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Crowdsourced training data has become a mainstay in computer vision. Some of the

most significant discoveries of the last few years were made possible by crowd anno-

tated datasets. How can researchers best exploit the vast untapped human intelligence

available in the crowd? Beyond naive annotation, we explore several distinct types of

crowd interaction. We poll the crowd to discover a taxonomy of visual attributes, lever-

age intelligent annotation protocols to label a massive dataset, and use the crowd to

build detectors with minimal supervision.

This dissertation comprises three sections. First, we present a pipeline for auto-

matically generating a large set of discriminative visual attributes. We demonstrate

that the crowd can generate attributes useful for scene classification and create the

SUN Attribute Dataset, the largest set of attributes for scenes. The next section intro-

duces the largest dataset of attributes for objects, the MS COCO Attributes Dataset.

Using our MS COCO Attributes Dataset, a fine-tuned classification system can do

more than recognize object categories – for example, rendering multi-label classifi-

cations such as “sleeping spotted curled-up cat” instead of simply “cat”. To overcome

the expense of annotating thousands of MS COCO object instances with hundreds of

attributes, we present an Economic Labeling Algorithm (ELA) which intelligently gen-

erates crowd labeling tasks based on correlations between attributes. The final part of

this dissertation describes the Tropel system, an active learning pipeline that takes one

user-provided example and bootstraps a detector using active query responses from

the crowd. We use Tropel to create hundreds of detectors on-demand from unlabeled

images from three domains – ornithological images, fashion images, and street-level

images of Paris.
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Chapter 1

Introduction

In recent years, the computer vision community has witnessed an explosive increase in the power of

recognition systems. State-of-the-art detectors require hundreds of thousands or even millions of labeled

training images to achieve high performance. This dissertation explores how to create training data ac-

curately and cheaply from large amounts of unlabeled images. The following chapters introduce several

novel systems for discovering interesting visual phenomena, labeling visual events economically, and

eliminating the need for dataset annotation altogether.

Our systems employ crowd workforces to enable large-scale data collection and detector creation,

exploring a new type of crowd-computation. Each of the following chapters delivers a system that col-

laborates with the crowd to create a labeled dataset or train object detectors. We identify what is visually

important by intelligently exploiting the crowd. We demonstrate that a crowd workforce can enable cost

effective, on-demand creation of datasets and visual classifiers.

1.1 Discovering and Labeling Attributes

Traditionally, computer vision algorithms describe visual phenomena (e.g. objects, faces, actions, scenes,

etc.) by giving each instance a categorical label (e.g. cat, Halle Berry, drinking, downtown street, etc.).

Identifying only objects is a limited approximation of the human understanding of natural images. For

scenes in particular, this model has several significant issues: (1) The extent of scene understanding

achievable is quite shallow – there is no way to express interesting intra-category variations. (2) The

space of scenes is continuous, so hard partitioning creates numerous ambiguous boundary cases. (3) Im-

ages often simultaneously exhibit characteristics of multiple distinct scene categories. (4) A categorical

1
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Figure 1.1: Example Scene Attributes. The scene shown above would be poorly described using only a single scene

category label, e.g. ‘landing bay’ [49]. Instead, this figure displays a variety of attributes that give a more detailed

description of what is happening in the scene.

representation can not generalize to types of scenes which were not seen during training. To overcome

these issues, we employ attribute-based scene understanding. In Chapter 2, we collect a large dataset of

scene attributes in order to reveal the power of scene understanding using attributes.

In the domain of scenes, an attribute-based representation might describe an image with ‘concrete’,

‘shopping’, ‘natural lighting’, ‘glossy’, and ‘stressful’ in contrast to a categorical label such as ‘store’.

Attributes do not follow scene category boundaries, allowing them to describe intra-class variation (e.g.

a canyon might have water or it might not) and inter-class relationships (e.g. both a canyon and a beach

could have water).

Scene representations are vital to enabling many data-driven graphics and vision applications. There

is important research on low-level representations of scenes (i.e. visual features) such as the gist descrip-

tor [51] or spatial pyramid [43], but there has been little investigation into high-level representations of

scenes (e.g. attributes or categories), which are directly interpretable by end-users, leaving the standard

category-based recognition paradigm largely unchallenged. In Chapter 2, we explore a new, attribute-

based representation of scenes. Chapter 2 describes the process of discovering discriminative visual

attributes via crowd experiments as well as annotating a large dataset with the discovered attributes.
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Figure 1.2: Examples from MS COCO Attributes. In the figure above, images from the MS COCO dataset are

shown with one object outlined in white. Under the image, the MS COCO object label is listed on the left, and the

MS COCO Attribute labels are listed on the right. The MS COCO Attributes labels give a deep and broad description

of the context of the object.

1.2 Decreasing Cost

In Chapter 3, we expand our attribute labeling system to a large object dataset. We discover and an-

notate meaningful attributes for the 80 object categories of the Microsoft Common Objects in Context

(MS COCO) dataset to deliver the largest attribute dataset to date. Our object attributes are identified

using text-mining as well as crowd experiments. Using our MS COCO Attributes dataset, a fine-tuned

classification system can do more than recognize object categories – for example, rendering multi-label

classifications such as “sleeping spotted curled-up cat” instead of simply “cat”.

In order to overcome the expense of exhaustively annotating each object instances with each attribute

label, we present an economic labeling algorithm (ELA) which intelligently generates crowd labeling

tasks based on correlations between attributes. The ELA offers a large reduction in labeling cost while

maintaining reasonable attribute recall and variety. We create a baseline for object-attribute classifica-

tion on test images from the MS COCO dataset to demonstrate that object-attribute recognition is a

challenging problem.

MS COCO Attributes contains 196 attribute labels covering 29 object categories. In total, we col-

lected 3.5 million object-attribute pair annotations. Our dataset includes 180 thousand different object

instances. To demonstrate the utility and cost savings of our ELA method, we conduct classification

experiments which show that our efficiently labeled training data can be used to produce classifiers of

similar discriminative ability as classifiers created using exhaustively labeled ground truth.
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1.3 Crowd-in-the-loop Detection

Discovering discriminative mid-level features

Without the help of humans or the crowd, identifying the contextually distinctive parts of an image is a

challenging task for computer vision. The first section of Chapter 4 investigates putting the crowd-in-

the-loop of the CV pipeline by using human participants to discover mid-level discriminative features.

Amazon Mechanical Turk (AMT) workers filter groups of cropped image patches to identify clusters

that have strong visual and semantic similarity. We show that SVMs trained from human-defined dis-

criminative patches outperform the patch classifiers discovered without user participation by Singh et al.

and Doersch et al. [16, 72].

The first part of Chapter 4 shows that the crowd is capable of training classifiers for coherent local-

ized visual events. We use these crowd-created local element classifiers as mid-level features in a scene

classification pipeline. In the second part of Chapter 4, we use the crowd to create fine-grained object

and part classifiers from unlabeled image datasets.

Crowd-driven Active Learning

In the second part of Chapter 4, we examine a typical problem for users of computer vision. An end user,

John, has access to a large set of images. John wants to search these images for a specific visual event,

and begins his search from a positive example image. John’s use case is difficult problem for state of the

art recognition and detection systems because it requires contextual affordances and attributes. Obtaining

large training sets for a variety of these semantic attributes is challenging. There are an endless supply

of possible attributes to chose from. This dissertation addresses how researchers can narrow their efforts

to the attributes that are most important to humans.

Michelle, a casual bird spotter, presents another unsolved problem to state of the art systems. Michelle

wants to use computer vision to identify a bird that is in an unusual pose, is a juvenile or female, or is

a new species to existing classification systems. Classifying bird species is a well studied problem in

the literature due to the high-quality annotations available for 200 bird species in the CUB dataset [80].

However, systems trained on this type of dataset cannot recognize new species on the fly and have well

known issues with identifying juvenile, female, and atypically posed birds which may not look like the

more distinctive and archetypal male birds. This dissertation also addresses incorporating end-users like

Michelle directly in the process of creating novel event detectors.
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Figure 1.3: Output of a collaborative classifier initialized with a single user selected example.

As demonstrated in Chapter 2, a major obstacle in human-CV interaction is the overhead of collect-

ing a trustworthy set of annotations for a set of images. Chapter 2 shows that crowd workforces can

successfully label large datasets, significantly reducing the labeling burden on the researcher. Unfortu-

nately, this process severely restricts the possibility for end-user involvement. The objects and categories

to annotate must be defined in advance. A quality control system needs to be constructed to train and

monitor the crowd workers. There is no doubt that this process is the gold standard for creating a ground

truth dataset necessary for benchmarking new vision technologies. The SUN Attribute dataset we create

in Chapter 2 attains high label reliability by filtering and training the crowd workers [56, 61]. However,

we claim that a system can make approximations in this process in order to enable dynamic, flexible

end-user interaction with the vision system.

Chapter 4 introduces the Tropel system which enables non-technical users to create arbitrary visual

detectors without first annotating a training set. These non-technical users are experts at identifying

what they are searching for but may not have the technical skill to implement a CV system. The primary

contribution of this chapter is a crowd active learning pipeline that is seeded with only a single positive

example and an unlabeled set of training images. We examine the crowd’s ability to train visual detectors

given severely limited training themselves.

Chapter 4 presents a series of experiments that reveal the relationship between worker training,

worker consensus and the average precision of detectors trained by crowd-in-the-loop active learning.

In order to verify the efficacy of our system, we train detectors for bird species that work nearly as well

as those trained on the exhaustively labeled CUB 200 dataset at significantly lower cost and with little

effort from the end user. To further illustrate the usefulness of our pipeline, we demonstrate qualitative

results on unlabeled datasets containing fashion images and street-level photographs of Paris. By making
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a small compromise on the perfection of the supervised annotations, our system produces an unlimited

range of visual classifiers from wholly unlabeled images for far less cost than annotating a gold standard

dataset for only predefined categories.

1.4 Evaluation

The claims we set forth in the abstract and earlier in this chapter require evaluation against traditional

benchmarks and demonstration in novel contexts. Below we outline the evaluation procedures used in

this dissertation.

Scene Classification

In Chapter 2, we argue that the crowd can be used to discover discriminative visual attributes from

unlabeled scene images. To validate that claim, we present the first large-scale scene attribute database.

First, we perform crowdsourced human studies to find a taxonomy of 102 discriminative attributes. We

discover attributes related to materials, surface properties, lighting, affordances, and spatial layout.

Next, we build the SUN Attribute Database on top of the diverse SUN categorical database [83]. We

employ AMT workers to annotate attributes for 14,140 images from 707 scene categories. We perform

numerous experiments to study the interplay between scene attributes and scene categories. We train and

evaluate attribute classifiers and then study the feasibility of attributes as an intermediate scene repre-

sentation for scene classification and zero shot learning. We show that when used as features for these

tasks, low dimensional scene attributes can compete with or improve on the state of the art performance.

In Chapter 4, we use human participants to discover mid-level discriminative features. To verify the

discriminativeness of the crowd-created mid-level features, we also use a scene classification benchmark.

We show that SVMs trained from human-defined discriminative patches outperform the patch classifiers

discovered by Singh et al. and Doersch et al. [16, 72] when used as features for classification on the 15

scene dataset [44].

Attribute Classification

In both Chapters 2 and 3, we show that attribute classification is a challenging computer vision problem.

