
Abstract of “Scalable Bayesian Nonparametric Models for Networks and Documents” by Daeil Kim,
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We develop Bayesian nonparametric statistical models of document collections and social networks.
Extending classic parametric topic models of documents, and stochastic block models of networks, we
first formulate flexible Bayesian nonparametric models based on the logistic stick-breaking process.
This prior allows our model to automatically learn the dimension of the latent structure, use observed
metadata to influence this structure, and discover correlations that exist between them. We call this
model the Doubly Correlated Nonparametric Model (DCNM), and derive efficient MCMC learning
algorithms.

We then focus on the problem of scaling inference to large networks. We propose a hierarchical
Dirichlet Process (HDP) relational model and derive a structured variational inference algorithm.
For the practically important case of communities with assortative structure, we derive new updates
where inference scales linearly in time and memory with the number of active clusters. From this, we
develop a stochastic variational approach that allows us to scale inference to networks that contain
tens of thousands of nodes. Finally, we develop pruning techniques that allow us to dynamically
shrink the number of communities, and effective strategies for specifying learning rate parameters.

After developing scalable inference models for relational data, we develop a memoized variational
inference algorithm for the HDP topic model. This approach provides a more scalable framework
for comparing models of varying complexity, by caching sufficient statistics of small batches of a
very large dataset. Elegant delete-merge moves are then derived to optimize rigorous lower bounds
on the marginal likelihood of the data, avoiding approximations required by previous stochastic
inference algorithms. We use our memoized variational inference algorithms to develop Refinery, an
open-source web platform for topic modeling that allows non-technical experts to leverage the power
of topic models.
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4.2 The upper left shows benefits of a restricted update and a K-means initialization for strat-
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5.7 Comparison of DP mixtures and HDP admixtures on 3.5M image patches (Sec. 5.5.3).

(a-b) Trace plots of number of topics and heldout likelihood, as in Fig 5.6. (c) Patches
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Chapter 1

Introduction

This thesis deals with the development of probabilistic models that scale with large datasets for

two common types of data - documents and graphs. We focus on the problem of unsupervised

learning where we need to learn a latent structure inherent in the data rather than map our input

to a targeted set of labels or continuous values within the supervised learning framework. The

unsupervised learning approach frees us to analyze a much richer set of data, but at the cost of

relying primarily on our assumptions about the way data might be generated. The framework we

will use to model these assumptions will rely on the language of graphical models [40, 47], which

offers a powerful framework for concisely describing the relationships between random variables.

A further benefit comes from the interpretability of such models, especially for systems related to

medical field where these are necessary factors for actual use.

When modeling the latent structure associated with rich datasets such as documents or networks,

we will be interested in developing a way to learn two distinct characteristics common to both

datasets. The first will be metadata, where we focus on understanding how observed side information

can be used to help better model our data. Such examples might be the year in which a document

was made or the ages of individuals within a social network. By learning this relationship, we can

then leverage the generative properties of our model to understand how a hypothetical document

would look given a specific piece of metadata. This has useful implications in problems such as

personalization, where we are faced with the “cold start” problem of recommending documents to

a new user. The second will be correlations. By understanding how the learned latent structure is

correlated, we can understand richer relationships between our latent structures which should help

improve our ability to model our data.

A significant challenge in model design is determining the complexity of the model when fitting

our data. Our approach will be to use Bayesian nonparametric models which provide a rich frame-

work for tackling these types of problems [61], [73]. By using Bayesian nonparametric priors, we can

1
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provide support to infinite-dimensional parameter spaces. This allows us to develop inference proce-

dures that allow the data to dictate our model complexity during training rather than an approach

that utilizes an expensive cross-validation procedure. We show how this can be accomplished using

Markov Chain Monte Carlo which allows us to develop a principled approach towards dynamically

truncating our model via retrospective MCMC techniques.

Finally the last part of our thesis will focus on designing inference algorithms that can scale

to large datasets. The rapid advancements in digital storage and archiving have now resulted in

datasets that have rapidly outpaced the scale in which many of these inference procedures were

developed for [51]. For example, the United States Library of Congress, the research library of the

US Congress and de facto national library of America was estimated to have archived approximately

235 terabytes of data by April 2011. This might seem significant, but McKinsey and Company

found in their research that 15 out of 17 sectors in the United States have more data stored per

company than the US Library of Congress [51]. To accomplish this, we will apply variational

methods for learning our model parameters. This is a deterministic optimization technique that

uses the calculus of variations to directly optimize our model parameters, which has significant

computational advantages over MCMC techniques. Ideas from the stochastic optimization literature

will be borrowed to scale our training even further as well as clever memoization techniques that

improve our model selection abilities for Bayesian nonparametric models.

1.1 Probabilistic Models for Large Document Collections

There are reasons to believe that the 
genetics of an organism are likely to 
shift due to the extreme changes in 
our climate. To protect them, our 
politicians must pass environmental 
legislation that can protect our 
future species from becoming 
extinct… 

“Climate Change” 
Topic 

“Genetics” Topic 

“Politics” Topic 

High probability for words related 
to genetics, climate change, or 
politics 

Documents are represented as mixtures of “topics” which in 
turn are distributions over a distinct vocabulary. 

0 

0.5 

Document 1 

Genetics 

Climate 

Politics 

Distribution over all words in the 
corpus 



3

A major goal in the automated analysis of any document collection is an abstraction of its

contents that captures the higher level semantic themes which tie the documents together. Signif-

icant advancements in this area came with the advent of topic models, the first known as Latent

Dirichlet Allocation (LDA) [15]; a probabilistic generative model for documents. The “topic” in

topic models refers to a discrete distribution over the unique words within a given document cor-

pus. The popularity of LDA resulted from being the first admixture model for documents which

modeled not only these global set of topics, but also defined a document-level latent structure that

described the degree to which each of these topics played a role for any given document. Conditioned

on these document-specific parameters, the generative process for words becomes order-agnostic or

exchangeable. This conditional exchangeability represents the cornerstone of Bayesian modeling

through DeFinetti’s theorem. Though this assumption might be counter-intuitive to the structure

of language, the discovered topics provide a rich semantic structure useful for tasks such as corpus

exploration, information retrieval, and document prediction.

Since the introduction of LDA, significant research has expanded this basic topic model to allow

for the dynamic learning of new topics [83], the incorporation of metadata to influence these top-

ics [43, 53], as well as the discovery of correlations that might exist between topics [13, 43, 63]. Our

work on the Doubly Correlated Nonparametric Topic model was the first to incorporate all three

of these properties into a single probabilistic graphical model and the underlying framework to this

model is highly similar to the DCNR model that we describe above. The major differences are found

in how we define our likelihood terms which are specific to the generation of either words within a

document or edges between pairs of nodes. In this proposal, we describe both these models under a

unifying framework that we refer to as Doubly Correlated Nonparametric Models in Chapter 3.

1.2 Probabilistic Models for Large Relational Datasets

In the machine learning community, one of the most popular unsupervised learning approaches

for network analysis deals with the discovery of node-specific community structures. The term

community intuitively represents a clustering of nodes and within the statistics literature, these

communities typically define their edge generation behavior. In other words, once their community

assignments are known, we know everything there is to know about the nature of their interaction.

The cardinality of this community structure, to be useful, is often significantly smaller than the

number of distinct nodes within the graph. Thus, this discovery process attempts to provide an

optimal compression of our network structure which is often followed by a human guided analysis

to determine whether these communities refer to interesting real world phenomena.

Many statistical models for community discovery are based off a probabilistic generative model

known as the stochastic block model [84]. This model defines a generative process for binary-

valued adjacency matrices. It assumes that edges are exchangeable conditioned on their respective
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Infer whether an edge 
should exist by referencing 
our learned community 
block matrix. 

unobserved 
link 

Receiver 

So
ur

ce
 

latent community assignments. Extensions to this model have allowed for the dynamic learning

of the number of communities through Bayesian nonparametric priors [41], the incorporation of

multiple memberships or features for a given node [2], and the ability to incorporate node-specific

metadata [44]. Our work builds upon the stochastic block modeling literature to develop a single

model that incorporates the properties above as well as the discovery of the correlations that exist

between our latent communities. We call this the Doubly Correlated Nonparametric Relational

(DCNR) model and show the applicability of this to a wide range of real-world networks to uncover

rich underlying latent community structures. The components that we use to develop this comes

partly from the ability to define a flexible Bayesian nonparametric prior known as the logistic stick-

breaking process. Efficient MCMC inference procedures are then derived to estimate our posterior

distribution over our latent statistics.

Other approaches to community discovery rely on well defined heuristics such as modularity

scores [59] or entropy-minimization principles [70], but these approaches are not probabilistic nor

generative. One of the benefits of probabilistic generative models over these techniques can be seen

in their ability to deal with missing data as well as the interpretability of their learned structures. We

provide a short discussion of these non-probabilistic approaches, but focus our efforts on describing

and comparing to research that is most closely related to our work.
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1.3 Scalable inference in probabilistic models

The general approach for approximate posterior inference in the machine learning community tends

to be split between two distinct philosophies. The first approach, known as Markov Chain Monte

Carlo [4, 56], tackles the problem of estimating a posterior distribution through a sampling based

stochastic approach. The strategy is to obtain an approximate posterior distribution over our latent

variables by empirically obtaining samples from a carefully designed Markov chain whose stationary

distribution is the true posterior. This approach guarantees unbiased samples of our posterior, but

the difficulty of assessing the convergence of this Markov chain as well as a generally debilitating

computational cost makes this a less attractive option for inference in large scale datasets. Further

approximation methods that speed up MCMC strategies exist, but at the cost of losing guarantees

regarding the chain’s convergence to the true posterior.

A more computationally scalable approach for training our model can be seen in variational

inference, which poses the problem of posterior inference as an optimization problem [79]. Variational

inference proceeds by defining a simpler distribution (known as the variational distribution) over

our latent variables that are indexed by its set of variational parameters. The optimization of

these parameters is then a search for members of this variational family of distributions that is

closest in KL divergence to the true posterior. Variational inference is typically faster than MCMC

approaches, but since the approximating family of distributions is simpler, it can be biased. The

typical style of variational inference most often used for inference is known as a naive mean-field

approach which assumes a fully factorized family of distributions and this is the variational family

that we will employ for the rest of our proposal.

For scaling variational inference algorithms, a popular technique known as stochastic variational

inference (SVI) [33] can be used. It was shown that if the members of our variational mean-field fam-

ily of distributions are members of the exponential family, we can derive a simple stochastic natural

gradient update for our global parameters. These gradients can be calculated from only a subset of

the data and are noisy approximations of the true natural gradient for the variational objective, but

represent an unbiased estimate of that gradient. Following directions on this noisy gradient with an

optimization schedule that guarantees convergence (i.e Robbins-Monro criterion [68]), we obtain an

approximation to the posterior that results in a highly scalable optimization technique. We develop

these techniques for the HDP Relational Model and gain further computational savings when we

make a reasonable assortativity assumption on the way communities interact.

One of the significant challenges of scalable variational techniques such as SVI is in developing

a way to perform model selection during training. Choosing the number of clusters during training

requires the model to typically have information across the entire dataset. However, SVI works by

analyzing only a subset of the data before updating the global parameters of the model, resulting in

a noisy representation of the lower bound that is typically needed to determine whether one model
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is better than another.

1.4 Thesis Organization

The outline of this thesis will be as follows. In the next chapter we will cover some background

material necessary to understand the contributions we made. Chapter 3 is a discussion of the

Doubly Correlated Nonparametric Model which can model both the correlations and the effect of

metadata on our latent variables as well as a truly nonparametric inference procedure that can

grow the number of clusters/communities during training. Chapter 4 will focus on the Hierarchical

Dirichlet Process relational model that was developed along with a variational inference procedure

that scales to large graphs. Chapter 5 will be a discussion of the memoized variational approach as

applied to topic models. This technique caches the sufficient statistics of our latent variables to allow

scalable learning of new clusters during training within the variational framework. Chapter 6 will

focus on work involving Refinery, an open source web application that allows non machine learning

experts to apply topic modeling to their own document corpuses. We conclude in summarizing our

contributions and exciting future directions for this work.

Chapter 2: Background

This section begins by going over some commonly used Bayesian nonparametric priors in relational

and topic models, notably the Dirichlet Process (DP) and the Hierarchical Dirichlet process (HDP).

The limitations of these priors forms the motivation of our work in Chapter 3. The logistic and

probit stick-breaking process is then described as a way of accounting for these limitations, but

at the cost of conjugacy which results in a more difficult inference challenge. We review the work

of the HDP as the Bayesian nonparametric prior for both relational and topic models to define a

foundation for the work described later in our proposal. We then discuss inference and learning

in these models, starting with Markov Chain Monte Carlo techniques and several variations of this

stochastic approach to training our model. The final part of this background portion shifts to

variational inference techniques which represent a deterministic optimization procedure that allows

us to scale to larger datasets.

Chapter 3: Doubly Correlated Nonparametric Models

In this chapter the DCNM model and its generative process is discussed in detail. We show how

the logistic stick-breaking process plays a prominent role in allowing for both the modeling of our

observed metadata and the correlation structure between our clusters. For posterior inference, we

use MCMC and through a careful selection of our priors and the marginalization of our our likelihood
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terms, we are able to dynamically grow/shrink the number of clusters during this inference procedure.

Benefits of incorporating a richer latent structure is described in experiments over similar models.

Chapter 4: Scaling Inference in BNP Relational Models

We focus here on the development of the assortative Hierarchical Dirichlet Process model and its

corresponding variational inference algorithm. The derivation for a stochastic variational inference

approach is outlined and shown to be significantly better than the standard batch variational infer-

ence procedure. Along the way, we show how node-specific learning rates and initialization strategies

can boost inference performance on several datasets. Finally, we showcase an analysis of the LittleSis

network, a large social network containing tens of thousands of individuals who are the heights of

business and government.

Chapter 5: Scaling Inference in BNP Topic Models

We focus our efforts on developing a memoized variational approach and apply it to the HDP Topic

model. The memoized variational inference approach is motivated by the problem of growing/shrink-

ing the number of topics in a topic model when analyzing small batches of data. Given that the full

bound cannot be calculated during mini-batch training, memoized variational inference caches the

sufficient statistics to be used later for model comparison. We show how this approach allows for a

principled approach to learning the number of topics in a topic model and experiments that show

significant improvements over competitor models.

Chapter 6: Refinery - Topic Modeling for the Masses

Our last contribution is focused on the development of a web platform that allows easy access to

the topic models developed in the previous chapters. The web application allows for a simple drag

and drop operation of text files that can be installed using two command lines. The user interface

is optimized for simplicity and visualizations are developed to help understand the recovered topics.

Chapter 7: Conclusion and Future Directions

We conclude this thesis with directions for future research in scalable inference. Notably ideas

around automated differentiation variational inference point to a future where very little time is

spent deriving the inference equations for these models. Finally, having spent two years at the

New York Times, a discussion around how machine learning can help drive investigative journalism

concludes an extraordinary run of this doctoral journey.



Chapter 2

Background

This section outlines some of the fundamental concepts that the contributions of this thesis relies

on. We begin by talking about the Dirichlet Process, a stochastic process prior that forms the basis

for our Bayesian nonparametric models. We then discuss the Hierarchical Dirichlet Process

2.1 Dirichlet Processes

Bayesian nonparametric models are characterized by their use of stochastic processes as priors to

provide support to infinite-dimensional parameter spaces. For Bayesian nonparametric mixtures

models, the Dirichlet process [21] is often used since it generates random probability measures that

integrate to one which are almost surely discrete [9, 71]. The original representation of the Dirichlet

process defined a measurable space Ω, a positive concentration parameter α and a base measure H

on Ω such that for all finite measurable partitions (T1, T2, ..., TK) of Ω:

(G(T1), G(T2), ..., G(TK)) ∼ Dir(αH(T1), αH(T2), ..., αH(TK)) (2.1)

where G is a random probability measure on Ω. This is known as the Dirichlet process and is denoted

as G ∼ DP(α,H). An explicit representation of the Dirichlet process known as the stick-breaking

construction was developed by [71] which allowed samples to be directly drawn from a Dirichlet

Process. If βk ∼ Beta(1, α), we can define the same random measure G as:

πk = βk

k−1∏
`=1

(1− β`) G =
∞∑
k=1

πkδφk
(2.2)

where φk are independent random variables distributed according to H and δφk
is an atom at φk.

Additionally, it was shown that with probability one,
∑∞
k πk = 1 which allows for π to be interpreted

as a random probability measure. The distribution over our stick-breaking weights π is typically

denoted as π ∼ GEM(α).

8
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2.1.1 Hierarchical Dirichlet Processes

The natural nonparametric extension to LDA can be found in the hierarchical Dirichlet Process.

