
Abstract of “So�ware Analysis and Development for Energy E�ciency in Mobile Devices”, by Marcelo Teixeira

Martins, Ph.D., Brown University, May 2017.

Smartphone and tablet users are sensitive to the battery drain exerted by mobile applications. In this dis-

sertation, we focus on extending the battery lifetime of mobile devices. Using the perspective of a so�ware

engineer, we present a series of techniques that modify the behavior of mobile applications and increase their

energy e�ciency.

Our �rst contribution is Application Modes, a development aid that abstracts ancillary energy-management

blocks (e.g., resource monitoring), thus allowing developers to focus on energy-related changes in so�ware.

Modes encapsulate code changes that modify the behavior of applications and their energy consumption. We

show via examples that careful attention to application functionality substantially improves battery life.

An alternative to changing functionality at compile time is to do so at runtime. Our second contribution

is Tamer, an execution controller that of monitors so�ware events, rewires program binaries, and changes

runtime behavior. Tamer interposes the execution of user-invisible energy-hungry so�ware tasks, thus pre-

venting their continuation. Developers can use Tamer as a tool to perform what-if analyses on the impact

of battery life arising from potential code changes. �rough a selective application of rate-limiting policies to

demanding apps of the Android OS, we show that Tamer can e�ectively mitigate the excessive battery drain

due to frequent wakeups of tasks running in the background.

A Tamer policy speci�es which events to interpose and when actuation should occur. To write e�ec-

tive policies, developers must �rst understand which events are worth interposing. Our third contribution is

Meerkat, an analysis tool that correlates so�ware-execution logs with power traces. Meerkat leverages data-

mining techniques to discover the interestingness of sequences of events and associates them with energy

consumption. Meerkat helps developers uncover sequences of function calls that draw the most power, which

will serve as input to e�ective policies. We demonstrate Meerkat’s e�ectiveness in the domain of networked

and I/O-intensive applications.

2

�e insights delivered by our proposed techniques accelerate the investigation on the energy e�ciency of

mobile so�ware. Given appropriate support, developers can better understand how to improve battery life and

adopt combinations of so�ware-adaptation strategies.

So�ware Analysis and Development for Energy E�ciency in Mobile Devices

by

Marcelo Teixeira Martins

B. S., Federal University of Minas Gerais, 2005

Sc. M., University of Tokyo, 2009

Sc. M., Brown University, 2011

A dissertation submitted in partial ful�llment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2017

© Copyright 2017 by Marcelo Teixeira Martins

�is dissertation by Marcelo Teixeira Martins is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Rodrigo Fonseca, Advisor

Recommended to the Graduate Council

Date
Steven P. Reiss, Reader

Date
Sherief Reda, Reader

Date
Justin Cappos, Reader

Computer Science and Engineering Department, New York University

Approved by the Graduate Council

Date

Andrew Campbell, Dean of the Graduate School

iii

Vita

2005 B.S. Computer Science, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte,
MG, Brazil

2005 – 2006 Research Assistant at SensorNet Lab, UFMG, Brazil

2006 – 2007 Student Researcher at Multimedia Communications Lab, University of Tokyo, Tokyo, Japan

2007 – 2009
Graduate Research Assistant, Department of Information and Communication Engineering,
University of Tokyo, Japan
Research Student Scholarship – Ministry of Education, Culture, Sports, Science and
Technology of Japan

2009 M.Sc. Information Science and Technology, University of Tokyo, Japan

2009 – 2016 Graduate Research Assistant, Department of Computer Science, Brown University, USA

2010 Summer Research Intern, Intel Research Labs, Seattle, WA, USA

2011 M.Sc. Computer Science, Brown University, Providence, RI, USA

2013 So�ware Engineer Intern, Intel Corporation, Santa Clara, CA, USA

2016 – present Systems Engineer, Apple Inc., Cupertino, CA, USA

Publications (Since 2009)

• Marcelo Martins, Justin Cappos, and Rodrigo Fonseca. Selectively Taming Background Android Apps to

Improve Battery Lifetime. In Proceedings of the USENIX ATC, 2015.

• Qiang Li, Marcelo Martins, Rodrigo Fonseca, and Omprakash Gnawali. On the E�ectiveness of Energy

Metering on Every Node. In Proceedings of the IEEE DCoSS, 2013.

• Marcelo Martins and Rodrigo Fonseca. ApplicationModes: A Narrow Interface for End-User PowerMan-

agement in Mobile Devices. In Proceedings of the ACM HotMobile, 2013.

iv

• Hongyang Chen, Feifei Gao, Marcelo Martins, Pei Huang, and Junli Liang. Accurate and E�cient Node

Localization for Mobile Sensor Networks. In ACM/Springer Journal on Mobile Network and Applica-

tions, 18(1), 2013.

• Marcelo Martins, Rodrigo Fonseca, �omas Schmid, and Prabal Dutta. Network-Wide Energy Pro�ling

of CTP. In Proceedings of the ACM SenSys, 2010.

v

Acknowledgements

First, I o�er praise, worship, and thanksgiving to the all-holy Trinity of the Father, the Son, and the Holy Spirit

for having given me the life, love, and grace to write and complete this doctorate. Second, I o�er thanks and

praise to the all-immaculate Mary for having aided me with her prayers and assistance. �ird, I o�er thanks

to my namesakes: to St. Marcellus in whose name I was baptized in the Lord and to St. �omas under whose

patronage I received the sacrament of con�rmation.

�is doctoral dissertation is not a work solely of my own personal endeavor, for it could not have been writ-

ten without the useful counsel, guidance, and involvement of a number of other people. I owe gratitude to my

advisor, Prof. Rodrigo Fonseca, for letting me freely explore the paths of science under his guidance. Rodrigo

is one of the few people I have met that is able to harmonize three important human virtues – intelligence,

patience, and humility.

�anks to Prof. Justin Cappos (New York University) for his sound words of wisdom and encouragement,

especially when I was struggling with self-doubt. I am grateful to him for the long discussions that helped

me sort out this work. I am also grateful to Prof. Steven Reiss and Prof. Sherief Reda for posing challenging

questions that inspired me to continue exploring the subject of this work.

I am thankful to the secretaries and system administrators of the Department of Computer Science at

Brown University for fostering a great work environment. In particular, I would like to thank Lauren Clarke,

Jane Martin, Eugenia deGouveia, and Dawn Reed for their friendly support in taking care of all the important

day-to-day matters during my stay in the department.

vi

I appreciate the �nancial support from Brown University and Intel Corporation, who funded all my years

of academic experience in the United States. I extend my gratitude to my colleagues at Apple Inc. for the words

of encouragement during the last few months of this journey.

�anks to all the lecturers and classmates who helped me cultivate a continuous interest in learning. A

special appreciation goes to my comrades at the Systems Lab (Andrew Ferguson, Je� Rasley, Jon Mace and Yu

Da) as well as to some very estimated friends from the CS Department: Hammurabi Mendes, Irina Calciu, Alex

Tarvo, Marek Vondrak, Yeounoh Chung, Erfan Zamanian, Cansu Aslantas, Sam Zhao, and Kaihan Dursun.

My sincere gratefulness goes to my sisters and other relatives who, even so far away, have always cheered

for my success. Lastly, and most importantly, I want to thank my parents and my wife, Yoko, for their endless

love, support, and life lessons. To them I dedicate this dissertation.

vii

Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 �e Rise of Modern Mobile Computing . 2

1.2 �e Need for Power Management . 3

1.3 Is Energy Proportionality Enough? . 4

1.4 Approach and Contributions . 5

2 Background 8

2.1 Overview . 8

2.2 Energy-Aware Operating Systems . 9

2.3 Energy Pro�ling . 11

2.3.1 Measuring Power . 11

2.3.2 Modeling Power . 13

2.4 So�ware Diagnosis and Optimizations for Energy Savings . 16

2.5 Users and Batteries . 18

2.6 Task O�oading . 19

2.7 Summary . 21

viii

3 Application Modes: Exposing Application-Speci�c Internals for Energy Control 22

3.1 Introduction . 22

3.2 Motivation . 24

3.3 Separating Roles in Power Management . 27

3.4 Application Modes . 28

3.5 Design and Implementation . 29

3.5.1 Developer API . 29

3.5.2 Mode Aggregator . 30

3.5.3 Battery Life Estimator . 31

3.5.4 User Interface . 32

3.5.5 Putting Everything Together – Work�ow . 33

3.6 Evaluation . 33

3.7 Challenges, Limitations, and Extensions . 37

3.8 Summary . 38

4 Tamer: Generalizing the Exposure of So�ware-Related Energy Knobs 39

4.1 Introduction . 39

4.2 Motivation . 41

4.3 Android OS: Power Management and Application Internals . 45

4.3.1 Mobile Power Management . 45

4.3.2 Android Applications: Dealing with Lifecycle Changes 46

4.4 Tamer . 48

4.4.1 Design . 48

4.4.2 Implementation . 50

4.5 Evaluation . 51

4.5.1 Taming Google Mobile Services . 52

ix

4.5.2 Chasing Energy Bugs . 54

4.5.3 Performance Impact . 57

4.6 Challenges, Limitations, and Extensions . 58

4.6.1 On Policy De�nition . 58

4.6.2 Potential Improvements . 59

4.7 Related Work . 60

4.8 Summary . 62

5 Meerkat: Facilitating Policy Discovery to Drive Energy Control 63

5.1 Introduction . 63

5.2 Motivation . 65

5.3 Design and Implementation . 66

5.3.1 Data Collection . 67

5.3.2 Sequence Event Mining . 69

5.3.3 Extending the Controller . 74

5.4 Preliminary Evaluation . 75

5.4.1 Revisiting Google Mobile Services . 76

5.4.2 Performance Impact . 76

5.5 Discussion . 77

5.6 Related Work . 79

5.7 Summary . 81

6 Meerkat in Action: Two Case Studies 82

6.1 Introduction . 82

6.2 Case Study 1: NetDiet . 84

6.2.1 Design and Implementation . 84

6.2.2 Evaluation . 86

x

6.3 Case Study 2: IODiet . 92

6.3.1 Design and Implementation . 92

6.3.2 Evaluation . 93

6.4 Related Work . 96

6.5 Conclusion . 98

7 Conclusion 99

7.1 Future Work . 100

7.2 Open Questions . 101

Bibliography 104

xi

List of Tables

1.1 Predicted mobile technology improvement for the next 14 years. Source: ITRS [129]. 4

3.1 Functionality alternatives for the media-streaming app. Upper pro�les yield higher-quality

videos in exchange for larger network output. 24

3.2 Mode examples for some representative mobile applications. 31

3.3 Mode alternatives to a navigation app guiding a four-mile trip. Upper modes yield higher-

quality routes in exchange for greater resource usage. 35

3.4 Mode alternatives for DOOM. Upper modes yield a more immersive experience. 36

4.1 List of devices under test (full battery drop). 41

4.2 Tamer’s instrumentation points. 50

4.3 Top �ve event occurrences for the Galaxy Nexus due to GMS. A handful of events are respon-

sible for the major impact on the battery. ‘W’ signi�es a wakelock event, whereas ‘S’ stands for

service call. 52

5.1 Updated instrumentation points of Tamer. 68

5.2 Speci�cation of device under test (Samsung Galaxy S4 smartphone). 75

5.3 Relevant sequential rules extracted from the GMS-based running scenario. For better read-

ability, event names are represented by letter symbols. Table 5.4 serves as a translation guide. . 76

5.4 Translation table of symbols to events (cf. Table 5.3). 77

xii

6.1 Popularity of network libraries used in top-ranked apps. Sources: AppBrain [1] and libtas-

tic.com [2]. 85

6.2 NetDiet’s instrumentation points. 85

6.3 Installed apps on device under test (NetDiet). Installation base includes integrated system apps

(Google) and popular third-party apps from the Android marketplace. ∗ indicates apps known

for high network usage in the background. 87

6.4 Translation table of symbols to traced events (cf. Figure 6.2). 89

6.5 Network data and connection usage for the top-ranked and bottom-most sequences turned

into NetDiet policies. 90

6.6 IODiet’s instrumentation points. 93

6.7 Installed apps on device under test (IODiet). Installation base includes integrated system apps

(Google) and popular third-party apps from the Android marketplace. Popularity is measured

in terms of number of installs, according to Google Play Store [13]. ∗ indicates an app that is

known for high I/O overhead. 94

6.8 Translation table of symbols to events (cf. Figure 6.6). 95

xiii

List of Figures

2.1 Tail-energy overhead of asynchronous subsystems. Source: [180]. 15

3.1 Power draw distribution of di�erent pro�les for the media-streaming app (cf. Table 3.1). Box

limits represent the �rst and third quartiles and include the median and average power draw.

Whiskers indicate the minimum and maximum power draw. Numbers to the le� of each box

show the improvement in battery drain relative to “HD Streaming.” Greater energy savings

can be achieved by reducing the media output quality and immediacy. 25

3.2 Utilities of di�erent streaming modes for two users of the streaming application. ‘A’ prefers a

high-quality capture, whether streamed or recorded, whereas ‘B’ values immediacy over qual-

ity. �e Pareto frontiers (dashed lines) are di�erent, and no single policy can choose between

“SD Streaming” and “HD Recording” for all users. 26

3.3 Battery lifetime for di�erent streaming settings. 26

3.4 Modes abstract complex settings using a single functionality-centered concept and are com-

mon in diverse occasions: (a) Airplane mode for smartphones, (b) Incognito mode in the

Chrome browser, (c) Scene modes for a camera, and (d) Driving modes for a vehicle’s semi-

automatic transmission. 28

3.5 System components of the AM framework. Developers de�ne bundles of functionality using

the provided API. Bundles are presented to users along with battery-lifetime estimates from

the OS. 30

xiv

3.6 UI widgets for smartphones commonly used to inform users on the battery’s state of charge:

(a) bars; (b) percentage. 32

3.7 Interface to select application modes for the Twitter mobile app. 34

3.8 Power-draw distribution of di�erent pro�les OsmAnd (cf. Table ??). Box limits represent the

�rst and third quartiles and include the median and average power draw. Whiskers indicate

the minimum and maximum power draw. Numbers to the le� of each box show the improve-

ment in battery drain relative to “High Quality.” Reducing the output quality allows for greater

battery savings. 35

3.9 Power draw of di�erent modes for DOOM (game). Lower settings lead to greater battery sav-

ings at the expense of a less smooth audio and visual experience. 36

3.10 Battery lifetime for DOOM’s application modes. 37

4.1 Battery drop of four Android devices idling with the screen o�. By adding Google Mobile

Services to the base installation, the relative battery lifetime decreases between 29.5% (Fire 2)

and 77.5% (MeMO Pad 7). 42

4.2 Event tracing and power measurement on the Galaxy Nexus smartphone for two scenarios.

For each graph, the top stack shows the event calls over time. �e bottom curve depicts the

corresponding system power draw during the same period. 44

4.3 Sketch of Tamer’s event-control system as a three-stage pipeline. 48

4.4 Tamer sits between apps and the SDK stack, and interposes on events between these two layers.

Tamer is oblivious to the lower system layers. 52

4.5 Battery drop of four di�erent devices a�er applying our Tamer policies. 53

4.6 Battery drain over 12 hours of Bejeweled Blitz before and a�er applying a Tamer policy block-

ing the AudioInwakelock. In both cases, we start the game and lock the device to force system

idling. 56

xv

4.7 Relative CPU residency for the untamed and tamed versions of Bejeweled Blitz on the Galaxy

S4. 56

4.8 8-hour battery drain on the Galaxy Nexus smartphone for Nike+ Run Club before and a�er

being tamed. In both cases we start the app and lock the phone’s screen to force idling. 57

4.9 Relative CPU residency for the untamed and tamed versions of Nike+ Run Club on the Galaxy

Nexus. 57

5.1 Partial reproduction of Figure 4.2. Events arising from di�erent applications tend to aggluti-

nate when running in the background. 65

5.2 Meerkat’s task pipeline. 66

5.3 Power intervals associated with event sequences. 70

5.4 CDF of the number of events in a sequence belonging to the same app. 74

6.1 Hooked libraries and their dependencies (NetDiet). 85

6.2 Energy support of all mined sequences (bottom) and select network sequences, with corre-

sponding battery life extension (top). We establish a support threshold of 0.15 to focus on the

top ranked sequences. For better readability, events names are represented by letter symbols.

Table 6.4 serves as a translation guide. 88

6.3 AOSP Lollipop: Relative impact on battery lifetime due to di�erent policy targets and rates.

For comparison e�ect, we show the lifetime improvements for both topmost and bottommost

ranked sequences turned into policy targets. 89

6.4 AOSP Marshmallow: Doze Mode inhibits most of the screen-o� savings. Still, curbing the

same policy target with di�erent rates while the system is idling with the screen on yields

positive results. 91

6.5 Hooked libraries and their dependencies (IODiet). 93

xvi

6.6 Energy support for all mined sequences (bottom) and select storage sequences, with corre-

sponding battery life extension (top). We used a support threshold of 0.05. For better read-

ability, events names are represented by symbols. Table 6.8 serves as a translation guide. 95

6.7 AOSP Lollipop: Relative impact on battery lifetime due to di�erent policy targets and execu-

tion rates. For comparison e�ect, we show the lifetime improvements for both the topmost

and the bottommost ranked sequences turned into policy targets. 96

xvii

Chapter 1

Introduction

Driven mostly by user needs, recent mobile devices have bene�tted from a continuous expansion of their

computing capabilities. Even so, a major hindrance to this expansion is the high operational demand and the

very limited capacity of the battery included in these devices. Considering the interactive nature of mobile

applications, we believe that the solution to this capacity problem should cover not only how mobile devices

draw power but also what users can do given an expected battery lifetime. In this dissertation, we regard battery

lifetime as the time a battery lasts before it runs empty.

Low-power research has focused on reducing the average power draw of computational tasks. Yet, it is

equally if not more important to energy-optimize the user interaction with those tasks, i.e., to reduce the

power draw driven by interaction and improve user productivity. A�er all, a short-lived battery leads to an

unhappy user.

�e central research question of this dissertation is how to increase the energy e�ciency of so�ware ac-

tivities running on mobile devices so that battery lifetime can be extended and meet user expectations. �e

techniques we propose focus on the perspective of a mobile so�ware engineer. �is �rst chapter introduces

the world of mobile devices and the power crisis that users of these devices face today.

1

2

1.1 �e Rise of Modern Mobile Computing

Modern mobile computers encompass smartphones, tablets, and wearable devices including smartwatches and

virtual-reality (VR) headsets1. Despite what their names might suggest, these devices are true computers, with

an operating system (OS) that supports a wide range of applications and programming languages.

Yet, had they been mere small computers, they would hardly have presented much of an impact. Small

portable computers were �rst promoted in the 90s and early 2000s in the form of “personal digital assistants”

and “pocket PCs” from companies like Compaq (iPAQ [15]), Palm (PalmPilot [23]), and Apple (Newton [5]).

None of these initial e�orts lasted long. What changed is the fact that the most recent wave of mobile technol-

ogy has brought to portable computers valuable features that surpass calling friends and taking notes:

Applicationmodel. Developers now have an economic incentive to develop and publish mobile applications,

also known as apps. Building mobile apps is less expensive and labor-intensive than developing desktop so�-

ware. Contrary to the recent past, developers now have free access to robust so�ware development kits (SDKs)

and extensive documentation. Furthermore, development frameworks like AppMachine [6], Apache Cor-

dova [4], and AppMakr [11] help non-coders and beginner developers to quickly stitch so�ware blocks together

and deploy a complete app within hours. Developers also see a commercial incentive to release a mobile app: it

can foster customer loyalty, rekindle interest in a company or brand, or introduce an additional sales channel.

Application market. �e app-store (or marketplace) model, introduced by Apple in 2007 and successfully

replicated since then, reduces the e�ort to discover and distribute new applications. Apps can be loaded locally

with little to no external assistance or additional resources (e.g., another computer). Not only many applica-

tions are freely distributed in app stores, but the marketplace itself simpli�es the purchase of paid apps, relieving

publishers from much bureaucracy. �e marketplace also ensures accountability and additional safety to cus-

tomers by vetting apps free of malicious intent, holding developers responsible for misuse, and centralizing the

distribution of updates containing new features and bug �xes. Finally, app stores provide a rating-and-review

component that lets users voice their thoughts on the overall quality of an application.
1Although notebooks of various shapes and sizes (ultrabooks and netbooks come to mind) are also mobile devices, this dissertation
solely focuses on the latest generation of handhelds.

3

Multi-touch user interface. Easy handling is key for a decent user experience. A touchscreen tends to be a

very intuitive substitute for a keyboard and a mouse, resulting in easier hand-eye coordination [213]. Current

touchscreen technology has vastly improved from the technology used in the 90s and 2000s.

With more reasons to succeed than before, modern mobile devices are now the least expensive computers

with the lowest-cost applications, making them a�ordable to the majority of consumers. In its latest annual

Mobility Report [12], Ericsson estimated a global number of 2.6 billion smartphone subscriptions for the year

2016, with an expected growth to 6.1 billion users by 2020. To many people, smartphones have become the stan-

dard platform to receive services and interact with acquaintances. Although they possess enough computing

and communication properties to attend user needs, mobile devices are liable to a limited battery lifetime.

1.2 �e Need for Power Management

User demands for more functionality and performance have led to an accelerated growth of sensing, com-

putational, display, storage, and communication technologies for mobile devices. �is growth has enabled a

rich application environment that rivals the domain of desktop computers. Even so, battery capacity has not

followed the same advancement pace.

Table 1.1 presents this technology gap in numbers. According to the International Technology Roadmap

for Semiconductors (ITRS) [129], by the year 2029 the number of Application Processors2 (AP) in a handheld

will moderately increase by 6×. In the same time horizon, the number of cores in Graphics Processing Units

(GPU) will increase by 50×, and the cellular data rate will grow at about 1.3× per year. Other technologies also

expect signi�cant performance improvements. Taking into account economies of scale, future mobile devices

will require twice as much peak power to function.

Compared to these numbers, the battery-improvement rate is discouraging. Mobile devices have relied on

lithium-ion batteries for the last two decades, with density improvements on the order of 5%-8% per year [81].

Despite the exponential growth, the density improvement rate is still smaller than the technology improvement
2An application processor (AP) is a system-on-chip (SoC) capable of running an OS and applications. �e term is used to di�er it

from baseband processors of early cell phones, which were tasked with handling the communication over cellphone radios.

4

Year 2015 2017 2019 2021 2023 2025 2027 2029

Input Metrics

of AP cores 4 9 18 18 28 36 30 25
Max CPU freq. (GHz) 2.7 2.9 3.2 3.4 3.7 4 4.3 4.7
of GPU cores 6 19 49 69 141 247 273 303
of Megapixels (display) 2.1 2.1 3.7 8.8 8.8 33.2 33.2 33.2
Bandwidth (AP↔mem (Gb/s)) 25.6 34.8 52.6 57.3 61.9 61.9 61.9 61.9
of sensors 14 16 20 20 21 21 22 22
of antennas 11 13 13 14 15 15 15 15
Cellular data rate (Mbps) 12.5 12.5 21.63 40.75 40.75 40.75 40.75 40.75
Wi-Fi data rate (Gbps) 0.867 0.867 0.867 7 7 28 28 28

Output Metrics PCB area (cm2) 62 69 76 84 93 103 103 103
Peak power draw (W) 4.2 4.64 5.12 5.64 6.22 6.86 7.56 8.48

Table 1.1: Predicted mobile technology improvement for the next 14 years. Source: ITRS [129].

rate observed in Moore’s law.

Although other battery technologies promise higher capacity per area, miniaturization challenges due to

cost, physical and chemical constraints, and safety concerns make lithium-ion the most commercially viable

solution to battery storage. Being so, it is important to use the available energy within a battery as e�ciently as

possible to meet user demands. Alternatives to extend battery life include reducing the power draw of hardware

subsystems and designing more energy-e�cient applications and operating systems.

To control the power draw of hardware subsystems, power management was introduced to personal com-

puting in the early 90s [3] as a feature to shut down hardware, or to switch a subsystem to a low-power state,

when inactive. In exchange for lower performance, hardware power management promises lower heat dissi-

pation and lower cooling costs. Initially targeted at CPU cores, which were then responsible for the major part

of a system’s power draw, the initiative moved its attention to other subsystems. Still, as we will see in the next

subsection, that is not su�cient to guarantee a long battery life in today’s handhelds.

1.3 Is Energy Proportionality Enough?

Energy e�ciency is broadly de�ned as the amount of performed computational work divided by the total en-

ergy used in the process. �e concept of energy proportionality was christened in 2007 by Google’s engineers

Luiz André Barroso and Urs Hölzle [52, 53], who urged computer architects to design more energy-e�cient

5

data-center hardware. Until that moment, hardware systems were mostly energy-e�cient while inactive (sleep-

ing or standing by) or while running at full speed, but not while lightly used. Achieving proportionality requires

that most power-hungry components scale down their power draw according to demand.

�is movement led to the research and development of various techniques that focused on the reduction of

all energy-related costs of a data center, including capital costs, operating expenses, and environmental impact,

as reported in the 2013-updated report by the same authors [51]. Still, as posed by Snowdon et al. [215], today’s

power management in mainstream OSes is conservative and simplistic. Standard policies are either the “race-

to-halt” approach, which runs a workload to its completion at the maximum performance and then transitions

to a low-power mode. Alternatively, there is an assumption that running at the lowest possible performance

results in the highest energy savings. Instead, Snowdon et al. showed that either approach leads to sub-optimal

results on real hardware.

Going beyond OS-level power management, other studies show that the energy e�ciency of particular

applications can be dramatically improved via changes in the program code, even in the presence of general-

purpose power management [48,49,104]. Based on the argument that OS-level power management is application-

agnostic, these studies exploit the workload variance of di�erent applications to optimize hardware use. Addi-

tional research demonstrates that app developers may inadvertently write energy-ine�cient code that causes

rapid battery depletion without visible symptoms. Such suboptimal instances are known as energy bugs [178].

All of the preceding research examples show that it is crucial for application developers to be aware of the

energy-consumption behavior of mobile devices. Without that ability, it is di�cult to optimize program code

for energy e�ciency. �is dissertation focuses on so�ware-based solutions for analyzing and optimizing the

energy consumption of mobile apps.

1.4 Approach and Contributions

“So�” resources such as time (performance), space (memory or storage), and energy needed to accomplish a

task are limited. Generally, a performance-oriented application consumes as much space and energy as needed

6

to shorten the running time and meet the program-output speci�cation. When we switch our priority from

performance to space or to energy, the roles of the other two resources are usually inverted.

Our approach to achieve so�ware-based battery savings is to relax the requirement that mobile apps should

pursue a single output speci�cation. Instead, we allow a range of possible outcomes, where the range can be a

few discrete states or a continuum. �is range corresponds to di�erent output quality levels, or utility levels.

To attenuate the power draw of mobile devices, we propose a cooperative system infrastructure that mod-

i�es the behavior of mobile applications so that they consume less energy depending on the context – appli-

cation type, location, recharging opportunity, etc. �ese changes are inspired by the user’s need to prioritize

tasks. Although we explore the foundations of energy-aware so�ware adaptation, this dissertation barely cov-

ers the decision-making process of when to enable those changes3. Instead, we focus on how developers can

unleash more aggressive energy e�ciency from applications.

Our proposed techniques encompass di�erent approaches to modify the source code and runtime behavior

of mobile apps, which we present as the main contributions of this dissertation:

Application Modes. Be an a�erthought or a requirement in the so�ware-development cycle, energy aware-

ness necessitates additional care from programmers to guarantee that so�ware consumes less energy. Appli-

cation Modes is a development aid that abstracts ancillary, yet necessary, energy-management blocks (e.g.,

resource monitoring and actuation interface), thus allowing developers to focus on the energy-aware changes

speci�c to their so�ware. Application Modes adopt the idea of functionality bundles – encapsulated code-

changes that modify the behavior of applications and, consequently, their energy pro�le – that a system can

activate according to user preferences and the device’s battery status. Chapter 3 elaborates on the motivation,

design, implementation, and evaluation of Application Modes.

Tamer: An Energy-Controller for Background Tasks. An alternative to changing so�ware functionality at

compile time is to do so at runtime. Tamer is an execution controller capable of monitoring events, rewiring

program binaries, and changing runtime behavior without need of source-code correction, recompilation,
3Such topic would require a dissertation by itself.

7

or so�ware re-installation. Tamer works by interposing the execution of so�ware events and preventing their

continuation. In Chapter 4, we discuss the internals of Tamer and demonstrate how to link an event-throttling

controller with e�ective policies to reduce the excessive battery drain due to frequent wakeups of so�ware tasks

running in the background.

Meerkat: A Policy-Discovery Tool for Energy Controllers. While Chapter 4 focuses on the controller part

of Tamer, Chapter 5 concentrates on the policy engine that drives Tamer’s actuation. A Tamer policy speci-

�es which so�ware events to intercept and when actuation should occur. Before developers can write energy-

e�ective policies, they need to understand what events are worth intercepting.Chapter 5 presents Meerkat,

an analysis tool that correlates so�ware-execution logs with power traces. To associate energy consumption

with event bundles, Meerkat leverages sequential-pattern mining [37] to to discover the interestingness (e.g.,

frequency, usefulness, novelty, etc.) of sequential patterns. A sequence energy-rule tells the occurrence like-

ness of a subset of sequential events as well as its energy impact. Developers can use Meerkat to discover the

sequences of events that consumes the most energy and use them as input to write e�ective Tamer policies.

Case Studies: Specialized Application of Tamer and Meerkat. Meerkat’s e�ectiveness depends on the

types of events being monitored. Tamer’s original design focuses on event dispatching within the Android

OS. Because of the generality of those events, sometimes it is di�cult to discern the utility of valuable event-

sequences. In Chapter 6, we address this challenge by proposing specialized Tamer payloads that monitor and

intercept additional subsets of events. �ese events subsets not only include functionality within the Android

OS but also dive into popular third-party libraries, thereby facilitating the identi�cation of unique energy-

hungry event sequences and their utility by Meerkat. We describe the design and implementation of two

Tamer-based controllers – NetDiet and IODiet– that specialize in tasks involving networking and storage

events. Finally, we evaluate their e�ectiveness in curbing excessive battery drain.

Before we explore each contribution, the reader might want to familiarize herself with the energy-management

process in mobile systems as well as the major in�uences in the �eld that led to the development of our research.

We dedicate Chapter 2 to this task.

Chapter 2

Background

�is chapter presents the background to power management in modern mobile devices. We have limited

ourselves to the work that is essential to understand the topic of this dissertation. As this dissertation focuses

on so�ware solutions to improve energy e�ciency, techniques involving low-power hardware design, such as

transistor sizing [61,93], transistor reordering [66, 185], clock gating [231], and power gating [123,226], are out

of scope. We acknowledge the contributions to the �eld during the early 90s and 2000s and focus on the latest

relevant works targeting modern mobile devices.