In both chapters we present attribute classification results, establishing baselines for both scene and

object attribute recognition. Because the SUN Attribute dataset was created using exhaustive labeling
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and the MS COCO Attribute dataset was labeled using the ELA, there is the concern that the object-

attribute pairs of the second dataset will be less varied and interesting than the first. To prove otherwise,

in Chapter 3 we demonstrate that our ELA labeled dataset is similarly diverse and surprising as the

exhaustively labeled attribute dataset. Experiments in Chapter 3 show that a mulilabel CNN trained

on an ELA-created dataset has similar performance to classifiers trained on exhaustively labeled data.

Furthermore, experiments in Chapter 3 show that our attribute classifiers generalize well across object

classes.

Cost Comparison with Canonical Methods

An added advantage of ELA method of Chapter 3 and the crowd-based active learning system of Chap-

ter 4 is the economic efficiency of these pipelines. Chapter 3 presents extensive analysis of the trade-offs

between label coverage and cost savings for the ELA. Chapter 4 has a side by side comparison of the

cost of creating bird classifiers using our pipeline versus the cost for annotating the CUB 200 dataset.

In Chapter 3 we provide our heuristics for determining how and when to spend money on label

annotation. The MS COCO Attributes dataset is created without making ‘visual’ approximations, e.g.

using active learning for dataset creation, as we do in Chapter 4. This choice may limit our cost savings,

but we believe our dataset will be useful for training novel algorithms in a way datasets collected with

active learning cannot be.

Fine-Grained Object Detection

The primary contribution of Chapter 4 is a crowd active learning method that is seeded with only a single

positive example and an unlabeled set of training images. In a sense, a user trains the crowd with a single

example and the crowd, in an active learning setting, then provides the hundreds of positive and negative

training examples necessary for an accurate detector. We envision this approach being useful for end-

users who want to detect arbitrary objects, parts, attributes (or combinations thereof) for which there is

no existing labeled database. In order to verify the efficacy of our approach, we use this crowd-based

active learning pipeline to train detectors for 200 bird species. We show that these detectors work nearly

as well as those trained on the exhaustively labeled CUB 200 dataset. We also demonstrate qualitative

results on a new unlabeled fashion dataset and street-level photographs of Paris.



Chapter 2

Crowd Labeling

One of the core challenges of computer vision is understanding the content of a scene. Often, scene

understanding is demonstrated in terms of object recognition, 3d layout estimation from multiple views,

or scene categorization. In this chapter we instead reason about scene attributes – high-level properties

of scenes related to affordances (‘shopping’, ‘studying’), materials (‘rock’, ‘carpet’), surface properties

(‘dirty’, ‘dry’), spatial layout (‘symmetrical’, ‘enclosed’), lighting (‘direct sun’, ‘electric lighting’), and

more (‘scary’, ‘cold’). We describe crowd experiments to first determine a taxonomy of 102 interesting

attributes and then to annotate binary attributes for 14,140 scenes. These scenes are sampled from 707

categories of the SUN database and this lets us study the interplay between scene attributes and scene

categories. We evaluate attribute recognition with several existing scene descriptors. Our experiments

suggest that scene attributes are an efficient feature for capturing high-level semantics in scenes.

2.1 Attribute-based Representations of Scenes

Scene representations are vital to enabling many data-driven graphics and vision applications. There is

important research on low-level representations of scenes (i.e. visual features) such as the gist descrip-

tor [51] or spatial pyramids [43]. Typically, low-level features are used to classify scenes into a single

scene category. For example, a scene could be described by the category label ‘village’ or ‘mountain’.

Category labels can be a useful way to briefly describe the context of a scene. However, there are limi-

tations to using a single category label to try to describe everything that is happening in a scene. In this

chapter, we explore a different approach, attribute-based representation of scenes.

Scene attributes shake up the standard category-based recognition paradigm. Figure 2.1 illustrates

8
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Figure 2.1: Visualization of a hypothetical space of scenes embedded in 2D and partitioned by categories.

the limitations of a strictly category-based description of scenes. Categorical scene representations have

several potential shortcomings: (1) Important intra-class variations such as the dramatic differences be-

tween four ‘village’ scenes can not be captured, (2) hard partitions break up the continuous transitions

between many scene types such as ‘forest’ and ‘savanna’, (3) an image can depict multiple, independent

categories such as ‘beach’ and ‘village’, and (4) it is difficult to reason about unseen categories, whereas

attribute-based representations lend themselves towards zero-shot learning [40, 41].

An attribute-based representation of scenes addresses these problems by expressing variation within

a scene category. Using attributes, we can describe scenes using many attribute labels instead of simple

binary category membership. We can also use attributes to describe new scene categories not seen at

training time (zero-shot learning), which would be impossible with a category-based representation.

It is worth noting that the presence of a particular attribute can be ambiguous in a scene, just like cat-

egory membership can be ambiguous. Scenes only have one category label, though, and with hundreds

of categories (as with the SUN database) the ground truth category is often unclear. But with a large

taxonomy of attributes, most tend to be unambiguous for a particular scene. In this work we largely treat

attributes as binary (either present or not), but when annotators disagree (see Figure 2.7) it tends to be

because the attribute is partially present (e.g. a slightly ‘dirty’ room or a partly ‘indoors’ patio). This

real-valued notion of attribute presence is natural and in contrast to categorical representations where
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Figure 2.2: Hypothetical space of scenes partitioned by attributes rather than categories. In reality, this space is

much higher dimensional and there are not clean boundaries between attribute presence and absence.

membership is usually strict.

Our work is inspired by attribute-based representations of objects [3, 20, 22–24, 40, 66, 74], faces [39],

and actions [48, 85] as an alternative or complement to category-based representations. Attribute-based

representations are especially well suited for scenes because scenes are uniquely poorly served by cate-

gorical representations. For example, an object usually has unambiguous membership in one category.

One rarely observes issue 2 (e.g. this object is on the boundary between sheep and horse) or issue 3 (e.g.

this object is both a potted plant and a television).

In the domain of scenes, an attribute-based representation might describe an image with ‘concrete’,

‘shopping’, ‘natural lighting’, ‘glossy’, and ‘stressful’ in contrast to a categorical label such as ‘store’.

Figure 2.2 visualizes the space of scenes partitioned by attributes rather than categories. Note, the at-

tributes do not follow category boundaries. Indeed, that is one of the appeals of attributes – they can

describe intra-class variation (e.g. a canyon might have water or it might not) and inter-class relation-

ships (e.g. both a canyon and a beach could have water). As stated by Ferrari and Zisserman, “recogni-

tion of attributes can complement category-level recognition and therefore improve the degree to which

machines perceive visual objects,” [24].

In order to explore the use of scene attributes, we build a dataset of scene images labeled with a
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large vocabulary of scene attributes. Later sections in this chapter describe the creation and verification

of the SUN attribute database in the spirit of analogous database creation efforts such as ImageNet [10],

LabelMe [68], and Tiny Images [75].

A small set of scene attributes was explored in Oliva and Torralba’s seminal ‘gist’ paper [51] and

follow-up work [52]. Eight ‘spatial envelope’ attributes were found by having participants manually par-

tition a database of eight scene categories. These attributes such as openness, perspective, and depth were

predicted using the gist scene representation. Greene and Oliva show that these global scene attributes

are predictive of human performance on a rapid basic-level scene categorization task. They argue that

global attributes of the type we examine here are important for human perception, saying, “rapid cate-

gorization of natural scenes may not be mediated primarily though objects and parts, but also through

global properties of structure and affordance,” [29]. In this context ‘affordance’ is used to mean the

capacity of a scene to enable an activity. For example, a restaurant affords dining and an empty field

affords playing football.

Russakovsky and Fei-Fei identify the need to discover visual attributes that generalize between cat-

egories in [66]. Using a subset of the categories from ImageNet, Russakovsky and Fei-Fei show that

attributes can both discriminate between unique examples of a category and allow sets of categories to

be grouped by common attributes. In [66] attributes were mined from the WordNet definitions of cate-

gories. The attribute discovery method described in this chapter instead identifies attributes directly with

human experiments. In the end we discover a larger set of attributes, including attributes that would be

either too common or too rare to be typically included in the definition of categories.

More recently, Parikh and Grauman [54] argue for ‘relative’ rather than binary attributes. They

demonstrate results on the eight category outdoor scene database, but their training data is limited –

they do not have per-scene attribute labels and instead provide attribute labels at the category level (e.g.

highway scenes should be more ‘natural’ than street scenes). This undermines one of the potential ad-

vantages of attribute-based representations – the ability to describe intra-class variation. In this chapter

we discover, annotate, and recognize 15 times as many attributes using a database spanning 90 times as

many categories where every scene has independent attribute labels.

Lampert et al. demonstrate how attributes can be used to classify unseen categories [40]. Lampert

et al. show that attribute classifiers can be learned independent of category, then later test images can

be classified as part of an unseen category with the simple knowledge of the expected attributes of the

unseen category. This opens the door for classification of new categories without using visual training
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examples to learn those unseen categories. In Section 2.6 we examine the performance of our scene

attributes for zero-shot learning by recognizing test images from categories in our dataset without seeing

visual examples for those scene categories.

Our scene attribute investigation is organized as follows. First, we derive a taxonomy of 102 scene

attributes from crowd-sourced experiments (Section 2.2). Next, we use crowdsourcing to construct our

attribute-labeled dataset on top of a significant subset of the SUN database [83] spanning 707 categories

and 14,140 images (Section 2.3). We visualize the distribution of scenes in attribute space (Section 2.4).

We train and test classifiers for predicting attributes (Section 2.5). Furthermore, in Section 2.6 we

explore the use of scene attributes for scene classification and the zero-shot learning of scene categories.

We compare how scene classifiers derived using scene attributes confuse scene categories similar to how

human respondents confuse categories. This chapter is based on research originally presented in a CVPR

conference publication [57] and a longer, more detailed IJCV journal publication [61].

Since the original release of the SUN Attribute database there have been several interesting studies

which use it. Zhou et. al demonstrate state of the art performance for scene attribute recognition and

scene classification with the Places database [86]. In their paper, Zhou et. all introduce a very large

scene dataset containing over 7 million scene images. This dataset enables the authors to train new Con-

volutional Neural Network (CNN) features that outperform earlier systems on scene-centric recognition

tasks including scene attribute recognition.

The SceneAtt dataset expands the SUN Attribute dataset by adding more outdoor scene attributes [81].

The scene attributes discovered in later sections of this chapter are also used to support several different

kinds of in-the-wild recognition systems. Kovashka et al. use the SUN attributes in their pipeline to im-

prove personalized image search [35]. Zhou et al. use the SUN attributes as features for identifying the

city in which an image was taken in [87]. Mason et al. and our own IJCV paper on the SUN attributes

use the attributes as input to novel image captioning pipelines [50, 61].

These are some of the largest and most successful projects that build on or take inspiration from the

SUN Attribute dataset. In the next sections, we will introduce readers to the scene attributes that helped

to push forward research in scene and attribute understanding.
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(a) Open-ended description User

Interface

(b) One vs. One Comparison User

Interface

(c) Two vs. Two Comparison User Inter-

face

Figure 2.3: Attribute Collection UIs. These are examples of the Mechanical Turk user interfaces used to collect

scene attributes.

2.2 Building a Taxonomy of Scene Attributes from Human De-

scriptions

Our first task is to establish a taxonomy of scene attributes for further study. The space of attributes is

effectively infinite but the majority of possible attributes (e.g., “Was this photo taken on a Tuesday”,

“Does this scene contain air?”) are not interesting. We are interested in finding discriminative attributes

which are likely to distinguish scenes from each other (not necessarily along categorical boundaries). We

limit ourselves to global, binary attributes. This limitation is primarily economic – we collect millions of

labels and annotating binary attributes is more efficient than annotating real-valued or relative attributes.