Typically, a two-level hierarchical Dirichlet Process is formally defined as:

G ∼ DP(γH) Gi ∼ DP(αG), for each i (2.3)

where i could represent the index group for a particular document or node. It was shown by [77]

that the almost surely discreteness of G allowed for the sharing of atoms at the individual cluster

level indexed by i. Alternatively, if G was continuous or non-atomic, multiple draws from the DP

would place their probability mass on a disjoint set of atoms s.t G1, G2, ...
iid∼ DP(γG), [62]. Though

many formulations of this prior exist, we focus on the explicit stick-breaking formulation of the

HDP introduced by [77]. Let β now represent a set of global weights where βk defines the expected

frequency of membership in a possible community or topic k for a given node or document. The

stick-breaking construction of β is defined in the same manner as before:

βk = vk

k−1∏
`=1

(1− v`), vk ∼ β(1, γ), k = 1, 2, ... (2.4)

where γ > 0 is a now a positive concentration parameter that will control the global variance across

our stick weights. The second or group-level DP can be defined as follows:

πi ∼ DP(αβ), E[πi|α, β] = β, α > 0 (2.5)

where β is the base measure defined above s.t β ∼ GEM(γ). Here small values of α encourage

documents or nodes to place most of their mass into a sparse subset of clusters.

2.1.2 Logistic and Probit Stick-breaking Process

The stick-breaking construction of the DP and HDP generate an infinite vector of membership

probabilities π. However, this generative process is limited by the near-independence of any two

topic indices πj and πk. If we wish to model correlations between clusters or incorporate side

information to influence this partition structure, we need a more flexible prior. Instead of using

many independent beta random variables β1, β2, . . . βk . . . to create the membership vector π, we

can instead consider any other process for generating many values in the unit interval (0, 1) which

can then be transformed via stick-breaking into a probability vector π.

Our chosen process has two steps. First, we draw a set of real-valued membership weights

v = v1, . . . vk . . . vK from a multivariate normal distribution:

v1, v2, . . . vk . . . vK ∼ Normal(m,Σ) (2.6)

Here, we define a mean vector m ∈ RK and a K ×K positive-definite covariance matrix Σ. We can

take the limit K →∞ to obtain an infinite-length activation vector v.
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Given a specific set of activations v, we can transform each activation from a real value vk ∈ R
to the unit interval via a sigmoid-shaped squashing function ψ : R → [0, 1]. Two possible options

for the squashing function ψ are the logistic and the probit:

ψlogistic(vk) = 1
1 + e−vk

(2.7)

ψprobit(vk) = 1√
2π

∫ vk

−∞
e−

1
2x

2
dx (2.8)

The logistic squashing function, whose form above is sometimes called the standard logistic function,

arises in calculations of log-odds. The probit squashing function is the common name for the

cumulative distribution function of the standard normal distribution. The required integral can be

evaluated by standard black-box functions available in numerical software packages. Both logistic

and probit functions satisfy the reflection property: 1 − ψ(vk) = ψ(−vk). Fig. 2.1 plots these

functions side-by-side and compares their influences on the values of the membership vectors π.

Given any valid squashing function, we can complete our transformation of the real-valued acti-

vations v into a membership vector π via a stick-breaking transformation:

πk ← ψ(vk)
k∏
`=1

(1− ψ(vk)) (2.9)

The logistic stick-breaking process has been studied previously by [67], while the similar probit

stick-breaking process was introduced by [69]. Our novel contribution is to apply these processes

to the topic modeling and relational modeling domains via an approach which accounts for both

correlations and metadata.

Our DCNM model incorporates metadata and correlations by specifying appropriate values of

the mean vector m and covariance matrix Σ. These values define the distribution of real activation

weights v and thus membership probabilities π. The full details are presented in the next section,

but the crucial idea is that available metadata determines the mean vector m while the correlations

are captured by the covariance Σ. Both relationships are learned from data.

2.2 BNP Models for Documents and Networks

2.2.1 Hierarchical Dirichlet Process for Topic Models

Topic models in machine learning represent a class of statistical models for discovering the hidden

“topics” within a document corpus. A topic is typically defined as a probability distribution over

the unique vocabulary words across all documents. For example, an “animal” topic would place

significantly more mass on words such as “dogs” and “horses” rather than “planes” and “boats”.

Furthermore, the model assumes that documents contain several topics, which are learned by the
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Figure 2.1: Left: Values of v ∈ [−5, 5] squashed through the probit (red) and logistic (blue) functions.
Note the heavier tail of the logistic function versus the probit. Right: Fixing vk = −1 for all values
of K to generate stick breaking weights where

∑K=15
k=1 πk = 1, the resulting weights show that

the logistic function will place significantly more mass for values that are further away from zero,
resulting in a shorter tail versus those squashed by the probit function.

model. This results in the extraction of a rich latent structure that defines a set of global semantic

themes that are allocated in various amounts for every given document.

Using the HDP representation described above, we define its generative process for the Hierarchi-

cal Dirichlet Process (HDP) Model first introduced by [77]. Let β be the set of global stick-breaking

weights where βk ∼ GEM(γ) as described above. We define our second level DP representing our

document topic proportions for document i as πi ∼ DP (αβ). Given a fixed vocabulary size, let

Ωk ∼ Dir(τ) be a finite Dirichlet distribution over our unique vocabulary words. To generate word

w for a given document i, we first sample an indicator variable ziw ∼ Mult(πi) which defines the topic

to which that particular word is drawn from. We then draw our observed word yiw ∼ Mult(Ωziw
).

This generative process assumes that documents are mixtures of global topic distributions. The

inference challenge is to learn both these global topics and the proportion to which each topic exists

for any given document. Latent Dirichlet Allocation [15], which is the parametric version of the

HDP model uses a simpler representation for π. It draws its distribution over topics for a given

document i as πi ∼ Dir(α), where α is a hyperparameter that controls the sparsity of topic weights.

The major difference between the two models is the finite Dirichlet prior used for the document

specific topic weights.

2.2.2 Hierarchical Dirichlet Process Relational Model

A similar approach to modeling documents can be taken with relational datasets, but where the

latent topics or clusters model the behavior of nodes within a network rather than documents. Here
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Figure 2.2: Left: Graphical model for Latent Dirichlet Allocation. Right: Graphical model for
the Mixed-Membership Stochastic Block Model. We introduce an intersection within the graphical
model between πi, πj to indicate a set of shared indices labeled from 1, .., N .

we introduce the Hierarchical Dirichlet Process relational (HDPR) model and use the same stick-

breaking formulation of the HDP model, but the major difference coming from the likelihoods which

are built upon the class of stochastic block models for binary graphs [84]. We describe the inference

procedure in significantly more detail in Chapter 4. For now, we briefly describe its generative

process. Let Y be a binary adjacency matrix representing our graph with a single edge denoted as

yij ∈ {0, 1}. Assuming N unique nodes indices in the graph, for each node i ∈ N we first draw

its global stick-breaking weights in the same manner as our HDP model by defining β ∼ GEM(γ).
The mixed-membership community distribution for node i is then a DP s.t πi ∼ DP(αβ). We then

draw the community assignment for node i s.t si ∼ Mult(πi) and the community assignment for the

node j that is on the receiving end s.t rj ∼ Mult(πj). The relational model defines its likelihood

by drawing a stochastic block matrix Ωk` ∼ Beta(τa, τb) to define the probability that community k

will interact with community `. Thus, to generate an edge yij , we need to sample two community

assignments, si, rj (source/receiver community indicators), which then denotes the correct entry in

our stochastic block matrix s.t yij ∼ Ber(sTi Ωrj).
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2.3 Markov Chain Monte Carlo for Inference and Learning

Markov Chain Monte Carlo (MCMC) techniques are one of the cornerstones for Bayesian inference

and learning. The foundational ideas that pioneered these techniques started in the mid 20th century

with the work of Stan Ulam to consider solving difficult combinatorial problems using simulation.

Since then a significant number of algorithms have been developed that play upon the central ideas of

simulation to approximate difficult integrals in problems as diverse as gambling or neutron diffusion.

For the purposes of this thesis, our focus will be the application of MCMC for posterior inference.

MCMC for Bayesian inference will be applied in the context of parameter estimation for in-

tractable posterior distributions. The strategy begins by assuming that the distribution of interest

(i.e our posterior which we will call p∗(x)) cannot be sampled from directly, but can be evaluated

up to a normalizing constant. If this is the case, we can start with an initial state x0 and apply a

transition operator that allows us to evolve the state of x to regions that spends most of its time in

areas we care about, i.e our posterior. The term “Markov” comes from the fact that the transition

operator we apply to evolve our initial state x is invariant to its previous evolution. In other words,

the only necessary elements to evolve the state of xt to xt+1 is its current state and the transition

matrix as previous values of xt−1, xt−2, ..., x0 are independent from what xt will be. The elegance

behind MCMC algorithms and their differences lie in the assumptions underlying the transition

operator we apply to x, which ultimately leads to regions of our posterior which we wish to sample

from.

All MCMC techniques must guarantee two fundamental properties when it comes to its tran-

sition operator. The first is irreducibility. For simplicity, assume that the space of x is discrete.

Irreducibility states that for any state x, there is a positive probability that it can visit any other

discrete state. The second property, aperiodicity assumes that once a state is visited, it does not

become trapped in a cycle which visits the same set of states, which can also violate the first prop-

erty of irreducibility. Assuming that our transition operator follows these principles we have a valid

Markov chain and we are guaranteed that this chain will converge to a stable state, in which our

case represents our posterior.

2.4 Variational Inference and Learning

Variational inference is a deterministic optimization procedure for Bayesian inference that leverages

the calculus of variations to estimate our posterior. The introductory calculus courses taught in

high school focuses on the problem of optimizing a function with respect to a point estimate, which

is what we perform when we use techniques such as maximum likelihood estimation or iterative

algorithms such as expectation maximization. However, when we wish to optimize a function or a

distribution with respect to another function, then we’ll need the calculus of variations to accomplish
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this task.

When applied to problems of Bayesian inference, variational methods start by assuming a simpler

set of distributions that approximate the true posterior. We then optimize our objective, which in

this case would be the marginal log likelihood of our model, with respect to this distribution. To

define this more concretely, assume that we have our data X and a set of latent variables Z along with

a fixed set of hyperparameters α. We wish to learn the posterior over Z so to do this we introduce

a variational distribution q(Z) which is conveniently chosen to be simpler to optimize over. For

example, a mean-field assumption is often placed over q(Z) which assumes a fully factorized family

of distributions. Furthermore, q(Z) is often chosen to be a member of the exponential family

of distributions, leading to updates that are analytically tractable. We can define the process of

optimizing the marginal log likelihood within the variational framework as follows:

log p(X | α) = log
∫
p(X,Z | α) dZ = log

∫
p(X,Z | α) q(Z)

q(Z) dZ (2.10)

= logEq(Z)

[
p(X,Z | α)

q(Z)

]
(2.11)

Calculating the log of this expectation is intractable as we need to sum over the combinatorial

explosion associated with our latent variables Z. So instead, variational inference proceeds by

applying Jensen’s inequality to this logarithmic convex function.

logEq(Z)

[
p(X,Z | α)

q(Z)

]
≥ Eq(Z)

[
log p(X,Z | α)

q(Z)

]
= L(q) (2.12)

Jensen’s inequality allows us to simplify the intractable computation into a simpler one by swapping

the expectation with the convexity of our log operator. Doing this bounds the marginal log likelihood

and we can then use the log operator within our expectation to break apart the terms associated

with this new term L(q) often referred to as the ELBO or the evidence lower bound. The lower

bound can also be reframed as the sum between our marginal log likelihood and then negative KL

divergence between our true posterior and the variational distribution:

L(q) = log p(X | α)−KL
(
q(Z)||p(Z | α)

)
(2.13)

Such that when this KL divergence becomes zero, we recover the true marginal log likelihood. This

framework is the basis for much of the literature in variational inference and research in this area

is often focused on scaling these methods to larger datasets, more sophisticated assumptions over

the variational family q(Z), and analysis of where these families fail to capture aspects of the true

posterior.



Chapter 3

Doubly Correlated Nonparametric
Models

Hierarchical Bayesian modeling offers promising capabilities for automatically understanding the

internal structure of modern datasets. One common application is modeling collections of text

documents, such as many news articles or many academic publications. Here, the goal of modeling

might be to discover common semantic themes across the corpus without expensive manual reading

of each text. Another application is in modeling observed relationships between objects, which

are represented via a directed graph. Here, observations could define relationships between related

proteins or neurons or between friends in a social network.

Though the observed words in a document and the observed edges in a network might not seem to

have much in common, both types of data can be explained via similar generative processes. The key

shared characteristics are a common set of universal clusters or topics and a local mixed-membership

representation of these shared topics. In the text domain, the popular topic model known as Latent

Dirichlet Allocation or LDA [14] posits many latent clusters of semantically related words (such

as “volcano, lava, ash” or “DNA, biology, genome”), and represents each document as a mixture

of a sparse subset of the possible topics. A similar approach exists in relational modeling, where

the popular mixed-membership stochastic block model or MMSB [2] assumes that many latent

community clusters exist (such as “doctors” or “artists” in a social network). Each node belongs to

a sparse subset of these communities and its edges are formed based on these memberships. The

LDA and MMSB models and their close relatives have generated widespread interest due to the

interpretable latent topics and communities they discover.

Our goal in this work is to present a new probabilistic model – the Doubly Correlated Non-

parametric Model (DCNM) – for the latent mixed-membership structure needed for both topic

15
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and relational models. These contributions specifically fix some of the inherent limitations of ex-

isting models: the lack of correlations between latent topics and communities, the inability to use

document-specific or node-specific metadata to inform the topic memberships, and the finite number

of topics. We address each concern in detail below.

First, we consider correlations between topics. Explicitly modeling correlations is beneficial be-

cause we expect strong correlations in real-world data. For example, in news articles we might expect

that political words occur much more frequently with economic words than words about paleontol-

ogy. Similarly, in social networks we might expect that bankers and politicians interact much more

than bankers and teachers. However, in standard Latent Dirichlet Allocation the Dirichlet prior

over mixed-membership vectors is by definition as weakly-correlated as possible. One can exactly

sample from a Dirichlet distribution by drawing a vector of independent, uncorrelated gamma ran-

dom variables, and normalizing so they sum to one. This sum constraint induces slight correlations.

Previous work that attempted to model correlations can be found in the correlated topic model or

CTM [13] which utilized a logistic-normal prior to express correlations via a latent Gaussian distri-

bution. However, its usage of a “soft-max” (multinomial logistic) transformation requires a global

normalization, which in turn presumes a fixed, finite number of topics. Its relational counterpart,

which was also a dynamic model used a similar soft-max transformation to model this prior over

community memberships [32].

Second, both LDA and MMSB models are unable to incorporate side information about doc-

uments or nodes to help inform the learned membership values. Document corpuses contain rich

metadata such as year of publication or associated authors. Similarly, social networks might include

information regarding the age, gender, and education of an individual that can provide a more ac-

curate representation her underlying community memberships. In the realm of topic models, the

Dirichlet Multinomial Regression model [52] utilized a parametric Dirichlet prior whose topic weights

were an exponentiated linear combination of observed feature values. The Gaussian process topic

model [1] modeled correlations at the topic level via a topic covariance and incorporated metadata

at the document level via an appropriate GP kernel function. This model remains parametric in its

treatment of the number of topics, and computational scaling to large datasets is challenging since

learning scales super-linearly with the number of documents.

Finally, a third limitation of the LDA and MMSB models is the assumed fixed cardinality of

the latent topic/community set. Both LDA and MMSB models require the practitioner to fix

the exact number of represented clusters in the model before inference begins. Instead, the ideal

model would not require such a restrictive parametric assumption and instead allow learning the

number of clusters from data. The most direct nonparametric extension of LDA is the hierarchical

Dirichlet process or HDP [76]. The HDP prior allows an unbounded set of topics and thus the

posterior will induce a dataset-specific distribution over the preferred number of topics. However,

like its finite counterpart LDA, the HDP cannot capture correlations or metadata. Alternatively,
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the nonparametric Bayes pachinko allocation model [49] captures correlations within an unbounded

topic collection via an inferred, directed acyclic graph. More recently, the discrete infinite logistic

normal model or DILN [62] captures topic correlations used an exponentiated Gaussian process

(GP) to rescale the HDP’s mixed-membership probabilities. This construction is based on the

gamma process representation of the Dirchlet process [21]. While our goals are similar, we suggest

a different approach to capturing correlations based on the stick-breaking representation of the

DP [72]. This choice leads to arguably simpler learning algorithms and also facilitates our modeling

of document metadata.

Our proposed DCNM mixed-membership model unites and extends the ideas from two pre-

vious conference papers: the text-data-specific Doubly Correlated Nonparametric Topic model

(DCNT) [43] and the relational-data-specific Nonparametric Metadata Dependent Relational Model

(NMDR) [44]. The important improvements we have made since those preliminary publications in-

clude the ability to model correlation structure for network data and the ability to learn the number

of topics via retrospective MCMC. Additionally we improve the non-conjugate learning of mixed-

membership probabilities by using an elliptical slice sampler [55], which we find to be more efficient

that our previous Metropolis-Hastings proposals from the prior. We also offer a new reparameteri-

zation to improve non-identifiability issues when both correlations and metadata are modeled. We

then evaluate our proposed approach on a range of datasets, including document collections with

tens of thousands of articles and networks with a few hundred of nodes.

The next section introduces the entire graphical model and generative process for both topic-

modeling and relational-modeling applications. We emphasize how the allocation of cluster labels

within our model are identical for the purposes of document or relational datasets. Section 4 details

the inference and learning for the model including details regarding our implementation of the

elliptical slice sampler and retrospective MCMC techniques. Section 5 shares experimental results.

