequences, broken into sessions by

user. A single user reflects a logical user of the system: in a telemetry log, for example, a user

might be a single login to the system. A user, however, may log in and out of the system; it can

be valuable to break a users events into sessions, which represent the time from login to logout.

A single session, then, is made of a sequence of events. Each event is associated with a user id,
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a session id, a single time-stamp, and a series of attribute-value pairs, which describe that

event.

In the use case above, the event sequence represents all the logged actions on the phone appli-

cation; sessions begin when the user started the app, and end when they close it. An event holds

all the information needed to perform its action. For example, when the user adds an item to the

cart, the system might log the following three attribute-value pairs: (“action”, “AddItemToCart”),

(“timestamp”, “12/21/2014 21:12:44”), (“item”, “city bike”). (s|qu)eries builds its internal data

model on the fly from the input file by aggregating along attribute-value pairs. While our current

prototype expects a time-stamp, user and session information, which are particular to telemetry

data, the data model is flexible enough to accommodate data from many domains as long as events

can be represented as a collection of attribute-value pairs.

4.3.3 Query Language

In order to find answers to questions like those in Table 4.1 users need an efficient way to query

sequential data. Such queries can be thought of as patterns over event sequences, where different

parts of the pattern can be more or less constrained. Log data often contains a large amount of

noise and a query language therefore needs to provide support to express variations and fuzziness.

The same applies to extracting patterns from character sequences. Regular expressions are widely

used for that task. While they present a powerful language for finding sequential patterns, their

text-based representation can be hard to understand and they do not offer support to explore results

without additional tools.

By defining our patterns in terms of regular expressions, we leverage an extensive literature of

what can and cannot be done within this framework and, if necessary, users can use the literature

to form particularly complicated expressions. However, we designed the system such that users do

not need to be intimately familiar with regular expressions in order to use the system effectively.

In the following sections we formally describe regular expressions and its base operations. We

then discuss how these base operations manifest themselves in our visual query language and how

users can specify and interact with them. Furthermore, we show how these visual primitives can be

combined to create sophisticated queries over event sequences and serve as direct handles to view

results and as starting points to incrementally build up and modify queries.
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Regular Expressions

Regular expressions are a well known formal language, introduced by Kleene [101]. In popular tools

like grep, regular expressions are used for matching patterns within text strings. Before describing

how (s|qu)eries uses regular expressions to describe events, here is a short review of the constructs

of regular expressions, in the familiar domain of text matching:

1. Concatenation : A way of specifying that character follows another character. For example,

abcd matches “abcd”, but not “abdc”.

2. Alternation: A way of expressing choices. For example, a|b can match either the string “a” or

“b”.

3. Grouping: A way of defining the scope and precedence of operators. For example, gray|grey

and gr(a|e)y are equivalent patterns which both describe the strings “gray” and “grey”.

4. Quantifiers: A way of indicating how many of the previous element is allowed to occur. The

most common quantifiers are:

• The question mark ? matches 0 or 1 of the preceding element, For example, colou?r

matches both “color” and “colour”.

• The asterisk * matches 0 or more of the preceding element. For example, ab*c matches

“ac”, “abc”, “abbc” and so on.

• The plus sign + matches 1 or more of the preceding element. For example, ab+c matches

“abc”, “abbc”, “abbbc”, and so on, but not “ac”.

In addition to these fundamental constructs, tools like grep also provide handy shorthand notations

for wordy alternations.

1. Wildcard: A way of expressing a choice of any character. The wildcard . is shorthand for an

alternation that includes every character in the alphabet.

2. Ranges: A way of expressing a choice based on the order of characters. For example, the

wildcard [a-z] is shorthand for a|b|...|z. Negation (set complement) is also common, e.g.

[^0-9] represents any character except a digit.

3. Backreferences: A way repeating previously matched patterns. For example, the wildcard

([a-c])X\1 is shorthand for aXa|bXb|cXc.
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For normal text matching, the alphabet contains all characters from a known set like ASCII or

Unicode. Sophisticated text matching expressions can be built out of a combination of the above

patterns. For example, the following expression matches email addresses:

[a-zA-Z0-9._-]+@[a-zA-Z0-9-]+[.][a-zA-Z.]+

In (s|qu)eries, instead of directly matching characters in the log file, we represent each event

as a unique character in a large alphabet based on attribute-value pairs. Each “character” in

this alphabet is a fully described event with concrete values for every attribute. For example

{(“action”, “search”), (“query”, “city bike”)} is a single character in the alphabet. An event’s user

id and session id are not part of its character representation; rather, they are metadata about that

character, much as the line number and column number of a character X in a file are metadata about

the X and not used in matching. The events’ time-stamps define the ordering of event characters,

just as textual characters appear in an order in a text file. Even though the characters of this event

alphabet are more complicated than text characters, the regular expression constructs above are

well defined for them.

Visual Query Language

Unlike in string-based regular expressions, (s|qu)eries uses a visual language to describe patterns.

The main visual elements are nodes, drawn as rounded rectangles. In terms of regular expressions,

a node is a character wildcard with a quantifier. The character wildcard is drawn in the middle of

the rounded rectangle and the quantifier in the lower-left corner. We call a node constrained when

some attribute-value pairs are specified and unconstrained otherwise. Figure 4.7b shows an example

of an unconstrained node that matches any event; whereas Figure 4.7a shows a node that matches

any event with the attribute-value pair (“Action”, “Search”). Nodes can be constrained on multiple

attributes and multiple values per attribute (Figure 4.7d). Constraints on nodes are specified either

through a menu-like dialog by tapping on a node or through selections in visualizations.

Nodes can be linked together to create more complex patterns by dragging a node’s link handle

(white semicircle on the right side of a node) to another node. When linking nodes together, vertical

and horizontal placement are both significant: left-to-right placement describes the concatenation

of individual nodes; top-to-bottom placement expresses precedence in alternations. The pattern

formed by Figure 4.7f shows both of these.
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f(a)

(.*)

(.?)

 ([^abc])

((a+).)

((a|b)c)

((.)\2)

a

c

b

d

Figure 4.7: Shows nodes in different configurations, with their similar regular expression syntax.
a) Constrained node that matches one event, with attribute Action = Search. b) Unconstrained
node that matches none or one event of any type. c) Unconstrained node that matches 0 or more
events of any type. d) Constrained node that matches one event, with not (white line indicates
negation) attribute Action = Search and attribute Browser = Firefox 32.0.1 or IE 11.0. e) Matches
sequences that start with one or more events with Action = Search, followed by a one wild card
that matches one event. f) Matches event sequences that start with either an event where Action =
Search or Action = ViewPromotion, followed by an event with Action = ViewProduct. This pattern
is encapsulated in a group (gray box). g) Backreferencing: the chain icon indicates that this pattern
matches sequences where some product was added to the cart and then immediately removed again.

Each node has a quantifier applied to it, whose notation is intended to be more intuitive than

the standard quantifiers: “1” matches exactly one event (E), “0/1” matches none or one event (E?),

“0+” matches zero or more events (E*) and “1+” matches one or more events (E+). Quantifiers are

represented textually as well as visually (transparency and node-stacks). Users can change a node’s

quantifier by tapping on the quantifier label in the lower left corner. Figure 4.7 shows examples of

these quantifiers and their visual style.

Additionally, (s|qu)eries supports two common shortcuts: negation and backreference. The

former is used to match events that do not comply to the specified constraints (Figure 4.7d shows

an example). The latter is used to find matches where an attribute has the same value across two
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or more nodes (Figure 4.7g). Furthermore, nodes that are linked can be arranged into groups3.

(s|qu)eries displays such groups with gray boxes around the node collections (Figure 4.7f).

(s|qu)eries features an unbounded pan and zoomable 2D canvas where users can lay out nodes in

a free-form fashion. The concepts outlined above, such as constraints on nodes, quantifiers as well

as linkage and position of nodes, can be combined to form arbitrary complex regular expressions

over the input event sequence data to find patterns.

4.3.4 Result Visualization

The system runs patterns, formed by the visual language, against the underlying event sequence

data set and will return event sequences or parts of event sequences that match it. For example,

the pattern formed by Figure 4.7e will match all sub event sequences where one or more sequential

events have an attribute-value pair of (“Action”, “Search”) and are followed by any other event. We

will call this retrieved set of sub event sequences the match set.

Most regular expression implementations offer a concept called capturing groups. It enables

extraction of the characters that matched a specific part of the entire regular expression pattern.

We use this concept to assign events of the match set to nodes within the visual query pattern. Each

node (and group) acts as a capture group and therefore knows which events of the match set it was

responsible for matching. The nodes thus become visual handles to explore the results of the pattern

query they build up. This represents a powerful tool for event sequence analysis, because users can

now explore questions like what happens after a sequence of “Searches” by directly inspecting a

node (rightmost node in Figure 4.7e).

The match set of each node (and group) can be inspected by pulling out its bottom right corner

through a drag interaction (Figure 4.8a). Depending on the amount of pullout the user performed,

the pullout view either shows a detailed view of match percentages and absolute numbers or it shows

a full visualization view (Figure 4.8b and c).

3While our design supports grouping of nodes, it is not fully implemented in our current prototype. Within the
prototype, groups around entire queries are supported, while nesting of groups is not.
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b

c

Figure 4.8: A node can be inspected to analyze its match set.

This second view acts as a portal to explore different dimensions of the match set. It is structured

into three main tabs (Figure 4.9a) which allows users to switch between visualizations of attribute-

value pairs, time dependent information and user information. The first one displays histograms

of different and specific attribute-value pairs of the match set. The user can toggle between these

histograms by using the attributes on the bottom of the view (Figure 4.9c). The number of attributes

that are explorable is dependent on the payload of the matched events. A node that is constrained

to the attribute-value pair (“Action”, “Search”), will display different attributes than one that is

constrained to (“Action”, “AddToCart”). Events that match the former might have an associated

query term, while the latter might have a product name. From analyzing the questions data scientists

posed, we found that results oftentimes needed to be aggregated in different ways. A pattern can

occur multiple times within a session and a user can be associated with multiple sessions. Therefore,

aggregating either across matches, sessions or users (Figure 4.9b) can reveal different insights. An

application feature might seem to be used frequently only because a few select users constantly use

it, whereas across all users, it might not be that popular.

In order to encourage exploratory behavior and to allow users to seamlessly switch between query

specification and result, these histograms are interactive. Tapping on an item in the histogram view

constrains the node to the selected attribute-value pair, while dragging out an item creates a new

pre-constrained node.

The second main tab displays time stamp related information of the match set, such as a heat

map of hours of the day and day of the week of matches (Figure 4.9) or a histogram of match
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durations (from time-stamp of the first event to time-stamp of the last event). It also shows views of

the list of actual events sequences that were matched, grouped by length of the matched sequence.

And finally, the third tab visualizes information about the associated users of matches like their

home states (Figure 4.1 right) if geocoded data is available.

Additionally, some high level aggregates of the match set are overlaid right within the visual

query language itself. Quick previews of match percentage are displayed at the bottom of nodes as

well as line thicknesses are adjusted to show flow amongst branches (Figure 4.7f).

a

b

c

Figure 4.9: The visualization view has three tab navigators to inspect different attributes and aspects
of the match set.

Visualizations are currently hard coded: any attribute can be interpreted as a histogram; “TimeS-

tamp” and “UserLocation” can be interpreted for temporal views, timelines and map-views. For

now, the source code must be updated to accommodate new visualization types which might be

based on certain types of attribute-value pairs or to incorporate visualizations targeted towards a

different data domain (e.g., electronic health records).

4.3.5 Implementation & Scalability

Our prototype is developed in C# and WPF and runs on both touch-enabled as well as mouse and

keyboard Windows 8 devices. All computation and pattern matching is done in-memory. The system

parses the visual pattern into text based regular expressions and utilizes C#’s regular expression
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engine to extract pattern matches from the input data set. In order to do so, the system also converts

all input sequences into long string representations. After extracting matches and linking them back

to the in-memory representation of events, the system computes all aggregated statistics that are

used for the visualizations. Pattern matching and aggregation is outsourced to a separate thread to

guarantee interactivity while processing queries.

Our prototype works at interactive speeds for real world telemetry logs with up to 30, 000

sessions, with an average length of 150 events, each with payload of around 20 dimensions. While our

in-memory approach does not scale to large data sets, the visual language and visualizations do, and

the nature of the data makes the required computations an intrinsically good fit for parallelization.

These are especially appropriate for map-reduce frameworks, where in the map-step we can compute

the regular expression matches and then construct aggregations for the visualizations in the reduce

step.

4.4 Evaluation

To evaluate our approach, we invited five people, all of whom analyze event sequences frequently,

and encouraged them to bring a colleague along with them for detailed interview sessions. We felt

that having colleagues there would help stimulate discussion about the tool. Two of them ended

up bringing a colleague along with them. The participants were recruited from five different teams

form a large software company. While all of the participants work with telemetry data, we ensured

that we had broad coverage with different backgrounds as well as varying goals for potential insights

from the tool. To create a familiar scenario and to test (s|q)ueries’s ability to operate on different

real-world data sets, we asked our participants to send us a sample of their data beforehand. We

required the data to be sessionized in a form that made sense to them and limited the number of

sessions to 1, 500 with no more than 200 events per session.

We initially gathered some background data on the subjects including their programming exper-

tise, tools they currently exploit in their job and what kinds of insights they were trying to gain

from the log data. These are summarized in Table 4.2.

After a 10 minute introduction and demo of the system on a synthetic test data set, we asked

them to answer some questions by creating queries on the same test data set to familiarize themselves

with the tool. Some example questions were of the form: What was the most common event that
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User Alice
Background/experience A Product Manager comfortable with programming and familiar with reg-

ular expressions but not an expert programmer
Product Online productivity application 1
Current Techniques R, Python, SQL
Insights Sought Test coverage of features within the application and current application

shortcomings

User(s) Brigitte and Charlie
Background/experience Brigitte was a non-programmer while Charlie had a background in pro-

gramming and Information Retrieval
Product Online productivity application 2
Current Techniques R, Python, SQL for matching sequences, Excel and R for visualization and

modeling
Insights Sought Reproducing crashes from the log data

User(s) Dorinda and Eric
Background/experience Data scientists without strong programming backgrounds
Product Online source control repository
Current Techniques SQL Services, SQL query analyzer, dashboard in SQL Server Reporting

Services
Insights Sought Understanding end-to-end usage, justifying business cases for separating

out features

User Frank
Background/experience Developer on the backend server system supplying analytics for data scien-

tists
Product Social Media Analytics Service
Current Techniques SQL, Hadoop, Sumologic
Insights Sought Understanding performance problems in the system from telemetry data

User Gabriella
Background/experience Product manager with a little programming experience, not deeply familiar

with regular expressions
Product Web Analytics Platform
Current Techniques C#, homegrown visualization tools
Insights Sought Exploring navigation confusion in current offerings, trying to find features

to add to their own web analytics platform

Table 4.2: Summary of users from evaluation
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occurred immediately before “AddToCart”? How many people used “Search” more than once?

What was the most common query term for “Search”?

In the second part of the interviews, we encouraged them to use the system to look at their own

data. Since we were interested in seeing if they could create queries that reveal previously unknown

insights, we instructed our participants to explain to us what kind of queries they were constructing

and if the results confirmed some already known fact or not. This also ensured that we could check

if their mental model was matching with what the queries actually expressed. All the sessions were

voice-recorded and were conducted on a 55” vertical multi-touch display.

4.4.1 Results

Overall

All the users were able to grasp the system and answer questions after the 10 minute introduction.

There was universal positive reaction to the tool with quotes like Charlie’s, “This has big potential!”

or Gabriella’s, “Can we ship this now?”. While people with strong programming background were

quicker at learning the tool, even those without a programming background were able to use it to

extract insights from the test data set as well as from their own data. One user (Brigitte) commented

that anything that she was able to understand to this extent in 10 minutes was easy enough for her

to use more often, unlike formulating raw queries in SQL or other tools which she tended to avoid

using.

The users that came in pairs commented that they particularly enjoyed the touch, large display

aspects of the tool since it was well suited to collaboratively exploring the data. Typically each would

take a turn getting hands-on with the data queries while the other sat back and made suggestions.

All the users needed to be interrupted in the exploration of their own data after 30 minutes, and

all requested to use the tool on their own.

Insights

There were several specific insights that users had while working with their own data.

Alice was able to use (s|qu)eries to find out what preceded or followed events that were

important to her, for instance she noticed that one of the common events that happens before

an “undo” was copy. That was not an undoable action, so she was concerned that this was not a



62

path that they had tested for. Another common action after “undo” was another “undo” so she

went on to explore what were common circumstances that occurred before multiple “undos”. This

lead her to realize that pasting was often undone, even after several actions occurred. Both of these

situations were surprising insights to her.

Bridget and Charlie used constraints to isolate an exceptional case - they showed that

one feature crashed only on one version of the product. This confirmed a hypothesis that they had

previously made. They explained that this had been recently added to that version of the produt

and were not completely surprised.

Dorinda and Eric were able to explore behaviors across longer, “end-to-end”, sequences

of actions. They found that nearly half of the people used the “Work Item Tracker” without

using the Version Control System. This was significantly more than they expected and was a good

justification for unbundling the two features from each other. They had suspected this, but had not

gotten clear proof of this before.

Gabriella identified a potential broad audience of users - web analytics managers, who ask

questions like these frequently, but were often frustrated in trying to answer things beyond those

put into standard, regular dashboards or reports.

Problems and Challenges

There were also some problems or challenges encountered.

