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A natural language parser recovers the latent grammatical structures of sentences. In many natural

language processing (NLP) applications, parsing is applied to sentences first and the parses along

with their sentences are fed to following NLP systems. For example, Google parses the entire web

and applies a series of NLP programs to index the web and the quality of search results depends on

the quality of parses. Parsing is difficult because sentences are ambiguous: a sentence has different

syntactic structures depending on its meaning. For example, a sentence “Eugene wears a bow tie

with polka dots” can have very different meanings depending on what “with polka dots” modifies.

It is natural for us humans to infer that “with polka dots” modifies “a bow tie” because we have

common sense that “with polka dots” rarely (if not never) describes an action “wears.” Computers,

however, lack common sense and learn such a relationship from large amounts of texts by just looking

for statistical patterns. We explore four ways of improving parsing in this thesis: creating a training

data of high quality parses using paraphrases; a model combination technique applied to n-best

parsing; a generative reranker based on a language model; a discriminative parser inspired by neural

machine translation. Our parse-reranker achieves human-level performance on the standard Penn

Treebank dataset.



Toward Solving Penn Treebank Parsing

by

Do Kook Choe

B. A., New York University, 2012

Sc. M., Brown University, 2014

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

April 2017



c© Copyright 2017 by Do Kook Choe



This dissertation by Do Kook Choe is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Eugene Charniak, Director

Recommended to the Graduate Council

Date
Michael L. Littman, Reader

Date
Erik B. Sudderth, Reader

University of California, Irvine

Date
Stefanie Tellex, Reader

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii



Acknowledgements

I’d like to thank Eugene Charniak who let me research whatever subjects I wanted to work on. He

patiently listened to me when I rambled and welcomed me anytime I bugged him for questions. It

was fun working with him and I will miss it. I also like to thank my committee members, Michael

Littman, Erik Sudderth and Stefanie Tellex, who guided me through my PhD years at Brown.

I thank Rebecca Mason, Ben Swanson, Chris Tanner, and Byron Wallace for their helpful com-

ments and ideas for my research especially during my first year. I am grateful to David Eisenstat

and Dae Il Kim for their help for my first paper at Brown. Thanks to all of them I got my first

paper relatively easily and the rest of my PhD years went smoothly.

Additionally thanks to Mohit Bansal, Dave Buchanan, Shay Cohen, Micha Elsner, Yoav Gold-

berg, Will Headden, Karen Ingraffea, Shashi Narayan, Siddharth Patwardhan, Kapil Thadani for

their discussions for my papers.

I also like to thank members of machine learning reading group for their helpful discussions on

broad topics of machine learning: Soumya Ghosh, Nakul Gopalan, Michael Hughes, Geng Ji, Jason

Pacheco, Zhile Ren

I had great opportunities to work at large industry research labs, Google and IBM, and for that

I am grateful to Jennifer Chu-Carroll, Yun-hsuan, David McClosky and Brian Strope.

I thank Mark Steedman and University of Edinburgh for having me visit Edinburgh when Eugene

went there for his sabbatical. While I was there I changed my research direction and as a result I

got wonderful results which became the two chapters of this thesis.

I am indebted to Eugene Charniak, Michael Collins, Mark Johnson, David McClosky, Mike

Steedman and Google for resolving my immigration issue. Thanks to them, I was stress-free in my

last PhD year.

I thank my friends who put up with me whining: Yeounoh Chung, Taek-min Jung, Mooryong

Kim, Evgenios Kornaropoulos, Jun Ki Lee, Alexandra Papoutsaki.

Finally I’d like thank my mom and dad for their endless support throughout my entire life. Also

I thank my sister and brother, 초록 and 찬국, for not hating me after all these years.

iv



엄빠 고맙습니다.

v



Contents

List of Tables ix

List of Figures xi

1 Introduction 1

2 Background 2

2.1 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Semi-supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Reranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Model Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Parsing Paraphrases with Joint Inference 5

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Paraphrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.2 Bilingual Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Jointly Parsing Paraphrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.2 Constraints via Dual Decomposition . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.3 Constraints via Pair-finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Data and Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 Paraphrase Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.2 Meteor Word Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.3 Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.1 Dual Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.2 Pair-finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vi



3.5.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.4 Final Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.5 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Syntactic Parse Fusion 18

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Score distribution over trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Parsing as Language Modeling 24

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.2 Parsing as Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 LSTM-LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.2 Seq2seq Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.3 RNNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.2 Training and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.1 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.2 Semi-supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.3 Improved Semi-supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Left-corner and Right-corner Sequential Parsing 31

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Seq2Seq Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.2 Left (and Right)-corner Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Sequential Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4.1 Supervised Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4.2 Semi-supervised Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4.3 Sampling and Reranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4.5 Supervised Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4.6 Semi-supervised Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 38

A Appendix 39

Bibliography 42

viii



List of Tables

2.1 The Penn Treebank statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Example paraphrases from our dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Feature templates: rel is the dependency relation between the word and its parent.

cp is the coarse part-of-speech tag (first two letters) of a word. p and gp select the

parent and grandparent of the word respectively. . . . . . . . . . . . . . . . . . . . . 11

3.3 Statistics for the four corpora of the paraphrase dataset. Most statistics are counted

from sentences with gold trees, including punctuation. ‖ indicates the statistic is from

the paraphrased sentences. “Avg. aligned” is the average number of aligned tokens

from the original sentences using Meteor. OOV is the percentage of tokens not seen

in the WSJ training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Comparison of hard and soft dual decomposition for joint parsing (development sec-

tion, UAS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 UAS of joint parsing using the pair-finding scheme with various n values on the

development portion. n = 1 is the baseline BLLIP parser and n > 1 is BLLIP with

pair-finding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Effect of using logistic regression on top of each method (UAS). Leave-one-out cross-

validation is performed on the development data. +X means augmenting the above

system with X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Final evaluation on testing data. Numbers are unlabeled attachment score (labeled

attachment score). +X indicates extending the above system with X. BLLIP-ST is

BLLIP using the self-trained model. Coloring indicates a significant difference over

baseline (p < 0.01). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Six parsers along with their 1-best F1 scores, unlabeled attachment scores (UAS) and

labeled attachment scores (LAS) on WSJ section 23. . . . . . . . . . . . . . . . . . . 21

4.2 F1 of a baseline parser, fusion, and baselines on development sections of corpora (WSJ

section 24 and Brown tune). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



4.3 Evaluation of the constituency fusion method on six parsers across six domains. x/y

indicates the F1 from the baseline parser (x) and the baseline parser with fusion (y)

respectively. Blue indicates a statistically significant difference between fusion and its

baseline parser (p < 0.01). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 The performance of LSTM-LM (G) with varying n-best parses on the dev set. Oracle

refers to Charniak parser’s oracle F1. Final and Exact report LSTM-LM (G)’s F1 and

exact match percentage respectively. To simulate an optimal scenario, we include gold

trees to 50-best trees and rerank them with LSTM-LM (G) (51o). . . . . . . . . . . . 28

5.2 F1 of models trained on WSJ. Base refers to performance of a single base parser and

Final that of a final parser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Evaluation of models trained on the WSJ and additional resources. Note that the num-

bers [103, 65] are not directly comparable as their models are evaluated on OntoNotes-

style trees instead of PTB-style trees. E(LSTM-LMs (GS)) is an ensemble of eight

LSTM-LMs (GS). X/Y in Silver column indicates the number of silver trees used to

train Charniak parser and LSTM-LM. For the ensemble model, we report the maxi-

mum number of trees used to train one of LSTM-LMs (GS). . . . . . . . . . . . . . . 30

6.1 Statistics of sequential trees in WSJ training. The first row shows the average number

of valid symbols in three kinds of gold sequential trees. The second one the average

distance between pairs of matching parentheses. . . . . . . . . . . . . . . . . . . . . . 33

6.2 Performance and number of failed parses (PF) on Section 22. . . . . . . . . . . . . . 35

6.3 Oracle and reranked performance of LC (semi) and CC (semi), varying α on WSJ

Section 22. 1000 trees are sampled per sentence. . . . . . . . . . . . . . . . . . . . . . 35

6.4 Oracle and reranked performance of LC (semi) and CC (semi), varying the number

of samples on WSJ Section 22. α = 0.7 is used. . . . . . . . . . . . . . . . . . . . . . 36

6.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.6 Comparison of supervised greedy parsers (top) and reranking parsers (bottom) on

WSJ Section 23. PF indicates parse failures. . . . . . . . . . . . . . . . . . . . . . . . 37

6.7 Comparison of semi-supervised parsers (top) and reranking parsers (bottom) on WSJ

Section 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

x



List of Figures

3.1 An illustration of joint parsing a sentence with its paraphrase. Unaligned words are

gray. Joint parsing encourages structural similarity and allows the parser to correct

the incorrect arc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Tuning parameters independently for BLLIP and their impact on F1 for WSJ section

24 (solid purple line). For each graph, non-tuned parameters were set at the optimal

configuration for BLLIP (n = 30, β = 1.1, t = 0.47). The dashed grey line represents

the 1-best baseline at 90.6% F1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 A tree (a) and its sequential form (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Perplexity and F1 on the development set at each epoch during training. . . . . . . . 28

6.1 Parse tree (a), its Penn Treebank sequence (b) and corresponding left and right-corner

sequences (c, d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



Chapter 1

Introduction

Parsing is a fundamental process humans subconsciously do to understand what they hear and read.

For example, when an English speaker hears “Eugene wears a bow tie with polka dots,” he or she

immediately understands: “Eugene” is a person; “a bow tie” is a piece of fabric “Eugene” puts on

around his neck; and “polka dots” are drawn on “a bow tie.” Because we humans parse sentences

all the time very easily, one may wonder why parsing is challenging for computers . In order for a

program to produce the correct parse tree for a sentence, it has to infer many things: “Eugene” is a

subject; “wears” is a verb; “a bow tie” is a multi-word object; and “with polka dots” is a phrase that

modifies “a bow tie.” If it thinks “tie” as a verb during its inference, it will produce a nonsensical

parse tree. A parser needs to infer the roles of words and guess what relations these words form.

For a sentence of 20 words, a parser needs to make at least 40 decisions and if it guesses them any

incorrectly it will produce an incorrect parse tree. Because the parse tree search space is exponential

in terms of the number of words in a sentence, developing an advanced inference algorithm is hard.

In order to create machines people can talk to, building human level parsing models is necessary

because many natural language processing (NLP) systems read in parsed sentences as their inputs

and run their own components to understand what users want. For instance, personal digital as-

sistants such as Google Now and Apple Siri parse transcribed human speeches into syntactic trees

which in turn go through subsequent NLP applications that analyze users’ requests. When parsers

make mistakes, the assistants are not likely to execute what users have intended. A an another exam-

ple, IBM Watson who won Jeopardy! against the best human players first parses questions and feeds

the parses to its other NLP components. Watson’s chance of getting answers right heavily depends

on how well its parser parses questions. When the parser fails, Watson has a very low probability

of producing the correct answers. Many programs in academia as well as in industry run parsing at

the beginning of their pipelines.

We briefly review various techniques for building parsing models (Chapter 2) and existing neural

network parsing models (Chapter 2) and describe our published contributions to these techniques

(Chapter 3, 4, 5). In Chapter 6, we present a greedy parser built on recurrent neural networks.

1



Chapter 2

Background

2.1 Parsing

Parsing is a task of finding a syntactic tree of a sentence. Given a sentence (x), a generative parser

produces its grammar (y) that satisfies

argmax
y′∈Y(x)

P (x,y′) (2.1)

where Y(x) is a set of all possible grammatical structures of x and P (x,y′) is the probability of a

parse (x,y′).1 Most parsing research goes into learning P (x,y) and broadly there are two kinds of

parsers depending on how they break down P (x,y). A tree-based parser multiplies production rule

probabilities to compute the tree probability:

P (x,y) =
∏

r∈R(x,y)

P (r)

where R(x,y) is a set of all production rules in tree (x,y). On the other hand, a sequence-based

one multiplies conditional probabilities of symbols from left to right:

P (x,y) = P (z) =

m∏
i=1

P (zi|z1, · · · , zi−1) (2.2)

where z is a sequential form of (x,y) [103]. Tree-based parsers tend to be slow because they make

global inference whereas sequence-based ones are fast because they make greedy decisions. However a

parser breaks down P (x,y), it learns to maximize the likelihood of the training data during training

and finds the most-likely tree according to Equation (2.1) for a sentence during testing. In Chapter 5,

we present a generative model that assign probabilities to trees according to Equation (2.2). As in

any machine learning task, a parsing model becomes more accurate as it sees more data. But the

1Discriminative parsers model the conditional probability, P (y′|x).