2.1 Overview

Energy e�ciency in mobile so�ware can be achieved at di�erent levels. �e main challenge question is: Who

should be responsible for energy management? Applications or the OS? We believe that, in many cases, both

actors should play an active role. We structure our study on energy management and optimization using a

taxonomy of di�erent types of solutions.

• Energy-aware operating systems. At the OS level, the main idea behind reducing energy consumption

is to unify resource management with energy management and to promote a collaboration between

applications and the OS. Having a good understanding of how resources are demanded by users and

8

9

applications is crucial to achieve proper energy e�ciency. Section 2.2 focuses on energy-aware mobile

OSes and resource management.

• Energy pro�ling. Energy awareness calls for understanding how hardware components consume energy.

Without knowledge of how subsystems and applications drain the battery, users, developers, and the OS

cannot decide on how to improve battery life. Section 2.3 elaborates on the research done in this �eld.

• So�ware analysis and optimization. Understanding and detecting energy bugs and hotspots in applica-

tions for smartphones and tablets is paramount to developers. To reduce energy consumption, devel-

opers can resort to context information from subsystems and applications to extract use patterns and

optimize resource management. Section 2.4 discusses techniques both related to so�ware analysis and

optimization.

• User interaction and its impact on battery life. Battery lifetime is a usability challenge. Improvements

in energy e�ciency should also take into account how users interact with batteries and other device

resources. An energy-aware system should know when, where, and how users drain batteries, and if

there are recharging opportunities. Section 2.5 dives into some of the recent contributions to this area.

• Computation o�oading. Modern mobile OSes o�en rely on online services running remotely. Remote

execution allows migrating computation from battery-powered mobile devices to wall-powered, highly

performant servers hosted remotely. Factors like latency and data-metered networking act as counter-

parts to the bene�ts of o�oading. Section 2.6 covers some of the relevant works in mobile-workload of-

�oading from an energy perspective. Interested readers should check the survey by Fernando et al. [101]

for a more thorough overview of this area.

2.2 Energy-Aware Operating Systems

Power management in current mainstream operating systems is simplistic. An example of a standard pol-

icy is the “race-to-halt” approach, which runs a workload to completion at maximum performance and then

10

transitions the hardware back to low power. Academic prototypes of more advanced systems have shown the

bene�ts of more aggressive energy-oriented policies.

Going beyond the idea of energy proportionality, the �rst academic, energy-aware OSes for personal de-

vices appeared in the late 90s and early 2000s. Odyssey [172] and ECOSystem [243] follow a hybrid approach in

which both applications and the OS collaborate to reduce the system’s power draw. In 1999, Carla Ellis proposed

energy to be considered a �rst-class resource, augmenting the traditional OS perspective of focusing solely on

performance [95]. With the rise of smartphones and tablets by the end of 2000s, the topic regained attention

due to the alarming rate at which power-hungry so�ware have been reducing the battery life of handsets.

In Odyssey, applications adapt the Quality of Service (QoS) delivered to users based on the available battery

state and resources. Odyssey monitors resource demands and convey to applications changes based on the

concept of �delity – the quality of the so�ware output. Odyssey estimates the energy and resource demands of

applications by observing their execution history and battery feedback. Odyssey leverages online pro�ling via

PowerScope [105] to estimate the system’s energy consumption (cf. §2.3).

ECOSystem takes a di�erent approach: it allocates energy to competing tasks using the currentcy unit

abstraction [244] and schedules their execution taking into account fairness and the tradeo� between perfor-

mance and energy consumption. To do so, ECOSystem uses resource containers [50] to isolate and track the

resource demands of applications.

Another example of OS-application cooperative approach is GRACE-OS, by Yuan and Nahrstedt [237,

238]. �e authors used the probability distribution of CPU utilization by applications to design a specialized

task scheduler that is able to set the appropriate CPU-core voltage. According to its authors, GRACE-OS can

achieve energy savings of up to 37.2% on mobile multimedia workloads.

Koala [215] is a platform for OS-level power management that uses a pre-characterized model to predict

the CPU performance and energy consumption of so�ware blocks. At each context switch, Koala pairs the

application’s observed behavior with the system’s pre-de�ned policy to determine the most appropriate power

settings for the CPU and memory frequencies. Koala achieves near-optimal energy savings for single-threaded,

CPU- and memory-bound tasks.

11

Cinder [198] is a mobile OS, built atop the HiStar exokernel [240], that employs device-level resource ac-

counting and power modeling. Cinder aims to achieve e�ective energy allocation to applications using three

principles: isolation, subdivision, and delegation. Similarly to ECOSystem, Cinder allocates energy to appli-

cations using a discharge-rate metric. Cinder applications can also collaborate and share their energy reserve.

Despite the various academic prototypes of OSes containing radical architectural changes, many of these

contributions have never reached consumer devices for reasons ranging from implementation cost to lack of

bounded performance/power guarantees. Nevertheless, less radical OS power-saving mechanisms have found

their way into commercial mobile devices. Because these mechanisms are complimentary to our work, we

brie�y mention them here. �ese include smart task scheduling [110, 190, 228], voltage scaling [156, 183, 184],

frequency scaling [114], and dynamic voltage and frequency scaling (DVFS) for CPU cores [77, 130] and GPU

cores [35, 143]. Scheduling for heterogeneous CPU multi-cores [8, 82] and transferring tasks between CPU

and GPU cores [56,157] are other examples of techniques that rely on the cooperation between the OS and the

underlying hardware to achieve performance gains or energy savings.

2.3 Energy Pro�ling

E�cient power management in mobile platforms is a complex and challenging research problem due to the

multitude of hardware con�gurations and power states and their interdependence caused by multiple appli-

cations. A core requirement of e�ective and e�cient energy management is a good understanding of where

and how the energy is used – how much of the system’s energy is consumed by which parts of the system and

under what circumstances. We can obtain such knowledge from direct measurements or from modeling.

2.3.1 Measuring Power

Developers can resort to external instruments to directly measure power. Oscilloscopes, multimeters, and

Data ACquisition (DAC) hardware from di�erent vendors can sample the voltage or current �ow of the power

supply. While these methods vary in terms of accuracy and resolution, most of them require soldering onto or

12

cutting into the battery connection of a mobile device. �e Monsoon Power Monitor [169] is a self-powered

portable commercial solution that connects to the device’s battery to measure the current �ow without need of

soldering. BattOr [206] consists of a small non-invasive circuit board that, while interposing between a device

and its battery, collects accurate power samples at a high frequency (10KHz). Both Monsoon and BattOr

assume that the battery is reachable and detachable. �is assumption contradicts the current seamlessness-

focused design trend in premium smartphones, which precludes making their batteries user-accessible [16].

Yet, because external power monitors are the gold standard for power analysis, we base our �ndings in this

dissertation on direct measurements.

A second approach to measure power is to query the battery state. Mobile devices include special-purpose

electronics embedded in the mobile device – the fuel gauge. So�ware can query self-metered battery data using

a special API. Depending on the fuel-gauge type and the device model, di�erent battery data can be queried.

For instance, the Google Nexus 6 smartphone uses a Coulomb-counter fuel gauge that periodically informs

the battery’s current draw, voltage, and temperature [17].

A series of studies use direct measurements to pro�le mobile hardware and so�ware. One of the most

detailed and general analyses of energy consumption in modern mobile devices is the report by Carroll and

Heiser [67]. �e authors presented a detailed breakdown of the power draw of smartphone subsystems using

an external high-resolution power meter. A�er detailing the energy impact of the CPU, memory, touchscreen,

GPU, audio, storage, and network interface, Carroll and Heiser concluded that the most energy-hungry com-

ponents in a smartphone are the display and GSM (radio) modules. Although their study dates back to 2010,

their �ndings are still relevant.

Using a multimeter, �iagarajan et al. [220] characterized the energy needed to render web pages on a

mobile browser. �e authors found that downloading and parsing cascade style sheets (CSS) and JavaScript

consume a signi�cant fraction of the total energy needed to render a web page. �e authors also proposed

recommendations on how to design web pages in order to minimize the energy of their rendering.

NEAT [63] is a toolkit containing a coin-sized power-measurement board, which �ts inside a typical smart-

phone, and analysis so�ware that automatically fuses the event logs taken from the device under test with

13

measured power samples. NEAT was created a�er its authors demonstrated that power-estimation models

can raise inaccuracy errors by 20%. McCullough et al. [162] also demonstrated the limitation of several ad-

vanced power-modeling techniques posed by hardware complexity and variability, thus motivating the need

for direct measurements.

2.3.2 Modeling Power

Because direct measurements do not scale well, power modeling is a popular technique used to associate power

draw with running tasks. A power model is a mathematical representation that quanti�es the impact factors

of energy consumption due to running so�ware, such as the utilization level of a hardware subsystem. A

power model can characterize a single subsystem, a combination of them, or even a whole device (system-

level model). Approaches to modeling power draw can be divided into two categories.

Utilization-based models. Utilization-based models account for the energy consumption of a subsystem by

correlating the power draw of that subsystem with its measured usage rate. Given a running application, a

valid power model includes variables that re�ect all of the di�erent components that are active.

To obtain a utilization power model, a training phase is required. A modeling tool collects the utilization of

individual hardware components, typically via an OS-hardware interface, from running sample applications

and measuring the corresponding power draw of those components. Next, the modeller uses machine learning

to derive a model that correlates the utilization samples with the measured power draw.

Early models focused on estimating the power draw of individual subsystems. For instance, Bellosa [55] associ-

ated data from hardware performance counters – instructions per cycle (IPC), fetch counters, miss/hit counters,

stalls – with CPU energy consumption to obtain an estimate of the energy use at each CPU-core frequency.

�e intuition is that the amount of power required to execute instructions at a given frequency is proportional

to the amount of activity inside the microprocessor. Bircher and John [58] explored the use of counters to

estimate the power draw of other subsystems.

Flinn and Satyanarayanan’s PowerScope [105] maps energy consumption to program structure in a similar

14

fashion to CPU pro�lers such as the prof command in UNIX machines – using statistical samples of execution

traces aligned with metered power draw.

More recent utilization models focus on attributing system and subsystem energy consumption to code blocks.

pTop [89] is a process-level power pro�ler for devices running the Linux OS. pTop uses process-context and

hardware-utilization data obtained from the OS kernel, along with power-speci�cation data from hardware

vendors, to estimate the energy consumption of running applications. A drawback of pTop is the lack of

apparent support for workload variation.

PowerTutor [241] is a pro�ler that assigns power draw to mobile applications by monitoring the activity state of

subsystems. PowerTutor relies on PowerBooter, an automated power-model builder that uses built-in battery

sensors and knowledge of battery-discharge, to estimate the energy consumption of individual subsystems.

Quanto [106] uses the iCount energy meter [94] to record system energy consumption and relies on linear

regression to generate power models that estimate the energy intake of the hardware components of an embed-

ded device. Quanto tracks the intervals in which components are operating on behalf of programmer-labeled

activities and associates the estimated energy with those activities.

Because power models work as an approximation of the real behavior of hardware components, they are prone

to inaccuracy. External factors can a�ect the battery-drain rate, such as device temperature, battery age, and

faulty hardware, thereby necessitating model recalibration. Sesame [91] and V-Edge [232] sidestep the need

for external metering to recalibrate a power model. By collecting �ne-grained voltage data from the built-in

battery interface along with select microbenchmarks, both approaches can self-construct new models to re�ect

the actual power draw of hardware under di�erent conditions.

Event-basedmodels. Several components in mobile devices, such as GPS, storage, and camera, act like black

boxes and do not expose quantitative utilization metrics, making it hard to obtain accurate models using the

aforementioned approaches.

Balasubramanian et al. [49] presented a measurement study of the energy consumption characteristic of three

widespread network technologies: 3G, GSM, and WiFi. �e authors found that the 3G and GSM radios incur

15

a high tail-energy overhead due to the lingering of high-power states long a�er completing a packet transfer.

Tail energy cannot be easily attributed when using a utilization-based model.

Figure 2.1: Tail-energy overhead of asynchronous subsystems. Source: [180].

Pathak et al. [180] observed that the same tail-state e�ect prevails in other subsystems, such as GPS and storage

(Figure 2.1). �e authors followed with a new power-modeling approach based on the tracing of application-

initiated system calls that lead to hardware activation, �eir approach gracefully captures both the utilization-

based and the non-utilization-based power behavior of I/O components. �e new models rely on �nite state

machines that indicate the current state of a hardware subsystem, along with transitions to other states due to

expired timers or other external conditions. �e authors demonstrated that event-based models can achieve

high accuracy in �ne-grained power estimation.

Using this approach as a basis, Pathak et al. introduced eprof [179], the �rst �ne-grained energy pro�ler for

smartphone apps. eprof ’s main contribution is the capture of energy dissipated by asynchronous tasks, a feature

not available in previous pro�lers.

Similarly, Qian et al. [188] proposed a methodology that accurately infers the Radio Resource Control (RRC)

states of a 3G cellular modem and the associated power draw from packet traces collected on a handset.

Finally, Carat [173,174] and eStar [71] are two di�erent approaches to energy apportioning using the same prin-

ciple: use battery data crowdsourced from thousands of smartphone and tablet users to estimate the average

impact of individual application on battery drain.

16

Power modeling is a vast area of research that has seen many contributions over the years. We refer inter-

ested readers to Hoque et al.’s survey [121] for more information on the area.

2.4 So�ware Diagnosis and Optimizations for Energy Savings

It is di�cult for so�ware developers to measure the energy consumed by their applications and to explore how

this energy consumption might change with conditions that vary outside the developer’s control. In parallel,

mobile so�ware present patterns that can be exploited for the sake of energy savings. In the following, we

present some of the energy-focused techniques that explore the optimization of resource management based

on context changes.

Pathak et al. [181] presented a comprehensive study of no-sleep energy bugs in Android-OS applications.

�e authors resorted to data�ow analysis on decompiled Java bytecode to uncover and debug a series of bugs

that keep subsystems awake due to programming mistakes and race conditions. Experiments show that their

analysis tool can detect previously reported and unreported no-sleep bugs with a low rate of false positives.

WattsOn [166] is a plug-in to the Visual Studio IDE [32] that allows developers to estimate the energy

consumed by code blocks. WattsOn relies on event-based power modeling to estimate energy consumption

and on so�ware emulation to scale what-if analyses on code changes. eLens [117] uses program analysis to

determine code paths traversed during execution, and per-instruction energy modeling to obtain �ne-grained

estimates of application energy. Li et al. [147] also used program analysis to estimate the energy consumed per

line of source code of various mobile applications. Both eLens and Li’s work claim accuracy errors within 10%

of ground-truth measurements.

Simulating typical use scenarios from 55 mobile apps, Linares-Vásquez et al. [151] presented a quantitative

and qualitative empirical investigation on energy-greedy APIs and so�ware patterns in the Android develop-

ment framework.

IMP [119] is a network data-prefetching library to which mobile applications can link. IMP employs a

goal-directed adaptation mechanism that decides when to prefetch data on behalf of mobile apps and tries to

17

minimize application response while meeting budgets for battery lifetime and cellular-data use. IMP oppor-

tunistically uses available networks while ensuring that prefetching does not degrade the network performance

of foreground activities. RadioJockey [44], TOP [187], and Bartendr [205] are also energy-aware packet sched-

ulers that leverage patterns in data streams to reduce the expended energy of radio-transmission tail states.

A-Loc [150] is an energy-aware middleware for location-based apps of the Android OS. A-Loc incorporates

probabilistic models of user location and sensor errors to pick the most energy-e�cient sensor that meets the

position-accuracy requirements of applications. EnTracked [137] estimates and predicts the system’s state and

user mobility to better schedule the GPS sensor to obtain position updates. EnTracked promises potential

energy savings between 40% and 50% compared to periodic GPS sampling, with a maximum, yet unlikely,

error of 200m.

Ghosts in the Machine [38] suggests giving the OS more visibility on the power state of I/O devices. De-

velopers adapt applications to hint about their execution to the device’s power manager, A�ected subsystems

adapt their power-state schedule, resulting in performance and energy-conservation improvements. Users de-

�ne QoS using a unit-less knob that prioritizes performance or energy savings. We present a similar concept

of cooperative power management in Chapter 3.

In the realm of programming languages and frameworks, there is a growing interest in facilitating the

developer’s life by introducing new language features that provide cues to the compiler and the OS about op-

portunities for saving energy [78,199]. Recent techniques, like task discarding [194] and loop perforation [212],

comprise a larger set of mechanisms that can be used in programming-language semantics and execution envi-

ronments to reduce the demand for resources. Eon [217] and Energy Levels [140] o�er programming abstrac-

tions and runtime environments that predict resource use in wireless sensor networks and automatically meet

lifetime goals by deactivating or adapting parts of an application. In the domain of approximate programming,

Green [47] let programmers de�ne statistical QoS guarantees by approximating expensive functions and loops.

18

2.5 Users and Batteries

An important way to characterize handheld use is to quantify the value that users place on their device battery.

A large-scale longitudinal study by Ferreira et al. [102] explored the charging habits of more than 4,000 smart-

phone users and found that users charge their devices frequently throughout the day. �e study showed that

users perceive battery drain as an obstacle to obtain value from applications. �e following studies explore the

interaction between users and batteries in di�erent ways.

CABMAN [191] is a battery-management architecture for mobile devices that uses context information (lo-

cation and time) to predict the next recharging opportunity and to inform users about the remaining running

time of critical (e.g., telephony) and non-critical applications. As a result, users have a better sense of which

tasks to prioritize before their battery runs out.

Shye et al. [210] developed a logger application for Android mobile devices and collected 250 days of activity

data from 20 users. Using a regression-based power model, the authors discovered that energy consumption

varies widely. �eir study concludes by stating that the CPU and screen are the two largest battery-drain

sources and that, on average, 49.3% of the total system power is spent while idling. Other works [72, 233]

con�rm this discrepancy between active and inactive periods. Chapter 4 focuses on optimizing the energy

consumption while the system is supposedly idling.

Falaki et al. [97] conducted a comprehensive study of smartphone use based on detailed app-activity traces

from 255 users of Android and Windows Mobile devices. �e authors characterized intentional user activities

and how these activities impact network and energy use. Coinciding with Shye’s �ndings, Falaki et al. uncov-

ered an immense diversity among user activities and suggested that mechanisms to improve user experience

and energy consumption should learn from and adapt to user behavior.

Truong et al. [221] discussed the coarse granularity and inaccuracy of today’s battery interfaces – overall

percentage or amount of time remaining – and how users �nd it di�cult to trust those interfaces. From the

analysis of responses to a target survey of 104 users, the authors designed and prototyped a task-centered

battery interface that shows more accurate information about how long individual and combinations of tasks

19

can run before battery depletion. A pilot study with eight users showed that the proposed interface can help

users better understand battery use and be more e�ective in selecting which tasks to run. Ferreira et al. used

the same motivation to create IBI [103], an interactive interface to help users extend battery life.

�ese studies on the interaction between users and batteries unveil a common trend: the need for a system-

centric and user-centric resource management system that leverages contextual and �ne-grained information

to make decisions.

2.6 Task O�oading

Computation on mobile devices usually requires compromises. Although mobile hardware continues to evolve,

it is still not in the same performance category as desktop and server hardware. Improving size, weight, and

battery life are higher priorities than computational power. Yet at the heart of many popular smartphone apps

and tasks, high performance is desirable. �ese include speech recognition, natural language processing, com-

puter vision and graphics, machine learning, and augmented reality, to name a few.

Remote computing comes as a natural solution to the resource poverty of mobile devices. Instead of ex-

ecuting all tasks locally, some are o�oaded to execute on a remote server or another portable device over a

network connection. Many of the o�cial Google and Apple mobile apps for the Android and iPhone platforms

follow this execution model using the power of cloud computing.

Most of the attempts of remote execution take one of the following approaches: (1) Developers partition a

program, specifying what state needs to be transferred, and how to adapt the partition scheme to the changing

network conditions; (2) Developers use full process [175] or full virtual-machine (VM) migration [76, 200] to

reduce the development burden.

While remote execution helps mobile devices save energy, systems leveraging this technique should be

aware of its shortcomings. Network delays can hurt usability by degrading the crispness of system response.

Loosely coupled tasks, such as Web browsing, might continue to be usable, but deeply immersive tasks, such

as augmented reality, can become sluggish to the point of distraction. Lagar-Cavilla et al. demonstrated that

20

latency can quickly impact interactive response in spite of adequate bandwidth. Even a modest latency of 33ms

causes the frame rate of a remote visualization app to drop considerably from that experienced locally [141]. In

addition, battery-constrained devices should not o�oad tasks if the energy required to synchronize application

state is higher than executing tasks locally.

CloneCloud [76] o�oads parts of the application workload to the cloud by using VM migration. CloneCloud

rewrites mobile apps before migrating threads, chosen automatically, to a cloned device in the cloud. When

tested on select applications (virus scanning, image search, and behavior pro�ling), CloneCloud showed speedups

between 12× and 21×, and energy savings between 4× and 14×, while requiring an extra bandwidth of 0.4Mbps

and latency of 680ms.

To avoid full VM migration, MAUI [84] uses a �ne-grained approach to o�oad parts of an application

to the cloud. MAIU decides at runtime what methods to remotely execute, while considering energy savings

and connectivity constraints. MAIU relies on code portability to quickly deploy multiple versions of the same

application, on managed code to abstract architecture di�erences – ARM (mobile) vs. x86 (server) –, and on

code annotations to hint on context switching. Similarly to CloneCloud, MAUI automatically identi�es costs

through static and dynamic code analysis.

Chroma [48] semi-automatically partitions an existing application into remote and local tasks by taking

advantage of application-speci�c knowledge. Chroma takes as input all the meaningful partitioning strategies

of an application, speci�ed by developers in a declarative form (tactics), and selects an appropriate partitioning

using online prediction of resource demands. �e tactics abstraction captures so�ware knowledge relevant to

remote execution with minimal exposure of the implementation details. �is allows the use of computationally

intensive applications on handhelds even in environments with ever-changing resource availability.

Rather than connecting to a distant cloud, Satyanarayan et al. [200] proposed the use of cloudlets – several

smaller and less expensive computers installed in common areas (e.g., co�ee shops, schools, etc.) – to serve

as proxies to remote cloud servers. Mobile devices connect to a physically close, resource-rich cloudlet using

a low-latency, one-hop, high-bandwidth wireless connection, thereby guaranteeing real-time interactive re-

sponse. Like CloneCloud, cloudlets rely on VM migration. Still, cloudlets avoid the high price of networking

21

via dynamic VM synthesis – a mobile device delivers only a small VM overlay to the cloudlet that already pos-

sesses the base VM from which the overlay was derived. Several computing-intensive applications have been

successfully ported to the cloudlet infrastructure [116, 202, 214].

Collaborative computing is another approach used to facilitate task o�oading. IDEA [69] is a sensor-

network service for e�ective network-wide energy decision making. IDEA distributes information from each

node on battery level, charging rate and execution state, and helps networked nodes evaluate each remote-

execution option using an energy-objective function tailored to meet speci�c application goals. ErdOS [224]

is an extension to the Android OS that predicts the resource demands of mobile apps based on user’s habits

and preferences, and leverages access to computing resources of nearby devices via wireless communication.

ErdOS uses social connections between users to enable and disable access to remote resources.

A common theme in all of the aforementioned solutions is the use of application knowledge in di�er-

ent forms to facilitate and optimize task-o�oading, thereby saving energy. As we will demonstrate in Chap-

ters 3, 4, 5, and 6, we use the same so�ware-knowledge intuition and develop di�erent strategies to optimize

the battery drain of mobile applications.

2.7 Summary

Since the mid-90s, researchers have been promoting energy as a primary system resource for mobile devices.

In this chapter, we presented a snapshot of the research conducted in the �eld of resource management for

energy e�ciency in mobile systems. We separated the relevant work in �ve categories: energy-aware operating

systems, power measurements and models, so�ware analysis and optimizations, user interaction with mobile

resources, and opportunities for task migration and remote processing.

Smart power management o�en requires certain actions to be deferred, avoided, or slowed down to pro-

long battery life. �ese opportunities are best explored if we consider application-context knowledge and the

participation of multiple agents (users, OS, and developers) in de�ning how the battery should be used. In the

following chapters, we present our approach to this multi-faceted challenge.

Chapter 3

Application Modes

Exposing Application-Speci�c Internals for Energy Control

3.1 Introduction

Although necessary, optimizing energy consumption during system idling is of little use if subsystems are o�en

demanded, especially if we consider the increase of background services and complex applications that keep a

system awake. Being so, it is necessary to reduce resource demand to achieve energy e�ciency. Fundamentally,

under some circumstances, there has to be a prioritization of functionality, as the energy density in handheld

batteries is not su�cient to perform all possible system functions continuously.

Many past projects recognize the di�erent roles of the OS, applications, and end-users in power manage-

ment (PM). Odyssey, a project by Flinn and Satyanarayanan from the late 90s, was the �rst to simultaneously

involve the OS, the applications, and the user in power management [104]. In Odyssey, applications are guided

by the OS to dynamically change their behavior, limit their energy consumption, and achieve user-speci�ed

battery lifetime. �e adaptation involves a tradeo� between energy use and application data-quality, to which

the authors refer as �delity. Fidelity is application-speci�c and opaque to the OS.�e role of the OS is to direct

22

23

the adaptation based on supply and demand of energy by the device and its relation to the expected battery

duration. When the OS detects that the lifetime goal cannot be achieved, the system issues upcalls to applica-

tions in order to reduce their �delity. �e user participates by inputting two pieces of information: the desired

lifetime and a prioritization of applications to sort the adaptation options. Finally, application developers are

responsible for implementing di�erent �delity levels.

Many factors make it opportune to revisit Flinn and Satyanarayanan’s original work. Due to a combination

of more complex applications, a plethora of devices to choose from, and a diverse user base, in some cases

there is no single �delity metric that is common to all users in all contexts. As a result, automated approaches

can only suboptimally adapt some applications. Furthermore, given advances in hardware and lower-level

so�ware (e.g., ACPI), devices are much more e�cient when idle, making high-level approaches that reduce

active demand much more e�ective now than a decade ago.

A fundamental assumption in previous works [48, 104] is the existence of a well-de�ned tradeo� between

�delity (or QoS) and energy use. Consequently, an application developer knows the app con�gurations that

lie in the Pareto frontier of this tradeo�, enabling an automated algorithm to decide the optimal state based on

the available battery life.

Even though this assumption holds true for many applications, there are counterexamples. As we show in

§3.2, two users with di�erent priorities could aim for di�erent tradeo�s between energy use and utility from

an application. �e key observation is that in these (and other) cases, automated adaptation may fail and the

runtime system must ultimately elicit preferences from the user. �e main challenge is how to involve the

user at the right time and at the right level. Participating users should only worry about tangible aspects of the

device operation, such as lifetime and functionality, and not be concerned with how they are implemented.

We present Application Modes, an interface between applications and the OS that eases the separation of

roles for e�ective power management. Rather than exposing a metric, application developers declare to the

OS one or more modes composed of reductions of functionality with presumed power savings. For instance, a

shooting game could provide two modes: a high-quality mode that strives to keep the user experience smooth

(i.e., keep the frame rate close to 60 frames per second (FPS)), and a power-saving mode that reduces the

24

Pro�le Title Encoding Settings Network Output (MB) Live Streaming? So�ware Used
HD Streaming 720p video (H.264), hi-def audio (AAC) 158.60 Via RTSP LiveStream
HD Recording 720p video, hi-def audio 290.1 Upload on recharge SpyCam
SD Streaming 480p video (H.263), med-def audio (AAC) 47.16 Via RTSP LiveStream
SD Recording 480p video, med-def audio 183.4 Upload on recharge SpyCam

Audio Recording Audio only (AMR-NB), screen o� 0.58 Upload on recharge Sound Recorder

Table 3.1: Functionality alternatives for the media-streaming app. Upper pro�les yield higher-quality videos in exchange
for larger network output.

frame-rate requirement to 30FPS. Modes carry a human-readable description of the assigned functionality and

the promise of switching when requested by the OS. We assume that the OS can predict how long a device’s

battery will last at each mode, and then request a mode change whenever appropriate. However, recognizing

that di�erent modes may have di�erent utilities for di�erent users, we believe that the decision of when to

switch modes should involve the user whenever necessary. �is involvement takes form in combining the

description of each adaptation with the prediction of lifetime changes by the OS.

3.2 Motivation

In this section we use power measurements on a common handheld work�ow scenario – media streaming

on a smartphone – to illustrate two points. First, we con�rm and extend the earlier �ndings by Flinn and

Satyanarayanan [104], which demonstrated how changes in application behavior can substantially a�ect energy

consumption. Second, we show that di�erent users can have very di�erent Pareto frontiers in the utility-energy

tradeo�, making globally automated decisions ine�ective in maximizing utility.

We measure the power draw of running a streaming application using very di�erent modes, or bundle of

settings. We performed our measurements on a Samsung Galaxy Nexus smartphone running a customized

version of the Android Jelly Bean OS (4.3) while connected to a Monsoon power monitor. To discriminate the

power draw of the inspected application, we �rst measured the phone’s power draw in the idle state, i.e., not

running any applications apart from the base system, and established two baselines: one with the screen on

and another with the screen o�. We made sure that the screen brightness was constant in all runs.

�e media-streaming app records and transmits audio and video over the Internet. �is scenario is a

25

 0

 1

 2

 3

 4

 5

 6

 7

 8

HD
Streaming

SD
Streaming

HD
Recording

SD
Recording

Audio
Recording

P
o
w

e
r

(W
)

Average
Median

1.00 1.04 1.10
1.25

15.58

Baseline w/ screen on
Baseline w/ screen off

Figure 3.1: Power draw distribution of di�erent pro�les for the media-streaming app (cf. Table 3.1). Box limits represent the
�rst and third quartiles and include the median and average power draw. Whiskers indicate the minimum and maximum
power draw. Numbers to the le� of each box show the improvement in battery drain relative to “HD Streaming.” Greater
energy savings can be achieved by reducing the media output quality and immediacy.

common user case and presents interesting tradeo�s between utility and energy savings, as di�erent hardware

subsystems are activated. For instance, a user documenting an important event may favor immediate uploading

of a low-quality video, whereas another user may prefer a high-quality capture to be uploaded only when

connected to a power outlet. Selecting the right application parameters for each of these cases can, however,

be a daunting task to the average user.

To illustrate the tradeo�s we consider the power draw of recording and uploading a �ve-minute video feed

using three similar applications. Using the hardware setup described above, we simulated di�erent pro�les

using the following applications: SECuRET LiveStream [28], SpyCam [29], and MIUI Sound Recorder [18].