Data sets were not always well formed for extracting insight. For instance, Brigitte

and Charlie’s log data included events that they wished to ignore. While this could have been

preprocessed out of the file, they did not realize this until too late. Queries could be constructed

that specifically ignored those events, but this was somewhat tedious using the current interface.

They requested a feature that would allow them to selectively filter out events or combine certain

multiple events into a single event.

Occasionally, regular expression rules could lead to some confusion over the results.

Frank discovered that when a wildcard was used between two different events, he assumed that this

meant that the event did not occur between the two events as opposed to matching the longest

sequence possibile between the two events. For instance, if the pattern was A.*B, then this would

match AAAAAB or ABBBBB or even ABCDAABCBAAB.
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Everybody wanted the system to scale to support bigger event sets since most had

data sets hundreds or thousands of times larger than those they explored in the tool.

4.5 Discussion & Future Work

While the current prototype has already proved itself useful both to practitioners in the informal

user study and in continuing analysis efforts, there are a number of limitations that can be addressed

in future work. Some of which involve small, iterative improvements in the design, and some which

would involve more major changes.

Basing the system on regular expressions, which are well-understood in the literature, makes its

capabilities and limitations predictable. Regular expressions, unlike push-down automata, can not

keep track of state, and therefore certain questions can not be answered if they are not explicitly

contained as payloads in the event stream. For instance, while a log might contain events where

items are added to the cart, the user can not retrieve the total contents of a cart unless there is an

explicit representation of the contents within the payload of the event stream. Furthermore, regular

expressions themselves can be notoriously confusing. This is somewhat mitigated in the system

by not requiring a cryptic textural stream, (e.g., the email matching regular expression mentioned

previously). It also helps that the contents of various nodes in the query can be explicitly examined

and the patterns that they match can be explored with the visualizations. In the (s|qu)eries system,

the only confusions that came about were because of the greedy nature in the regular expression

matching (as discussed in the results above). This also occurred when using alternations - when

the top node was a wild card, by definition, no matches were left for nodes lower in the list. One

user (Gabriella) did not even realize that the system was based on regular expressions until after we

discussed it with her towards the end of the session. She was only vaguely familiar with them and

was still completely capable of using the system to answer our test questions and questions on her

own data.

The system at this time lacks the ability to add a temporal element to the queries. This would

be an exciting and powerful additional capability but has not yet been addressed in the current pro-

totype. Temporal constraints would interact with the regular expressions in an interesting fashion,

but could probably be added as a further post-process on the results of a set of matched events.

From the interview with Dorinda and Eric, it became clear that logs often have erroneous or
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lower level events that need to either be completely filtered out or combined into single, higher level

events. Search and replace capability, similar to [105], could add great power to the (s|qu)eries

system.

One of the current benefits of the (s|qu)eries system is that the results of the queries can easily

be constrained to help create more queries. We want to further expand this interaction so that the

system could either automatically display commonly pathways, or so that multiple paths can be

interactively constructed by dragging out several results from a node to create separate queries.

Many, small usability improvements could also be made. People did not like starting with a

blank canvas, so pre-populating the canvas with at least a single node that shows the most common

events in the log would be useful. We wish to allow for saving and loading of queries so that sessions

can be shared or continued.

Finally, expanding the capabilities of the visualizations can be done in many different ways.

Specific vertical visualizations that explore certain payloads or combine the results of a query with

other tables (like geocoding from IP lookup or heat maps of features used in a program) could

be added. Several users wanted to contrast the results of multiple queries (e.g., What were the

differences between what people added to a cart for those people that used search and those people

that didn’t?).

4.6 Conclusion

As sequential logs across numerous domains explode in availability, we see that there is great potential

in enabling domain experts who may be non-programmers. Requiring a programmer in the loop

greatly limits the exploratory possibilities that the readily available data facilitates. We plan on

continuing to expand the capabilities of the (s|qu)eries system as we apply it to other users, other

questions, and other domains.

We introduced (s|qu)eries, a touch-based system that features a visual query language building

upon the full power of regular expressions. Our system incorporates visualizations that allow users

to interactively explore the results of both their overall queries as well as individual parts of the

queries. These visualizations can be used, in turn, to further add to or refine their queries. We

investigate the effectiveness of the system through an informal study with five different data science

groups within a large software company.



Chapter 5

The Case for Progressive

Visualizations

In this chapter we study how progressive visualizations affect users in exploratory settings through

an experiment where we capture user behavior and knowledge discovery through interaction logs and

think-aloud protocols. This chapter is substantially similar to [175], where I was the first author and

was responsible for the research direction, implementation, study design, analysis and the majority

of the writing.

5.1 Introduction

The literature [139, 124, 31, 140] often states that a delay of one second is the upper bound for

computer responses after which users lose focus on their current train of thought. In order to

ensure a highly interactive environment for data analysis, a visual data exploration system should

therefore strive to present some actionable and understandable artifact for any possible query over

any dataset within a one second threshold. It is important to note that this artifact does not need

to be the complete or most accurate answer, but it should be an answer that allows users to keep

their attention on their current task.

Traditionally, visual data exploration systems employ a strategy whereby user-issued queries

are offloaded to a database management system (DBMS), and the results are displayed once the

65
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complete answer is computed. We call this the blocking approach: a user’s current train of thought

is blocked until the query result is fully computed. Even with modern hardware and state-of-the-art

DBMSs that can process millions of data points per second, this traditional approach suffers from

the basic issue that some datasets will still be too “big” to yield results for user queries within

interactive thresholds.

A wide variety of strategies, including precomputation, prefetching, sampling, and progres-

sive computation, have been proposed to overcome this fundamental limitation. However, each

of these approaches comes with its own set of advantages and challenges. In particular, pro-

gressive computation, where data is processed incrementally in small chunks, offers an interesting

tradeoff between result accuracy and computation speed. Moreover, unlike many of the other ap-

proaches, progressive computation also provides a number of natural opportunities to incorporate

user feedback and computational steering. The research community has recently regained inter-

est in progressive computation, attempting to analyze and exploit some of the peculiarities of this

approach [65, 149, 62, 64, 60, 137]. However, the effects of progressive computation—and progres-

sive visualization—on user behavior and knowledge discovery in exploratory settings have not been

studied in detail.

The aim of this work is to investigate how progressive visualizations affect users in exploratory

settings. To this end, we design and conduct an experiment where we compare three different

visualization conditions: (1) instantaneous, (2) blocking, and (3) progressive. The instantaneous

visualization condition acts as a stand-in for hypothetical systems where all queries, independent

of the dataset size, return and display accurate results within a strict latency constraint. On the

other hand, blocking visualizations simulate traditional systems where results are displayed only

after the full dataset has been processed. Blocking visualizations are limited by the throughput of

the underlying computation engine; that is, the wait time increases proportionally to the size of the

dataset. Finally, progressive visualizations, where data is processed incrementally in small chunks,

present approximate results to the user at different points during the computation. To compare

each of these strategies, we capture interaction logs and verbal data from the participants using a

think-aloud protocol. We then extract several knowledge discovery and user activity metrics from

these recordings, and we analyze these metrics to test how progressive visualizations compare to the

alternatives. For the purpose of our study, we picked simple uncertainty visualizations and update

strategies and are specifically not testing different variations in those.
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The main contributions of this paper are two-fold. First, we find that progressive visualizations

significantly outperform blocking visualizations in almost all knowledge discovery and user activity

metrics. Second, our results show that, surprisingly, progressive visualizations do not differ sub-

stantially from the best case scenario of instantaneous visualizations across many key metrics (e.g.,

insights per minute, insight originality, visualization coverage percentage). These findings suggest

that progressive visualization is a viable solution to achieve scalability in visual data exploration

systems.

5.2 Related Work

Our research builds upon related work in the areas of Big Data Visual Analytics and Latency in

Computer Systems.

5.2.1 Big Data Visual Analytics

Visual data analysis, or the task of gaining insights from a dataset through visualizations, is an

interactive and iterative process where users must frequently switch between a wide range of distinct

but interrelated tasks. While the specific set of tasks that recur in visual data analysis, as well as the

tools that support them, are relatively well understood [10, 83], the constantly increasing volume of

data has forced the interaction paradigm away from interactive approaches back to large-scale batch

processing [63].

Thus, we seek to address this fundamental conflict in visual exploratory data analysis. On one

hand, we want to provide an experience where users can actively steer the exploratory process,

allowing them to see results for each action without the distraction of a slow and unresponsive

interface. On the other hand, constantly growing amounts of data and increasingly complex analysis

techniques make it impossible to compute and deliver accurate responses within latency thresholds

that are suitable to keep users on their current train of thought.

The research community has proposed several approaches to address this problem, each with its

own set of advantages and challenges. We introduce a simple use case to illustrate these different

approaches. Imagine a visual data exploration system that processes tabular data, allowing users to

create simple aggregated histograms over this data by selecting different attributes. Furthermore,

histograms are linked together, where selections in one visualization trigger filtering operations in
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others, such as in GraphTrail [51], PanoramicData [176], and Vizdom [41]. Figure 5.1 shows an

example where the user only wants to see the histogram of income for a specific age range.

age

20-40 40-60 60-800-20

income

< 40K < 60K < 80K< 20K

Figure 5.1: Two coordinated visualizations. Selections in the left filter the data shown in the right.

Conceptually, the simplest way to implement a data exploration system to support these inter-

actions is through a blocking approach. After the user requests a particular histogram, the system

scans the full dataset to perform the required aggregation and displays the result only after pro-

cessing all of the data points. Using this approach, the user cannot see results until after the entire

dataset has been processed. Response times of blocking systems are therefore proportional to the

size of the dataset. Several commercially available visual analysis tools, including Tableau [2] (and

its research predecessor Polaris [150]), Spotfire [3], and Microsoft Power Pivot [1], use a blocking

approach.

Precomputation provides an opportunity to reduce the latencies of the blocking approach by

performing some of the computation up front before a user begins exploration. The system can

perform this precomputation during a loading phase and simply return a result from its cache when

the user issues a request. This approach requires a substantial time and processing investment

during the initial loading phase but can completely eliminate visualization latency during data

exploration. However, a major drawback of precomputation is the potentially enormous number of

both visualizations and exploration paths the user can take. In particular, the number of possibilities

depends both on the characteristics of the data as well as the exploration tasks supported by the

system. Permitting arbitrarily filtered histograms (e.g., as shown in Figure 5.1) drastically increases

the number of required precomputations. Even with these issues, many systems have successfully

used precomputation to improve the user experience. For instance, some commercial DBMSs support

the creation of online analytical processing (OLAP) cubes [34], where the data is pre-aggregated

along selected dimensions. Other research systems introduce improvements to these techniques

using more advanced algorithms and data structures [113] or by exploiting modern hardware (e.g.,

GPUs) [116].
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Similar to precomputation, prefetching incrementally precomputes results during user exploration

rather than computing all possible results a priori. Prefetching approaches typically either limit the

degrees of freedom given to the user or employ an intelligent oracle that predicts the user’s most

likely subsequent actions, such as in a map application where users can perform only pan and

zoom actions. Since the user can only transition to a very limited number of possible next states

(i.e., panning left/right/up/down or zooming in/out), the system can therefore use the time that a

user spends examining a specific region to prefetch neighboring tiles that might be requested next.

Both ForeCache [16] and Semantic Windows [95] use prefetching by exploiting locality in the user’s

exploratory behavior to predictably prefetch chunks of data in anticipation of subsequent. Other

prefetching based systems use models to estimate the most likely action the user will perform next.

These predictive models can be built using a wide variety of different information. For example, Doshi

et. al. [47] propose and compare different techniques that incorporate a user’s interaction history,

while Ottley et. al. [129] show that certain personality traits affect user exploration strategies.

Prefetching systems need to provide a fallback strategy for cases when the prediction fails, most

commonly by reverting to a blocking approach for cases when the user issues a query for which the

result has not yet been prefetched. Furthermore, even with prefetching, the result might take too

long to compute if the user only spends a short amount of time between interactions.

While all of the approaches discussed thus far are guaranteed to return completely accurate results

for all queries, sampling takes a fundamentally different approach by trading speed for accuracy.

Instead of computing the completely accurate result, the system uses a small sample of the data to

compute the histogram and presents it to the user with some quality metric for the approximation

(e.g., confidence intervals, error bars). Systems that use sampling can return results for all user

queries within the specified interactivity time constraints without needing to precompute any query

results. The data management community has heavily explored the development of approximate

query engines. For example, BlinkDB [5] is a SQL engine that uses sampling to answer queries

over large datasets and allows users to specify accuracy or response time requirements. DICE [96]

similarly supports subsecond latencies for large datasets using a variety of optimizations including

sampling.

Although sampling-based approaches can provide users with a quick overview of the dataset,

they also introduce a completely new set of challenges. For instance, rare (but potentially impor-

tant) datapoints might not be captured in the sample. Additionally, even experts sometimes have
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trouble interpreting statistical accuracy metrics [43, 44]. Ferreira et. al. [61] introduced specialized

visualizations that mitigate some of these issues, but further research is necessary in order to apply

their findings to different visualization types and analysis tasks.

Progressive systems are an extension of sampling-based approaches that incrementally compute

results over increasingly larger samples in order to provide more accurate results to the user over

time. This concept is well known in the graphics domain and widely used on websites to improve

user experience when loading high-resolution images [80]. A down-sampled, low-resolution image is

displayed quickly and replaced with the high-resolution version when fully downloaded. This concept

was previously explored in the data management community [84], where most of the subsequent

research focused on creating progressive versions of well known DBMS operations (e.g., joins [77],

aggregations [38]). More recently, progressive approaches have gained interest among the HCI and

visualization communities [65, 149, 62, 64, 58, 137]. Progressive Insights [149] is an example of

a progressive system that allows the user to analyze common patterns in event sequence medical

data. Fisher et. al. [65] presented sampleAction, a tool that simulates progressive queries over large

datasets, and discuss and analyze the implications of such queries and different confidence metrics

through quantitative case studies. While this approach has similar drawbacks to sampling (e.g.,

bad for finding outliers, does not work with ordered data, requires statistical sophistication from

users), many authors [62, 64, 58, 41] advocate for its usefulness in exploratory data analysis. For

example, it allows users to decide what level of accuracy they need and provide opportunities to

inject user-steerability into algorithms and computations. However, the effects of this approach in

terms of user performance and behavior have not yet been analyzed in detail.

5.2.2 Latency in Computer Systems

As many have argued [83, 78], the goal of visual data exploration systems is to operate at a rate

that matches the pace of data analysts. Systems should therefore attempt to keep query response

times below thresholds that will make users lose focus on their current task. A study by Liu et.

al. [114] shows that latencies of 500ms have significant effects on user performance in data exploration

scenarios. In other domains, including web search [28] and video games [18], even smaller latencies

(300ms and 100ms, respectively) can negatively influence user performance. Frameworks proposed

by Nielsen and others [139, 124, 31, 140] suggest that responses within one second allow users to

stay on their current train of thought, while response times over ten seconds exceed the average
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attention span. We use these models to justify the different delay times used in our experiment.

5.3 Experimental Design

The aim of this work is to investigate how progressive visualizations influence users during ex-

ploratory data analysis, as well as how these techniques compare to blocking and instantaneous

visualizations. We use a full-factorial 3 visualization conditions (blocking, instantaneous, progres-

sive) × 2 dataset-delay conditions (6s, 12s) × 2 dataset-order conditions (123, 312) experiment. Our

experiment is based on work by Liu et. al. [114] and Guo et. al. [76], which suggest using a hybrid

evaluation approach that uses system logs and insight-based metrics coded from think-aloud proto-

cols in order to analyze both (1) user interactions and (2) analysis performance. We expect that users

will generate more insights per minute with instantaneous visualizations than with progressive ones

(H1) and that users will generate more insights per minute with progressive visualizations than with

blocking ones (H2). Furthermore, we anticipate user activity levels to be higher with instantaneous

visualizations than with progressive ones (H3) as well as higher with progressive visualizations than

with blocking ones (H4). This section provides a detailed description of the experimental design.

5.3.1 Visualization Conditions

In order to understand how progressive visualizations influence users in terms of knowledge discov-

ery and interaction behavior, we compare them against two baseline visualization conditions: (1)

blocking and (2) instantaneous. The instantaneous condition represents a hypothetical ideal sce-

nario where the system always return query results within the time constraint regardless of dataset

size. The blocking condition represents the other extreme, which is how many current visual data

exploration systems operate. For blocking visualizations, query results are displayed only after

the computation over the entire dataset concludes, with visualization latencies scaling with dataset

size. The progressive condition bridges the instantaneous and blocking conditions by displaying an

approximate result as soon as possible and then incrementally refining the results over time. Even-

tually, the full and completely accurate result is displayed, as in the blocking approach, but initial

approximate results are still returned as soon as possible.

Figure 5.2 shows a schematic illustration of the differences between these three conditions. As-

suming that a given hardware platform requires x seconds to compute and display the full query
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result, then a system operating in the hypothetical instantaneous mode will return results immedi-

ately; a blocking system will use the full x seconds before displaying any results; and the progressive

system will show inaccurate results that are incrementally refined throughout the x seconds.

instantaneous blocking

progressive
time

x seconds

Figure 5.2: Schematic time scale showing when different visualization condition display results.

5.3.2 Datasets

We use three datasets from different domains in our experiment. The first dataset (DS1) contains

information about cars [90] (8 attributes: 7 quantitative, 1 nominal), such as “acceleration” and

“horsepower.” The second one (DS2) includes data about wines (7 attributes: 5 quantitative, 2

nominal), with attributes including “type”, “country of origin” and several different ratings. Finally,

the third one (DS3) is a subset of the 1994 US census [90] (9 attributes: 3 quantitative, 6 nominal).