2
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problem is that annotating sentences with trees is very time-consuming and expensive and as a result

only small gold treebanks are available for training supervised parsers. In an effort to overcome this

problem, we explore an alternative method for annotating sentences with trees using paraphrases in

Chapter 3. We now look at a simple way of collecting many auto-parsed trees.

2.2 Semi-supervision

Gold treebanks, collections of parses annotated by humans, are small compared to other domains’

datasets. For example, all treebanks consist of fewer than 100,000 trees and most treebanks fewer than

10,000 whereas the ImageNet contains millions of labeled images [26]. The small datasets are often

a major factor preventing researchers from developing accurate parsing models. To overcome data

scarcity, researchers have proposed to parse a large amount of unannotated sentences with existing

parsers and trained improved models on this “silver” trees in addition to gold trees [68, 103]. This

method is simple and yet very effective. In our work, we also parse millions of trees, on which we

train our models, as the “silver” trees guarantee improved performance.

2.3 Reranking

Parsers make mistakes no matter what inferences they use to search through the parse space because

they approximate the true tree probabilities. A tree-based model assumes conditional independences

to make its inference tractable, which leads to approximation, and a sequence-based one makes a

series of local decisions, which obviously is not exact. A parse-reranker, which assigns probabilities

to parses, suffers less from the search problem as it can look at the whole tree as opposed to parts

of the tree. Discriminative rerankers built on linear classifiers assign probabilities to trees as follows:

P (y|Y ′(x)) =
exp(θ · f(y))∑

y′∈Y′(x) exp(θ · f(y′))

where θ is a set of model parameters, f(y) is a set of features of y and Y ′(x) is n trees provided by a

parser. The discriminative rerankers have proven to be very effective and been widely used [22, 15],

and recently a generative reranker, which assign probabilities to trees according to Equation (2.2),

based on LSTMs is proposed and shown to perform significantly better than the discriminative

rerankers [31]. In Chapter 5, we demonstrate a simpler generative reranker based on an LSTM

language model performs even better and achieves the state of the art performance. In Chapter 6,

we present a discriminative parser inspired by the generative reranker.

2.4 Model Combination

For any task, one of the most effective methods of improving existing models is to combine their

decision powers. Different techniques for combining parsing models have achieved state of the art
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# sents # words sections
train 39382 950028 2-21
dev 1346 32853 24
test 2416 60548 23

Table 2.1: The Penn Treebank statistics.

performance in parsing, and we take a look at two methods that are most relevant to this thesis.

A simple model combination method is similar to majority voting for binary classification. If we

are given three binary classifiers, an obvious way of combining their outputs is to have a majority

vote. Researchers have applied this idea to parsing as well with some modifications as parsing is a

structured prediction task [91]. A naive way of combing three parses of a sentence is to create a new

tree with nodes that occur in at least two of the three. In our work, we show that this combination

technique can be applied to a single n-best parser (Chapter 4.2).

A product of experts, often called an ensemble, multiplies the probabilities of a tree provided by

several parsers [83]. Given n models, it finds the most-likely structure (y) satisfying

argmax
y′∈Y

P (y′) ∝ argmax
y′∈Y

n∏
i=1

Pi(y
′)

where Pi(y
′) is the probability of y′ computed by ith model. In high level, the multiplication weeds

out parses that are assigned low probabilities by at least one parser and outputs a tree that all

parsers are confident of. An ensemble of models is easy to use and provides nice improvement over

an individual model. An ensemble of rerankers performs better than a single reranker (Chapter 5).

2.5 Evaluation

We evaluate parsing models primarily on the Penn Treebank (PTB), which is the most widely used

parsing benchmark, and compare our models to existing models in the literature [67]. (See the PTB

statistics in Table 2.1.) Given parsed and gold trees, we compute two numbers: precision, the number

of correct constituents divided by the number of predicted constituents, and recall, the number of

correct constituents divided by the number of gold constituents. F1, a harmonic mean of precision

and recall, tells us how accurate a parsing model is. In general, a model with higher F1 performs

better than another with lower F1 in terms of all parsing aspects. Thus, we are mainly interested in

developing models that achieve high F1 on the PTB.



Chapter 3

Parsing Paraphrases with Joint

Inference

3.1 Introduction

Parsing is the task of reconstructing the syntactic structure from surface text. Many natural language

processing tasks use parse trees as a basis for deeper analysis.

The most effective sources of supervision for training statistical parsers are treebanks. Unfor-

tunately, treebanks are expensive, time-consuming to create, and not available for most domains.

Compounding the problem, the accuracy of statistical parsers degrades as the domain shifts away

from the supervised training corpora [39, 5, 69, 98]. Furthermore, for domains requiring subject

matter experts, e.g., law and medicine, it may not be feasible to produce large scale treebanks since

subject matter experts generally don’t have the necessary linguistic background. It is natural to

look for resources that are more easily obtained. In this work, we explore using paraphrases. Unlike

parse trees, paraphrases can be produced quickly by humans and don’t require extensive linguistic

training. While paraphrases are not parse trees, a sentence and its paraphrase may have similar

syntactic structures for portions where they can be aligned.

We can improve parsers by jointly parsing a sentence with its paraphrase and encouraging certain

types of overlaps in their syntactic structures. As a simple example, consider replacing an unknown

word in a sentence with a synonym found in the training data. This may help disambiguate the

sentence without changing its parse tree. More disruptive forms of paraphrasing (e.g., topicalization)

can also be handled by not requiring strict agreement between the parses.

In this thesis, we use paraphrases to improve parsing inference within and across domains. We

develop methods using dual-decomposition (where the parses of both sentences from a dependency

parser are encouraged to agree, Chapter 3.3.2) and pair-finding (which can be applied to any n-best

parser, Chapter 3.3.3). Some paraphrases significantly disrupt syntactic structure. To counter this,

we examine relaxing agreement constraints and building classifiers to predict when joint parsing

5
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How did Bob Marley die?
What killed Bob Marley?
How fast does a cheetah run?
What is a cheetah’s top speed?
He came home unexpectedly.
He wasn’t expected to arrive home like that.
They were far off and looked tiny.
From so far away, they looked tiny.
He turned and bent over the body of the Indian.
Turning, he bent over the Indian’s body.
No need to dramatize.
There is no need to dramatize.

Table 3.1: Example paraphrases from our dataset.

won’t be beneficial (Chapter 3.3.4). We show that paraphrases can be exploited to improve cross-

domain parser inference for two state-of-the-art parsers, especially on domains where they perform

poorly.

3.2 Related Work

Many constituency parsers can parse English newswire text with high accuracy [21, 15, 84, 96, 23].

Likewise, dependency parsers have rapidly improved their accuracy on a variety of languages [32, 73,

79, 61, 107, 63]. There are many approaches tackling the problem of improving parsing accuracy both

within and across domains, including self-training/uptraining [69, 85], reranking [21, 69], incorporat-

ing word clusters [60], model combination [83], automatically weighting training data [70], and using

n-gram counts from large corpora [7]. Using paraphrases falls into the semi-supervised category. As

we show later, incorporating paraphrases provides complementary benefits to self-training.

3.2.1 Paraphrases

While paraphrases are difficult to define rigorously [9], we only require a loose definition in this

work: a pair of phrases that mean approximately the same thing. Paraphrases can be constructed

in various ways: replacing words with synonyms, reordering clauses, adding relative clauses, using

negation and antonyms, etc. Table 3.1 lists some example paraphrases.

There are a variety of paraphrase resources produced by humans [28] and automatic methods [37].

Recent works have shown that reliable paraphrases can be crowdsourced at low cost [77, 12, 102].

Paraphrases have been shown to help summarization [20], question answering [30, 33], machine

translation [13], and semantic parsing [8]. Paraphrases have been applied to syntactic tasks, such as

prepositional phrase attachment and noun compounding, where the corpus frequencies of different

syntactic constructions (approximated by web searches) are used to help disambiguate [75]. One

method for transforming constructions is to use paraphrase templates.
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(target sentence) x: help some natives dying of pestilence
(paraphrase) y: help some natives who were dying of disease

wrong

right

Figure 3.1: An illustration of joint parsing a sentence with its paraphrase. Unaligned words are gray.
Joint parsing encourages structural similarity and allows the parser to correct the incorrect arc.

3.2.2 Bilingual Parsing

The closest task to ours is bilingual parsing where sentences and their translations are parsed simul-

taneously [11]. While our methods differ from those used in bilingual parsing, the general ideas are

the same.1 Translating and paraphrasing are related transformations since both approximately pre-

serve meaning. While syntax is only partially preserved across these transformations, the overlapping

portions can be leveraged with joint inference to mutually disambiguate. Existing bilingual parsing

methods typically require parallel treebanks for training and parallel text at runtime while our meth-

ods only require parallel text at runtime. Since we do not have a parallel paraphrase treebank for

training, we cannot directly compare to these methods.

3.3 Jointly Parsing Paraphrases

With a small number of exceptions, parsers typically assume that the parse of each sentence is

independent. There are good reasons for this independence assumption: it simplifies parsing inference

and oftentimes it is not obvious how to relate multiple sentences (though see [89] for one approach).

In this chapter, we present two methods to jointly parse paraphrases without complicating inference

steps. Before going into details, we give a high level picture of how jointly parsing paraphrases can

help in Figure 3.1. With the baseline parser, the parse tree of the target sentence is incorrect but its

paraphrase (parsed by the same parser) is parsed correctly. We use rough alignments to map words

across sentence pairs. Note the similar syntactic relations when they are projected across the aligned

words.

Our goal is to encourage an appropriate level of agreement between the two parses across align-

ments. We start by designing “hard” methods which require complete agreement between the parses.

However, since parsers are imperfect and alignments approximate, we also develop “soft” methods

which allow for disagreements. Additionally, we make procedures to decide whether to use the orig-

inal (non-joint) parse or the new joint parse for each sentence since joint parses may be worse in

cases where the sentences are too different and alignment fails.

1Applying our methods to bilingual parsing is left as future work.
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3.3.1 Objective

In a typical parsing setting, given a sentence (x) and its paraphrase (y), parsers find a∗(x) and b∗(y)

that satisfy the following equation:2

a∗, b∗ = argmax
a∈T (x),b∈T (y)

f(a) + f(b)

= argmax
a∈T (x)

f(a) + argmax
b∈T (y)

f(b)
(3.1)

where f is a parse-scoring function and T returns all possible trees for a sentence. f can take

many forms, e.g., summing the scores of arcs [32, 73] or multiplying probabilities together [15]. The

argmax over a and b of equation (3.1) is separable; parsers make two sentence-level decisions. For

joint parsing, we modify the objective so that parsers make one global decision:

a∗, b∗ = argmax
a∈T (x),b∈T (y)

: c(a,b)=0

f(a) + f(b) (3.2)

where c (defined below) measures the syntactic similarity between the two trees. The smaller c(a, b)

is, the more similar a and b are. Intuitively, joint parsers must retrieve the most similar pair of trees

with the highest sum of scores.

Constraints

The constraint function, c, ties two trees together using alignments as a proxy for semantic in-

formation. An alignment is a pair of words from sentences x and y that approximately mean the

same thing. For example, in Figure 3.1, (helpx, helpy) is one alignment and (pestilencex, diseasey)

is another. To simplify joint parsing, we assume the aligned words play the same syntactic roles

(which is obviously not always true and should be revisited in future work). c measures the syntac-

tic similarity by computing how many pairs of alignments have different syntactic head relations.

For the two trees in Figure 3.1, we see two different relations: (help
x−→ dying, help 6y−→ dying) and

(natives 6x−→ dying, natives
y−→ dying). The rest have the same relation so c(a, b) = 2. As we’ll show in

Chapter 3.5, the constraints defined above are too restrictive because of this strong assumption. To

alleviate the problem, we present ways of appropriately changing constraints later. We now turn to

the first method of incorporating constraints into joint parsing.