None-the-less, by averaging the binary labels from multiple annotators we produce a real-valued confi-

dence for each attribute.

To determine which attributes are most relevant for describing scenes we perform open-ended image

description tasks on Amazon Mechanical Turk (AMT). First we establish a set of ‘probe’ images for

which we will collect descriptions. There is one probe image for every category, selected for its canonical

appearance. We want a set of images which is maximally diverse and representative of the space of

scenes. For this reason the probe images are the images which human participants found to be most

typical of 707 SUN dataset categories [19].

We initially ask AMT workers to provide text descriptions of the individual probe images. From

thousands of such tasks (hereafter HITs, for human intelligence tasks) it emerges that people tend to

describe scenes with five types of attributes: (1) Materials (e.g. cement, vegetation), (2) surface proper-

ties (e.g. rusty) (3) functions or affordances (e.g. playing, cooking), (4) spatial envelope attributes (e.g.

enclosed, symmetric), and (5) object presence (e.g. cars, chairs). An example of the open-ended text

description UI is shown in Fig. 2.3a.
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Figure 2.4: Scene Attributes. A word cloud of all the scene attributes where the area of the word is proportional to

its popularity in the dataset. 1

Within these broad categories we focus on discriminative attributes. To find such attributes we de-

velop a simplified, crowd-sourced version of the ‘splitting task’ used by [51]. The simplest UI for that

task is shown in Fig. 2.3b. Unfortunately, asking crowd workers to describe the difference between two

images resulted in overly specific descriptions of the contents of a particular image. For example, in

Fig. 2.3b the worker correctly stated that there is a red sweater in one image but not in the other. That is

not helpful for our task because ‘red sweater’ does not describe the scene.

To overcome that problem, we show AMT workers two groups of scenes (Fig. 2.3c). We ask workers

to list attributes of each type (material, surface property, affordance, spatial envelope, and object) that are

present in one group but not the other. The images show typical scenes from distinct, random categories.

Such attributes would not be broadly useful for describing other scenes. We found that having two

random scene images in each set elicited a diverse, broadly applicable set of attributes.

The attribute gathering task was repeated over 6000 times. From the thousands of raw discriminative

attributes reported by participants we manually collapse nearly synonymous responses (e.g. dirt and soil)

into single attributes. We omit attributes related to aesthetics rather than scene content. For this study we

also omit the object presence attributes from further discussion because prediction of object presence,

i.e. object classification, has been thoroughly investigated (Additionally, the SUN database already has

dense object labels for most scenes). Our participants did not report all of the spatial envelope attributes

1Word cloud made using the software available at www.wordle.net by Jonathan Feinberg.
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found by [51], so we manually add binary versions of those attributes so that our taxonomy is a superset

of prior work. In total, we find 38 material, 11 surface property, 36 function, and 17 spatial layout

attributes. Attributes which were reported in less than 1% of trials were discarded.

2.3 Building the SUN Attribute Database

With our taxonomy of attributes finalized we create the first large-scale database of attribute-labeled

scenes. We build the SUN attribute database on top of the existing SUN categorical database [83] for

two reasons: (1) to study the interplay between attribute-based and category-based representations and

(2) to ensure a diversity of scenes. We annotate 20 scenes from each of the 717 SUN categories. Of the

full SUN database, which has over 900 categories, only 717 contain at least 20 instances. Our goal is

to collect ground truth annotations for all of the 102 attributes for each scene in our dataset. In total we

gather more than four million labels. This necessitates a crowdsourced annotation strategy and we once

again utilize AMT.

The Attribute Annotation Task. The primary difficulty of using a large, non-expert workforce is

ensuring that the collected labels are accurate while keeping the annotation process fast and econom-

ical [73]. From an economic perspective, we want to have as many images labeled as possible for the

lowest price. From a quality perspective, we want workers to easily and accurately label images. We

find that particular UI design decisions and worker instructions significantly impacted throughput and

quality of results. After several iterations, we choose a design where workers are presented with a grid

of 4 dozen images and are asked to consider only a single attribute at a time. Workers are asked to click

on images which exhibit the attribute in question. Before working on our HITs, potential annotators are

required to pass a quiz covering the fundamentals of attribute identification and image labeling. The

quiz asked users to select the correct definition of an attribute after they were shown the definition and

example pictures. Users were also graded on how many images they could identify containing a given

attribute. The quiz closely resembled the attribute labeling task. An example of our HIT user interface is

shown in Figure 2.5.

Even after the careful construction of the annotation interface and initial worker screening, many

workers’ annotations are unreasonable. We use several techniques to filter out bad workers and then

cultivate a pool of trusted workers:

Filtering bad workers. Deciding whether or not an attribute is present in a scene image is sometimes

an ambiguous task. This ambiguity combined with the financial incentive to work quickly leads to sloppy
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Figure 2.5: Annotation interface for AMT workers. The particular attribute being labeled is prominently shown

and defined. Example scenes which contain the attribute are shown. The worker can not scroll these definitions

or instructions off of their screen. When workers mouse over a thumbnail a large version appears in the preview

window in the top right corner.

(a) The total number of labels completed by

each worker.

(b) The average time (sec) each worker spent

on a HIT of image labels.

Figure 2.6: These plots visualize our criteria for identifying suspicious workers to grade. Figure 2.6a shows the

heavy-tailed distribution of worker contributions to the database. The top workers spent hundreds of hours on our

HITs. The red line in plot 2.6b demarcates the average work time across all workers, and the blue lines mark the

positive and negative standard deviation from the mean. Work time statistics are particularly useful from identifying

scam workers as they typically rush to finish HITs.
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annotation from some workers. In order to filter out those workers who performed poorly, we flag HITs

which are outliers with respect to annotation time or labeling frequency.

Some attributes, such as ‘ice’ or ‘fire’, rarely appear and are visually obvious and thus those HITs

can be completed quickly. Other attributes, such as ‘man-made’ or ‘natural light’, occur in more than

half of all scenes thus the expected completion time per HIT is higher. We use the behavioral trends

shown in if Fig. 2.6 to help filter out poorly performing workers. We only use workers who give higher

quality labels. This choice is supported by research such as [42] where good workers were shown to be

faster and more accurate than the average of many workers.

Cultivating good workers. The pay per HIT is initially $0.03 but increases to $0.05 plus 10% bonus

after workers have a proven track record of accuracy. The net result of our filtering and bonus scheme

is that we cultivate a pool of trained, efficient, and accurate annotators as emphasized by [6]. In general,

worker accuracy rose over time. We cull over one million poorly done early annotations from the final

dataset. Worker accuracy improved over time as the workers who did not follow instructions were culled

from the pool of workers who were offered the opportunity to complete HITs.

After labeling the entire dataset once with the general AMT population, we identify a smaller group

of 38 trusted workers out of the ⇠800 who participated. We repeat the labeling process two more times

using only these trusted workers. We repeat the labeling process in order to obtain consensus as the pres-

ence of some of the scene attributes may be a subjective decision. No worker is allowed to label the same

image for the same attribute more than once. The idea of finding and heavily utilizing good workers is

in contrast to the “wisdom of the crowds” crowdsourcing strategy where consensus outweighs exper-

tise. our choice to utilize only workers who give higher quality labels is supported by recent research

such as [42] where good workers were shown to be faster and more accurate than the average of many

workers. Figure 2.6 shows the contributions of all workers to our database.

Figure 2.7 qualitatively shows the result of our annotation process. To quantitatively assess accuracy

we manually grade ⇠600 random positive and ⇠600 random negative AMT annotations in the database.

The population of labels in the dataset is not even (8% positive, 92% negative). This does not seem to be

an artifact of our interface (which defaults to negative), but rather it seems that scene attributes follow a

heavy-tailed distribution with a few being very common (e.g. ‘natural’) and most being rare (e.g. ‘wire’).

We graded equal numbers of positive and negative labels to understand if there was a disparity in

accuracy between them. For both types of annotation, we find ⇠93% of labels to be reasonable, which

means that we as experts would agree with the annotation.
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Figure 2.7: The images in the table above are grouped by the number of positive labels (votes) they received from

AMT workers. From left to right the visual presence of each attribute increases. AMT workers are instructed to

positively label an image if the functional attribute is likely to occur in that image, not just if it is actually occurring.

For material, surface property, or spatial envelope attributes, workers were instructed to positively label images only

if the attribute is present.

In the following sections, our experiments rely on the consensus of multiple annotators rather than

individual annotations. This increases the accuracy of our labels. For each of our 102 attributes, we

manually grade 5 scenes where the consensus was positive (2 or 3 votes) and likewise for negative (0

votes). In total we grade 1020 images. We find that if 2 out of 3 annotations agree on a positive label, that

label is reasonable ⇠95% of the time. Many attributes are very rare, and there would be a significant loss

in the population of the rare attributes if consensus was defined as 3/3 positive labels. Allowing for 2/3

positive labels to be the consensus standard increases the population of rare attributes without degrading

the quality of the labels.

2.4 Exploring Scenes in Attribute Space

Now that we have a database of attribute-labeled scenes we can attempt to visualize that space of at-

tributes. In Fig. 2.9 we show all 14,340 of our scenes projected onto two dimensions by t-Distributed

Stochastic Neighbor Embedding (t-SNE) [76]. Each subplot in Fig. 2.9 highlights the population of all

images with a given attribute.

To better understand where images with different attributes live in attribute space, Fig. 2.8 illustrates
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(a) Enclosed Area (b) Open Area

(c) Sailing/ Boating (d) Transporting Things or People

Figure 2.8: Distributions of scenes with the given attribute. This set of plots highlights the populations of images

with the listed attributes. Each point is represented by their 102-dimensional attribute vector, reduced to a 2D

projection using t-SNE. Grey points are images that do not contain the given attribute. The boldness of the colored

points is proportional to the amount of votes given for that attribute in an image, e.g. darkest colored points have 3

votes. ‘Enclosed area’ and ‘open area’ seem to have a strong effect on the layout of scenes in ”attribute space”. As

one might hope, they generally occupy mutual exclusive areas. It is interesting to note that ‘sailing/ boating’ occurs

in two distinct regions which correspond to open water scenes and harbor scenes.
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where dataset images that contain different attributes live in this 2D version of the attribute feature space.

Figure 2.10 shows the distribution of images from 15 scene categories in attribute space. The par-

ticular scene categories were chosen to be close to those categories in the 15 scene benchmark [43]. In

this low dimensional visualization, many of the categories have considerable overlap (e.g. bedroom with

living room, street with highway, city with skyscraper). This is reasonable because these overlapping cat-

egories share affordances, materials, and layouts. With the full 102 dimensional attribute representation,

these scenes could still be differentiated and we examine this task in Section 2.6.

2.5 Recognizing Scene Attributes

A motivation for creating the SUN Attribute dataset is to enable deeper understanding of scenes. For

scene attributes to be useful they need to be machine recognizable. To assess the difficulty of scene

attribute recognition we perform experiments using the baseline low-level features used for category

recognition in the original paper introducing the SUN database [83]. Our classifiers use a combination

of kernels generated from gist, HOG 2x2, self-similarity, and geometric context color histogram fea-

tures. (See [83] for feature details). These four features were chosen because they are each individually

powerful and because they can describe distinct visual phenomena.