We use a fourth dataset (Titanic) to introduce participants to the system.

The datasets contain 10,000 data points each. We introduce a dataset-delay factor that has two

possible values (6s or 12s) and is used to artificially delay the computation of visualizations for the

progressive and blocking conditions. In the blocking case, the user will have to wait either 6s or 12s

before any visualization is displayed, while the computation spans the entire time period (6s or 12s)

with 10 incremental updates in the progressive case. While 6s and 12s still represent relatively small

times (it is common to have datasets large enough that computations can take hours), we chose

these values for two reasons: (1) these delays are above and below the 10 second threshold that is

often stated as the average attention span [124]; and (2) they are small enough to make an in-lab

user study feasible.

5.3.3 System

We created an experimental system specifically for our study. The UI, shown in Figure 5.3, consists

of a list of the current dataset’s attributes (a) and four visualization panels (v1-v4). Users can drag

and drop attributes onto the axes of the visualization panels, and tapping on an axis cycles through

different aggregation functions (e.g., count, average). Our system supports two visualization types:



73

(a)

(v1) (v2)

(v3) (v4)

(b) (c)

(d)

Figure 5.3: Screenshot of our experimental system.

(1) bar charts and (2) 2D-histograms. Visualizations are always binned and never show individual

data points, which allows us to fix the time required to display a visualization, even for arbitrarily

large datasets. That is, the number of visual elements to render is decoupled from the size of the

underlying dataset.

Selecting a bin in a visualization triggers a brushing operation in which the selected data points

are highlighted in all other visualizations. In the example (Figure 5.3), the user selected the rightmost

bar in v2. All other visualizations now shade bins in two different colors: blue indicating the overall

amount and purple the amount of data points that corresponds to the user’s selection. Bar height

and rectangle area are scaled to reflect the number of data points that match the selection. A textbox

(c) permits finer-grained brushing control through arbitrary Boolean statements (e.g., highlight all

wines where price < 35 and vintage > 2010). Similarly, a second textbox (b) supports filtering

operations through Boolean statements to select a specific subset of the data. Brushing and filtering

operations require all affected visualizations to recompute their results from scratch, regardless of

the current visualization conditions. For example, selecting an additional bar in v2, and thereby

changing the currently applied brush, will force all other visualizations (i.e., v1, v3, and v4) to

recompute. Depending on the visualization condition, v1, v3, and v4 will either show the results

of the new brushing action instantaneously, a loading animation until the full result is available, or

incrementally updated progressive visualizations. The system does not perform any form of result
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caching.

Upon startup, the system loads the selected dataset into memory. The system randomly shuffles

the data points in order to avoid artifacts caused by the natural oder of the data and to improve

convergence of progressive computations [46]. We approximate the instantaneous visualization con-

dition by computing queries over entire dataset as quickly as possible. Initial microbenchmarks for

a variety of queries over the small datasets used in the experiment yielded the following measure-

ments: time to compute a result ≈ 100ms and time to render a visualization ≈ 30ms. Although

not truly instantaneous, a total delay of only ≈ 130ms is well below the guideline of one second,

therefore allowing us to simulate the instantaneous condition. We simulate the blocking condition

by artificially delaying the rendering of a visualization by the number of seconds specified through

the dataset-delay factor. In other words, we synthetically prolong the time necessary to compute

a result in order to simulate larger datasets. While a blocking computation is ongoing, we display

a simple loading animation, but users can still interact with other visualization panels, change the

ongoing computation (e.g, selecting a different subset), or replace the ongoing computation with a

new query (e.g., changing an axis). Figure 5.4 (top) shows an example of a blocking visualization

over time.

We implemented the progressive condition by processing the data in chunks of 1,000 data points

at a time, with approximate results displayed after each chunk. In total, we refresh the progressive

visualization 10 times, independent of the dataset-delay factor. We display the first visualization

as quickly as possible, with subsequent updates appropriately delayed so that the final accurate

visualization is displayed after the specified dataset-delay condition. Note that the initial min and

max estimates might change afters seeing additional data, in which case we extend the visualization

by adding bins of the same width to accommodate new incoming data. Throughout the incremental

computation, we display a progress indication in the bottom left corner of a visualization (Figure 5.3

(d)). Progressive visualizations are augmented with error metrics indicating that the current view

is only an approximation of the final result. Even though 95% confidence intervals based on the

standard error have been shown to be problematic to comprehend in certain cases [39], we still opted

to use them for bar charts due to their wide usage and familiarity. We render labels with margins

of error (e.g., “±3%”) in each bin of a 2D-histogram. Figure 5.4 (bottom) shows an example of a

progressive visualization and how it changes over time. Note that the confidence intervals in the

example are rather small, but their size can change significantly based on the dataset and query.
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Figure 5.4: The blocking and progressive visualization conditions.

Our system is implemented in C# / Direct2D. We tested our system and ran all sessions on

a quad-core 3.60GHz, 16GB RAM, Microsoft Windows 10 desktop machine with a 16:9 format,

1920x1080 pixel display.

5.3.4 Procedure

We recruited 24 participants from a research university in the US. All participants were students (22

undergraduate, 2 graduate), all of whom had some experience with data exploration or analysis tools

(e.g., Excel, R, Pandas). 21 of the participants were currently enrolled in and halfway through an in-

troductory data science course. Our experiment included visualization condition as a within-subject

factor and dataset-delay and dataset-order as between-subject factors. Note that the dataset-delay

has no direct influence on the instantaneous condition, but it is used as a between-subject factor

to test if it affects the other visualization conditions. To control against ordering and learning ef-

fects, we fully randomized the sequence in which we presented the different visualization conditions

to the user and counterbalanced across dataset-delay conditions. Instead of fully randomizing the

ordering of datasets, we opted to create two predefined dataset-orderings and factored them into

our analysis. The two possible dataset-ordering values were 123 and 312 (i.e., DS1 followed by DS2
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followed by DS3 and DS3 followed by DS1 followed by DS2, respectively), and we again counter-

balanced across dataset-ordering. We seed our system’s random number generator differently for

each session to account for possible effects in the progressive condition caused by the sequence in

which data points are processed. While each participant did not experience all possible combina-

tions of visualization, dataset-ordering, and dataset-delay conditions, all users saw all visualization

conditions with one specific dataset-delay and dataset-ordering. For example, participant P14 was

assigned dataset-ordering 312, dataset-delay 6s, and visualization condition ordering [blocking, in-

stantaneous, progressive]. In total, this adds up to four trial sub-groups, each with six participants:

(dataset-delay = 6s & dataset-order = 123), (dataset-delay = 12s & dataset-order = 123), (dataset-

delay = 6s & dataset-order = 312) and (dataset-delay = 12s & dataset-order = 312). Within each

subgroup, we fully randomized the order in which we presented the different visualization conditions.

After a 15 minute tutorial of the system, including a summary of the visualization conditions and

how to interpret confidence intervals and margins of error, we instructed the participants to perform

three exploration sessions. In the case of participant P14, these three sessions included (1) blocking

visualizations on DS3, (2) instantaneous visualizations on DS1, and (3) progressive visualizations

on DS2 all with 6s delay. Each session was open-ended and we asked the participants to explore

the dataset at their own liking and pace. We allotted 12 minutes per session, but participants were

free to stop earlier We used a think-aloud protocol [56] where participants were instructed to report

anything they found interesting while exploring the dataset. Throughout each session, we captured

both screen and audio recordings and logged low-level interactions (mouse events) as well as higher-

level events (“axis changed”, “aggregation changed”, “textbox brush / filter”, “visualization brush,”

and “visualization updated / stopped / completed”). An experimenter was present throughout the

session, and participants were free to ask any technical questions or questions about the meaning of

dataset attributes. At the end of the three sessions, we asked participants to give feedback about

the tool and whether they had any thoughts regarding the different visualization conditions.

5.3.5 Statistical Analysis

Our study is designed as a full-factorial 3 (visualization conditions) × 2 (dataset-delay conditions)

× 2 (dataset-order conditions) experiment. We applied mixed design analysis of variance tests

(ANOVA) with visualization condition as the within-subject factor and dataset-delay and dataset-

order as the between-subject factors to assess the effects of our factors on the various metrics
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we computed. Note that the dataset-delay factor should have no influence on trials where the

visualization condition is set to instantaneous.

We tested the assumption of sphericity using Mauchly’s test, and we report results with corrected

degrees of freedom using Greenhouse-Geisser estimates if violated. We report all significant (i.e.,

p < 0.05) main and interaction effects of these tests. For significant main effects, we conducted

further analysis through Bonferroni corrected post hoc tests and for more nuanced interpretation,

we opted to include Bayes factors for certain results and reportBF10 factors along with corresponding

significance labels [110]. Effect sizes are reported through Pearson’s r coefficient, and significance

levels are encoded in plots using the following notation: ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001.

5.4 Analysis of Verbal Data

Inspired by previous insight-based studies [72, 76, 114], we manually coded insights from the audio

recordings and screen captures. An insight is a nugget of knowledge extracted from the data, such

as “France produces more wines than the US”. We followed the verbal data segmentation approach

proposed by Liu et. al. [114] and adopted their coding process in which the first author did the bulk

of the coding, but we iteratively revised finished codes with collaborators to reduce bias. In our case,

we decided to count observations that are within the same visualization, have the same semantics,

and are on the same level of granularity as one insight. For example: “It looks like country 1 makes

the most cars, followed by country 2 and country 3” was coded as one single insight, whereas an

observation across two visualizations (through brushing) such as “Country 1 makes the most cars

and seems to have the heaviest cars” was counted as two separate insights. We did not categorize

insights or assign any quality scores or weights to insights nor did we quantify accuracy or validity

of insights. For our analysis, all insights were treated equally.

5.4.1 Number of Insights per Minute

In order to get a quantifiable metric for knowledge discovery, we normalized the total insight count

for each session by the duration of the session. Figure 5.5 shows this resulting “number of insights

per minute” metric across different factors. Our results show that this metric was significantly

affected by the type of visualization condition (F (1.452, 29.039) = 6.701, p < 0.01).

Post hoc tests revealed that the instantaneous condition showed a slight increase of number of
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insights per minute over the progressive condition (1.477 ± 0.568 vs. 1.361 ± 0.492, respectively),

which was not statistically significant (p = 1.0, r = 0.080). However, the blocking condition reduces

the number of insights per minute to 1.069 ± 0.408, which differed significantly from both the

progressive (p < 0.05, r = 0.292) and instantaneous (p < 0.001, r = 0.383) conditions. A Bayesian

Paired Samples T-Test that tested if measure1 < measure2 revealed strong evidence for an increase

in insights per minute from the blocking condition to the progressive condition (BF10 = 13.816),

extreme evidence for an increase from blocking to instantaneous (BF10 = 134.561), and moderate

evidence for no change or a decrease between instantaneous and progressive (BF10 = 0.130). In

summary, blocking visualizations produced the fewest number of insights per minute, whereas the

instantaneous and progressive visualizations performed equally well.

5.4.2 Insight Originality

Similar to [76], we grouped insights that encode the same nugget of knowledge together and computed

the originality of an insight as the inverse of the number of times that insight was reported by

any participant. That is, insights reported more frequently by participants received lower overall

originality scores. A participant received an insight originality score of 1 if he or she had only unique

insights (i.e., insights found by no other users). The lower the score, the less original the insights

were on average. We averaged originality scores across insights for each session and show plots for

this insight originality metric across different factors in Figure 5.6. We did not find any significant

effects that influence the insight originality metric, which indicates that the originality score seems

unaffected by any of the factors for which we controlled.

5.5 Analysis of Interaction Logs

To analyze how our visualization conditions affect user behavior, we computed several metrics from

either the mouse-movement events or the high-level system-specific events.

5.5.1 Visualization Coverage

We were interested in analyzing how much of the possible space of visualizations our participants

covered. To create a metric for visualization coverage, we computed the set of unique visualizations

possible within each dataset. We considered all attributes, both visualization types supported by our
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system, and all possible aggregation functions. However, we ignored the axis-to-attribute mapping

(e.g., a visualization with attribute A on the x-axis and attribute B on the y-axis is considered the

same as if the axes were flipped). We then extracted and counted up all visualizations a participant

created during a session from the interaction logs. Our final visualization coverage metric is the

percentage of possible visualizations a participant created per minute.

Figure 5.7 plots this metric across different factors. Our analysis shows that the type of visu-

alization condition significantly affects the percentage of the total visualizations that a participant

covered per minute (F (2, 40) = 9.847, p < 0.001). Post hoc tests revealed that the instantaneous

condition showed a slight increase in percentage over the progressive condition (1.553% ± 0.690%

vs. 1.311% ± 0.651%, respectively), which was not statistically significant (p = 0.226, r = 0.251).

However, the blocking condition reduces the percentage of total visualizations covered per minute

to 0.845% ± 0.449%, which differed significantly from both the progressive (p < 0.01, r = 0.545)

and instantaneous (p < 0.001, r = 0.740) conditions. Participants explored more visualizations per

minute with the instantaneous and the progressive condition and there is no significant difference

between the two.

Note that we did not assign any “importance” or “quality” scores to different visualizations. All

visualizations have the same weight, even though some visualizations might be more informative

than others or multiple visualizations might convey similar insights. Similarly, our visualization

coverage metric is not designed to compare across different users or sessions, such that two users

could have the exact same coverage score while looking at completely different parts of the dataset.

5.5.2 Number of Brush Interactions per Minute

While the coverage metric considers the number of possible static visualizations, it does not consider

brushing. We measured the brushing interactions by counting the number of brush events from the

interaction logs, which we then normalized by the duration of a session. The results, shown in

Figure 5.8, demonstrate that the type of visualization condition significantly affected the number of

brush interactions per minute (F (1.335, 26.690) = 17.620, p < 0.0001). Post hoc tests revealed that

the instantaneous condition showed a significant increase in number of brush interactions per minute

over the progressive condition (4.640± 4.095 vs. 2.108± 1.744, p < 0.01, r = 0.316), as well as over

the blocking condition (1.190 ± 0.737 , p < 0.001, r = 0.413). Furthermore, brushing interactions

per minute for the progressive condition were significantly different than for the blocking condition
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(p < 0.05, r = 0.29).

Additionally, our results showed a significant between-subject effect for dataset-order (F (1, 20) =

4.568, p < 0.05)). A post hoc test revealed that dataset-order 312 increased the number of brush

interactions per minute over dataset-order 123 significantly (3.365 ± 3.284 vs. 1.927 ± 2.429, p <

0.05, r = 0.242). We hypothesize that this effect is due to the structure of DS3 (census dataset),

which in turn leads to a learning effect. DS3, to which users where exposed first in dataset-order

321, has considerably fewer qualitative attributes than the other datasets. Users could not use

strategies such as looking for trends in 2D histograms or compute averages across attributes and

reverted to using the brushing functionality to correlate across different populations of the data.

We often observed users manually cycle through one attribute and look for changes in another

attribute. For example, users would create two histograms (e.g., one for “marital status” and one

for “education”) and then manually select different values in the first histogram (e.g., “married”,

“widowed”) to determine whether the second histogram for that subpopulation differed from the

overall population.

5.5.3 Visualizations Completed

We extracted the number of times a visualization was completed—the participant waited the full

amount of time specified by the dataset delay until a visualization was completely accurate—from

our log data. We then divided this count by the number of interactions that forced a visualization

to recompute (e.g., axis change, brushing interaction). This gives us the percentage of times an

interaction led to a fully accurate visualization. Figure 5.9 visualizes this metric for different factors.

Note that, by definition, this metric is always 100% for the instantaneous condition and we therefore

exclude it from post hoc tests. Our results show that the percentage of completed visualizations

was significantly affected by the type of visualization condition (F (2, 40) = 169.972, p < 0.0001).

Post hoc tests revealed that the blocking condition showed an increase of percentage of completed

visualizations over the progressive condition (56.22%± 15.01% vs. 45.99%± 14.14%, respectively),

which was statistically significant (p < 0.05, r = 0.296). In short, people often moved ahead without

waiting for the full result.



81

***
*

Figure 5.5: Insights per Minute: Boxplot (showing median and whiskers at 1.5 interquartile range)
and overlaid swarmplot for insights per minute (left) overall, (middle) by dataset-delay, and (right)
by dataset-order. Higher values indicate better.

Figure 5.6: Insight Originality: Boxplot (showing median and whiskers at 1.5 interquartile range)
and overlaid swarmplot for insight originality (left) overall, (middle) by dataset-delay, and (right)
by dataset-order. Higher values indicate more original insights.

5.5.4 Mouse Movement per Minute

Finally, to compute a simple metric of a participant’s activity level, we calculated the distance in

pixels the mouse was moved per minute and show the results in Figure 5.10. Our analysis shows

that the type of visualization condition significantly affected the mouse movement per minute metric

(F (2, 40) = 5.431, p < 0.01). Post hoc tests revealed that the instantaneous condition showed a

slight decrease of mouse movement per minute over the progressive condition (303.799 ± 128.243

vs. 313.912 ± 139.1299, respectively), which was not statistically significant (p = 1.0, r = 0.051).

However, the blocking condition reduces movement per minute to 258.060± 131.536, which differed

significantly from both the progressive (p < 0.05, r = 0.315) and instantaneous (p < 0.05, r = 0.245)

conditions. Mouse movement is a crude indication of a user’s activity level, and our test shows

that these levels are lowest with the blocking conditions. Again we find no difference between

instantaneous and progressive visualizations.