3.3.2 Constraints via Dual Decomposition

Dual decomposition [88] is well-suited for finding the MAP assignment to equation (3.2). When

the parse-scoring function f includes an arc-factored component as in [73], it is straightforward to

incorporate constraints as shown in Algorithm 1. Essentially, dual decomposition penalizes relations

that are different in two trees by adding/subtracting dual values to/from arc scores. When dual

2When it is clear from context, we omit x and y to simplify notation.
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Set u0(i, j) = 0 for all i, j ∈ E
for k = 1 to K do

ak = argmax
a∈T (x)

(
f(a) +

∑
i,j∈E

uk(i, j)a(i, j)
)

bk = argmax
b∈T (y)

(
f(b)−

∑
i,j∈E

uk(i, j)b(i, j)
)

v, uk+1 = update(uk, δk, ak, bk)
if v = 0 then return ak, bk

return aK , bK

function update(u, δ, a, b)
v = 0, u′(i, j) = 0 for all i, j ∈ E
for i, j ∈ E do
u′(i, j) = u(i, j)− δ(a(i, j)− b(i, j))
if a(i, j) 6= b(i, j) then v = v + 1

return v, u′

Algorithm 1: Dual decomposition for jointly parsing paraphrases pseudocode. E is the set
of all possible edges between any pair of aligned words. Given ` aligned word pairs, E =
{1, . . . , `} × {1, . . . , `}. a(i, j) is one if the ith aligned word is the head of jth aligned word,
zero otherwise. u(i, j) is the dual value of an edge from the ith aligned word to the jth aligned
word. δk is the step size at kth iteration.

decomposition is applied in Figure 3.1, the arc score of (help
x−→ dying) decreases and the score for

(natives
x−→ dying) increases in the second iteration, which eventually leads the algorithm to favor

the latter.

We relax the constraints by employing soft dual decomposition [4] and replacing update in

Algorithm 1 with s-update from Algorithm 2. The problem with the original constraints is they

force every pair of alignments to have the same relation even when some aligned words certainly play

different syntactic roles. The introduced slack variable lets some alignments have different relations

when parsers prefer them. Penalties bounded by the slack tend to help fix incorrect ones and not

change correct parses. In this work, we use a single slack variable but it’s possible to have a different

slack variable for each type of dependency relation.3

3.3.3 Constraints via Pair-finding

One shortcoming of the dual decomposition approach is that it only applies to parse-scoring functions

with an arc-factored component. We introduce another method for estimating equation (3.2) that

applies to all n-best parsers.

Given the n-best parses of x and the m-best parses of y, Algorithm 3 scans through n×m pairs of

trees and chooses the pair that satisfies equation (3.2). If it finds one pair with c(a, b) = 0, then it has

found the answer to the equation. Otherwise, it chooses the pair with the smallest c(a, b), breaking

3We did pilot experiments with multiple slack variables. Since they showed only small improvements and were
harder to tune, we stuck with a single slack variable for remaining experiments.
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function s-update(u, δ, a, b, s)
v = 0, u′(i, j) = 0 for all i, j ∈ E
for i, j ∈ E do
t = max(u(i, j)− δ(a(i, j)− b(i, j)), 0)
u′(i, j) = min(t, s)
if u′(i, j) 6= 0, u′(i, j) 6= s then
v = v + 1

return v, u′

Algorithm 2: The new update function of soft dual decomposition for joint parsing. It
projects all dual values between 0 and s ≥ 0. s is a slack variable that allows the algorithm to
avoid satisfying some constraints.

function pair-finding(a1:n, b1:m)
Set a, b = null,min =∞,max = −∞
for i = 1 to n do
for j = 1 to m do
v = c (ai, bj)
sum = f(ai) + f(bj)
if v < min then
a = ai, b = bj
min = v,max = sum

else if v = min, sum > max then
a = ai, b = bj
max = sum

return a, b

function c(a, b)
v = 0
for i, j ∈ E do
if a(i, j) 6= b(i, j) then v = v + 1

return v

Algorithm 3: The pair-finding scheme with a constraint function, c. a1:n are the n-best trees
of x and b1:m are the m-best of y.

ties using the scores of the parses (f(a) + f(b)). This algorithm is well suited for finding solutions

to the equation but the solutions are not necessarily good trees due to overly hard constraints.

The algorithm often finds bad trees far down the n-best list because it is mainly interested in

retrieving pairs of trees that satisfy all constraints. Parsers find such pairs with low scores if they are

allowed to search through unrestricted space. To mitigate the problem, we shrink the search space

by limiting n. Reducing the search space relies on the fact that higher ranking trees are more likely

to be correct than the lower ranking ones. Note that we decrease n because we are interested in

recovering the tree of the target sentence, x. m should also be decreased to improve the parse of its

paraphrase, y.
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rel rel + relp
rel + relp + relgp rel + relgp
cp cp + cpp
cp + cpp + cpgp cp + cpgp
rel + cp rel + cp + cpp
rel + cpp + relgp

Table 3.2: Feature templates: rel is the dependency relation between the word and its parent. cp is
the coarse part-of-speech tag (first two letters) of a word. p and gp select the parent and grandparent
of the word respectively.

3.3.4 Logistic Regression

One caveat of the previous two proposed methods is that they do not know whether the original or

joint parse of x is more accurate. Sometimes they increase agreement between the parses at the cost

of accuracy. To remedy this problem, we use a classifier (specifically logistic regression) to determine

whether a modified tree should be used. The classifier can learn the error patterns produced by each

method.

Features

Classifier features use many sources of information: the target sentence x and its paraphrase y, the

original and new parses of x (a0 and a), and the alignments between x and y.

Crossing Edges How many arcs cross when alignments are drawn between paraphrases on a plane

divided by the length of x. It roughly measures how many reorderings are needed to change x

to y.

Non-projective Edges Whether there are more non-projective arcs in new parse (a) than the

original (a0).

Sentence Lengths Whether the length of x is smaller than that of y. This feature exists because

baseline parsers tend to perform better on shorter sentences.

Word Overlaps The number of words in common between x and y normalized by the length of x.

Parse Structure Templates The feature generator goes through every word in {a0, a} and sets

the appropriate boolean features from Table 3.2. Features are prefixed by whether they come

from a0 or a.

3.4 Data and Programs

This chapter describes our paraphrase dataset, parsers, and other tools used in experiments.
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Development Test
BNC Brown QB WSJ Total BNC Brown QB WSJ Total

Sentences 247 558 843 352 2,000 247 558 844 351 2,000
Tokens 4,297 7,937 8,391 5,924 26,549 4,120 8,025 8,253 5,990 26,388
Tokens‖ 4,372 8,088 8,438 6,122 27,020 4,272 8,281 8,189 6,232 26,974
Word types 1,727 2,239 2,261 1,955 6,161 1,710 2,337 2,320 1,970 6,234
Word types‖ 1,676 2,241 2,261 1,930 6,017 1,675 2,335 2,248 1,969 6,094
OOV 11.2 5.1 5.4 2.4 5.6 11.5 5.1 5.8 2.2 5.7
OOV‖ 8.6 4.7 5.4 2.6 5.1 9.3 4.8 6.0 2.4 5.3
Tokens/sent. 17.4 14.2 10.0 16.8 13.3 16.7 14.4 7.8 17.1 13.2
Avg. aligned 13.1 10.5 6.9 13.0 9.7 12.6 10.7 6.7 13.0 9.7

Table 3.3: Statistics for the four corpora of the paraphrase dataset. Most statistics are counted from
sentences with gold trees, including punctuation. ‖ indicates the statistic is from the paraphrased
sentences. “Avg. aligned” is the average number of aligned tokens from the original sentences using
Meteor. OOV is the percentage of tokens not seen in the WSJ training.

3.4.1 Paraphrase Dataset

To evaluate the efficacy of the proposed methods of jointly parsing paraphrases, we built a corpus

of paraphrases where one sentence in a pair of paraphrases has a gold tree.4 We randomly sampled

4,000 sentences5 from four gold treebanks: Brown, British National Corpus (BNC), QuestionBank6

(QB) and Wall Street Journal (section 24) [36, 35, 54, 67]. A linguist provided a paraphrase for each

sampled sentence according to these instructions:

The paraphrases should more or less convey the same information as the original sen-

tence. That is, the two sentences should logically entail each other. The paraphrases

should generally use most of the same words (but not necessarily in the same order).

Active/passive transforms, changing words with synonyms, and rephrasings of the same

idea are all examples of transformations that paraphrases can use (others can be used

too). They can be as simple as just changing a single word in some cases (though, ideally,

a variety of paraphrasing techniques would be used).

We also provided 10 pairs of sentences as examples. We evaluate our methods only on the sampled

sentences from the gold corpora because the new paraphrases do not include syntactic trees. The

data was divided into development and testing sets such that development and testing share the

same distribution over the four corpora. Paraphrases were tokenized by the BLLIP tokenizer. See

Table 3.3 for statistics of the dataset.7

4The dataset is available upon request.
5We use sentences with 6 to 25 tokens to keep the paraphrasing task in the nontrivial to easy range.
6With Stanford’s updates: http://nlp.stanford.edu/data/QuestionBank-Stanford.shtml
7The distribution over four corpora is skewed because each corpus has a different number of sentences within length

constraints. Samples are collected uniformly over all sentences that satisfy the length criterion.

http://nlp.stanford.edu/data/QuestionBank-Stanford.shtml
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3.4.2 Meteor Word Aligner

We use Meteor, a monolingual word aligner [27], to find alignments between paraphrases. It uses

the exact matches, stems, synonyms, and paraphrases8 to form these alignments. Because it uses

paraphrases, it sometimes aligns multiple words from sentence x to one or more words from sentence

y or vice versa. We ignore these multiword alignments because our methods currently only handle

single word alignments. In pilot experiments, we also tried using a simple aligner which required

exact word matches. Joint parsing with simpler alignments improved parsing accuracy but not as

much as Meteor.9 Thus, all results in Chapter 3.5 use Meteor for word alignment. On average across

the four corpora, 73% of the tokens are aligned.

3.4.3 Parsers

We use a dependency and constituency parser for our experiments: RBG and BLLIP. RBG parser

[63] is a state-of-the-art dependency parser.10 It is a third-order discriminative dependency parser

with low-rank tensors as part of its features. BLLIP [15] is a state-of-the-art constituency parser,

which is composed of a generative parser and a discriminative reranker.11

To train RBG and BLLIP, we used the standard WSJ training set (sections 2–21, about 40,000

sentences).12 We also used the self-trained BLLIP parsing model which is trained on an additional

two million Gigaword parses generated by the BLLIP parser [68].

3.4.4 Logistic Regression

We use the logistic regression implementation from Scikit-learn13 with hand-crafted features from

Section 3.3.4. The classifier decides to whether to keep the parse trees from the joint method. When

it decides to disregard them, it returns the parse from the baseline parser. We train a separate

classifier for each joint method.

3.5 Experiments

We ran all tuning and model design experiments on the development set. For the final evaluation, we

tuned parameters on the development set and evaluate them on the test set. Constituency trees were

converted to basic non-collapsed dependency trees using Stanford Dependencies [25].14 We report

8Here paraphrase means a single/multiword phrase that is semantically similar to another single/multiword.
9The pilot was conducted on fewer than 700 sentence pairs before all paraphrases were created. We give Meteor

tokenized paraphrases with capitalization. Maximizing accuracy rather than coverage worked better in pilot experi-
ments.

10http://github.com/taolei87/RBGParser, ‘master’ version from June 24th, 2014.
11http://github.com/BLLIP/bllip-parser
12RBG parser requires predicted POS tags. We used the Stanford tagger [101] to tag WSJ and paraphrase datasets.

Training data was tagged using 20-fold cross-validation and the paraphrases were tagged by a tagger trained on all of
WSJ training.

13http://scikit-learn.org
14Version 1.3.5, previously numbered as version 2.0.5

http://github.com/taolei87/RBGParser
http://github.com/BLLIP/bllip-parser
http://scikit-learn.org
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Avg BNC Brown QB WSJ
RBG 86.4 89.2 90.9 75.8 93.7
+ Dual 84.7 87.5 87.8 76.0 91.0
+ S-Dual 86.8 89.8 90.9 76.5 94.0

Table 3.4: Comparison of hard and soft dual decomposition for joint parsing (development section,
UAS).

unlabeled attachment scores (UAS) for all experiments and labeled attachment scores (LAS) as well

in final evaluation, ignoring punctuation. Averages are micro-averages across all sentences.

3.5.1 Dual Decomposition

Since BLLIP is not arc-factored, these experiments only use RBG. Several parameters need to be

fixed beforehand: the slack constant (s), the learning rate (δ), and the maximum number of iterations

(K). We set δ0 = 0.1 and δk = δ0

2t where t is the number of times the dual score has increased [90].