How hard is it to recognize Attributes? To recognize attributes in images, we create an individual

classifier for each attribute using random splits of the SUN Attribute dataset for training and testing

data. Note that our training and test splits are scene category agnostic – for the purpose of this section

we simply have a pool of 14,340 images with varying attributes. We treat an attribute as present if it

receives at least two votes, i.e. consensus is established, and absent if it receives zero votes. As shown in

Figure 2.7, images with a single vote tend to be in a transition state between the attribute being present

or absent so they are excluded from these experiments.

We train and evaluate independent classifiers for each attribute. Correlation between attributes could

make ‘multi-label’ classification methods advantageous, but we choose to predict attributes indepen-

dently for the sake of simplicity.

To train a classifier for a given attribute, we construct a combined kernel from a linear combination

of gist, HOG 2x2, self-similarity, and geometric context color histogram feature kernels. Each classifier

is trained on 300 images and tested on 50 images and AP is computed over five random splits. Each

classifier’s train and test sets are half positive and half negative even though most attributes are sparse

(i.e. usually absent). We fix the positive to negative ratio so that we can compare the intrinsic difficulty
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Figure 2.9: 2D visualization of the SUN Attribute dataset. Each image in the dataset is represented by the pro-

jection of its 102-dimensional attribute feature vector onto two dimensions using t-Distributed Stochastic Neighbor

Embedding [76] . There are groups of nearest neighbors, each designated by a color. Interestingly, while the nearest-

neighbor scenes in attribute space are semantically very similar, for most of these examples (underwater ocean,

abbey, coast, ice skating rink, field wild, bistro, office) none of the nearest neighbors actually fall in the same SUN

database category. The colored border lines delineate the approximate separation of images with and without the

attribute associated with the border.
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Figure 2.10: 2D visualization of 15 scene categories in Attribute Space. 20 images from each of the listed scene

categories are displayed in a 2D t-SNE visualization of attribute feature space. It is interesting to see how some

categories, such as ‘office’, ‘coast’, and ‘forest/broadleaf’ are tightly clustered, while others, such as ‘bedroom’,

‘living room’, and ‘kitchen’ have greater overlap when represented by scene attributes.
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of recognizing each attribute without being influenced by attribute popularity. Figures 2.11 and 2.12 plot

the average precision of classifiers for each attribute, given different positive/negative training example

ratios. For the balanced 50% positive/ 50% negative training set in Fig. 2.11, the average precision across

all attributes is 0.879. The current state of the art method, a CNN trained on the Places database, obtains

an average precision of 0.915 over all attributes [86].

Some attributes are vastly more popular than others in the real world. To evaluate attribute recog-

nition under more realistic conditions, and to make use of as much training data as the SUN attribute

database affords us, we train classifiers on 90% of the dataset and test on the remaining 10%. This means

that some attributes (e.g. ‘natural’ will have thousands of positive examples, and others e.g. ‘smoke’ will

have barely 100). Likewise, chance is different for each attribute because the test sets are similarly

skewed. The train and test instances for each attribute vary slightly because some images have confident

labels for certain attributes and ambiguous labels for others and again we only use scenes with confident

ground truth labels for each particular attribute classifier. Figure 2.12 shows the AP scores for these

large scale classifiers. More popular attributes are easier to recognize, as expected. Overall, the average

AP scores for different types of attributes are similar - Functions/ Affordances (AP 0.44), Materials (AP

0.51), Surface Properties (AP 0.50), and Spatial Envelope (AP 0.62). Average precision is lower than

the previous experiment not because the classifiers are worse (in fact, they’re better) but because chance

is much lower with a test set containing the natural distribution of attributes.

The classifiers used for Fig. 2.12 and the code used to generate them are publicly available.2 The

attribute classifiers trained on 90% of the SUN Attribute dataset are employed in all further experiments

in this chapter.

Attribute Classifiers in the Wild. We show qualitative results of our attribute classifiers in Fig. 2.13a.

Our attribute classifiers perform well at recognizing attributes in a variety of contexts. Most of the at-

tributes with strong confidence are indeed present in the images. Likewise, the lowest confidence at-

tributes are clearly not present. It is particularly interesting that function/ affordance attributes and sur-

face property attributes are often recognized with stronger confidence than other types of attributes even

though functions and surface properties are complex concepts that may not be easy to define visually.

For example the golf course test image in Figure 2.13a shows that our classifiers can successfully iden-

tify such abstract concepts as ‘sports’ and ‘competing’ for a golf course, which is visually quite similar

to places where no sports would occur. Abstract concepts such as ‘praying’ and ‘aged/worn’ are also

2SUN Attribute Classifiers along with the full SUN Attribute dataset and associated code are available at www.cs.brown.

edu/˜gen/sunattributes.html.
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Figure 2.11: Average Precision for Attribute Classifiers, Balanced Training Set. 300 training/ 50 test examples;

training and testing sets have a balance positive to negative example ratio. The AP of chance selection is marked

by the red line. AP scores are often high even when the visual manifestation of such attributes are subtle. This plot

show that it is possible to recognize global scene attributes. Attributes that occur fewer than 350 times in the dataset

were not included in this plot.
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Figure 2.12: Average Precision for Attribute Classifiers, Natural Population Training Set. 90% of the dataset for

training/ 10% for test. All of the scene attributes are included in this plot. Chance is different for every attribute as

they appear with variable frequency in nature. Note that the most difficult to recognize attributes are also the rarest.

Many attributes that are not strongly visual such as ‘studying’, ‘spectating’, or ‘farming’ are nonetheless relatively

easy to recognize.
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recognized correctly in both the abbey and mosque scenes in Fig. 2.13a. Figure 2.13b shows several

cases where the most confidently detected attributes are incorrect.

In earlier attribute work where the attributes were discovered on smaller datasets, attributes had

the problem of being strongly correlated with each other [23]. This is less of an issue with the SUN

Attribute dataset because the dataset is larger and attributes are observed in many different contexts. For

instance, attributes such as “golf” and “grass” are correlated with each other, as they should be. But the

correlation is not so high that a “golf” classifier can simply learn the “grass” visual concept, because

the dataset contains thousands of training examples where “grass” is present but “golf” is not possible.

However, some of our attributes, specifically those related to vegetation, do seem overly correlated with

each other because the concepts are not semantically distinct enough.

Figure 2.13a shows many true positive detections. Somewhat surprisingly, many affordance at-

tributes are often estimated correctly and strongly positively for images that contain them. This may

be because different activities occur in very distinct looking places. For example, scenes for eating or

socializing are distinct from scene for playing sports which are distinct from natural scenes where no

human activity is likely to take place. Unsurprisingly, attributes related to vegetation and the shape of the

scene are also relatively easy to detect. These attributes are common in the dataset, and their classifiers

benefit from the additional training data.

Fig. 2.13b shows false positive detections. False negative detections can be inferred from Fig. 2.13b.

This figure can help us qualitatively understand why attribute recognition may fail. In the first image in

Fig. 2.13b, there is a broken-down blue car in a field grown wild. This somewhat unusual juxtaposition

of a car that looks different from other, working cars in the dataset and a natural-looking scene that

wouldn’t normally contain cars results in the mis-estimation of the attribute ‘swimming’.

The next two images in Fig. 2.13b both fail for reasons of image scale. The images are zoomed in

much closer than other images in the SUN dataset which typically try to capture a whole scene. In the

case of the cat, it results in the cat being mis-identified as a snowy mountain type landscape and the

carpet attribute is not recognized at all.

Figure 2.14 shows the most confident classifications in our test set for various attributes. Many of

the false positives, highlighted in red, are reasonable from a visual similarity point of view. ‘Cold’,

‘moist/ damp’, and ‘eating’ all have false positives that could be reasonably considered to be confusing.

‘Stressful’ and ‘vacationing’ have false positives that could be subjectively judged to be correct - a

crowded subway car could be stressful, and the New Mexico desert could be a lovely vacation spot.
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Test Scene Images Detected Attributes

Most Confident Attributes: vegetation,

open area, sunny, sports, natural light,

no horizon, foliage, competing, railing,

natural

Least Confident Attributes: studying,

gaming, fire, carpet, tiles, smoke, med-

ical, cleaning, sterile, marble
Most Confident Attributes: shrubbery,

flowers, camping, rugged scene, hiking,

dirt/soil, leaves, natural light, vegeta-

tion, rock/stone

Least Confident Attributes: shingles,

ice, railroad, cleaning, marble, sterile,

smoke, gaming, tiles, medical
Most Confident Attributes: eating, so-

cializing, waiting in line, cloth, shop-

ping, reading, stressful, congregating,

man-made, plastic

Least Confident Attributes: gaming, run-

ning water, tiles, railroad, waves/ surf,

building, fire, bathing, ice, smoke
Most Confident Attributes: vertical com-

ponents, vacationing, natural light, shin-

gles, man-made, praying, symmetrical,

semi-enclosed area, aged/ worn, brick

Least Confident Attributes: railroad, ice,

scary, medical, shopping, tiles, cleaning,

sterile, digging, gaming
Most Confident Attributes: vertical com-

ponents, brick, natural light, pray-

ing, vacationing, man-made, pavement,

sunny, open area, rusty

Least Confident Attributes: ice, smoke,

bathing, marble, vinyl, cleaning, fire,

tires, gaming, sterile

(a) Successful Cases. For each query, the most confidently

recognized attributes (green) are indeed present in the

test images, and the least confidently recognized attributes

(red) are either the visual opposite of what is in the image

or they are irrelevant to the image.

Test Images Detected Attributes

Most Confident Attributes: swimming,

asphalt, open area, sports, sunbathing,

natural light, diving, still water, exer-

cise, soothing

Least Confident Attributes: tiles, smoke,

ice, sterile, praying, marble, railroad,

cleaning, medical activity, gaming
Most Confident Attributes: cold, con-

crete, snow, sand, stressful, aged/ worn,

dry, climbing, rugged scene, rock/stone

Least Confident Attributes: medical

activity, spectating, marble, cleaning,

waves/ surf, railroad, gaming, building,

shopping, tiles
Most Confident Attributes: carpet, en-

closed area no horizon, electric/indoor

lighting, concrete, glossy, cloth, work-

ing, dry, rubber/ plastic

Least Confident Attributes: trees, ocean,

digging, open area, scary, smoke, ice,

railroad, constructing/ building, waves/

surf

(b) Failure Cases. In the top image, it seems the smooth,

blue regions of the car appear to have created false posi-

tive detections of ‘swimming’, ‘diving’, and ‘still water’.

The bottom images, unlike all of our training data, is a

close-up object view rather than a scene with spatial ex-

tent. The attribute classifiers seem to interpret the cat as

a mountain landscape and the potato chips bag as sev-

eral different materials - ‘carpet’, ‘concrete’, ‘glossy’, and

‘cloth’.

Figure 2.13: Examples of Scene Attribute Detection.
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Figure 2.14: Top 5 Most Confident detections in Test Set. For each attribute, the top five detections from the test

set are shown. Images boxed in green are true positives, and red are false positives. Examples of false positives,

such as the ‘praying’ examples, show how attributes are identified in images that arguably contain the attribute, but

human annotators disagreed about the attribute’s presence; in this case the false positives were a sacristy, which is

a room for the storage of religious items, and a cathedral pictured at a distance. The false positive for ‘glass’ also

contain glass, although photographed under glancing illumination, which may have caused the human annotators

to mislabel it. For several of the examples, all of the top 5 detections are true positives. The detections for ‘brick’,

‘metal’, and ‘competing’ demonstrate the ability of attribute classifiers to recognize the presence of attributes in

scenes that are quite visually dissimilar. For ‘brick’ and ‘metal’ even the kinds of bricks and metals shown are differ

greatly in type, age, and use case. The false positives in the praying example are an art gallery and a monument.
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Correlation of Attributes and Scene Categories. To better understand the relationships between

categories and attributes, Table 2.1 lists a number of examples from the SUN 397 categories with the

attribute that is most strongly correlated with each category.