5.6 Perception of Visualization Conditions

During our exit interview, we asked participants to provide feedback about the different visualization

conditions they experienced. Most participants liked the instantaneous visualizations best, but
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Figure 5.7: Visualization Coverage Percentage per Minute: Boxplot (showing median and whiskers
at 1.5 interquartile range) and overlaid swarmplot for for visualization coverage % per minute (left)
overall, (middle) by dataset-delay, and (right) by dataset-order. Higher values are better.

***
*

**

*

Figure 5.8: Brush Interactions per Minute: Boxplot (showing median and whiskers at 1.5 interquar-
tile range) and overlaid swarmplot for brush interactions per minute (left) overall, (middle) by
dataset-delay, and (right) by dataset-order.

Figure 5.9: Visualizations Completed Percentage: Boxplot (showing median and whiskers at 1.5
interquartile range) and overlaid swarmplot for for completed visualization % (left) overall, (middle)
by dataset-delay, and (right) by dataset-order.

* *

Figure 5.10: Mouse Movement per Second: Boxplot (showing median and whiskers at 1.5 interquar-
tile range) and overlaid swarmplot for mouse movement per minute (left) overall, (middle) by dataset-
delay, and (right) by dataset-order.
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preferred the progressive ones over blocking. Below are quotes from our participants that describe

these preferences:

“I liked the progressive one better than blocking, but obviously the instantaneous one is best.”

“I initially felt the loading one [progressive] was weird because graphs change over time. But after

seeing this one [blocking] I can appreciate the value of it [progressive].” “[Blocking] slows the process.

But when it’s one or the others [instantaneous or progressive], I can see one thing and then that

naturally leads to the next thing I want to do. Here [blocking] I have to keep track of the last thing

that I loaded while I do something else. It’s [blocking] just more stilted and less continuous.” “You

see a rough picture in the beginning and then you can think about it while it’s actually finishing.

That’s way better than just a loading animation.”

A few participants expressed positive remarks towards blocking visualizations or commented that

they adapted their strategies because of the wait-time:

“The slow one [blocking] made me feel more confident about what I saw, because there is lots of

data behind it.” “It [blocking] actually helped me to use the time to think. But it also might limit you

from finding really interesting facts, because you’re going in with an idea, you’re using the loading

time to come up with things that you think might be true. Without the loading time you could just

randomly mess around with the data and find interesting things.” “I used the loading time to do

something else.”

5.7 Discussion

Our analysis provides evidence that overlaps with findings in previous work, such as by Liu et.

al. [114], which finds that even small latencies have an impact on user performance in exploratory

settings. Our results show that knowledge discovery and user activity measures are negatively

influenced by the blocking condition when compared to instantaneous visualizations. This intuitively

makes sense and it is widely acknowledged that low latency leads to improved user experience and

user performance. The more interesting evidence we present in this paper arises when we compare

blocking to progressive visualizations or instantaneous to progressive visualizations.

The difference between the progressive and blocking conditions is that users can see approximate

results while a query is ongoing rather than a loading animation. However, the overall delay until

a final, 100% accurate visualization arrives is exactly the same for both conditions. Yet, our data
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shows that users generated more insights per minute, had a higher visualization coverage percentage,

and displayed higher levels of mouse movements when given progressive rather than blocking visu-

alizations. Additionally, the percentage of completed visualizations (i.e., visualizations where users

waited the full number of dataset-delay seconds to get the final answer) is higher in the blocking

than the progressive condition. This result suggests that users are efficiently using these in-between

and approximate visualizations to either pre-process information, extract insights early, or to decide

that the result is not what they were looking for and then move on to the next visualization. A

participant expressed it this way: “It’s much easier to look at a rough picture of the final data rather

than just to see nothing at all. You can start to get an idea of relationships and things like that.”.

Based on our analysis we accept hypothesis H2 (more insights with progressive than blocking) as

well as H4 (higher user activity levels with progressive than blocking).

The instantaneous visualization condition represents a hypothetical system that can provide

results to the user almost immediately for any query, minimizing interference to the user’s thought

process. While increasing amounts of data make systems that provide instantaneous visualizations

practically infeasible, the evidence presented in our analysis shows that progressive visualizations

might perform almost as well. We did not observe any significant differences across all of our metrics

for the instantaneous and the progressive conditions except for the brush interactions per minute

metric. We can therefore not accept H1 (more insights with instantaneous than progressive) or H3

(higher user activity levels with instantaneous than progressive).

However, there are some open questions that our study does not address. While our data suggests

that approximate visualizations might help users grasp certain characteristics of a dataset rapidly,

they simultaneously introduce a set of new challenges. For example, prior work in psychology [43, 44]

has shown that even experts sometimes have trouble interpreting standard accuracy metrics (e.g.,

confidence intervals, error bars). While we did not observe any cases in our study where participants

misinterpreted visualizations based on their uncertainty, these cases are also hard to capture. Our

participants often reported high-level trends like “these two categories seem about equal in counts”,

“there is a slight negative correlation between these two variables”. How much of a change would

need to occur between the approximate and the final visualization before users would retract these

insights? Progressive visualizations expose fundamental limitations when it comes to exploration

sessions on datasets where it is important to capture insights that are based on outliers or small

subsets of the data. It might take a long time to sample those rare datapoints, and visualizations
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can therefore take a long time to converge to a view that shows those features prominently.

The second open question is how refresh rates for progressive visualizations affect user interac-

tion and whether or not, in the extreme case, a simple one-sample visualization provides the same

benefits. For example, techniques such as the one presented by Stolper et. al. [149] that allow users

to decide when to update a visualization might be less distracting than our approach of constant

regular updates. There are reasons to believe that progressive visualizations have advantages over

approximate visualization that are based on a single sample. For example, users can decide indi-

vidually when a visualization is accurate enough for their liking or their current task. We observed

that some users tend to hold off with reporting insights until after several progressions, especially for

visualizations where there was a high visual variance between updates. In other cases, participants

waited for uncertainty metrics to be in a range small enough for them to make judgments. One

of our participants stated: “I didn’t want to draw any conclusion right away. Especially in this

one visualization where the error bar was across the whole graph, I decided to wait.”. While these

anecdotal findings make a case for progressive visualizations over simple sampling-based ones, our

study does not provide the means for a quantitative comparison between the two.

5.8 Conclusion

We investigated how progressive visualizations affect users in exploratory data analysis scenarios.

Through a controlled experiment, we compared progressive visualizations to blocking and instan-

taneous visualizations and found significant differences in insight-based metrics and user activity

levels across all three approaches. We observed that progressive visualizations outperform blocking

visualizations in almost all metrics and that progressive visualizations do not significantly differ from

the ideal scenario of instantaneous visualizations in terms of generated insights per minute, insight

originality, or visualization coverage percentage.



Chapter 6

A System for Progressive

Visualizations and Computations

In this chapter we we present Vizdom, an interactive visual analytics system that scales to large

datasets through progressive computation. Part of this chapter is based on [41]. I designed and im-

plemented the bulk of Vizdom, its visual language and its progressive computation backend (IDEA).

6.1 Introduction

While the set of tasks that recur in visual data analysis, as well as the tools that support them,

are relatively well understood [10, 83], the constantly increasing amount of data has shifted the

interaction paradigm away from an interactive approach to one based on batch processing. As Fisher

et al. [63] argued, a common way to perform data analytics in the recent past was to use spreadsheet

applications to analyze datasets small enough to fit completely in memory. Computations were

therefore fast and results were available almost immediately. Users could perform analysis and

explore different aspects of the data iteratively and refine findings interactively at a fast pace.

However, in the emerging “big data” era where one million records or more has been stated by

the visualization community [159, 59] as a threshold, these conveniences are gone. Most traditional

interactive visual analysis systems are not built to support this scale of data. Users need to give

up real-time interaction and are forced to perform “big data” analytics through batch jobs written

86
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in scripting or programming languages. These jobs run for minutes or hours, typically somewhere

in the cloud, without providing insights on what goes on behind the scenes and without exposing

intermediate results. This mainframe-like interaction paradigm is an inherently poor fit for data

analytics. The work is exploratory by nature, demanding rapid iterations, and all but the simplest

analysis tasks require humans in the loop to effectively steer the exploration process. Empowering

analysts to use their domain knowledge to quickly explore different feature-sets or parameters for

machine learning tasks, or supporting users to fast-reject unimportant aspects of the data, are crucial

to produce high-confidence results quickly.

Multiple different strategies, such as precomputation, prefetching, sampling, and progressive

computation, have been proposed to bring interactivity back to visual analytics. Each of these

approaches comes with its individual set of advantages and limitations. For example, current large

scale, state-of-the-art visual analytics systems [116, 113] achieve interactive frame-rates over large

datasets for certain types of filtering queries, but simultaneously limit other analytical functionality

at runtime. Brushing and filtering with arbitrary predicates, user-defined data transformations and

interactive building of statistical models are all outside the scope of systems that rely solely on

precomputation. Progressive computation, where data is processed incrementally in small batches,

offers an interesting trade-off between accuracy of results and speed of computation while still

supporting many common analytical tasks. The research community has recently regained interest

in progressive computation and has attempted to analyze and exploit some of the peculiarities of

this approach [65, 149, 62, 64, 58, 137, 41]. However, no attempts have been made to create a general

purpose visual analysis system built on progressive computation.

We try to fill this void with Vizdom. Vizdom is an interactive visual analytics system that is

entirely based on progressive computation and supports a wide range of reoccurring visual analysis

tasks, including coordinating multiple visualizations to create custom exploratory interfaces and

derive models through machine learning operators. Vizdom features a pen & touch-based user

interface that was designed with a “touch-first” mindset in order to promote a fluid interaction

style. Our system scales in both interaction model and computation across varying dataset sizes,

ranging from thousands to hundreds of millions of records. In this paper, we show our system design

in detail, present how our user interface design as well as our computation engine support analysis

tasks in a progressive fashion, and discuss the limitations and advantages of progressive computation

over other approaches in the context of visual analysis.
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6.2 System Design

When designing Vizdom, we had two main goals: (1) keep frame-rates at an interactive level no

matter how large the underlying dataset is and (2) every interaction needs to produce some actionable

and understandable artifact within 500ms regardless of the dataset size. The reasoning behind these

goals is that we would like to create an interactive environment in which analysts can chain operations

together at a pace that matches their thought process without the system slowing down or diverting

the users from their current task. Furthermore, we want to guarantee that users do not have to

switch interaction strategies based on dataset size. Users should be able to operate at the same

pace, with the same tools, and use the same strategies if their dataset has a thousand tuples or a few

hundred millions of tuples. At a hight level, we achieve this by processing all queries in a progressive

fashion combined with binned visualizations. In this section we first describe our system architecture

in detail and then discuss how Vizdom supports various common analysis tasks. In our description,

we particularly focus on the design changes we needed to make over a small-scale traditional blocking

system (with datasets small enough to compute and visualize results quasi-instantaneous) and discuss

advantages and limitations of a progressive approach over other approaches (e.g., precomputation).

6.2.1 Overview

Vizdom uses a client-server architecture where user-issued queries get submitted to the sever and

results are then passed back to the client in order to render a visualization. Our client is a pen- &

touch-based application with a visual language that consists of two main building blocks: visualiza-

tions and tasks. Visualizations are placeholders for views on the dataset and tasks are placeholders

for operators that take data as input and either apply a transformation or build a model. Figure 6.1

shows examples of both: (b) a set of three coordinated visualizations, (c) a task operator computing

a classification model based on some input. A menu bar on the left-hand side of the tool (Figure 6.1

(a)) allows users to reference attributes of the dataset “a”, create new visualizations “v”, or perform

a task “t”. Vizdom features an unbounded zoom- and pan-able canvas where visual elements can be

arranged in a freeform fashion. Users can combine the two building blocks on this canvas to support

various analysis tasks such as creating a set of coordinated visualizations for brushing or filtering.

All interactions on these building blocks are done through direct touch manipulation and data-entry

is supported by using handwriting recognition. Each interaction that requires a data-computation
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fires off a request to the backend.

(a)

(c)

(b)

Figure 6.1: Screenshot of Vizdom showing a custom exploration interfaces created by coordinating
multiple visualizations (left) and and an ongoing classification model building task (right).

6.2.2 Visual Analysis Tasks

Visual analysis is an iterative process where users frequently switch between a range of tasks (e.g.,

creating visualizations, filtering data, observing interactions between datasets, etc.). To ensure ex-

pressiveness and analytical power, a system needs to support a comprehensive set of such tasks. We

use Heer & Shneiderman’s taxonomy of interactive dynamics for visual analysis [83] as guideline for

coverage in terms of analytical tasks and use the core concepts (derivable visualizations, unbounded

space and boolean composition) of [176] as a design structure to expose these tasks in an under-

standable and approachable way. In this section we describe how common visual analysis tasks are

supported in Vizdom.

Visualize

Being able to visually encode data is perhaps the most fundamental operation in visual analysis.

Many common visualization types, (e.g., scatterplots) map data points directly to visual elements

(one-to-one mapping). For large dataset sizes, this results in occlusion, cluttering, and slow render-

ing performance. Similar to [116], Vizdom uses binned visualizations to get around this problem.

Figure 6.2 shows two such examples computed over a million datapoints each, (a) for a barchart and
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(b) for a 2D scatterplot. Visualizations like these can be created through simple drag and drop op-

erations, and tapping on an axis cycles through different aggregation functions (e.g., count, average,

etc.). Bins within visualizations can be selected through tapping- or pen-based lasso-gestures.

(a) (b)

Figure 6.2: (a) barchart, (b) 2D binned scatterplot.

Vizdom computes all of these binned visualizations in a progressive fashion. An approximate re-

sult is displayed as fast as possible and is incrementally refined over time. The system computes and

overlays visualizations with standard-error based 95% confidence intervals (bar-charts) or margins of

error (2D scatterplot) and displays a progress indication in the bottom left corner of a visualization.

One configurable parameter for binned visualizations is the number of bins to display. Because of

the systems progressive nature, we do not know the minimum and maximum value of an attribute

upfront, making it impossible to accurately calculate the bin-size at the start of a computation. Viz-

dom uses a binning algorithm that computes the bin-size according to the number of bins requested

as well as the minimum and maximum estimations of a first chunk of data. If any subsequent chunk

of data contains datapoints that lie outside of this initial estimation, we add bins of the same size

to accommodate these new values. This algorithm relies on good initial minimum and maximum

estimates. In the limit, the algorithm can produce histograms with a large number of bins if the

dataset contains outliers that are far outside of the initial bounds estimate. In practice, and for the

tested datasets, however, this algorithm is fairly robust. Our backend computes binned visualiza-

tions by processing one chunk of data at a time and stores intermediate results between iterations.

The backend sends the increasingly more precise binned visualization to the client after each chunk
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of data is processed. The client then renders the visualization.

By using binned visualizations coupled with progressive computation, we achieve perceptual and

interactive scalability [116]. Binned visualizations reduce the amount of visual elements that need

to be rendered while preserving overall patterns in the data as well as local features such as outliers.

Additionally, progressive computation guarantees that Vizdom can display some actionable, although

approximate, visualization independent of the size of the dataset within interactive timeframes.

Coordinate & Organize

Due to Vizdom’s unbounded 2D canvas, organizing visualizations or tasks is as simple as arranging

them on the screen through direct touch manipulation. We support two types of links to coordinate

multiple views or tasks: persistent and transient links. Persistent links are created through a pen-

gesture (drawing a line between two visual elements) and transient links are implicitly formed by

proximity of elements. We map these link types, coupled with selections, to different types of

operations such as filtering, brushing or specifying input parameters to tasks.

Filter

By coordinating visualizations with persistent links, users can create detailed interactive visual

display networks in which each visualization can act as a filter for others. A set of linking operations

turns the three visualizations in Figure 6.3 (a) into a custom filter interface (b). In the example, our

analyst now uses this network to filter the displacement (dis) visualization to only include cars with

a high miles per gallon (mpg) value and low horsepower (hp) along with cars that originate from

“Country 1.” Vizdom supports filtering over arbitrarily long chains of visualizations and includes

complete boolean logic (and, or, not). Note that whenever selections in upstream visualizations

change, downstream visualizations are recomputed. Vizdom’s client passes the filtering predicate

along to the server which then evaluates it for all tuples in a chunk of data to see if a specific

tuple needs to be included in the current computation. We want to emphasize that through this

technique, Vizdom supports filtering on arbitrary predicates at runtime unlike systems built using

the precomputation approach.
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(a) (b)

(c) (d)

Figure 6.3: Examples of filtering and brushing. (a) Three uncoordinated visualizations. (b) Visu-
alizations coordinated through persistent links where upstream selections serve as filter predicates
for downstream visualizations. (c) Example of a brushing interaction through a transient link that
is based on proximity. (d) Multiple brushes on the same visualization.
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Brush

Dragging two visualizations close together implicitly creates a transient link between them. Moving

the visualizations further apart again removes the linkage. In Vizdom, this interaction technique

triggers a linking and brushing operation, where selected data points are highlighted in another

visualization. In Figure 6.3 (c), the horsepower (hp) vs. miles per gallon (mpg) scatterplot is

dragged close to the displacement (dis) histogram. This interaction reveals that cars with high miles

per gallon values and low horsepower are all within the lower end of the displacement range. A

second move interaction (d) reveals two things: (1) there is little overlap between cars with a high

mpg/low horsepower and cars from “Country 1” and (1) cars with a high displacement value come

all from “Country 1”. Vizdom assigns a unique color to each incoming brushing-visualization and

colors data points black if they are associated with two or more brushes. Heights of bars as and

rectangle areas for 2D scatterplots are scaled accordingly to reflect the number of data points falling

within a specific brush. Changes in brush-selections automatically force the system to recompute a

downstream visualizations. Similar to filtering, the backend evaluates brushing predicates for each

chunk of data to determine the number of tuples that should be highlighted. By combining filtering

and brushing operations, users can create arbitrary complex boolean brushing predicates.