Finally, Section 6 concludes with possible future directions and open questions.

3.1 Model

In this section, we provide a full mathematical description of our generative process for the DCNM.

The DCNM incorporates both metadata and correlations to produce mixed-membership probabilities

via a stick-breaking construction. This process is common to both topic modeling and relational

modeling applications. Each application then has a specific downstream generative process for

producing observed words or observed edges given fixed mixed-membership probabilities. These

observation models are directly analogous to the corresponding portions of the LDA topic model or

MMSB relational model. Graphical models for the common DCNM model as well as the observed-

word observation model and the observed-edge observation models are in Fig. 3.1. Fig. 3.2 provides

a practical illustration of how our model might use metadata and correlations in a topic-modeling
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application.
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Figure 3.1: Left: The graphical model for the global variables is the same for either document
or relational datasets. Correlations and metadata are also captured in this portion of the model.
Center: Downstream from π, the graphical model for the DCNT is analogous to LDA. Here we show
the plate notation for two documents with our global topic distribution parameterized by Ω. Right:
A similar case applies to the DCNR model, where cluster indicators s, r now reference the source
and receiver elements respectively within the stochastic block matrix Ω.

3.1.1 Metadata-informed mixed-membership probabilities

Most real world datasets often contain valuable metadata. For example, document collections almost

always contain an author that might have written several other documents within that corpus.

Information such as the data in which a document was written and its geographical location could be

crucial in helping influence the discovery of our clustering structures. For networks, node metadata

may come in the valuable form of personal details for individuals within a social network.

Let there be N total documents or nodes in the observed dataset, with each individual document

or node indexed by n ∈ 1, 2, . . . N . We assume that each document or node n is associated with an

observed metadata vector φn ∈ RF+1, representing F total attributes plus a constant bias term set

to one: φn = [φn1 φn2 . . . φnF 1]. Each scalar value φnf may be either continuous or binary. For

example, the value of φnf might represent the age attribute of node n or the year of publication for

document n. Categorically-valued metadata can be transformed to an appropriate one-hot binary

vector. One limitation of our current metadata approach is that it does not handle missing features.

We require all possible metadata values to be fully observed in all documents or nodes in the training

set.

Given observed metadata φn for node n, our model generates the activation weights vn ∈ RK via

the multivariate normal sampling from Eq. (2.6). The metadata values determine the mean vector

of the activations via a linear transformation:

vn ∼ Normal(ηTφn,Σ) (3.1)

The weight parameter η ∈ RF+1×K defines the linear projection of the metadata feature vector φn

to the mean of the normal distribution. Each topic k is associated with a weight vector η:k ∈ RF+1



19

for each attribute of the observed metadata, including the constant bias term. The integer k indexes

a particular cluster or topic from a potentially unbounded set of these clusters. If no metadata is

available, the model is simply:

vn ∼ Normal(η,Σ) (3.2)

where η ∈ RK is a learned mean parameter shared by all nodes or documents. This vector may be

infinite in length if the model is nonparametric.
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Figure 3.2: The figure above illustrates a hypothetical generative process for a corpus containing
documents related to three topics, (NASA and Space, Civil Rights, and Poverty). Furthermore,
assume we have documents written by famous individuals such as Martin Luther King Jr. (MLK),
Lyndon B. Johnson (LBJ), and John F. Kennedy (JFK). Given such documents and metadata, our
correlation matrix A might find positive correlations between Civil Rights and Poverty (i.e speeches
or documents containing both themes), while negative correlations might exist between those topics
and something like NASA. Consider the generative process now for v3, a document written by MLK.
Our learned metadata weights η show that documents written by MLK tend to have high weight
for topics related to Civil Rights and Poverty, but negative weights for NASA. These metadata
weights combined with our observed metadata for that document shifts the mean for v3, while A
adds further information about which particular topics to emphasize. We then follow the rest of the
generative process and push v through a squashing function such as a logistic or probit link function
to generate the individual weights for our stick-breaking process. Looking at π32 and π33, we see
that significantly more mass has been given to topics related to Civil Rights and Poverty, which is
inline with what we expect for documents written by MLK.
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Priors. As in standard Bayesian linear regression models, we place an independent Gaussian prior

over the metadata weight value ηfk ∼ N (µf , λ−1
f ) for each covariate f ∈ 1, 2, . . . F + 1 and each

topic k ∈ 1, 2, . . .. Additional priors are placed over the global mean value of each metadata feature:

µf ∼ N (0, λ−1
s ) for each f ∈ 1, 2, . . . F +1. We can place a Gamma prior over this precision variable

λs ∼ Gam(a, b).

3.1.2 Correlations in mixed-membership probabilities

To model correlations between topics, we specify a full-rank covariance matrix Σ for the Gaussian

prior on the activation score vector vn for document n. To handle the possibility of an unbounded

number of topics k, we do not specify this covariance matrix directly. Instead, we parameterize this

covariance using a square-root representation, where the parameter of interest is a lower-triangular

matrix A of linear transformation weights. For each topic k, there are a set of k non-zero transfor-

mation weights indexed by `: {Ak` : ` = 1, . . . , k}. Given the lower-triangular matrix A, we can

sample the scalar activation score vkn for topic k as:

vkn ∼ Normal

(
ηT:kφ:n +

k∑
`=1

Ak`u`n, λ
−1
v

)
(3.3)

Here, the value u`n ∼ N (0, 1) is a Gaussian noise auxiliary variable and λv > 0 is a scalar precision

parameter. We can compactly write the generative process for the entire vector vn as:

v:n ∼ Normal(Au:n + ηTφ:n, L), L = diag([λ−1
v . . . λ−1

v ]) (3.4)

Here, the K×K matrix L is a diagonal covariance matrix, taking infinite dimensions as K →∞. The

intuition underlying the use of a lower triangular matrix for A is similar to the idea of how correlations

are captured within the square-root representation of an output covariance matrix. This can be seen

more clearly when we marginalize out u, the covariance matrix for v:n is Cov[v:n] , Σ = AAT + L.

If no correlations are used but metadata is available, the model simplifies to a diagonal-covariance

prior on the activation scores:

vn ∼ N (ηTφn, L). (3.5)

Related work. Our integration of input metadata has similar connections to the semiparametric

latent factor model [75], but we replace their kernel-based GP covariance representation with a

feature-based regression. Furthermore, our metadata input is an offset to the mean for v:n which is

different from the representation used in the original DCNT model [43] where A and η was coupled

through u so that v:n ∼ N (Au:n, L
−1) and u:n ∼ N (ηTφ:n, λ

−1
f IF ). This change was motivated

by the identifiability issues common in these types of models where a rotation of A could result in

identical model likelihoods which can results in local optima issues.
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Hyperpriors. The standard symmetric Gaussian prior over Ak` ∼ N(0, λ−1
A ) in standard proba-

bilistic factor analysis models poses a serious issue when it comes to Bayesian nonparametric models

where k is potentially unbounded. Under this prior, E[Σkk] = kλ−1
A grows linearly with k and

though this may cause small artifacts in standard parametric models, the unbounded cardinality of

our latent space enforces a need for an alternative prior where Ak` ∼ N(0, (kλA)−1). This plays the

role of dampening the contribution of entries for A in the kth row by reducing the variance for its

entries by a factor of k. This shrinkage is carefully chosen so that E[Σkk] = λ−1
A remains constant.
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Figure 3.3: The figure above illustrates a very simplified generative process for two independent
documents with fixed topic memberships π1 and π2 in a standard Bayesian topic model analogous
to LDA. Topic indicator variables z11 and z21 represent the topic indicators that we will generate a
word from s.t z11 ∼ Cat(π1) and z21 ∼ Cat(π2). In this simplistic example, the words distribution
and learn are sampled from the purple and orange topics.

3.1.3 DCNT: Observation model for text data

For topic modeling applications, the DCNM generative process provides a mixed-membership prob-

ability vector πn for each document n in the corpus. Given this value, we follow the LDA gen-

erative model to produce the Wn observed word tokens in document n: yn1, yn2, . . . ynWn
. Each

token indexed by w is generated in two steps. First, we sample an integer-valued topic assignment

znw ∈ {1, 2, . . .K . . .} from the document-specific membership vector:

znw ∼ Cat(πn1, . . . πnk . . .) (3.6)

Second, we draw the observed word ynw ∈ {1, 2, . . . V }, which indicates which of V possible vocab-

ulary types occurs at word token w.

ynw|znw = k ∼ Cat(Ωk1 . . .ΩkV ) (3.7)
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Here, the parameter Ωk is a vector of length V that sums to one, indicating the probability of each

vocabulary word under topic k. This generative process for documents is illustrated in Fig. 3.3. The

left panel shows possible assignments z and word values y for two possible documents, and the right

panel shows an example of topic-by-word parameter Ω. We emphasize that this observation model

is directly similar to Latent Dirichlet Allocation [14].

3.1.4 DCNR: Observation model for relational data

For relational modeling applications, assume the observed data is a directed graph. That is, for any

two nodes i and j, there are two distinct edges: the edge from i to j, denoted (i, j), and the edge

from j to i, denoted by (j, i). We will assume that each edge has three possible states: either it is

unobserved and thus not modeled, or it has an observed binary value of either 0 or 1.

The DCNM generative process provides a mixed-membership probability vector πn for each

node n in the network. Given these values, we follow the MMSB generative model to produce each

observed directed edge (i, j) in two steps. First we draw assignments for the source node i and

receiver node j independently from their respective node memberships:

si,j ∼ Cat(πi1, . . . πik . . .), ri,j ∼ Cat(πj1, . . . πjk . . .). (3.8)

These integer assignments index one of the possible topics, so sij ∈ {1, 2, . . . k . . .} and likewise

rij ∈ {1, 2, . . . k . . .}. Given these assignments, we model the binary value of edge yij as a draw from

a Bernoulli distribution:

yij ∼ Bern(Ωk`), if sij = k, rij = ` (3.9)

Here, the parameter Ωk` ∈ (0, 1) gives the probability of a directed edge from source community k

to receiver community `. We place a conjugate beta prior on each Ωk` scalar parameter, usually

setting Ωk` ∼ Beta(0.1, 0.1).
This generative process for networks is illustrated in Fig. 3.4. The left panel shows possible

assignments z and word values y for two possible documents, and the right panel shows an example

of topic-by-word parameter Ω. We emphasize that this observation model is directly similar to

the MMSB [2]. Our contribution is in the incorporation of metadata and correlations into the

mixed-membership probabilities, which the MMSB itself cannot capture.

Multiple relations. It is straightforward to use the same node-specific membership probabilities

to jointly model multiple relationships between the nodes. For example, in our later analysis of the

social networks of lawyers, we have information about advice-seeking relationships and works-with

relationships. In this scenario, we use common node-specific membership probabilities πn for all

N nodes. Then, for each relation m ∈ 1, 2,M , we draw distinct source and receiver assignments

sijm, rijm for every edge (i, j), as well as distinct observed values yijm. See the appendix for details.
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Figure 3.4: The figure above illustrates the generative process for two nodes with fixed mixed-
memberships π1 and π2. To generate edges y12 and y21, we first sample our community indicator
variables s12, r12 for y12 and s21, r21 for y21. These community indicator variables index the Bernoulli
parameter from our stochastic block matrix.

3.1.5 Modeling Latent Correlations

The DCNT can model both positive and negative correlations among topic frequencies, but due to

the nonlinearity associated with the logistic stick-breaking transformation, these covariances cannot

be determined in closed form. We instead use a Monte Carlo estimate based on S samples from the

covariance of each document, computed as follows:

E[π:d] = 1
S

S∑
s=1

πs:d (3.10)

Cov[π:d] = 1
S

S∑
s=1

(πs:d − E[π:d])(πs:d − E[π:d])T (3.11)

Σ̂ = 1
D

D∑
d=1

Cov(π:d) (3.12)

Here, πs:d is computed by mapping a single sample of v:d, conditioned on the learned model parame-

ters, through the logistic stick breaking transformation. For our visualizations, we set S = 5000 for

each document d. We used a similar Monte Carlo estimator for the LDA model, conditioned on its

Dirichlet topic weights α.
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3.2 Monte Carlo Learning and Inference

After developing a full probabilistic model that uses topic correlations and metadata to inform

mixed-membership values, we now develop algorithms for training this model from observed data.

We develop a Markov chain Monte Carlo (MCMC) algorithm which in each iteration performs a

sweep over all hidden variables, updating each one while holding the others fixed. When possible,

updates occur in blocked fashion rather than one scalar at a time. Each update is designed so

that after many iterations, the joint state of all variables can be considered a sample from the true

posterior.

While there many latent variables in our model which need to be sampled, most of these have

been specifically given conjugate prior densities so they have closed-form posterior updates and thus

admit well-known Gibbs sampling updates. Variables A, u, Ω, µ and all precision parameters all

admit such Gibbs updates.

3.2.1 Metropolis Hastings for Topic/Community weights v

The posterior distribution of v:i does not have a closed analytical form due to the logistic nonlinearity

underlying our stick-breaking construction. In order to obtain samples for v, one approach is to

apply a standard Metropolis-Hasting algorithm. The Metropolis-Hastings algorithm is a MCMC

technique for obtaining samples from almost any arbitrary distribution. The basic idea is to define

an acceptance ratio A to determine whether we accept or reject a particular proposal for v which

we define as

A(v∗, v) = p(y, v∗, θ)q(v | v∗)
p(y, v, θ)q(v∗ | v) (3.13)

where θ refers to the current setting of our latent parameters and v∗ is a set of new parameters

that we sample from some proposal distribution q(v). We then draw a uniform random variable

ζ ∼ Unif(0, 1) and accept if A > ζ. Here p(y, v∗, θ) is the joint distribution of our model given a

proposal for v and q(v∗|v) is the transition probability of going from state v to v∗. If q(v|v∗) = q(v)
and q(v∗|v) = q(v∗), then we assume a variant of this algorithm known as the Metropolis-Hastings

Independence sampler which we use for the DCNM.

To implement this for the DCNT, we need to define a proposal distribution q(v:i) for the topic

activation weights for document i. For simplicity, this proposal is set to its prior. For our acceptance

ratio, due to the conditional independencies in our graphical model, most terms not related to v

cancel out and we are left with the ratio of our likelihood terms for zi. The proposal is accepted
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with probability min(A(v∗:i, v:i), 1), where q(v∗:i | v:i, A, u:i, η, φ:iλv) = N(v∗:i | Au:i + ηTφ:i, λ
−1
v IK):

A(v∗:i, v:i) =
p(v∗:i | A, u:i, λv)

∏Wi

w=1 p(ziw | v∗:i)q(v:i | v∗:i, A, u:i, η, φ:i, λv)
p(v:i | A, u:i, η, φ:i, λv)

∏Wi

w=1 p(ziw | v:i)q(v∗:i | v:i, A, u:i, η, φ:i, λv)

=
Wi∏
w=1

p(ziw | v∗:i)
p(ziw | v:i)

=
K∏
k=1

(
π∗ki
πki

)∑Wi

w=1
δ(ziw,k)

(3.14)

where Wi are the number of words in document i. Because the proposal cancels with the prior dis-

tribution in the acceptance ratio A(v∗:i, v:i), the final probability depends only on a ratio of likelihood

functions, which can be easily evaluated from counts of the number of words assigned to each topic

by zi. When we are dealing with the DCNR model, the only changes to the acceptance ratio comes

in the form of the way the counts are estimated in a relational model

A(v∗:i, v:i) =
N∏
j=1

p(sij | v∗:i)p(rji | v∗:i)
p(sij | v:i)p(rji | v:i)

=
K∏
k=1

(
π∗ki
πki

)∑N

j=1
δ(sij ,k)+δ(rji,k)

(3.15)

3.2.2 Elliptical Slice Sampling

The logistic mapping for v:i to our stick breaking weights π:i results in a posterior distribution for v:i

that does not have a closed analytical form. Previous work on both the DCNT and NMDR dealt with

this non-conjugate prior by employing the Metropolis-hastings independence sampler as described

before, where proposals q(v:i) are drawn from the prior. This results in simple updates for v, but

can mix poorly due to high rates of rejection, resulting in experiments that require longer MCMC

chains before empirical convergence can be assessed. Recent work by Murray et. al introduced an

elliptical slice sampling technique for latent variables with Gaussian priors that has been shown to

be an effective alternative to Metropolis-Hastings techniques resulting in a sampler for v that always

accepts as well as empirically mixing more quickly than our previous independence sampler.

The elliptical slice sampler for the DCNM is a variant of a standard slice sampler that maps

the range of possible proposals for v:i to lie on an ellipse. The application of slice sampling arises

in the context of picking a suitable bracket of possible proposals from this ellipse and adjusting its

size after each rejection until acceptance. The algorithm will always accept a value for v:i unless the

v:i that we started with is the only valid value for our likelihood. This provides significant benefits

over Metropolis-Hastings which can have high rates of rejection depending on a poor choice for the

proposal distribution.