The correlation between the scene category and the attribute feature of an input image is calculated

using Pearson’s correlation. We calculate correlation between the predicted attribute feature vectors

for 50 examples from each of the SUN 397 categories and a feature vectors that indicate the category

membership of the example images.

Table 2.1 has many interesting examples where an attribute is strongly correlated with visually dis-

similar but semantically related categories, such as ‘praying’ for both the indoor and outdoor church

categories. Even attributes that are quite abstract concepts, such as ‘socializing’ and ‘stressful’, are the

most strongly correlated attributes for ‘pub/indoor’ and ‘cockpit’, respectfully. Scene attributes capture

information that is intrinsic to the nature of scenes and how humans interact with them.

2.6 Predicting Scene Categories from Attributes

Predictive Power of Attributes

In this section we measure how well we can predict scene category from ground truth scene attributes.

While the goal of scene attributes is not necessarily to improve the task of scene categorization, this

analysis does give some insight into the interplay between scene categories and scene attributes. In the

next experiment, we used the attribute labels made by the crowd workers as the input feature for scene

classification. This experiment gives us an upper bound for how useful scene attributes on their own

could be for the task of scene classification. In the next sub-section, we will estimate scene attributes for

previously unseen test images and use the estimated scene attributes as features for scene classification.

One hundred binary attributes could potentially distinguish the hundreds SUN dataset scene cate-

gories if the attributes were (1) independent and (2) consistent within each category, but neither of these

are true. Many of the attributes are correlated (e.g. “farming” and “open area”) and there is significant

attribute variation within categories. Furthermore, many groups of SUN database scenes would require

very specific attributes to distinguish them (e.g. “forest needleleaf” and “forest broadleaf”), so it would

likely take several hundred attributes to perfectly predict scene categories.

Figure 2.15 shows how well we can predict the category of a scene with known attributes as we

increase the number of training examples per category. Each image is represented by the ground truth
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Table 2.1: Most Correlated Attributes. A sampling of scene categories from the SUN 397 dataset listed with their most

correlated attribute.

Category Most Corr. Pearson’s

Attribute Corr. Coeff.

airport terminal socializing 0.051

art studio cluttered space 0.039

assembly line working 0.055

athletic field/outdoor playing 0.116

auditorium spectating 0.096

ball pit rubber/ plastic 0.149

baseball field sports 0.088

basilica praying 0.101

basketball court/outdoor exercise 0.074

bathroom cleaning 0.092

bayou still water 0.092

bedroom carpet 0.054

biology laboratory research 0.053

bistro/indoor eating 0.055

bookstore shopping 0.079

bowling alley competing 0.055

boxing ring spectating 0.049

campsite camping 0.053

canal/natural still water 0.080

canal/urban sailing/ boating 0.038

canyon rugged scene 0.110

car interior/backseat matte 0.079

car interior/frontseat matte 0.098

casino/indoor gaming 0.070

catacomb digging 0.081

chemistry lab research 0.067

chicken coop/indoor dirty 0.039

chicken coop/outdoor fencing 0.045

cathedral/indoor praying 0.148

church/outdoor praying 0.088

classroom studying/ learning 0.070

clothing store cloth 0.063

Category Most Corr. Pearson’s

Attribute Corr. Coeff.

cockpit stressful 0.048

construction site constructing/ building 0.041

corn field farming 0.111

cottage garden flowers 0.106

dentists office medical activity 0.070

dining room eating 0.064

electrical substation wire 0.054

factory/indoor working 0.047

fastfood restaurant waiting in line 0.057

fire escape railing 0.051

forest path hiking 0.111

forest road foliage 0.095

fountain running water 0.041

ice skating rink/indoor sports 0.058

ice skating rink/outdoor cold 0.065

iceberg ocean 0.148

lecture room studying/ learning 0.080

mosque/indoor cloth 0.060

mosque/outdoor praying 0.066

operating room sterile 0.058

palace vacationing 0.045

poolroom/establishment gaming 0.068

poolroom/home gaming 0.075

power plant/outdoor smoke 0.074

pub/indoor socializing 0.065

restaurant eating 0.088

restaurant kitchen working 0.058

stadium/ football spectating 0.132

subway station/platform railroad 0.052

underwater/coral reef diving 0.165

volcano fire 0.122

wheat field farming 0.133
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Figure 2.15: Category recognition from ground truth attributes using an SVM. We plot accuracy for the 717

category SUN Attribute dataset and for a subset of 395 categories which roughly match the evaluation of the SUN

397 dataset [83] (two categories present in [83] are not part of the SUN Attribute dataset). We compare attribute-

based recognition to visual recognition by plotting the highest accuracy from [83] (pink dotted line).

attribute labels collected in Sec. 2.3. We compare this to the classification accuracy using low-level

features [83] on the same data set. With 1 training example per category, attributes are roughly twice as

accurate as low-level features. Performance equalizes as the number of training examples approaches 20

per category.

From the results in Fig. 2.15, it is clear that attributes alone are not perfectly suited for scene clas-

sification. However, the performance of our attribute-based classifiers hints at the viability of zero-shot

learning techniques which have access to attribute distributions for categories but no visual examples.

The fact that category prediction accuracy increases significantly with more training examples may be a

reflection of intra-class attribute variations.

Attributes allow for the exploration of scenes using information that is complementary to the cat-

egory labels of those scenes. To the best of our knowledge these experiments are the first to explore

the use of attributes as features for scene classification. As with objects [40], attributes also offer the

opportunity to learn new scene categories without using any training examples for the new categories.

This “zero-shot” learning for scenes will be explored in the next section.

Scene Classification

Attributes as Features for Scene Classification.

Although our attributes were discovered in order to understand natural scenes more deeply than

categorical representations, scene classification remains a challenging and interesting task. As a scene
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Figure 2.16: Scene Category Recognition Rate vs. Number of Training Examples. Classification tested on the SUN

397 dataset [83]. Images that occur in both the SUN 397 and SUN Attribute datasets were omitted from the training

and test sets of the above classifiers.

classification baseline, we train one-vs-all non-linear SVMs with the same low level features used to

predict attributes. Figure 2.16 compares this with various classifiers which instead operate on attributes

as an intermediate representation.

The simplest way to use scene attributes as an intermediate representation is to run our attribute

classifiers on the scene classification training instances and train one-vs-all SVMs in the resulting 102

dimensional space. This “predicted attribute feature” performs better than three of the low-level features,

but worse than the HoG 2x2 feature. 3

In Fig. 2.16 each trend line plots the scene classification accuracy of the associated feature. All pre-

dicted features use the same test/ train sets, and results averaged over several random test/ train splits.

3The images in the SUN Attribute dataset were originally taken from the whole SUN dataset, which includes more than 900

scene categories. Thus, some portion of the SUN Attribute images also appear in the SUN 397 dataset, which is also a subset of

the full SUN dataset. The scene classifiers using low-level and predicted attribute features were trained and tested on the SUN397

dataset minus any overlapping images from the SUN Attribute dataset to avoid testing scene classification on the same images

used to train attribute classifiers.
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When combined with the 4 low-level features originally used in the attribute classifiers, the ‘attributes’

feature clearly improves performance over a scene classifier that only uses low-level features. This fur-

ther supports our claim that attributes are encoding important semantic knowledge. Classification accu-

racy using 15 different low-level features (the same features used in Xiao et al.) plus attribute features at

50 training examples is 40.22%, slightly beating the 38.0% accuracy reported in [83].

The current state of the art performance on the SUN 397 benchmark is 56.2% in the paper introducing

the Places dataset [86]. In [86], Zhou et al. use 150 training examples per category. Figure 2.15 shows

that perfectly estimated attributes by themselves could achieve nearly 30% accuracy with only a tenth

the number of training examples per category. Scene attributes do a great job of category prediction

where there are few training examples available, and CNN-trained features do well with lots of training

examples. Scene attributes capture important generalizable visual concepts.

The ground truth feature classifier in Fig. 2.16 deserves slightly more explanation. The ground truth

attribute feature in Fig. 2.16 is taken from 10 random splits of the SUN Attribute dataset. Thus the

number of test examples available for the ground truth feature are (20 � ntrain), where ntrain is the

number of training set images whose attribute labels were averaged to come up with the attribute feature

for a given category. As the number of training examples increases, the ground truth feature trend line

is less representative of actual performance as the test set is increasingly small. Using ground truth

attributes as a feature gives an upper bound on what attribute features could possibly contribute to scene

classification.

It is important to note that the low-level features live in spaces that may have thousands of di-

mensions, while the attribute feature is only 102-dimensional. Partly for this reason, the attribute-based

scene classifier seems to benefit less from additional training data than the low level features. This makes

sense, because lower dimensional features have limited expressive capacity and because the attribute dis-

tribution for a given category isn’t expected to be especially complex (this is, in fact, a motivation for

zero-shot learning or easy knowledge transfer between observed and unobserved categories).

Learning to Recognize Scenes without Visual Examples.

In zero-shot learning, a classifier is presented (by some oracle) a ground truth distribution of at-

tributes for a given category rather than any visual examples. Test images are classified as the category

whose oracle-annotated feature vector is the nearest neighbor in feature space to the test images’ fea-

tures.

Canonical definitions of zero-shot learning use an intermediate feature space to generalize important
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Figure 2.17: Scene Category Recognition without Visual Examples. The ‘attributes averaged per category’ feature

is calculated by averaging the predicted attribute features of all of the training instances of a given scene category

in the SUN 397 dataset. Test instances are evaluated by selecting the nearest neighbor scene category feature, and

taking that scene category’s label.

concepts shared by categories[40, 53]. Lampert et al. use an attribute representation to enable knowledge

transfer between seen and unseen categories, and Palatucci et al. uses phonemes. In these zero-shot

learning scenarios, it is prohibitively difficult or expensive to collect low-level feature examples of an

exhaustive set of categories. The use of oracle features for those unseen categories is a way to identify

them without collecting enough examples to train a classifier.

The goal of zero-shot learning is to learn a classifier f : X ! Z for a label set Z , where some

categories in Z were not seen during training. This is accomplished by learning two transfer functions,

g : X ! A and h : A ! Z . The set A is an intermediate feature space like attributes or phonemes. Some

oracle provides the labels for the unseen categories in Z using the feature space of A. In traditional zero-

shot learning experiments, instances from the unseen categories in Z are not used to learn the transfer

function g : X ! A. This makes sense if obtaining examples of the unseen categories is difficult as

in [40, 53].