We choose K = 20. These numbers were chosen from pilot studies. The slack variable (s = 0.5) was

tuned with a grid search on values between 0.1 and 1.5 with interval 0.1. We chose a value that

generalizes well across four corpora as opposed to a value that does very well on a single corpus. As

shown in Table 3.4, joint parsing with hard dual decomposition performs worse than independent

parsing (RBG). This is expected because hard dual decomposition forces every pair of alignments to

form the same relation even when they should not. With relaxed constraints (S-Dual), joint parsing

performs significantly better than independent parsing. Soft dual decomposition improves across all

domains except for Brown (where it ties).

3.5.2 Pair-finding

These experiments use the 50-best trees from BLLIP parser. When converting to dependencies,

some constituency trees map to the same dependency tree. In this case, trees with lower rankings

are dropped. Like joint parsing with hard dual decomposition, joint parsing with unrestricted pair-

finding (n = 50) allows significantly worse parses to be selected (Table 3.5). With small n values,

pair-finding improves over the baseline BLLIP parser.15 Experiments with self-trained BLLIP exhibit

similar results so we use n = 2 for all other experiments. Interestingly, each corpus has a different

optimal value for n which suggests we might improve accuracy further if we know the domain of

each sentence.

3.5.3 Logistic Regression

The classifier is trained on sentences where parse scores (UAS) of the proposed methods are higher

or lower than those of the baselines16 from the development set using leave-one-out cross-validation.

We use random greedy search to select specific features from the 15 feature templates defined in

15Decreasing m did not lead to further improvement and thus we don’t report the results of changing m.
16We only use sentences with different scores to limit ceiling effects.
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n Avg BNC Brown QB WSJ
1 89.5 91.1 91.6 83.3 94.2
2 90.0 91.4 92.3 84.1 94.1
3 89.8 91.5 92.0 84.2 93.9
5 89.2 91.9 91.4 83.0 93.2
10 87.9 90.5 90.3 81.4 92.2
50 86.3 90.2 88.7 78.6 91.1

Table 3.5: UAS of joint parsing using the pair-finding scheme with various n values on the develop-
ment portion. n = 1 is the baseline BLLIP parser and n > 1 is BLLIP with pair-finding.

Avg BNC Brown QB WSJ
RBG 86.4 89.2 90.9 75.8 93.7
+ S-Dual 86.8 89.8 90.9 76.5 94.0
+ Logit 86.9 89.8 91.1 76.5 94.0
BLLIP 89.5 91.1 91.6 83.3 94.2
+ Pair 90.0 91.4 92.3 84.1 94.1
+ Logit 90.3 91.3 92.1 85.2 94.3
BLLIP-ST 90.1 92.7 92.3 84.3 93.8
+ Pair 90.7 93.5 92.5 85.6 93.8
+ Logit 91.1 93.3 92.6 86.7 93.9

Table 3.6: Effect of using logistic regression on top of each method (UAS). Leave-one-out cross-
validation is performed on the development data. +X means augmenting the above system with
X.

Chapter 3.3.4. Features seen fewer than three times in the development are thrown out. Separate

regression models are built for three different parsers. The logistic regression classifier uses an L1

penalty with regularization parameter C = 1.

Logistic regression experiments are reported in Table 3.6. All parsers benefit from employing

logistic regression models on top of paraphrase methods. BLLIP experiments show a larger improve-

ment than RBG. This may be because BLLIP cannot use soft constraints so its errors are more

pronounced.

3.5.4 Final Evaluation

We evaluate the three parsers on the test set using the tuned parameters and logistic regression

models from above. Joint parsing with paraphrases significantly improves accuracy for all systems

(Table 3.7). Self-trained BLLIP with logistic regression is the most accurate, though RBG with

S-Dual provides the most consistent improvements.

Joint parsing without logistic regression (RBG + S-Dual) is more accurate than independent

parsing (RBG) overall. With the help of logistic regression, the methods do at least as well as their

baseline counterparts on all domains with the exception of self-trained BLLIP on BNC. We believe

that the drop on BNC is largely due to noise as our BNC test set is the smallest of the four. As on

development, logistic regression does not change the accuracy much over the RBG parser with soft
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Avg BNC Brown QB WSJ
RBG 86.7 (81.3) 89.3 (83.7) 90.2 (84.1) 77.0 (71.0) 93.7 (89.9)
+ S-Dual 87.3 (81.7) 89.6 (83.8) 90.7 (84.6) 78.1 (71.8) 94.0 (90.2)
+ Logit 87.2 (81.6) 89.7 (83.9) 90.6 (84.5) 77.9 (71.7) 93.8 (89.9)
BLLIP 89.6 (86.1) 90.6 (87.2) 91.7 (87.9) 83.6 (79.9) 94.3 (91.6)
+ Pair 90.1 (86.5) 90.8 (87.3) 92.1 (88.4) 84.7 (80.7) 94.4 (91.6)
+ Logit 90.3 (86.8) 90.6 (87.2) 91.9 (88.1) 85.5 (81.7) 94.5 (91.7)
BLLIP-ST 90.4 (87.0) 91.8 (88.3) 92.7 (89.0) 84.8 (81.2) 94.3 (91.4)
+ Pair 90.5 (87.1) 91.1 (87.6) 92.7 (89.1) 85.5 (81.8) 94.2 (91.4)
+ Logit 91.0 (87.6) 91.4 (88.0) 92.9 (89.3) 86.6 (82.9) 94.3 (91.4)

Table 3.7: Final evaluation on testing data. Numbers are unlabeled attachment score (labeled at-
tachment score). +X indicates extending the above system with X. BLLIP-ST is BLLIP using the
self-trained model. Coloring indicates a significant difference over baseline (p < 0.01).

dual decomposition.

Joint parsing provides the largest gains on QuestionBank, the domain with the lowest baseline

accuracies. This fits with our goal of using paraphrases for domain adaptation — parsing with

paraphrases helps the most on domains furthest from our training data.

3.5.5 Error analysis

We analyzed the errors from RBG and BLLIP along several dimensions: by dependency label, sen-

tence length, dependency length, alignment status (whether a token was aligned), percentage of

tokens aligned in the sentence, and edit distance between the sentence pairs. Most errors are fairly

uniformly distributed across these dimensions and indicate general structural improvements when us-

ing paraphrases. BLLIP saw a 2.2% improvement for the root relation, though RBG’s improvement

here was more moderate. For sentence lengths, BLLIP obtains larger boosts for shorter sentences

while RBG’s are more uniform. RBG gets a 1.4% UAS improvement on longer dependencies (6

or more tokens) while shorter dependencies are more modestly improved by about 0.3-0.5% UAS.

Surprisingly, alignment information provides no signal as to whether accuracy improves.

3.6 Conclusions and Future Work

Our methods of incorporating paraphrases improve parsing across multiple domains for state-of-the-

art constituency and dependency parsers. We leverage the fact that paraphrases often express the

same semantics with similar syntactic realizations. These provide benefits even on top of self-training,

another domain adaptation technique.

Since paraphrases are not available at most times, our methods may seem limited. However,

there are several possible use cases. The best case scenario is when users can be directly asked to

rephrase a question and provide a paraphrase. For instance, question answering systems can ask

users to rephrase questions when an answer is marked as wrong by users. Another option is to

use crowdsourcing to quickly create a paraphrase corpus [77, 12, 102]. As part of future work, we
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plan to integrate existing larger paraphrase resources, such as WikiAnswers [33] and PPDB [37].

WikiAnswers provides rough equivalence classes of questions. PPDB includes phrasal and syntactic

alignments which could supplement our existing alignments or be used as proxies for paraphrases.

While these resources are noisy, the quantity of data may provide additional robustness. Lastly, inte-

grating our methods with paraphrase detection or generation systems could help provide paraphrases

on demand.

There are many other ways to extend this work. Poor alignments are one of the larger sources

of errors and improving alignments could help dramatically. One simple extension is to use multiple

paraphrases and their alignments instead of just one. More difficult would be to learn the alignments

jointly while parsing and adaptively learn how alignments affect syntax. Our constraints can only

capture certain types of paraphrase transformations currently and should be extended to understand

common tree transformations for paraphrases [46].



Chapter 4

Syntactic Parse Fusion

4.1 Introduction

Researchers have proposed many algorithms to combine parses from multiple parsers into one final

parse [47, 106, 91, 80, 34, 83, 51, 50, 72, 94, 76]. These new parses are substantially better than the

originals: [108] combine outputs from multiple n-best parsers and achieve an F1 of 92.6% on the

WSJ test set, a 0.5% improvement over their best n-best parser. Model combination approaches tend

to fall into the following categories: hybridization, where multiple parses are combined into a single

parse; switching, which picks a single parse according to some criteria (usually a form of voting);

grammar merging where grammars are combined before or during parsing; and stacking, where one

parser sends its prediction to another at runtime. All of these have at least one of the caveats that

(1) overall computation is increased and runtime is determined by the slowest parser and (2) using

multiple parsers increases the system complexity, making it more difficult to deploy in practice. In this

thesis, we describe a simple hybridization extension (“fusion”) which obtains much of hybridization’s

benefits while using only a single n-best parser and minimal extra computation. Our method treats

each parse in a single parser’s n-best list as a parse from n separate parsers. We then adapt parse

combination methods [47, 91, 34] to fuse the constituents from the n parses into a single tree. We

empirically show that six n-best parsers benefit from parse fusion across six domains, obtaining state-

of-the-art results. These improvements are complementary to other techniques such as reranking and

self-training. Our best system obtains an F1 of 92.6% on WSJ section 23, a score previously obtained

only by combining the outputs from multiple parsers. A reference implementation is available as part

of BLLIP Parser at http://github.com/BLLIP/bllip-parser/

4.2 Fusion

Henderson and Brill (1999) [47] propose a method to combine trees from m parsers in three steps:

populate a chart with constituents along with the number of times they appear in the trees; remove

18

http://github.com/BLLIP/bllip-parser/


19

any constituent with count less than m/2 from the chart; and finally create a final tree with all

the remaining constituents. Intuitively their method constructs a tree with constituents from the

majority of the trees, which boosts precision significantly. Henderson and Brill [47] show that this

process is guaranteed to produce a valid tree. Sagae and Levie (2006) [91] generalize this work

by reparsing the chart populated with constituents whose counts are above a certain threshold. By

adjusting the threshold on development data, their generalized method balances precision and recall.

Fossum and Knight (2009) [34] further extend this line of work by using n-best lists from multiple

parsers and combining productions in addition to constituents. Their model assigns sums of joint

probabilities of constituents and parsers to constituents. Surprisingly, exploiting n-best trees does

not lead to large improvement over combining 1-best trees in their experiments.

Our extension takes the n-best trees from a parser as if they are 1-best parses from n parsers,

then follows the reparsing [91]. Parses are weighted by the estimated probabilities from the parser.

Given n trees and their weights, the model computes a constituent’s weight by summing weights of

all trees containing that constituent. Concretely, the weight of a constituent spanning from ith word

to jth word with label ` is

c`(i→ j) =

n∑
k=1

W (k)Ck` (i→ j) (4.1)

where W (k) is the weight of kth tree and Ck` (i → j) is one if a constituent with label ` spanning

from i to j is in kth tree, zero otherwise. After populating the chart with constituents and their

weights, it throws out constituents with weights below a set threshold t. Using the threshold t = 0.5

emulates the method [47] in that it constructs the tree with the constituents in the majority of the

trees. The CYK parsing algorithm is applied to the chart to produce the final tree.

Note that populating the chart is linear in the number of words and the chart contains substan-

tially fewer constituents than charts in well-known parsers, making this a fast procedure.

4.2.1 Score distribution over trees

We assume that n-best parsers provide trees along with some kind of scores (often probabilities or log

probabilities). Given these scores, a natural way to obtain weights is to normalize the probabilities.

However, parsers do not always provide accurate estimates of parse quality. We may obtain better

performance from parse fusion by altering this distribution and passing scores through a nonlinear

function, f(·). The kth parse is weighted:

W (k) =
f(score(k))∑n
i=1 f(score(i))

(4.2)
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Figure 4.1: Tuning parameters independently for BLLIP and their impact on F1 for WSJ section 24
(solid purple line). For each graph, non-tuned parameters were set at the optimal configuration for
BLLIP (n = 30, β = 1.1, t = 0.47). The dashed grey line represents the 1-best baseline at 90.6% F1.

where score(i) is the score of ith tree.1 We explore the family of functions f(x) = xβ which can

smooth or sharpen the score distributions. This includes a tunable parameter, β ∈ R+
0 :

W (k) =
score(k)β∑n
i=1 score(i)β

(4.3)

Employing β < 1 flattens the score distribution over n-best trees and helps over-confident parsers.