The algorithm proceeds as follows. Let µ = ηTφi and f = v:i − µ. To define our ellipse we

draw a value τ ∼ N(µ, (AAT + λ−1
v I)−1) centered around µ. Note that this distribution is the

prior for v:i with u:i marginalized out, resulting in dependencies between entries of v:i. The slice

is defined by thresholding our log likelihood function L(f) which will be different depending on

whether we are modeling documents or networks. Here f = v:i − ηtφ:i (the elliptical slice sampler
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requires the prior to have zero mean) and our slice can be defined as log x = logL(f + µ) + log ζ
where ζ ∼ Unif(0, 1). Now that the ellipse and the slice on the ellipse is specified, the algorithm

now defines a bracket to search in by drawing θ ∼ Unif(0, 2π) and setting the bracket width to

be [θmin, θmax] ← [θmin − 2π, θ]. We then represent our new model as f∗ ← f cos θ + τ sin θ and

accept v∗:n = f∗+µ if and only if logL(f∗+µ) > log x. Otherwise, we shrink our bracket by setting

θmin = θ if θ < 0 or θmax = θ is positive and then try again until a value for v:i is determined that

lies on the proposed slice.

As in previous applications of similar Chib-style estimators, we set the length of the transition

chain to be S = 1000, and run T = 1000 iterations to determine a high posterior probability state.

Due to the use of our ESS sampler, we no longer need to reweight the final predictive likelihood as

done originally in [43].

Algorithm 3.1 Elliptical Slice Sampler for v:n with change of variables
Input: Let µ = ηTφ:n and f = v:n − µ. Log likelihood function L(f)
Output: v∗:n = f∗ + µ

1: Draw τ ∼ N(µ, (AAT + λ−1
V I)−1)

2: Draw u ∼ Uniform[0, 1]
3: Define Slice log x← logL(f + µ) + log u
4: Draw initial proposal and bracket:
θ ∼ Uniform[0, 2π]
[θmin, θmax]← [θmin − 2π, θ]

5: f∗ ← f cos θ + τ sin θ
6: if logL(f∗ + µ) > log x then
7: Exit and keep v∗:n = f∗ + µ
8: else
9: Shrink bracket and try again:

10: if θ < 0 then θmin = θ else θmax = θ
11: θ ∼ Uniform[θmin, θmax]
12: Goto 8

3.2.3 MCMC for SCNM-M

For this particular model, our corresponding inference updates are modified s.t our correlation

loading matrix A and its corresponding precision variable λa are no longer sampled as well as u, our

document/node specific noise variable. For η and λvk, we have slightly modified posteriors which

appropriately exclude the contribution of A and u. As before, columns of η:k are conditionally

independent, with Gaussian posteriors:

p(η:k | φ, µ, λf ) ∝ N(η:k | µ, λ−1
f IF )N(vTk: | φT η:k, λ

−1
v IN )

∝ N
(
η:k | (λfIF + λvφφ

T )−1(λvφvTk: + λfµ), (λfIF + λvφφ
T )−1

)
(3.16)
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Also, updates for λvk
now have the following posteriors, which will also be another Gamma distri-

bution:

p(λvk
| η:k, φ, av, bv) ∝ Gam(λvk

| av, bv)
N∏
i=1

N(vki | ηT:kφ:i, λ
−1
vk

) (3.17)

∝ Gam
(
λvk
| N2 + av,

1
2

N∑
i=1

(vki − ηT:kφ:i)2 + bv

)

3.2.4 Retrospective MCMC

Bayesian nonparametric models based on unconventional stick-breaking priors often use a finite,

truncated approximation to the true infinite model. While this approach can be effective, selection

of an appropriate truncation level K is challenging. When K is conservatively large, substantial

computational resources can be expended resampling “wasted” variables, and model interpretabil-

ity often suffers. When K is small, learning and inference are potentially biased, and the benefits

which originally motivated the nonparametric approach are lost. To avoid these issues, we imple-

ment a dynamic truncation technique based on retrospective sampling [64] of our latent community

assignments.

DCNR Retrospective MCMC

Consider the resampling of a source indicator sij ∼ Cat(ρ) from node i to node j, given fixed values

of all other indicators and variables represented by our posterior ρ. A similar approach can be used

for resampling rij , or for blocked resampling of {sij , rij}. Because we employ a conjugate beta prior,

our sampler analytically marginalizes the relation parameters Ωk`, expressing part of the posterior ρ

in terms of various edge counts. Suppose that rij = `. Excluding node pair (i, j), let C
\ij
k` denote the

number of present directed edges from nodes whose indicators associate that pairing to communities

(k, `). Similarly, let D
\ij
k` denote the number of absent edges with the same community indicators.

Let K denote the index of the largest community, in stick-breaking order, which currently has

at least one assigned node. The retrospective sampler explicitly instantiates vk: and η:k for k ≤ K.

Computing πki based on these variables, as in Eq. (2.9), we let

ρk ∝ πki

(
(C\ijk` + γa)yij (D\ijk` + γb)1−yijm

C
\ij
k` +D

\ij
k` + γa + γb

)
for k = 1, . . . ,K (3.18)

ρK+1 ∝

(
1−

K∑
k=1

πki

)(
γ
yij
a γ

1−yij

b

γa + γb

)
. (3.19)

The proportionality constant in Eqs. (3.18, 3.19) is selected so that ρ is a properly normalized

(K+1)-dimensional multinomial distribution. For k ≤ K, ρk is the posterior probability of selecting

community k. ρK+1 is the aggregate posterior probability of the infinite “tail” of communities with

indexes greater than K.
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Figure 3.5: The retrospective MCMC procedure is show here using the indices for a topic model.
It begins by sampling from Cat(ρ) to determine whether ziw should be assigned to one of the
already instantiated topics, or some new topic cluster. If the sampled ziw ≤ K, as is common
after the first few sampling iterations, we simply not choose that topic. Otherwise, we select a
new community by simulating from our stick-breaking prior, since all potential new topics have
indistinguishable marginal likelihoods. Such dynamic creation of variables is the key to retrospective
samplers. Because our likelihood parameters Ωkw have conjugate Dirichlet priors, we can exactly
compute the posterior normalization constant, and the more complex Metropolis-Hastings proposals
of [64] are unnecessary. A related approach has been used for inference in infinite depth nested CRP
models [16].

DCNT Retrospective MCMC

For the DCNT, the retrospective MCMC comes into play when we sample ziw. Let M
\iw
kt denote the

number of word instances of type t assigned to topic k, excluding token w in document i. Similarly,

let M
\iw
k· be the number of total tokens assigned to topic k. For a vocabulary with T unique word

types, our posterior ρ can be expressed as

ρk ∝ πki

(
M
\iw
kt + β

M
\iw
k· + βT

)
for k = 1, . . . ,K (3.20)

ρK+1 ∝

(
1−

K∑
k=1

πki

)(
β

βT

)
. (3.21)

Similarly to the DCNR model, if ziw > K, we select a new topic by simply simulating the logistic

stick-breaking prior. Our marginalization of Ω and the fact that all new topics have indistinguishable

marginal likelihoods allow us to also bypass the expensive Metropolis-Hastings step that would

otherwise be necessary.
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Algorithm 3.2 Retrospective MCMC resampling of source community sijm, given a (K + 1)-dim.
posterior distribution ρ defined as in Eqs. (3.18, 3.19).

Draw sijm ∼ Mult(ρ)
1: if sijm = K + 1 then

Draw η:sijm
∼ N(µ,Λ−1)

Draw vsijmi ∼ N(ηT:sijm
φ:i, λ

−1
V )

Draw ω ∼ Ber(ψ(vsijmi))
2: if ω = 1 then

Exit and keep all instantiated variables
3: else

Increment sijm ← sijm + 1
Goto line 3

3.2.5 Held Out Likelihood for Topic Models

Chib Style Estimation of Predictive Likelihoods

To assess held-out likelihood scores for our topic model experiments, we rely on a Chibs style esti-

mator, which was found to be far more accurate than alternatives like the harmonic mean estimator.

The Chib style estimator can be used to approximate the predictive likelihood of a held out docu-

ment by marginalizing out the topic assignment variables zd, and topic weights v:d and u:d, to obtain

p(wd | ζ,Γ), where wd refers to the set of N words in a held out document d, ζ = {A,Ω, η, φ, λV }
are the parameters learned from training data, and Γ is the set of hyperparameters specified before

training. The Chib-style estimator is based on a distinguished high-probability set of latent variables

(z∗d , v∗:d, u∗:d), chosen so that:

p(wd | ζ,Γ) = p(wd, z∗d , v∗:d, u∗:d | ζ,Γ)
p(z∗d , v∗:d, u∗:d | wd, ζ,Γ) (3.22)

p(wd | ζ,Γ) ≈ p(w:d, z
∗
d , v
∗
:d, u

∗
:d | ζ,Γ)

1
S

∑S
s=1 T (z∗d , v∗:d, u∗:d ← zsd, v

s
:d, u

s
:d)

(3.23)

where T (z∗d , v∗:d, u∗:d ← zsd, v
s
:d, u

s
:d) is a reversible Markov chain operator used to numerically ap-

proximate the marginalization of zd, v:d, and u:d by calculating the transition probabilities from S

samples from their respective posterior given wd. These can be obtained via our standard Gibbs

sampling updates for zd and u:d, and our ESS sampler for v:d which we denote by ESS(·). Depending

on the direction of this chain, the respective posterior distributions used to evaluate the transition

operators will be different. We denote the forward transition operator as T (z∗,v∗,u∗ ← zs,vs,us)
and the reverse transition operator as T̃ (z∗,v∗,u∗ ← zs,vs,us) which can be defined as follows:

T (z∗,v∗,u∗ ← zs,vs,us) = p(z∗ | vs, zs)q(v∗ | vs, z∗,us)p(u∗ | v∗) (3.24)

T̃ (z∗,v∗,u∗ ← zs,vs,us) = p(z∗ | v∗, zs)q(v∗ | vs, zs,u∗)p(u∗ | vs) (3.25)
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The log posterior distributions have the following form for the forward transition T (·):

log p(z∗ | vs, zs,Ω) =
N∑
n=1

log
[
p(wdn | zsdn = z∗dn)p(zsdn = z∗dn | πs)∑K
k=1 p(wdn | zs = k)p(zs = k | πs)

]
(3.26)

log q(v∗ | vs, z∗,us) = logN(v∗ | Aus, L) (3.27)

log p(u∗ | v∗) = logN(u∗ | (IK̄ +ATLA)−1(ATLv∗ + ηTφd), (IK̄ +ATLA)−1) (3.28)

Our stick breaking weights for v:d are constructed as πskd = ψ(vskd)
∏k−1
`=1 ψ(−vs`d), and the topic

counts for document d are denoted by nsk =
∑N
n=1 δ(zsdn, k). The precision matrix for u:d under our

prior is denoted by L = λV IK̄ .

As in previous applications of similar Chib-style estimators, we set the length of the transition

chain to be S = 1000, and run T = 1000 iterations to determine a high posterior probability state.

Due to the use of our ESS sampler, we no longer need to reweight the final predictive likelihood as

done originally in [43].

3.3 Experiments

For all our experiments, we created five train/test splits where we randomly removed 20% of the

edges for testing. The splits we found in practice enforce more variability in the AUC performance

rather than averaging over random initializations of the model. For all our experiments, we ran

our MCMC chain for 10000 iterations, using the saved model parameters at every 50 iterations to

calculate our expected edged probabilities. To initialize, we implement a sequential Gibbs sampler

that begins by sampling token/edge assignments incrementally. We perform this for 100 iterations,

before using these assignments to approximate our latent variables higher in the generative process.

We set our hyperparameters in the following manner for both the relational and topic model

version of the DCNM. We initialize λV with the corresponding variance associated with the rep-

resentation of the Dirichlet as being sampled from marginal beta distributions. This mimics to

some degree the finite approximation of the stick-breaking process such that π1 ∼ Beta(1, α), where

α = 1/K. For other precision parameters, we set λF = 0.05, λA = 0.01, λµ = 0.25, representing

a general willingness to allow for more variance for latent variables higher within the generative

process. All other variables are learned either from Gibbs Sampling or the Elliptical Slice Sampler.

3.4 DCNR: Relational Datasets

To better understand the capabilities of the DCNR, we will look at several datasets to acquire

quantitative and qualitative metrics. For quantitative results, we will focus on AUC (Area under

the Curve), which represents the measure to which the model is capable of predicting unseen edges.
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Our comparison models are as follows. The first will be the Mixed Membership Stochastic Block

Model [3], which represents the parametric baseline for comparison to our DCNR model. For the

MMSB there are two variants, where Gibbs sampling is used for inference, while the other uses the

NUTS (No U-Turn) from STAN [34]. We also implement a similar version of the DCNR model

in STAN without correlation or metadata, using a normal logistic stick-breaking prior. Unlike the

DCNR, the model is truncated permanently. With these three comparison models, we test against

a variety of DCNR variants with or without correlations, metadata, or truncation.

3.4.1 Lazega Lawyers Network

The Lazega lawyers dataset [48] is a social network between partners and associates of several New

England law firms. Collected from 1988-1991, it contains three directed binary relations encoding

friendship, coworker, and advisory relationships among 71 lawyers. The dataset contains a rich set

of metadata describing status, gender, office location, years employed, age, practice, and law school.

The strong coworkers network represents relationships where two lawyers performed professional

work with together on at least one case. The advice network represents lawyers who had sought one

another for professional advice to ensure that they were accomplishing their duties (such as handling

a case properly) or consulting someone for a professional opinion that was of great value. Finally,

the friendship network represents lawyers who have socialized together outside of work and whose

families might know one another 3.5.2.
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Figure 3.6: AUC Results for the Lawyers Advice Relation.
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The current results from the lawyers dataset suggest a few interesting trends. The first is that

the current DCNM model without metadata or correlations performs comparably with the MMSB

and that incorporating metadata and the retrospective MCMC ensures that the model will perform

significantly better. For AUC, modeling correlations does not seem to improve this measure as much

as the other two features for the DCNM.

3.4.2 Otago Harbour Food Web

The Otago Harbour dataset [54] contains a single “who-eats-whom” binary relationship for 123

organisms from an intertidal mudflat ecosystem in New Zealand. In addition to predation links, the

dataset contains metadata that broadly classifies each node as one of 21 possible organism types

(e.g., annelids, birds), and assigns one of three mobility ratings (low, intermediate, high). A variety

of organisms populate this food web including secondary predators (ducks, fish), primary predators

(rock crabs), and autotrophs (seagrass). We explore whether unsupervised learning from metadata

can contribute to knowledge discovery in complex, real-world networks.

Figure 3.7: Food webs traced from two top predator archetypes, a high mobility elasmobranch
(sharks, rays, and skates) and a high mobility bird. Given learned connections between metadata
and predation relationships, links are drawn from each node to the most likely prey archetypes,
continuing until the bottom of the web. The model recovers biologically relevant structure from
binary relations among 123 species. Images courtesy Wikipedia. Results are from the DCNM model
without correlations.
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3.5 DCNT: Documents

Similarly for our topic modeling experiments, we created five train/test splits where 20% of the

documents were randomly removed for held-out likelihood metrics. For quantitative results, we

implement a Chibs Style estimator [81] as described above across several topic models. We use the

last iteration of our MCMC chain to represent our global latent variables and run the Chibs Style

estimator for 1000 iterations per held-out document.

3.5.1 NIPS Data

We analyze a collection of conference papers from NIPS (Neural Information Processing Systems),

which contains a total of 1392 documents with metadata pertaining to the year and author. The

conference represents a broad range of machine learning topics and makes it an ideal dataset to

discover themes that pertain to the field’s specialties, such as neural networks and Bayesian modeling.

After pruning for stopwords, the final vocabulary contains 13649 unique terms. The richness of this

dataset and its associated metadata allows us to not only report held-out likelihood scores, but also

visualize the influence of metadata and to see if there are any interesting correlation structures for

our recovered topics.

Figure 3.8: (a) The topic masses for a set of test documents conditioned by years only, years
and Michael I. Jordan (b), years and Geoff Hinton (c), and years with Terrence Sejnowski (d). A
stacked histogram at the top of the figures shows the topic masses across the whole corpus. Due
to the logistic stick-breaking process prior, the topic masses are naturally shifted towards the first
few topics. For each column of this figure, a cloud of words from a relevant topic are shown that
represents the effect of conditioning on metadata. Larger words have more probability mass within
that topic while the red dot indicates the topic mass associated with the test document below.

One of the advantages of using a generative model such as the DCNM is the ability to explore topic

distributions that vary conditioned on specific features. In 3.5.1, a test document was generated

for each year and conditioned on either the author Michael I. Jordan, Geoffrey Hinton, or Terrence
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Sejnowski. For each respective author, words from a relevant topic show how conditioning on a par-

ticular author can change the topic masses for that test document. For example, the visualization

associated with Michael Jordan shows how the topic associated with terms related to probabilistic

models gradually increases over the years while the topic associated with neural networks decreases.

Conditioning on Geoffrey Hinton puts larger mass on a topic that contains his actual name and as-

pects of his research work. Finally, conditioning on Terrence Sejnowski shows how a large proportion

of the topic mass is shifted to topics related to neuroscience.

Figure 3.9: A Hinton diagram of correlations from a DCNT model where values in red and blue
represent positive and negative correlations respectively. To the right are the top six words in order
of their frequency.

The DCNM model can also find correlations between topics and in 3.5.1, we represent this using

a Hinton diagram where the size of a colored grid is proportional to the magnitude of the correlation

between two topics. The results displayed in this figure are from a model where no metadata was
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used and to the right of the Hinton diagram are words associated with topics from three correlations.