Because we already had a nearly exhaustive set of scene categories in the SUN Attribute dataset, the

attribute classifiers were trained using images that belonged to categories that were held out during the

“zero-shot” testing of the transfer function h : A ! Z . In our “zero-shot” experiment, all of the possible

scene category labels in Z were held out. The experiments conducted using scene attributes as features

in this subsection are an expanded version of traditional zero-shot learning, and we have maintained that

term to support the demonstration of how a scene category can be identified by it’s typical attributes only,

without any visual examples of the category. The entire “zero-shot” classification pipeline in this section

never involved showing the classifier a visual training example of any scene category. The classifier gets

an oracle feature listing the typical attributes of each of the 397 categories.
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Our goal is to show that given some reasonable estimate of a scene’s attributes it is possible to

estimate the scene category without using the low-level features to classify the query image. Scene

attributes are correlated with scene categories, and query scenes can be successfully classified if only

their attributes are known. In this sense our experiment is similar to, but more stringent than canonical

knowledge transfer experiments such as in Rohrbach et al. because the scene category labels were not

used to help learn the mapping from pixel-features to attributes [64].

Despite the low number of training examples (397, one oracle feature per category, for zero-shot

features vs. n⇥ 397 for pixel-level features), the zero-shot classifier shown in Fig. 2.17 performs about

as well as the gist descriptor. It does, however, perform significantly worse than the attribute-based

classifier trained on n examples of predicted attributes shown in Fig. 2.16. Averaging the attributes into

a single “characteristic attribute vector” for each category is quite lossy. In some ways, this supports the

argument that there is significant and interesting intra-category variation of scene attributes.

2.7 Predicting Human Confusions

Scene classification is a challenging task, even for humans. In the previous sections, we show that at-

tributes do not always out-perform low-level features at scene classification. Fig. 2.18 shows the perfor-

mance of several features at another challenging task - predicting human confusions for scene classifi-

cation on the SUN 397 dataset. At this task, attributes perform slightly better than any other feature.

We compare the confusions between features and humans using the scene classification confusion

matrices for each feature. The human classification confusion for the SUN 397 dataset is reported in

[83]. We determined that a feature classifier and the humans had the same confusion if the largest off-

diagonal elements of the corresponding rows of their confusion matrices were the same, e.g. both the

attribute classifier and the human respondents confused ‘bayou’ for ‘swamp’.

In [83], the low-level features that performed the best for scene classification also performed the

best at predicting human confusions. Here we demonstrate that although predicted attributes do not

perform as well as HoG 2x2 features at scene classification, they are indeed better at predicting human

confusions.

This result supports the conclusions of [29]. Attributes, which capture global image concepts like

structure and affordance, may be closer to the representations humans use to do rapid categorization of

scenes than low-level image features by themselves.
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Figure 2.18: Comparison to Human Confusions. Using the human scene classification confusions from

[83], we report how often the large incorrect (i.e. off-diagonal) confusion is the same for a given feature

and the human classifiers.

2.8 Conclusions from building the SUN Attribute Dataset

In this chapter, we use crowdsourcing to generate a taxonomy of scene attributes and then annotate

more than ten thousand images with individual attribute labels. We explore the space of our discov-

ered scene attributes, revealing the interplay between attributes and scene categories. We measure how

well our scene attributes can be recognized and how well predicted attributes work as an intermediate

representation for zero-shot learning and image retrieval tasks.

Scene attributes are a fertile, mostly unexplored recognition domain. Many attributes are visually

quite subtle, and new innovations in computer vision may be required to automatically recognize them.

Even though all of our attribute labels are global, many attributes have clear spatial support (materials)

while others may not (functions and affordances). Further experimentation with scene attributes will

lead to better ways of describing scenes and the complicated events that take place in them.



Chapter 3

Scalable Dataset Creation

3.1 Introduction

Objects and scenes may seem like entirely different problems. Scenes are full of sub-events that make

them complicated and tricky to separate into categories, while objects are obvious each of a single

defined category. However, like with scenes object category labels provide a limited approximation of

the human understanding. The categorical object model has several of the same limitations present with

scene categories: (1) We have no way to express intra-category variations, e.g. “fresh apple” vs. “rotten

apple.” (2) A categorical representation alone cannot help us to understand the state of objects relative to

other objects in a scene. (3) The categorical object model indeed prevents researchers from responding

to complex questions about the contents of a natural scene, the same way it did with scenes. The final

limitation in our list is a particular obstacle in Visual Question Answering [2] or the Visual Turing

Test [25].

To alleviate these limitations, we aim to add semantic visual attributes [23] to objects. The space

of attributes is effectively infinite but the majority of possible attributes (e.g., “This man’s name is

John.”, “This book has historical significance.”) are not interesting to us. We are interested in finding

attributes that are likely to visually distinguish objects from each other (not necessarily along categorical

boundaries). In this chapter, we expand on the type of attributes introduced by Farhadi et al. and explore

object attributes that are essential for “common sense reasoning” (as described in [45]) about both inter-

and intra-category variations.

Discriminative visual attributes provide important details about object instances. By creating a dataset

37
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of attribute annotations for objects in the Microsoft COCO (Common Objects in Context) dataset [45],

we enable a broader and deeper understanding of what is happening in the images. In Sec. 3.3, we ex-

plain how we determined which attributes to include in our dataset. To collect attributes for MS COCO,

we implement a crowd-in-the-loop content generation system. Sec. 3.4 illustrates the burden of taking

a naı̈ve approach to attribute labeling. In that section we exhaustively label all of our discovered at-

tributes for a subset of 6500 object instances. This ‘exhaustive’ sub-dataset is then used to bootstrap our

economic labeling pipeline described in Sec. 3.5.

The Microsoft COCO dataset contains 500,000 images and 2M individually annotated objects. Given

the scale of this dataset, it is economically infeasible to annotate all attributes for all object instances. The

Economic Labeling Algorithm (ELA) introduced in Sec. 3.5 intelligently selects a subset of attributes

that is likely to contain all of the positive labels for a novel image. By labeling the attributes most likely

to be positive first, we are able to reduce the number of annotations required without greatly sacrificing

overall label recall. We annotate objects from 29 of the most-populated MS COCO object categories

with nearly 200 discovered attributes.

Currently, our MS COCO Attributes dataset comprises 84,044 images, 188,426 object instances,

196 object attributes, and 3,455,201 object-attribute annotation pairs. Multiple objects are often present

in one image. The objects in the dataset vary widely, from cars to sandwiches to cats and dogs. These

categories are visually distinctive, but have wide ranging intra-category variations.

The images in the MS COCO dataset are more complex than those in many similar datasets – they are

objects and scenes from messy daily life. Objects often occlude or interact with each other, and scenes

may be unusually presented compared to a prototypical example of the corresponding scene category.

This complexity makes collecting an attribute taxonomy a even more challenging task. In Sec. 3.3 we

employ proven techniques, such as text-mining, image comparison tasks, and crowd shepherding, to find

the attributes we later use to label the dataset [5, 13, 18, 56, 65].

Our contribution is straightforward — we obtain attribute labels for thousands of object instances at

a reasonable cost. For the sake of estimating an upper bound on the cost of annotating attributes across

the MS COCO dataset, let us assume several /Users/gen/dissertation/figures/ relating to the number

of annotations and cost per annotation using the widely employed Amazon Mechanical Turk platform

(AMT).

Let’s assume that crowd workers are asked to annotate 50 images per human intelligence task (HIT).
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Our dataset contains approximately 200 visual attributes. For MS COCO Attributes, we annotate at-

tributes for a subset of the total MS COCO dataset, approximately 180,000 objects across 29 object

categories. The cost of exhaustively labeling 200 attributes for all of the object instances contained in

our dataset would be : 180k objects ⇥ 200 attributes) / 50 images per HIT ⇥ ($0.07 pay per HIT +

$0.01 Amazon fee) = $57,600. The pay per HIT was selected using the authors’ previous experience

using AMT. If we annotate each attribute for the top 10% of object instances mostly likely to contain

a particular attribute, the overall annotation cost would drop to a reasonable $6,480. But how do we

discover the most informative and characteristic attributes for the objects in the MS COCO dataset, and

how do we estimate which images are most likely to contain each attribute? We present our answer to

this question in Sec. 3.5.

Every dataset inherently suffers from annotator mistakes which reduce the overall ground truth recall

of the dataset. Hopefully, only a small number of positive or negative examples of a given label are

missed. Our ELA introduces a new source of dataset error. Because we are purposefully annotating only

a subset of the total labels, we are bound to miss some positive examples that would have been found

if the dataset were exhaustively annotated. In Sec. 3.5 we show that it is possible to obtain 80% recall

of exhaustively obtained MS COCO Attribute labels while only asking for 10% of the attributes to be

labeled, and 90% recall if we label 20% of the attributes.

To further verify the quality of the MS COCO Attributes dataset, we explore attribute classification.

In Sec. 3.6, we show that a CNN finetuned on our ELA labeled training set to predict multi-label attribute

vectors performs similarly to classifiers trained on exhaustively labeled instances.

3.2 Related Work

To our knowledge, no attribute dataset has been collected containing both the number of images and the

number of object attributes as our MS COCO Attributes dataset. Existing attribute datasets concentrate

on either a small range of object categories or a small number of attributes.

One notable exception is the Visual Genome dataset, which also aims to provide a dataset of complex

real-world interactions between objects and attributes [38]. Krishna et al. create a dataset with myriad

types of annotations, all of which are important for deeper image understanding. For MS COCO At-

tributes, we focus on making the largest attribute dataset we possibly can. In that regard we have been

able to collect more than double the number of object-attribute pair annotations. MS COCO Attributes

and the Visual Genome dataset together open up new avenues of research in the vision community
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by providing non-overlapping attribute datasets. The dataset collection effort illustrated in this chap-

ter aims to scale up the attribute collection demonstrated in well-cited attribute literature such as the

CUB 200 dataset, the SUN Attribute dataset, Visual Genome, and other important works of attribute

annotation [3, 38, 54, 56, 80].

Initial efforts to investigate attributes involved labeling images of animals with texture, part, and

affordance attributes [22, 23, 40]. These attributes were chosen by the researchers themselves, as the

interesting attributes for animals were clear at the time of publication. MS COCO dataset images are

more complicated than those in Farhadi et al. . They often have object occlusions and complicated

backgrounds. The MS COCO Attributes are more detailed and descriptive than those in earlier datasets.

Other attribute datasets have concentrated on attributes relating to people. Kumar et al. and Liu et

al. introduced datasets with face attributes and human activity affordances respectively [39, 48]. The

influential Poselets dataset labeled human poses and has been crucial for the advancement of human

pose estimation [4].

Vedaldi et al. used a specialized resource for collecting attributes [78]. They collected a set of dis-

criminative attributes for airplanes by consulting hobbyist and expert interest websites. It is possible that

the best method for collecting high-quality attributes is to use a more sophisticated crowd, reserving the

general-expertise crowd to label the dataset. We explore bootstrapping the attribute discovery process

by mining discriminative words from a corpus of descriptive text written by language ‘experts’ — nov-

els and newspapers. Similar methods have been demonstrated successfully in [3, 54, 65]. We use the

descriptive words found in these texts to seed a crowd pipeline that winnows the large variety of seed

words down to the attributes that visually describe the MS COCO objects.

Several datasets have collected attributes for the purpose of making visual search more tractable.

The Whittlesearch dataset contains 14,658 shoe images with 10 instance-level relative attributes [36].

Parikh and Grauman show that predicted attributes can be used to better describe the relative differences

between objects of the same and different categories [55]. Our experiments in the following sections

further the attribute annotation and recognition research begun in those papers by concentrating on

scaling up the size of the attribute dataset.

A number of past projects sought to bootstrap dataset annotation using active learning [1, 9, 60, 79].