On the other hand, having β > 1 skews the distribution toward parses with higher scores and helps

under-confident parsers. Note that setting β = 0 weights all parses equally and results in majority

voting at the constituent level. We leave developing other nonlinear functions for fusion as future

work.

4.3 Experiments

Corpora: Parse fusion is evaluated on British National Corpus (BNC), Brown, GENIA, Question

Bank (QB), Switchboard (SB) and Wall Street Journal (WSJ) [35, 36, 55, 54, 40, 67]. WSJ is used

to evaluate in-domain parsing, the remaining five are used for out-of-domain. For divisions, we use

tune and test splits [5] for Brown, McClosky’s test PMIDs2 for GENIA, Stanford’s test splits3 for

QuestionBank, and articles 4000–4153 for Switchboard.

Parsers: The methods are applied to six widely used n-best parsers: Charniak [14], Stanford [58],

BLLIP [15], Self-trained BLLIP [68]4, Berkeley [84], and Stanford RNN [96]. The list of parsers and

their accuracies on the WSJ test set is reported in Table 4.1. We convert to Stanford Dependencies

(basic dependencies, version 3.3.0) and provide dependency metrics (UAS, LAS) as well.

Supervised parsers are trained on the WSJ training set (sections 2–21) and use section 22 or 24

for development. Self-trained BLLIP is self-trained using two million sentences from Gigaword and

Stanford RNN uses word embeddings trained from larger corpora.

1For parsers that return log probabilities, we turn these into probabilities first.
2http://nlp.stanford.edu/~mcclosky/biomedical.html
3http://nlp.stanford.edu/data/QuestionBank-Stanford.shtml
4Using the ‘WSJ+Gigaword-v2’ BLLIP model.

http://nlp.stanford.edu/~mcclosky/biomedical.html
http://nlp.stanford.edu/data/QuestionBank-Stanford.shtml
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Parser F1 UAS LAS
Stanford 85.4 90.0 87.3
Stanford RNN 89.6 92.9 90.4
Berkeley 90.0 93.5 91.2
Charniak 89.7 93.2 90.8
BLLIP 91.5 94.4 92.0
Self-trained BLLIP 92.2 94.7 92.2

Table 4.1: Six parsers along with their 1-best F1 scores, unlabeled attachment scores (UAS) and
labeled attachment scores (LAS) on WSJ section 23.

Parser WSJ Brown
BLLIP 90.6 85.7
+ Fusion 91.0 86.0
+ Majority voting (β = 0) 89.1 83.8
+ Rank-based weighting 89.3 84.1

Table 4.2: F1 of a baseline parser, fusion, and baselines on development sections of corpora (WSJ
section 24 and Brown tune).

Parameter tuning: There are three parameters for our fusion process: the size of the n-best list (2 <

n ≤ 50), the smoothing exponent from Chapter 4.2.1 (β ∈ [0.5, 1.5] with 0.1 increments), and the

minimum threshold for constituents (t ∈ [0.2, 0.7] with 0.01 increments). We use grid search to tune

these parameters for two separate scenarios. When parsing WSJ (in-domain), we tune parameters on

WSJ section 24. For the remaining corpora (out-of-domain), we use the tuning section from Brown.

Each parser is tuned separately, resulting in 12 different tuning scenarios. In practice, though, in-

domain and out-of-domain tuning regimes tend to pick similar settings within a parser. Across

parsers, settings are also fairly similar (n is usually 30 or 40, t is usually between 0.45 and 0.5).

While the smoothing exponent varies from 0.5 to 1.3, setting β = 1 does not significantly hurt

accuracy for most parsers.

To study the effects of these parameters, Figure 4.1 shows three slices of the tuning surface for

BLLIP parser on WSJ section 24 around the optimal settings (n = 30, β = 1.1, t = 0.47). In each

graph, one of the parameters is varied while the other is held constant. Increasing n-best size improves

accuracy until about n = 30 where there seems to be sufficient diversity. For BLLIP, the smoothing

exponent (β) is best set around 1.0, with accuracy falling off if the value deviates too much. Finally,

the threshold parameter is empirically optimized a little below t = 0.5 (the value suggested by [47]).

Since score values are normalized, this means that constituents need roughly half the “score mass”

in order to be included in the chart. Varying the threshold changes the precision/recall balance since

a high threshold adds only the most confident constituents to the chart [91].

Baselines: Table 4.2 gives the accuracy of fusion and baselines for BLLIP on the development

corpora. Majority voting sets n = 50, β = 0, t = 0.5 giving all parses equal weight and results in

constituent-level majority voting. We explore a rank-based weighting which ignores parse probabili-

ties and weight parses only using the rank: Wrank(k) = 1/(2k). These show that accurate parse-level
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Parser BNC Brown GENIA SB QB WSJ
Stanford 78.4 / 79.6 80.7 / 81.6 73.1 / 73.9 67.0 / 67.9 78.6 / 80.0 85.4 / 86.2
Stanford RNN 82.0 / 82.3 84.0 / 84.3 76.0 / 76.2 70.7 / 71.2 82.9 / 83.6 89.6 / 89.7
Berkeley 82.3 / 82.9 84.6 / 84.6 76.4 / 76.6 74.5 / 75.1 86.5 / 85.9 90.0 / 90.3
Charniak 82.5 / 83.0 83.9 / 84.6 74.8 / 75.7 76.8 / 77.6 85.6 / 86.3 89.7 / 90.1
BLLIP 84.1 / 84.7 85.8 / 86.0 76.7 / 77.1 79.2 / 79.5 88.1 / 88.9 91.5 / 91.7
Self-trained BLLIP 85.2 / 85.8 87.4 / 87.7 77.8 / 78.2 80.9 / 81.7 89.5 / 89.5 92.2 / 92.6
Model combination 86.6 87.7 79.4 80.9 89.3 92.5

Table 4.3: Evaluation of the constituency fusion method on six parsers across six domains. x/y
indicates the F1 from the baseline parser (x) and the baseline parser with fusion (y) respectively.
Blue indicates a statistically significant difference between fusion and its baseline parser (p < 0.01).

scores are critical for good performance.

Final evaluation: Table 4.3 gives our final results for all parsers across all domains. Results in

blue are significant at p < 0.01 using a randomized permutation test. Fusion generally improves F1

for in-domain and out-of-domain parsing by a significant margin. For the self-trained BLLIP parser,

in-domain F1 increases by 0.4% and out-of-domain F1 increases by 0.4% on average. Berkeley parser

obtains the smallest gains from fusion since Berkeley’s n-best lists are ordered by factors other than

probabilities. As a result, the probabilities from Berkeley can mislead the fusion process.

We also compare against model combination [91] using our reimplementation . For these results,

all six parsers were given equal weight. The threshold was set to 0.42 to optimize model combination

F1 on development data (similar to Setting 2 for constituency parsing [91]). Model combination

performs better than fusion on BNC and GENIA, but surprisingly fusion outperforms model com-

bination on three of the six domains (not usually not by a significant margin). With further tuning

(e.g., specific weights for each constituent-parser pair), the benefits from model combination should

increase.

Multilingual evaluation: We evaluate fusion with the Berkeley parser on Arabic [66, 43], French [1],

and German [10] from the SPMRL 2014 shared task [93] but did not observe any improvement. We

suspect this has to do with the same ranking issues seen in the Berkeley Parser’s English results.

On the other hand, fusion helps the parser [76] on the German NEGRA treebank [95] to improve

from 80.9% to 82.4%.

Runtime: As discussed in Chapter 4.2, fusion’s runtime overhead is minimal. Reranking parsers

(e.g., BLLIP and Stanford RNN) already need to perform n-best decoding as input for the reranker.

Using a somewhat optimized implementation fusion in C++, the overhead over BLLIP parser is less

than 1%.

Discussion: Why does fusion help? It is possible that a parser’s n-list and its scores act as a weak

approximation to the full parse forest. As a result, fusion seems to provide part of the benefits seen

in forest reranking [49].

Results [34] imply that fusion and model combination might not be complementary. Both n-

best lists and additional parsers provide syntactic diversity. While additional parsers provide greater

diversity, n-best lists from common parsers are varied enough to provide improvements for parse
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hybridization.

We analyzed how often fusion produces completely novel trees. For BLLIP on WSJ section 24, this

only happens about 11% of the time. Fusion picks the 1-best tree 72% of the time. This means that

for the remaining 17%, fusion picks an existing parse from the rest of the n-list, acting similar to a

reranker. When fusion creates unique trees, they are significantly better than the original 1-best trees

(for the 11% subset of WSJ 24, F1 scores are 85.5% with fusion and 84.1% without, p < 0.003). This

contrasts with findings [71] where novel predictions from model combination (stacking) were worse

than baseline performance. The difference is that novel predictions with fusion better incorporate

model confidence whereas when stacking, a novel prediction is less trusted than those produced by

one or both of the base parsers.

Preliminary extensions: Here, we summarize two extensions to fusion which have yet to show

benefits. The first extension explores applying fusion to dependency parsing. We explored two ways

to apply fusion when starting from constituency parses: (1) fuse constituents and then convert them

to dependencies and (2) convert to dependencies then fuse the dependencies [91]. Approach (1)

does not provide any benefit (LAS drops between 0.5% and 2.4%). This may result from fusion’s

artifacts including unusual unary chains or nodes with a large number of children — it is possible

that adjusting unary handling and the precision/recall tradeoff may reduce these issues. Approach

(2) provided only modest benefits compared to those from constituency parsing fusion. The largest

LAS increase for (2) is 0.6% for the Stanford Parser, though for Berkeley and Self-trained BLLIP,

dependency fusion results in small losses (-0.1% LAS). Two possible reasons are that the dependency

baseline is higher than its constituency counterpart and some dependency graphs from the n-best

list are duplicates which lowers diversity and may need special handling, but this remains an open

question.

While fusion helps on top of a self-trained parser, we also explored whether a fused parser can

self-train [68]. To test this, we (1) parsed two million sentences with BLLIP (trained on WSJ), (2)

fused those parses, (3) added the fused parses to the gold training set, and (4) retrained the parser

on the expanded training. The resulting model did not perform better than a self-trained parsing

model that didn’t use fusion.

4.4 Conclusions

We presented a simple extension to parse hybridization which adapts model combination techniques

to operate over a single parser’s n-best list instead of across multiple parsers. By weighting each

parse by its probability from the n-best parser, we are able to better capture the confidence at the

constituent level. Our best configuration obtains state-of-the-art accuracy on WSJ with an F1 of

92.6%. This is similar to the accuracy obtained from actual model combination techniques but at a

fraction of the computational cost. Additionally, improvements are not limited to a single parser or

domain. Fusion improves parser accuracy for six n-best parsers both in-domain and out-of-domain.



Chapter 5

Parsing as Language Modeling

5.1 Introduction

Recent work on deep learning syntactic parsing models has achieved notably good results, e.g., with

92.4 F1 [31] on Penn Treebank constituency parsing and with 92.8 F1 [103] . In this theis we borrow

from the approaches of both of these works and present a neural-net parse reranker that achieves

very good results, 93.8 F1, with a comparatively simple architecture.

In the remainder of this chapter we outline the major difference between this and previous work

— viewing parsing as a language modeling problem. Chapter 5.2 looks more closely at three of the

most relevant previous papers. We then describe our exact model (Chapter 5.3), followed by the

experimental setup and results (Chapters 5.4 and 5.5).

5.1.1 Language Modeling

Formally, a language model (LM) is a probability distribution over strings of a language:

P (x) = P (x1, · · · , xn)

=

n∏
t=1

P (xt|x1, · · · , xt−1), (5.1)

where x is a sentence and t indicates a word position. The efforts in language modeling go into

computing P (xt|x1, · · · , xt−1), which as described next is useful for parsing as well.

5.1.2 Parsing as Language Modeling

A generative parsing model parses a sentence (x) into its phrasal structure (y) according to

argmax
y′∈Y(x)

P (x,y′),

24
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Figure 5.1: A tree (a) and its sequential form (b).

where Y(x) lists all possible structures of x. If we think of a tree (x,y) as a sequence (z) [103] as

illustrated in Figure 5.1b, we can define a probability distribution over (x,y) as follows:

P (x,y) = P (z) = P (z1, · · · , zm)

=

m∏
t=1

P (zt|z1, · · · , zt−1), (5.2)

which is equivalent to Equation (5.1). We have reduced parsing to language modeling and can use

language modeling techniques of estimating P (zt|z1, · · · , zt−1) for parsing.