In all cases we modi�ed the video- and audio-encoding parameters as well as considered di�erent moments

to upload the recorded media. We derived �ve bundles of settings, listed in Table 3.1. Once again, these settings

are not transparent to the user, and o�er speci�c tradeo�s between quality and timeliness of the uploaded

media.

Figure 3.1 shows the power draw of each con�guration set. “Audio Recording” draws on average over 15×

less power than “HD Streaming”. “Audio Recording” also outputs the least amount of bytes, does not use the

screen, camera nor video-encoding hardware, and defers network I/O to when the device recharges its battery.

Figure 3.2 shows the same modes, with a numerical utility for hypothetical users (which could be even

26

0

1

0 0.5 1 1.5 2 2.5 3 3.5

U
til

ity

Average Power (W)
A
ud
io
-r
ec

S
D
-r
ec

H
D
-r
ec

S
D
-s
tr

H
D
-s
tr

User A
User B

Figure 3.2: Utilities of di�erent streaming modes for two users of the streaming application. ‘A’ prefers a high-quality
capture, whether streamed or recorded, whereas ‘B’ values immediacy over quality. �e Pareto frontiers (dashed lines) are
di�erent, and no single policy can choose between “SD Streaming” and “HD Recording” for all users.

Ti
m

e
U

nt
il

D
ep

le
tio

n
(h

)

0

4

8

12

16

HD  
Streaming

SD  
Streaming

HD  
Recording

SD  
Recording

Audio  
Recording

Figure 3.3: Battery lifetime for di�erent streaming settings.

the same user in di�erent contexts). User ‘A’ is interested in obtaining high-quality video, whereas user ‘B’

values immediacy. �e graph shows that the Pareto utility frontier for each user is di�erent, and that there

is no consistent ordering of modes, particularly between “HD Recording” and “SD Streaming”. �is example

highlights that neither the OS nor the application can know a priori the utility of modes for each user. In this

case, and in general when there are multiple dimensions that users value di�erently, the automatic selection of

a mode breaks down.

Finally, picking the most appropriate bundle of settings depends not only on the assessment of feature

tradeo�s, but also on how much battery life users plan to save, if that is their priority. Figure 3.3 shows the

complete battery lifetime from running the streaming workload at each proposed con�guration. Not surpris-

ingly, a device that uses less resources draws less power and its battery lasts longer.

27

3.3 Separating Roles in Power Management

In this section we argue why users, applications, and the OS should all limit the active demand of resources by

mobile devices to achieve maximum value out of a limited energy budget.

1.�e OS cannot always know the resource priorities of all applications. If an application consumes too

much energy, the OS could limit its access to system resources, such as CPU time, bandwidth, and accurate

location �xes. Robust applications should bear utility reductions and adapt themselves. However, arbitrary

utility reduction can be frustrating to the user, as it is hard to estimate her sense of value for functionality.

�is is exacerbated when there is more than one reduction alternative. For instance, if the OS decides that

the streaming application is spending too much energy, it could throttle the allocation of CPU or network

resources. Yet, the OS cannot decide which resource restriction will produce the most acceptable degradation.

2. Applications are not always aware of user priorities. Applications are in a better position than the OS

to prioritize actions, yet they may still need user input to avoid dissatisfaction. As highlighted in the streaming

example, an application might not have a total order of its con�guration sets. Consequently, the application

developer cannot determine the utility levels of the Pareto frontier for a given user. Being so, it is only the

user who can determine the relative value of each functionality bundle. Just knowing the user’s desired battery

lifetime is not su�cient to automatically maximize utility.

3. Users should choose at the right level, trading o� functionality versus lifetime. Although existing

energy-management systems involve users, many require too much knowledge from users at the wrong level

of abstraction. Users should only care about high-level functionality and device lifetime, instead of worrying

about what phone subsystem a�ects how much battery drain. A user expecting her battery to survive a 12-

hour �ight should not need to tinker with the screen brightness, CPU frequency, scheduling algorithm, or the

WiFi data rate of her smartphone. �e device should hide these tradeo�s whenever possible. Popular solutions

for end-user energy management are based on components rather than functionality, requiring users to know

the resource implications of turning o� the radio connection, GPS, network synchronization, or Bluetooth.

Frameworks like Cinder [198], Koala [215], and Chameleon [152] have mechanisms to limit resource usage per

28

Figure 3.4: Modes abstract complex settings using a single functionality-centered concept and are common in diverse
occasions: (a) Airplane mode for smartphones, (b) Incognito mode in the Chrome browser, (c) Scene modes for a camera,
and (d) Driving modes for a vehicle’s semi-automatic transmission.

application but su�er from the same problem – they assume that mobile users are likely to become system

administrators or programmers of their own devices. On the other hand, other frameworks limit themselves

to a single knob, such as lifetime [104, 243] or a preference to performance or duration [38]. We show that in

some cases this is not enough to maximize utility.

�e only remaining question is why the OS should be involved at all, since applications could directly

elicit preferences from users. �e challenge lies in deciding when apps should o�er choices. Such decision

requires knowledge of current and future energy availability, which naturally resides in the OS level [75]. If

each application had its own battery-prediction mechanism, then developer e�ort would duplicate, thereby

leading to poor or inconsistent behavior. �e OS, on the other hand, is in the right position to provide energy

context to all applications.

3.4 Application Modes

To address the concerns mentioned in the previous section, we have developed and implemented a new ab-

straction named Application Modes (AM) – bundles of functionality that are declared by applications to ease

the separation of roles between applications, users, and the OS to enable e�ective resource management. We

borrowed the concept of Modes from several commonplace scenarios (see Figure 3.4), where each presents

complex settings abstracted as a single, functionality-centered and easy-to-understand concept. Application

Modes resemble Chroma [48] in that very little application knowledge is exposed. Di�erent from Chroma,

users are not oblivious to the system’s arbitration but actually have an active voice in the decisions that a�ect

their experience. Application Modes are particularly well suited to cases where a user’s implicit-preference

29

function involve multiple dimensions, with no total order among them, similar to the di�erent shooting modes

of a camera, for example.

Power savings are achieved via graceful degradation of individual applications. Developers devise di�erent

sets of user-perceived functionality in exchange for di�erent levels of energy consumption. Various paths lead

to graceful degradation: di�erent settings, di�erent algorithms [201], even di�erent programs. It is up to the

developer to create those sets a�er assessing their energy impact. Most commonly, developers will choose

strategies that, although di�erent in implementation and QoS, lead to the same application goal.

Applications Modes o�er a preferable granularity at which the OS can pro�le energy consumption and

make lifetime predictions. In parallel, applications keep control of what resources to use so that the device

draws less power, but leave the decision of when to do so to the OS, which has detailed knowledge of the

energy context of the entire device, and to the user, who can prioritize functionality based on demand.

3.5 Design and Implementation

We have implemented the AM framework atop the Android OS. We chose Android as our testing platform

because of its open-source nature and current mobile-market dominance [125]. Our implementation does not

require device rooting nor kernel modi�cations, making it easily accessible to the majority of Android users.

Four modules comprise our system; these modules communicate with each other to enable informed deci-

sions on �ne-grained power management. Figure 3.5 illustrates AM’s components and how they are connected.

We explain how each component works in the following sections.

3.5.1 Developer API

Most users are not interested in the internals of so�ware development, hence developers willing to distribute

bundles of functionality for a target application should export mode metadata that are relevant to end users.

�ese include: (1) mode label for identi�cation; and (2) mode description so that users can qualitatively as-

sess the impact of each functionality choice. �e API exposes the developer-de�ned modes of a particular

30

UI Battery
Estimation

Mode
Aggregator

Developer
API

Figure 3.5: System components of the AM framework. Developers de�ne bundles of functionality using the provided API.
Bundles are presented to users along with battery-lifetime estimates from the OS.

application to the entire system so that users and the OS can assess them.

�e API consists of a narrow interface between applications and the OS (cf. Listing 3.1). When opened

for the �rst time, applications linking to this interface via a shared library declare to the OS each implemented

mode using the attributed label and description.

registerModes(List <ModeData >); // system call

setMode(ModeId); // callback

Listing 3.1: Modes API for data exchange between applications and the OS.

3.5.2 Mode Aggregator

�e Aggregator includes a daemon (RequestResponder) that intercepts mode-registration requests and im-

mediately registers the application and its mode metadata using a series of IPC-message exchanges onto a lo-

cal database. If the supporting application is erased, the aggregator garbage-collects the corresponding mode

metadata. Supported applications promise to switch between modes when instructed by the OS, whereas ap-

plications oblivious to the new API are not a�ected by it. Table 3.2 lists examples of representative Modes for

di�erent applications.

31

Application High Medium Low
Pedestrian Tracking 1m precision, real-time tracking 100m precision, 15min update interval 500m precision, updates at least once every hour
Car Navigation 3D map, audio, real-time location 3D map, audio, location update near turns 2D with static directions
Media Streaming HD video, real-time streaming SD video, real-time streaming SD video, upload while charging
Twitter Real-time post updates Updates every 30 minutes Updates on demand

Table 3.2: Mode examples for some representative mobile applications.

3.5.3 Battery Life Estimator

�e amount of remaining battery charge can substantially impact how users prioritize their interaction with

handheld applications and when users will recharge their devices. To e�ectively select on which mode an appli-

cation should run, users need feedback on the impact of their choices over the battery-discharging behavior.

Users commonly take notice of the remaining battery life from an interface that displays the battery’s state

of charge using level bars or percentage (Figure 3.6). Although more user-friendly than voltage or Coloumb

(mAh) numbers, the meter interface does not clearly present an estimation of how long the battery will last.

It is tempting to assume a linear relationship between the battery percentage and the remaining battery time.

However, such assumption does not always hold for di�erent reasons:

• A dynamic load can heavily in�uence the battery-discharge rate. Due to a nonlinear physical e�ect on

the battery, the lifetime depends on the usage pattern. During periods of high energy consumption the

e�ective battery capacity degrades, thus shortening its lifetime. Conversely, during periods of low energy

consumption the battery can recover some of its lost capacity, thus lengthening its lifetime [54].

• �e temperature within the battery may also vary due to a dynamic load or an external heat or cold

source. �e energy consumption of a battery-powered system is impacted by the internal resistance of

the battery, which varies from device to device [91]. �e resistance strongly depends on the temperature

– for Li-ion batteries, the resistance increases about 1.5× for every 10○C of temperature decrease [54].

Since predicting battery lifetime is hard, handheld systems restrict themselves to low-resolution metering

interfaces and users usually resort to guesswork and previous experience to determine how much battery life

they have and how they should prioritize apps.

Nonetheless, as we naturally plan ahead and prioritize tasks using the concept of deadlines, time is the

32

(a) (b)

Figure 3.6: UI widgets for smartphones commonly used to inform users on the battery’s state of charge: (a) bars; (b)
percentage.

most natural way to express how long batteries last. Just like other works [191, 221], we opt to use time as a

proxy to combine user interaction with power management. Instead of trying to predict future lifetime, we

pre-compute it using a history of measurements taken from representative workloads.

3.5.4 User Interface

�e user interface is the front end to the Aggregator and presents to the user the available modes of oper-

ation for the applications that leverage the AM API. Besides displaying each mode’s metadata, the interface

also presents an estimate of the battery-lifetime reduction (or increase) for each mode. From the quantitative

(lifetime) and qualitative (description) data, users have a better understanding of the tradeo�s between per-

formance and battery duration than what is currently o�ered in commercial OSes. Once a mode is selected,

three steps take place.

1. �e Modes UI noti�es the system of a mode switch. Based on the available metadata, RequestRespon-

der routes the mode selection to its application owner.

2. �e enquired application modi�es its functionality by switching its internals to another set of developer-

de�ned changes.

3. RequestResponder updates its application database with metadata on the applied changes.

If we consider the scenario of running multiple AM-supporting applications concurrently, con�guring

each application becomes a repetitive and onerous task. �e AM UI has a second course of operation in which

33

all supported applications are listed, descendingly sorted by battery-lifetime increase. Users can then prioritize

and con�gure only those applications that matter the most to them.

3.5.5 Putting Everything Together –Work�ow

Application Modes represent a meaningful granularity at which the OS pro�les energy consumption and pre-

dicts battery lifetime. Applications keep control of what resources to reduce in order to save energy, but leave

the decision of when to do so to the OS and to the user.

In one possible scenario, the OS notices that at the current power draw, the device will exhaust the battery

before the next expected recharge. �e OS reacts by presenting to the user a list of running apps, ordered

by battery impact. When the user selects an app from the list, the OS presents an interface similar to that

in Figure 3.7. From this interface, the user selects a di�erent mode of operation, informed by its description

(i.e., functionality) and expected impact on battery lifetime. In another use case, the user is presented with

a noti�cation of AM support when opening a newly installed application. A�er clicking the noti�cation, the

aforementioned interface appears, and the user can explore the tradeo� possibilities o�ered by the application

developer. Once a mode is selected, the OS instructs the application to change its settings. It is the responsibility

of the application developer to instruct her so�ware to change its behavior according to the mode selection.

3.6 Evaluation

We evaluate Application Modes in two scenarios: navigation and gaming. For each scenario, we consider three

evaluation metrics: (1) development cost (in lines of code); (2) average power draw; and (3) battery lifetime,

measured from continuously running each scenario from a full battery to its depletion.

Navigation

Over the past two decades, devices used to navigate drivers and pedestrians have proliferated, with smart-

phones being the most versatile. �anks to their multifunctionality, price, and accurate position sensors,

34

Figure 3.7: Interface to select application modes for the Twitter mobile app.

smartphones and tablets have taken over the navigation market that once belonged to dedicated GPS sys-

tems [230].

Turn-by-turn navigation exercises several hardware subsystems, including the CPU, GPU, audio, network,

and GPS. It is sometimes used in critical situations, when there is little battery le� and the user needs orienta-

tion to arrive at her destination (and a charging opportunity). �ere are also interesting tradeo�s in function-

ality, utility, and energy use, depending on what subset of resources the navigation app uses.

We demonstrate the potential savings in navigation by evaluating the energy output of di�erent modes

for OsmAnd [22], an open-source Android navigation app with online and o�ine features. We consider �ve

modes, listed in Table 3.3, from select parameters for screen and audio output, map-data source, and routing

mechanism. �ese settings are not transparent to the user, and o�er speci�c tradeo�s between location ac-

curacy and resource use for a given route. Notable di�erences between settings include the use of previously

downloaded vector maps instead of streamed tile data, disabling the display and using audio for directions,

and only displaying directions for the user to write down.

De�ning the �ve new modes required a total of 129 additional lines of Java code. It is important to note

that we re�ned these �ve modes a�er extensively studying OsmAnd’s source code, from which we discovered

35

Mode Display Settings Routing Engine Audio?
High Quality Online map tiles and overlays, Cloudmade (online) Yes

PoIs, compass display, 3D view

Light Screen O�ine vector maps, no PoIs, no compass, OsmAnd (o�ine) Yes
polygons, day mode (light screen)

Dark Screen O�ine vector maps, no PoIs, no compass, OsmAnd (o�ine) Yes
2D view, night mode (dark screen)

Audio Only Screen o� OsmAnd (o�ine) Yes

Written Directions Screen on for directions search, Cloudmade (online) No
o� a�erwards

Table 3.3: Mode alternatives to a navigation app guiding a four-mile trip. Upper modes yield higher-quality routes in
exchange for greater resource usage.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Full
Features

Light
Screen

Dark
Screen

Audio
Only

Written
Directions

P
o
w

e
r(

W
)

Baseline w/ screen on
Baseline w/ screen off

Average
Median

1.00

1.32
1.85

5.43
14.31

Figure 3.8: Power-draw distribution of di�erent pro�les OsmAnd (cf. Table ??). Box limits represent the �rst and third
quartiles and include the median and average power draw. Whiskers indicate the minimum and maximum power draw.
Numbers to the le� of each box show the improvement in battery drain relative to “High Quality.” Reducing the output
quality allows for greater battery savings.

26 independent settings that could a�ect both functionality and energy consumption.

For the sake of comparison, we measured the power draw of each mode during a �xed, four-mile car trip.

Figure 3.8 depicts the distribution of instantaneous power-draw samples for our device under test (Samsung

Galaxy Nexus). �e “Full Features” mode yields a richer visual trajectory, including information such as points

of interest (PoI), at the expense of a higher power pro�le. As we reduce the number of enabled settings, there is a

constant drop in energy consumption along with a decrease in the perceived quality of the routing information.

“Written Directions” draws on average 14× less power than “Full Features.” In return, the user has to take notes

of the route before the trip starts and use them as the only navigation source to reach her destination1.

36

Mode Game Settings
High 640x400 resolution (scaled), 100% screen brightness, HW acceleration, music and SFX enabled

Medium 160x100 resolution (scaled), 50% screen brightness, HW acceleration, no music, SFX enabled
Low 320x200 resolution (no scaling), 50% screen brightness, no HW accel, no music, no SFX

Table 3.4: Mode alternatives for DOOM. Upper modes yield a more immersive experience.

 0

 1

 2

 3

 4

 5

 6

Doom -- HighDoom -- Medium Doom -- Low

P
o
w

e
r

(W
)

Average
Median

1.00

1.23
1.39

Baseline w/ screen on
Baseline w/ screen off

Figure 3.9: Power draw of di�erent modes for DOOM (game). Lower settings lead to greater battery savings at the expense
of a less smooth audio and visual experience.

Gaming

�e rise of smartphones and tablets has ushered a renaissance in gaming. Games have been used as a bench-

mark for performance and resource use for years and are one of the main sources of battery depletion [126]. We

analyze how AM can help mobile gamers enjoy a longer battery lifetime by using the �rst-person-shooter game

DOOM as a case study. We implemented three di�erent modes (Table 3.4) for PrBoom [24], the open-source

port of DOOM to the Android OS, totaling extra 119 lines of Java code.

Figure 3.9 shows the power draw of the three proposed modes. “Low” caters to users who want to extend

their gaming session despite a low battery. To reduce the battery-discharge rate, “Low” reduces the screen

resolution without scaling it. As a result, the display output is shown on a small window surrounded by a large

black frame. Given that the Galaxy Nexus smartphone has an AMOLED screen, the black frame along with

the lower brightness setting signi�cantly reduce the screen’s power draw (72% less than the high quality mode).

Figure 3.10 depicts the measured battery lifetime of each mode.
1�is mode was motivated by real experience!

37

Ti
m

e
U

nt
il

D
ep

le
tio

n
(h

)

0

1.15

2.3

3.45

4.6

High Medium Low

Figure 3.10: Battery lifetime for DOOM’s application modes.

3.7 Challenges, Limitations, and Extensions

During the development and evaluation of Application Modes, we faced a variety of challenges and open

questions that de�ned potential steps for further research, including:

Con�ict Detection and Resolution. As the number of applications supporting AM increases, there is a

chance of con�icting choices when con�guring applications that share subsystems. For instance, if two apps

use the radio simultaneously, having only one app commit to reduce its networking is of little use. �e OS

should have a mechanism to detect and resolve such con�icts, with possible involvement of applications, and,

ultimately, end users. Another source of con�icts are global settings not associated with a particular application

– screen brightness and Airplane mode being major examples. A possible solution is to track action intents [96,

99] that lead to energy changes so that the system can reach an informed resolution.

Engaging Users. Reeves and Nass [193] argue that people behave towards and expect of computers in ways

consistent with human-to-human contact and relationships. �ere is an expectation that technology should

treat us humanely and act with human values as soon as computers show the slightest sophistication. �erefore,

users will only see value in Application Modes if the framework converses in a language that meets user stan-

dards. Our design decisions partially cover the semantic gap between what users expect and what machines

can provide. Nonetheless, more research is necessary to create an adequate battery-handling interface that can

quickly adapt to ever-changing user needs and contexts. Although we initially pursued user and developer

38

engagement in power management, our focus now mainly switches to the latter.

Engaging Developers. Optimizing so�ware for energy e�ciency is an challenging task. In the case of

application-speci�c optimizations, deep analysis and debugging are necessary. �erefore, application develop-

ers need a means that can assist or automate the search for energy hotspots. �e remainder of this dissertation

focuses on techniques that contribute to this objective.

3.8 Summary

Application Modes promote the cooperation of the OS, applications, and users to achieve e�ective energy man-

agement in mobile devices. Applications provide the OS with discrete modes that express graceful degradation

in face of limited battery. �e OS centralizes all of the power-management knowledge facilitating the separa-

tion of roles and easing the lives of users and developers. We implemented our prototype atop the Android

OS and demonstrated the battery-saving potential beyond energy proportionality of three representative mo-

bile applications. A major challenge is the extra burden on the developer’s side, who is now also responsible

for discovering appropriate functionality changes and analyzing the corresponding impact on battery life. In

the following chapters, we elaborate on semi-automatic techniques that guide developers towards the most

promising energy-saving opportunities beyond energy proportionality.

Chapter 4

Tamer

Generalizing the Exposure of So�ware-Related Energy Knobs

Application Modes is our �rst attempt to control and modify application functionality for the bene�t of bat-

tery savings. A major caveat of AM is the requirement of point solutions – each application must be recoded

and redistributed before users can re-evaluate battery management. Not all developers are willing to spend

time doing additional work without a guarantee of better results. �erefore, we must scale out the idea of

functionality change by avoiding this extra burden. In this chapter, we consider the idea of rewiring an appli-

cation binary to achieve energy savings. We develop a system capable of quickly modifying the behavior of

applications running in the background.

4.1 Introduction

Due to its user-centric and interactive nature, the �ow of a mobile application is driven by events such as user

actions, sensor I/O, and message exchanges. Such event-driven paradigm lets the system idle until a new event

arrives. Mobile OSes, such as Android, iOS, and Windows Phone, take advantage of idling opportunities to

engage in opportunistic suspend. Upon brief periods of idling, the handheld returns to the default suspend

39

40

state. Hardware subsystems, including the CPU, GPU, GPS, and network modem, shi� to a low-power mode

and so�ware state is temporarily stored in self-refreshing RAM. �e same subsystems return from suspension

upon interrupts emitted by hardware or so�ware indicating that there are pending requests.

With the rise of multitasking and the multiplication of background services and complex mobile applica-

tions, we expect the amount of interrupts to increase, thereby forcing the system to spend more time active

attending requests. Such active periods take a heavy toll on battery lifetime. A recent study by Google quanti�es

this impact: each second of active use of a typical smartphone reduces the standby time by two minutes [163].

�is chapter studies the problem of battery drain mostly due to app-originated background operations that

wake up the mobile device. We present Tamer, a mechanism we built for the Android OS that interposes on

events and signals responsible for task wakeups – alarms, wakelocks, broadcast receivers, and services. Like

a number of pro�ling tools, Tamer lets developers characterize the background behavior of di�erent apps

installed on a device. In §4.2, using Tamer’s instrumentation, we show how a set of installed applications can

dramatically a�ect the battery lifetime of four di�erent devices. Unlike existing pro�ling tools, however, Tamer

can also selectively block or rate-limit the handling of such events and signals according to �exible policies.

Tamer controls the frequency at which so�ware schedules alarms or receives noti�cations of speci�ed events,

thereby providing �ne-grained control over the energy consumption of apps that are useful yet irresponsible or

ine�cient with respect to background activities. In §4.5.2 we show via a few examples how Tamer can reduce

the battery drain due to energy bugs [178].

We summarize our contributions as follows:

• We characterize how applications and core components of the Android OS use speci�c features to per-

form background computing, and how background computing signi�cantly a�ects energy consumption.

In special, we note that Google Mobile Services play a major role on battery drain while the device is

apparently dormant (§4.2).

• We introduce Tamer, an OS mechanism to control the frequency at which background tasks are handled

thereby limiting their impact on energy consumption (§4.4). Tamer leverages code-injection technol-

ogy and is applicable to any Java-based Android application.

41

• We demonstrate how Tamer can successfully throttle the background behavior of popular applications,

thus reducing their energy footprint (§4.5). We show how di�erent policies reduce power draw in ex-

change for little visible impact on functionality.

Despite being a powerful mechanism, Tamer is only a step towards e�ective energy management. In §4.6,

we discuss challenges in helping developers de�ne policies that are e�ective yet not disruptive to the user

experience.

4.2 Motivation

Device Name Device Type Processor Features
Google Galaxy Nexus Smartphone Dual-core 1.2GHz ARM Cortex-A9 WiFi, GPS, 3G (o�)
Samsung Galaxy S4 Smartphone Quad-core 1.9GHz Qualcomm Krait 300 WiFi, GPS, LTE (o�)

Amazon Kindle Fire 2 Tablet Dual-core 1.2GHz ARM Cortex-A9 WiFi
ASUS MeMO Pad 7 (ME176C) Tablet Quad-core 1.83GHz Intel Atom Z3560 WiFi, GPS

Table 4.1: List of devices under test (full battery drop).

Many smartphone and tablet users are habituated to an always-constant Internet connection, which is nec-

essary for immediate noti�cations of e-mails or application updates. Other common background operations

include polling navigational sensors for location clues and turning on the network radio for incoming mes-

sages. �ere is little restriction in Android on what apps can do in the background and developer’s discipline

is the only barrier preventing ine�cient apps from hogging resources and wasting energy.

Traditionally there has been little visibility, both to app developers and to users, on the contribution of

individual apps to energy use, especially while in the background. It is also challenging to visually recognize

whether an application is running or idling while in the background. Given that one cannot optimize what

cannot be measured, recent monitoring and pro�ling tools have helped bridge this visibility gap [45, 111, 167,

174, 179, 189, 223].

Today’s average handheld includes a large amount of third-party so�ware. According to a recent Nielsen

report [79], the typical US smartphone owner has around 27 apps installed on her device. Even with the best

available tools, the end user can do little to cope with ine�cient apps. Most of the aforementioned tools target

42

0

20

40

60

80

100

0 20 40 60 80 100 120 140

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

AOSP+GMS+Top10

(a) Galaxy Nexus

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

(b) Galaxy S4

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

(c) Fire 2

0

20

40

60

80

100

0 50 100 150 200 250

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

(d) MeMO Pad 7

Figure 4.1: Battery drop of four Android devices idling with the screen o�. By adding Google Mobile Services to the base
installation, the relative battery lifetime decreases between 29.5% (Fire 2) and 77.5% (MeMO Pad 7).

43

developers and, even so, are coarse grained. For instance, eStar [167] and Carat [174] can identify the most

energy-ine�cient program, but only o�er to kill or uninstall the culprit app, perhaps suggesting replacements.

�is palliative solution does not work for apps that exclusively provide irreplaceable functionality.

Tamer o�ers the possibility of a much �ner-gained control once an energy hog or bug is found. Tamer

hints on tasks expending the most energy and can rate-limit their execution. Tamer does so by tracking most

of the events responsible for device wakeups that are visible at the Android-OS framework level, and can �lter

their continuation in real time.

To demonstrate how running tasks can signi�cantly impact battery life, we measured the battery drop

of four Android devices (two smartphones and two tablets, cf. Table 4.1) running two di�erent application

sets, while idling and with the screen o�. We consider three scenarios: the �rst testing environment (“Stripped

Android”) consists of a stripped version of the Android OS (KitKat), containing a minimum number of services

and apps; the second environment (“Stripped Android + GMS”) adds Google Mobile Services (GMS) on top

of “Stripped Android.” GMS consists of proprietary applications and services developed by Google, such as

Calendar, Google+ (social media), Google Now (personal assistant), Hangouts (instant messaging), Maps,

Photos, Play Service (integrating API), Play Store, and Search. Due to their popularity and added value, GMS

apps are included in most of the Android devices sold today. For the third scenario, which we ran on the

Galaxy Nexus smartphone, we took the GMS install base and added the most popular free apps from Google’s

Play Store as of January 20151.

For each experiment, we le� each of the four devices unattended and con�gured to its default settings.

Relevant settings include a established connection to a WiFi access point, enabled location reports via GPS

and background network synchronization. We expect most of the battery drain to stem from static-voltage

leakage and eventual background processing.

Figure 4.1 shows the time taken by each environment-device combination to deplete its battery. For all

devices, “Stripped Android” took the longest to completely drain the battery. For both tablets evaluated, the
1Crossy Road, Candy Crush Saga, Pandroid Radio, Trivia Crack, Snapchat, Facebook Messenger, Facebook, 360 Security Antivirus,
Instagram, and Super-Bright LED Flashlight.

44

draining-time di�erence spanned dozens of hours. To investigate the motive behind the large di�erence be-

tween depletion times, we instrumented the Android so�ware stack to timestamp the occurrence of back-

ground events. Additionally, we connected one of the four devices (Galaxy Nexus) to a Monsoon power mon-

itor and collected power samples from its battery. Finally, we aligned and synchronized both the event and

power timelines to understand their correlation. Figure 4.2 depicts a six-minute slice of this combination. We

observe that GMS triggered more events in the background and that they are correlated with the surge of power

peaks. We used this tracing knowledge to build a mechanisms that counters the energy buildup of excessive

wakeups. Because this mechanism relies on Android’s internals, we �rst need to understand how an Android

application functions while in the background.

 0

 1

 2

 0 50 100 150 200 250 300 350

AlarmManager

P
o

w
e

r
(W

)

Timeline (s)

(a) Stripped Android

 0

 1

 2

 3

 0 50 100 150 200 250 300 350

NlpLocationReceiverService
PendingIntentCallbackService
UlrDispatchingService
NlpWakeLock
NlpCollectorWakeLock
GeofencerStateMachine
GCoreFlp
NetworkLocationService
AlarmManager

P
o
w

e
r

(W
)

Timeline (s)

(b) Stripped Android + GMS

Figure 4.2: Event tracing and power measurement on the Galaxy Nexus smartphone for two scenarios. For each graph,
the top stack shows the event calls over time. �e bottom curve depicts the corresponding system power draw during the
same period.

45

4.3 Android OS: Power Management and Application Internals

�is section provides a concise description of Android’s power-management system followed by an overview

of the components of a typical mobile application and how these components behave while running in the

background. Finally, we highlight the in�uence of background execution on battery drain using four types

of events: wakelocks, services, broadcast receivers, and alarms. §4.4 describes Tamer, a control system that

adjusts the frequency at which these events are dispatched.

4.3.1 Mobile Power Management

Android KitKat employs an aggressive form of power management to extend battery life. By default, the entire

system suspends itself, sometimes even when there are running processes. Opportunistic suspend is e�ective

in preventing programs from keeping the system awake and quickly draining the battery. To curb system

suspension, Android uses Wakelocks to keep the system awake. Wakelocks are reference-counted objects

that can be acquired and released by kernel and userspace code. A wakelock acquire expresses a process’s need

for the system to remain awake until run-completion. A wakelock acquire either holds a resource awake until

there is a corresponding release call, or sets up a timer to relinquish the lock.