While these references demonstrate the usefulness of active learning, we elect not to employ similar

methods. Vijayanarasimhan and Grauman and Patterson et al. show that the crowd in combination with
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active learning can rapidly converge on a visual phenomena. However, these methods result in high pre-

cision classifiers trained on data that may be missing the most visually unusual examples of a particular

visual phenomena. While we seek to annotate this dataset with maximum efficiency, we choose not to

make the visual approximation inherently imposed by an active learning pipeline. We eliminate the pos-

sible bias that would be introduced by using visual classifiers to comb an unlabeled dataset for likely

instances of a given attribute.

Admittedly, our Efficient Labeling Algorithm (ELA) accepts the possible bias that may occur when

we label a subset of the total number of attributes. We determine that it would be of more benefit to

the vision community to have a dataset without the visual bias incurred by any particular classification

system. Section 3.5 describes the trade-offs among visual diversity, label accuracy, and annotation cost.

We identify additional cost-saving annotation strategies by imitating successes in multi-class recog-

nition [12, 14]. Deng et al. define the Hierarchy and Exclusion (HEX) graph, which captures semantic

relationships between object labels [12]. HEX graphs describe whether a pair of labels are mutually

exclusive, overlap, or subsume one or the other. In Deng et al. HEX graphs are used for object clas-

sification. We use the hierarchy of the MS COCO objects to inform our economic labeling algorithm

(ELA), described in Sec. 3.5.

Ultimately, we introduce a large new dataset and a novel way to cheaply collect annotations without

introducing visual bias. The experiments presented in Secs. 3.5 and 3.6 corroborate related work that

shows large scale datasets can be rapidly collected in a manner that is both economically efficient and

robust to annotation noise [67, 77]. Sec. 3.5 reassuringly shows that a dataset collected with the ELA

protocol has similar annotation density as an exhaustively labeled dataset. Finally, our comparison of

two classification paradigms, recognizing attributes individually or in a multilabel setting, reveals that

classifiers trained on our ELA collected data are similarly powerful to classifiers trained on exhaustively

labeled data.

3.3 Attribute Discovery

The first stage of creating the MS COCO Attributes dataset is determining a taxonomy of relevant at-

tributes. For MS COCO Attributes, we search for attributes for all of the object categories contained

under the MS COCO super-categories of Person, Vehicle, Animal, and Food. These categories are per-

son, bicycle, car, motorcycle, airplane, bus, train, truck, boat, bird, cat, dog, horse, cow, sheep, elephant,

bear, zebra, giraffe, banana, apple, orange, broccoli, carrot, hot dog, pizza, donut, cake, and sandwich.
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(a) Attribute Discovery

User Interface (UI).

(b) Exhaustive

Annotation UI.
(c) Economic

Annotation UI.

Figure 3.1: Amazon Mechanical Turk (AMT) Task Interfaces used in the creation of MS COCO Attributes.

We must determine the attributes that would be useful for describing these objects.

Asking Amazon Mechanical Turk (AMT) workers to describe the objects from scratch might result

in terms that do not generalize well to other objects in the same hierarchical group or are too common

to be discriminative, for example ‘orange’ does not help us describe the difference between oranges. To

bootstrap the attribute discovery process, we mine a source of English text likely to contain descriptive

words – the New York Times Annotated Corpus [69]. This corpus contains all of the articles published

by the NYT from 1987–2008. We extract all adjectives and verbs occurring within five words of one of

our object words. This results in hundreds of descriptive words. Unfortunately, not all of these candidate

attributes describe visually recognizable phenomena.

In order to filter the attributes mined from the NYT corpus, and indeed add a few new ones, we design

an AMT Human Intelligence Task (HIT). Our attribute discovery HIT, shown in Fig. 3.1a, encourages

AMT workers to submit visual attributes by asking them to discriminate between two images. In this

experiment, we show workers two randomly selected MS COCO objects from the same category. The

worker types in several words that describe one of the images but not the other. To help focus our workers

and guide them to make better suggestions, we show a random subsampling of the attributes discovered

via the NYT corpus or submitted in previous HITs.

In the end, approximately 300 unique terms were submitted by AMT workers to describe the 29

different categories. The authors manually condensed the combined list of NYT corpus attributes and

AMT worker attributes. Attributes that do not refer to a visual property were also removed, e.g. ‘stolen’

or ‘unethical’. The final attribute list comprises 196 attributes.
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3.4 Exhaustive Annotation

In annotating our attributes we would like to avoid asking redundant questions (e.g. asking if a person

is “sitting” when they’re already labeled as “standing”). To intelligently avoid these situations we need

to understand the correlations among attributes. We first build an exhaustively annotated dataset that has

a ground truth label obtained via the crowd for every possible object-attribute pair. Our exhaustively

labeled dataset serves as a training set for the ELA method introduced in Sec. 3.5. A portion of the

exhaustively labeled set is set aside as a validation set to measure the performance of the ELA.

To create the exhaustively labeled part of the MS COCO Attributes dataset, we employ the annotation

UI shown in Fig. 3.1b for AMT. The object instances in this part of the dataset were chosen as follows:

for all categories we exhaustively annotate 10% of object instances that are larger than 32 ⇥ 32 px.

AMT workers are shown 10 images per HIT and 20 possible attributes subsampled from the total 196.

Workers are asked to check all attributes that apply to the object outlined in white. The attributes are

roughly grouped by type, such as action word, emotion, surface property, etc.

We annotate a total of 20,112 object instances with all 196 attributes (5000 person instances and ap-

proximately 500 instances of every other object). Three different workers annotate each object-attribute

pair. If two or more annotators agree on a positive annotation, we consider that a true positive.

Responding to comments from our workers, we pay $0.10 per exhaustive annotation HIT. In total,

this portion of the dataset cost : 20112 images ⇥ 196 attributes) / avg. 196 annotations per HIT ⇥ ($0.10

pay per HIT + $0.01 Amazon fee) ⇥ 3 workers repeat each annotation ⇡ $6,637. If we continued this

annotation policy to annotate the remaining ‘person’, ‘animal’, ‘vehicle’, and ‘food’ objects from MS

COCO (285k instances), the total annotation cost would be $94,050. Using the ELA, we will be able to

accomplish this task for only ⇠$27,400.

To improve annotation quality, we implement several quality control techniques. We require that

workers complete an annotation quiz in order to begin working on HITs, we identify poor workers using

a statistical evaluation of worker meta-data, and we manually review workers to block those who are

submitting sub-par work. The quiz looks identical to the UI in Fig. 3.1b. The worker is required to score

90% recall of the attributes present in that HIT.
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3.5 Economic Labeling

Attributes in many domains are sparse. With 196 attributes, we find that across all 29 categories, the

average number of positive attributes per object is 9.35. Ideally, we could identify the exact attributes

that are positive for each object and only ask the AMT workers to annotate (or verify) those attributes.

Annotating a new dataset with a huge number of possible attributes would then be relatively inexpensive.

However, we do not possess an oracle capable of identifying the perfect set of attributes to ask about,

and we choose not to use active learning with visual classifiers to avoid bias.

Without the benefit of an attribute oracle, we apply a method of selecting attributes that are likely to

be positive for a given object instance. For an unlabeled object, we calculate the probability that a given

attribute ai is true using Eqn. (3.1). The likelihood of the attribute given the category is the frequency of

that attribute in all observations of that category.

P (ai = 1|y) =
N1

ai,y

Ny

+ ↵ (3.1)

To avoid a zero count for a rare attribute, we augment this probability with the ↵ term explained in

Eqn. (3.2). The value of ↵ depends on the observed population of ai in the hierarchical super-category

containing y, which has K total sub categories. A Beta prior could be applied to the category, or a

hierarchical Beta prior could be used to model the relationship between object category and super-

category. In this initial investigation, we opt for simplicity.

↵ =

PK

x=1 N
1
ai,x

PK

x=1 Nx

(3.2)

Finally, the most likely attribute given the category y is determined by Eqn. (3.3).

ai = argmax
ai2A

P (ai = 1|y) (3.3)

Essentially, our economic labeling algorithm follows these steps: (1) Obtain an exhaustively anno-

tated training set T .( 2) For each object in the unlabed dataset D label the most popular attribute from

T , using Eqn. (3.1). (3) For each partially labeled object in D select the subset of examples from T

that share the labels given to that object. Eqns. (3.1) and (3.2) are slightly changed in this step so that

y represents all object instances of category y that also share previously labeled attributes. (4) Annotate

the attribute determined by Eqn. (3.3). (5) Continue this process until each object in D has at least N
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attributes labeled. This process is more precisely described in Algo. 2.

Input: Dataset D of unlabeled images, fully labeled training set T , labels to annotate A
Output: Labeled dataset D0

1 for Ij 2 D do

2 . Ij is an unlabeled image from D, j 2 {0, ND}
3 while NumLabels(Ij) < N do

4 . Repeat annotation until N labels are acquired

5 DS = MatchingSubset(Ij ,D)

6 if isEmpty(DS) then

7 DS = AltMatchingMethod(Ij ,D)

8 end

9 Qn = SelectAttributeQuery(DS )

10 Ij [n] = Annotate(Qn)

11 end

12 end

13 return D0

Algorithm 1: Economic Labeling Algorithm (ELA)

Our ELA may seem straight forward. There is however one stage of the ELA that presents a problem.

What should be done if the subset of T returned by the function MatchingSubset in Algo. 2 is

empty? We explore four possible alternatives for overcoming the problem of an uninformative subset.

Our four alternative varieties of the MatchingNeighbors method are only used if either the

matching subset is empty or the remaining attributes from the matching subset have no positive labels.

Otherwise, the ELA continues to ask for annotation of the most popular attributes in decreasing order.

For our experiments, we also deemed a matching subset to be “empty” if it contained fewer than 5

matching instances.

The first alternative is the Random method, which randomly selects the next attribute to label from

the set of unlabeled attributes. The second strategy is the Population method, which proceeds to query

the next most popular attribute calculated from the whole labeled set T .

Our third alternative, Backoff, retreats backward through the previously calculated subsets until a

subset with a positive attribute that has not been labeled is found. For example, if a dog instance is

annotated first with ‘standing’ and then with ‘not furry’, there may be no matching dog instances in the

training that have both of those labels. The Backoff method would take the subset of training instances

labeled ‘dog’ and ‘standing’, calculate the second most popular attribute after ‘furry’, and ask about that

second most popular attribute. The Backoff method is similar to the Population method except that the

Population method effectively backs off all the way to the beginning of the decision pipeline to decide

the next most popular attribute.
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The fourth method we explore is the Distance method. This alternative uses the current subset of

annotated attributes as a feature vector and finds the 100 nearest neighbors from the set T , given only

the subset of currently labeled attributes. For example, if a partially labeled example had 10 attributes la-

beled, the nearest neighbors would be calculated using the corresponding 10-dimensional feature vector.

The next most popular attribute is selected from the set of nearest neighbors.

In order to compare these alternative methods, we split our exhaustively labeled dataset into test and

train sets. We use 19k object instances for the training set and 1k object instances for test. The object

instances are randomly selected from all 29 categories. In our simulation, we use the ELA methods to

generate the annotated attributes for the test set. For each object instance in the test set, we begin by

knowing the category and super-category labels. For example, given a test image we might know that it

is a ‘dog’ and an ‘animal’.

We proceed by following the steps of the ELA up to a limit of N attribute queries. We determine

the response to each query by taking the ground truth value from the test set. In this way we simulate 3

AMT workers responding to an attribute annotation query and taking their consensus. After N queries,

we calculate the recall for that instance by comparing the number of positive attribute annotations in the

ELA label vector to the exhaustive label vector. If we use the ELA to label a ‘dog’ instance up to 20

queries and obtain 8 positive attributes, but the ground truth attribute vector for that dog has 10 positive

attributes, then the recall for that instance is 0.8.