5.2 Previous Work

We look here at three neural net (NN) models closest to our research along various dimensions.

The first [105] gives the basic language modeling architecture that we have adopted, while the other

two [103, 31] are parsing models that have the current best results in NN parsing.

5.2.1 LSTM-LM

The LSTM-LM [105] turns (x1, · · · , xt−1) into ht, a hidden state of an LSTM [48, 38, 41], and uses

ht to guess xt:

P (xt|x1, · · · , xt−1) = P (xt|ht)

= softmax(Wht)[xt],

where W is a parameter matrix and [i] indexes ith element of a vector. The simplicity of the model

makes it easily extendable and scalable, which has inspired a character-based LSTM-LM that works

well for many languages [56] and an ensemble of large LSTM-LMs for English with astonishing

perplexity of 23.7 [52]. In this thesis, we build a parsing model based on the LSTM-LM [105].
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5.2.2 Seq2seq Parser

Researchers [103] observe that a phrasal structure (y) can be expressed as a sequence and build a

sequence-to-sequence (Seq2Seq) parser, which translates x into y using a conditional probability:

P (y|x) = P (y1, · · · , yl|x)

=

l∏
t=1

P (yt|x, y1, · · · , yt−1),

where the conditioning event (x, y1, · · · , yt−1) is modeled by an LSTM encoder and an LSTM de-

coder. The encoder maps x into he, a set of vectors that represents x, and the decoder obtains a

summary vector (h′t) which is concatenation of the decoder’s hidden state (hdt ) and weighted sum

of word representations (
∑n
i=1 αih

e
i ) with an alignment vector (α). Finally the decoder predicts yt

given h′t. Inspired by Seq2Seq parser, our model processes sequential trees.

5.2.3 RNNG

Recurrent Neural Network Grammars (RNNG), a generative parsing model, defines a joint distri-

bution over a tree in terms of actions the model takes to generate the tree [31]:

P (x,y) = P (a) =

m∏
t=1

P (at|a1, · · · , at−1), (5.3)

where a is a sequence of actions whose output precisely matches the sequence of symbols in z,

which implies Equation (5.3) is the same as Equation (5.2). RNNG and our model differ in how they

compute the conditioning event (z1, · · · , zt−1): RNNG combines hidden states of three LSTMs that

keep track of actions the model has taken, an incomplete tree the model has generated and words

the model has generated whereas our model uses one LSTM’s hidden state as shown in the next

section.

5.3 Model

Our model, the model [105] applied to sequential trees and we call LSTM-LM from now on, is a

joint distribution over trees:

P (x,y) = P (z) =

m∏
t=1

P (zt|z1, · · · , zt−1)

=

m∏
t=1

P (zt|ht)

=

m∏
t=1

softmax(Wht)[zt],
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where ht is a hidden state of an LSTM. Due to lack of an algorithm that searches through an

exponentially large phrase-structure space, we use an n-best parser to reduce Y(x) to Y ′(x), whose

size is polynomial, and use LSTM-LM to find y that satisfies

argmax
y′∈Y′(x)

P (x,y′). (5.4)

5.3.1 Hyper-parameters

The model has three LSTM layers with 1,500 units and gets trained with truncated backpropagation

through time with mini-batch size 20 and step size 50. We initialize starting states with previous

mini-batch’s last hidden states [99]. The forget gate bias is initialized to be one [53] and the rest

of model parameters are sampled from U(−0.05, 0.05). Dropout is applied to non-recurrent connec-

tions [86] and gradients are clipped when their norm is bigger than 20 [82]. The learning rate is

0.25 · 0.85max(ε−15, 0) where ε is an epoch number. For simplicity, we use vanilla softmax over an

entire vocabulary as opposed to hierarchical softmax [74] or noise contrastive estimation [44].

5.4 Experiments

We describe datasets we use for evaluation, detail training and development processes.1

5.4.1 Data

We use the Wall Street Journal (WSJ) of the Penn Treebank [67] for training (2-21), development

(24) and testing (23) and millions of auto-parsed “silver” trees [68, 50, 103] for tri-training. To obtain

silver trees, we parse the entire section of the New York Times (NYT) of the fifth Gigaword [81]

with a product of eight Berkeley parsers [83]2 and ZPar [109] and select 24 million trees on which

both parsers agree [64]. We do not resample trees to match the sentence length distribution of the

NYT to that of the WSJ [103] because in preliminary experiments Charniak parser [14] performed

better when trained on all of 24 million trees than when trained on resampled two million trees.

Given x, we produce Y ′(x), 50-best trees, with Charniak parser and find y with LSTM-LM as

other researchers [31] do with their discriminative and generative models.3

5.4.2 Training and Development

Supervision

We unk words that appear fewer than 10 times in the WSJ training (6,922 types) and drop activations

with probability 0.7. At the beginning of each epoch, we shuffle the order of trees in the training

data. Both perplexity and F1 of LSTM-LM (G) improve and then plateau (Figure 5.2). Perplexity,

1The code and trained models used for experiments are available at github.com/cdg720/emnlp2016.
2We use the reimplementation [50].
3The discriminative model [31] performs comparably to Charniak (89.8 vs. 89.7).
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Figure 5.2: Perplexity and F1 on the development set at each epoch during training.

n Oracle Final Exact
10 94.0 91.2 39.1
50 95.9 91.7 40.0
51o 100 93.9 49.7
100 96.3 91.7 39.9
500 97.0 91.8 40.0

Table 5.1: The performance of LSTM-LM (G) with varying n-best parses on the dev set. Oracle
refers to Charniak parser’s oracle F1. Final and Exact report LSTM-LM (G)’s F1 and exact match
percentage respectively. To simulate an optimal scenario, we include gold trees to 50-best trees and
rerank them with LSTM-LM (G) (51o).

the model’s training objective, nicely correlates with F1, what we care about. Training takes 12

hours (37 epochs) on a Titan X. We also evaluate our model with varying n-best trees including

optimal 51-best trees that contain gold trees (51o). As shown in Table 5.1, the LSTM-LM (G) is

robust given sufficiently large n, i.e. 50, but does not exhibit its full capacity because of search errors

in Charniak parser. We address this problem in Chapter 5.5.3.

Semi-supervision

We unk words that appear at most once in the training (21,755 types). We drop activations with

probability 0.45, smaller than 0.7, thanks to many silver trees, which help regularization. We train

LSTM-LM (GS) on the WSJ and a different set of 400,000 NYT trees for each epoch except for the

last one during which we use the WSJ only. Training takes 26 epochs and 68 hours on a Titan X.

LSTM-LM (GS) achieves 92.5 F1 on the development.



29

Base Final
Vinyals et al. (2015) [103] 88.3 90.5
Dyer et al. (2016) [31] 89.8 92.4

LSTM-LM (G) 89.7 92.6

Table 5.2: F1 of models trained on WSJ. Base refers to performance of a single base parser and Final
that of a final parser.

5.5 Results

5.5.1 Supervision

As shown in Table 5.2, with 92.6 F1 LSTM-LM (G) outperforms an ensemble of five MTPs [103]

and RNNG [31], both of which are trained on the WSJ only.

5.5.2 Semi-supervision

We compare LSTM-LM (GS) to two very strong semi-supervised NN parsers: an ensemble of five

MTPs trained on 11 million trees of the high-confidence corpus4 (HC) [103]; and an ensemble of

six one-to-many sequence models trained on the HC and 4.5 millions of English-German translation

sentence pairs [65]. We also compare LSTM-LM (GS) to best performing non-NN parsers in the

literature. Parsers’ parsing performance along with their training data is reported in Table 5.3.

LSTM-LM (GS) outperforms all the other parsers with 93.1 F1.

5.5.3 Improved Semi-supervision

Due to search errors – good trees are missing in 50-best trees – in Charniak (G), our supervised and

semi-supervised models do not exhibit their full potentials when Charniak (G) provides Y ′(x). To

mitigate the search problem, we tri-train Charniak (GS) on all of 24 million NYT trees in addition

to the WSJ, to yield Y ′(x). As shown in Table 5.3, both LSTM-LM (G) and LSTM-LM (GS) are

affected by the quality of Y ′(x). A single LSTM-LM (GS) together with Charniak (GS) reaches 93.6

and an ensemble of eight LSTM-LMs (GS) with Charniak (GS) achieves a new state of the art,

93.8 F1. When trees are converted to Stanford dependencies,5 UAS and LAS are 95.9% and 94.1%,6

more than 1% higher than those of the state of the art dependency parser [3]. Why an indirect

method (converting trees to dependencies) is more accurate than a direct one (dependency parsing)

remains unanswered [59].

4The HC consists of 90,000 gold trees, from the WSJ, English Web Treebank and Question Treebank, and 11
million silver trees, whose sentence length distribution matches that of the WSJ, parsed and agreed on by Berkeley
parser and ZPar.

5Version 3.3.0.
6We use the CoNLL evaluator available through the CoNLL website: ilk.uvt.nl/conll/software/eval.pl. Following

the convention, we ignore punctuation.
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Base Oracle Final Gold Silver
Huang et al. (2010) [50] - - 92.8 WSJ (40K) BLLIP (1.8M)
Shindo et al. (2012) [94] - - 92.4 WSJ (40K) -
Choe et al. (2016) [18] - - 92.6 WSJ (40K) NYT (2M)
Vinyals et al. (2015) [103] - - 92.8 HC (90K) HC (11M)
Luong et al. (2016) [65] - - 93.0 HC (90K) HC (11M)

Charniak (G) + LSTM-LM (G) 89.7 96.7 92.6 WSJ (40K) -
Charniak (G) + LSTM-LM (GS) 89.7 96.7 93.1 WSJ (40K) NYT (0/10M)

Charniak (GS) + LSTM-LM (G) 91.2 97.1 92.9 WSJ (40K) NYT (24M/0)
Charniak (GS) + LSTM-LM (GS) 91.2 97.1 93.6 WSJ (40K) NYT (24M/10M)
Charniak (GS) + E(LSTM-LMs (GS)) 91.2 97.1 93.8 WSJ (40K) NYT (24M/11.2M)

Table 5.3: Evaluation of models trained on the WSJ and additional resources. Note that the num-
bers [103, 65] are not directly comparable as their models are evaluated on OntoNotes-style trees
instead of PTB-style trees. E(LSTM-LMs (GS)) is an ensemble of eight LSTM-LMs (GS). X/Y in
Silver column indicates the number of silver trees used to train Charniak parser and LSTM-LM. For
the ensemble model, we report the maximum number of trees used to train one of LSTM-LMs (GS).

5.6 Conclusion

The generative parsing model we presented in this chapter is very powerful. In fact, we see that a

generative parsing model, LSTM-LM, is more effective than discriminative parsing models [31]. We

suspect building large models with character embeddings would lead to further improvement as in

language modeling [56, 52].



Chapter 6

Left-corner and Right-corner

Sequential Parsing

6.1 Introduction

In recent years, many strong greedy constituency parsers have been proposed thanks to the advent

of deep learning [103, 19, 24, 31]. We present an extension of the sequence-to-sequence (Seq2Seq)

parser [103], which is simple, scalable and fast. When our parser is trained on left-corner (or right-

corner) sequential trees, it performs competitively. With an ensemble of semi-supervised rerankers [17],

our semi-supervised parsers reach 94.7 F1.

6.1.1 Seq2Seq Parsing

Sequence-to-sequence models have been applied to machine translation [100, 16, 6]. Vinyals et

al. [103] apply a variant of it to syntactic parsing by using word tokens as the input sequence

and sequential (linearized) trees as the output (Figure 6.1b). Essentially, the parser learns to “trans-

late” input tokens into an ASCII-based tree format. In this paper, we show that Seq2Seq parsers

are more effective when the output sequence consists of left-corner or right-corner sequential trees,

described below.