Kernel drivers use wakelocks to block the suspension of di�erent subsystems (e.g., CPU, network, and

screen), whereas the Android application framework leverages wakelocks for di�erent levels of suspension,

represented by groups of components (e.g., keep the network radio awake vs. keep the radio, screen, and CPU

awake). As an example of suspend-blocking by the OS, Android automatically acquires a wakelock as soon as

it is noti�ed of an input event and only releases the same wakelock once some application handles the event or

there is a timeout. Application developers can also instantiate and manipulate wakelocks using the Wakelock

API. An e-book reader app must acquire a wakelock to keep the screen awake so that the user can read her

favorite novel without interruption. Wakelocks play an important role in guaranteeing proper background

task execution in face of default suspension, as we will see next.

46

4.3.2 Android Applications: Dealing with Lifecycle Changes

Barring a few interface-less system services, an Android application consists of a set of Activities that

places the UI widgets on the screen. An application starts with a single thread of execution attached to the

foreground UI, which is mostly responsible for dispatching interface events. To avoid unresponsiveness and

user frustration, a wise programmer would o�oad other computations to concurrent worker threads while the

UI responds to input events. Support for concurrency exists in the form of a number of standard Java classes

and interfaces, such as Threads, Runnables, and Executors, as well as Android’s own �avors – AsyncTasks

and message Handlers. However, such primitives cannot wake up the system from suspension.

As the user navigates through, out of, and back to an application, its lifecycle switches between di�erent

states according to the UI visibility. An application is active if one of its activities receives user focus in the

foreground. If the user switches to another app or decides to lock the device, the application is paused and

moved to the background. Because mobile apps are multitasked, developers need ways to run tasks even when

her app is not occupying the screen.

Dispatching Background Tasks

�e small screen size of a smartphone or tablet prevents multiple applications from running simultaneously2.

To conserve energy, backgrounded apps are frozen and stop running either as soon as another application is

brought to the foreground or if the screen is locked. Context switching enables opportunistic suspend – by

making apps invisible, Android frees its own set of wakelocks, opening space for hardware throttling.

Android o�ers to developers a narrow and well-de�ned interface for background-task o�oading that takes

care of scheduling latent tasks [39]. �is interface consists of a handful of components including services,

broadcast receivers, and alarms. �e internal implementation of these components leverages wakelocks to

keep the device awake while executing tasks.
2�ere are a few attempts to support shared-screen applications, although they are far from the norm.

47

Services are application components that asynchronously run on background threads or processes. Ac-

tivities dispatch services to perform long-running operations or to access resources on behalf of appli-

cations, such as synchronizing local data with a remote storage system. An advantage of running a separate

service is that its execution persists regardless of the state of its owner’s UI.

A BroadcastReceiver is a reactive mechanism that permits programs to asynchronously respond to

speci�ed events. An application registers a BroadcastReceiver along with an event-subscription list, the

IntentFilter, which is used to determine whether an application is eligible to respond to a given event.

Events are prede�ned by the system (e.g., “battery charged”) or can be de�ned by developers (e.g., “backup

�nished”). Receiver threads remain dormant until a matched event arrives; they respond by running a callback

function. A �le-hosting app could, for instance, register a receiver to display a noti�cation once a scheduled

backup �nishes.

Another common programming pattern is the ability to perform time-based operations outside the life-

cycle of an app. For instance, checking for incoming e-mails every so o�en is a recurrent user operation that

can be automatized. Developers use the AlarmManager mechanism available in the Android SDK to schedule

periodic tasks at set points. At each alarm trigger, the system wakes up and executes a callback function whose

contents can take various forms: a UI update, a service dispatch, an I/O operation, scheduling a new alarm,

etc. Alarms are a good �t for opportunistic suspend – apps are only activated when there is pending work.

In summary, Android KitKat provides three types of asynchronous mechanisms to run background tasks:

services, broadcast receivers, and alarms. Aligned with wakelocks, developers have a powerful collection of

events that can keep the system awake. In the next section, we introduce Tamer, a system that acts on this

narrow and well-de�ned interface to throttle the rate at which background events are handled in exchange for

energy savings.

48

4.4 Tamer

4.4.1 Design

Given that background events can a�ect the sleeping pattern of mobile devices, we consider the possibility of

regulating the frequency of these events to improve battery life. We introduce a policy-and-control mechanism

to regulate the interval between event dispatches. We model this regulatory process using three steps: (1)

observation; (2) comparison; and (3) action.

First, we establish a policy mechanism that allows developers and savvy users to declare how o�en the

running system should let a background event proceed. A policy is a contract that declares the conditions for

event execution. �is contract speci�es the event type and its identi�er; an optional list of a�ected apps, if the

restriction only applies to a subset of event dispatchers or receivers; whether the policy enforcement should

also take place when the event owner (application) is running in the foreground; and the rate at which the event

is allowed to execute. A developer could, for instance, install a policy for a weather-forecast app that accepts

calls to WeatherUpdateService at most once every six hours, whereas calls to LocationUpdateService

from the same app would remain unlimited.

To enforce policies, we outline a controller comprising three agents: observer, arbiter, and actuator. �e ob-

server intercepts event occurrences and bookkeeps their frequency. �e arbiter veri�es whether the measured

event rate is above the policy-declared threshold, in case it exists, and noti�es the actuator, which hijacks the

event continuation to arti�cially reduce its occurrence rate. Figure 4.3 illustrates Tamer’s control sequence.

Observer Arbiter ActuatorEvent rate

Policy

DecisionEvent Action

Figure 4.3: Sketch of Tamer’s event-control system as a three-stage pipeline.

�ere are two ways to ful�ll event throttling: canceling or delaying. An event cancel denies the continuation

of the event payload by early returning from the callback function, thereby preventing its complete execution.

49

An event delay, on the other hand, postpone the continuation of the event call for a limited time. In this chapter,

we consider the canceling strategy. We discuss the pros and cons of each strategy in §4.6. It is important to

note that an event cancel does not lead to a program crash. Alarms, services, and broadcast receivers all run

asynchronously. Wakelock requests are synchronous, although a run-denial greenlights system suspension

when there are tasks expecting to run. Still, these denied tasks are never aborted, but run in chunks as long as

the system periodically wakes up. Our approach tries its best to prevent the scheduling of unwanted events.

When that is not possible, Tamer aborts the event continuation at the earliest opportunity to avoid the energy

cost of the event payload.

To drive the implementation of Tamer, we established the following requisites:

Comprehensive support of events. Tamer’s control mechanism should be inclusive. Although app-speci�c

solutions are e�ective, they seldom apply to other programs. Tamer’s control sequence should monitor and,

if necessary, actuate on every background event instance. Details about a particular event should be con�ned

to its policy and not a�ect the controller. Furthermore, the policy designer should be responsible for de�ning

a sane event frequency, considering, perhaps, the context and the impact of an event hijack. To implement an

all-encompassing monitor system, we opt for an OS-level solution.

Support for power-oblivious applications. Users should not abstain from using their favorite apps even when

these apps are power hogs. Uninstalling or suggesting alternative apps for the purpose of saving energy is

not acceptable. Tamer should cope with the existence of ill-behaved apps and act upon their misbehavior if

directed by the policy designer.

Compatibility. Solutions that rely on deep system introspection require extensive rewrites of components [41,

88, 96] or even development from scratch [198]. Although tempting, straying from the mainline can limit the

user base, especially in the case of consumer-oriented OSes. Developers interested in controlling and analyzing

system behavior need an environment that resembles as much as possible the what is available to users. Tamer

should be compatible with and keep a minimum amount of changes to the existing underlying OS.

E�ciency. Mobile apps must cope with limited computational and energy resources. �e control mechanism

should avoid high computing overhead to prevent excessive battery drain and system slowdown.

50

Event Class Hook Point (Method) Instrumentation Payload

Wakelock com.android.server.PowerManagerService
acquireWakeLockInternal

If there is a matching policy, early
return in case acquire happens before
grace period. Else, let acquire proceed;
bookkeep wakelock name and start
grace-period timer.

releaseWakeLockInternal
Called only if acquire was not blocked;
log wakelock-hold interval.

Service com.android.server.am.ActiveServices startServiceLocked
If there is a matching policy, proceed
as in wakelock acquire.

BroadcastReceiver
android.app.ContextImpl

registerReceiverInternal
Save pointer to receiver declared at
runtime.

unregisterReceiverInternal
Remove pointer to receiver declared at
runtime.

com.android.server.pm.PackageManagerService
addActivity

Save pointer to receiver declared at
compile time.

removeActivity
Remove pointer to receiver declared at
compile time.

com.android.server.am.ActivityManagerService broadcastIntentLocked

If there is a matching policy,
temporarily undeclare receiver to
prevent event broadcasts; update grace
period.

Alarm com.android.server.AlarmManagerService triggerAlarmsLocked
If there is a policy, proceed as in
wakelock acquire.

Table 4.2: Tamer’s instrumentation points.

4.4.2 Implementation

To avoid reimplementing OS components to regulate event handling, Tamer uses the Xposed framework [34]

to enable system modi�cations at runtime. Its main caveat is the need for device rooting. Xposed enables thor-

ough system modi�cations without need for binary decompilation. Xposed intercepts Java method calls and

temporarily diverts the execution �ow to function-hook callbacks for inspection and modi�cation. Developers

de�ne callbacks as separate modules that run in the context of the intercepted application. Function hooking

works by matching the method’s name and signature of the declared callback with the currently running func-

tion. Xposed allows for changing the parameters of a method call, modifying its return value or terminating it

early. We use this hooking mechanism to intercept function calls originating from or directed to the aforemen-

tioned background event types (i.e., wakelocks, services, alarms, and broadcast receivers). Hook modules are

distributed as independent Android apps and are not bound to a speci�c Android version, being compatible

with the majority of customized Android releases.

Figure 4.4 shows how Tamer communicates with the Android OS. Tamer sits, along with Xposed, between

user applications and the Java-based application framework, which serves as the foundation for the Android

SDK. Events have directions that help de�ne how to write the interception payload. While service and wakelock

51

calls originate from apps and are forwarded to the framework, alarms and broadcast receivers work in the

opposite direction.

Tamer consists of a series of function hooks that interpose on the background-processing interface and

acts as a controller mechanism to enforce user-de�ned policies. To implement Tamer’s event canceling, we use

Xposed’s introspection API to explore, monitor, intercept, and modify public and private classes, methods and

members of the SDK framework (Table 4.2). To decide where to place the controller’s instrumentation points,

we studied the source code of the Android framework stack. Treating the relationship between subroutines

as a call graph, methods exposed in the public interface are leaf nodes, whereas internal methods are parent

nodes. In some occasions, we had to backtrack the call graph to �nd a proper instrumentation point mainly

because (1) the public interface did not o�er enough context to feed our monitoring system (e.g., missing event

name or unclear caller-callee relationship); (2) in the case of receiving events, it is better to interpose on a call

as early as possible to avoid unnecessary operations before cancellation; (3) an event call may have more than

one function signature, therefore we looked for a converging parent node. We found an exception to last rule

when handling broadcast receivers. Applications can declare receivers at compile time via a Manifest �le or

at runtime using the SDK API. Since the Android framework keeps separate data structures for each case, we

had to handle them separately.

Our controller implementation covers all versions of the Android OS ranging from Ice Cream Sandwich

to Marshmallow. In a handful of occasions, we resorted to di�erent instrumentation points for a given event,

mostly due to small di�erences in the function signature between OS versions. Because the SDK interface is

fairly static, covering future versions of Android should not require major changes.

4.5 Evaluation

We evaluate Tamer in three ways. First, we revisit our motivating scenario (§4.2) and use Tamer to extend

the battery life of the GMS-based installation. We then investigate how Tamer can e�ectively mitigate energy

bugs, a system behavior that causes unexpected heavy use of energy not intrinsic to the desired functionality

52

Libraries

Application Framework

Android Runtime

Kernel

Tamer

W
akelock

Service

In
te
nt

A
la
rm

Figure 4.4: Tamer sits between apps and the SDK stack, and interposes on events between these two layers. Tamer is
oblivious to the lower system layers.

of an application. Last, we measure Tamer’s performance and energy overhead.

4.5.1 Taming Google Mobile Services

In §4.2, we saw how the inclusion of GMS into the baseline Android signi�cantly reduced the battery life of

four devices under test. Nonetheless, GMS adds a series of services and applications that enhances the user’s

mobile experience. In fact, most users do not even have the option of uninstalling these applications, as GMS

comes pre-installed as a system package in the majority of commercial handhelds. We show how Tamer can

negotiate a tradeo� between GMS’s functionality and battery savings. We aim to keep the added value of GMS

without the cost of a silent battery depletion.

Event Name Type Count Total Duration (s)
NlpWakelock W 5963 1662.71
NlpCollectorWakelock W 2121 3926.63
LocationManagerService W 2030 67.12
NlpLocationReceiverService S 1159 -
NetworkLocationService S 579 -

Table 4.3: Top �ve event occurrences for the Galaxy Nexus due to GMS. A handful of events are responsible for the major
impact on the battery. ‘W’ signi�es a wakelock event, whereas ‘S’ stands for service call.

With the control mechanism established, our next step is to design a policy that reduces the battery impact

of events originating from or destined to GMS. Table 4.3 ranks the top triggered events reported by Tamer’s

monitoring module. For wakelocks, we also report the duration they were held. We use event frequency as an

53

0

20

40

60

80

100

0 20 40 60 80 100 120 140

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

AOSP+GMS (Tamer-15)

AOSP+GMS (Tamer-45)

(a) Galaxy Nexus

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

AOSP+GMS (Tamer-15)

AOSP+GMS (Tamer-45)

(b) Galaxy S4

0

20

40

60

80

100

0 50 100 150 200 250 300 350

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

AOSP+GMS (Tamer-15)

AOSP+GMS (Tamer-45)

(c) Fire 2

0

20

40

60

80

100

0 50 100 150 200 250

B
at

te
ry

 L
ev

el
 (

%
)

Hours

Stripped AOSP

AOSP+GMS

AOSP+GMS (Tamer-15)

AOSP+GMS (Tamer-45)

(d) MeMO Pad 7

Figure 4.5: Battery drop of four di�erent devices a�er applying our Tamer policies.

54

heuristic to guide policy con�guration. We note that NlpCollectorWakelock is primarily responsible for

keeping the system awake in the background. Online reports [14, 21] indicate that NlpCollectorWakelock

is related to location reporting, an Android feature used to estimate and report the current device position

based on the connection to WiFi access points and cellphone towers. Apps that use this feature include Google

Now, Google Maps, among others. �e other frequently reported events are also related to the same feature.

Disabling Location Reporting on the device’s general settings is an easy way to increase battery life, but it turns

applications dependent on this feature useless.

�e problem with NlpCollectorWakelock and other associated events is the frequency at which these

events wake up the system and the total time they keep the system awake. For instance, during an 80-hour

discharge period of the Galaxy Nexus smartphone, NlpWakelock was called, on average, once every minute.

In parallel, NlpCollectorWakelock, by itself, kept the system awake for more than one hour. We believe

such a high battery impact coming from a small set of select applications does not justify the bene�ts of having

GMS running as it is in the background. For this reason, we declared two policies for GMS – Tamer-15 and

Tamer-45 – targeting NlpCollectorWakelock and its associated events to alleviate their wakeup burden. For

each wakelock and service in Table 4.3, Tamer-15 allows a single call of each event every 15 minutes, whereas

Tamer-45 allows one event call per 45 minutes. Deciding on an appropriate rate is a subjective matter. Our

setup tries to reach a balance between informing subordinate apps of location updates and increasing battery

lifetime. Figure 4.5 shows that our policies substantially reduce the battery-drain rate of all four tested devices.

4.5.2 Chasing Energy Bugs

An energy bug, or ebug, is a system error either in an application, OS, �rmware, or hardware that causes an

unexpected, high amount of energy consumption [178]. Such errors occur due to various reasons including

programming mistakes, malicious intent, and faulty hardware. Because ebugs usually do not visibly a�ect

application functionality, users will only notice their impact when it is too late – an early emptied battery.

Di�erent from previous research that identi�ed and characterized ebugs [179,225], we focus on mitigating

them at runtime. Tamer allows for testing o�ending application events at di�erent rates, thus facilitating the

55

discovery of opportunities for energy savings.

Finding ebugs is not trivial and the lack of a centralized repository of updates samples prevents us from

testing our controller more extensively. We present two detailed case studies of new ebugs we found while

exploring popular applications for Android. We used eStar [167], a tool that ranks the contribution of mobile

apps to battery depletion, to identify our objects of interest. From the handful of applications identi�ed as

energy hogs by eStar, we selected two that featured as popular in the following categories of the Google Play

Store [13]: Games and Health & Fitness. Although eStar ranks apps in terms of energy ine�ciency, we still

had to manually verify whether such ine�ciency was due to foreground or background execution. For each

application, we simulated a user interaction consisting of a short-length active session followed by a long period

in the background.

Bejeweled Blitz [7] is an award-winning puzzle game with over 10 million installs from Google Play Store.

A�er a 15-minute play session on the Galaxy S4 smartphone, Tamer reported a single background event by

Bejeweled Blitz – an acquire of the AudioIn wakelock. Because games are resource-hungry apps, this event

call did not instigate initial suspicion. We discovered a red �ag, though, a�er switching Bejeweled Blitz to

the background – AudioIn unexpectedly remained acquired a�er the game suspension. To mitigate this bug,

we wrote a simple policy that targets Bejeweled Blitz and blocks the renewal of the culprit wakelock during

background time. Figure 4.6 depicts the battery drop of a 12-hour session with Bejeweled Blitz loaded in the

background before and a�er applying our Tamer policy. To elucidate the expected battery impact of a well-

behaved application, we also measured the battery drop of Candy Crush Saga [9], another famous Android

puzzle game that is very similar to Bejeweled Blitz in functionality and user experience. �anks to our new

policy, we see a 4× improvement in battery drain. Figure 4.7 con�rms the e�ect of releasing the ill-behaved

wakelock: before being tamed, the smartphone CPU cores spent approximately 95% of the time awake. A�er

Tamer’s interposition, most of this residency ratio was converted to deep-sleep time.

Nike+ Run Club [20] is a �tness app for tracking runs. �is app relies on the GPS sensor, the accelerom-

eter, and the barometer to estimate distance and running speed. According to Tamer, Nike+ Run Club

holds �ve wakelocks while running: AudioMix, FullPower Acc Sensor, FullPower Pressure Sensor,

56

0

20

40

60

80

100

0 2 4 6 8 10 12

B
at

te
ry

 L
ev

el
(%

)

Hours

Candy Crush Saga

Bejeweled Blitz (Untamed)

Bejeweled Blitz (Tamed)

Figure 4.6: Battery drain over 12 hours of Bejeweled Blitz before and a�er applying a Tamer policy blocking the AudioIn
wakelock. In both cases, we start the game and lock the device to force system idling.

0

20

40

60

80

100

Dee
p

Slee
p

38
4

M
Hz

48
6

M
Hz

59
4

M
Hz

70
2

M
Hz

81
0

M
Hz

91
8

M
Hz

1.
03

 G
Hz

1.
13

 G
Hz

1.
24

 G
Hz

1.
35

 G
Hz

1.
46

 G
Hz

1.
57

 G
Hz

1.
67

 G
Hz

1.
78

 G
Hz

1.
89

 G
Hz

R
es

id
en

cy
 T

im
e

(%
)

CPU Frequency

Bejeweled Bliz (Untamed)

Bejeweled Blitz (Tamed)

Figure 4.7: Relative CPU residency for the untamed and tamed versions of Bejeweled Blitz on the Galaxy S4.

FullPower Recording, and NlpWakeLock. Judging from the wakelock names, it is safe to assume that a

few hardware subsystems remain awake while the application runs. We found an ebug a�er pausing a running

session and locking the device screen. Although we expected the application to release all wakelocks while in

the background, Nike+ Run Club kept them acquired. To counter this unwanted e�ect, we de�ned a policy

similar to the case of Bejeweled Blitz: block the culprit wakelocks during background time. Figure 4.8 shows

the battery drop for an eight-hour session before and a�er Tamer’s interception. We see a 5× improvement

in battery drain. Figure 4.9 presents the CPU residency for both scenarios: the deep-sleep residency jumped

from 0% to 89.8%. We also acknowledge a major contribution of the GPS and other sensors to battery decay.

57

�eir duty cycle is equivalent to the time the homonymous wakelocks were held.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

B
at

te
ry

 L
ev

el
(%

)

Hours

Nike+ Run Club (Untamed)

Nike+ Run Club (Tamed)

Figure 4.8: 8-hour battery drain on the Galaxy Nexus smartphone for Nike+ Run Club before and a�er being tamed. In
both cases we start the app and lock the phone’s screen to force idling.

0

20

40

60

80

100

Dee
p

Slee
p

35
0

M
Hz

70
0

M
Hz

92
0

M
Hz

1.
2

GHz

R
es

id
en

cy
 T

im
e

(%
)

CPU Frequency

Nike+ Run Club (Untamed)

Nike+ Run Club (Tamed)

Figure 4.9: Relative CPU residency for the untamed and tamed versions of Nike+ Run Club on the Galaxy Nexus.

4.5.3 Performance Impact

Just like a network �rewall, Tamer intercepts every hooked event call, inspects its signature, evaluates policy

criteria, and �nally actuates according to the policy’s instructions. Although Tamer diverts the normal �ow of

applications, it should incur as little performance overhead and energy burden as possible. We instrumented

58

Tamer to measure the time taken to hijack an event and perform its blockage. For the longest diverted ex-

ecution �ow, Tamer required an extra 320µs (approximately 3,125 events/s) to execute on the Galaxy Nexus

device when compared to a no-diversion code path. With regards to battery impact, we also measured the

time taken to drain the battery of the device under test while running the same GMS background workload

with and without Tamer. �e time di�erence was negligible. Tamer is activated only when other applications

generates background events and keeps its bookkeep data in memory for performance reasons. Furthermore,

most of the time, it does not acquire any wakelocks but freeloads the system’s active state from other wakeup

sources, except when it needs to persist its logged data, which happens sporadically.

4.6 Challenges, Limitations, and Extensions

Tamer’s main utility comes from policy de�nition, which is barely covered in this chapter. In the following, we

expose our observations a�er experimenting with manual policies for Tamer and elaborate a research plan to

automate the discovery of policies. We also suggest other improvements to Tamer that are le� as future work.

4.6.1 On Policy De�nition

In §4.5, we demonstrated how a wise policy selection can partially inhibit the surge of energy-hungry events.

Our experience de�ning policies arose from intuition, reading source code (when available), and, in some

cases, multiple trial-and-error attempts. Application developers and power users might not be inclined to

follow the same route. Instead, they would bene�t from the following guidelines to explore the event space

and de�ne e�ective policies. For a more streamlined solution, Chapters 5 and 6 detail our pursuit of tools that

semi-automate the discovery of e�ective policies.

Choosing events to control. Handhelds include dozens of applications that generate hundreds of events. A

policy maker should not consider all events as equally important. First, users prefer some apps over others [80].

Second, event triggers do not follow a uniform distribution. As a rule of thumb, developers should start with

policies targeting the most frequent events.

59

Cutting the red wire. Even a�er selecting the most prominent events for policy testing, there are no guar-

antees that a policy will work without side e�ects. Side e�ects may include an increase in the frequency of

correlated events, the rise of unexpected events, and abnormal application behavior. Blocking alarm events

recklessly could, for instance, totally defeat the purpose of a calendar application. Because most apps are only

available in binary form, understanding the purpose of an event is not always clear and neither is uncovering

its dependencies. Techniques used in black-box testing, such as cause-e�ect graphs [170], can help. Events

may also show a temporal correlation with others. In Chapter 5, we present a mechanism to uncover temporal

dependencies between events.

4.6.2 Potential Improvements

Event batching over cancellation. Tamer dismisses event continuation if there is a need for throttling. An

implementation that favors batching over cancellation would reschedule the asynchronous delivery of an event

to coalesce multiple wakeups into one. AlarmScope [177] uses this approach to postpone the execution of non-

critical periodic tasks. A�er observing the high impact of periodic background tasks on battery drain, Google

decided to o�cially make all alarm events deferrable from the Lollipop version of the Android OS [87].

Task coalescing is actually a pervasive technique. For instance, the Linux tickless kernel [211] reduces

the precision of so�ware timers to allow for the synchronization of process wakeups, thereby minimizing the

number of CPU power-state transitions. Xu et al.’s recent work on coalescing events to save energy in the

context of e-mail synchronization [233] is another successful example of careful event handling in mobile

devices. As long as developers do not assume guarantees on event delivery and commutativity, we believe

coalescing should supersede cancellation as an energy-saving feature.

Native code support. Tamer controls apps by intercepting calls to functions of the Android’s Java API. Ap-

plications that make heavy use of native code, such as games, multimedia apps, and ELF libraries, can acquire

wakelocks, spawn threads, and perform background tasks using C/C++ code, thereby bypassing our control

system. Extending support to native code would require a similar e�ort on analyzing and instrumenting libc

function calls. Probing tools like SystemTap [30] and Cydia Substrate [203] can aid our instrumentation.

60

Support for othermobile OSes. Background processing is not exclusive to Android, although handled di�er-

ently by other mobile OSes. Apple’s iOS 7 and upper versions regard background processing as a privilege [43].

Other than network transfers, common background tasks have limited time to complete tasks and must respect

the device’s will to sleep. Background tasks are restrained to process data in chunks when the device wakes

up to handle phone calls, noti�cations, or other interruptions. Windows Phone forces background tasks to be

lightweight by applying quotas to resources like CPU, memory, and network when apps are running behind

the scenes [164]. As a result, event-frequency control may not produce the same battery gains on Apple’s and

Microso�’s mobile devices given their stricter stance on deploying background tasks.

Feedback control. Tamer works as an open-loop controller, not using feedback data to gauge whether the

system needs more adjustments. During the design stage of Tamer, we discarded the closed-loop approach as

it would require knowledge of application semantics as well as user perception of performance degradation.

Modeling these two elements are hard problems that are beyond the scope of this research.

Security issues. Xposed patches so�ware code at runtime to modify its behavior. Because it has privilege

access to inter-process communication and reserved system resources, there is a risk of exposing the system to

attacks from malicious payloads. As a safer alternative, we could implement the monitoring and controlling

modules of Tamer as part of the Android task scheduler. To keep compatibility, these extensions would need

to be upstreamed to Android vendors for inclusion into their systems.

4.7 RelatedWork

We are not the �rst to propose control of functionality in exchange for battery savings. Tamer builds upon a

number of contributions.

Android tasks killers once were the solution for background power savings, but their e�ectiveness is now

a point of contention [33, 149]. Task killers force background applications to quit, assuming that their removal

from memory will reduce the energy footprint of released resources. �is is not always the case as there is little

correlation between memory and CPU usage in Android [40]. Excessive task killing may lead to the opposite

61

e�ect – discarding cached data forces Android to reload apps from storage. Moreover, a killed app may restart

itself immediately a�er being killed, raising CPU time and draining even more battery.

Rather than killing background tasks, popular battery-saving apps like JuiceDefender [142] and DU Bat-

tery Saver [92] can con�gure the access to power-greedy subsystems, such as the radio and the GPS, on a

scheduled basis. Although e�ective in many cases, these solutions are coarse-grained as they focus on access

to subsystems that are shared by many applications. Greenify [100] is an Android tool for hibernating apps,

preventing the arrival and dispatch of events once there is a switch to the background. Original functionality

is only restored when the blocked app returns to the foreground. Greenify is e�ective in blocking misbehaving

and start-at-boot applications, but its treatment of background computing is coarse-grained and not applicable

to noti�cation-based apps that mostly run in the background (e.g., mail readers, instant messengers, calendars,

etc.) Tamer is applicable to such cases as it throttles, but does not completely eliminate, background function-

ality.

�e Android OS also includes its own controls for background-task management. Users can choose be-

tween enabling or disabling networked-data synchronization in the background. Until the release of Android

Lollilop, this control had system-wide implications but later was turned application-speci�c. Tamer comple-

ments Android by letting users manage other types of background events not related to networking.

Partial inspiration for deep event monitoring stems from applications like BetterBatteryStats [138] and

Wakelock Detector [223]. Both apps report wakelock-usage statistics that developers can use to understand

the root cause of battery drain. Tamer complements these tools by empowering developers to take action a�er

they pinpoint the origin of abnormal energy consumption.

Carat [174] and eStar [167] use collected data from thousands of smartphone and tablet users to pro�le

the battery drain of applications and suggest alternatives. For instance, both tools suggest to kill or uninstall

energy-ine�cient apps. eStar further recommends energy-e�cient alternatives to power-hog apps. Tamer let

users keep their favorite apps while modifying the culprit’s behavior to reduce its energy consumption.

62

4.8 Summary

�is chapter presented Tamer, an OS mechanism that interposes on task wakeups in Android and allows event

handling to be monitored, �ltered, and rate-limited. We demonstrated that Tamer substantially reduces the

background energy use of popular Android applications. With Tamer, a device spends more time in low-

power mode, which increases the battery lifetime signi�cantly.

While this chapter shows Tamer’s e�ectiveness as a control mechanism, the following chapter focuses on

de�ning policies that drive Tamer to reduce the energy burden of mobile applications. Future work is needed

to determine how to select policies that not only reduce energy consumption but also minimizes the user-

perceived functionality impact.

Chapter 5

Meerkat

Facilitating Policy Discovery to Drive Energy Control

Chapter 4 introduced a control mechanism to modify binary apps at runtime. In this chapter, we consider the

process of de�ning Tamer policies to e�ectively lengthen battery lifetime.

5.1 Introduction

System-level energy management can be achieved via hardware or so�ware adaptation. A number of hardware

components provide the OS with con�guration knobs that can be switched for the bene�t of energy savings

or performance gains. So�ware adaptation relies on changes to the running program. An application can

opt for an energy-e�cient code path over an energy-oblivious one [42]. A more drastic approach would skip

portions of the running code [212] or delay and batch-schedule tasks to synchronize their execution with

system wakeups [161, 177]. So�ware adaptation can be introduced at compile time [47,208] or at runtime [120,

159, 165].

Hardware- and so�ware-adaptation solutions, despite their implementation di�erences, share an abstrac-

tion: a control mechanism that dictates how to modify the system. Adaptation is conditioned to external

63

64

factors, thereby requiring a means to communicate the circumstances that activate changes. For instance, let’s

consider the case of heterogeneous computing on handhelds. Modern handhelds employ heterogeneous CPU

dies pairing small and e�cient cores with larger and more complex cores to balance battery discharge against

computing speed. An adaptive system will dynamically resort to the most appropriate core type according to

the instantaneous performance requirement [8]. Here we have a threshold parameter that de�nes the boundary

between high performance and low power draw.

Tamer is a so�ware-control mechanism that alleviates the energy burden of background so�ware tasks.

Tamer also relies on parameters that specify when and where adaptation occurs. In both cases, policies embody

a contract specifying the control parameters. Mobile devices include a myriad of other control-policy systems

focusing on energy management and acting on the OS and applications levels (e.g., DVFS for CPU and GPU

cores, screen timeouts, etc.) �e e�ectiveness of these policies is highly dependent on the user context and

there are o�en complex interdependencies that make it di�cult to determine the optimal parameters for a

given situation.