From this figure, we can see that the DCNM model found strong positive correlations between the

”learning” and ”function” topic where the two topics have strong semantic similarities, but are not

necessarily identical topics. Another correlation that the DCNT discovered was a positive correlation

between the topics ”visual” and ”neuron”, where the two topics represent meaningful semantic

overlaps, particularly in papers that represent the study of the brain’s visual cortex. Finally, a

negative correlation was found between ”network” and ”model” which might reflect the ideological

differences that existed then between the field of neural networks and probabilistic graphical models.

3.5.2 MusixMatch Song Lyrics

The MusixMatch dataset is a collection of song lyrics that have been converted into a bag of words

format. The original dataset consisted of approximately 1 million songs and contains metadata for

many of these songs such as the year and artist. For the DCNM analysis of this data, we focus

on a small subset of this data, which contains approximately 2537 songs. We obtain this subset by

filtering for tracks that contain only the most popular artists with a total of at least 100 tracks. The
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Figure 3.10: Negative Held Out Likelihood scores for the MusixMatch dataset.

MusixMatch results shows a similar pattern of performance with the AUC results from the relational

datasets. In general, the DCNM model without metadata or correlations performs similarly with the

HDP-Gibbs Topic model and performs significantly better than LDA-STAN. The DCNM benefits

most from metadata and the retrospective MCMC and marginally better from modeling correlations.



Chapter 4

Scalable Inference in Bayesian
Nonparametric Relational Models

One of the significant limitations of standard MCMC techniques arises when it comes to scalabil-

ity. Variational inference, which casts the problem of posterior approximation as a deterministic

optimization problem is typically faster with guarantees of convergence, but at the cost of solution

quality. For networks, since the number of edges grows quadratically with the size of the nodes,

scalable inference techniques become necessary for most real-world networks. We begin by first

describing previous work on variational inference for the HDP topic model. We then introduce an

HDP version for relational datasets and derive its naive mean-field variational inference updates.

An assortativity assumption for the HDPR is introduced where our stochastic block matrix is con-

strained to be a diagonal matrix with a fixed offset for non-assortative communities. We show how

this constraint allows updates to be performed in linear time and complexity with the number of

communities. Finally, we show how stochastic variational inference may be applied to the aHDPR

model to scale to networks with tens of thousands of nodes.

4.1 Variational Inference for HDP-Relational Models

We briefly review the generative process for the HDPR model from Chapter 2 to define the notation

used in deriving a variational inference algorithm for this model. Note that the HDP prior over

community membership distributions for the HDPR is exactly the same as the prior over the HDP

topic model. Specifically, we define a set of global stick-breaking weights drawn as β ∼ GEM(γ)
and define our second level DP representing our mixed-membership community distributions as

πi ∼ DP(αβ) for node i in our graph Y with N nodes. Note that this part of the model is equivalent

to the HDPT. To generate an edge yij which connects node i to node j, we first sample a pair of

36
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indicator variables from their corresponding community membership distributions, sij ∼ Cat(πi),
rij ∼ Cat(πj) which indicate the row/column entry of our stochastic block matrix Ωk` ∼ Beta(τa, τb).
We define the probability of generating an edge as p(yij = 1|sij = k, rij = `) = Ωk`. This generative

process models a binary directed network that is capable of expressing a variety of community

structures such as assortative communities, dissassortative communities, core-periphery networks,

and even hierarchical community structures.

4.1.1 Undirected Networks and the Assortative HDPR

Consider the scenario where we are working with binary undirected networks. The full stochastic

block matrix will no longer be an appropriate parameter space for these types of networks due to the

redundant set of parameters that were originally needed to capture the direction of a particular edge.

This implies that either a lower or upper triangular formulation of our stochastic block matrix would

be more appropriate. However, when we allow for nodes to be members of multiple communities,

the membership communities π can compete with the entries associated with our triangular block

matrix Ω [26]. To mitigate this, we assume an assortativity constraint on our stochastic block matrix

and redefine our likelihood terms as follows:

p(yij = 1 | sij = rij = k) = Ωk, p(yij = 1 | sij 6= rij) = ε. (4.1)

For our assortative HDPR model, each community has its own self-connection probability Ωk ∼ Beta(τa, τb).
To capture the sparsity of real networks, we fix a very small probability of between-community con-

nection, ε = 10−30. The small epsilon term forces the model to rely on the assortative communities

to explain most of the data.

4.1.2 Structured Variational Inference

The original HDPR model associate a pair of community assignments, sij and rij , with each potential

edge yij . In assortative models these variables are strongly dependent, since present edges only have

non-negligible probability for consistent community assignments. To improve accuracy and reduce

local optima, we thus develop a structured variational method based on joint configurations of these

assignment pairs, which we denote by eij = (sij , rij). See Figure 4.1.

Given this alternative representation, we aim to approximate the joint distribution of the ob-

served edges y, local community assignments e, and global community parameters π,Ω, β given fixed
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Figure 4.1: Alternative graphical representations of the aHDPR model, in which each of N nodes has
mixed membership πi in an unbounded set of latent communities, wk are the community self-connection
probabilities, and yij indicates whether an edge is observed between nodes i and j. Left: Conventional
representation, in which source sij and receiver rij community assignments are independently sampled.
Right: Blocked representation in which eij = (sij , rij) denotes the pair of community assignments underlying
yij .

hyperparameters τ, α, γ. The overall variational objective can now be defined as:

L(q) = E[log p(y|Ω, e)] + E[log p(e|π)] + E[log p(π | α, β(v∗))] + E[log p(Ω | τa, τb)] + E[log p(v∗ | γ)]

− E[log q(e|φ)]− E[log q(π | θ)]− E[log q(Ω | λ)] (4.2)

=
E∑
ij

K∑
k=1

[
φijkk log f(Ωk, yij)

]
+

E∑
ij

[
1− (

K∑
k=1

φijkk) log f(ε, yij)

]
(4.3)

+
E∑
ij

K∑
k=1

K∑
`=1

[
φijk`(Eq[log(πik)] + Eq[log(πj`)])

]
(4.4)

+
K∑
k=1

(γ − 1) log(1− vk) +
N∑
i=1

log Γ(
K+∑
k=1

αβk)−
K+∑
k=1

log Γ(αβk) +
K+∑
k=1

(αβk − 1)E[log πik]


+

K+∑
k=1

[
log
(

Γ(τa + τb)
Γ(τa)Γ(τb)

)
+ (τa − 1)Eq[log(Ωk)] + (τb − 1)Eq[log(1− Ωk)]

]

−
E∑
ij

K∑
k=1

K∑
`=1

φijk` log(φijk`) (4.5)

−
N∑
i=1

log Γ(
K+∑
k=1

θik)−
K+∑
k=1

log Γ(θik) +
K+∑
k=1

(θik − 1)E[log πik]


−

K+∑
k=1

[
log
(

Γ(λka + λkb)
Γ(λka)Γ(λkb)

)
+ (λka − 1)Eq[log(Ωk)] + (λkb − 1)Eq[log(1− Ωk)]

]
.

Here we define f(Ωk, yij) = exp{yijEq[log(Ωk)] + (1− yij)Eq[log(1− Ωk)]}. The sufficient statistics

for Eq[log πik] are equivalent to the HDPT. The sufficient statistics related to our stochastic block

matrix can be decomposed as follows:

Eq[log Ωk`] = ψ(λk`a)− ψ(λk`a + λk`b), Eq[log Ωk`] = ψ(λk`b)− ψ(λk`a + λk`b) (4.6)

By taking partial derivatives with respect to our free variational parameters, we obtain coordinate
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ascent updates similar to the HDP Topic model.

φijk` ∝ exp{Eq[log πik] + Eq[log πj`]}f(ε, yij) (4.7)

φijkk ∝ exp{Eq[log πik] + Eq[log πj`]}f(Ωk, yij) (4.8)

λka = τa +
∑E
ij φijkkyij , (4.9)

λkb = τb +
∑E
ij φijkk(1− yij), (4.10)

θik = αβk +
∑

(i,j)∈E
∑K
`=1 φijk`. (4.11)

Here, the final summation is over all potential edges (i, j) ∈ E linked to node i. For these updates,

the mixed-membership distributions associated with each node π is treated as a global variable and

is of interest. This is partially due to the value of the latent structure associated with π and the

lack of interpretability associated with Ω once the final communities are learned.

4.1.3 Linear Time and Storage Complexity for the aHDPR

A naive implementation of these updates would require O(K2) computation and storage for each

assignment distribution q(eij | φij). Note, however, that the updates for q(Ωk | λka, λkb) in

Eq. (4.9),(4.10) depend only on the K probabilities φijkk that nodes select the same community.

Using the updates for φijk` from Eq. (4.7), the update of q(πi | θi) in Eq. (4.11) can be expanded

as follows:

θik = αβk +
∑

(i,j)∈E φijkk + 1
Zij

∑
` 6=k π̃ikπ̃j`f(ε, yij)

= αβk +
∑

(i,j)∈E φijkk + 1
Zij

π̃ikf(ε, yij)(π̃j − π̃jk). (4.12)

where π̃ik , exp{Eq[log(πik)]} = exp{ψ(θik)−ψ(
∑K+1
`=1 θi`)} and π̃i ,

∑K
k=1 π̃ik. Note that π̃j need

only be computed once, in O(K) operations. The normalization constant Zij , which is defined so

that φij is a valid categorical distribution, can also be computed in linear time:

Zij = π̃iπ̃jf(ε, yij) +
∑K
k=1 π̃ikπ̃jk(f(wk, yij)− f(ε, yij)). (4.13)

Finally, to evaluate our variational bound and assess algorithm convergence, we still need to calculate

the likelihood and entropy terms dependent on φijk`. However, we can compute part of our bound

by caching our partition function Zij in linear time. In particular, we focus first on Eq. (4.4) where∑E
ij

∑K
k=1

∑K
`=1[φijk`(Eq[log(πik)] + Eq[log(πj`)])] can be further decomposed as:

E∑
ij

[
K∑
k=1

Eq[log(πik)]
K∑
`=1

φijk` +
K∑
`=1

Eq[log(πj`)]
K∑
k=1

φijk`

]
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Furthermore, looking at 4.5, we see that
∑E
ij

∑K
k=1

∑K
`=1[φijk` log(φijk`)] can also be further ex-

panded into

E∑
ij

[
K∑
k=1

Eq[log(πik)]
K∑
`=1

φijk` +
K∑
`=1

Eq[log(πj`)]
K∑
k=1

φijk`

− log
K∑
k=1

φijkk +
K∑
k=1

log f(wk, yij)φijkk − log(Zij)
]

(4.14)

In order to calculate our ELBO in an efficient manner the terms we need to simplify from Eq. (4.4)
and Eq. (4.5) are the terms related to φijk` s.t:∑K

k=1 Eq[log(πik)]
∑K
`=1 φijk` =

∑K
k=1 π̃ik

[
φijkk + 1

Zij
π̃ikf(ε, yij)(π̃j − π̃jk)

]
∑K
`=1 Eq[log(πj`)]

∑K
k=1 φijk` =

∑K
`=1 π̃j`

[
φij`` + 1

Zij
π̃j`f(ε, yij)(π̃i − π̃i`)

]
Note the similarity of this expression with part of the updates in Eq. (4.18). By caching the necessary

statistics needed to update θ, we can calculate our ELBO in an efficient manner.

4.1.4 Stochastic Variational Inference for HDPR

Using the same strategy for deriving the stochastic variational updates for the HDP topic model,

we also take natural gradients with respect to our new ELBO for λ, θ, v in the HDPR model.

∇λ∗ka = 1
g(i,j)φijkkyij + τa − λka; (4.15)

∇θ∗ik = 1
g(i,j)

∑
(i,j)∈E

∑K
`=1 φijk` + αβk − θik, (4.16)

where the natural gradient for ∇λ∗kb is symmetric to ∇λ∗ka and where yij in Eq. (4.15) is replaced by

(1−yij). Note that
∑

(i,j)∈E
∑K
`=1 φijk` was shown in the previous section to be computable inO(K).

The scaling term g(i, j) is needed for an unbiased update to our expectation. If g(i, j) = 2/N(N−1),
then this would represent a uniform distribution over possible edge selections in our undirected

graphs. In general, g(i, j) can be an arbitrary distribution over possible edge selections such as a

distribution over sets of edges as long as the expectation with respect to this distribution is equivalent

to the original ELBO [26]. When referring to the scaling constant associated with sets, we consider

the notation of h(T ) instead of g(i, j).
We optimize this ELBO with a Robbins-Monro algorithm which iteratively steps along the direc-

tion of this noisy gradient. We specify a learning rate ρt , (µ0 + t)−κ at time t where κ ∈ (.5, 1] and

µ0 ≥ 0 down weights the influence of earlier updates. With the requirement that
∑
t ρ

2
t < ∞ and∑

t ρt = ∞, we will provably converge to a local optimum. For our global variational parameters
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{λ, θ}, the updates at iteration t are now

λtka = λt−1
ka + ρt(∇λ∗ka) = (1− ρt)λt−1

ka + ρt( 1
g(i,j)φijkkyij + τa); (4.17)

θtik = θt−1
ik + ρt(∇θ∗ik) = (1− ρt)θt−1

ik + ρt( 1
g(i,j)

∑
(i,j)∈E

∑K
`=1 φijk` + αβk); (4.18)

vtk = (1− ρt)vt−1
k + ρt(v∗k), (4.19)

where v∗k is obtained via a constrained optimization task using the gradients derived in ‡A.2. Defining

an update on our global parameters given a single edge observation can result in very poor local

optima. In practice, we specify a mini-batch T , a set of unique observations in determining a noisy

gradient that is more informative. This results in a simple summation over the sufficient statistics

associated with the set of observations as well as a change to g(i, j) to reflect the necessary scaling

of our gradients when we can no longer assume our samples are uniformly chosen from our dataset.

4.1.5 Restricted Stratified Node Sampling

Large real-world networks are sparse and our optimization algorithm provides us with the ability to

choose a sampling scheme that allows us to better exploit this sparsity. Given the success of stratified

node sampling on sparse networks as a mini-batch strategy [26] we consider this technique for all our

experiments. Briefly, stratified node-sampling randomly selects a single node i and either chooses

its associated links or a set of edges from m equally sized non-link edge sets. For this mini-batch

strategy, h(T ) = 1/N for link sets and h(T ) = 1/Nm for a partitioned non-link set. In [26], π was

treated as a global parameter where every node parameter was updated after each mini-batch. For

our model, we also treat π as a global parameter, but maintain a separate learning rate ρi for each

node. This allows us to focus on updating only nodes that are relevant to our mini-batch as well as

limit the computational costs associated with this global update. To ensure that our Robbins-Monro

conditions are still satisfied, we assume that for node i, its learning rate ρit = 0 for nodes that are

not part of our current mini-batch. When a new mini batch contains this particular node, we look

to the most previous learning rate so that ρit∗ > 0 and assume this value as the previous learning

rate. This modified subsequence of learning rates maintains our convergence criterion so that the∑
t ρ

2
it < ∞ and that

∑
t ρit = ∞. We show how performing this simple modification results in

significant improvements in both perplexity and link prediction scores.

4.1.6 HDPR Pruning Moves

For the HDPR, our nested truncation requires setting an initial number of communities K. A large

truncation lets the posterior find the best number of communities, but can be computationally costly.

A truncation set too small may not be expressive enough to capture the best approximate posterior.

To remedy this, we define a set of pruning moves aimed at improving inference by removing commu-

nities that have significantly small probability mass. Pruning moves provide the model with a more
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parsimonious and interpretable latent structure as well as saving us significant computational costs

during inference. To determine candidates for pruning, we define Θk = (
∑N
i=1 θik)/(

∑N
i=1
∑K
k=1 θik)

for all k ∈ K. We then threshold Θk so that any Θk < logK/N are potential prune candidates.

The threshold represents a ratio that promotes pruning moves when the model becomes significantly

overparameterized. If these communities are less than this threshold for a consecutive number of

t∗ iterations (for our experiments we set t∗ = N/2), we then target them as candidates for prun-

ing. For clarity, assume that d = 2 communities k′, k′′ are considered for removal. We determine a

new configuration of our model by estimating the combined mass of our variational posteriors for

θ̃i = θik′+θik′′∀i ∈ N . We redistribute this mass uniformly to our remaining communities k 6= k′, k′′

so that θ∗ik = θik + θ̃i/(K − d). An analogous operation is performed for β, λa, λb, which results in

a new set of global variational parameters {v∗, β∗, λ∗a, λ∗b , θ∗}.
To estimate an informative, but approximate ELBO for this model we need to define a set of

relevant observations associated with our prune candidates. To consider all observations would be

equivalent to calculating the ELBO within a batch setting, which is intractable for large networks.