6.1.2 Left (and Right)-corner Parsing

The Penn Treebank (PTB) sequence use to train their Seq2Seq parser [103] is one of many possible

representations of trees. PTB sequences are a reasonable default because constituency trees are often

annotated in PTB sequence [67]. To develop accurate parsers, we explore two simple alternatives: left-

corner and right-corner sequences. At a high level, given a node, a left-corner (LC) transform [87, 2]

goes through its left child, its node and the rest of its children from left to right. We can think of

31
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S

VP

ADJP

fun

is

NP

cs

(a)

(S (NP cs ) (VP is (ADJP fun ) ) )

(b)

cs (NP ) (S is (VP fun (ADJP ) ) )

(c)

fun (ADJP ) (VP is ) (S cs (NP ) )

(d)

Figure 6.1: Parse tree (a), its Penn Treebank sequence (b) and corresponding left and right-corner
sequences (c, d).

an LC sequence as a rearrangement of a PTB sequence using in-order traversal1 over a tree. These

types of transformations may decrease cognitive load and have been explored from a psycholinguistics

perspective [92, 104]. Figure 6.1c illustrates an example LC sequence.

Right-corner (RC) transforms are mirrored versions of LC (see Figure 6.1d for an example).

6.2 Sequential Trees

Because we are representing trees (which are multi-dimensional objects) in one dimension, not all

possible sequences are valid trees. For example, any PTB sequence must start with one of 26 open

parentheses (e.g., ‘(NP’) and an LC sequence always starts with the first token in the sentence. We

claim LC sequences are easier for parsers to learn than PTB ones because LC parsing on average

allows fewer symbols than PTB parsing does (Table 6.1). Specifically LC parsing only allows 19.7

symbols on average whereas PTB parsing 27.2.2 We compute these numbers by following gold

sequences in the Wall Street Journal training set and counting numbers of possible symbols along

the sequences and averaging them. In other words, the search space for LC parsing is much smaller

than that of PTB parsing. Also on average (sub-)trees have shorter spans in LC parsing (14.2)

than in PTB parsing (17.9). Our parser is based on LSTMs which can handle some long distance

dependencies, but have their limits and has an easier time learning LC sequences than PTB ones.

1In parsing, we generally deal with non-binary trees and thus we define the visiting order to be first child, node
and remaining children.

228 symbols in total: 26 start phrase tags, word and ‘)’.
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PTB LC RC
Avg. # Valid Symbols 27.2 19.7 19.7
Avg. Distance 17.9 14.2 6.8

Table 6.1: Statistics of sequential trees in WSJ training. The first row shows the average number of
valid symbols in three kinds of gold sequential trees. The second one the average distance between
pairs of matching parentheses.

6.3 Model

In this section, we detail our model and compare it to the Seq2Seq parser [103]. Capital letters

(W1,W2) denote matrices, bold lowercase letters (f , b) vectors and lowercase letters (t, s) numbers.

6.3.1 Encoder

We replace the LSTM [48, 38] encoder of the Seq2Seq parser with a bidirectional LSTM (BLSTM) [42]

as BLSTMs have been proven to be very effective for modeling words and their contexts for

parsing [57, 24, 29]. Given a sequence of word embeddings (e1, · · · , en), the BLSTM provides

(f1, · · · ,fn) and (b1, · · · , bn) where f i and bi are hidden states at position i from forward and

backward LSTMs, respectively. As word representations, the decoder (described below) uses the

concatenation of these, vi = f i⊕ bi, which represents word at position i and its surrounding words.

The encoder has an auxiliary objective over word representations to predict part-of-speech (POS)

tags so that the encoder includes tagging information inside these word representations, which help

parsing a bit. The objective is defined as

P (ti|vi) = softmax(W1 · vi + b1)[Idx(ti)], (6.1)

where ti is a gold tag for word at position i and Idx is a function that returns the index of ti.

6.3.2 Decoder

As in shift-reduce parsing [78], we maintain a buffer of word representations for the input sentence,

(v1, · · · ,vn), from left to right and pop one word from the buffer whenever the decoder outputs

a word. A key difference from shift-reducing parsing is that instead of representing parsing state

(e.g., previous symbols taken) with a discrete stack, we use an LSTM. At step j, the decoder reads

in an embedding of its previous output, pj−1, and the first word representation in the buffer, vxj
,

where xj is the position of the first word in the buffer at step j. The decoder pushes pj−1 ⊕ vxj
,

concatenation of the two, through its LSTM function and uses its hidden state, hj , to predict a

symbol sj :
3

P (sj |hj) = softmax(W2 · hj + b2)[Idx(sj)], (6.2)

3In pilot experiments, we found that processing the previous output and first word together worked better than
processing the output only and later passing the hidden state along with word representation to softmax layers.
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where sj is a gold symbol at position j. During training, we optimize the sum of Equations (6.1)

and (6.2), but during inference, we only use Equation (6.2). The decoder predicts one of 26 phrase

tags, ‘)’, word, end and pad.4 When the decoder predicts word, it outputs the first word in the

buffer rather than the word symbol.

Unlike [103], we don’t use attention over word representations because in parsing we know what

word to process next. Compared to theirs, ours can be thought of as a Seq2Seq with explicit attention.

6.3.3 Network Architecture

We use 300 dimensions for the BLSTM encoder, 900 for the LSTM decoder. For both encoder

and decoder, we stack two LSTMs and have skip connections from input layers to second LSTM

layers [45].5 We apply dropout [97] to embeddings and vertical LSTM connections [86].

6.4 Experiments

We use the standard split of Wall Street Journal (WSJ) in the Penn Treebank for training (Sections

2–21), validating (22) and testing (23) our parsers. We replace singleton tokens in the training with

unk and remove spurious unary chains, e.g., ‘(NP (NP a dog))’ becomes ‘(NP a dog)’, during training

but keep them during evaluation for comparison. For semi-supervised experiments [68], we train the

parsers on auto-parsed New York Times (NYT) trees [17] in addition to WSJ. Models and code are

available at github.com/cdg720/emnlp2017.

6.4.1 Supervised Training

We train models for 50 epochs and save parameters that perform best on Section 22. During training,

models attempt to maximize the probability of symbols in gold sequential trees. During inference,

they greedily choose the most likely valid symbols. Training takes 5.3 hours on an Nvidia 1080 GPU

and parsing Section 22 takes a little less than 13 seconds (130 sentences per second). We report the

hyperparameters in the Chapter 6.4.4.

The performance of our models with different sequential trees is reported in Table 6.2. Both LC

and RC perform substantially better than PTB representations. During decoding, LC (WSJ) and

RC (WSJ) can get confused and produce infinite chains of unaries. In these cases, we stop decoding

and output trees with single S nodes. Sampling a few trees and selecting one for a failed sentence

easily solves the problem. Semi-supervised training also improves the model, solving this problem

as described below.

4end denotes the end of parsing and pad gets added to short sentences for batching.
5For example, the input to the second layer’s forward LSTM at position i is ei + f1

i where f1
i is the hidden state

of the first layer’s forward LSTM at position i.

github.com/cdg720/emnlp2017
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Form F1 (PF)
LC (WSJ) 91.5 (1)
RC (WSJ) 91.6 (2)

PTB (WSJ) 91.0 (0)
LC (semi) 93.3 (0)
RC (semi) 93.2 (0)

Table 6.2: Performance and number of failed parses (PF) on Section 22.

α Oracle # Unique Reranked
0.5 99.1 321.1 94.6
0.7 99.0 98.0 94.8
0.9 98.6 43.0 94.8
1.1 98.3 24.7 94.7

Table 6.3: Oracle and reranked performance of LC (semi) and CC (semi), varying α on WSJ Section
22. 1000 trees are sampled per sentence.

6.4.2 Semi-supervised Training

One advantage of sequential models is that they are very scalable and we train our models on

millions of NYT trees. Training data consists of WSJ training and 1.2 million auto-parsed NYT

trees (resampled every epoch). As in supervised training, we train the models for 50 epochs and

choose best settings on the validation set. The semi-supervised training takes about 83.3 hours on a

single GPU. See results in Table 6.2.

6.4.3 Sampling and Reranking

One caveat of greedy parsing is the model makes a series of local decisions, which obviously aren’t

globally optimal. To overcome this, as in [31] we sample N trees with our parser for each sentence.

For each tree, we sample a symbol at a time from a renormalized distribution with exponentiation α.

We feed the samples through the CC reranker6 [17] and evaluate the reranked trees. The results of

varying α and N are reported in Tables 6.3 and 6.4. First note that the oracle scores are remarkable

and there is a much room for developing better rerankers. α seems to matter a bit but N doesn’t

(at least once sufficiently large). For supervised evaluation, we sample 100 trees for each sentence to

compare our model to reranking parsers of [31] and [62]. For semi-supervised evaluation, we sample

200 trees.

6.4.4 Hyperparameters

For supervised training, we run three grid searches on the validation set for LC, RC and PTB and

select the best setting for each. We initialize all parameters with uniform distribution between -0.03

and 0.03 and use stochastic gradient descent with momentum (0.99) and initial learning rate (0.01)

and batch size 50. We decay the learning rate with the following: 0.01 · λmax(ε−20,0) where λ is a

6Models from github.com/cdg720/emnlp2016.

github.com/cdg720/emnlp2016
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N Oracle # Unique Reranked
100 98.2 18.9 94.8
200 98.5 30.7 94.8
500 98.8 59.1 94.8
1000 99.0 98.0 94.8

Table 6.4: Oracle and reranked performance of LC (semi) and CC (semi), varying the number of
samples on WSJ Section 22. α = 0.7 is used.

Parameter LC RC PTB
dropout 0.55 0.55 0.5
clipping 5 10 5

decaying (λ) 0.85 0.85 0.8
exponentiation (α) 0.75 0.85 -

Table 6.5: Hyperparameters

decaying parameter and ε is an epoch number. The rest of the parameters are reported in Table 6.5.

The grid search is harder for semi-supervised training because it takes longer to finish training

and we use the same setting for training both LC and RC: dropout (0.4), clipping (5), decaying (0.8)

and batch size 100 for NYT trees. For sampling, we use α = 0.7 for LC and α = 0.65 for RC.

6.4.5 Supervised Evaluation

We first evaluate our parsers and compare them to strong neural greedy parsers and then compare

our parsers with CC (WSJ) to other reranking parsers on Section 23. As shown in Table 6.6, the

reduction in search space seems helpful for parsing but the reduction in the average distance between

parentheses doesn’t matter as much. We leave exploration in this area to future work. Our greedy

parsers (LC and RC) are comparable to other greedy parsers [19, 24, 31]. Together with CC (WSJ),

LC and RC are comparable to [31] and a little worse than [62].

6.4.6 Semi-supervised Evaluation

LC (semi) and RC (semi) perform comparably to state-of-the-art semi-supervised parsers. With CC

(semi), LC (semi) and RC (semi) exhibit strong performance: 94.2 and 94.3. We can combine the

samples of LC (semi) and RC (semi) and rerank them with a reranker (94.5) and five rerankers (94.7).

Converting to dependencies7, we get 94.6 LAS and 96.4 UAS, which is within the range of human

interannotator agreement.8 The system of two parsers and five rerankers achieves 88.9 on BNC [35],

90.6 on Brown [36], 80.8 on GENIA [55], 81.7 on Switchboard [40] and 93.1 on QuestionBank [54].

Out-of-domain parsing remains a hard problem, but these numbers represent significant progress.

7Stanford Dependences, version 3.3.0
8research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html


37

Model F1 (PF)
Coavoux and Crabbé (2016) [19] 88.6
Vinyals et al. (2015) [103] 90.5
Cross and Huang (2016) [24] 91.3
Dyer et al. (2016) [31] 91.2
LC (WSJ) 91.4 (1)
RC (WSJ) 91.2 (2)
PTB (WSJ) 91.0 (0)
Choe and Charniak (2016) [17] 92.6
Dyer et al. (2016) [31] 93.3
Kuncoro et al. (2017) [62] 93.6
LC (WSJ) + CC (WSJ) 93.2
RC (WSJ) + CC (WSJ) 93.1

Table 6.6: Comparison of supervised greedy parsers (top) and reranking parsers (bottom) on WSJ
Section 23. PF indicates parse failures.

Model F1

Vinyals et al. (2015) [103] 92.8
Luong et al. (2016) [65] 93.0
LC (semi) 93.0
RC (semi) 92.7
Choe and Charniak (2016) [17] 93.8
LC (semi) + CC (semi) 94.2
RC (semi) + CC (semi) 94.3
L/RC (semi) + CC (semi) 94.5
L/RC (semi) + 5 CCs (semi) 94.7

Table 6.7: Comparison of semi-supervised parsers (top) and reranking parsers (bottom) on WSJ
Section 23.