To alleviate this problem, we introduce Meerkat, a combined system that helps discover policy targets for

Tamer to curb the energy demands of Android applications. Meerkat pro�les the power draw of so�ware

events at function level, correlates and ranks the sequences of events based on their energy consumption on a

multitasked system. Developers can use Meerkat’s output to identify what events possibly consume the most

energy and then write rate-limiting policies to reduce or even eliminate energy hotspots. We demonstrate

Meerkat’s e�ectiveness by using it in conjunction with Tamer’s control mechanism.

We evaluate Meerkat against a speci�c but common mobile scenario: background battery drain. Reduc-

ing the execution frequency of background events can lead to substantial energy savings but requires expert

knowledge on the system’s internals and a microscopic view over the entangled streams of events coming from

multiple sources.

�e main value of Meerkat is the semi-automatic discovery of the root causes of excessive energy consump-

tion inside applications. More importantly, because Meerkat tracks causal relations between events, developers

can quickly identify and cut the nip in the energy-bud without spending hours debugging code.

65

5.2 Motivation

Previous works have demonstrated that many Android apps su�er from serious energy-ine�ciency prob-

lems [153, 181]. Locating these problems is labor-intensive and automated diagnosis is highly desirable. Devel-

opers have to extensively test their apps on di�erent devices and perform detailed energy pro�ling to identify

the root causes of energy problems and opportunities for optimization. Our initial experience with Tamer

was not di�erent. Tamer controls the execution of event abstractions via policies. Our main challenge is to

�nd what events spend the most energy so that we can write controller payloads and policies that make sense.

Figure 5.1 graphically demonstrates that the Android OS can dispatch a multitude of events almost simul-

taneously. Finding the energy contribution of each event is a daunting task. First, reading the battery state via

direct OS polling or from external measurement hardware only discloses the power draw of the entire system.

Power models, on the other hand, attempt to characterize the energy portion of each subsystem and attribute

the sum of energy parts to �ne-grained so�ware entities based on how these entities use each subsystem. As

previously demonstrated [63, 162], this approach is prone to inaccuracy. In the case of reactive events, a com-

mon pattern in smartphone applications, estimation errors may compound as some events may only run for a

few microseconds, which can lead to overestimated power models.

 0

 1

 2

 3

 0 50 100 150 200 250 300 350

NlpLocationReceiverService
PendingIntentCallbackService
UlrDispatchingService
NlpWakeLock
NlpCollectorWakeLock
GeofencerStateMachine
GCoreFlp
NetworkLocationService
AlarmManager

P
o
w

e
r

(W
)

Timeline (s)

Figure 5.1: Partial reproduction of Figure 4.2. Events arising from di�erent applications tend to agglutinate when running
in the background.

In conclusion, individual energy apportioning is challenging because the available context information

66

is insu�cient to properly allocate Joules to individual function calls. Multitasking, task parallelism, asyn-

chronicity, and hardware-resource sharing only exacerbate the problem. As well stated by Dong et al. [90],

“it is practically infeasible to track how so�ware uses each hardware component in a heterogeneous multicore

system like modern mobile devices.”

Being so, we take a simpler approach to pinpoint energy-hungry events: instead of precisely attributing

energy consumption to singular function calls, we focus on �nding sequences of event calls that are likely

related to high energy use. �ese call sequences will serve as input for e�ective Tamer policies. To do so, we

rely on a time-analysis technique named sequential pattern mining.

5.3 Design and Implementation

Power Monitor

Meerkat Ranked
Sequences

Tamer
Runtime

From Battery1

Power trace2

Event trace2

Developer

Control
Hooks

5
Tracing
Hooks

1

3

Control Policies4

Figure 5.2: Meerkat’s task pipeline.

Meerkat extends Tamer’s instrumenter-and-monitor pipeline by adding a data-mining engine. Figure 5.2

depicts our task pipeline. �e instrumenter is responsible for installing hooks on selected framework and

library code. We use hooks to log the execution of particular events and rate-limit their execution at runtime,

if necessary. �e data-mining engine is used to correlate the dynamically traced events with the power draw

of the handheld’s battery. In the following, we elaborate on the subtasks necessary to realize our system.

67

5.3.1 Data Collection

Acquiring Power Traces

We use a pro�ling computer to drive the execution of tasks on the handheld. To do so, we connect the pro-

�ling computer to the handheld via a USB cable and use the adb (Android Debug Bridge) program to send

commands that start, control, and stop mobile apps. To obtain power traces, we connect the Monsoon power

monitor to the handheld’s battery. �e pro�ling computer instructs the Monsoon power monitor on when to

start and stop collecting power samples at a frequency of 1KHz, and store these samples as they are captured.

Obtaining Event Logs

We use Tamer’s monitor module to obtain more detailed execution logs. Tamer intercepts a narrow yet well-

de�ned interface of functions that Android app developers use to dispatch background tasks. �is interface

consists of Services and BroadcastReceivers, which are scheduled once or periodically using an Alarm.

We extended the set of captured background events, thereby increasing code coverage. Although Services

and BroadcastReceivers are the entry points to background work on Android, other asynchronous meth-

ods can be dispatched once the entry door is crossed. Tamer’s updated monitor also instruments Threads,

Runnables, Handlers, AsyncTasks, and Executors. Table 5.1 shows the updated list of hooked functions.

Some of these event-calls are so pervasive in system code that their interception provides almost no useful

information yet capturing them adds much overhead. Tamer keeps a blacklist of such calls to balance code

coverage against overhead. �is blacklist contains a handful of Thread andExecutor class signatures involved

with on-screen and o�-screen drawing.

Each collected log spans 12 hours of running time, starting from a full battery to avoid di�erent system

behavior when the device is running out of battery. At the end of a test run, we download the event logs from

the handheld via adb for o�ine processing.

68

Event Type Event Sub-Type Parent Class Hook Point (Method)

Wakelock - com.android.server.power.PowerManagerService acquireWakeLockInternal

Alarm - com.android.server.AlarmManagerService triggerAlarmsLocked

Service
Service com.android.server.am.ActiveServices startServiceLocked
IntentService android.app.Service onHandleIntent
JobService android.app.job.JobService onStartJob

BroadcastReceiver - android.content.BroadcastReceiver onReceive

Thread Thread java.lang.Thread resume
TimerTask java.util.Timer.TimerImpl run

AsynTask - android.os.AsyncTask doInBackground

Handler - android.os.Handler handleMessage

Table 5.1: Updated instrumentation points of Tamer.

Synchronizing Data Inputs

To correlate application events with power peaks, we must �rst align the power traces with the event logs. �is

is a necessary step since the power and event sources have distinct clocks and there is a potential for dri�ing.

�ere are several ways to achieve synchronization. For instance, NEAT [63], a power-monitoring and

so�ware-analysis solution, uses an invasive approach to synchronize di�erent signals. Brouwers et al. replaced

the phone’s vibrating alert motor with a wire to trigger the power meter. BattOr [207], on the other hand,

modulates the smartphone’s LED camera �ash as a pseudo-random recognizable pattern to align the measured

current with the device’s execution timestamps.

In a similar way, Meerkat uses the power draw itself as a means to synchronize di�erent signals. Assuming

a handheld idling with the screen o�, the pro�ling computer instructs the power monitor to start and stop

collecting current and voltage samples. At the same time, the pro�ling computer generates a pulse in the

power trace by turning the display on and o� at the start and end of an experiment. To do so, we connect the

pro�ler to the mobile device using Monsoon as a bridge.

�e Monsoon PM has a USB passthrough mode that can be switched on or o�. �e passthrough mode

establishes a USB data connection between the handheld and the pro�ling machine, which allows for down-

loading �les, con�guring test programs, and charging the device [168]. Once we start the power sampling,

the USB connection is disabled, and samples are measured without interference of charging. As a side e�ect

of disabling USB charging, the Android OS turns on the screen of the idling device. By programmatically

con�guring the screen timeout to a few seconds, we generate recognizable pulses on the power trace.

69

As the display is turned on and o�, Meerkat logs two events onto the execution log to indicate the times-

tamps of the recognizable signal: android.intent.action.SCREEN_ON andandroid.intent.action.SCREEN_-

OFF. Using these events, we are able to align and cut the power and execution timelines. We also time-stretch

one of the timelines relative to the other to eliminate any potential clock dri�.

5.3.2 Sequence Event Mining

�e analysis of relationships between variables is a fundamental task at the heart of many data-mining prob-

lems. �ere is a variety of methods to mine temporal patterns from sequence datasets, such as mining repetitive

patterns, trends, and sequential patterns (see [195] for a survey of methods). Among them, sequential pattern

mining is probably the most popular set of techniques [37] and consists of �nding “interesting” subsequences

in a set of sequences. Interestingness is a suitable measure to evaluate the dependencies between variables and

takes various forms. Support (frequency), correlation, interest factor, and entropy are some examples [219],

with support being the most commonly used.

Knowing that a sequence appears frequently is not su�cient for making predictions [108]. To avoid dis-

patching energy-hungry events, Meerkat should predict which function is called next in a sequence to pre-

vently block it. An alternative that addresses the problem of prediction is sequential rule mining [85, 155, 160].

A sequential rule indicates that if some event(s) occurred, some other event(s) are likely to occur a�erward

with a given con�dence. Compared with sequential patterns, sequential rules can help users better understand

the chronological order of sequences present in a sequence dataset.

Sequential rule mining has been applied to many applications areas, including stock management [57,62],

DNA sequence analysis [145], recommender systems [131, 132], and so�ware engineering [154, 235]. In this

chapter, we adapt these pattern- and rule-mining techniques to the problem of energy analysis. We �rst identify

energy-relevant sequential patterns and then derive sequential rules from these patterns.

A sequence is an ordered list of events. A sequence pattern is a sequence or subsequence recognized from

a dataset. Finally, a sequence rule is a rule of the form X → Y where X and Y are event-sets. An event-set

consists of one or more items (events) ordered by time. For the sake of simplicity, we assume that no events

70

0 10 20 30 40 50 60 70 80 90

P
o

w
e

r
(W

)

Time (s)

S2
Baseline

S1 S3

a

a

b

c

a

b

d
e

Figure 5.3: Power intervals associated with event sequences.

occur simultaneously. An input event is presented as a triplet (eid, time, value), where time is the time

when event eid occurs and value is a set of attribute values associated with the event. In our case, eid is

the full name of the function captured by Tamer in the execution log (i.e., the function name pre�xed by its

package and class owner) and value contains the application name owning eid.

Figure 5.3 shows a snapshot of an event dataset adapted to sequence mining. We de�ne a sequence interval

as a contiguous time window in which the measured power is signi�cantly above the idle baseline. A sequence

corresponds to a subset of events contained inside a power interval. Figure 5.3 includes three sequences: S1, S2,

and S3. Each event belonging to a sequence is identi�ed by a lowercase letter. Taking S2 as a dataset example,

the possibly valid sequential patterns generated via extension are: ⟨a⟩; ⟨b⟩; ⟨c⟩; ⟨a, b⟩; ⟨a, c⟩; ⟨b, c⟩; ⟨a, b, c⟩.

From these sequential patterns, we can derive the following rules (we omit rules starting with or ending in an

empty set, since they are not useful for our purpose): ⟨a⟩ → ⟨b⟩; ⟨a⟩ → ⟨c⟩; ⟨b⟩ → ⟨c⟩; ⟨a⟩ → ⟨b, c⟩; and

⟨a, b⟩→ ⟨c⟩.

�e classical approach to mine sequential patterns uses support as an interestingness metric. Given a

dataset containing various sequences, the support of a pattern X ⋅ Y is the number of sequences that con-

tains the events in X followed by the events in Y divided by the number of unique sequences in the dataset –

sup(X ⋅ Y), where ⋅ indicates a concatenation of event-sets. �e pattern miner outputs all the patterns whose

support are above a given threshold minsup. From this output, the rule miner uses another interestingness

metric, con�dence, to rank the most frequent rules. Given a pattern X ⋅ Y , the con�dence of the derived rule

71

X → Y is sup(X ⋅ Y) divided by sup(X), i.e., P(X∣Y).

When hunting for energy-ine�ciency in so�ware, solely counting function dispatches is not su�cient, as

rare yet energy-hungry events can also occur. To �nd energy-relevant sequential patterns, we rede�ne the

support metric – instead of counting the number of event calls, we base the support of a subsequence S i on

the energy intake of all power windows that contain S i .

�ere are many approaches to allocate energy intake to subsequences or individual events running in par-

allel, with equal split, di�erential apportioning, and weighted distribution being the most prominent examples.

Yet, any strategy is an approximation of the ground truth we cannot obtain, since we use the system’s power

draw as our source of energy knowledge.

We pose that, in the lack of better provenance data, every event or subsequence belonging to a power

window, regardless of task parallelism, should be held equally responsible for the energy consumption of the

power window to which it belongs. For example, if S2 consumes 3J, all of its event members (⟨a⟩, ⟨b⟩, and ⟨c⟩)

and extended subsequences (⟨a, b⟩; ⟨a, c⟩; ⟨b, c⟩; and ⟨a, b, c⟩) should receive the same weight of 3J.

We de�ne the new energy-support of a pattern X ⋅ Y as follows. For a sequence S i that satis�es X ⋅ Y , its

energy-support is the sum of the energy in the power windows containing S i divided by the sum of the energy

in all power windows.

Searching for Sequences

�e task of sequential pattern mining is an enumeration problem. It aims at enumerating all patterns (sub-

sequences) that have a support no less than the minimum support threshold (minsup) set by the developer.

Discovering sequential patterns is a hard problem. �e naïve approach calculates the support of all possible

subsequences in a sequence dataset and then outputs only those meeting the minimum support constraint.

Such a naïve approach is ine�cient because the number of subsequences can be very large. A sequence con-

taining n events can have up to 2n − 1 distinct subsequences, which makes the mining problem unrealistic for

most real-life sequence datasets.

�ere are many optimized algorithms for discovering sequential patterns. Some of the most popular are

72

GSP [218], SPADE [239], Pre�xSpan [182], SPAM [46], CM-Spam [107], and CM-Spade [107]. All of these

algorithms explore the search space of sequential patterns by performing an extension operation. An extension

operation generates a (k + 1)-sequence (a sequence containing k + 1 events) from a k-sequence. A sequence

Sa = ⟨a1 , a2 , . . . , an⟩ is a pre�x of a sequence Sb = ⟨b1 , b2 , . . . , bm⟩, if n < m and a1 = b1 , a2 = b3 , . . . , an = bm−1.

For example, the sequence ⟨a, b⟩ is a pre�x of ⟨a, b, c⟩.

In general, sequential mining algorithms can be categorized as either depth-�rst search (SPADE, Pre�xS-

pan, SPAM, CM-Spam, CM-Spade) or breadth-�rst search (GSP). �ey start from the sequences containing

single items (e.g., ⟨a⟩, ⟨b⟩, and ⟨c⟩), calculates their support, and proceeds to the next extension level if the

calculated support is above minsup.

Since the search space of all possible subsequences in a dataset can be very large, designing an e�cient

algorithm for sequential pattern mining requires integrating techniques that avoid exploring the whole search

space. �e basic mechanism for pruning the search space in sequential pattern mining is called the Apriori

property, also known as downward-closure property or anti-monotonicity property [36]. �is property states

that for any two sequences Sa and Sb , if Sa is a pre�x of Sb (Sa ⊏ Sb), then Sb must have a support that is

lower or equal to the support of Sa . In the case of energy-support, it is easy to prove that this property holds

because the number of power windows that contain all elements of Sb is always lower or equal to the number

of power windows that contains all elements of Sa , thus energy-support(Sb) ≤ energy-support(Sa). �e above

property is useful for pruning the search space. As we show in the next subsection, we add a few exceptions to

this procedure.

Dealing with Overestimation

A caveat of our weighting strategy is the possible overestimation of the energy-support, especially for smaller

patterns. For instance, in Figure 5.3, the pattern ⟨a, b⟩ has a higher energy-support than ⟨a, b, c⟩ and ⟨a, b, d⟩.

Being so, an energy-aware developer would write policies targeting the shorter pattern ⟨a, b⟩. In fact, blocking

⟨a⟩ as soon as it appears will result in the greatest energy savings, assuming that all of the other events depend

on ⟨a⟩ being called. From the perspective of functionality, this solution is not desirable as it prevents all events

73

from running. In addition, developers might want to allow certain subsequences of events to proceed, while

blocking others. For instance, a developer could block ⟨a, b, c⟩ while permitting ⟨a, b, d⟩ to run. Being too

greedy prevents making choices based on functionality. If ⟨a, b⟩ is blocked, then neither one of the two longer

subsequences will have a chance to run.

Concerned with these issues, we decided to �lter out certain patterns as they are generated, following these

considerations:

• If Sa is a pre�x of Sb and energy-support(Sa) = energy-support(Sb), consider Sb as a target candidate

for developer inspection, instead of Sa . �us, we add an exception to the anti-monotonicity property:

to not prune the search space of a subsequence if it is a pre�x of a longer subsequence with the same

energy-support.

• Only admit sequential patterns that are longer than three events, as long as said pattern appears in a single

power window and belong to the same application. We decided on the number three a�er observing the

CDF on the number of events in a sequence, belonging to the same application, and restricted to the same

power window (Figure 5.4). Sequences with three events are between the 32th and 78th percentile of all

sequences we have observed from our learning data, thus being the most common. It is important to

note that this distribution directly depends on the code coverage of Tamer hooks. Adding or removing

hooks a�ects the distribution of length of discovered sequential patterns. Figure 5.4 already considers

the additional hooks we will de�ne in Chapter 6.

�e output of the pattern miner is a list of patterns sorted in descending order by their energy-support. We

use the pattern length as a secondary sorting parameter, so that longer sequences that have the same energy-

support as smaller ones appear �rst in the ranking.

Generating Relevant Energy Rules

�e sorted output of sequential patterns serves as the starting point for a developer to examine code as well

as to derive runtime policies that rate-limit the execution of energy-expensive sequences of events. First we

74

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7

c
d
f

of Events per Sequence

Figure 5.4: CDF of the number of events in a sequence belonging to the same app.

generate all possible rules from a given pattern. For instance, from the pattern ⟨a, b, c, d⟩, we can generate

three di�erent rules: ⟨a⟩ → ⟨b, c, d⟩; ⟨a, b⟩ → ⟨c, d⟩; ⟨a, b, c⟩ → ⟨d⟩. We use the con�dence metric as a hint

for developers to decide at which moment of a sequence call a block should occur. We pick the rule with the

highest con�dence to decide at which event we should block a sequence. For instance, if ⟨a, b⟩→ ⟨c, d⟩ is the

rule with the highest con�dence, we should set up a policy that blocks event c in when ⟨a, b⟩ has preceded it.

5.3.3 Extending the Controller

�e sequential rules mined from the power and event data indicate the possible energy-hungry events. An

important distinction from our previous iteration of Tamer is that we now must assess the energy consumption

of applications when events occur in conjunction. �erefore, in order to transform mined rules into policies,

we must extend Meerkat’s runtime controller to match sequences of events. Each suggested rule, a�er �ltering,

becomes a policy target that is tested at runtime for energy savings. �e policy target corresponds to the

sequential pattern in the mined rule.

We implemented a stream-oriented version of the Knuth-Morris-Pratt algorithm [139] (KMP) to match the

running events with the policy target. �e original KMP algorithm searches for occurrences of a “pattern” P

within a main “text string” T by employing the observation that when a mismatch occurs, the pattern itself em-

bodies su�cient information to determine where the next match could begin, thus bypassing re-examination

of previously matched characters. �is optimization leads to a running time of O(n +m), where n is the size

75

of T and m is the size of P, which is optimal in the worst-case sense. �e KMP algorithm preprocesses the

pattern P by computing a failure function f that indicates the possible shi� s, necessary to locate how far the

observed input is from pattern P, using previously performed comparisons. Speci�cally, the failure function

f (j) returns the length of the longest pre�x of P that is a su�x of P[i . . . j]. Pre-computing this function

requires O(m) extra space. For each installed target policy, we must compute a new function table.

Our modi�cations are trivial: (1) Our pattern P is the policy target (an ordered sequence of events). Each

element of P is an event signature; (2) Instead of using character matching, we use hash search to compare each

element of P with the runtime-monitored event; (3) Instead of using a static corpus T , we use a rolling window

representing the monitored events as they are executed. T can be streamed in because the KMP algorithm does

not backtrack on the input.

Meerkat only blocks an event if it is the last element of a pattern P and there is a full match between P

and the runtime input. Just like Tamer, blocking depends on the rate de�ned in the controller policy. While

Meerkat identi�es possible event targets, the policy designer is responsible for de�ning rate limits.

5.4 Preliminary Evaluation

We conducted experiments on a Samsung Galaxy S4 device (cf. Table 5.2) running AOSP KitKat. We evaluate

Meerkat in two ways. First, we revisit the GMS-evaluation scenario in §4.5 to demonstrate that Meerkat can

uncover energy-relevant rules that lead to policies as e�ectively as the ones we manually selected in §4.5. We

then elaborate on Meerkat’s performance and energy overhead. Chapter 6 discusses specialized extensions of

Meerkat to particular app domains and demonstrates the e�ectiveness of Meerkat on a variety of scenarios.

Application Processor Quad-core 1.9GHz Qualcomm Krait 300
Communication 4G LTE radio on
Localization GPS on
OS Version AOSP KitKat (4.4)

Table 5.2: Speci�cation of device under test (Samsung Galaxy S4 smartphone).

76

5.4.1 Revisiting Google Mobile Services

Automated energy diagnosis is highly desirable. Figure 5.1 shows the frequent power peaks associated with the

GMS-based installation on AOSP KitKat. Along with the power trace, there are entangled streams of events

arising from multiple sources. Finding the energy contribution of each event is a daunting task. Nonetheless,

we used this representative scenario as part of Tamer’s evaluation. To obtain our �nal selection of policy

targets in §4.5.1, we had to manually verify multiple combinations of policies. In some of our trials, the lack of

a policy target would prevent an increase in battery lifetime, whereas in other cases the inclusion of a potential

target would keep the lifetime the same.

To test Meerkat’s e�ectiveness, we reproduced the GMS scenario of §4.5.1 by �rst collecting power traces

and event logs while running the Android OS in the background with the GMS-base install. Next, we used

Meerkat’s mining engine to obtain a ranking of the potential event policy targets. Finally, we generate new

Tamer policies using the same rates proposed in §4.5.1 and compare the lifetime gains with the ones obtained

manually.

Table 5.3 shows the relevant rules unveiled by Meerkat. In total, we found four rules that potentially cover

the most energy-relevant event combinations related to GMS. �ree of these rules proved su�cient, when

applied together, to obtain similar battery improvements as in §4.5.1.

Rule Ranking Position E�ective?

a, b → c, d 2 Y
e → f , g 5 Y
a, f → c, d 8 Y
a, i → c, j 14 N

Table 5.3: Relevant sequential rules extracted from the GMS-based running scenario. For better readability, event names
are represented by letter symbols. Table 5.4 serves as a translation guide.

5.4.2 Performance Impact

Given that data collection and correlation take place on the pro�ling computer, we refrain from accounting

Meerkat’s performance impact on the device under test. To assess the performance impact due to the updated

77

Symbol Event Name (Class.Method) Event Type

a com.google.android.gms.nlp.ALARM_WAKEUP_LOCATOR Alarm
b com.google.android.location.network.NetworkLocationService.onStartCommand Service
c NlpWakelock Wakelock
d android.os.HandlerThread.run Handler
e com.google.android.gms.nlp.ALARM_WAKEUP_BURST_COLLECTOR Alarm
f com.google.android.location.fused.NlpLocationReceiverService.onStartCommand Service
g NlpCollectorWakelock Wakelock
h com.android.server.LocationManagerService Wakelock
i com.google.android.location.activity.HardwareActivityRecognitionProviderService.onStartCommand Service
j com.google.android.location.internal.PendingIntentCallbackService.onStartCommand Service

Table 5.4: Translation table of symbols to events (cf. Table 5.3).

version of Tamer, we measured the time taken to hijack, log, and block an event, just as we did in §4.5.3. We

discovered that, for the longest diverted execution �ow, Tamer takes, on average, 380µs (approximately 2,630

events/s) to execute on the Galaxy S4 device. We also measured the time taken to drain the battery of the device

under test while running the same GMS background workload with and without Tamer. �e time di�erence

was negligible, since Tamer only activates itself when an application generates a hooked background event.

5.5 Discussion

Meerkat has a series of limitations, including:

Impact of the Observer E�ect.�e observer e�ect refers to changes that the act of observation re�ects on

a phenomenon being observed. �is is o�en the result of instruments that, by necessity, alter the state of what

they measure in some manner. �ere are at least two potential sources of changes introduced by Meerkat. First,

by wiring the Monsoon power monitor to the device’s battery, we a�ect the current that the power monitor

measures by way of presenting an additional load to the battery circuit. Second, by instrumenting the source

code with additional hook points we temporarily divert the code-path execution to Tamer’s controller payload.

Although we show in §5.4.2 that the computational overhead of logging and blocking events is minimal, it does

not guarantee that the system behavior will remain intact. Finally, we resorted to arti�cial measures to reduce

variability in our tests. �ese include not setting up certain so�ware known for their unpredictable behavior

while running (e.g., apps o�en receiving network packets at random times due to external factors) and using

a more stable network connection (WiFi instead of cellular connectivity).

78

Lack of Coverage of Important Events. Finding statistically relevant patterns relies on reporting the rel-

evant data. We treat power traces as the ground truth and collect them at a resolution high enough to cover

power shi�s down to the order of microseconds. Events logs, on the other hand, have a series of shortcomings

that can a�ect Meerkat’s coverage and, consequently, its e�ectiveness.

• Meerkat’s instrumentation covers a well-de�ned interface used for dispatching background tasks. Yet,

it does not account for all of the power draw associated with an interval of high activity. Meerkat lacks

cross-layer tracking. By design choice, we opt for monitoring only application code running inside the

Android sandbox. Yet, an executing task will eventually cross the userspace boundary and reach the

kernel space and �nally the device drivers. �e energy consumed by the latter two layers is not properly

apportioned but distributed to all tracked Android events belonging to the same power interval.

• �e use of anonymous inner classes in Android code convolutes the identi�cation and separation of

events by Meerkat. An anonymous inner class is a class not given a name and is both declared and

instantiated in a single statement. Anonymous classes are created for a speci�c purpose inside another

function (e.g., as a listener, as a runnable (to spawn a thread), etc.) and always implement an interface or

extend an abstract class. Tamer mostly monitors function calls coming from subclasses of an interface

or abstract class used to dispatch background tasks (cf. Table 5.1). Because these classes are nameless,

Meerkat is not able to di�er their signature. As a result, the data-mining engine attributes all of the energy

spent by anonymous classes to a single bin, thus leading to overestimated energy-support apportioned

to sequences that include a function call belonging to an anonymous inner class. To avoid this unwanted

behavior, we opt to disregard activities occurring on behalf of anonymous classes in exchange for less

code coverage.

• Event dispatching coming from the Re�ection API in Java, instead of direct procedure calls, is another

source of convolution that reduces Meerkat’s accuracy in identifying events. Re�ection can be used

to obfuscate code against decompilation. Re�ection is also key in frameworks that promote inversion of

control [109], a so�ware-engineering technique used to promote code modularity and make it extensible.

79

RoboGuice [25], Dagger [128], and ButterKnife [229] are inversion-control frameworks for Android that

enjoy great popularity among Android developers, especially in popular applications [1].

5.6 RelatedWork

On Policy Inference. EASEAndroid [227] is an automatic platform for analysis and re�nement of security

policies for the Android OS. It uses semi-supervised learning and continuous feeding of audit logs to harden

the OS security. AutoPPG [236] leverages static code analysis to construct correct and readable descriptions

of an app’s behavior related to personal data. �ese descriptions facilitate the generation of privacy policies

for Android apps. Similarly, Meerkat acts as an intermediate step that facilitates the generation of control-

execution policies aiming at energy e�ciency for Android apps.

On Code Analysis. �ere is a variety of frameworks designed for the analysis of Android applications. �ese

frameworks rely on static [59, 83, 98, 113] or dynamic analysis [59, 64, 73, 74, 118, 122, 158] and are used for

di�erent purposes: inspect security properties, automate GUI tests, or identify energy hotspots.

Schmidt et al. [204] used machine learning techniques to identify malicious binaries in Android applica-

tions by extracting and classifying function calls found in ELF binaries. RiskRanker [113] and AnDarwin [83]

are scalable frameworks that provide valuable insight into an application’s behavior. RiskRanker uses a plethora

of static-analysis techniques including program-control-�ow graph-evaluation and assessment of bytecode

signatures. AnDarwin uses program-dependency graphs to detect plagiarized applications. RiskRanker and

AnDarwin are relevant because they address the issue of scale. Nonetheless, Meerkat requires insight into

runtime behavior, which is why we opt for dynamic analysis in our implementation.

Crowdroid [64] crowdsources the dynamic analysis of Android applications and partially addresses one of

Meerkat’s limitation – scalability. An open question is how to identify and avoid skew in collected data due to

di�erent usage patterns.

Mahmood et al. developed a scalable dynamic analysis framework for analyzing Android apps in the

cloud [158]. �eir platform uses the Robotium test-automation framework [26] to drive the user interface

80

of applications. Robotium requires the application under test to be signed in debug mode. Because produc-

tion applications rarely contain a debug signature, they must be re-signed to work with Robotium. As a result,

applications may break or signi�cantly reduce functionality if Android detects a non-o�cial re-signature. Be-

cause we are interested in the dynamic energy analysis of Android apps, Meerkat aims to avoid con�icting

behaviors that occur when an application is modi�ed (luckily, modi�cations due to Xposed are not detected

by the security mechanisms of Android).

ADEL [242] uses dynamic-taint analysis to identify energy leaks due to network communication. In ADEL’s

context, an energy leak is the use of energy by activities that never directly or indirectly in�uence the user-

observable output of the smartphone. ADEL tracks the information �ow of network tra�c through applica-

tions and help developers isolate the causes of energy leaks by exposing the arrival time and contents of unused

packets. Meerkat is complementary to ADEL as it works on a larger domain of energy leaks. In Chapter 6, we

present an application of Meerkat in the network domain.

GreenDroid [153] is an automated approach to diagnose energy problems in Android applications. Just like

Meerkat, GreenDroid uses dynamic analysis to explore the state space of an Android application. GreenDroid

analyzes how sensor data are used by applications and monitors whether sensors and wakelocks are properly

unregistered/released. GreenDroid stops short of proposing modi�cations to apps but elucidates where sensor-

related energy hotspots reside inside an application.