Navigate

Navigational patterns such as the widely cited “Information Seeking Mantra” [142] (i.e., overview-

first, zoom and filter, details on demand) are directly supported through coordinated visualizations

and filtering or brushing operations. Figure 6.4 shows an example where a user creates a filter-chain

to stepwise zoom into a specific range of the datapoints.

Derive

When analyzing a dataset, analysts oftentimes create or derive new variables from existing values.

Examples range from simple transformations (e.g., normalizations or log transforms) to computing

complex statistical models over the dataset. Vizdom supports two types of such derived values:

simple aggregation functions in visualizations and classification models through machine learning

operators. We will focus on the latter in this section.

Binary classification tasks are created by dragging out one of the available tasks from the task
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Figure 6.4: Stepwise zooming into a specific range of datapoints by using a set of linking and filtering
operations.

Figure 6.5: A binary classification task using a support vector machine based on stochastic gradient
descent. The model is trained progressively based on the attributes mpg and hp and tries to predict
if a car is from “Country 1”. Furthermore, while building this model, only cars from a specific weight
range are included. The task’s view shows how accuracy improves while progressively training on
more and more samples.
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(a) (b)

(c) (d) (e)

Figure 6.6: Five different views of a classification task. (a) F1 score over time. (b) Detailed
performance statistics. (c,d) Histograms of features based on test data and shaded by classification
result. (e) Testing panel to manually create samples (through handwritten recognition) that can be
classifed by the current model.
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list (Figure 6.1 (a) under item “t”). Such a task needs two inputs before it can start computing a

model: (1) the set of features to train over and (2) a label function that indicates which training

tuples are positive or negative examples. In Vizdom, features of a classification task can be specified

by dragging and dropping attributes to its feature slot, and labels are specified through transient

links and selections. Figure 6.5 shows an example. We created a binary classification task (middle)

using a support vector machine based on stochastic gradient descent (“sgd”) that tries to predict if a

car comes from “Country 1” (right) based on its miles per gallon (mpg) and horespower (hp) values.

Furthermore, we filter this task to only include cars from a specific weight range (left). Our system

trains this model incrementally by feeding it more and more training samples in each iteration and

notifies the user about the current state of the model after each chunk of data is processed. The

task’s current view shows that the model’s current accuracy (F1 score) is at 73.4% and displays how

this value has changed over time. The system retains a certain fraction of the tuples as testing data

to evaluate the models performance and compute accuracy metrics.

Model building in machine learning is an iterative process were users frequently switch between

analyzing the quality of a model and changing parameters or features of the training process. Similar

to ModelTracker [11], Vizdom exposes some of the internals of classification operators to make this

transition less disruptive to the users. Unlike ModelTracker, however, which shows information about

individual training tuples, we again aggregate samples for these debugging views to accommodate

for large datasets. Figure 6.6 shows the individual views of a classification task. Users can switch

amongst views through tapping gestures. As seen in the previous example, the first view (a) shows

how the testing accuracy of the model (F1 score) evolves over time and with increasing training

data. The second view gives more detailed statistics about the classifier, such as precision and

recall, ROC curve, and confusion matrix. Subsequent views are based on feature attributes. For

each feature (in our case mpg (c) and hp (d)), the system depicts how the testing dataset was

classified. The color coding follows that of the confusion matrix in (b). Dark purple represents

true-positives, light purple represents false-negatives, dark blue represents true-negatives, and light

blue represents false-positives. These views can help analysts understand were the errors in the

model’s classifications come from. In the example, we might read from (d) that most of the higher

horsepower (hp) cars are classified correctly and almost all of the classification errors are made with

lower end horsepower cars. The last view (e) serves as an input panel were users can manually test

how certain combinations of features are classified. As shown in the example, we input values for
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(a) (b) (c)

Figure 6.7: Examples of derive operators. (a) A user defined calculation. (b) A definition operator
which defines a new derived attribute based on user specified brushes. (c) Visualization of the new
attribute created in (b).

the two features through handwritten ink and see that our model classifies a car with 15 mpg and

160 hp as a car from “Country 1”. We again use color coding here: the input strokes turn purple if

classified as positive and blue if negative.

Other examples of derive operators include user defined calculations or definitions. Figure 6.7 (a)

shows an example of the former, where a user creates a new derived value based on a computation

involving “horspower” and “weight”, and (b) the latter, where a user creates a new categorical

variable based on selections in visualizations. The output of all operators can be renamed and used

as any other attribute. By dragging the output of the definition operator in Figure 6.7 (b) a user

can visualize the distribution of values of this new attribute (c).

6.2.3 Process & Provenance

Vizdom implements some simple annotation and recording tools through digital ink and since the

system has an unbounded 2D canvas, past analysis results can be revisited by zooming and panning.

However, we did not not focus on various other tasks, such as exporting or sharing of views for

collaboration or storytelling, within “Process & Provenance” category of Heer & Shneiderman’s

taxonomy. We believe that well-known tools and techniques that support these tasks could be

adapted to a progressive computation-based system with almost no changes.

6.2.4 Backend

In order to achieve low latency for the type of ad-hoc queries that Vizdom allows, our processing

backend (called IDEA) relies on approximate query processing (AQP) techniques, which provide

query result estimates with bounded errors. The current implementation of IDEA, which operates

on raw textual files, requires a loading step were we randomly shuffle an imported dataset, if it’s
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Figure 6.8: Shows a summary report generated by IDEBench [53] comparing four different analytical
database systems over three dataset sizes and a time requirement of 1s.

small enough, or we create an in-memory sample. This structure allows us to generated a random

stream of tuples at runtime. We envision that in the future this approach can be extended to directly

connect to existing data warehouses by using sampling strategies [127, 128] to access random streams

of tuples. Each user-issued query is computed incrementally through chunks of data at a time where

the size of a chunk is a configurable parameter. The server sends messages to the client with the

current incremental result after each chunk has been processed. Additionally, complete and partial

results are cached and shared across clients to maximize reuse opportunities.

An example illustrates this process for a simple aggregation query, where the results are computed

in such a progressive or online fashion [85]. Let’s assume we have a dataset with 1,000 numbers and

our chunk-size is set to 100. A client creates a request to compute the average over this dataset. Our

sever starts by getting a chunk of 10 tuples from the data-source, computes the average, and stores the

average along with how many tuples have been processed so far in the system’s cache. The server can

then return the first incremental result to the client: an estimate of the average based on 10 samples.

Note that we ignore computing error metrics in this example for simplicity. On the next iteration,

the server requests the next chunk of 10 numbers and updates its currently stored incremental result

and again notifies the client. If our random data-source operates without replacement, the server

can stop its computation and send the final answer to the client after the 100th iteration. At no

point did the server have to hold more than a 10 input tuples in memory and it only had to store
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two numbers (current average and number of tuples processed) to represent the current state of the

computation. We extend this same principle to machine learning operations where we train models

incrementally by feeding them more and more training samples in each iteration and present the

current state of the model to the user after each chunk of data is processed.

In related work, where we argue for a new benchmark for interactive data exploration [53], we

compare the performance of IDEA’s progressive visualization computation engine against other lead-

ing systems. Figure 6.8 highlights this comparison. We find that IDEA is able, unlike a traditional

database system like MonetDB [22], to return approximate answers for all tested queries within 1s

(Time Violated is 0) independent of the dataset size (100 million, 500 million and 1 billion records).

Additionally we note that for other metrics, such as the percentage of bins in a visualizations that

are missing due to the approximation or the approximation error itself, IDEA is either comparable

to other AQP systems (SystemX) or outperforms them (XDB [111]).

A more detailed and complete description of IDEA, its internals and background on AQP systems

can be found in our related work [42, 68].

6.3 Conclusion & Future Work

Current large scale, state-of-the-art visual analytics systems (e.g., imMens [116], [113]) are based on

precomputation. While these systems support real-time interaction for certain queries on datasets

with billions of tuples, they compromise in the area of analytical functionality. Multi-level, ad-

hoc brushing and filtering of visualizations, data transformations that are not defined at loading

time, and interactive building of statistical models are all outside the scope of systems that rely on

precomputation. With Vizdom, we designed a system based on interactive progressive computation

that works on similarly sized datasets sizes without these typical restrictions.

However, progressive computation has its own set of limitations. Incremental and approximate

answers, as implemented by Vizdom, can be hard to interpret. As shown in prior work [45, 43, 44],

even experts make mistakes when interpreting standard statistical accuracy metrics. Advances in

uncertainty visualizations are needed to fully mitigate some of these issues. Additionally, not all

algorithms and analysis tasks lend themselves well to progressive computations. Some methods are

highly susceptible to outliers, or are not guaranteed to converge to the true result when implemented

progressively. For example, if an analyst needs to detect extremely rare outliers in a large dataset
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or wants to compute the exact minimum or maximum value of an attribute, progressive systems

do not offer speedups over blocking systems. In the future, we are planning to extend Vizdom

by implementing more types of visualizations (e.g., maps), adding other types of machine learning

operators, and supporting user-defined transformations, either through handwritten math notation

or visual scripting interfaces.

In this chapter, we presented Vizdom, a progressive computation system that enables real-time

visual analytics that scales across dataset sizes ranging from thousands to hundreds of millions of

tuples. We support a wide range of common visual analysis tasks, such as creating coordinated

views for filtering and brushing, and deriving models from the input data through machine learning

operators.



Chapter 7

Investigating the Effect of the

Multiple Comparison Problem in

Visual Analysis

In this chapter we study the effect of the multiple comparisons problem in visual analysis by mea-

suring accuracy of user reported insights on synthetic datasets. We provide some early insights and

simple techniques as to how this problem could be mitigated. The bulk of this work is also sub-

stantially similar to [178] and a smaller part is based on [180]. For [178] I was the first author

and responsible for the research direction, implementation, study design, analysis and the bulk of

the writing. Zheguang Zhao contributed the mathematical methods and implementation on how to

generate synthetic datasets (part of Section 7.4.2), how to run statistical tests (part of Section 7.6.4)

and the background on the multiple comparisons problem in statistics (Section 7.3.3). For [180], I

contributed the design and implementation of the visual language and user interface.

7.1 Introduction

Here is a thought experiment. Imagine a game where you roll a pair of dice and win if you get two

sixes. The probability of winning is 1/36. Now let’s change the game mechanics. Instead of just

rolling once, you can continue rolling the dice. You might get a three and a four in your first roll.

101
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You did not win, but you keep going. On your 100th try you get two sixes and win. Everyone will

win this game eventually. The probability of winning after an infinite number of rolls is 1. Even

after just 100 rolls the chances of winning are over 94%.

Similar to others [29], we argue that the same thing happens when performing visual comparisons,

but instead of winning, an analyst “loses” when they observe an interesting-looking random event

(e.g., two sixes). Instead of being rewarded for persistence, an analyst actually increases their chances

of losing by viewing more data visualizations. This concept is formally known as the multiple

comparisons problem [19]. Think of each dice roll as a comparison between a visualization (the

rolled outcome) and a mental model of something interesting (e.g., two sixes). As more comparisons

are made, the probability rapidly increases of encountering interesting-looking (e.g., data trend,

unexpected distribution, etc), but still random events. Treating such inevitable patterns as insights

is a false discovery (or Type I error) and the analyst “loses” if they act on such insights. Because

there was nothing to discover. The data was random.

Unlike the dice example, empirical datasets are an unknown weighted product of noise and signal

and thus not totally random. The data analyst’s “game” is to detect data patterns that are real

and ignore those that are spurious. Unfortunately, the difference between the two may be small or

non-existent. This creates a second way for an analyst to lose: it is a false omission when a real

pattern is ignored because it looks uninteresting. False discoveries and omissions might be rare, but,

due to the multiple comparisons problem, they are increasingly likely to occur as analysts look at

more visualizations.

To further demonstrate the multiple comparison problem in exploratory visualization, we present

a representative scenario using random data; we consider non-random data in our experiments

(section 7.4).

Jean works at a small non profit organization. Every year they send their donors a small thank-

you gift and want to repeat that this year. From past experience, the organization knows that only

half of all new donors become recurring donors. Jean suspects there might be a relationship between

retention rate and thank-you gift type. Maybe better-liked gifts trigger repeat donations. Jean uses

his favorite visualization tool to explore data from the last 10 years. He first looks at the 2006

data and sees that slightly less than half of the new donors donated again (Figure 7.1 (a)). Then

Jean inspects the 2007 data and sees the same result (Figure 7.1 (b)). After scanning through all

the other years and coming to similar conclusions, Jean looks at 2016 (Figure 7.1 (f)). Instantly
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he sees that this visualization is much different than the others, depicting a noticeable shift toward

more repeat-donors. Jean gets excited. He believes he has figured out a way to improve the donor

retention rate. People liked the USB-drive his company sent out that year so much that they stayed

loyal to the organization. Even though this gift is the most expensive one, it is worth it to send it

again this year. Long term donors bring in a lot of money.

Is Jean’s insight correct? It is not. The dataset Jean looked at was generated by sampling from

a uniform distribution. It was completely random. We controlled the process that generated this

dataset and there was no signal that related gifts to donor retention rate in any form. Jean’s false

discovery led to a spurious insight. By doing ten comparisons he increased the likelihood of finding

a seemingly interesting pattern in data that was the product of randomness.

The multiple comparison problem is well-known in statistics. There are various common ap-

proaches for following up Jean’s exploratory analysis with statistical analysis. Each comes with

its own pitfalls and disadvantages. We introduce these via co-workers with whom Jean shares his

insight: Noemi (confirmation; same dataset), Hasan (confirmation; validation dataset) and Kendra

(mixing exploration and confirmation).

Noemi transforms Jean’s insight into something statistically testable. She defines a null hypoth-

esis: becoming a repeat-donor is just as likely as being a onetime-donor. She tests if the 2016 data

rejects this. The p-value turns out to be 0.028 indicating a significant effect (for a significance level

of 0.05). Noemi arrives at the same, wrong, conclusion as Jean. By confirming a hypothesis on the

same dataset that has informed that hypothesis, she introduced systemic bias.

Like Noemi, Hasan converts Jean’s insight into a statistical hypothesis but tells Jean it’s unsafe to

test on the same dataset. They agree to send the USB-drive again this year and re-run the test after

obtaining new retention data. The test comes out as not significant, refuting Jean’s initial insight.

Hasan got it right. Running confirmatory analysis on a validation dataset is statistically sound.

However, obtaining new data is, in practice, often expensive, time-consuming or even impossible.

Kendra takes yet a different approach. She suspects that Jean probably did a bunch of visual

comparisons prior to arriving at his insight. These comparisons need to be incorporated in any

confirmatory analysis done on the same dataset to prevent errors caused by the multiple comparison

problem. She asks Jean to meticulously recount what he did and maps all of Jeans visual comparisons

to equivalent statistical hypotheses. Jean did a total of ten comparisons: one explicit for the year

2016, and nine implicit, unreported, for the years 2006 - 2015. She runs statistical tests on the original
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(a) 2006: pen ($4)

false truetrue false

(b) 2007 key chain ($2)

true false
 

(c) 2016: USB drive ($4)

true false

...

Figure 7.1: Examples of the multiple comparison problem in visualizations of a randomly generated
dataset. A user inspects several graphs and wrongly flags (c) as an insight because it looks different
than (a) and (b). All were generated from the same uniform distribution and are the “same”. By
viewing lots of visualizations, the chances increase of seeing an apparent insight that is actually the
product of random noise.

dataset using the Benjamini-Hochberg [20] procedure to control for such a multiple comparisons

scenario. The corrected p-value for the year 2016 equals 0.306. Kendra deems the test insignificant

and informs Jean that his insight is likely due to random noise in the data. While Kendra’s approach

(mixing exploration and confirmation) requires Jean to remember his visual analysis session in detail,

it also allows for statistically valid confirmation of his findings using the same dataset.

This paper presents an experiment that quantifies the accuracy of user reported insights, where

we define insights as observations, hypotheses and generalizations directly extracted from the data.

We acknowledge this definition is narrow. Insights gained from visualizations can be much broader

and multifaceted. Visualizations help users gain a deep understanding of a specific problem domain.

However, we purposefully limit ourselves to this subset of insights because there is no ambiguity of

what correctness means. By using synthetic datasets with known ground truth labels, we can assign

a binary score to each insight: it is either true or not. We then compute an accuracy score for each

participant by dividing the count of correct insights by the number of all insights.

We follow up by manually mapping insights to corresponding statistical tests and evaluate the

three different confirmatory approaches just illustrated. We report and discuss how an approach

that validates user insights on the same dataset as used during exploration inflates the false discovery

rate due to the multiple comparisons problem. We show that these errors are dramatically reduced

by validating on a separate dataset. Finally, we demonstrate that by accounting for all visual

comparisons done by a user during exploration, the approach of mixing exploration and confirmation,
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can achieve similar results to using a separate dataset.

7.2 Why the visualization community should care

In theory, there is a clear divide between exploratory and confirmatory data analysis methods [158].