6.5 Conclusion

We have shown simple sequential models are effective for constituency parsing. Using left-corner

transformations dramatically reduces the search space allowing the parser to parse accurately in

linear-time without pre-training, an external POS tagger or hand-engineered features. Using semi-

supervised training and reranking, our accuracies on six domains are state-of-the-art.



Chapter 7

Conclusion

In this thesis, we have shown that simple sequential models developed for language modeling and

machine translation can be effectively used for parsing. Specifically, on a domain of new articles,

our system of reranking parsers achieves a human-level accuracy, which has been the goal of parsing

research for the past few decades. Given a sentence, our parser can generate a list of trees, one of

which is identical or very close to its gold tree (Chapter 6) and our reranker can reliably find a high-

quality tree in the list (Chapter 5). Our system has harder time parsing out-of-domain sentences but

shows strong results on these domains as well even though it is not trained on them. Given enough

gold parse trees in these domains, we suspect our system would perform very well on these domains

as well.

For domains (or languages) with small training data, the method of generating parse trees using

our method of parsing paraphrases jointly can be used in addition to the standard parse generation

methods to gather a large number of high-quality parse trees (Chapter 3). The fusion method

described in Chapter 4 can be effectively applied to these low-quality parse trees to improve results.

Given the rapid progress the parsing community has made in the field, we believe it will see general

human-level parsers in a near future.
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Appendix A

Appendix

We list a few examples of sentences that our reranking parsing model fails to parse correctly. Top

ones are gold and bottom ones are from our model.

(S (PP On (NP Friday)) , (NP mortgage issues) (VP gained (ADVP (ADVP as much) (PP as (NP
(QP 1 5/32))))) .)
(S (PP On (NP Friday)) , (NP mortgage issues) (VP gained (NP (QP as much as 1 5/32))) .)

(S (NP The bill) (VP intends (S (VP to (VP restrict (NP the RTC) (PP to (NP Treasury bor-
rowings only))))) , (SBAR unless (S (NP the agency) (VP receives (NP specific congressional
authorization))))) .)
(S (NP The bill) (VP intends (S (VP to (VP restrict (NP the RTC) (PP to (NP Treasury borrow-
ings)) (ADVP only) , (SBAR unless (S (NP the agency) (VP receives (NP specific congressional
authorization)))))))) .)

(FRAG (ADVP Now) , (PP as (PP for (NP tomorrow))) , (INTJ hell) , (SBARQ (WHNP who)
(SQ (VP knows))) ?)
(FRAG (ADVP Now) , (PP as (PP for (NP tomorrow))) , (NP (NP hell) , (SBAR (WHNP who)
(S (VP knows)))) ?)

(S (NP The Columbia economists) (ADVP also) (VP have (VP reconstructed (SBAR (WHADVP
how) (S (NP the long leading index) (VP would (VP have (VP behaved , (SBAR (SINV had
(NP it) (VP existed))) (PRN , (PP in (NP 1929)) ,) (PP before (NP (NP the stock market
crash) (PP in (NP October)) (SBAR (WHNP that) (S (VP ushered (PRT in) (NP the Great
Depression))))))))))))) .)
(S (NP The Columbia economists) (ADVP also) (VP have (VP reconstructed (SBAR (WHADVP
how) (S (NP the long leading index) (VP would (VP have (VP behaved))))) , (SBAR (SINV had
(NP it) (VP existed , (PP in (NP 1929)) , (PP before (NP (NP the stock market crash) (PP in
(NP October)) (SBAR (WHNP that) (S (VP ushered (PP in (NP the Great Depression))))))))))))
.)

(S (NP Bangkok , Manila , Seoul , Taipei and Jakarta) (VP escaped (PP with (NP (ADJP slightly
smaller) losses))) .)
(S (NP (NP Bangkok) , (NP Manila) , (NP Seoul) , (NP Taipei) and (NP Jakarta)) (VP escaped
(PP with (NP (ADJP slightly smaller) losses))) .)

39
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(S (PP At (NP Shearson Lehman)) , (NP executives) (VP (VP created (NP potential new com-
mercials) (UCP (NP Friday night) and (PP throughout (NP the weekend)))) , (VP (ADVP then)
had (S (VP to (VP regroup (NP yesterday afternoon)))))) .)
(S (PP At (NP Shearson Lehman)) , (NP executives) (VP (VP created (NP potential new com-
mercials) (UCP (NP Friday night) and (PP throughout (NP the weekend)))) , then (VP had (S
(VP to (VP regroup))) (NP yesterday afternoon))) .)

(S (NP Gold) (VP (ADVP also) rose) .)
(S (NP Gold) (ADVP also) (VP rose) .)

(S (NP It) (VP (VP (ADVP once) pushed (PP for (NP (NP a national housing production goal)
(VP set (PP by (NP the federal government)))))) and (VP has (VP (ADVP regularly) advanced
(NP anti-recession housing measures)))) .)
(S (NP It) (ADVP once) (VP (VP pushed (PP for (NP (NP a national housing production goal)
(VP set (PP by (NP the federal government)))))) and (VP has (ADVP regularly) (VP advanced
(NP anti-recession housing measures)))) .)

(S (NP (NP Net) (PP for (NP the third quarter)) , (VP restated) ,) (VP is (NP (NP (QP $ 1.6
million)) , or (NP (NP 10 cents) (NP a share)))) .)
(S (NP (NP Net) (PP for (NP (NP the third quarter) , (ADJP restated) ,))) (VP is (NP (NP (QP
$ 1.6 million)) , or (NP (NP 10 cents) (NP a share)))) .)
(S (NP (NP Many U.S. trading operations) , (VP wanting (S (VP to (VP keep (NP a watchful eye)
(PP on (NP (NP Japanese trading) (PP as (NP (NP an indication) (PP of (SBAR (WHADVP
where) (S (NP U.S. trading) (VP would (VP begin))))))))))))) ,) (VP were (VP (ADVP fully)
staffed (PP during (NP the Tokyo trading session)))) .)
(S (NP Many U.S. trading operations) , (S (VP wanting (S (VP to (VP keep (NP (NP a watchful
eye) (PP on (NP Japanese trading))) (PP as (NP (NP an indication) (PP of (SBAR (WHADVP
where) (S (NP U.S. trading) (VP would (VP begin)))))))))))) , (VP were (ADJP fully staffed) (PP
during (NP the Tokyo trading session))) .)

(S (S (NP (NP Security Pacific ’s) earnings growth) (VP slowed (PP in (NP the third quarter))))
, but (S (NP the Los Angeles bank holding company) (VP was (ADVP still) (ADJP able (S (VP
to (VP post (NP (NP a (ADJP 10 %) increase) (PP in (NP net income))) (PP because of (NP
(NP robust growth) (PP in (NP residential real-estate and consumer loans)))))))))) .)
(S (S (NP (NP Security Pacific ’s) earnings growth) (VP slowed (PP in (NP the third quarter))))
, but (S (NP the Los Angeles bank holding company) (VP was (ADVP still) (ADJP able (S (VP
to (VP post (NP (NP a (ADJP 10 %) increase) (PP in (NP net income))))))) (PP because of (NP
(NP robust growth) (PP in (NP residential real-estate and consumer loans)))))) .)

(S (NP (NP The latest reading) (PP of (NP 223.0))) (VP was (ADVP up (PP (PP from (NP 222.3)
(PP in (NP July))) and (PP (NP 215.3) (ADVP (ADVP as recently) (PP as (NP March))))))) .)
(S (NP (NP The latest reading) (PP of (NP 223.0))) (VP was (ADVP up (PP from (NP (NP
(NP 222.3) (PP in (NP July))) and (NP (NP 215.3) (ADVP (ADVP as recently) (PP as (NP
March)))))))) .)

(S (NP (NP Such loans) (PP to (NP Argentina))) (VP (ADVP also) remain (ADJP classified (PP
as (ADJP non-accruing))) , (S (VP costing (NP the bank) (NP (NP (QP $ 10 million)) (PP of
(NP interest income))) (PP in (NP the third period))))) .)
(S (NP (NP Such loans) (PP to (NP Argentina))) (ADVP also) (VP remain (VP classified (PP as
(ADJP non-accruing)) , (S (VP costing (NP the bank) (NP (NP (QP $ 10 million)) (PP of (NP
interest income))) (PP in (NP the third period)))))) .)
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(NP (NP (ADJP Negotiable , bank-backed) business credit instruments) (VP (ADVP typically)
financing (NP an import order)) .)
(NP (NP Negotiable , bank-backed business credit instruments) (VP (ADVP typically) financing
(NP an import order)) .)

(S (NP Such features) (VP have (VP been (ADJP especially attractive (PP to (NP (NP (NP
professional photographers) and (NP marketing executives)) , (SBAR (WHNP who) (S (VP have
(VP been (VP (ADVP steadily) increasing (NP (NP their use) (PP of (NP black and white)) (PP
in (NP advertising))))))))))))) .)
(S (NP Such features) (VP have (VP been (ADJP especially attractive (PP to (NP (NP (NP
professional photographers) and (NP marketing executives)) , (SBAR (WHNP who) (S (VP have
(VP been (VP (ADVP steadily) increasing (NP (NP their use) (PP of (ADJP black and white)))
(PP in (NP advertising)))))))))))) .)
(S (NP The Washington Post) (VP reported (SBAR that (S (NP unidentified senior administration
officials) (VP (VP were (VP frustrated (PP with (NP (NP (NP Webster ’s) low-profile activities)
(PP during (NP the insurrection)))))) and (VP wanted (S (NP him) (VP replaced))))))) .)
(S (NP The Washington Post) (VP reported (SBAR that (S (NP unidentified senior administration
officials) (VP (VP were (VP frustrated (PP with (NP (NP Webster ’s) low-profile activities)) (PP
during (NP the insurrection)))) and (VP wanted (S (NP him) (VP replaced))))))) .)

(S (NP Hertz Equipment) (VP is (NP (NP a major supplier) (PP of (NP rental equipment))) (PP
in (NP (NP the U.S.) , (NP France) , (NP Spain) and (NP the U.K)))) .)
(S (NP Hertz Equipment) (VP is (NP (NP a major supplier) (PP of (NP rental equipment)) (PP
in (NP (NP the U.S.) , (NP France) , (NP Spain) and (NP the U.K))))) .)
(SINV (VP Contributing (PP to (NP the selling pressure))) (VP were) (NP (NP dispatches) (PP
by (NP several investment firms)) (VP advising (NP clients) (S (VP to (VP (VP boost (NP their
stock holdings)) and (VP reduce (NP (NP the size) (PP of (NP their cash or bond portfolios)))))))))
.)
(SINV (VP Contributing (PP to (NP the selling pressure))) (VP were) (NP (NP dispatches)
(PP by (NP (NP several investment firms) (VP advising (NP clients) (S (VP to (VP (VP boost
(NP their stock holdings)) and (VP reduce (NP (NP the size) (PP of (NP their cash or bond
portfolios))))))))))) .)

(S (SBAR As (S (NP the London market) (VP rallied))) , (NP some) (VP wondered (SBAR
whether (S (NP (NP the weekend) (PP of (NP worrying and jitters))) (VP had (VP been (PP
worth (NP it))))))) .)
(S (SBAR As (S (NP the London market) (VP rallied))) , (NP some) (VP wondered (SBAR
whether (S (NP (NP the weekend) (PP of (NP worrying and jitters))) (VP had (VP been (ADJP
worth (NP it))))))) .)

(S (NP (NP Export sales) (PP for (NP (NP leisure items) (ADVP alone)))) , (PP for (NP instance))
, (VP totaled (NP (QP 184.74 billion) yen) (PP in (NP the 12 months)) , (ADVP up (PP from
(NP (QP 106.06 billion)) (PP in (NP the (ADJP previous fiscal) year))))) .)
(S (NP (NP Export sales) (PP for (NP (NP leisure items) (ADVP alone)))) , (PP for (NP instance))
, (VP totaled (NP (QP 184.74 billion) yen) (PP in (NP the 12 months)) , (ADVP up (PP from
(NP 106.06 billion) (PP in (NP the previous fiscal year))))) .)
(S (NP Revenue) (VP was (NP (NP (QP $ 444.9 million)) , (PP including (NP net interest)) ,)
(ADVP down slightly (PP from (NP (QP $ 450.7 million))))) .)
(S (NP Revenue) (VP was (NP (NP (QP $ 444.9 million)) , (PP including (NP net interest))) ,
(ADVP down (ADVP slightly) (PP from (NP (QP $ 450.7 million))))) .)
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