On Activity Data Mining. MobileMiner [115] and ACE [171] are general-purpose services that run on smart-

phones and discover co-occurrence patterns indicating context events that frequently occur together. Com-

monly occurring patterns can be used to uncover and to express common-sense knowledge about user context.

Patterns can also improve the user experience during the cold-start period when personal behavior is yet un-

known. A series of works use specialized predictive classi�ers and other targeted approaches [176,209,234,245]

for phone optimizations, such as app launching and app preloading. �ese tools share with Meerkat the same

principles, despite di�ering in their objective.

Gupta et al. presented a methodology for collecting, analyzing, and detecting energy anomalies from syn-

chronized power traces and event logs [115]. �eir approach di�ers from Meerkat’s in that they use decision

81

trees to model the in�uence of whole so�ware modules (i.e., libraries) on the average energy consumption

of applications. Meerkat, on the other hand, uses a �ner-grained approach, apportioning energy in�uence to

bundles of time-related functions.

5.7 Summary

�is chapter presented Meerkat, an energy-pattern analyzer tool for the Android OS platform. Meerkat asso-

ciates power peaks with synchronized execution logs and help developers discover potential sources of energy

hotspots. �ere are many ways that a developer can in�uence the power consumption of a mobile app. Devel-

opers can use Meerkat to �nd targets for Tamer policies from a series of event streams generated by running

workloads on a mobile device. A major shortcoming in Meerkat is the possible lack of coverage for certain

energy-relevant events, which we partially address in the next chapter.

Chapter 6

Meerkat in Action

Two Case Studies

6.1 Introduction

Meerkat relies on program analysis to determine code �ow and track energy-related information during exe-

cution. To keep the system lightweight, Meerkat traces and acts upon a small set of asynchronous operation

patterns provided to developers by the Android SDK. While our approach is e�ective in identifying prominent

sequences of energy-hungry operations, it is also, in some occasions, prone to overestimation and not able to

uniquely identify and correctly apportion energy to certain sequences of operations. As a result, developers

miss the opportunity to discover valuable policy targets. �is liability is a result of our design choice: we only

trace commonly used patterns, which, sometimes, cannot be uniquely labeled (e.g., anonymous Threads) or

o�en appear associated with many di�erent subsequences.

We could naturally remove this limitation by adding extra tracepoints to compose sequences that uniquely

stand out during execution. By increasing the coverage of a tracer, longer and unique event sequences can

be logged and turned into policy targets. To guarantee uniqueness, this approach could be extended to the

82

83

point of covering every energy-intensive function call of all applications running on a device. However, our

experience with Application Modes (Chapter 3) showed that point solutions do not scale. �erefore, we must

reach a compromise between OS-generic calls and app-speci�c events.

In this chapter we demonstrate that such midpoint exists if, in addition to the tracepoints covered by

Meerkat, we additionally trace events stemming from libraries linked by mobile apps. Libraries perfectly �t

our purpose as they supply a well-de�ned interface to invoke behavior and they are reused by multiple inde-

pendent programs. When a program invokes a library, it gains the behavior implemented inside that library

without having to implement the behavior itself. Furthermore, a library’s public interface tends to quickly sta-

bilize; once we establish a tracepoint to one of its publics functions, it is unlikely that we will need to modify

the tracepoint in the future even if an application’s internal behavior changes.

We attest the e�cacy of our approach by showing the improvements in battery lifetime from policies de-

rived from logs captured using extended versions of Tamer: one covering event calls originating from Android

network libraries; the other covering events from storage libraries. We base our case studies on some of the

recent �ndings by Li et al. [146] in their empirical study on the energy consumption of over 400 Android ap-

plications as well as Lee and Won’s study on I/O patterns of Android-based devices [144]. In summary, the

authors discovered that:

• �e total energy consumed by apps is dominated by the energy consumed by system APIs. �is �nding

is harmonic with the design of Meerkat– we target API function calls for correlation with power peaks.

• �e network interface is the most energy-consuming component in Android apps when the screen is

o�. In particular, making an HTTP request is the most energy-consuming network operation. NetDiet

(§6.2) is an application of Meerkat’s principles to detect and attenuate the background energy consump-

tion of HTTP requests from Android and third-party network APIs.

• In Android-based smartphones, synchronous writes constitute a signi�cant portion of all write I/O op-

erations. Many smartphone apps use SQLite to manage persistent data, exploiting fsync() to preserve

the atomicity of database operations. Synchronous operations reduce the chances of I/O batching, thus

84

consuming more energy. IODiet (§6.3) is an application of Meerkat’s principles to detect and attenuate

the energy consumption of database I/O requests from Android and third-party storage APIs.

6.2 Case Study 1: NetDiet

6.2.1 Design and Implementation

Whether an application retrieves data from a server, updates social-media status, or downloads remote �les to

disk, it is the HTTP network requests living at the heart of mobile applications that make the magic happen.

Consider a developer implementing a weather widget on Android. A conventional weather widget fetches

the city temperature from a remote server using a REST API. In the typical development cycle for Android, a

widget developer would �rst write a Service code-block to request the weather data from a remote server. To

handle the server response, the developer would also write a BroadcastReceiver to parse the received data

and update the UI widget. In both cases, the developer must rely on network-programming classes to open a

communication channel and to exchange data. �is common pattern is found in many mobile apps.

In this section, we focus exclusively on data communication over HTTP and elaborate on the design and

implementation of NetDiet. Since network exchanges can consume considerable energy, we �rst investigated

how Android apps commonly access the network. We discovered that although many apps use Java native

network classes (e.g., java.net.URLConnection), others rely on �rst-party and/or third-party network li-

braries that encapsulate the complicated and error-prone nature of network programming. We used libtas-

tic [2] and AppBrain [1], two developer-oriented app-indexing websites, to �nd the most popular Android

network libraries used in the top apps from the Android US marketplace. �ese are OkHttp, Retro�t, Apache

HttpComponents and Volley (Table 6.1 lists the popularity of each library among developers). We studied the

source code of each library, identi�ed the hook points where network calls are dispatched, and wrote callbacks

to trace execution and possibly block dispatches (see Table 6.2 for a list of all hook points). Interestingly, we

discovered that these libraries build on top of each other (Figure 6.1 shows their relationship). Consequently,

a call to a hooked function belonging to an upper library can lead to a longer, unique sequence trace.

85

Library Name Popularity (AppBrain) Popularity (libtastic.com)

OkHttp 18.91% 2nd

Retro�t 15.49% 4th

Apache HttpComponents 8.65% 1st

Volley - 3rd

Table 6.1: Popularity of network libraries used in top-ranked apps. Sources: AppBrain [1] and libtastic.com [2].

Library Class Hook Point (Method) Type

OkHttp com.squareup.okhttp.Call execute Synchronous
com.squareup.okhttp.Callback enqueue Asynchronous

OkHttp3 okhttp3.RealCall
execute Synchronous
enqueue Asynchronous

Volley com.android.volley.NetworkDispatcher performRequest Synchronous
com.android.volley.RequestQueue add Asynchronous

Retrofit
retrofit.RestAdapter$RestHandler invokeRequest Synchronous
retrofit.CallbackRunnable run Asynchronous
retrofit.client.Request execute Synchronous

Retrofit2 retrofit2.OkHttpCall
request Synchronous
enqueue Asynchronous

Apache HttpClient org.apache.http.impl.client.AbstractHttpClient execute Synchronous
URLConnection libcore.net.http.HttpURLConnectionImpl getContent Synchronous

Table 6.2: NetDiet’s instrumentation points.

We trace these network events as well as the hook points de�ned in §5.3.1 expecting to correctly associate

executed events with the energy peaks extracted from the power trace.

VolleyVolley

OkHttpOkHttpRetrofitRetrofit HttpClientHttpClient

URLConnectionURLConnection java.netjava.net

Figure 6.1: Hooked libraries and their dependencies (NetDiet).

Curbing Network-Event Sequences

Meerkat’s output is a list of sequence rules decreasingly ordered by their energy support, which supposedly

correlates with the potential for saving energy if we interrupt a sequence execution. A developer can use

these sequences to identify targets and declare NetDiet policies that are activated once a series of expected

network events happen. Following one of Meerkat’s principles, the controller in NetDiet blocks network events

86

according to the con�dence of the rules derived from a given sequence pattern, possible using a rate-limiting

factor. For synchronous network operations, NetDiet’s controller blocks an HTTP request by returning early

with an empty response. For asynchronous operations, NetDiet throws an IOException or similar exception

to simulate network unavailability.

6.2.2 Evaluation

Setup

We conducted experiments on two Samsung Galaxy S4 devices (cf. Table 5.2) running backported versions

of the AOSP Lollipop and Marshmallow. We con�gured NetDiet to observe UI changes and to trace network

events only if the app owner is running in the background.

To test the e�ectiveness of NetDiet, we installed a few mobile apps known for their excessive background

network tra�c. We base our app selection on industry reports, academic papers [72, 196], and personal expe-

rience. To counter bias, we also installed randomly selected popular apps from �ve categories of the Android

Play Store: News, Shopping, Games, Social, and Entertainment. Table 6.3 lists our �nal installation base. We

derived NetDiet policies based on the output from the data-mining engine. We de�ne e�ectiveness as the

extra battery lifetime obtained a�er applying these runtime policies. For each experiment, we consider the

time taken to drain the battery from 80% to 20%, as we have observed the battery decay being more stable

within this range. We repeated each experiment three times and report the average lifetime gain and standard

deviation. All experiments were conducted in a temperature-controlled lab, with the phones lying on a desk.

Sequence Mining Results

We must �rst validate that the data-mining engine yields a ranking of sequence rules that highly correlates

with the amount of energy they spend. �erefore, we expect that network-related sequences that appear on

top have a higher impact on the battery lifetime than those appearing on the bottom.

First we sort the event sequences based on their energy-support. Figure 6.2 (bottom) depicts the distribu-

tion of energy-support for all event sequences mined from the execution logs. �e �nal ranking represents a

87

App Name Popularity

Google Maps (com.google.android.apps.maps) 1B – 5B
Hangouts (com.google.android.talk) 1B – 5B
YouTube (com.google.android.youtube) 1B – 5B
Google Keep (com.google.android.keep) 10M – 50 M
Google Fit (com.google.android.apps.fitness) 10M – 50M
Google Chrome (com.android.chrome) 1B – 5B
Gmail (com.google.android.gm) 1B – 5B
Google+ (com.google.android.apps.plus) 1B – 5B
CM Updater (com.cyanogenmod.updater) 100K – 500K

(a) System apps

App Name Popularity

Skype (com.skype.raider) 500M – 1B
ESPN (com.espn.score_center)∗ 10M – 50M
Weibo (com.sina.weibo)∗ 10M – 50M
Angry Birds (com.rovio.angrybirds) 100M – 500M
News Republic (com.mobilesrepublic.appy) 10M – 50M
Amazon Shopping (com.amazon.mShop.android.shopping) 50M – 100M
Tapatalk (com.quoord.tapatalkpro.activity)∗ 10M – 50M
BaconReader (com.onelouder.baconreader)∗ 1M – 5M
Candy Crush Saga (com.king.candycrushsaga) 500M – 1B

(b) �ird-party apps

Table 6.3: Installed apps on device under test (NetDiet). Installation base includes integrated system apps (Google) and
popular third-party apps from the Android marketplace. ∗ indicates apps known for high network usage in the background.

long-tailed distribution of sequences, with a rapid decay on support. We pose that a handful of event sequences

is responsible for most of the battery drain.

All sequences containing at least one network-related event call are marked with a green circle. �e rapid

decay on the ranked energy-support of sequences starts a�er 0.2, thus we set our cutting support threshold

to 0.15. As a result, we have four remaining network-relevant sequences. Figure 6.2 (top) lists the events

comprising each sequence. We also select three networked sequences from the bottom group. Later, we will

compare their battery impact to verify if our distribution hypothesis is correct. Of all ranked sequences, the

highest-supported network-related sequence places third on the ranking and traces back to the ESPN app. �is

sequence is only preceded by two other sequences related to location services.

It is important to note that although we cover networked events from popular third-party libraries, it is

possible that applications accessing the Internet via other means could drain the battery without being directly

noticed by NetDiet’s monitor.

88

0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
B

at
te

ry
 G

ai
n

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

E
ne

rg
y

S
up

p
or

t

Sequence #

Network sequence
General sequence

Threshold (0.15)

3: h → i, j (Tapatalk)

4: k → l, m (CM Updater)

5: n → o, p (Bacon Reader)

6: q, r → s (News Republic)

7: t → u, w (Bacon Reader)

2: e → f, g (Weibo)
1: a → b, c, d (ESPN)

Figure 6.2: Energy support of all mined sequences (bottom) and select network sequences, with corresponding battery
life extension (top). We establish a support threshold of 0.15 to focus on the top ranked sequences. For better readability,
events names are represented by letter symbols. Table 6.4 serves as a translation guide.

Next, we compare the ranking position of some of the sequence rules with their individual battery-lifetime

impact. Because of the time it takes to run a single depletion run, we were not able to assess all network-related

sequences. Instead we chose some representative ones for analysis. For each of the four topmost sequences, we

derived and installed, in turn, policies that totally block the sequence members and measured the time taken

by the battery to decay from 80% to 20% on the device under test. �e relative battery lifetime for these four

sequences is shown on the top plot of Figure 6.2. We note a very high correlation between the energy-support

and the actual battery savings due to blockage of rules, although there is some inversion of positions between

the support ranking and battery-gain ranking. �is is expected as we are using coarse-grained battery data to

infer the energy consumption of concurrent sequences. In the next section, we evaluate �exible policies that

guarantee more background utility to a�ected apps in exchange for lower battery savings.

Lollipop: Screen-O� Events

Using the ranked rules as a guide, we wrote more re�ned policies that target the topmost four sequences in-

volving network operations. For each sequence rule, we considered two additional types of policies: Block-30

(event-sequence completion is allowed once every 30 minutes) and Block-60 (event-sequence completion is

allowed once every 60 minutes). Full Block corresponds to the total blockage we evaluated in the previous

89

Symbol Event Name (Class.Method) Event Type

a com.espn.score_center.appwidget.gingerbread.WidgetUpdatingService.onStartJob Service
b android.os.HandlerThread.run Thread
c com.android.volley.RequestQueue.add Volley
d com.android.volley.toolbox.BasicNetwork.performRequest Volley
e com.sina.weibo.RemoteRequestService.onStartCommand Service
f android.os.HandlerThread.run Thread
g libcore.net.http.HttpURLConnectionImpl.getContent URLConnection
h com.google.android.gms.internal.zzac.onReceive BroadcastReceiver
i android.os.HandlerThread.run Thread
j org.apache.http.impl.client.DefaultHttpClient.execute Apache
k com.cyanogenmod.updater.service.UpdateCheckService.onStartJob Service
l android.os.HandlerThread.run Thread

m com.android.volley.RequestQueue.add Volley
n com.onelouder.baconreader.NewsExtWidget.UpdateService.onStartJob Service
o android.os.HandlerThread.run Thread
p okhttp3.RealCall.enqueue OkHttp3
q com.cmcm.onews.service.ONewsService Service
r com.cmcm.onews.util.push.http.a AsyncTask
s org.apache.http.impl.client.DefaultHttpClient.execute Apache
t com.onelouder.baconreader.CheckMessageService.onStartJob Service
u android.os.HandlerThread.run Thread
w okhttp3.RealCall.execute OkHttp3

Table 6.4: Translation table of symbols to traced events (cf. Figure 6.2).

Battery Impact of NetDiet Policies (Lollipop, Screen Off)

B
at

te
ry

 L
ife

tim
e

0

0.35

0.7

1.05

1.4

ESPN (1) CM Updater (4)

No Block Tamer-30 Tamer-60 Full Block

1035min 1035min 1035min 1035min

+371min

+158min +184min

+69min

Weibo (2) Tapatalk (3)

(a) Top-ranked sequences turned into NetDiet policies.

Battery Impact of NetDiet Policies (Lollipop, Screen Off)

B
at

te
ry

 L
ife

tim
e

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

BaconReader (5) News Republic (6) BaconReader (7)

No Block Tamer-30 Tamer-60 Full Block

1035min 1035min 1035min
+51min +29min +24min

(b) Bottom-most sequences turned into NetDiet policies.

Figure 6.3: AOSP Lollipop: Relative impact on battery lifetime due to di�erent policy targets and rates. For comparison
e�ect, we show the lifetime improvements for both topmost and bottommost ranked sequences turned into policy targets.

section (cf. Figure 6.2), whereas No Block refers to a system running without limiting policies. Figure 6.3a

shows the impact of each policy on four apps impacted by the topmost sequences: ESPN, Weibo, Tapatalk, and

CM Updater. As we decrease the opportunities for background network I/O, we see a proportional increase

of battery lifetime. More importantly, the degree of lifetime improvements highly correlates with the order

proposed by our sequence-rule engine (with some variability).

We also consider the battery impact of three networked sequences residing in the tail end of the support-

ordered distribution. Figure 6.3b shows that the battery savings from rate-limiting their execution are minimal.

90

Rule ID No Block No Block Full Block Full Block
(Network KB) (Network Fetches/Pushes) (Network KB) (Network Fetches/Pushes)

ESPN (1) 10,352 223 1,424 29
Tapatalk (2) 7,341 131 341 7
Weibo (3) 15,239 60 746 3
CM Updater (4) 3,551 67 0 0
BaconReader (5) 4,835 34 823 14
News Republic (6) 538 7 43 1
BaconReader (7) 4,343 29 4,023 22

Table 6.5: Network data and connection usage for the top-ranked and bottom-most sequences turned into NetDiet policies.

To con�rm that the improvement in battery life is a result of judicious application of network-related poli-

cies, we report in Table 6.5 the amount of bytes exchanged by the WiFi interface in two cases: (1) with a NetDiet

policy that fully blocks target events in the background (Full Block); (2) without any NetDiet active policy (No

Block). We also report the number of network fetches and pushes for each case. We used the Android dumpsys

shell application to obtain network statistics. From the data in Table 6.5, we draw the following conclusions.

• As expected, applying restrictive policies reduced the number of bytes exchanged by all applications.

• On the other hand, a policy does not completely restrict the network interface for a given app. NetDiet, as

well as Meerkat and Tamer, intercepts and modi�es so�ware behavior at the function level. �erefore,

while a target event will be forbidden to send or receive packets, other events belonging to the same

application can still access the network without restrictions. With the exception of CM Updater, all the

other three apps contemplated with policies had access to the network via other events even when we

applied the “Full Block” policy to one of its target events.

• Although tempting, the amount of networked data per application is not a de�nitive proxy for battery

impact. In the case of ESPN and Weibo, the latter consumed close to 30% more network data than the

former. Nonetheless, the former opened almost 4×more WiFi connections to synchronize data. ESPN

wakes up the WiFi radio more frequently and the tail-state energy of each wake has a major contribution

to the higher battery impact.

91

Battery Impact of NetDiet Policies (Marshmallow, Screen Off)

B
at

te
ry

 L
ife

tim
e

0

0.35

0.7

1.05

1.4

ESPN (1) Weibo (2) CM Updater (4)

No Block Tamer-30 Tamer-60 Full Block

1006min 1006min 1006min 1006min+28min +9min +3min -4min

Tapatalk (3)

(a) Battery savings during screen-o� discharge.

Battery Impact of NetDiet Policies (Marshmallow, Screen On)

B
at

te
ry

 L
ife

tim
e

0

0.375

0.75

1.125

1.5

ESPN (1) Weibo (2)

No Block Tamer-30 Tamer-60 Full Block

276min 276min 276min

+98min +91min +84min

Tapatalk (3)

(b) Battery savings during screen-on discharge.

Figure 6.4: AOSP Marshmallow: Doze Mode inhibits most of the screen-o� savings. Still, curbing the same policy target
with di�erent rates while the system is idling with the screen on yields positive results.

Marshmallow and Doze Mode

Android Marshmallow introduced two features targeting energy savings in backgrounding: Doze and App

Standby [86]. Doze prevents apps from running background tasks or synchronizing networked data a�er a

device remains idle, stationary, and with the screen o� for more than 30 minutes. Maintenance windows

permit high-priority tasks (i.e., Google Mobile Services) to run periodically during this state. App StandBy

works similarly but only a�ects apps that are not used very o�en.

We repeated the Lollipop experiments on Marshmallow. Because Doze already curbs standby tasks, Net-

Diet policies did not have many opportunities to act, thereby they did not yield as much savings as we had

seen in Lollipop (Figure 6.4a). We considered an alternative scenario where the screen was kept awake and

apps were relayed to the background, thus disabling Doze and App Standby. We want to quantify the energy

impact of background tasks when a user is interacting with other apps on her phone. We repeated the exper-

iments, keeping the screen awake using a wakelock (which we purposefully ignored when NetDiet reported

it as a high energy consumer). Figure 6.4b shows that NetDiet was e�ective in extending the battery lifetime

(approximately an extra hour of battery life for ESPN, Tapatalk, and Weibo, although we did not see changes

for CM Updater). Not surprisingly, the battery gains are much smaller due to the awoken screen and CPU.

92

6.3 Case Study 2: IODiet

Storage I/O is arguably a major performance hindrance in smartphones [135]. �e Android I/O stack contains

a set of so�ware and hardware layers used by applications for persistent data management. �e stack consists

of a DBMS, �lesystem, block-device driver, and NAND �ash-based storage device. SQLite [31] and EXT4 [222]

are the default DBMS and �lesystem, respectively.

Recent studies show that the Android I/O stack is not optimized for performance and energy e�ciency.

Lee and Won were the �rst to suggest that Android apps generate an excessive amount of synchronous I/O

operations, most of which from EXT4 journal writes [144]. Using empirical evidence collected from seven

representative Android-app scenarios, Kim et al. [136] demonstrated that up to 75% of all write accesses in

Android are SQLite-related and up to 90% of all write counts are synchronous. Jeong et al. found similar

results [133]. Improper handling of platform I/O requests can worsen essential usability properties in mobile

devices: it can decrease the device’s overall performance, shorten NAND �ash cell lifetime in eMMC, and

decrease energy e�ciency. Following the steps of NetDiet, we designed IODiet as a tool to control and test

di�erent I/O cadences for mobile apps.

6.3.1 Design and Implementation

IODiet’s design and motivation does not di�er much from NetDiet’s. We focus exclusively on secondary-

storage operations, namely read and write. We �rst investigate how Android apps commonly access storage.

Although apps can use Java native I/O classes (e.g., java.nio and java.io), such practice is not encouraged.

Due to security reasons, developers have little freedom to access storage, as apps are sandboxed and only

have access to compartmentalized, exclusive data directories1. Given that app-state is usually incremental and

well structured, app developers are lured into using a SQL database as a means to persist data changes [27].

In cases where a database does not su�ce, raw I/O functions are encapsulated with added functionality in

third-party libraries. From data gathered from AppBrain and libtastic, three popular storage libraries stood
1Access to external storage, such as SD cards, requires special system permission.

93

Library Class Hook Point (Method) Type

Okio okio.Buffer
writeTo Sync / Async
readFrom Sync / Async

OrmLite com.j256.ormlite.support.AndroidCompiledStatement execSql Synchronous

Firebase com.google.firebase.provider.FirebaseInitProvider

query Synchronous
insert Synchronous
update Synchronous
delete Synchronous

SQLite android.database.sqlite.SQLiteStatement

execute Synchronous
executeInsert Synchronous
executeUpdateDelete Synchronous

Table 6.6: IODiet’s instrumentation points.

out among developers: Okio (21.53% of popularity), Firebase (31.78%), and OrmLite (14.9%). �e latter two

libraries encapsulate SQL functionality, whereas the former focuses on �le I/O. Similarly to NetDiet, the storage

libraries hooked by IODiet build on top of each other (Figure 6.5).

We studied the source code of each library, identi�ed the hook points where storage I/O calls are made, and

wrote callbacks to trace execution and possibly block event dispatches (see Table 6.6). We also instrumented

the Android SQL classes.

android.database.sqliteandroid.database.sqlite

FirebaseFirebase

OrmLiteOrmLite

OkioOkio java.io
java.nio
java.io
java.nio

Figure 6.5: Hooked libraries and their dependencies (IODiet).

6.3.2 Evaluation

We used the same device under test (Samsung Galaxy S4) running AOSP Lollipop. To test the e�ectiveness

of IODiet, we installed a few mobile apps known for their excessive background I/O tra�c. As a counter to

bias we also installed some randomly selected popular apps from the Play Store (Table 6.7). We derived and

94

installed policies into IODiet based on the output from the data-mining engine. Once again, e�ectiveness

refers to the extra battery lifetime obtained a�er applying each runtime policy separately.

App Name Popularity

Google Maps (com.google.android.apps.maps) 1B – 5B
Hangouts (com.google.android.talk) 1B – 5B
YouTube (com.google.android.youtube) 1B – 5B
Google Keep (com.google.android.keep) 10M – 50M
Google Fit (com.google.android.apps.fitness) 10M – 50M
Google Chrome (com.android.chrome) 1B – 5B
Gmail (com.google.android.gm) 1B – 5B
Google+ (com.google.android.apps.plus) 1B – 5B
CM Updater (com.cyanogenmod.updater) 100K – 500K

(a) System apps

App Name Popularity

Jorte Calendar & Organizer (jp.co.johospace.jorte) 10M – 50M
Subway Surfers (com.kiloo.subwaysurf) 500M – 1B
LINE WebToon (com.naver.linewebtoon) 10M – 50M
Samsung Push Service (com.sec.spp.push) 1B – 5B
BBC News (bbc.mobile.news,ww) 10M – 50M
VivaVideo (com.quvideo.xiaoying) 10M – 50M
Clean Master (Boost&Antivirus) (com.cleanmaster.mguard)∗ 500M – 1B
LINE B612 - Sel�egenic Camera (com.linecorp.b612.android) 100M – 500M
Bible (com.sirma.mobile.bible.android) 100M – 500M

(b) �ird-party apps

Table 6.7: Installed apps on device under test (IODiet). Installation base includes integrated system apps (Google) and
popular third-party apps from the Android marketplace. Popularity is measured in terms of number of installs, according
to Google Play Store [13]. ∗ indicates an app that is known for high I/O overhead.

Figure 6.6 (bottom) depicts the distribution of energy-support for all sequence rules mined and �ltered

from the execution logs. Sequences containing at least one storage event call are marked with a red circle. We

observe a rapid decay on the ranked energy-support of sequences until 0.05, when the long tail starts. �us,

we set our support threshold to 0.05. As a result, we have three remaining storage-related sequences above

the support threshold. Figure 6.6 (top) lists the events comprising each sequence and Table 6.8 serves as a

translation guide. We also chose two storage sequences from the bottom group for the sake of comparison.

Just like the case of NetDiet, it is important to note that although we cover storage events from some third-

party libraries, it is possible that applications accessing databases or raw �les via other means could drain the

battery without being directly noticed by IODiet’s event logger.

95

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

R
el

at
iv

e
B

at
te

ry
 G

ai
n

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0 50 100 150 200

E
ne

rg
y

S
up

p
or

t

Sequence #

Storage rule
General rule

Threshold (0.05)

3: h → i, j (LINE WebToon)
2: e → f, g (Jorte Calendar & Organizer)

1: a, b → c, d (Clean Master)

4: k → l, m (B612 - Selfiegenic Camera)
5: n → p, q (Jorte Calendar &
 Organizer)

Figure 6.6: Energy support for all mined sequences (bottom) and select storage sequences, with corresponding battery life
extension (top). We used a support threshold of 0.05. For better readability, events names are represented by symbols.
Table 6.8 serves as a translation guide.

Symbol Event Name (Class.Method) Event Type

a ks.cm.antivirus.UpdateTimer Alarm
b ks.cm.antivirus.defend.DefendService Service
c com.cleanmaster.security.threading.AsyncTask$InternalHandler Handler
d android.database.sqlite.SQLiteStatement.execute SQL
e com.jorte.sdk_provider.JorteContentProviderHelperService.onStartCommand Service
f android.os.Handler.handleMessage Handler
g android.database.sqlite.SQLiteStatement.executeUpdate SQL
h com.naver.linewebtoon.download.DownloaderService.onStartCommand Service
i android.os.HandlerThread.run Handler
j com.j256.ormlite.support.AndroidCompiledStatement.execSql OrmLite
k com.liulishuo.filedownloader.services.FileDownloadService.ShareMainProcessService.onStartCommand Service
l android.os.HandlerThread.run Handler

m com.j256.ormlite.support.AndroidCompiledStatement.execSql OrmLite
n com.jorte.sdk_provider.JorteContentProviderHelperService.onStartCommand Service
p android.os.Handler.handleMessage Handler
q android.database.sqlite.SQLiteStatement.execute SQL

Table 6.8: Translation table of symbols to events (cf. Figure 6.6).

Using the ranked rules as a guide, we wrote more re�ned policies targeting the three topmost sequences

that involve storage operations. �e methodology is the same as in the case of NetDiet: for each sequence, we

considered four types of policies – No Block, Block-30, Block-60, and Full Block. Figure 6.7a shows the impact

of each policy on the three apps impacted by the topmost sequences: Clean Master (Boost&Antivirus), Jorte

Calendar & Organizer, and LINE WebToon. As we decrease the opportunities for background storage I/O,

we see a proportional increase in battery lifetime. Although the degree of lifetime improvements correlates

with the sequence order proposed by our sequence-rule engine, the magnitude of the improvements is much

smaller. Considering that the topmost storage sequences are ranked far below the topmost general sequences,

this is expected. Finally, we consider the impact of applying policies on two storage sequences residing below

the support threshold. Figure 6.7b shows that their rate-limiting impact on battery is inconclusive as it is hard

96

Battery Impact of IODiet Policies (Lollipop, Screen Off)

B
at

te
ry

 L
ife

tim
e

0.8

0.9

1

1.1

1.2

Clean Master (1) LINE WebToon (2) Jorte Calendar & Organizer (3)

No Block Tamer-30 Tamer-60 Full Block

926min 926min 926min

+98min

+63min +68min

(a) Top-ranked sequences turned into IODiet policies

Battery Impact of IODiet Policies (Lollipop, Screen Off)

B
at

te
ry

 L
ife

tim
e

0.8

0.9

1

1.1

1.2

B612 - Selfiegenic 
Camera (5)

Jorte Calendar & Organizer (5)

No Block Tamer-30 Tamer-60 Full Block

926min
+10min +17min

926min

(b) Bottom-most sequences turned into IODiet policies

Figure 6.7: AOSP Lollipop: Relative impact on battery lifetime due to di�erent policy targets and execution rates. For
comparison e�ect, we show the lifetime improvements for both the topmost and the bottommost ranked sequences turned
into policy targets.

to discern whether there are real improvements or whether the positive changes are due to measurement errors.