The goal of the former is to browse through data letting visualizations trigger potential insights and

hypotheses. The latter extends this process with a directed search intended to confirm or reject

insights and hypotheses given a priori [156]. Within this realm, mistakes are acceptable in the

exploratory phase because it is expected that the confirmatory phase will correct them.

In practice, however, the distinction between the two methods can be blurry. Oftentimes users

will unwittingly switch between the two and “convert results from investigative analysis into ev-

idence” [99]. There are also pitfalls associated with this approach that are unobvious to non-

statisticians; for example doing confirmatory data analysis on the same dataset as the exploratory

analysis introduces systemic bias known as data dredging or p-hacking [81]. While splitting a dataset

into exploratory and confirmatory parts gets around that problem, it significantly lowers the power

of any test due to smaller sample sizes. And without using advanced controlling procedures for

multiple hypothesis error that allow for incremental testing [179], iterative switching between explo-

ration and confirmation can not be done. Standard procedures such as Bonferroni [50] can only be

applied once per dataset.

The blurring of the lines between exploratory and confirmatory analysis is arguably magnified

by how both commercial visualization systems and research prototypes are advertised: “...uncover

hidden insights on the fly...”, “...harnesses people’s natural ability to spot visual patterns quickly,

revealing everyday opportunities and eureka moments alike...” [153], “...no expertise required..”,

“...more powerful approach to data exploration gets you to answers faster...” [154], ”...an interactive

data exploration system tailored towards “fast-forwarding” to desired trends, patterns, or insights,

without much effort from the user...” [146]. We believe that such statements instill a false sense of

confidence and reliability into visualizations and exploratory data analysis and the insights obtained

through them. This might be especially true for tools that target data enthusiasts - people who are

“not mathematicians or programmers, and only know a bit of statistics” [78].
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7.3 Related Work

We relate and compare our work to prior art in the areas of Insight-based Evaluation, Visual Inference

and Randomness and Multiple Comparisons Problem in Statistics.

7.3.1 Insight-based Evaluation

Many have argued that the primary goal of information visualizations is to provide insights [30, 125,

33], and, unsurprisingly, the visualization community has increasingly opted to use insight-based

evaluation methods [115, 72, 76, 175, 138]. In addition to measuring directly how well systems

achieve this main goal, these methods also allow for ecologically valid comparisons between designs.

But as Plaisant has argued [130], evaluation methods should not only help estimate how efficiently

a new technique reveals trends or phenomena from data, but also provide estimates of the potential

risk for errors. Insight-based evaluation methods clearly address the former but have for the most

part ignored the latter. Amongst other risks for misinterpretations [26], visualizations are subjective

and can be misleading [162]. A visual feature can be perceived by users even though it is merely the

product of random noise in the data. And the risk for this increases with the number of visualizations

that are being inspected.

Van Vijk [162] introduces an economic model that equates the investments associated with a

visualization (e.g., initial cost to create a visualization, perception and exploration costs) with the

return on those investments (i.e., the total knowledge gained by a user). We want techniques

that optimize this model for low cost and high investment return. Usability studies and controlled

experiments on benchmark tasks help us understand the cost of a particular design, and insight-

based evaluations attempt to assess the other side of this equation. However, measuring the number

of insights without any quality weighting paints an incomplete picture and has been mentioned

specifically as a limitation of such study designs [175].

Several proxy metrics have been proposed, for example, insight “value” as assessed by domain

experts [138] or “originalty” scores (how often the same insight was reported). We augment this

work with an experimental method based on synthetic datasets that assigns each insight a binary

quality score: true or false. Our definition of insights is comparatively narrow [125, 33] and only

encompasses observations, hypotheses and generalizations directly related to the data and not on

any other sources such as prior knowledge or domain expertise.
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7.3.2 Visual Inference and Randomness

Buja et.al. [29] outline the parallelism between quantitative testing and visual analysis and argue

that the term “discovery” (or insight) in visual analysis can often be equated to “rejection of a

null hypothesis”. Seeing an interesting upward trend in a visualization, for example, can be taken

as a rejection of uniformity. We base our study on the same notion and manually extract null

hypotheses from user reported insights. Follow-up work [119] shows that visual inference can perform

comparably to quantitative testing under certain protocols. Similarly, there is a large body of work

in visualization and graphical perception covering individual value estimation [36], correlation [134,

112], searching [73] or regression [40]. The consensus is that given the right visualization for the

task, users are fairly accurate in their estimations. However, none of this work analyzes if or how

the problem of multiple comparisons affects visual inference when comparisons are done in series.

People are known to judge randomness inaccurately [103, 75] and see patterns where there are

none [88]. Many well-known examples and studies illustrate this, such as the Gambler’s fallacy [152],

the Hot-hand fallacy [13] or the birthday paradox. The “Rorschach protocol” [29, 167] can be used

to test people’s tendency to see patterns in random data.

In this work, we consider the interplay between visual inference and judgment of randomness.

Gambler’s fallacy is famously known in the game of roulette where people might miss-interpret a

streak where the ball falls in red 20 times in a row as a pattern. Humans are good at spotting such

patterns but are bad at judging that this outcome is not more or less uncommon than any other

red and black sequence of the same length. Data exploration allows users to browse a large number

of visualizations quickly especially when using automatic visualization recommendation systems

[163, 145]. While scanning through lots of visualizations we might find one with an interesting

pattern but are unaware and do not consider that this could be the artifact of random noise.

7.3.3 Multiple Comparisons Problem in Statistics

When more than one hypothesis is considered at once, the risk of observing a falsely significant result

increases. Formally, this phenomenon is known as the multiple comparisons problem or multiple

hypothesis error, or data dredging and p-hacking. Suppose we are looking for indicators in a census

dataset that affects salary distribution in the United States. To examine an effectiveness of a factor

such as “age” or “state”, we set up the corresponding null hypothesis that states the proposed
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attribute has no correlation with the salary distribution. We then use a statistical test to infer the

likelihood of observing a spurious correlation under the null hypothesis. If this likelihood, commonly

referred to as the p-value, is lower than the chosen significance level such as 0.05, then the null

hypothesis is rejected, and the alternative hypothesis that the proposed attribute is correlated with

salary is deemed statistically significant.

However, if we keep searching through different indicators in the dataset with the same method-

ology, we are guaranteed to find a statistically significant correlation within a finite number of tests.

For example, choosing a significance level for each test of 0.05 means that statistically we have a 5%

chance of falsely rejecting a given null hypothesis; even if the dataset contains completely random

data, we would, on average, falsely discover a spurious correlation that passes our significance level

after only 20 hypothesis tests.

Several techniques exist to control for multiple hypothesis error. Procedures such as Bonfer-

roni [50] control for family-wise error rate (FWER), which is the probability of incurring any false

discovery given the hypotheses. For the previous example, with Bonferroni it is possible to lower

the FWER from 100% to just 5%. FWER procedures in general provide the safest control.

The downside of FWER procedures is their statistical power decreases as the number of hy-

potheses increase in order to compensate for the risk of making any error. A strict control target

as FWER may well be applicable to situations where the false discovery is costly, such as medical

trials. However, other common data science applications are more concerned with the accuracy of

observed significant results than the likelihood of making an error. Thus the false discovery rate

(FDR) is proposed as an alternative control target which specifies the expected proportion of false

discoveries among only the discoveries made (i.e. the rejected null hypotheses), instead of all the

hypotheses examined. An FDR procedure such as Benjamini-Hochberg [20] bounds the ratio of false

rejections among only the rejected tests to be say 5%. In general FDR is a weaker guarantee than

FWER but has shown tremendous benefit for discovering truly significant insights. Recent work on

FDR and its variants such as the marginal FDR (mFDR) improves over Benjamini-Hochberg for

dynamic settings [66] and specifically interactive data exploration [179].

The multiple comparisons problem also applies to data mining and machine learning where it

manifests itself as overfitting. A common practice is for models to learn from training data and then

evaluate them on an independent validation dataset. However the validation dataset is not reusable

in this simple form, because otherwise the validation metric inflates with multiple comparisons
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error. Recent work presents a remedy to reuse the hold-out dataset in adaptive data analysis with

techniques from Differential Privacy [52].

In summary, the multiple comparisons problem is well known and studied in statistics but is is

very much unregarded in the visualization community. Oftentimes we have a mental model of what

is of interest to us when interpreting a visualization. We compare our mental model against the

visualization we are observing. If the visualization matches our mental model for interestingness -

it shows a particular trend or a distribution - we will notice it. Perhaps unconsciously, but we are

doing comparisons. While these comparisons are not a well-expressed mathematically, they still are

tests and subject to the same multiple comparisons problem as statistical tests are.

7.4 Experimental Method

The aim of this work is to investigate the effect of the multiple comparison problem in visual

analysis. To achieve this, we need to evaluate the accuracy of user reported insights. We designed

an experiment where an insight is an observation, hypothesis or generalization that could be directly

extracted from the data and that did not require prior knowledge or domain expertise. Our study

followed an open-ended protocol where we let participants explore a synthetic dataset and instructed

them to report their reliable insights by writing them down. We believe this workflow models

common real-world data exploration scenarios where users report interesting observations to discuss

later with colleagues, to draw a conclusion or take an action, to analyze further or to convert into

a publication. By using synthetic datasets generated from mathematical models we control, we can

match ground truth labels to user observations and label each reported insight as being true or false.

We use a full-factorial 2 dataset-types (shopping and sleep) × 2 dataset-sizes (300 and 1000 records)

experiment. The remainder of this section provides detailed description about the individual pieces

of our experimental design.

7.4.1 System

The interactive data exploration tool used in our study is based on systems like Vizdom [41] and

PanoramicData [176]. Similar to imMens [117], our tool supports two types of binned visualizations,

bar-charts and heat-maps whereas actual raw values of any visual element can be revealed by selecting

bars or bins in visualizations. It offers common tools such as brushing and filtering and supports
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(a)

(e)

(b)
(c)

(d)

(f)

(g)

Figure 7.2: Screenshot of the visual analysis tool used in our study. The tool features an unbounded,
pannable 2D canvas where visualizations can be laid out freely. The lefthand side of the screen gives
access to all the attributes of the dataset (a). These attributes can be dragged and dropped on the
canvas to create visualizations such as (b). Users can modify visualizations by dropping additional
attributes onto an axis (c) or by clicking on axis labels to change aggregation functions (d). The
tool supports brushing (e) and filtering (f) operations. Where filtering operations can be arbitrarily
long chains of Boolean operators (AND, OR, NOT). The system offers a simple textual note-taking
tool (g).
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creating and modifying visualizations through drag and drop gestures similar to Tableau [153].

7.4.2 Datasets

Our experiment uses three dataset-types from different domains. A dataset-type specifies the at-

tributes and value ranges the data consist of. The first dataset-type (shopping) contained customer

information from a fictional shopping website. This dataset-type contained 12 attributes (4 quan-

titative, 3 nominal, 5 ordinal), and included information like ages of customers, incomes, region

customers are from, average purchase amount per month and average minutes they spend on the

site. The second one (sleep) consisted of data from a fictional study about people’s sleep patterns

and contains 10 attributes (5 quantitative, 1 nominal, 4 ordinal). Some example attributes include

average hours of sleep, time to fall asleep, sleep tracker usage, fitness and stress levels. The third

dataset-type (restaurants), used only to introduce participants to the system, contained ratings and

attributes from restaurants of four different cities.

From these dataset-types we generated actual datasets of two different sizes: 1000 and 300

entries. The first size is derived from the fact that roughly half the datasets found on a popular

website collecting machine learning-related datasets [90] have less than a 1000 records. The second

size originates from Anthoine et al. [12] which analyzed 114 recent medical publications and found

that the median sample size of studies in those publications was 207. While there are many others,

these models, we believe, represent two common scenarios for visual data exploration and analysis:

a user wants to draw conclusions from a study or a user wants to explore a dataset to inform feature

selection for a machine learning task.

Our scheme for synthetic data generation is similar to [7] and addresses several challenges. First,

in order to convey a realistic context to the user, the generated data should retain the domain-

specific properties of the empirical distributions. For example, the synthetic sample of “age” should

not be negative, and the sample mean should be within reasonable range. To this end, we extract

the domain-specific parameters from empirical sample datasets to generate synthetic data.

Second, to assess the accuracy of insights, we need to embed ground truth labels in the dataset.

To simulate real-world scenarios, we want to make sure our generated datasets are a mix of signal

and noise. There should be some real insight in the data. However, we need to be able to discern if a

given insight is true or false. To inform how to construct such datasets, we ran a pilot study with six

participants using the same tool and real-world datasets. We analyzed the user-recorded insights in
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this pilot study and found that most concerned distribution characteristics and relationships among

attributes. Distribution characteristics include “the mean of age distribution is between 20 and

30” whereas the attribute relationships range from “the income and the age are correlated” to “the

people of age between 40 to 50 work the most”.

To create a synthetic dataset we construct a model based on multivariate normal random vari-

ables. For a generated dataset the ground truth of both of these types of insights can be determined

from such multivariate normal random variables. Concretely, we randomly group attributes in a

dataset as correlated bivariate normal random variables with random correlation coefficient, with

means and variances extracted from empirical datasets. For a dataset with n attributes, we embed

n/2 true relationships where the attributes in the relationship are randomized. The data itself is

randomized at two levels: 1) correlation coefficient in any true relationships is randomized between

-1 and 1 (excluding 0), 2) we sample from multivariate normal distributions that are parameterized

by these correlation coefficients. This process is repeated for each participant in our study.

If two attributes are sampled from independent normal random variables, then any insight in-

volving the relationship between these two attributes is false. For two correlated variables, any

simple insight is true. For more complex insights (e.g., statements about a sub-population mean

like “the average age of married people is 35 to 40”), the ground truth can be calculated either an-

alytically or computationally. Due to the truncation of the random variables for empirical domains,

the analytical computation of ground truths for correlated attributes is complicated [168]. Instead,

we generate datasets with 100M records from the same model and extract ground truth labels using

hypothesis testing with Bonferroni correction [50]; labels are generated with 95% confidence 1.

7.4.3 Procedure

We recruited 28 participants from a research university in the US. All participants were students (25

undergraduate, 3 graduate), all of whom had some experience with data exploration or analysis tools

(e.g., Tableau, Pandas, R) and have taken at least introductory college-level statistics and probability

classes. Our experiment included dataset-type (shopping and sleep) and dataset-size (300 and 1000

records) as between-subject factors. Each participant got to see one pairing of dataset-type and

dataset- size. The study design was fully balanced - each unique combination of dataset-type and

1The code used in this study to generate synthetic datasets and run empirical tests can be found at https:

//github.com/zheguang/macau.

https://github.com/zheguang/macau
https://github.com/zheguang/macau
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dataset-size was given to 7 participants. The actual dataset records and correlations were generated

uniquely for each participant using different random seeds and according to the method outlined in

section 7.4.2. Even if two users saw the same combination of dataset-type and dataset-size they still

saw a unique dataset in terms of the individual values of attributes and ground-truths.

Each participant session was split into three parts. The first part consisted of a 15 minute tutorial

on how to interact with the system using a separate third dataset-type (restaurant). In this tutorial

we showed the participants all the relevant features of the tool and answered questions about them.

In the second part, participants read a handout describing the dataset and instructions about

the scenario. These instructions mentioned that the given datasets were “a small but representative

sample” and that they should find and report “any reliable observations” that could be used to

understand the “site’s customer population” or “patient’s sleeping patterns” or could be used to im-

prove “customer growth” or provide “sleep recommendations”. The handout stated that participants

should write down textual descriptions (using the note-taking tool of the system) about observations

they want to report. After clearing up potential questions about the instructions, participants were

given up to 15 minutes to analyze the dataset at their own pace. At any time participants were

free to stop if the felt they exhausted the use case. During this second part, we instructed users

to think-aloud [56] and we captured screen and audio-recordings as well as eye-tracking data. An

experimenter was present throughout all of the session, and users were encouraged to ask technical

questions or questions about the definition of dataset attributes.

In the third part, the experimenter and participant re-watched video recordings of the session

together (with overlaid eye-tracking data). This was an involved process where the examiner paused

playback at every interaction, instructed users to explain their thought process, re-wound if necessary

and let participants recount which parts of visualizations they were observing (reinforced by the eye-

tracking data) and what visual features they had been looking for. The examiner asked detailed

questions about the above points if needed. In a post-session questionnaire, participants ranked their

background in statistics, familiarity with statistical hypothesis testing, and experience interpreting

visualizations on a 5-point Likert scale.



114

7.5 Accuracy of User Insights

For our analysis, we considered all insights reported by users through the tool’s note-taking feature

with a few noted exceptions. We excluded insights that were based on prior knowledge or personal

experience, that were not directly observable from the dataset, that were based on reading numbers

and in no way made a broader statement applicable to a larger population or that misintepreted

the visual display. Examples of excluded insights include: “Users wealthy on average compared to

median income in the US”, “design: 399 red, 329 green, 195 yellow, the rest blue” or “Between stress

level and average age, the people with stress level 5 tend to be the oldest at 40 among females” (the

participant thought they were filtering to only females but in fact did not). In total, we excluded six

insights from five participants. We were left with an average of 5.536±2.7422 insights per participant

(n = 28).

Since the datasets used in this study were generated synthetically, each user-reported insight had

a known ground truth, and thus was either true or false. For example, we know whether the insight

“age is correlated with purchase amount” is true since the model generating the dataset contains this

information. If age and purchase amount are sampled from independent normal random variables,

this insight is false. If the two variables are correlated, it is true. For roughly 70% of the insights,

ground truth labels were extracted by inspecting variable relationship in the dataset-models. For the

remainder (e.g., statements about means like “the average age of people in the Southwest is between

35 and 40”), we used empirical methods as described in section 7.4.2 . For example, if a user made

10 observations during a session, on average, we extracted ground truth labels analytically for 7 of

them. For the rest we generated ground truth labels empirically under Bonferroni correction (over

only those 3 insights) on larger datasets.