However, by considering the top n∗ nodes (for our experiments we set n∗ = 10) containing the

greatest mass for θik′ , θik′′∀ i ∈ N and taking all its pairwise edges between these chosen nodes, we

obtain a set of relevant edge pairs yij∈S , which we then use to calculate φ∗ij∈S , where S is a set of node

indices of relevance to the communities we wish to prune. Given our full set of variational posteriors,

we denote this new ELBO as L(qprune). We also calculate an ELBO before our pruning moves which

we denote as L(qold). We accept our new model if L(qprune) > L(qold) or reject otherwise. The key

idea is that the edge observations formed by nodes with significant mass in θik′ , θik′′∀ i ∈ N will

form an approximation to the ELBO which is more informative then an ELBO formed by a random

subset of our graph. Our structured mean-field approach also results in a simple direct update for

φ∗ij∈S which allows us to calculate L(qold) and L(qprune) more efficiently.

4.2 Experiments

In this section we perform experiments that compare the performance of the aHDPR model to the

aMMSB. We show significant gains in AUC and perplexity scores by using the restricted form of

stratified node sampling, a quick K-means initialization1 for θ, and our efficient structured mean-

field approach combined with pruning moves. We perform a detailed comparison on a synthetic toy

dataset and the relativity collaboration network on a variety of metrics to show the benefits of each

contribution. We then show significant improvements over the current aMMSB model in both AUC

and perplexity metrics on several real world datasets also analyzed in [26] for the aMMSB. Finally,

1Our K-means initialization assumes the rows of our adjacency matrix determined from our non-heldout set as
data points with N − 1 features, which results in a hard clustering assignment zi for each node. To initialize, we
set θizi = N − 1 and θi\zi

= α.
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we perform a qualitative analysis on the LittleSis network and depict the usefulness of using our

learned latent community structure to drive visualizations of large networks.

For all our experiments, we fix the variance across node community memberships α = 1 and set

our hyperparameters for wk to τa = 10 and τb = 1 across communities. We set an aggressive learning

rate so that µ0 = 1 and κ = .5. We use a restricted stratified node-sampling technique for all our

experiments with the non-link partition set m = 10, unless stated otherwise. All experiments were

run for 250,000 iterations from 5 random initializations with 10% of the links randomly held out

along with an equal amount of non-links for testing. For the aMMSB, we used the same settings2

that were optimized for its original experiments [26], with the exception of changing the Dirichlet

prior to be uniform over its mixed-membership distributions (α = 1), which we found to improve

convergence for the aMMSB across our experiments.

4.2.1 Synthetic and Collaboration Networks

The synthetic network we use for testing is generated from the standards and software outlined

in [46] to produce realistic synthetic networks with overlapping communities and power-law degree

distributions. For these purposes, we set the number of nodes N = 1000, with the minimum degree

per node set to 10 and its maximum to 60. On this network the true number of latent communities

was found to be K = 56. Our real world networks comprise of 5 undirected networks originally

ranging from N = 5, 242 to N = 27, 770. These raw networks however contain several disconnected

components. Both the aMMSB and aHDPR would separate these into distinct non-overlapping

communities which defeats the purpose of the model’s ability to discover this type of structure. As

a result, we took the largest connected component for each graph for analysis.

Initialization and Global Update Strategies. The upper left figures of Fig. 4.2 are within model

comparisons of the aHDPR on perplexity for both the synthetic and relativity networks. Here

we compare the benefits of initializing θ via K-means and our restricted stratified node sampling

procedure. For our random initializations, we initialized θ in the same fashion as the aMMSB. Using

a combination of both modifications, we achieve the best perplexity scores on these datasets. The

rest of our experiments with the aHDPR model and its variants (naive mean field and pruning)

assumes a restricted stratified node sampling approach combined with a K-means initialization.

Naive Mean-Field vs. Structured Mean-Field. The naive mean-field approach is the aHDPR

model where the community indicator assignments are split into sij and rij . This can result in

severe local optima due to their coupling as seen in some experiments in Fig. 4.3. The aMMSB

in some instances performs better than the naive mean-field approach, but this can be due to

differences in our initialization procedures. However, by changing our inference procedure to an

2The aMMSB uses a random initialization for θik ∼ Gam(100, .01) with hyperparameters over wk set to the
expected number of link/non-links across K uniformly distributed communities. It learning rate was set to
µ0 = 1024 and κ = .5. We found these settings gave the best advantage for the aMMSB on these datasets.
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Figure 4.2: The upper left shows benefits of a restricted update and a K-means initialization for stratified
node sampling on both synthetic and relativity networks. The upper right shows the sensitivity of the
aMMSB as K varies versus the aHDPR. The lower left shows various perplexity scores for the synthetic
and relativity networks with the best performing model (aHDPR-Pruning) scoring an average AUC of
0.9675± .0017 on the synthetic network and 0.9466± .0062 on the relativity network. The lower right shows
the pruning process for the toy data and the final K communities discovered on our real-world networks.

efficient structured mean-field approach, this effect is greatly mitigated across all datasets.

Benefits of Pruning Moves. Pruning moves were applied every N/2 iterations with a maximum

of K/10 communities removed per move. If the number of prune candidates was greater than K/10,

then K/10 communities with the lowest mass were chosen. The lower right portion of Fig. 4.2 shows

that our pruning moves can learn close to the true underlying number of clusters (K=56) on a

synthetic network even when significantly altering its initial K. Across several real world networks,

there was low variance between runs with respect to the final K communities discovered, suggesting

a degree of robustness. Furthermore, pruning moves improved perplexity and AUC scores across

every dataset as well as reducing computational costs during inference.

4.2.2 The LittleSis Network

The LittleSis network was extracted from the website (http://littlesis.org), which is an organization

that acts as a watchdog network to connect the dots between the world’s most powerful people

and organizations. Our final graph contained 18,831 nodes and 626,881 edges, which represents a

relatively sparse graph with edge density of 0.35% (for details on how this dataset was processed

see ‡A.3). For this analysis, we ran the aHDPR with pruning on the entire dataset using the

same settings from our previous experiments. We then took the top 200 degree nodes and gener-

ated weighted edges based off of a variational distance between their learned expected variational
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Figure 4.3: The figures above show the best performing model on both perplexity (top) and AUC (bottom)
scores to be the aHDPR with pruning moves across four real-world networks.

posteriors such that dij = 1 − |Eq [πi]−Eq [πj ]|
2 . This weighted edge was then included in our visual-

ization software [7] if dij > 0.5. Node sizes were determined by posterior bridgeness [58] where

bi = 1 −
√
K/(K − 1)

∑K

k=1(Eq[πik] − 1
K

)2and measures the extent to which a node is involved with

multiple communities. Larger nodes have greater posterior bridgeness while node colors represent

its dominant community membership. Our learned latent communities can drive these types of

visualizations that otherwise might not have been possible given the raw subgraph (see ‡A.3).
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Figure 4.4: The same raw graph of the top 200 degree nodes is displayed using Gephi and the force atlas
layout algorithm. Node sizes were determined by its degree and the raw graph represents a cluttered and
uninformative view of its underlying structure. We extracted the original graph from its open source database
(http://littlesis.org), which was originally a bipartite graph between individuals and the organizations they
were involved in. Other types of relationships such as campaign contributions or shared education can also
be extracted, but for this study we focused on whether an individual was a member of that organization.
We removed individuals and organizations that appeared only once and to generate an undirected network,
we assumed an edge existed between people who held positions within the same organization. The largest
connected component was found to contain 18,831 nodes and 626,881 edges which we used as our final graph
for analysis.
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Figure 4.5: The LittleSis Network. Near the center in violet we have prominent government figures such
as Larry H. Summers (71st US Treasury Secretary) and Robert E. Rubin (70th US Treasury Secretary) with
ties to several distinct communities, representative of their high posterior bridgeness. Conversely, within
the beige colored community, individuals with small posterior bridgeness such as Wendy Neu can reflect a
career that was highly focused in one organization. A quick internet search shows that she is currently the
CEO of Hugo Neu, a green-technology firm where she has worked for over 30 years. An analysis on this type
of network might provide insights into the structures of power that shape our world and the key individuals
that define them.



Chapter 5

Scalable Inference in Bayesian
Nonparametric Topic Models

The journey for scalable inference in topic models have taken a variety of approaches. Latent

Dirichlet Allocation was first introduced using a variational inference approach, which was seen

to be more scalable than traditional MCMC techniques. However, many of the early inferential

techniques were prohibited by the need to perform a global update only after all the tokens within

the corpus were updated. The next evolution of scalable inference borrows ideas from the stochastic

optimization literature. In particular, the idea of approximating our standard objective function

with a subset of the data allows us to perform global updates more frequently.

In this chapter, we will develop a variational inference technique known as memoized variational

inference that provides significant benefits in model selection and scalability. The original motivation

for this starts from research done in the late 90s on incremental EM [57], which posited the idea of

updating only a subset of the model parameters before performing a global update. This concept

was then applied to the DP mixture model within the variational framework [36] as a memoized

variational inference technique. The term memoized comes from the caching of the sufficient statistics

used to perform model comparisons so that the inference procedure is truly nonparametric. In this

chapter we develop a technique that applied this memoized approach to admixture models, notable

topic models with birth/delete moves that help perform model selection.

5.1 HDP Admixture Models
Consider data partitioned into D exchangeable groups x = {x1 . . . xD}, for example documents or

images. Each group d contains Nd tokens xd = {xd1, . . . xdNd
}, for example words or small pixel

patches. For large datasets we divide groups into B predefined batches, where Db is the set of

48
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Figure 5.1: Left: Directed graphical model for the HDP admixture (Sec. 5.1). Free parameters
for mean-field variational inference (Sec. 5.2) shown in red. Right: Flow chart for our inference
algorithm, specialized for bag-of-words data, where we can use sparse type-based assignments r̃
instead of per-token variables r̂. We define r̃dwk to be the total mass of all tokens in document
d of type w assigned to k: r̃dwk =

∑Nd

n=1 r̂dnkδxdn,w. Updates flow from r̃ to global topic-type
parameters τ̂ and (separately) to global topic weight parameters ρ̂, ω̂. Each variable’s shape gives
its dimensionality. Thick arrows indicate summary statistics; thin arrows show free parameter
updates.

documents in batch b.

To discover themes or topics common to all groups, while capturing group-specific variability

in topic usage, we use the HDP admixture model [77] of Fig. 5.1. The HDP uses group-specific

frequencies to cluster tokens into an a priori unbounded set of topics. To generate each token, a

global topic (indexed by integer k) is first drawn, and an observation is then sampled from the

likelihood distribution for topic k.

Topic-specific data generation. HDP admixtures are applicable to any real or discrete data for

which an appropriate exponential family likelihood is available. Data assigned to topic k is generated

from a distribution F with parameters φk, and conjugate prior H:

F :

H :

log p(xdn|φk) = sF (xdn)Tφk + cF (φk),

log p(φk|τ̄) = φTk τ̄ + cH(τ̄).

Here cH and cF are cumulant functions, and sF (xdn) is a sufficient statistic vector. For discrete

data x, F is multinomial and H is Dirichlet. For real-valued x, we take F to be Gaussian and H

Normal-Wishart.
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Allocating topics to tokens. Each topic k is defined by two global variables: the data-generating

exponential family parameters φk, and a frequency weight uk. Each scalar 0 < uk < 1 defines the

conditional probability of sampling topic k, given that the first k − 1 topics were not sampled:

uk ∼ Beta(1, γ), βk , uk
∏k−1
`=1 (1−u`). (5.1)

This stick-breaking process [11, 72] transforms {u`}k`=1 to define the marginal probability βk of

selecting topic k.

Each group or document has unique topic frequencies πd = [πd1, . . . , πdk, . . .], where the HDP

prior induces a finite Dirichlet distribution on the first K probabilities:

[πd1 . . . πdK πd>K ] ∼ Dir(αβ1, . . . αβK , αβ>K). (5.2)

This implies that πd has mean β and variance determined by the concentration parameter α. The

subscript >K denotes the aggregate mass of all topics with indices larger than K, so that β>K ,∑∞
`=K+1 β`.

To generate token n in document d, we first draw a topic assignment zdn ∼ Cat(πd), where

integer zdn ∈ {1, 2, . . .} indicates the chosen topic k. Second, we draw the observed token xdn from

density F , using the parameter φk indicated by zdn.

5.2 Variational Inference
Given observed data x, we wish to learn global topic parameters u, φ and local document structure

πd, zd. Taking an optimization approach [80], we seek an approximate distribution q over these

variables that is as close as possible to the true, intractable posterior in KL divergence but belongs

to a simpler, fully factorized family q(·) = q(u)q(φ)q(π)q(z) of exponential family densities.

Previous variational methods for HDP topic models [83] have employed a Chinese restaurant

franchise (CRF) model representation [77]. Here each document has its own local topics, a stick-

breaking prior on their frequencies, and latent categorical variables linking each local topic to some

global cluster. With this expanded set of highly-coupled latent variables, the factorizations inherent

in mean field variational methods induce many local optima. We thus develop an alternative bound

based on the direct assignment HDP representation in Fig. 5.1.

5.2.1 Direct Assignment Variational Posteriors

Deferring discussion of the global topic weight posterior q(u) until Sec. 5.2.2, we define other vari-

ational posteriors below, marking free parameters with hats to make clear which quantities are
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optimized:

q(z|r̂) =
∏D
d=1

∏Nd

n=1 Cat(zdn | r̂dn1, r̂dn2, . . . r̂dnK),

q(π) =
∏D
d=1 Dir(πd|θ̂d1, . . . θ̂dK+1), (5.3)

q(φ|τ̂) =
∏∞
k=1H(φk|τ̂k).

This posterior models data using K active topics. Crucially, as in Teh et al. [78] and Bryant

and Sudderth [17], the chosen truncation level K defines only the form of local factors q(z) and

q(π). Global factors do not require an explicit truncation, as those with indices greater than K are

conditionally independent of the data. This approach allows optimization of K and avoids artifacts

that arise with non-nested truncations of stick-breaking processes [11].

Factor q(z). Given truncation level K, token indicator zdn must be assigned to one of the K active

topics. The categorical distribution q(zdn) is parameterized by a positive vector r̂dn of size K that

sums to one.

Factor q(π). πd can be represented by a positive vector of size K + 1 encoding the K active topic

probabilities in document d and (at the last index) the aggregate mass πd>K of all inactive topics.

Thus, q(πd) is a Dirichlet distribution with parameters θ̂d ∈ RK+1.

Factor q(φ). Data-generating factors q(φk) for each topic k come from the conjugate family H with

free parameter τ̂k. For discrete data H is Dirichlet and τ̂k is a vector the length of the vocabulary

W .

Objective function. Mean field methods optimize an evidence lower bound log p(x|γ, α, τ) ≥ L(·),
where

L(·) , Ldata(·) +Hz(·) + LHDP (·) + Lu(·). (5.4)

The final term Lu(·), which depends only on q(u), is discussed in the next section. The first three

terms account for data generation, the assignment entropy, and the document-topic allocations.

These are defined below, with expectations taken with respect to Eq. (5.3):

Ldata(·) , Eq[log p(x|z, φ) + log p(φ|τ̄)
q(φ|τ̂) ], (5.5)

Hz(·) , −
∑K
k=1

∑D
d=1

∑Nd

n=1 r̂dnk log r̂dnk,

LHDP (·) , Eq
[

log p(z|π)p(π|α,u)
q(π|θ̂)

]
.

The forms of Ldata and Hz are unchanged from the simpler case of mean-field for DP mixtures.

Closed-form expressions are in the Supplement.
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Figure 5.2: Top Left: Anchor topics [6] can be improved significantly by variational updates. Top
Right: Topic pairs accepted by merge moves during run on Wikipedia. Combining each pair into
one topic improves our objective L, saves space, and removes redundancy. Bottom: Accepted delete
move during run on Wikipedia. Red topic is rarely used and lacks semantic focus. Removing it and
reassigning its mass to remaining topics improves L and interpretability.
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Figure 5.3: Left: Comparison of variational objectives resulting from different choices for q(u) on
the model selection task of Sec. 5.2.2. Our new surrogate bound sensibly prefers models without
empty topics, while using point estimation does not. Right: Illustration of Eq. (5.12)’s tight lower
bound on cD(αβ), shown for K = 1, β = [0.5, 0.5]. This bound makes our surrogate objective
tractable.

5.2.2 Topic Weights and Model Selection

Previous work on the direct assignment HDP suggested a point estimate approximation for topic

appearance parameters β [17, 50], or equivalently q(uk) = δûk
(uk). While efficient, this approach

creates problems with model selection. The resulting objective lower bounds a joint evidence that

includes the point estimate u: log p(x, u|α, γ, τ). Consequently, the point estimate for u is a MAP

estimate, with prior defined by Lu:

LPEu =
∑K
k=1 log Beta(ûk|1, γ). (5.6)

Consider instead a different q(u) that places a proper Beta distribution over each parameter uk:

q(u|ρ̂, ω̂) =
∏∞
k=1 Beta(uk | ρ̂kω̂k, (1−ρ̂k)ω̂k). (5.7)

Here, free parameter 0 < ρ̂k < 1 defines the mean: E[uk] = ρ̂k, while ω̂k > 0 controls the variance of

uk. Under this proper Beta family, we can integrate the variable u away to obtain a proper marginal

evidence log p(x|α, γ, τ). Consequently, Lu term has the form

LBetau (·) =
∑K
k=1 Eq[log p(uk)

q(uk) ] (5.8)

Model selection. Given our chosen family for q(z, π, φ) in Eq. (5.3) and a proper q(u) in Eq. (5.7),
the objective L can be used to compare two alternative sets of free parameters, even if they have

different numbers of active topics K. Our recommended setting of q(u) enjoys the benefits of

marginalization, while MAP point estimation can yield pathological behavior when comparing L at

different truncation levels.
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To illustrate, consider two candidate models, A and E. Candidate A has K topics and token

parameters r̂A. Candidate EJ has the same token parameters as well as J additional topics with

zero mass. For each token n, we set vector r̂En so the first K topics are equal to r̂An , and the extra

J topics are set to zero. We desire an objective that prefers A by penalizing the “empty” topics in

E, or at least one that does not favor E.