6.4 RelatedWork

OnWorkload Characterization of Networked Applications. To improve the energy e�ciency of networked

apps, we must �rst understand how these apps draw power from the battery. Energy consumption can be

accounted and apportioned via direct measurement or calibrated power models (see Chapter 2). Using traces

from cellular towers, Qian et al. [186] designed a power model based on the residency time of a 3G modem in

each possible hardware. By observing the energy impact of di�erent state-machine con�gurations, the authors

optimized the e�ciency of radio use. Huang et al. conducted a similar study [124] on 4G LTE networks.

Chen et al. [72] conducted an extensive measurement of energy drain of more than 1,500 smartphones and

discovered that: (1) A considerable amount of the total energy drain in a day (45%) occurs during screen-o�

periods; (2) A minor portion of mobile apps (22.5%) are responsible for a major portion (more than 50%) of

the background energy consumption. In another large-scale study, Rosen et al. [196] also veri�ed that although

some mobile developers take measures to reduce periodic background tra�c, there are many cases of excessive

network energy consumption due to wasted screen-o� tra�c.

Finally, NChecker [134] is a fairly recent tool that detects network-programming defects (NPDs) in mobile

97

apps arising from intermittent network conditions. NPDs lead to wasted energy, which NChecker can help

discover by associating so�ware execution logs with network-connection-condition reports.

On Energy Optimization for Networked Applications. TailEnder [49], Bartendr [205], LoadSense [68],

and RadioJockey [44] use di�erent network parameters (e.g., tail-energy overhead, link quality, network load,

packet interspacing, etc.) to optimize the scheduling of data transmissions and reduce the energy consump-

tion of common mobile apps. Although they guarantee energy savings, all networked apps are equally a�ected

as the proposed optimizations target the network interface without individually considering the semantics of

each application.

Hush [72] is a screen-o� optimizer that monitors tasks of various mobile apps, including networking, and

automatically identi�es and suppresses background activities during screen-o� periods that are not useful to

the user experience. Usefulness is de�ned as the correlation between the execution of tasks during a screen-o�

interval followed by the execution of the same tasks during the next screen-on interval. Procrastinator [192]

resembles NetDiet the most. Its control principle is the same – interpose network calls at runtime via code

injection. Procrastinator leverages static analysis of bytecode from Windows Phone apps to associate network

calls with UI screen elements. Network calls originating from non-visible UI elements are delayed to achieve a

4× reduction in data tra�c in exchange for little latency. NetDiet, on the other hand, uses lightweight dynamic

tracing to associate power traces with runtime background events, thereby allowing developers to discern and

curb the energy-hungriest network events.

OnWorkload Characterization and Optimization of I/O-Intensive Mobile Applications.�e Mobile Stor-

age Analyzer (MOST) [19] is an artifact created by Lee and Won to characterize the performance of storage-

block operations on Android. From an in-depth study involving representative smartphone applications [144],

Lee and Won suggested an overhaul of the Android storage architecture to accommodate performance opti-

mizations (some of their �ndings are mentioned in §6.3).

Li et al. proposed a storage energy model for mobile platforms to help developers optimize the energy

98

requirements of storage-intensive applications [148]. �e authors concluded that the two biggest energy con-

sumers related to storage are cryptography and managed-language APIs that provide data privacy and isola-

tion. �ey also suggest ways to reduce the energy consumption of the storage stack via hardware and so�ware

modi�cations – opt-out of cryptographed storage and specialized hardware to guarantee isolation and privacy.

Jeong et al. [133] described various optimization techniques to improve the SQLite and �lesystem perfor-

mance on Android. Eliminating unnecessary metadata �ushes and choosing a di�erent journaling mode in

SQL are examples of techniques that can increase the I/O throughput, promote I/O batching, and reduce the

energy burden of storage-intensive apps. �ese modi�cations are orthogonal to IODiet.

6.5 Conclusion

Mobile app behavior is the main factor behind battery longevity. For instance, background data tra�c is not

only a threat to a user’s limited data plan but also a menace to battery drain. Similarly, mobile so�ware rid-

den with unoptimized and frequent disk read/write accesses can quickly lead a smartphone to shutdown due

to an empty battery. We proposed NetDiet and IODiet, specialized analysis and optimization tools that can

help reduce the energy consumption of network- and I/O-heavy Android apps. NetDiet and IODiet leverage

Tamer and Meerkat to correlate speci�c so�ware activity with energy expenditure. �is correlation is helpful

in deriving controller policies that dictate changes to the runtime behavior of mobile apps. We showed via a

few scenarios that both NetDiet and IODiet can deliver a compromise between app functionality and battery

longevity that, to the best of our knowledge, other coarse-grained solutions cannot achieve.

Chapter 7

Conclusion

In this dissertation, we explored techniques to analyze, explore, and develop so�ware optimizations for mobile

applications in light of limited battery lifetime in mobile devices. Looking from the perspective of how so�ware

leverages hardware to execute tasks, we considered how developers can alleviate the impact of task execution

on the constrained battery found in smartphones, tablets, and wearable devices. Our contributions are:

• A so�ware development aid for energy-aware programming. Application Modes (AM) abstract so�ware

functionality into bundles that extend mobile programs and o�er users di�erent points on the Pareto

frontier between utility and energy savings. With AM, developers can mainly focus on functionality

changes that modify the energy pro�le of an application, while users engage with the system by opting

for the bundle that best �ts their sense of so�ware usefulness and battery needs. Using AM, developers

can expose, at compile time, battery optimizations that extend energy proportionality.

• A binary injection tool for controlling the execution of energy-hungry tasks. Tamer is an execution con-

troller able to monitor events, rewire program binaries, and change runtime behavior without need of

source-code editing. Tamer is a valuable tool to developers longing for a quick way to perform what-if

power analysis over di�erent execution paths. Using Tamer, developers can expose, at runtime, battery

optimizations that extend energy proportionality.

99

100

• A policy-discovery tool for energy controllers. Meerkat complements Tamer by associating power traces

with so�ware events and discovering the most energy-hungry event sequences. Meerkat’s output can be

used by developers to devise e�ective policies for Tamer, thus speeding up the discovery of potential

energy optimizations.

7.1 Future Work

Based on our initial steps in energy-aware so�ware development and analysis for mobile devices, we envision

an integrated suite of tools that supports measurements, analysis, attribution, and visualization of energy con-

sumption by mobile applications. Following the successful example of commercial tools in the realm of perfor-

mance analysis (e.g., Intel VTune Performance Analyzer [216], CodeXL [112], Snapdragon Pro�ler [127], etc.,)

it is highly desirable to have an easy-to-use, automated and comprehensive system that can live-trace so�ware

events, pinpoint and quantify energy bottlenecks of binary code, and readily suggest modi�cations.

A natural extension to monitoring and pro�ling energy consumption is to explore automated ways to gen-

erate optimized, energy-aware code. �is step lends substantial bene�ts to large-scale so�ware development

involving a large code base and numerous input test samples, as is the case of the Android OS. With automatic

code generation, we enable so�ware developers and toolchains, such as compilers and runtime, to participate in

the energy-aware so�ware development without necessarily imposing expensive runtime energy-saving strate-

gies. One example of a cooperative framework is enDesign [70]. enDesign pro�les at function level the energy

consumption of running programs and suggests assembly-code optimizations using genetic programming.

enDesign uses a guided mutation strategy to create energy-improving program-code mutants based on the

observed runtime pro�le.

enDesign is proven successful against CPU-intensive programs. Its e�ectiveness lies on a highly accurate

energy pro�ling of and attribution to function calls and critical loop structures. Accuracy is due to linear mod-

els modeled a�er real utilization data sampled at the microsecond scale from hardware performance counters

101

(e.g., Intel’s RAPL interface [197]). In parallel, genetic mutations rely on neutral transformations to the as-

sembly code that preserve the functional equivalence derived from either applying algebraic rules or merging

opcodes available in the ISA, or from heuristics that reorders code execution. enDesign evaluates the energy

potential of mutated programs using the pro�ling history from RAPL. Lower-energy mutated programs are

kept in the sample population, which serves as source for the next generation of mutated programs.

Adapting genetic programming to general applications that touch multiple hardware subsystems is an in-

teresting albeit challenging idea. First, there is the issue of subpar energy attribution from hardware subsystems

to so�ware events. Second, obtaining neutral transformations from high-level code requires a complex expert

system that is able to gauge so�ware equivalency of code blocks comprising hundreds or thousands of lines of

code (cf. simple assembly operations).

7.2 Open Questions

Along with the direct extensions to our work, other related topics that could be explored in the long term

include:

User Involvement in Energy Optimizations. Application Modes bring users into the power-management

loop by letting them choose the behavior of the applications running on their smartphones. Although we

demonstrated the potential battery savings of adding di�erent modes to an application, we did not assess the

user satisfaction with the proposed changes.

Another de�ciency in our study is the lack of guidelines on designing new bundles of functionality. Developers

are encumbered with the task of bringing forth new modes from the concept stage to implementation and

testing. Yet, di�erent users might have di�erent needs that are not necessarily covered by developer-inspired

modes. One possible way to involve users in creating modes is to elicit requirements during the design phase

of a so�ware project.

As for Tamer and Meerkat, expert users willing to extend the battery life of their devices can, in theory, de�ne

policies to programs that do not provide enough power-related knobs. Conventional users, on the other hand,

102

are mostly at the mercy of so�ware developers. �is situation could be reverted if there were open access to

e�ective policies without the need of expertise in power management. A centralized marketplace of curated

energy policies for di�erent applications should bene�t conventional users interested in extending battery

hours. To avoid collusion and biased reviews, a reputation system as well as an incentive mechanism could be

applied to the policy repository. XPrivacy [60] is as an example of successful application of this policy-bazaar

idea. XPrivacy is a policy-driven controller for the Android OS that prevents applications from leaking privacy-

sensitive data. Similarly to Tamer, XPrivacy injects code into binaries to revoke or to allow the execution of

operations that can ex�ltrate sensitive data from mobile devices. XPrivacy’s marketplace o�ers user-reviewed

privacy-related policies targeting popular Android applications.

Impact of Binary Transformations to So�wareAcceptability. Binary transformations introduced by Tamer

generate relaxed programs extended with nondeterminism that relaxes their semantics and enables greater

�exibility in execution. Going beyond battery savings, relaxation mechanisms, a developer must also ensure

that the resulting relaxed program is acceptable. So far we have deemed relaxed programs acceptable if the

transformation does not generate crashes nor incur execution changes that are perceivable by the end user.

Because this conditioning is subject to what users expect from programs, we resort to the cumbersome task of

visually inspecting each generated so�ware individually. It is desirable to streamline this veri�cation process.

Carbin et al. [65] presented language constructs for developing relaxed programs and stating acceptability

properties. Acceptability properties include integrity properties that the program must satisfy to successfully

produce a result and accuracy properties that characterize how accurate the generated result must be. Us-

ing the Coq Proof Assistant [10], the authors presented proof rules for reasoning about acceptability proper-

ties, thereby enabling developers to obtain fully machine-checked veri�cations of relaxed programs. Adapting

Carbin’s work to our purpose is not a trivial task, given that, in many cases, we somehow must infer the integrity

and accuracy properties from binary programs without access to source code.

•

•

103

•

Bibliography

[1] https://www.appbrain.com/stats. Accessed on 2016-07-08.

[2] https://www.libtastic.com. Accessed on 2016-07-08.

[3] Advanced Power Management (APM). https://en.wikipedia.org/wiki/Advanced_Power_

Management. Accessed on 2016-07-29.

[4] Apache Cordova. http://cordova.apache.org. Accessed: 2016-07-27.

[5] Apple Newton. https://en.wikipedia.org/wiki/Apple_Newton. Accessed: 2016-07-27.

[6] AppMachine. https://www.appmachine.com. Accessed: 2016-07-27.

[7] Bejeweled Blitz. https://play.google.com/store/apps/details?id=com.ea.

BejeweledBlitz_na. Accessed on 2016-08-24.

[8] big.LITTLE technology: �e future of mobile. https://www.arm.com/files/pdf/big_LITTLE_

Technology_the_Futue_of_Mobile.pdf. Accessed on 2016-08-12.

[9] Candy Crush Saga. https://play.google.com/store/apps/details?id=com.king.

candycrushsaga. Accessed on 2016-09-12.

[10] �e Coq proof assistant. https://coq.inria.fr. Accessed on 2016-12-12.

[11] DIY free mobile AppMakr. http://www.appmakr.com. Accessed: 2016-07-27.

104

https://www.appbrain.com/stats
https://www.libtastic.com
https://en.wikipedia.org/wiki/Advanced_Power_Management
https://en.wikipedia.org/wiki/Advanced_Power_Management
http://cordova.apache.org
https://en.wikipedia.org/wiki/Apple_Newton
https://www.appmachine.com
https://play.google.com/store/apps/details?id=com.ea.BejeweledBlitz_na
https://play.google.com/store/apps/details?id=com.ea.BejeweledBlitz_na
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://play.google.com/store/apps/details?id=com.king.candycrushsaga
https://play.google.com/store/apps/details?id=com.king.candycrushsaga
https://coq.inria.fr
http://www.appmakr.com

105

[12] �e future of mobile subscriptions – Ericsson Mobility Report. https://www.ericsson.com/

mobility-report/future-of-mobile-subscriptions. Accessed: 2016-07-27.

[13] Google Play. https://play.google.com. Accessed on 2016-08-23.

[14] Google Services battery drain. https://forums.androidcentral.com/google-nexus-4/

302559-google-services-battery-drain.html. Accessed on 2016-08-24.

[15] iPAQ. https://en.wikipedia.org/wiki/IPAQ. Accessed: 2016-07-27.

[16] LG teases Samsung over Galaxy’s lack of removable battery. http://www.digitaltrends.com/

mobile/lg-tweet-teases-samsung-removable-battery. Accessed on 2016-08-31.

[17] Measuring device power. https://source.android.com/devices/tech/power/device.html.

Accessed: 2016-08-12.

[18] MIUI sound recorder. https://github.com/MiCode/SoundRecorder. Accessed on 2016-08-17.

[19] Mobile Storage Analyzer (MOST). http://dmclab.hanyang.ac.kr/sub/main_most.htm. Ac-

cessed on 2017-01-12.

[20] Nike+ Run Club. https://play.google.com/store/apps/details?id=com.nike.plusgps.

Accessed on 2016-08-24.

[21] NlpWakelock and NlpCollectorWakelock discussion. https://www.reddit.com/r/Android/

comments/1rvmlr/nlpwakelock_and_nlpcollectorwakelock_discussion/. Accessed on

2016-08-24.

[22] OsmAnd – o�ine mobile maps and navigation. https://osmand.net. Accessed on 2016-08-17.

[23] PalmPilot. https://en.wikipedia.org/wiki/PalmPilot. Accessed: 2016-07-27.

[24] Prboom-plus for android. https://github.com/jrgleason/prboom-plus4droid/. Accessed on

2016-08-20.

https://www.ericsson.com/mobility-report/future-of-mobile-subscriptions
https://www.ericsson.com/mobility-report/future-of-mobile-subscriptions
https://play.google.com
https://forums.androidcentral.com/google-nexus-4/302559-google-services-battery-drain.html
https://forums.androidcentral.com/google-nexus-4/302559-google-services-battery-drain.html
https://en.wikipedia.org/wiki/IPAQ
http://www.digitaltrends.com/mobile/lg-tweet-teases-samsung-removable-battery
http://www.digitaltrends.com/mobile/lg-tweet-teases-samsung-removable-battery
https://source.android.com/devices/tech/power/device.html
https://github.com/MiCode/SoundRecorder
http://dmclab.hanyang.ac.kr/sub/main_most.htm
https://play.google.com/store/apps/details?id=com.nike.plusgps
https://www.reddit.com/r/Android/comments/1rvmlr/nlpwakelock_and_nlpcollectorwakelock_discussion/
https://www.reddit.com/r/Android/comments/1rvmlr/nlpwakelock_and_nlpcollectorwakelock_discussion/
https://osmand.net
https://en.wikipedia.org/wiki/PalmPilot
https://github.com/jrgleason/prboom-plus4droid/

106

[25] RoboGuice. https://github.com/roboguice/roboguice. Accessed on 2017-02-23.

[26] Robotium: User scenario testing for Android. https://www.robotium.org. Accessed on 2017-03-31.

[27] Saving data in SQL databases. https://developer.android.com/training/basics/data-

storage/databases.html. Accessed on 2017-01-01.

[28] SECuRET LiveStream. https://play.google.com/store/apps/details?id=com.dooblou.

SECuRETSpyCam. Accessed on 2017-01-03.

[29] Spycam. com.nikhil.spycam. Accessed on 2016-08-17.

[30] SystemTap. https://sourceware.org/systemtap. Accessed on 2016-08-26.

[31] Using databases in Android: SQLite. https://developer.android.com/guide/topics/data/

data-storage.html#db. Accessed on 2016-12-15.

[32] Visual Studio. https://www.visualstudio.com. Accessed on 2016-11-14.

[33] Why RAM boosters and task killers are bad for your Android. https://www.makeuseof.com/tag/

ram-boosters-task-killers-bad-android. Accessed on 2016-08-26.

[34] Xposed module repository. https://repo.xposed.info. Accessed on 2016-08-23.

[35] Yuki Abe, Hiroshi Sasaki, Martin Peres, Koji Inoue, Kazuaki Murakami, and Shinpei Kato. Power and

performance analysis of GPU-accelerated systems. In USENIX Workshop on Power-Aware Computing

and Systems (HotPower), 2012.

[36] Rakesh Agrawal, Tomasz Imielińki, and Arun Swami. Mining association rules between sets of items in

large databases. In ACM SIGMOD International Conference on Management of Data, 1993.

[37] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In IEEE International Confer-

ence on Data Engineering (ICDE), 1995.

https://github.com/roboguice/roboguice
https://www.robotium.org
https://developer.android.com/training/basics/data-storage/databases.html
https://developer.android.com/training/basics/data-storage/databases.html
https://play.google.com/store/apps/details?id=com.dooblou.SECuRETSpyCam
https://play.google.com/store/apps/details?id=com.dooblou.SECuRETSpyCam
com.nikhil.spycam
https://sourceware.org/systemtap
https://developer.android.com/guide/topics/data/data-storage.html#db
https://developer.android.com/guide/topics/data/data-storage.html#db
https://www.visualstudio.com
https://www.makeuseof.com/tag/ram-boosters-task-killers-bad-android
https://www.makeuseof.com/tag/ram-boosters-task-killers-bad-android
https://repo.xposed.info

107

[38] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Ghosts in the machine: Interfaces for better

power management. In ACM International Conference on Mobile Systems, Applications, and Services

(MobiSys), 2004.

[39] Android Developers. Best practices for background jobs. https://developer.android.com/

training/best-background.html. Accessed on 2016-08-22.

[40] Android Developers. Managing your app’s memory. https://developer.android.com/

training/articles/memory.html. Accessed on 2016-08-26.

[41] Jeremy Andrus, Christo�er Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh. Cells: A virtual

mobile smartphone architecture. In ACM Symposium on Operating Systems Principles (SOSP), 2011.

[42] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman Amaras-

inghe. PetaBricks: A language and compiler for algorithmic choice. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2009.

[43] Apple Inc. iOS developer library – background execution. https://developer.apple.

com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/

BackgroundExecution/BackgroundExecution.html. Accessed on 2016-08-26.

[44] Pavan K. Athivarapu, Ranjita Bhagwan, Saikat Guha, Vishnu Navda, Ramachandran Ramjee, Dushyant

Arora, Venkat N. Padmanabhan, and George Varghese. RadioJockey: Mining program execution to

optimize cellular radio usage. In ACM International Conference on Mobile Computing and Networking

(MobiCom), 2012.

[45] AT&T. Application resource optimizer (ARO). https://developer.att.com/application-

resource-optimizer. Accessed on 2016-08-22.

[46] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential PAttern Mining using a bitmap

representation. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

2002.

https://developer.android.com/training/best-background.html
https://developer.android.com/training/best-background.html
https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/articles/memory.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.att.com/application-resource-optimizer
https://developer.att.com/application-resource-optimizer

108

[47] Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting energy-conscious pro-

gramming using controlled approximation. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2010.

[48] Rajesh Khrishna Balan, Mahadev Satyanarayanan, So Young Park, and Tadashi Okoshi. Tactics-based

remote execution for mobile computing. In ACM International Conference on Mobile Systems, Applica-

tions and Services (MobiSys), 2003.

[49] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. Energy consumption

in mobile phones: A measurement study and implications for network applications. In ACM Internet

Measurement Conference (IMC), 2009.

[50] Gaurav Banga, Peter Druschel, and Je�rey C. Mogul. Resource containers: A new facility for resource

management in server systems. InACMSymposium onOperating System Principles and Implementation,

1999.

[51] Luiz André Barros, Jimmy Clidaras, and Urs Hölzle. �e Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines (2nd Edition). Synthesis Lectures on Computer Architecture.

Morgan & Claypool Publishers, 2013.

[52] Luiz André Barroso and Urs Hölzle. �e case for energy-proportional computing. IEEE Computer,

40(12), 2007.

[53] Luiz André Barroso and Urs Hölzle. �e Datacenter as a Computer: An Introduction to the Design of

Warehouse-Scale Machines. Synthesis Lectures on Computer Architecture. Morgan & Claypool Pub-

lishers, 2009.

[54] Yevgen Barsukov. Challenges and solutions in battery fuel gauging, 2004.

[55] Frank Bellosa. �e bene�ts of event-driven energy accounting in power-sensitive systems. In ACM

SIGOPS European Workshop, 2000.

109

[56] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. A dynamic self-scheduling scheme for hetero-

geneous multiprocessor architecture. ACMTransactions onArchitecture andCodeOptimization (TACO),

9(4), 2013.

[57] Michael J. Berry and Gordon Lino�. Data Mining Techniques: For Marketing, Sales, and Customer Sup-

port. John Wiley & Sons, Inc., 1997.

[58] W. Lloyd Bircher and Lizy K. John. Complete system power estimation: A trickle-down approach based

on performance events. In IEEE International Symposium on Performance Analysis of Systems and So�-

ware, 2007.

[59] �omas Bläsing, Leonid Batyuk, Schmidt Aubrey-Derrick, Seyit Ahmet Camtepe, and Sahin Albayrak.

An Android application sandbox system for suspicious so�ware detection. In International Conference

on Malicious and Unwanted So�ware (MALWARE), 2009.

[60] Marcel Bokhorst. XPrivacy. https://github.com/M66B/XPrivacy. Accessed on 2016-12-28.

[61] Manjit Borah, Robert Michael Owens, and Mary Jane Irwin. Transistor sizing for low power CMOS

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(6), 1996.

[62] Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom Tsur. Dynamic itemset counting and

implication rules for market basket data. In ACM SIGMOD International Conference on Management of

Data, 1997.

[63] Niels Brouwers, Marco Zuniga, and Koen Langendoen. NEAT: A novel energy analysis toolkit for free-

roaming smartphones. In ACM Conference on Embedded Network Sensor Systems (SenSys), 2014.

[64] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Teharni. Crowdroid: Behavior-based malware detec-

tion system for Android. In ACMWorkshop on Security and Privacy in Smartphones andMobile Devices

(SPSM), 2011.

https://github.com/M66B/XPrivacy

110

[65] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. Proving acceptability proper-

ties of relaxed nondeterministic approximate programs. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2012.

[66] Bradley S. Carlson and Roger C. Y. Chen. Performance enhancement of CMOS VLSI circuits by tran-

sistor reordering. In ACM International Design Automation Conference, 1993.

[67] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In USENIX

Annual Technical Conference (ATC), 2010.

[68] Abhijnan Chakraborty and Vishnu Navda. Coordinating cellular background transfers using LoadSense.

In ACM International Conference on Mobile Computing and Networking (MobiCom), 2013.

[69] Geo�rey Werner Challen, Jason Waterman, and Matt Welsh. IDEA: Integrated distributed energy aware-

ness for wireless sensor networks. InACM International Conference onMobile Systems, Applications, and

Services (MobiSys), 2010.

[70] Jie Chen and Guru Venkataramani. enDebug: A hardware-so�ware framework for automated energy

debugging. Journal of Parallel and Distributed Computing, 96, 2016.

[71] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Y. Charlie Hu, Maruti Gupta, and Rath Vannithamby.

Smartphone energy drain in the wild: Analysis and implications. In ACM International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS), 2015.

[72] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Yu Charlie Hu, Maruti Gupta, and Rath Vannithamby.

Smartphone background activities in the wild: Analysis and implications. In ACM International Con-

ference on Mobile Computing and Networking (MobiCom), 2015.

[73] Jerry Cheng, Wong H. Y. Starsky, Hao Yang, and Songwu Lu. SmartSiren: Virus detection and alert for

smartphones. In ACM International Conference onMobile Systems, Applications, and Services (MobiSys),

2007.

111

[74] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining speci�cations of malicious behav-

ior. In JointMeeting of the European So�ware Engineering Conference and the ACMSIGSOFT Symposium

on the Foundations of So�ware Engineering (ESEC-FSE), 2007.

[75] David Chu, Aman Kansal, Jie Liu, and Feng Zhao. Mobile apps: It’s time to move up to CondOS. In

USENIX Conference on Hot Topics in Operating Systems (HotOS), 2011.

[76] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. CloneCloud: Elas-

tic execution between mobile device and cloud. In ACM European Conference on Computer Systems

(EuroSys), 2011.

[77] Ryan Cochran, Can Hankendi, Ayse Kivilcim Coskun, and Sherief Reda. Pack & Cap: Adaptive DVFS

and thread packing under power caps. In IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2011.

[78] Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David Liu. Energy types. In ACM

International Conference on Object-Oriented Programming Systems, Languages and Applications, 2012.

[79] �e Nielsen Company. So many apps, so much more time for entertainment. https:

//www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-

for-entertainment.html. Accessed on 2016-08-22.

[80] comScore. �e 2015 U.S. mobile app report. https://www.comscore.com/Insights/

Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report. Accessed on

2016-10-28.

[81] George Crabtree, Elizabeth Kocs, and Lynn Trahey. �e energy-storage frontier: Lithium-ion batteries

and beyond. MRS Bulletin, 40(12), 2015.

[82] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel Emer. Scheduling het-

erogeneous multi-cores through performance impact estimation (PIE). In ACM/IEEE International

Symposium on Computer Architecture (ISCA), 2012.

https://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
https://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
https://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report

112

[83] Jonathan Crussell, Clint Gibler, and Hao Chen. AnDarwin: Scalable detection of Android application

clones based on semantics. IEEE Transactions on Mobile Computing, 14(10), 2014.

[84] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer Chandra,

and Paramvir Bahl. MAUI: Making smartphones last longer with code o�oad. In ACM International

Conference on Mobile Systems, Applications, and Services (MobiSys), 2010.

[85] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. Rule discovery

from time series. In International Conference on Knowledge Discovery and Data Mining (KDD), 1998.

[86] Android Developers. Optimizing for Doze and App StandBy. https://developer.android.com/

training/monitoring-device-state/doze-standby.html. Accessed on 2016-07-04.

[87] Google Developers. Scheduling repeating alarms. https://developer.android.com/training/

scheduling/alarms.html. Accessed on 2016-08-21.

[88] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. QUIRE: Lightweight

provenance for smart phone operating systems. In USENIX Security Symposium, 2011.

[89] �anh Do, Suhib Rawshdeh, and Weisong Shi. pTop: A process-level power pro�ling tool. In USENIX

Workshop on Power-Aware Computing and Systems (HotPower), 2009.

[90] Mian Dong, Tian Lan, and Lin Zhong. Rethinking energy accounting with cooperative game theory. In

ACM International Conference on Mobile Computing and Networking (MobiCom), 2015.

[91] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for battery-powered

mobile systems. In ACM International Conference on Mobile Systems, Applications, and Services (Mo-

biSys), 2011.

[92] DU Apps Studio. DU Battery Saver. https://play.google.com/store/apps/details?id=com.

dianxinos.dxbs.paid. Accessed on 2016-08-26.

https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/training/scheduling/alarms.html
https://play.google.com/store/apps/details?id=com.dianxinos.dxbs.paid
https://play.google.com/store/apps/details?id=com.dianxinos.dxbs.paid

113

[93] Alfred Dunlop and John Fishburn. TILOS: A posynomial programming approach to transistor sizing.

In IEEE International Conference on Computer-Aided Design (ICCAD), 1985.

[94] Prabal Dutta, Mark Feldmeier, Joseph Paradiso, and David Culler. Energy metering for free: Augment-

ing switching regulators for real-time monitoring. In International Conference on Information Processing

in Sensor Networks (IPSN), 2007.

[95] Carla S. Ellis. �e case for higher-level power management. In Workshop on Hot Topics in Operating

Systems, 1999.

[96] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox,

Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An information-�ow tracking system

for realtime privacy monitoring on smartphones. ACM Transactions on Computer Systems (TOCS),

32(2), 2014.

[97] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos, Ramesh Govindan, and

Deborah Estrin. Diversity in smartphone usage. In ACM International Conference on Mobile Systems,

Applications, and Services (MobiSys), 2010.

[98] Adrienne Porter Felt, Steve Chin, Erika an Hanna, Dawn Song, and David Wagner. Android permissions

demysti�ed. In ACM Conference on Computer and Communications Security (CCS), 2011.

[99] Adrienne Porter Felt, Kate Greenwood, and David Wagner. �e e�ectiveness of application permissions.

In USENIX Conference on Web Application Development (WebApps), 2011.

[100] Oasis Feng. Greenify. https://play.google.com/store/apps/details?id=com.oasisfeng.

greenify. Accessed on 2016-08-26.

[101] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Mobile cloud computing: A survey. Future

Generation Computer Systems, 29(1), 2013.

https://play.google.com/store/apps/details?id=com.oasisfeng.greenify
https://play.google.com/store/apps/details?id=com.oasisfeng.greenify

114

[102] Denzil Ferreira, Anind K. Dey, and Vassilis Kostakos. Understanding human-smartphone concerns: A

study of battery life. In International Conference on Pervasive Computing (Pervasive), 2011.

[103] Denzil Ferreira, Eija Ferreira, Jorge Goncalves, Vassilis Kostakos, and Anind K. Dey. Revisiting human-

battery interaction with an interactive battery interface. In ACM International Joint Conference on Per-

vasive and Ubiquitous Computing (UbiComp), 2013.

[104] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In ACM Sympo-

sium on Operating Systems (SOSP), 1999.

[105] Jason Flinn and M. Satyanarayanan. PowerScope: A tool for pro�ling the energy usage of mobile appli-

cations. In IEEE Workshop on Mobile Computer Systems and Applications, 1999.

[106] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: Tracking energy in networked

embedded systems. In USENIX Symposium on Operating Systems Design and Implementation (OSDI),

2008.

[107] Philippe Fournier-Viger, Antonio Gomariz, Manuel Campos, and Rincy�omas. Fast vertical mining of

sequential patterns using co-ocurrence information. In Paci�c-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD), 2014.