We modeled this experiment as a binary classification problem and borrow standard techniques

and metrics from the machine learning community to evaluate the results. For each insight, a user,

depending on how it was reported, either made a positive observation (“Age and purchase amount

look correlated”) or a negative one (“There is no correlation between age and purchase amount”).

We summarize the accuracy of a user’s insights in a confusion matrix where an insight falls into

one of four categories: True positive (TP): the user insight is a positive observation and the ground

truth agrees, false positive, or Type I error, (FP): user insight is positive but the ground truth

2Averages appear with the standard deviation as the second number.
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says otherwise, true negative (TN): user insight is negative and the ground truth agrees and finally

false negative, or Type II error, (FN): user insight is negative and the ground truth disagrees. The

insight “There is no correlation between age and purchase amount,” for example, would fall into the

FN category if in our dataset-model the age and purchase amount values were sampled from two

independent normal random variables.

We report the following averages: TP = 1.000± 1.217, FP = 3.250± 2.287, TN = 1.250± 1.404

and FN = 0.036± 0.189. Additionally, we computed the following per-user metrics:

Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)

False discovery rate (FDR) = FP/(TP + FP )

False omission rate (FOR) = FN/(TN + FN)

Where ACC measures the overall accuracy (the percentage of times users’ insights were correct),

FDR the percentage of times users reported an insight as positive (“age and purchase amount is

correlated”) but it turned out not to be true and FOR the percentage of times users reported an

insight as negative (“there is no relation between age and purchase amount”) but it turned out not

to be true. ACC summarizes overall performance, whereas FDR and FOR give a more detailed view

about where mistakes where made. We found that the average ACC across all users is 0.375±0.297,

the average FDR is 0.738± 0.296 and the average FOR is 0.018± 0.094.

Our study featured a full-factorial 2 dataset-types (shopping and sleep) × 2 dataset-sizes (300

and 1000 records) study design. We applied an analysis of variance test (ANOVA) with dataset-type

and dataset-size as the between-subject factors. We found that dataset-type as well as dataset-size

had no significant effect on accuracy (p = 0.792, η2 = 0.003 and p = 0.091, η2 = 0.109 respectively,

α = 0.05).

7.6 Confirmatory Statistical Hypothesis Testing

The results of our study show that for our synthetic datasets and the particular tool we used,

over 60% of user reported insights were wrong. Results from visual analysis are often considered

exploratory. They need to be confirmed in a second phase. In fact, roughly a fourth of our study

participants mentioned at one point or another that they would want to verify a reported insight
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through statistical testing. In this section, we report on an experiment where we validated user

insights through different confirmatory analysis approaches.

The approaches we used included confirmation; same dataset and confirmation; validation dataset.

Confirmation; same dataset models an approach where statisical analysis is done on the same dataset

used in the exploration phase. Confirmation; validation dataset follows Tukey’s model [158] of con-

ducting exploratory and confirmatory data analysis on two separate datasets; for this we generated

a new dataset of the same size and with the same parameters (i.e., random variables have the same

mean and variance and the correlation coefficients between variables are the same) as used during

exploration. For both approaches, we use the Benjamini and Hochberg procedure [20] to correct for

multiple hypotheses.

7.6.1 From Insights to Statistical Tests

To perform this experiment, we converted user insights into testable statistical hypotheses via mul-

tiple steps. We first created an encoding scheme based on insight classes. Insights were coded as

instances of these classes. An insight became an object where its type and necessary properties

were defined by its class. We then defined null hypotheses and testing procedures for each insight

class. To transform insights into testable hypotheses: the insight class indicates the statistical test

to use and the properties of the encoding inform that test’s input parameters. The following sections

explain these steps.

7.6.2 Insight Classes

Our goal was to find a classification model with the fewest classes that could still accurately describe

all insights gathered in our study. We employed a process where we first generated candidate classes

which we then iteratively refined. In this process we considered all available data from our user

study. This includes the video, audio and eye-tracking recordings, the textual description of insights

provided users, as well as participant commentary that we gathered when re-watching session videos

with the participants.

We arrived at a system that encompasses five insight classes: shape, mean, variance, correlation

and ranking. The mean and the variance classes described insights containing direct statements

about the means or variances of distributions. Shape were observations about the shape of one
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Insight Class Null Hypothesis Permutation π Test Statistic
Mean E[X] = E[Y ] X ∪ Y |µX − µY |

Variance var(X) = var(Y ) X ∪ Y |σ2
X − σ

2
Y |

Shape P (X|Y = y1) = P (Z|Y = y2) Y ‖P (X|Y = y1)− P (Z|Y = y2)‖
Correlation X ⊥ Y X |ρ(X,Y )|

Ranking X ∼ Unif(a, b) π ∼ Unif(a, b)
{
1 rank(Xπ) = rank(Xobs)

0 else.

Table 7.1: Summary of randomization hypothesis tests to which insights are mapped to for con-
firmatory analysis. The random variables represent attributes with arbitrary conditions from the
dataset.

or more distributions. The correlation class covered all insights where a relationship between two

variables was established and, finally, the ranking class included observations about rankings or or-

derings among sub-populations. Each class of insight defined several properties that fully described

its class instances, such as which attributes were involved, which sub-populations were getting com-

pared, whether parts of the data were filtered out and what comparison were being made (e.g., is

something smaller or bigger than something else).

7.6.3 Coding

We describe our 155 insights as instances of their corresponding classes. On average per participant

we encoded 1.250± 1.404 correlation, 2.786± 2.347 mean, 1.143± 1.860 ranking, 0.821± 1.517 shape

and 0.107 ± 0.315 variance insights. Following Liu et al. [115], the first author did the majority of

the coding, revising it with co-authors to reduce bias.

Figure 7.3 illustrates examples of user reported insights from our study. It shows the visual

display that triggered an insight alongside the textual description provided by participants and the

corresponding insight class, with its properties, that encoded the insight. Note that we again relied

heavily on the commentaries made in our post-session video review with the participants, as well

as our recorded eye-tracking data. Figure 7.3 (c) depicts an instance where the user’s statement

alone did not make the mapping to an insight class obvious; however, post-session commentary and

eye-tracking data resolved this.

7.6.4 Mapping Insight Classes to Null Hypotheses

We encoded insights as instances of one of our five insight classes. We now want to convert these

encodings into testable hypotheses. For this, we define a general null hypothesis pattern for each

insight class that we then fill out with specifics from the actual insight. For example, a user insight
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(a) "People over the age of 55 seem to sleep, on average, less than younger people."

{
 "dimension": "hours_of_sleep",
 "dist_alt": "75 < age >= 55",
 "dist_null": "55 < age >= 15",
 "comparison": "mean_smaller"
}

(c) "Most purchases/month: 30-35 year olds"

{
  "dimension": "age",
  "bucket_width": 5,
  "bucket_ref": 15,
  "bucket_agg": "count",
  "dist_alt": "5 < purchases >= 3.5",
  "dist_null": "",
  "comparison": "shape_different"
}

(b) "If we filter by people with high stress and who work >60 hrs per week, they quality of sleep is slightly less than the 
general population and the standard deviation of the distribution is less. "

(e) "Hours of sleep does not vary based on fitness level".

{
  "dimension": "hours_of_sleep,
                fitness_level",
  "comparison": "not_corr"
}

(d) "Sig. more people sleep between 7-8 hours, followed by 8-9, then 9-10"

{
  "dimension": "hours_of_sleep",
  "filter": "",
  "target_buckets": "8 < hours_of_sleep >= 7, 
                     9 < hours_of_sleep >= 8, 
                     10 < hours_of_sleep > 9",
  "comparison": "rank_buckets_count"
}

 

{
  "dimension": "quality_of_sleep",
  "dist_alt": "120 < work_per_week >=60 and 
               6 < stress_level >= 3",
  "dist_null": "",
  "comparison": "variance_smaller"
}

Figure 7.3: Examples of user reported insights from our study. The figure shows the visual
display that triggered an insight alongside the textual description participants reported and the
corresponding insight class with its properties we encoded it to. (a) An example of a mean insight.
The user directly mentions that he is making a statement about averages. We encode the dimension
that we are comparing across (“hours of sleep”), the two sub-populations that are being compared
(“75 < age >= 55” and “55 < age >= 15”) as well as the type of comparison (“mean smaller”). (b)
Our user compares the standard deviation of the two “quality of sleep” charts. We encode this as
a variance insight. We again describe this instance fully by recording the dimension involved, the
sub-populations compared and the type of comparison being made. (c) Example of a shape class
insight. From the user statement alone, it was not obvious to which class this insight corresponded.
However, in the post-session video review, the participant mentioned that she was “looking for
changes in age distribution for different purchases” and that she observed a change in the shape of
the age distribution when filtering down to high purchase numbers. This was reinforced by analyzing
the eye-tracking data of the session. The participant selected bars in the “purchases” histogram
and then scanned back and forth along the distribution of the filtered “age” visualization and the
unfiltered one. (d) An example of an insight where a ranking among parts of the visualization was
established. (e) The user created a visualization with two attributes. The y-axis was mapped to
display the average “fitness level”. Our user notes report insights that discuss the relationship of
the two attributes. We classified this as a correlation insight.
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Figure 7.4: Plot with average scores, where the second number is the standard deviation, and
rendered 95% confidence intervals for accuracy (ACC), false omission rate (FOR) and false discovery
rate (FDR) for users and different confirmatory approaches. Overlaid are all individual datapoints
(n = 28).

that “the average age is 50” would be categorized as an object of class mean. The corresponding

null hypothesis pattern for this class is defined as E[X] = E[Y ] which we then replace with the

properties of the insight. The resulting null hypothesis for this example will be H0 : E[age] = 50.

All null hypotheses patterns are defined in Table 7.1.

There are certain ambiguities in these translations from insights to hypothesis. For instance in

the above example, the histogram bin of age 50 was perhaps the highest, but also the bin width was

5. So the user was more likely to imply that the population mean was around 50 and not exactly

50. We modified null hypotheses in such cases to account for this level of ambiguity by adding an

interval of 10% around the hypothesized mean. Another drawback of this null hypothesis mapping

is that we need the null hypothesis to be testable. For example in the insight class of ranking, if the

user insight is of a certain order of the age groups, then conceptually we should test against all other

possible orders. However, this null hypothesis would be very hard to test statistically. Thus, we

chose uniformity as the null hypothesis, meaning no particular order in all the age groups. In general,

we resolve ambiguities by erring on the side of users by choosing more relaxed null hypotheses where

statistical results are more likely to “agree” with user judgment.

For each null hypothesis pattern we define a corresponding Monte Carlo permutation or boot-

strap test. We chose resampling for hypothesis testing because it offers several advantages over the

parametric testing such as the t-test and the χ2-test. First, randomization tests do not assume the

distributions of the test statistics [48]. Moreover, some parametric tests such as the χ2-test require

samples to be large enough to make accurate inferences [21]. However, many user insights were

based on skewed data or highly selective filters, and hence might not always meet the sample size

requirement.



120

In general, the Monte Carlo permutation or bootstrap tests share a common computational

form [48]. First a test statistic is determined based on the hypothesis. Then the data under the

hypothesis is permuted or bootstrapped to obtain the distribution of the test statistic under the null

hypothesis. Finally the proportion of the test statistics in permutations that are more extreme than

in the user observation forms the estimated p-value, p̂. To determine how many permutations we

needed for a sufficiently accurate estimate, we used the Central Limit Theorem to derive the 95%

confidence interval,

p̂± 1.96
√
p̂(1− p̂)/n

where n is the number of permutations [21]. With enough permutations, we obtained a non-

overlapping confidence interval of p̂ against the significance level α, which follows the decision

rule of rejecting the null hypothesis if it is no greater than α. We summarize the details of the

randomization tests for each insight class in Table 7.1.

7.6.5 Analysis

Using the procedure outlined above, we mapped all insights to hypotheses tests. Depending on

the confirmatory approach, we computed hypothesis test results either on the same dataset shown

to users (confirmation; same dataset) or an a newly generated validation dataset (confirmation;

validation dataset). We again modeled this experiment as a binary classification problem where

statistical significance (using a cutoff p-value of 0.05) provided positive or negative predictions for

insights. Those predictions were then evaluated against ground truth labels. The detailed numbers of

this experiment are reported in Figure 7.4 including individual datapoints, means and 95% confidence

intervals.

7.7 Mixing Exploration and Confirmation

The two confirmatory analysis approaches outlined and compared in the previous section have their

drawbacks. For example, while confirmation; validation dataset is statistically sound, it requires

users to collect additional data which is often unfeasible in practice. Data collection might be

expensive, as is the case for user studies, medical trials or crowd-sourcing, or might be done by

an outside provider over which the user has no control. Splitting a dataset into exploratory and
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confirmatory parts significantly lowers the power of comparison done on either part due to smaller

sample sizes. Perhaps more problematic, confirmation; same dataset can lead to inherent systematic

bias because we are statistically testing insights on the same data that initially informed them.

We want to compare these approaches to one that we call mixing exploration and confirmation.

So far we have only analyzed insights that users reported. We call these explicit insights. However,

during an exploration session, users might have made a significant number of along-the-way compar-

isons that did not trigger insights. The reasons for these could be manifold. These comparisons may

have involved uninteresting visualizations, confirmed some assumption that the user already had or

just been inconclusive. Regardless, the result of such a comparison is still a type of insight. The

insight being that the result of the comparison was not interesting enough to be reported. We call

these implicit insights. The previous confirmatory approaches ignore implicit insights completely.

With mixing exploration and confirmation we simulate an approach where comparisons that resulted

in either type of insight, explicit or implicit, were incorporated.

7.7.1 Coding

We again considered all collected data from our user study: video, audio and eye-tracking recording

and commentary from participants. However this time we focused on implicit insights where users

made a comparison but did not report it, likely because it was uninteresting. We encoded such

instances with the same insight classes as before. For example, a user might view “age” for two

different sub-populations; eye-tracking data indicates visual scanning between the two; the post-

session commentary reveals the user was comparing the two trends but did not see any difference.

Our coding process marks this as an implicit insight of type shape.

7.7.2 Analysis

Overall we found a total of 620 implicit insights, with 22.143± 12.183 average implicit insights per

user. We followed the same procedure as previously to convert these implicit insights into statistical

tests. We conducted statistical analysis as with the other confirmatory approaches, but added tests

based on implicit insights to the multiple hypotheses correction procedure. We used the same p-value

cutoff as before and report the same metrics.

Note that we did not report the accuracy of implicit tests. All metrics were solely based on
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explicit insights since we only cared about their correctness. Consider again the example from the

introduction. Jean made nine implicit and one explicit insights but only shared the explicit one with

his co-workers. Only the accuracy of the explicit one matters since only it will be acted upon; yet

its accuracy depends on the set of implicit insights. Using the Benjamini and Hochberg procedure

[20], we get the results summarized in Figure 7.4.

7.8 Mitigate the Effect of the Multiple Comparison Problem

The results of our experiments show that the performance of mixing exploration and confirmation

is almost on par with confirmation; validation dataset while providing the benefit of not requiring

additional data. Mixing exploration and confirmation also clearly outperforms confirmation; same

dataset which produce higher FDR. From a statistical viewpoint this makes sense. By ignoring

implicit insights, and therefore excluding them from a multiple hypotheses test correction procedures,

we automatically introduce systematic bias. Even on completely random data, if we look long

and hard enough, we will find something that, by itself, is statistically significant or in our case,

looks visually like an interesting or unexpected pattern. But given that we have seen a bunch of

uninteresting observations before makes it likely that the insight was due to random noise in the

data.

However, requiring users to manually encode all their explicit and implicit insights into testable

hypotheses places a huge burden on them.and is unfeasible in practice. Can we create tools that

automatically do this encoding as the users is exploring a dataset? We present and discuss two

approaches as first steps to potentially address this problem.

7.8.1 Simple Heuristics

We extended Vizdom (our data analysis system presented in Chapter 6) by three new features:

Explicit and implicit hypothesis formulation: For cases where users know which effect they

want to statistically verify, we included support to explicitly create hypotheses through a gestural

user interface that poses minimal overhead to users. For implicit hypotheses we augmented our

system to formulate tests and display test results automatically. The class of tests we formulate

automatically includes comparisons of subsets against the global population of a dataset such as the

one illustrated in Figure 7.5. The example shows a visualization chain where without an implicit
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Figure 7.5: Example of a visualization network where users might be led to false discoveries without
automatic hypothesis formulation. (A) two separate visualizations showing preferences for watching
movies and how many people believe in alien existence; (B) the two visualizations combined where
the bottom one shows proportions of belief in alien existence for only people who like to watch
movies on DVD, displaying a noticeable difference compared to the overall population. (C) same
visualizations as before but now with automatic hypothesis formulation turned on, highlighting that
the observed effect is not statistically significant.

hypothesis test (C), users might wrongly observe and perceive a significant effect (difference in

bottom visualization between A and B). As shown in the the examples in Figure 7.3 as well as from

our own experience of manually extracting and encoding insights this is a challenging task. There are

many nuances: Is the user comparing shapes of distributions or means? Or maybe even variances?