The behavior of different objectives is shown in Fig. 5.3, where we plot L(EJ) − L(A) for J =
{0, 1, 2, 3} empty topics. When using the Beta form for q(u), we find that exact numerical evaluation

of the HDP objective is invariant to empty topics, while our scalable surrogate objective from

Sec. 5.2.3 penalizes empty topics slightly. However, point-estimation of q(u) always favors adding

empty topics. Thus, we focus on the Beta form of q(u) to learn compact, interpretable models.

5.2.3 Surrogate bound for tractable inference.

Motivated by Fig. 5.3, we wish to employ the proper Beta form for q(u). However, this leads to

a non-conjugate relationship between q(u) and q(π), complicating inference. Some terms of the

resulting objective have no closed-form. To gain tractability, we develop a surrogate bound on the

ideal objective.

Consider the ELBO term LHDP under q(u) in Eq. (5.7).

Eq[log p(z)p(π)
q(π) ] =

∑D
d=1 Eq[cD(αβ)]− cD(θ̂d) (5.9)

+
∑K+1
k=1

(
Ndk + αEq[βk]− θ̂dk

)
Eq[log πdk]

Here, sufficient statistic Ndk counts the usage of topic k in document d: Ndk ,
∑Nd

n=1 r̂dnk. Further-

more, two required expectations have closed-form expressions. E[βk] comes from Eq. (5.1), and

E[log πdk] = ψ(θ̂dk)− ψ(
∑K+1
`=1 θ̂d`). (5.10)

However, cD is the cumulant function of the Dirichlet,

cD(a1, . . . aW ) = log Γ(
∑W

w=1
aw)∏W

w=1
Γ(aw)

, (5.11)

and Eq[cD(αβ)] has no closed form. To avoid this problematic expectation of log Gamma functions,

we introduce a novel bound on cD(·):

cD(αβ) ≥ K logα+
∑K
k=1 log uk (5.12)

+
∑K
k=1(K+1−k) log 1−uk.

Fig. 5.3 shows this bound is valid for all α > 0. For proof, see the Supplement. We can tractably

compute the expectation of Eq. (5.12), because expectations of logs of Beta random variables have

a closed form.
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Figure 5.4: Sparsity-promoting restarts for local steps on the Science corpus with K = 100. Left:
Example fixed points of the topic usage statistic Ndk for one document. Right: Trace of single-
document ELBO objective during E-step inference for 50 random initializations (dashed lines), plus
one sparsity-promoting run (solid) which climbs through the color-coded fixed points in the adjacent
plot.

Substituting Eq. (5.12) into our original objective L yields a surrogate objective Lsur which can

be used for model selection because it remains a valid lower bound on the log evidence log p(x|α, γ, τ̄).
Our surrogate objective induces a small penalty for empty components in Fig. 5.3, which is superior

to the reward for empty components induced by point estimates.

5.3 Inference Algorithm

We now describe an algorithm for optimizing the free parameters of our chosen approximation family

q. We first give concrete updates to local and global factors. Later, we introduce memoized and

stochastic methods for scalable online learning.

5.3.1 Local updates.

In the local step, we visit each document d and update token indicators rdn via Eq. (5.13) and

document-topic parameters θ̂d via Eq. (5.14). These steps are inter-dependent: updating r̂dn requires

an expectation computed from θ̂d, and vice versa. Thus, at each document we need to initialize θ̂d and

then alternate these updates until convergence. We discuss initialization and convergence strategies

in the Supplement.

Update of q(z). We update the free parameter r̂dn for each token n in document d according to

r̂dnk ∝ exp
(
Eq[log πdk] + Eq[log p(xdn|φk)]

)
, (5.13)
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which uses known expectations. The vector r̂dn is normalized over all topics k so its sum is one.

Update of q(πd). We update free parameter θ̂d given Ndk, which summarizes usage of topic k

across all tokens in document d. The update is

θ̂dk = αEq[βk] +Ndk, (5.14)

where the expectation Eq[βk] follows from Eq. (5.1). This update applies to all K + 1 entries of θ̂d.

The last index aggregates all inactive topics, and is simply set to αE[β>K ], since Nd>K is zero by

truncation.

Sparse Restarts. When visiting document d, the joint inference of θ̂ and r̂ can be challenging.

Many local optima exist even for this single-document task, as shown Fig. 5.4. A common failure

mode occurs when a few tokens are assigned to a rare “junk” topic. Reasignment of these tokens

may not happen under Eq. (5.13) updates due to a valley in the objective between keeping the

current junk assignments and setting the junk topic to zero.

To more adequately escape local optima, we develop sparsity-promoting restart moves which

take a final document-topic count vector [Nd1 . . . NdK ] produced by coordinate ascent, propose an

alternative which has one entry set to zero, and accept if this improves the ELBO after further ascent

steps. In practice, the acceptance rate varies from 30-50% when trying the 5 smallest non-zero topics.

We observe huge gains in the whole-dataset objective due to these restarts.

5.3.2 Global updates.

Fig. 5.1 shows global parameter updates to τ̂ , ρ̂, and ω̂ require compact sufficient statistics of local

parameters. The updates below focus on these summaries.

Update for q(φ). We update free parameter τ̂ to

τ̂k = Sk + τ̄ , Sk ,
∑D
d=1

∑
n sF (xdnk)r̂dnk, (5.15)

where Sk is the statistic summarizing data assigned to topic k across all tokens. For topic models,

Sk is a vector of counts for each vocabulary type.

Update for q(u). Finally, we consider the free parameters ρ̂, ω̂ for all K active topics. No closed-

form update exists due to non-conjugacy. Instead, we numerically optimize our surrogate objective,

finding the best vectors ρ̂, ω̂ simultaneously. The constrained optimization problem is:

ρ̂, ω̂ = argmaxρ,ωLHDP (ρ, ω, T, α) + Lu(ρ, ω, γ) (5.16)

s.t. 0 < ρk < 1, ωk > 0 for k ∈ {1, 2, . . .K}
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where sufficient statistic T = [T1 . . . TK TK+1] sums the expectation of Eq. (5.10) across documents:

Tk(θ̂) ,
∑D
d=1 E[log πdk]. (5.17)

The Supplement provides implementation details, including the exact function and gradients we

provide to a modern L-BFGS optimization algorithm.

5.3.3 Memoized algorithm.

The memoized variational inference approach is an alternative “online” approach to deterministic

inference in our models. The benefit over stochastic variational inference is the freedom from having

to tune any learning rate parameters. The only parameters necessary are predefined mini-batch sizes

and memory for only the sufficient statistics across all mini-batches. The memoized approach is a

generalization of previous work on incremental variants of the EM algorithm [57]. Our proposal is

to apply the memoized approach originally developed by [38] for a standard DP mixture model to

an HDP model. To motivate this line of work, we propose a preliminary procedure for a memoized

variational inference approach for the aHDPR.

We now provide a memoized coordinate ascent update algorithm. The update cycle comes from

[36], which was inspired by the incremental EM approach of [57]. Data is visited one batch at a

time, where the batches are predefined. We call each complete pass through all batches a lap. At

each batch, we perform a local step update to q(zd), q(πd) for each document d in the batch, and

then a global-step update to q(u), q(φ).
Affordable batch-by-batch processing is possible by tracking sufficient statistics and exploiting

their additivity. For each statistic, we track a batch-specific quantity (denoted N b) for each batch

and an aggregated whole-dataset quantity (N). By definition, Nk =
∑B
b=1N

b
k . After visiting each

batch b, we perform an incremental update to make the aggregate summaries reflect the new batch

summaries and remove any previous contribution from batch b.

This algorithm requires storing per-batch summaries N b, Sb, T b for every batch during inference.

This requirement is modest, remaining size O(BK) no matter how many tokens or documents occur

in each batch.

ELBO computation. Computing the objective L is possible after each batch visit, so long as we

track sufficient statistics as well as a few ELBO-specific quantities. First, we store the entropy Hz

from Eq. (5.5) at each batch, as in [36].

Second, consider the computation of LHDP in Eq. (5.9). Naively, this computation requires sums

over all documents. However, by tracking the following terms we can perform rapid evaluation:

Gbk ,
∑
d∈Db

(Ndk − θ̂dk)E[log πdk], (5.18)

Qb0 =
∑
d∈Db

log Γ(
∑K+1
k=1 θ̂dk), Qbk =

∑
d∈Db

log Γ(θ̂dk).
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After aggregating these tracked statistics across all batches, such as Qk =
∑B
b=1Q

b
k, Eq. (5.9)

becomes

LHDP (·) = DEq[cD(αβ)]−Q0 (5.19)

+
∑K+1
k=1 Qk +Gk + αEq[βk]Tk

which given tracked statistics can be evaluated with cost independent of the number of documents

D.

5.3.4 Stochastic algorithm.

Our objective L can also be optimized with stochastic variational inference [33]. The stochastic

global step at iteration t updates the natural parameters of q(u) and q(φ) with learning rate ξt. For

example, the new τ̂t interpolates between the previous value τ̂t−1 and an amplified estimate from

the current batch τ̂ b. When ξt decays appropriately, this method guarantees convergence to a local

optimum.

5.3.5 Computational complexity

Our direct assignment representation is more efficient than the CRF approach of [83]. The dominant

cost of both algorithms is the local step for each token. We require O(NdK) computations to update

the free parameters r̂ for a single document via Eq. (5.13). The CRF method requires O(NdKJ)
operations, where J < K is the number of global topics allowed in each document (for more details,

see Eq. 18 of [83]). For any reasonable value of J > 1, the CRF approach is more expensive. When

J = O(K), the CRF local step is quadratic in the number of topics, while our approach is always

linear.

5.4 Merge and Delete Moves

Here, we develop two moves, merge and delete, which help discover a compact set of interpretable

topics. As illustrated in Fig. 5.2, merges combine redundant topics, while deletes remove unnecessary

“junk” topics or empty topics. Both moves enable faster subsequent iterations by making the active

set of topics smaller.

5.4.1 Merge moves.

Each merge move transforms a current variational posterior q of size K into a candidate q′ of size

K − 1 by combining two topics in a single merged topic. During each pass we consider several

candidate pairs. For each pair ` < m, we imagine simply pooling together all tokens assigned to
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either topic ` or m in the original model to create topic ` in q′. All other parameters are copied over

unchanged. Formally,

r̂′dn` = r̂dn` + r̂dnm,∀d, n, θ̂′d` = θ̂d` + θ̂dm,∀d. (5.20)

A global update to create τ̂ ′, ρ̂′, ω̂′ completes the candidate, and we keep it if the objective L
improves.

For large datasets, explicitly retaining both r̂ and r̂′ via Eq. (5.20) is prohibitive. Instead,

we can exploit additive statistics to rapidly evaluate a proposed merge. Eq. (5.20) implies that

S′` = S`+Sm and N ′` = N`+Nm. This allows constructing candidate τ̂ ′ values and evaluating Ldata
without visiting any batches.

Not all statistics can be computed in this way, so some modest tracking must occur. For each

candidate merge, we must compute T ′b` from Eq. (5.17) as well as the ELBO statistics G′b` , Q
′b
` from

Eq. (5.18) at each batch. Finally, we track the entropy Hz for each candidate, as did [36].

The first step of a merge is to select candidate pairs using a correlation score [17]:

score(`,m) = Corr(N:`, N:m), − 1 < score < 1. (5.21)

Large scores identify topic pairs frequently used in the same documents. Before each lap we select

at most 50 pairs to track with score above 0.05.

Next, we visit each batch in order, tracking relevant merge summaries during standard memoized

updates. Finally, we evaluate each candidate using both tracked summaries and additive summaries,

accepting or rejecting as needed. Many merges can be accepted after each lap, so long as no two

share a topic in common.

5.4.2 Delete moves

Delete moves provide a more powerful alternative to merges for removing rarely used “junk” topics.

For an illustration of an accepted delete on Wikipedia data, see Fig. 5.2. After identifying a candidate

topic with small mass to delete, we reassign all its tokens to the remaining topics and then accept if

the objective L improves. This move can succeed when a merge would fail because each document’s

tokens can be reassigned in a customized way, as shown in Fig. 5.2.

To make this move scalable for our memoized algorithm, we identify a candidate delete topic j

in advance and collect a target dataset x′ of all documents which use selected topic j significantly:

{d : Ndj > 0.01}. Given the target set, we initialize candidate sufficient statistics by simply removing

entries associated with topic j. From this initialization, we run several local-global updates on the

target and then accept the move if the target’s variational objective L(·) improves. Further details

can be found in the Supplement. To be sure of deleting a topic, the target set x′ must contain all

documents which pass our threshold test. Thus, deletes are only applicable to topics of below some
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critical size to remain affordable. We set a maximum budget of 500 documents for the target dataset

size in our topic modeling experiments.

Acceptance rates in practice. Here, we summarize acceptance rates for merges and deletes

during a typical run on the Wikipedia dataset with K = 200 initial topics. During the first 4 passes,

we accept 73 of 79 proposed deletes (92%), and 12 of 194 merges (6%). These moves crucially remove

bad topics from the random initialization. After the first few laps, no further merges are accepted

and only 10% of deletes are accepted (at most 1 or 2 attempts per lap).

5.5 Experiments

Our experiments compare inference methods for fitting HDP topic models. For our new HDP

objective, we study stochastic with fixed K (SOfix), memoized with fixed K (MOfix), and memoized

with deletes and merges (MOdm). For baselines, we consider the collapsed sampler (Gibbs) of [77],

the stochastic CRF method (crfSOfix) of [83], and the stochastic split-merge method (SOsm) of [17].

For each method, we perform several runs from various initial K values.

For each run, we measure its predictive power via a heldout document completion task, as in

[17]. Each model is summarized by a point-estimate of the topic-word probabilities φ. For each

heldout document d we randomly split its word tokens into two halves: x′d, x
′′
d . We use the first half

to infer a point-estimate of πd, then estimate log-likelihood of each token in the second half x′′d .

heldout-lik(x|φ) =
∑
d∈Dtest

log p(x′′d |πd, φ)∑
d∈Dtest

|x′′d |
(5.22)

Hyperparameters. In all runs, we set γ = 10, α = 0.5 and topic-word pseudocount τ̄ = 0.1.

Stochastic runs use the learning rate decay recommended in [17]: κ = 0.5, δ = 1.

5.5.1 Toy bars dataset.

We study a variant of the toy bars dataset of [28], shown in Fig. 5.5. There are 10 ideal bar topics, 5

horizontal and 5 vertical. The bars are noisier than the original and cover a larger vocabulary (900

words). We generate 1000 documents for training and 100 more for heldout test. Each one has 200

tokens drawn from 1-3 topics.

Fig. 5.5 shows many runs of all algorithms on this benchmark. Variational methods initialized

with 50 or 100 topics get stuck rapidly, while the Gibbs sampler finds a redundant set of the ideal

topics and is unable to effectively merge down to the ideal 10.

In contrast, our MOdm method uses merges and deletes to rapidly recover the 10 ideal bars

after only a few laps. Without these moves, MOfix runs remain stuck at suboptimal fragments of
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Figure 5.5: Comparison of inference methods on toy bars dataset from Sec. 5.5.1. Top Left: Word
count images for 7 example documents and the final 10 estimated topics from MOdm. Each image
shows all 900 vocabulary types arranged in square grid. Bottom left: Final estimated topics from
Gibbs and MOfix. We rank topics from most to least probable, and show ranks 1-15 and 25-30.
Right: Trace plots of the number of topics K and heldout likelihood during training. Line style
indicates number of initial topics: dashed is K = 50, solid is K = 100.
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Figure 5.6: Comparison of inference methods on academic and news article datasets (Sec. 5.5.2).
Line style indicates initial number of topics K: 100 is dots, 200 is solid. Top row: Heldout likelihood
(larger is better) as more training data is seen. Bottom row: Trace plots of heldout likelihood and
number of topics. Each solid dot marks the final result of a single run, with the trailing line its
trajectory from initialization. Ideal runs move toward the upper left corner.

bars. Furthermore, our MOdm method initialized with the sampler’s final topics (fromGibbs) easily

recovers the ideal bars.
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5.5.2 Academic and news articles.

Next, we apply all methods to papers from the NIPS conference, articles from Wikipedia, and articles

from the journal Science [63], with 80%-20% train-test splits. Online methods process each training

set in 20 batches. Trace plots in Fig. 5.6 compare predictive power and model complexity as more

data is processed. We summarize conclusions below.

Anchor topics are good; variational is better. Using the anchor word method [6] for initial topic-

word parameters yields better predictions than random initialization (rand). However, our methods

can still make big, useful changes from this starting point. See Fig. 5.2 for some examples.