[108] Phillipe Fournier-Viger, Roger Nkambou, and Vincent Shin-Mu Tseng. RuleGrowth: Mining sequen-

tial rules common to several sequences by pattern-growth. In ACM Symposium on Applied Computing

(SAC), 2011.

[109] Martin Fowler. Inversion of Control containers and the Dependency Injection pattern. http://

martinfowler.com/articles/injection.html#ServiceLocatorVsDependencyInjection,

2004. Accessed on 2017-02-23.

[110] Pawan Goal, Xingang Guo, and Harrick M. Vin. A hierarchical CPU scheduler for multimedia operating

systems. In USENIX Symposium on Operating System Design and Implementation (OSDI), 1996.

http://martinfowler.com/articles/injection.html#ServiceLocatorVsDependencyInjection
http://martinfowler.com/articles/injection.html#ServiceLocatorVsDependencyInjection

115

[111] Google Developers. Batterystats and Battery Historian walkthrough. https://developer.android.

com/studio/profile/batterystats. Accessed on 2016-08-22.

[112] GPUOpen. CodeXL. https://gpuopen.com/compute-product/codexl. Accessed on 2016-12-12.

[113] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. RiskRanker: Scalable and

accurate zero-day Android malware detection. In ACM International Conference on Mobile Systems,

Applications, and Services (MobiSys), 2012.

[114] Dirk Grunwal, Charles B. Morrey III, Philip Levis, Michael Neufeld, and Keith I. Farkas. Policies for

dynamic clock scheduling. In USENIX Symposium on Operating System Design and Implementation

(OSDI), 2000.

[115] Ashish Gupta, �omas Zimmermann, Christian Bird, Nachiappan Nagappan, �irumalesh Bhat, and

Syed Emran. Mining energy traces to aid in so�ware development: An empirical case study. In

ACM/IEEE International Symposium on Empirical So�ware Engineering andMeasurement (ESEM), 2014.

[116] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and Mahadev Satya-

narayanan. Towards wearable cognitive assistance. In ACM International Conference onMobile Systems,

Applications, and Services (MobiSys), 2014.

[117] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. Estimating mobile application energy

consumption using program analysis. In IEEE International Conference on So�ware Engineering (ICSE),

2013.

[118] Shuai Hao, Bin Liu, Suman Nath, J. Halfond, William G, and Ramesh Govindan. PUMA: Programmable

UI-automation for large scale dynamic analysis of mobile apps. In ACM International Conference on

Mobile Systems, Applications, and Services (MobiSys), 2014.

[119] Brett D. Higgins, Jason Flinn, T. J. Giuli, Brian Noble, Christopher Peplin, and David Watson. Informed

mobile prefetching. In ACM International Conference on Mobile Systems, Applications, and Services

(MobiSys), 2012.

https://developer.android.com/studio/profile/batterystats
https://developer.android.com/studio/profile/batterystats
https://gpuopen.com/compute-product/codexl

116

[120] Henry Ho�man, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin Ri-

nard. Dynamic knobs for responsive power-aware computing. In ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2011.

[121] Mohammad Ashraful Hoque, Matti Siekkinen, Kashif Nizam Khan, Yu Xiao, and Sasu Tarkoma. Mod-

eling, pro�ling, and debugging the energy consumption of modern devices. ACM Computing Surveys,

48(3), 2015.

[122] Cuixiong Hu and Iulian Neamtiu. Automating GUI testing for Android applications. In International

Workshop on Automation of So�ware Test (AST), 2011.

[123] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan, Victor Zyuban, Hans Jacobson, and Pradip Bose.

Microarchitectural techniques for power gating of execution units. In International Symposium on Low

Power Electronics and Design (ISLPED), 2004.

[124] Junxian Huang, Feng Qian, Z. Morley Mao, Subhabrata Sen, and Oliver Spatscheck. Screen-O� char-

acterization and optimization in 3G/4G networks. In ACM Internet Measurement Conference (IMC),

2012.

[125] IDC Research Inc. Smartphone OS market share, 2016 Q2. https://www.idc.com/prodserv/

smartphone-os-market-share.jsp. Accessed on 2016-12-12.

[126] Mashable Inc. �ese 8 popular game totally kill your battery life. https://mashable.com/2014/10/

01/games-battery-draining. Accessed on 2016-12-12.

[127] Qualcomm Technologies Inc. Snapdragon pro�ler. https://developer.qualcomm.com/

software/snapdragon-profiler. Accessed on 2016-12-12.

[128] Square Inc. Dagger – a fast dependency injector for Android and Java. https://square.github.

io/dagger. Accessed on 2017-02-23.

https://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://mashable.com/2014/10/01/games-battery-draining
https://mashable.com/2014/10/01/games-battery-draining
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://square.github.io/dagger
https://square.github.io/dagger

117

[129] International Technology Roadmap for Semiconductors. ITRS 2.0 publication. https://www.itrs2.

net/itrs-reports.html. Accessed: 2016-07-27.

[130] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret Martonosi. An anal-

ysis of e�cient multi-core global power management policies: Maximizing performance for a given

power budget. In IEEE/ACM International Symposium on Microarchitecture (MICRO), 2006.

[131] Dietmar Jannach and Simon Fischer. Recommendation-based modeling support for data mining pro-

cesses. In ACM Conference on Recommender Systems (RecSys), 2014.

[132] Dietmar Jannach, Michael Jugovac, and Lukas Lerche. Adaptive recommendation-based modeling sup-

port for data analysis work�ows. In International Conference on Intelligent User Interfaces (IUI), 2015.

[133] Sooman Jeon, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. I/O stack optimization for

smartphones. In USENIX Annual Technical Conference (ATC), 2013.

[134] Xinxin Jin, Peng Huang, Tianyn Xu, and Yuanyuan Zhou. NChecker: Saving mobile app developers

from network disruptions. In ACM European Conference on Computer Systems (EuroSys), 2016.

[135] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting storage for smartphones. ACM Trans-

actions on Storage, 8(4), 2012.

[136] Myungsik Kim, Hu-Ung Lee, and Youjip Won. IO characteristics of modern smartphone platform: An-

droid vs. Tizen. In InternationalWireless Communications andMobile Computing Conference (IWCMC),

2015.

[137] Mikkel Baun Kjærgaard, Jakob Langdal, Torben Godsk, and �omas To�kjær. EnTracked: Energy-

e�cient robust position tracking for mobile devices. InACMInternational Conference onMobile Systems,

Applications, and Services (MobiSys), 2009.

[138] Sven Knispel. BetterBatteryStats. https://play.google.com/store/apps/details?id=com.

asksven.betterbatterystats. Accessed on 2016-08-26.

https://www.itrs2.net/itrs-reports.html
https://www.itrs2.net/itrs-reports.html
https://play.google.com/store/apps/details?id=com.asksven.betterbatterystats
https://play.google.com/store/apps/details?id=com.asksven.betterbatterystats

118

[139] Donald Knuth, James H. Morris, and Vaughan Pratt. Fast pattern matching in strings. SIAM Journal on

Computing, 6(2), 1977.

[140] Andreas Lachenmann, Pedro José Marrón, Daniel Minder, and Kurt Rothermel. Meeting lifetime goals

with energy levels. In ACM International Conference on Embedded Networked Sensor Systems (SenSys),

2007.

[141] H. Andre Lagar-Cavilla, Niraj Tolla, Eyal de Lara, M. Satyanarayanan, and David O’Hallaron. Interactive

resource-intensive applications made easy. InACM/IFIP/USENIX InternationalMiddleware Conference,

2007.

[142] Latedroid. Juicedefender. https://play.google.com/store/apps/details?id=com.

latedroid.juicedefender. Accessed on 2016-08-26.

[143] Jungseob Lee, Vijay Satisha, Michael Schulte, Katherine Compton, and Nam Sung Kim. Improving

throughput of power-constrained GPUs using dynamic voltage/frequency and core scaling. In Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT), 2011.

[144] Kisung Lee and Youjip Won. Smart layers and dumb result: IO characterization of an Android-based

smartphone. In International Conference on Embedded So�ware (EMSOFT), 2012.

[145] Kwong-Sak Leung, Ka-Chun Wong, Tak-Ming Chan, Man-Hon Wong, Kin-Hong Lee, Chi-Kong Lau,

and Stephen K. W. Tsu. Discovering protein-DNA binding sequence patterns using association rule

mining. Nucleic Acids Research, 38(19), 2010.

[146] Ding Li, Shuai Hao, Jiaping Gui, and William G. J. Halfond. An empirical study of the energy consump-

tion of Android applications. In IEEE International Conference on So�ware Maintenance and Evolution

(ICSME), 2014.

[147] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govindan. Calculating source line level energy

information for Android applications. In International Symposium on So�ware Testing and Analysis

(ISSTA), 2013.

https://play.google.com/store/apps/details?id=com.latedroid.juicedefender
https://play.google.com/store/apps/details?id=com.latedroid.juicedefender

119

[148] Jing Li, Anirudh Badam, Ranveer Chandra, Steven Swanson, Bruce Worthington, and Qi Zhang. On

the energy overhead of mobile storage systems. In USENIX Conference on File and Storage Technologies

(FAST), 2016.

[149] LifeHacker.com. Android task killers explained: What they do and why you shouldn’t use them. http:

//lifehacker.com/5650894. Accessed on 2016-08-26.

[150] Kaisen Lin, Aman Kansal, Dimitrios Lymberopoulos, and Feng Zhao. Energy-accuracy trade-o� for

continuous mobile device location. In ACM International Conference on Mobile Systems, Applications,

and Services (MobiSys), 2010.

[151] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto, Massimiliano

Di Penta, and Denys Poshyvanyk. Mining energy-greedy API usage patterns in Android apps: An

empirical study. In Workshop Conference on Mining So�ware Repositories, 2014.

[152] Xiaotao Liu, Prashant Shenoy, and Mark D. Corner. Chameleon: Application-level power management.

IEEE Transactions on Mobile Computing, 7(8), 2008.

[153] Yepand Liu, Chang Xu, S. C. Cheung, and Jian Lü. GreenDroid: Automated diagnosis of energy ine�-

ciency for smartphone applications. IEEE Transactions on So�ware Engineering, 40, 2014.

[154] David Lo and Siau-Cheng Khoo. SMArTIC: Towards building an accurate, robust and scalable speci�-

cation miner. In ACM SIGSOFT International Symposium on Foundations of So�ware Engineering (FSE),

2006.

[155] David Lo, Siau-Cheng Khoo, and Limsoon Wong. Non-redundant sequential rules – theory and algo-

rithm. Information Systems, 34(4–5), 2009.

[156] Jacob R. Lorch and Alan Jay Smith. Operating system modi�cations for task-based speed and voltage.

In ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), 2003.

http://lifehacker.com/5650894
http://lifehacker.com/5650894

120

[157] Kai Ma, Xue Li, Wei Chen, Chi Zhand, and Xiaorui Wang. GreenGPU: A holistic approach to energy

e�ciency in GPU-CPU heterogeneous architectures. In IEEE International Conference on Parallel Pro-

cessing, 2012.

[158] Riyadh Mahmood, Naeem Esfahani,�abet Kacem, Nariman Mirzaei, Sam Malek, and Angelos Stavrou.

A whitebox approach for automated security testing of Android applications on the cloud. In Interna-

tional Workshop of So�ware Test (AST), 2012.

[159] Anudipa Maiti, Yihong Chen, and Geo�rey Challen. Jouler: A policy framework enabling e�ective

and �exible smartphone energy management. In EAI International Conference on Mobile Computing,

Applications and Services (MobiCASE), 2015.

[160] Heikki Mannila, Toivonen, Hannu, and A. Inkeri Verkamo. Discovery of frequent episodes in event

sequences. Data Mining and Knowledge Discovery, 1(3), 1997.

[161] Marcelo Martins, Justin Cappos, and Rodrigo Fonseca. Selectively taming background Android apps to

improve battery lifetime. In USENIX Annual Technical Conference (ATC), 2015.

[162] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kuppuswamy, Alex C.

Snoeren, and Rajesh K. Gupta. Evaluating the e�ectiveness of model-based power characterization. In

USENIX Annual Technical Conference (ATC), 2011.

[163] Gigaom Media. Google’s killer Android L feature: Up to 36% more battery life thanks to Project

Volta. https://gigaom.com/2014/07/02/googles-killer-android-l-feature-up-to-36-

more-battery-life-thanks-to-project-volta. Accessed on 2016-08-22.

[164] Microso�. Supporting your app with background tasks (XAML). https://msdn.microsoft.com/

en-us/library/windows/apps/xaml/hh977056.aspx. Accessed on 2016-08-26.

[165] Nikita Mishra, Huazhe Zhang, John D. La�erty, and Henry Ho�man. A probabilistic graphical model-

based approach for minimizing energy under performance constraints. In ACM International Confer-

ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2015.

https://gigaom.com/2014/07/02/googles-killer-android-l-feature-up-to-36-more-battery-life-thanks-to-project-volta
https://gigaom.com/2014/07/02/googles-killer-android-l-feature-up-to-36-more-battery-life-thanks-to-project-volta
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh977056.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh977056.aspx

121

[166] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to estimate app energy

consumption. InACM International Conference onMobile Computing andNetworking (MobiCom), 2012.

[167] Mobile Enerlytics LCC. eStar: Because mobile devices are not mobile if they are plugged in. http:

//mobileenerlytics.com/estar.php. Accessed on 2016-08-22.

[168] Monsoon Solutions, Inc. Mobile device power monitor manual. https://msoon.github.io/

powermonitor/PowerTool/doc/Power%20Monitor%20Manual.pdf. Accessed on 2016-09-01.

[169] Monsoon Solutions Inc. Power monitor. https://www.msoon.com/LabEquipment/PowerMonitor.

Accessed: 2016-07-27.

[170] Glenford J. Myers. �e Art of So�ware Testing. John Wiley & Sons, 1979.

[171] Suman Nath. ACE: Exploiting correlation for energy-e�cient and continuous context sensing. In ACM

International Conference on Mobile Systems, Applications, and Services (MobiSys), 2012.

[172] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn, and Kevin R.

Walker. Agile application-aware adaptation for mobility. In ACM Symposium on Operating System

Principles (SOSP), 1997.

[173] Adam J. Oliner, Anand P. Iyer, Eemil Lagerspetz, Sasu Tarkoma, and Ion Stoica. Carat: Collaborative

energy bug detection for mobile devices. In USENIX Workshop on Hot Topics in System Dependability

(HotDep), 2012.

[174] Adam J. Oliner, Anand P. Iyer, Eemil Lagerspetz, Sasu Tarkoma, and Ion Stoica. Carat: Collaborative en-

ergy diagnosis for mobile devices. In ACMConference on Embedded Networked Sensor Systems (SenSys),

2013.

[175] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. �e design and implementation of Zap: A

system for migrating computing environments. In ACM Symposium on Operating Systems Design and

Implementation (OSDI), 2002.

http://mobileenerlytics.com/estar.php
http://mobileenerlytics.com/estar.php
https://msoon.github.io/powermonitor/PowerTool/doc/Power%20Monitor%20Manual.pdf
https://msoon.github.io/powermonitor/PowerTool/doc/Power%20Monitor%20Manual.pdf
https://www.msoon.com/LabEquipment/PowerMonitor

122

[176] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M. Marlin. Practical

prediction and prefetch for faster access to applications on mobile phones. In ACM International Joint

Conference on Pervasive and Ubiquituous Computing, 2013.

[177] Sewook Park, Dongwoon Kim, and Hojung Cha. Reducing energy consumption of alarm-induced

wake-ups on Android smartphones. In ACM International Workshop on Mobile Computing Systems

and Applications (HotMobile), 2015.

[178] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy debugging in smartphones: A

�rst look at energy bugs in mobile devices. In ACMWorkshop on Hot Topics in Networks (HotNets), 2011.

[179] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside my app?: Fine

grained energy accounting on smartphones with Eprof. In ACM European Conference on Computer

Systems (EuroSys), 2012.

[180] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. Fine-grained power

modeling for smartphones using system call tracing. InACMEuropean Conference on Computer Systems

(EuroSys), 2011.

[181] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel K. Midki�. What is keeping my phone

awake? characterizing and detecting no-sleep energy bugs in smartphone apps. In ACM International

Conference on Mobile Systems, Applications, and Services (MobiSys), 2012.

[182] Jian Pei, Jiawei Han, B. Mortazavi-Asl, Jianyong Wang, H. Pinto, Qiming Chen, U. Dayal, and Mei-

Chun Hsu. Mining sequential patterns by pattern-growth: the Pre�xSpan approach. IEEE Transactions

on Knowledge and Data Engineering, 16(11), 2004.

[183] Trevor Pering, Tom Burd, and Robert Brodersen. �e simulation and evaluation of dynamic voltage

scaling algorithms. In International Symposium on Low Power Electronics and Design (ISLPED), 1998.

[184] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic voltage scaling on a low-power micro-

processor. In ACM International Conference on Mobile Computing and Networking (MobiCom), 2001.

123

[185] Shyama Charan Prasad and Kumar Roy. Circuit optimization for minimisation of power consumption

under delay constraint. In International Conference on VLSI Design, 1995.

[186] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and Oliver

Spatscheck. Charactering radio resource allocation for 3G networks. In ACM Internet Measurement

Conference (IMC), 2010.

[187] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and Oliver

Spatscheck. TOP: Tail optimization protocol for cellular radio resource allocation. In IEEE Interna-

tional Conference on Network Protocols (ICNP), 2010.

[188] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and Oliver

Spatscheck. Pro�ling resource usage for mobile applications: A cross-layer approach. In ACM Inter-

national Conference on Mobile Systems, Applications, and Services (MobiSys), 2011.

[189] Qualcomm. Trepn Pro�ler. https://developer.qualcomm.com/mobile-development/

increase-app-performance/trepn-profiler. Accessed on 2016-08-22.

[190] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. �read motion: Fine-grained power management

for multi-core systems. In IEEE International Symposium on Computer Architecture (MICRO), 2009.

[191] Nishkam Ravi, James Scott, Lu Han, and Liviu I�ode. Context-aware battery management for mobile

phones. In IEEE International Conference on PervasingComputing andCommunications (PerCom), 2008.

[192] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Chris Rieder. Procrastinator: Pacing mobile

apps’ usage of the network. InACMInternational Conference onMobile Systems, Applications, and Service

(MobiSys), 2014.

[193] Byron Reeves and Cli�ord Nass. �e Media Equation: How People Treat Computers, Television, and

New Media Like Real People and Places. CSLI Lecture Notes. Center for the Study of Language and

Information, Stanford University, 2003.

https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler

124

[194] Martin C. Rinard. Using early phase termination to eliminate load imbalances at barrier synchronization

points. In ACM International Conference on Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA), 2007.

[195] John F. Roddick and Myra Spiliopoulou. A survery of temporal knowledge discovery paradigms and

methods. IEEE Transactions on Knowledge and Data Engineering, 14(4), 2002.

[196] Sanae Rosen, Ashkan Nikravesh, Yihua Gui, Z. Morley Mao, Feng Qian, and Subhabrata Sen. Revisiting

network energy e�ciency of mobile apps: Performance in the wild. In ACM Internet Measurement

Conference (IMC), 2015.

[197] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and Doron Rajwan. Power-

management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro, 32(2),

2012.

[198] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zeldovich.

Energy management in mobile devices with the Cinder operating system. In European Conference on

Computer Systems (EuroSys), 2011.

[199] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Gross-

man. EnerJ: Approximate data types for safe and general low-power computation. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), 2011.

[200] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel Davies. �e case for VM-based

Cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 2009.

[201] Mahadev Satyanarayanan and Dushyanth Narayanan. Multi-�delity algorithms for interactive mobile

applications. Wireless Networks, 7(6), 2001.

[202] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha,

Wenlu Hu, and Brandon Amos. Edge analytics in the Internet of �ings. IEEE Pervasive Computing,

14(2), 2015.

125

[203] SaurikIT, LLC. Cydia Substrate. http://www.cydiasubstrate.com. Accessed on 2016-08-26.

[204] Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther Schmidt, Jan Clausen, Oman Kiraz, Kamer A.

Yüksel, Seyit A. Camtepe, and Sahin Albayrak. Static analysis of executables for collaborative malware

detection on Android. In IEEE International Conference on Communications (ICC), 2009.

[205] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad Deshpande, Calvin

Grunewald, Kamal Jain, and Venkata N. Padmanabhan. Bartendr: A practical approach to energy-

aware cellular data scheduling. In ACM International Conference on Mobile Computing and Networking

(MobiCom), 2010.

[206] Aaron Schulman, �omas Schmid, Prabal Dutta, and Neil Spring. Demo: Power monitoring with Bat-

tOr. In ACM International Conference on Mobile Computing and Networking, 2011.

[207] Aaron Schulman, Tanuj �apliyal, Sachin Katti, Neil Spring, Dave Levin, and Prabal Dutta. BattOr:

Plug-and-debug energy debugging for applications on smartphones and laptops. Technical report, Stan-

ford University, 2016.

[208] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. Post-compiler

so�ware optimization for reducing energy. In ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2014.

[209] Choonsung Shin, Jin-Hyuk Hong, and Anind K. Dey. Understanding and prediction of mobile appli-

cation usage for smart phones. In ACM Conference on Ubiquituous Computing, 2012.

[210] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: Studying real user activity pat-

terns to guide power optimizations for mobile architectures. In IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2009.

[211] Suresh Siddha, Venkatesh Pallipadi, and Arjan Van De Ven. Getting maximum mileage out of tickless.

In Ottawa Linux Symposium, 2007.

http://www.cydiasubstrate.com

126

[212] Stelios Sidiroglou, Sasa Misailovic, Henry Ho�man, and Martin Rinard. Managing performance vs. ac-

curacy trade-o�s with loop perforation. In JointMeeting of the European So�ware EngineeringConference

and the ACM SIGSOFT Symposium on the Foundations of So�ware Engineering (ESEC/FSE), 2011.

[213] Eva Siegenthaler, Yves Bochud, Pascal Wurtz, Laura Schmid, and Per Bergamin. �e e�ects of touch

screen technology on the usability of e-reading devices. Journal of Usability Studies, 7(3), 2012.

[214] Pieter Simoens, Yu Xiao, Pillai Padmanabhan, Zhuo Chen, Kiryong Ha, and Mahadev Satyanarayanan.

Scalable crowd-sourcing of video from mobile devices. In ACM International Conference on Mobile

Systems, Applications, and Services (MobiSys), 2013.

[215] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala: A platform for

OS-level power management. In ACM European Conference on Computer Systems (EuroSys), 2009.

[216] Intel® So�ware. Intel® VTune™ Ampli�er. https://software.intel.com/en-us/intel-vtune-

amplifier-xe. Accessed on 2016-12-12.

[217] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D. Corner, and

Emery D. Berger. Eon: A language and runtime for perpetual systems. In ACM International Con-

ference on Embedded Networked Sensor Systems (SenSys), 2007.

[218] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generalizations and perfor-

mance improvements. In International Conference on Extending Database Technology (EDBT), 1996.

[219] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right objective measure for associa-

tion analysis. Information Systems – Knowledge Discovery and Data Mining, 29(4), 2004.

[220] Narendran �iagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh, and Jatinder Pal Singh. Who

killed my battery?: Analyzing mobile browser energy consumption. In ACM International Conference

on World Wide Web (WWW), 2012.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

127

[221] Khai N. Truong, Julie A. Kientz, Timothy Sohn, Alyssa Rosenzweig, Amanda Fonville, and Tim Smith.

�e design and evaluation of a task-centered battery interface. In ACM International Conference on

Ubiquituous Computing (UbiComp), 2010.

[222] Ted Ts’o. Android will be using EXT4 starting with Gingerbread. https://www.linux.com/news/

android-will-be-using-ext4-starting-gingerbread. Accessed on 2016-12-15.

[223] UzumApps. WakeLock Detector. https://play.google.com/store/apps/details?id=com.

uzumapps.wakelockdetector. Accessed on 2016-08-22.

[224] Narseo Vallina-Rodriguez and Jon Crowcro�. ErdOS: Achieving energy savings in mobile OS. In ACM

Workshop on Mobility in the Evolving Internet Architecture (MobiArch), 2011.

[225] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. Towards verifying Android apps for

the absence of no-sleep energy bugs. In USENIX Workshop on Power-Aware Computing and Systems

(HotPower), 2012.

[226] Po-Han Wang, Chia-Lin Yang, Yen-Min Chen, and Yu-Ming Cheng. Power gating strategies on GPUs.

ACM Transactions on Architecture and Code Optimization, 8(3), 2011.

[227] Ruowen Wang, William Enck, Douglas Reeves, Peng Ning, Dingbang Xu, Wu Zhou, and Ahmed M.

Azab. EASEAndroid: Automatic policy analysis and re�nement for security enhanced Android via

large-scale semi-supervised learning. In USENIX Security Symposium, 2015.

[228] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reducing CPU energy. In

USENIX Symposium on Operating System Design and Implementation (OSDI), 1994.

[229] Jake Wharton. Butter knife. https://jakewharton.github.io/butterknife. Accessed on 2017-

01-15.

https://www.linux.com/news/android-will-be-using-ext4-starting-gingerbread
https://www.linux.com/news/android-will-be-using-ext4-starting-gingerbread
https://play.google.com/store/apps/details?id=com.uzumapps.wakelockdetector
https://play.google.com/store/apps/details?id=com.uzumapps.wakelockdetector
https://jakewharton.github.io/butterknife

128

[230] Network World. Traditional GPS is dead. long live smartphone GPS. http://www.networkworld.

com/article/2994379/mobile-wireless/gps-devices-tom-tom-garmin-vs-smartphone-

google-maps-apple.html. Accessed on 2016-12-12.

[231] Qing Wu, Massoud Pedram, and Xunwei Wu. Clock-gating and its application to low power design of

sequential circuits. IEEE Transactions on Circuits and Systems, 47(103), 2000.

[232] Fengyuan Xu, Yunxin Liu, Qun Li, and Yongguang Zhang. V-edge: Fast self-constructive power mod-

eling of smartphones based on battery voltage dynamics. In USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2013.

[233] Fengyuan Xu, Yunxin Liu, �omas Moscibroda, Ranveer Chandra, Long Jin, Yongguang Zhang, and

Qun Li. Optimizing background email sync on smartphones. In ACM International Conference on

Mobile Systems, Applications, and Services (MobiSys), 2013.

[234] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app launching for mobile

devices using predictive user context. In ACM International Conference onMobile Systems, Applications,

and Services, 2012.

[235] Jinlin Yang, David Evans, Deepali Bhardwaj, �irumalesh Bhat, and Manuvir Das. Perracotta: Mining

temporal API rules form imperfect traces. In ACM International Conference on So�ware Engineering

(ICSE), 2006.

[236] Le Yu, Tao Zhang, Xianpu Luo, and Lei Xue. AutoPPG: Towards automatic generation of privacy policy

for Android applications. In ACMCCSWorkshop on Security and Privacy in Smartphones (SPSM), 2015.

[237] Wanghong Yuan and Klara Nahrstedt. Energy-e�cient so� real-time cpu scheduling for mobile multi-

media systems. In ACM Symposium on Operating System Principles (SOSP), 2003.

[238] Wanghong Yuan and Klara Nahrstedt. Practical voltage scaling for mobile multimedia devices. In ACM

Conference on Multimedia (MM), 2004.

http://www.networkworld.com/article/2994379/mobile-wireless/gps-devices-tom-tom-garmin-vs-smartphone-google-maps-apple.html
http://www.networkworld.com/article/2994379/mobile-wireless/gps-devices-tom-tom-garmin-vs-smartphone-google-maps-apple.html
http://www.networkworld.com/article/2994379/mobile-wireless/gps-devices-tom-tom-garmin-vs-smartphone-google-maps-apple.html

129

[239] Mohammed J. Zaki. SPADE: An e�cient algorithm for mining frequent sequences. Machine Learning,

42(1), 2001.

[240] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making information �ow

explicit in HiStar. InUSENIX Symposium onOperating SystemDesign and Implementation (OSDI), 2006.

[241] Lide Zhang, Robert P. Dick, Z. Morley Mao, Zhaoguang Wang, and Ann Arbor. Accurate online power

estimation and automatic battery behavior based power model generation for smartphones. In Interna-

tional Conference on Hardware/So�ware Codesign and System Synthesis (CODES+ISSS), 2010.

[242] Lide Zhang, Mark S. Gordon, and Robert P. Dick. ADEL: An automatic detector of energy leaks for

smartphone applications. In International Conference on Hardware/So�ware Codesign and System Syn-

thesis (CODES+ISSS), 2012.

[243] Heng Zheng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. ECOSystem: Managing energy as

a �rst class operating system resource. In ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2002.

[244] Heng Zheng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Currentcy: A unifying abstraction for

expressing energy management policies. In USENIX Annual Technical Conference (ATC), 2003.

[245] Xun Zou, Wangsheng Zhang, Shijian Li, and Gang Pan. Prophet: What app you wish to use next. In

ACM International Joint Conference on Pervasive and Ubiquituous Computing, 2013.

	List of Tables
	List of Figures
	Introduction
	The Rise of Modern Mobile Computing
	The Need for Power Management
	Is Energy Proportionality Enough?
	Approach and Contributions

	Background
	Overview
	Energy-Aware Operating Systems
	Energy Profiling
	Measuring Power
	Modeling Power

	Software Diagnosis and Optimizations for Energy Savings
	Users and Batteries
	Task Offloading
	Summary

	Application Modes: Exposing Application-Specific Internals for Energy Control
	Introduction
	Motivation
	Separating Roles in Power Management
	Application Modes
	Design and Implementation
	Developer API
	Mode Aggregator
	Battery Life Estimator
	User Interface
	Putting Everything Together – Workflow

	Evaluation
	Challenges, Limitations, and Extensions
	Summary

	Tamer: Generalizing the Exposure of Software-Related Energy Knobs
	Introduction
	Motivation
	Android OS: Power Management and Application Internals
	Mobile Power Management
	Android Applications: Dealing with Lifecycle Changes

	Tamer
	Design
	Implementation

	Evaluation
	Taming Google Mobile Services
	Chasing Energy Bugs
	Performance Impact

	Challenges, Limitations, and Extensions
	On Policy Definition
	Potential Improvements

	Related Work
	Summary

	Meerkat: Facilitating Policy Discovery to Drive Energy Control
	Introduction
	Motivation
	Design and Implementation
	Data Collection
	Sequence Event Mining
	Extending the Controller

	Preliminary Evaluation
	Revisiting Google Mobile Services
	Performance Impact

	Discussion
	Related Work
	Summary

	Meerkat in Action: Two Case Studies
	Introduction
	Case Study 1: NetDiet
	Design and Implementation
	Evaluation

	Case Study 2: IODiet
	Design and Implementation
	Evaluation

	Related Work
	Conclusion

	Conclusion
	Future Work
	Open Questions

	Bibliography