Does a user compare the means of two sup-populations or the mean of each sub-population against

the general population? These automatically generated hypotheses based on simple heuristics could

oftentimes be wrong, but we envision that they could be improved through additional user feedback.

Visualization recommendations: To speed up the potentially laborious process of manually

exploring a dataset we added a visualization recommendation engine with false discovery control.

Similar to SeeDB [163] our recommender allows users to search for filter conditions that have a

significant effect (positive or negative) on a given reference visualization. We expose this functionality
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Figure 7.6: Count-chart that illustrates which types of visual displays led to what kind of hypothesis
class.

though a gestural touch UI that can be accessed from any visualization.

Hypotheses tracking: A “risk-gauge” on the right-hand side of the display (Figure 7.7 A) serves

two purposes, namely, to give user a summary of the multiple hypothesis correction procedure (e.g., in

this case α-investing [179] is used with a false discovery rate of 5% and with current remaining budget

of 70%), and to provide access to a scrollable list of all the hypotheses that have been explored. Each

list entry can be expanded (in the example all are expanded) to display details about an observation

and its statistical significance. The text labels describe the null and alternative hypotheses for each

observation and the corresponding hypothesis test and p-value . Each color coded tile indicates

whether the observation is statistically significant or insignificant, which corresponds to green or red

respectively. The distributions of null and alternative hypotheses and the color coded effect size are

also visualized (C). To help the user understand the effect of data collection, the sample size estimate

for the current significance level is displayed for each hypothesis test assuming the effect size is fixed

(B). For example, the five green squares in (B) indicates approximately five times the current data

size with the same effect size would make this observation significant. Finally, important insights

can be marked by tapping the “star” icons (D).

7.8.2 Automatic Hypothesis Generation

Figure 7.6 shows which kind of visual display participants looked at when reporting an insights

and to which hypothesis the insight was mapped. Even within one class of visual display there is

large variety in the types of hypotheses users might formulate. However, we hypothesize that an
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inference engine that takes all available information into account, such as the visual display, which

data attributes are involved, the interaction patterns as well as mouse-events (as a proxy for eye-

tracking data [87]) could achieve reasonable accuracy for this task especially when coupled with

additional user input for cases where the engine is unsure. New types of multi-modal user interface

that encourage users to talk and describe what they are looking at could furthermore help with this

inference task. John et. al. [94] for example successfully show how natural language processing can

be integrated into a conversational user interface that guides and helps users create machine learning

pipelines. In a preliminary experiment we transcribe what participants said when they reported an

insight. From our coding we know for each insight to which hypothesis class it got mapped. We

use the transcribed text as the feature and the hypothesis class as the label and train a classifier

that tries to predict hypothesis classes from text samples. We split our data (n=155) into random

training and testing sets and find that the accuracy of a simple Naive Bayes classifier is 0.679±0.103.

A separate question becomes how such an automatic hypothesis inference engine is integrated

into the user interface of a tool. We can envision two types of systems, one that surfaces results

of automatic hypothesis tests directly as soon as they are inferred and one that accumulates them

in the background and only warns the users once a certain “risk” threshold is met or lets them

analyze test results at the end of a session. While the latter introduces little distraction from current

workflows, the former offers several advantages. Users can correct wrong inferences immediately and

can use results of hypotheses tests to steer their exploration. An anecdotal case from our user study

demonstrates this advantage. Our participant analyzed a visualization of time it takes someone to

fall asleep and quality of sleep and wrongly concluded that less time to sleep has a positive effect on

the sleep quality. She then went on and spent the rest of her session searching for factors that might

influence the time to sleep such as stress levels and fitness levels which she might otherwise would

not have looked at. We are planning to explore the feasibility of building an hypotheses inference

engine as well as comparing these design trade-offs in future work.

7.9 Discussion

Real-world datasets are weighted compositions of noise and signal. One goal of visual data analysis

is to assist users at efficiently separating the two. We want visualization systems where users can

maximize their total number of insights while minimizing false insights. Insight-based methods allow
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Figure 7.7: User interface design showing a “risk-gauge” on the right which keeps track of all
hypotheses and provides details for each of them.
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researchers to compare systems based only on the former. Analyzing errors requires quantification

of the correctness of insights. For real-world datasets this is frequently not possible because there is

no way to know which effects are true or not.

In this paper we use a method based on synthetic datasets where we can classify the correctness

of an insight as either true or false. Our notion of insight is limited to observations, hypotheses and

generalizations directly extracted from the data. If a user tells us “age” and “hours of sleep” are

correlated we know if that statement is true or not.

For the visualization tool used in our study, we found over 60% of user reported insights were

incorrect. However, this error rate needs to be interpreted anecdotally. Results may vary greatly

between users, visualizations, tools and datasets. The high error rate is perhaps unsurprising.

Mathematical procedures might be better suited to make such data-driven inferences than humans.

More surprisingly, when following up user generated insights with statistical tests on the same

dataset, we are still left with 11% false discoveries (confirmation; same dataset, Figure 7.4). Double

of what statistics promise when using a significance level of 5%. We introduced systemic bias by

testing hypotheses on the same dataset that informed them and we inflated our FDR due to the

multiple comparisons problem.

The key takeaway here is that without either confirming user insights on a validation dataset

(confirmation; validation dataset) or accounting for all comparisons made by users during exploration

(mixing exploration and confirmation) we have no guarantees on the bounds of the expected number

of false discoveries. This is true regardless which specific visual analysis tool or visualization is used.

Taking action, making decisions or publishing findings this way becomes risky.

Validating user generated insights with the confirmation; same dataset approach is not statisti-

cally sound and confirmation; validation dataset requires additional data, which in practice is often

hard to acquire. In our experiments we manually coded explicit and implicit insights to show the

benefits of mixing exploration and confirmation: it guarantees the same FDR bounds as confirma-

tion on a validation dataset. However, burdening users to remember and code all of their insights

during an exploration session is unfeasible. Could we create tools that automatically do this encod-

ing while users explore a dataset? We believe that augmenting visual analysis systems to do this is

a promising direction for future research.
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(b) 

(a) 

Figure 7.8: Example visual display that lead to a reported insight by a participant. By comparing
the normalized shape of the hours of sleep distribution for males and females, the user correctly
observed that “A thin majority of females get more sleep than males” (a). The participant double-
check her finding by making sure she accounted for small sample sizes (b). All statistical confirmatory
procedures (falsely) failed to confirm this insight.

7.9.1 User Performance

In addition to our main analysis, we examine several questions regarding user insights and perfor-

mance. Is user accuracy correlated to self-reported expertise levels in statistical hypothesis testing,

interpreting visualization and general statistical background? Are there cases where users intuition

wins over statistical measures? Does the support size of individual insights influence accuracy? Is

there inherent study design bias that makes users feel pressured towards the end of a session?

We correlated participant accuracy scores with their self-reported expertise levels. We found that

neither background in statistics (r = −0.258, p = 0.223), their familiarity with statistical hypothesis

testing (r = −0.328, p = 0.117) or their experience with interpreting visualizations (r = 0.005, p =

0.982) had a significant correlation with accuracy percentages. In general we focused on novice

participants since we believe that they are a large part of the target audience for visualization tools.

More experiments are needed to assess if our empirical results generalize to different user populations

(e.g., users with statistical expertise).

Over all of the 155 user reported insights we only find one instance where a user outperforms all
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Figure 7.9: Graph showing cumulative, normalized number of reported insights (a), 1 - ACC (b) and
ACC (c) averaged across all users over normalized time axis. The data is sliced and aggregated over
100 bins (x-axis) and interpolated between each bin. Bands show 95% confidence intervals. Note
the missing start lines for (a) and (b) are because users did not report any insights for the first few
minutes of a session.

statistical methods. The example is illustrated in Figure 7.8. This perhaps anecdotally demonstrates

that for these targeted and narrow insights, that are directly observable on the data, humans are

outperformed by statistical methods and this further supports a tight integration of statistics and

visualizations.

The average normalized support (i.e., the percentage of data-records involved in an insight) per

user was 0.590±0.270 for correct insights and 0.463±0.282 for incorrect ones. While the difference is

not statistically significant (p = 0.118, d = 0.471) examining this trend in more detail is warranted.

We extracted timestamps of insights and normalized them by session length. We found that the

average normalized time for incorrect and correct insights is 0.585±0.271 and 0.587±0.248 which is

not a statistically significant difference (p = 0.957, d = 0.009). Figure 7.9 visualizes the progression

of user accuracies and its inverse over a normalized time-scale. The accuracy is stable after the

halftime mark, hinting that users did not report an increased number of false insights towards the

end of a session.
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7.9.2 Relating to Statistical Theory

Without any hypothesis testing, the false discovery rate averages over 73% (user, Figure 7.4). With

hypothesis testing on the same dataset (confirmatory; same dataset) the false discovery rate re-

duced but still scored around 11% (Figure 7.4). With multiple hypothesis control only on the

explicit insights, the average FDR inflated above the theoretical bound of 5%. This is because by

not controlling for implicit tests, we are exposed to the multiple hypothesis error as described in

section 7.3.3. Essentially this is a misuse of the control procedure.

With proper multiple hypothesis correction on both implicit and explicit hypotheses mixing

exploration and confirmation achieved average false discovery rates around 5% (Figure 7.4). This

can be seen from the theoretical perspective where the Benjamini and Hochberg procedure [20]

guarantees the expected proportion of false discoveries V among all discoveries R is upper bounded

by a given significance level α = 0.05:

E[‖V ‖ / ‖R‖] ≤ 0.05

We achieved a similar false discovery rate with confirmation; validation dataset which tested hy-

potheses on a separate dataset. This is akin to replication studies in science.

Statistical procedures only provide bounds on the expected number of false discoveries. Tighten-

ing these bounds will automatically result in higher false omission rates. Balancing this trade-off is

highly domain specific. In drug trials, false discoveries must be avoided, whereas, in security related

scenarios, false omissions can have disastrous effects. Sound statistical methods, like confirmatory;

validation dataset and mixing exploration and confirmation, facilitate these trade-offs.

7.9.3 Larger Datasets

Theoretically, having complete knowledge of the population distribution, or infinite resource to sam-

ple from it to appeal to the Law of Large Numbers, could eliminate the risk of false discovery.

However, we believe that in many practical cases it is difficult to approximate this theory. Fun-

damentally, the uncertainty of the statistical inference on the data is affected by many factors,

including sample sizes, variations, effect sizes, and measurement errors [70]. Thus it requires signif-

icant upfront effort to determine the sample size with enough statistical power by controlling the

other factors. Furthermore, visual analysis may select and compare many different subsets of the
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data; the space of possible questions also varies. These aspects also complicate the notion of having

a single sufficiently large data size for all possible analysis. Nonetheless, we plan to run similar

studies that will explore the relationship between user accuracy and dataset-size in more detail.

7.9.4 Base Rate Fallacy and Other Errors

The psychological tendency to neglect the global base rate while overestimating by the local, more

specific likelihood has been well studied in Pscyhology and Behavioral and Brain Sciences [15, 102].

In the context of visual analysis, it would be interesting to see how user performance changes if

the users were given some information about the noisiness of the underlying dataset. Interestingly,

some statistical testing procedures can automatically approximate the data randomness and improve

performance based on it [179]. Our study however excludes this variable by fixing the base rate of

ground truths and not disclosing it to the participants.

Beyond Type I and Type II errors, other error types have been proposed to quantify the likelihood

of mistaking the sign (Type S) or overestimating the magnitude (Type M) [71, 69]. However in our

study user observations were often vague regarding these effects. For example, instead of saying

“mean A is 45 and less than mean B” participants would typically say “mean A is different than

mean B”. Furthermore, sign and magnitude do not apply to several types of user insights (e.g., when

comparing shapes or rankings). For the subset of insights where users stated directions, we setup one-

sided null-hypotheses which captured sign errors in our FDR calculation. Based on our experience,

a more detailed study of Type S and Type M errors would likely involve a new study design that

invites the users to be more conscious about making observations on signs and magnitudes.

7.10 Conclusion

Comparing a visualization to a mental image is akin to performing a statistical test, thus repeated

interpretation of visualizations is susceptible to the multiple comparisons problem. In this work

we attempted to empirically characterize this. We presented an experiment based on synthetically

generated datasets that enabled us to assess the correctness of user reported insigths. We showed that

by not accounting for all visual comparisons made during visual data exploration, false discovery rates

will be inflated even after validating user insights with further statistical testing. We demonstrated

that a confirmatory approach that addresses this can provide similar statistical guarentees to one
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that uses a validation dataset.



Chapter 8

Discussion & Conclusion

In the previous chapters we discussed work towards making data analysis accessible. It is increasingly

common practise across many different domains to ground decisions with quantitative insights from

data. While skilled programmers have access to tools and APIs such as SQL, R, Python, Spark etc.,

users without a computational background are at a disadvantage. They can not capitalize on the

power of data. In this dissertation we present visual interfaces that expose a range of common data

analysis tasks to non-programmers, we show how these visual tools can be made scalable to large

datasets and we discuss pitfalls that arise when empowering novice users. In this last chapter we

reiterate the main contributions of this dissertation and discuss open problems and future research.

8.1 Visual Languages for Data Analysis

Contributions In chapters 2, 3, 4 and 6 we presented a set of user experiences that expose various

data analysis task on different types of data in visual ways suited for non-programmers. These

interfaces allow for incremental and piecewise specification of complex workflows where intermediate

results serve as feedback as well as interactive handles to adjust parameters. The user interface

designs follow the fluid [54] paradigm which promotes immersive interaction where users can focus

on the current activity while not being distracted by interface.

Open Problems and Research Directions There are a lot of potential ways of improving this

line of work. The most immediate next steps are to extend this style of visual interfaces to other

133
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types of data, such as time-series, graph, image, and text data, and to include more data analysis

tasks that the current work ignores including data-cleaning, exporting or sharing of worfklows,

collaboration and storytelling. Especially for machine learning workflows, there is a huge opportunity

to use visualizations, user interface techniques and visual languages to make these methods more

understandable to users. We also believe that more quantitative user studies are needed to better

understand the benefits, learnability and limitations of our current work.

8.2 Progressive Visualizations

Contributions In chapter 5 we studied how progressive visualizations affect users in exploratory

settings in an experiment where we capture user behavior and knowledge discovery through interac-

tion logs and think-aloud protocols. We reported that progressive visualizations outperform blocking

visualizations in almost all metrics and that progressive visualizations do not significantly differ from

instantaneous visualizations. This finding suggest that progressive visualizations, and potentially

progressive computation, might be a viable solution to achieve scalability in data analysis systems.

Open Problems and Research Directions The study we presented in chapter 5 is just a first

step towards understanding progressive visualizations. We studied only simple forms of uncertainty

visualizations and we also excluded other factors from the study, such as if users are able to fully

grasp the meaning of approximate answers and how distracting the visualization updates are. We

plan to carry out several follow-up studies where we compare different update strategies and dif-

ferent types of uncertainty representations. Furthermore, we intend to get a better understanding

of how a user’s behavior changes between instantaneous and progressive visualizations through in-

depth sequential interaction log analysis, potentially coupled with eye-tracking data. Gaining such

understanding would help optimize visual representations and interactions with progressive visual-

izations. Furthermore, progressive computation has some limitations. Incremental and approximate

answers can be hard to interpret. As shown in prior work [45, 43, 44], even experts make mistakes

when interpreting standard statistical accuracy metrics. Advances in uncertainty visualizations are

needed to fully mitigate some of these issues. Additionally, not all algorithms and analysis tasks

lend themselves well to progressive computations. Some methods are highly susceptible to outliers,

or are not guaranteed to converge to the true result when implemented progressively. Techniques



135

to mitigate these problems (some our outlined in our own related work [68]) or guard against false

insights that arise because of these limitations would greatly benefit the presented work.

8.3 Accuracy in Visual Data Analysis

Contributions Having novice users directly analyze data also comes with drawbacks. Once such

drawback, the multiple comparison problem, is well-known in statistics but has for the most part

been ignored in the visualization community. In chapter 7 we argue that comparing visualizations

to a mental image is similar to statistical testing. Repeated interpretations of visualizations are

susceptible to the same multiple comparisons problem as arise in statistics. The contribution of our

work is twofold. First, we contribute a method to quantify the rate of false discoveries and false

that occurred in common visual analysis tasks. Our method comprises of two parts: (1) a procedure

to generate synthetic data with associated ground-truth labels, and (2) a procedure to transform

participants’ insights into testable hypotheses. And second, we empirically show that visual analysis

can lead to a high false discovery rate.

Open Problems and Research Directions Both of these contributions can be further extended.

For example, our method only allows to examine a limited range of true insights in the generated

data. While there is some room to vary the amount of true relationships, extending our synthetic

datasets generator to support a wider range of base rates would be helpful for future experiments.

Perhaps similarly, we fixed a number of parameters in our experiment which makes it hard to

generalize our quantitative findings. Running similar experiments on different tools, varying dataset

sizes and with a different user population would further our understanding of the impact of the

multiple comparison problem in visual analysis further and could help us designing tools that shield

users against it.

Designing such tools that provide guarantees on the accuracy of insights gained through visual

analysis is a very interesting and challenging problem. While the approach of capturing all implicit

insights during a user session works in theory, it can be a hard problem in practice. Depending

on the type of visualization there can be almost an infinite amount of insights a user can extract.

Accurately keeping track of all of those possible implicit comparisons without asking the user might

be intractable. Especially since some of those comparisons might be done subconsciously. Perhaps
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other techniques that either educate users about this potential pitfall or that are based on Bayesian

statistics where users would need to state priors before seeing data might be more promising.
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