Deletes and merges make big, useful changes. Across all 3 datasets in Fig. 5.6, merges and deletes

remove many topics. On Wikipedia, we reduce 200 topics to under 100 while improving predictions.

Similar gains occur from the final result of the Gibbs sampler.

Competitors get stuck or improve slowly. The Gibbs sampler needs many laps to make quality

predictions. The CRF method gets stuck quickly, while our methods (using the direct assignment

representation) do better from similar initializations. The stochastic split-merge method (SOsm)

grows to a prescribed maximum number of topics but fails to make better predictions. This indicates

problems with heuristic acceptance rules, and motivates our moves governed by exact evaluation of

a whole-dataset objective.

Next, we analyze the New York Times Annotated Corpus: 1.8 million articles from 1987 to 2007.

We withhold 800 documents and divide the remainder into 200 batches (9084 documents per batch).

Fig. 5.6 shows the predictive performance of the more-scalable methods.

For this large-scale task, our direct assignment representation is more efficient than the CRF

code released by [83]. With K = 200 topics, our memoized algorithm with merge and delete

moves (MOdm) completes 8 laps through the 1.8 million documents in the amount of time the

CRF code completes a single lap. No deletes or merges are accepted from any MOdm run, likely

because 1.8M documents require more than a few hundred topics. However, the acceptance rate of

sparsity-promoting restarts is 75%. With a more efficient, parallelized implementation, we believe

our variational approach will enable reliable large-scale learning of topic models with larger K.

5.5.3 Image patch modeling.

Finally, we study 8 × 8 patches from grayscale natural images as in [85]. We train on 3.5 million

patches from 400 images, comparing HDP admixtures to Dirichlet process (DP) mixtures using a

zero-mean Gaussian likelihood. The HDP model captures within-image patch similarity via image-

specific mixture component frequencies. Both methods are evaluated on 50 heldout images scored

via Eq. (5.22).
Fig. 5.7 shows merges and deletes removing junk topics while improving predictions, justifying

the generality of these moves. Further, the HDP earns better prediction scores than the DP mixture.
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(c) (b) (a) 

(d) (e) (f) 

Figure 5.7: Comparison of DP mixtures and HDP admixtures on 3.5M image patches (Sec. 5.5.3).
(a-b) Trace plots of number of topics and heldout likelihood, as in Fig 5.6. (c) Patches from the
top 4 estimated DP clusters. Each column shows 6 stacked 8× 8 patches sampled from one cluster.
(d-f) Patches from 4 top-ranked HDP clusters for select test images from BSDS500 [5].

We illustrate this success by plotting sample patches from the top 4 topics (ranked by topic weight π)

for several heldout images. The HDP adapts topic weights to each image, favoring smooth patches

for some images (d) and textured patches for others (e-f). The less-flexible DP must use the same

weights for all images (c).



Chapter 6

Refinery - Topic Modeling for the
Masses

6.1 Refinery: A web platform for topic modeling

Topic models have become a ubiquitous class of tools for the analysis of large document collec-

tions [10]. However, there is still a significant adoption barrier for individuals who have little to no

background in coding or computer science. For example, journalists could potentially use learned

topics to organize large datasets generated from Freedom of Information Act (FOIA) requests, but

few have the expertise to implement necessary code nor an intuition for how to fine tune required pa-

rameters. Beyond the challenge of running a topic modeling algorithm, there is the added difficulty

of interpreting the results.

To make these types of models and their results more accessible, we built an open source web

application called Refinery. Originally motivated to help journalists, Refinery allows any professional

to explore a large corpus and identify a small set of relevant documents for careful study. Example use

cases include a legal firm handed an enormous document dump or a librarian exploring a historical

archive. In these cases and many others, Refinery makes learning algorithms and visualizations

accessible and easy-to-use.

6.1.1 Running Refinery

Refinery is an in-browser web application that builds on many existing open-source projects for

data storage, virtualization, and machine learning, as illustrated in Fig. 6.1. To make installation as

simple as possible, it has only three dependencies: the Git version-control system, Virtualbox [60],

and Vagrant [30]. At a Unix-like command line with these dependencies already installed, the

64
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(a) Input: Plain-text files, one
per document

(b) Output: Interactive visual-
ization of learned topics

(c) Technology stack

Figure 6.1: Refinery is a web-application that allows users to upload plain-text documents (a) and visualize
the semantic themes learned by a topic-model (b). Under the hood, Refinery uses many existing technologies
(c) for browser interaction, data management, machine learning, and visualization. A video demo is available
online: http://youtu.be/7yRQ1J9Z_LI. TODO: standardize size of third figure.

Figure 6.2: The results of an analysis on 500 New York Times articles that contained the keyword “obama”
during the year 2013. In the figure above, the “Syria” topic has been selected along with a document subset
of 50 documents related to this topic.

complete Refinery installation requires just a few lines of code:

> g i t c l one https : // github . com/ dae i lk im / r e f i n e r y . g i t

> vagrant i n i t ubuntu/ t rus ty64 # cr ea t e v i r t u a l machine

> vagrant up # launch machine and i n s t a l l r equ i r ed Python packages

6.1.2 A UI pipeline for Topic Modeling

Uploading documents. Users submit documents for analysis in the form of a zip file, which

uncompressed contains a folder of plain-text files, one for each individual document. Users do not

need to preprocess documents or identify a vocabulary in advance. This is done automatically by the

software where every word is tokenized as a unigram. The final vocabulary terms are thresholded

http://youtu.be/7yRQ1J9Z_LI


66

by the constraint that they not appear in more than 80% of the text, or appear in less than 2

documents.

Training a topic model. The topic modeling algorithm used for Refinery comes from the BNPy

toolbox [35]. Specifically, we train a hierarchical Dirichlet process (HDP) topic model [77] using a

memoized variational inference algorithm [39]. This optimization algorithm can dynamically add or

remove topics as it sees more data, guided by an objective function that minimizes a lower bound on

the log probability of the data. While the underlying algorithm has many free parameters, we set

most of these to smart defaults and only ask the user to suggest an initial number of topics, which

the algorithm can adapt as the data suggests. Support for configuring HDP hyperparameters will

be added to the UI in future updates, but instructions for a manual modification can currently be

found in the BNPy documentation [35].

Browseable visualization. After training a model, users can explore the resulting topics inter-

actively via a multi-colored ring, as shown in Fig. 6.2. Each segment of the ring represents one topic,

with its size indicative of the topic’s frequency in the overall corpus. Hovering the cursor over a

topic’s segment shows the top 50 words associated with that topic. In this word cloud visualization,

text size is scaled according to the topic-specific word frequency.

Focused exploration of document subsets. Often, analysis of large collections requires identi-

fying subsets of relevant documents and performing more detailed clustering of that subset. Refinery

supports this by allowing the main corpus of documents to be filtered by keyword and topic presence.

Refinery provides two methods for selecting relevant documents once a topic model over K topics

has been learned. The first allows the user to specify a distribution over topics, directly composing

a K dimensional query. The second composes a K dimensional query from a list of search terms,

averaging the probability of topic given word for each term and normalizing over the K dimen-

sions. These two topic queries are averaged, and documents are ranked based on the KL divergence

between their MAP topic distribution and the query.

6.2 Phrase Extraction and Refinement

While topic modeling enables scalable first-pass analysis, often the underlying bag-of-words assump-

tions are too limiting. After filtering a large corpus to find only documents relevant to a small

set of topics, Refinery further allows users to explore documents by phrase similarity and create a

summary of the corpus composed of sentences extracted from the documents’ text. Here, we use

the open-source implementation of the Splitta algorithm [25], which [24] introduced for sentence

boundary detection. First, the Splitta algorithm is applied for sentence boundary detection. This
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Figure 6.3: Refinery’s phrase extraction feature. Left: User has selected some initial phrases related to
the war in Syria from news articles. Right: Hitting the “similar” button brings up another set of phrases
similar to the initial set.

algorithm processes raw text and does not make use of the topic model output. Next, to help the

user efficiently select a subset of relevant sentences from their corpus, Refinery offers two exploration

modes. The first, triggered by the button marked “Variety”, implements the KLSum algorithm for

multi-document summarization [29]. This algorithm ranks candidate sentences higher if their addi-

tion to the current set would bring the unigram distribution closer to that of the corpus as a whole,

intuitively preferring sentences that contain globally relevant information that does not yet appear

in the set of selected sentences. The second exploration method, labeled “Similar”, simply ranks

candidates by cosine similarity to the current summary’s unigram distribution. Each sentence in

the summary is linked to and highlighted in its original source document, facilitating the creation

of a comprehensive set of notes with fast access to their provenance.

6.3 Discussion and Related Work

Refinery provides a first step toward allowing non-technical professionals to explore large document

collections with modern topic models. Several others groups have strived to simplify and democratize

the use of topic models. Notably, [18] created a web-based navigator to help users understand the

relationship between topics and documents, while [19] developed a visualization package for assessing

the goodness of topics. Topicnets [27] focuses on a graph-based exploration and visualization of

topics, while other packages such as Gephi [7] and Tethne [65] are often used to create similar

visualizations of an already-learned set of topics. Most prior work has focused on the parametric

latent Dirichlet allocation (LDA) topic model [14].

Refinery differs from these packages in the way it simplifies and exposes the entire process of

analyzing text with topic models, and its use of scalable Bayesian nonparametric topic models.

Refinery also supports phrase extraction, which allows for a more refined search across documents.
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Building on the BNPy toolbox allows potential future extensions to more advanced models which

cluster observations organized as a time-series or network. Ultimately, we plan to support a larger

variety of potential document file types including structured word processor files, spreadsheets, and

presentations.



Chapter 7

Conclusions & Future Directions

7.1 Summary of Contributions

Unstructured documents and networks represent a rich source of data that are ripe for analysis and

this thesis contributes a series of novel Bayesian nonparametric models for their analysis. Another

major part of this thesis represent contributions in dealing with the problem of scaling inference and

we show that these new methods are useful for escaping local optima and model selection.

We contribute in Chapter 3 the Doubly Correlated Nonparametric Model (DCNM). This is the

first model that captured both the effects of metadata, correlations, and was truly nonparametric.

We show how metadata could be useful as a way to not only increase held out likelihood or AUC

measures, but also as a qualitative tool to understand new documents or nodes. Correlations allow

us to incorporate a much richer structure for our latent topics, allowing us to develop graphs that

show how these topics might be related. We also show that by using an elliptical slice sampler, we

can get better performances over the Metropolis-Hastings Sampler and can perform a Chibs Style

estimation more accurately. Furthermore, we develop a retrospective MCMC approach that samples

the topic space allowing for a truly nonparmetric approach. The only issue with the DCNM model

is its scalability due to the use of MCMC for learning and inference. This challenge leads us to

develop more scalable variational methods.

We then focus our attentions on building an HDP Relational model in Chapter 4 and shifting

over to variational inference. This allows us to leverage techniques from the stochastic optimization

literature to develop a mini-batch inference scheme with convergence guarantees. Our contribution

is the first to develop a Bayesian nonparametric relational model along with a variational inference

procedure. By using an assortative assumption for the block matrix, we develop an even more

scalable approach. This is valid because the mixed-membership nature of the nodes makes the full

stochastic block matrix redundant. To perform model comparisons, we built split-delete moves that
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help explore the model space allowing for us to more easily escape local optima. Future extensions

should allow for some ways to increase the number of topics/communities as the split-delete moves

are used to mostly decrease this space.

Sticking with variational inference for topic models, we tackle the problem of model selection

in Bayesian nonparametric topic models by developing a scalable memoized variational inference

approach in Chapter 5. The significant contribution here comes from extending the memoized

variational inference for the DP mixture model to the HDP. This was not a trivial challenge as the

admixture aspect of the topic space created additional difficulties when it comes to estimating the

entropy terms within the lower bound. We develop moves that can merge and delete topics, but not

necessarily grow, but we show that using a memoized variational inference approach significantly

beats other nonparametric models that can modify the cardinality of their latent space.

Finally in Chapter 6 we build an open source web platform called Refinery to provide non-

technical users the ability to simply drag and drop their data to perform topic modeling. The

web app can be installed using two command lines and leverages the latest in BNPy to provide

sophisticated topic modeling that has been abstracted away from the user.

7.2 Automating Inference in Probabilistic Models

A broad and important research direction lies in simplifying the process of deriving and implementing

variational inference for new models. The standard process for this was often carefully choosing a set

of variational distributions that were part of the exponential family, resulting in analytical tractable

derivations. Most of the time developing a new model is spent on deriving these update equations,

writing this in code, and ensuring both the derivation and its implementation is correct.

BNPy is a python based package that provides a powerful step in that direction. The goal

of BNPy was to create a flexible framework for probabilistic clustering models that offer scalable

inference along with the ability to do model selection during inference (i.e. learn the number of

clusters). The package can perform both batch learning, stochastic variational inference, and mem-

oized variational inference. Currently, it can support a wide variety of standard mixture models,

admixture models, hidden markov models, and more as well as their nonparametric extensions 7.1.

Other packages like STAN can also perform inference in the same class of models, but since their

inferential machinery is based off of automated differentiation techniques, this results in the user

having to specify a model that marginalizes out its discrete variables. Furthermore, performance in

STAN for these kinds of discrete clustering models have been noticeably worse as seen in the DCNM

results.

When the model contains relationships between variables that are non-conjugate, the simple up-

dates afforded to us by the exponential families are no longer possible. Methods have been developed

to deal with these non-conjugate relationships such as Taylor approximations [82], which replaces
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Figure 7.1: BNPy’s compositional view of clustering models. Col. A: Generative model for one
data token xn. Col. B: Possible dependency graphs for cluster probability vectors π: DP (top),
HDP (middle), and dependent DPs (bottom). Col. C: Possible graphs for cluster indicators z.
The BNPy framework defines a single allocation model by combining fixed graph structures for π, z
from columns B and C. Each model can be either parameteric or nonparametric, based on the prior
distribution of the top-level π0. The pair (B1,C1) yields mixture models [11], while (B2, C2) gives
topic models [15, 77], and (B2, C3) gives hidden Markov models [8]. The pair (B2, C4) yields hidden
Markov trees used for multi-scale image modeling [20, 45] and text parsing [22, 50]. B3 and C2 could
yield a topic model where frequencies vary over time, as in [12]. This framework also extends to
relational block models [3, 42], hierarchical or sticky sequential models [23, 31], and spatial models
for image segmentation [74]. Figure and caption text taken from [37].

the variational distribution with a Taylor approximation for conjugacy or black box methods [66],

which require only that the gradient of the variational distribution can be derived. Of the two, the

latter is more general as it allows for both the optimization of continuous and discrete latent vari-

ables. Unfortunately, these kinds of approaches suffer from significant local optima issues, especially

when the models contain several non-conjugate relationships. However, the benefits of this research

direction seem very promising for the development of machine learning systems that are not only

robust, but capable of being implemented by non-experts.

7.3 Investigative journalism and Machine Learning

The current thesis has focused on the development of scalable machine learning algorithms for

unstructured relational and document datasets. An area where such algorithms can also be useful

is in assisting journalists. At the New York Times, data plays a large role not only in providing

journalists with additional insights that help shape their narrative, but also as a way to discover new

leads. For example, given a large database of vehicle accident reports, how can we determine which

cases are relevant to a recall issued by the NHTSA (National Highway Safety Traffic Authority).
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This was a problem that one of our business reporters, Hiroko Tabuchi, was dealing with as she

began to label which accident reports were linked to the faulty Takata airbags. Machine learning

helped save her time and narrow her candidate list from thousands of potential cases to a ranked list

that allowed her to focus on the most promising leads. The initial analysis took these reports and

tokenized them in a bag-of-words fashion, similar to the preprocessing step used in topic modeling

and then used these as features for a predictive model to predict which complaints were related to

faulty airbags.

News organizations are also leveraging the Freedom of Information Act to obtain data that could

be pertinent to their stories. However, these datasets are often so large that being able to manually

inspect each document can be prohibitive. This is where topic models can come and help elucidate

the overall structure of this corpus. A classic example is the case of the Hillary Clinton e-mails. With

over 30 thousand emails, no reporter has the time and energy to parse through such a collection.

Yet there are almost certainly insights in that data that would help reporters understand the way

a powerful figure such as Hillary Clinton makes decisions when it comes to national security issues.

Furthermore, e-mails represent a natural graph stucture if we consider the recipient and the sender

as nodes and an edge corresponding to an e-mail exchange. Processing the data in this fashion, we

can then apply our relational models to such a datset to discover communities where e-mails are

frequently exchanged. This in turn could help shed light on the individuals who often work closely

with one another as a proxy for the political structure within an organization.
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Figure 7.2: The figure above illustrates the terms that were predictive for complaints associated
with airbag accidents. A logistic regression model was trained on this database of 33,204 comments
where Hiroko Tabuchi hand labeled 2219 as being suspicious of comments associated with faulty
airbags. Terms such as suddenly deployed, inadvertently, burned were highly predictive of airbag
accidents. Counter-intuitively, by looking at the examples in which the algorithm got wrong, we
were able to discover additional cases that Hiroko did not find herself, which ultimately led to 7 new
cases that she discovered that were linked to faulty Takata airbags. One can imagine using more
sophisticated topic models to extract features within this dataset that could have helped further
improve the discovery of new cases.
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