We compare the four alternative methods in Fig. 3.2. Each method is tested on 1k object instances,

and the mean recall score averages the recall of all test instances. In all of the plots in Fig. 3.2, the

four methods preform approximately the same for the first 10 attribute queries. This is to be expected

as none of the methods will perform differently until the partially labeled instances become sufficiently

distinctive to have no matching subsets in the training set.

After approximately 10 queries, the methods begin to diverge. The Random method shows linear

improvement with the number of queries. If these plots were extrapolated to 196 queries, the Random

method would achieve a recall of 1.0 at query 196. The other methods improve faster, approaching per-

fect recall much sooner, thus at less expense. The Backoff method initially out-performs the population

method, indicating that at early stages querying the popular attributes from a more specific subset is a

better choice than querying the most popular attributes overall. This distinction fails to be significant

after more queries are answered.

The best performing method is the Distance method. This method comes closer to selecting the
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(a) All Categories

(b) Animals (c) Vehicles

(d) Food (e) People

Figure 3.2: Mean Recall Comparison of Alternative ELA methods. Fig. 3.2a plots the mean recall of the test dataset

alternatively labeled with each ELA method and stopped for a range of query limits. All categories were included

in this comparison. The Distance method is the clear winner, obtaining 80% recall for only 20 attribute queries,

approximately 10% of the total number of attributes. The sub-figures above show the mean recall across all test

instances of their type of category. The vehicle categories achieve a higher recall with fewer queries than the animal

categories. This may be due to the smaller subset of attributes relevant to vehicles than to animals. People are more

difficult to label approximately while still achieving high recall, while food is the easiest.
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Figure 3.3: Mean Recall Across all Categories for 50 Attributes. This plot shows the recall of the ELA-Distance

method for annotating 50 randomly selected attributes from the full set of 196. The recall is calculated across all

instances of the exhaustively labeled test set. The attributes are sorted by their popularity in the exhaustively labeled

dataset. A version of this plot showing all attributes is available in Fig. B.3.

best subset of attribute queries both for the full hierarchy and for the animal and vehicle sub-trees. The

success of the Distance method indicates that the most likely next attribute for a given image may be

found by looking at examples that are similar but not exactly the same as a given object.

To further examine the performance of the ELA with the Distance method, we plot a selection of

per attribute recall scores in Fig. 3.3. The attributes in Fig. 3.3 are sorted by ascending population in

the dataset. One would expect the more popular attributes to have higher recall than the less popular

attributes for a lower number of attribute queries. This is not strictly the case however. ‘Stretching’,

for example, is a popular attribute, but does not obtain higher than 0.9 recall until 100 queries. This

indicates that ‘stretching’ is not strongly correlated with other attributes in the dataset. Conversely, even

at 20 attribute queries many of the rarer attributes still have a reasonable chance of being queried.

We also attempt hybrid versions of the methods described above. We repeat the simulation shown

in Fig. 3.2 by first annotating the top 10 most popular attributes, and then continuing with the alternate

methods. In this way we might be able to to discover unusual objects early, thus making our method

more robust. However, the performance of the hybrid methods were barely different than that shown in

Fig. 3.2.
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Attribute Annotation using the ELA

For ELA attribute annotation, we ask workers to label one attribute at a time. We cannot use the UI from

Fig. 3.1b. Instead we ask the AMT workers to select all positive examples of a single attribute for a set

of images from a given category, example shown in Fig. 3.1c. We elect to ask for fewer annotations per

HIT in the ELA stage (50 object-attribute pairs) than in the exhaustive stage (200 object-attribute pairs).

This choice was made to lessen worker fatigue and improve performance. The difference in worker

performance for the exhaustive and ELA HITs is discussed more in the supplemental materials.

Thus far we have collected approximately 3.4M object-attribute pairs. Ultimately, the goal of this

project is to annotated at least 40 attributes for every object instance, thus obtaining an estimated dataset

recal of 90% according to Fig. 3.2a. At this time, we have collected at least 20 attributes for 24,492

objects at a cost of $2351 (⇠ 24k objects ⇥ 20 attributes / 50 attributes per HIT ⇥ 3 repeat workers ⇥

$0.08 per HIT). If we used the exhaustive annotation method, this would have cost $8,082.

A visualization of the collected dataset is shown in Fig. 3.4. The data points in Fig. 3.4 were obtained

by applying a 2D t-SNE dimensionality reduction of the 196-D attribute vectors for each point in the

dataset. If an object was labeled using the ELA and has fewer than 196 attribute labels, the remaining

unlabeled attributes are assumed to be false. Only objects with at least 20 attribute labels are shown in

Fig. 3.4.

Even though this feature representation of the dataset does not contain the object labels, objects of

similar categories are often grouped together. Objects of different categories are near to each other when

they share attributes. Fig. 3.4a qualitatively suggests that our attributes are indeed expressing interesting

inter- and intra-category variations.

In the end, the MS COCO Attributes dataset has a variety of popular and rare attributes. 75% of

attributes have more than 216 positive examples in the dataset, 50% have more than 707, and 25% have

more than 2511. Fig. 3.6 shows some qualitative examples from MS COCO Attributes.

3.6 Attribute Classification

Ultimately, attribute labels are only useful if visual classifiers can be built from them. To verify the de-

tectability of our attributes, we trained 1 vs. All classifiers for each attribute, agnostic of object category.

Fig. 3.7 shows AP scores of 100 randomly selected attribute classifiers.

To train the attribute classifiers, features for each object instance’s bounding box were extracted using
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(a) Sample Instances and their Nearest Neighbors

(b) Exhaustively Labeled

Instances. Cost $6,637.

(c) ELA Labeled

Instances. Cost: $2,351.

Figure 3.4: MS COCO Attribute Dataset show in t-Stochastic Nearest Neighbor Embedding (t-SNE) [76].
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Figure 3.5: t-SNE Visualization of 4 Object Categories in Attribute Space. The 2D t-SNE embedding shown above

marks every point in dataset with a gray circle. All dataset points are instances in the dataset, represented by their

ELA generated attribute vector. This embedding was created without knowledge of the object category for each

instance. However, this plot demonstrates that attributes are discriminative of object category.

Figure 3.6: Examples from MS COCO Attributes. These are positive examples of the listed attributes from the

dataset. Examples such as the man cuddling a horse or the dog riding a surfboard shows how this dataset adds

important context to image that would otherwise be lost by only listing the objects present in an image.

the pretrained Caffe hybridCNN network released with the publication of the Places Dataset [33, 86].

For the features used in these classifiers, we take the output of the final fully connected layer, randomly

subsample 200 dimensions, and apply power normalization as per the recommendations of [63]. We

then train a linear SVM using all available positive and negative examples for that attribute. Chance is

calculated as the ratio of true positives to total training examples for each attribute. To fairly compare
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the AP score of classifiers trained with differing numbers of true positives, we employ a normalized AP

score as suggested by Hoiem et al. [31].

As a counterpoint to recognizing attributes in isolation, we trained a multi-label CNN to simulta-

neously predict all attributes for a novel test image. We created this network by fine-tuning the BVLC

reference network from the Caffe library [33]. Our attribute network uses a sigmoid cross-entropy loss

layer instead of a softmax layer to optimize for multi-label classification, as suggested by previous re-

search in multi-label and attribute classification [28, 30, 71]. The fine-tuning was accomplished with

SGD with momentum slightly higher than the reference net, but with learning rate lower and regulariza-

tion stronger to account for the sparsity of positive labels in the training set.

This network, unlike the SVMs in the previous experiment, is trained with a complete attribute vector

for each object in the train and test sets. Our training and test sets contained all objects in our dataset

with 20 or more labeled attributes. The remaining unlabeled attributes were assumed to be false for this

experiment. With this multi-label CNN, we try to understand if our attribute dataset is useful despite

missing positive labels. We also want to determine if our attributes are capable of generalizing across

object classes.

Fig. 3.7 compares the per attribute AP over the test set predictions from our multi-label CNN to the

1 vs. all SVMs trained independently for each attribute. This plot shows that exploiting the correlations

between attributes often improves classifier performance for the CNN compared to the independent

SVMs, especially for rarer attributes. Over all attributes, the mean AP for the SVMs is 0.35 compared

to our CNN which has a mAP of 0.36. This indicates that the ‘missing’ labels, which we assumed false,

were not detrimental to performance averaged over all attributes. Generally, both types of classifiers are

performing better than chance, indicating that our attributes are recognizable across categories.

For a qualitative demonstration of classifiers trained with our MS COCO Attributes dataset, please

refer to Fig. 3.9.

3.7 Worker Performance

Interestingly, worker performance improves during the ELA annotation. For both exhaustive and ELA

annotation, we record each worker’s agreement with the other workers who annotated the same object-

attribute pairs. We use a worker’s agreement on positive annotations to determine if a worker was doing

a poor job. If a worker frequently misses annotating an attribute that was selected positive by two other

workers, we consider that problematic.
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Figure 3.7: Average Precision vs. Chance. Performance is shown for 100 randomly selected attributes. Attribtues

are sorted in descending order by their population in the dataset. Each yellow square represents an SVM that was

trained to recognize that particular attribute. All SVM training and test sets are composed of consensus AMT labels.

A positive attribute label occurs when 2/3 AMT workers voted ‘true’ for the presence on a given attribute and

0 workers voted for false. Thus, the training and test sets for each attribute SVM are a different size. Each blue

triangle represents the AP for that attribute calculated on the full multi-label test set predictions of our CNN. The

objects in the training set for all classifiers shown are members of the MS COCO ‘train2014’ set, and test instances

are members of the ‘val2014’ set. The ratio of train to test for each SVM is approximately 2-to-1. For the multi-

label CNN, the train/test set sizes were 27k/18k. A version of this figure showing the recognition performance for

all attributes is available in Fig. B.3.
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Figure 3.8: Example Attribute Classifications. In the figure above, images from the MS COCO dataset that were

not part of the MS COCO Attributes set are shown. The objects are identified with either a green or blue bounding

box. Beside the test images, 5 of the most confident attribute detections for that bounding box are listed along with

the SVM confidence score. The attribute classifiers used for this figure correspond to the SVM classifiers in Fig. 3.7.

This figure is a qualitative example of how detected MS COCO Attributes can give a deep and broad description of

the context of the object instance.
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Figure 3.9: Example Attribute Classifications. In the figure above, images from the MS COCO dataset that were

not part of the MS COCO Attributes set are shown. Several positive examples from the test set are shown for 8

attributes. The attribute classifiers used for this figure correspond to the multilabel CNN in Fig. 3.7.

(a) Agreement over all HITs (b) Exhaustive vs. ELA HITs

Figure 3.10: Worker Agreement. In both plots above, each point represents a worker who completed over 50 HITs.

In Fig. 3.10a the “Expert” worker is the author of this dissertation. Fig. 3.10b demonstrates that there is greater

worker consensus when the ELA format HIT is used rather than the Exhaustive format HIT. Workers are able to

agree more often if they are only annotation one attribute at a time.

Both plots in Fig. 3.10 plot the agreement scores of individual workers against the number of HITs

they completed. When workers fell bellow 10% agreement, the authors manually reviewed dozens of the

questionable worker’s HITs. The worker who completed the most hits appears to have a low agreement

score in Fig. 3.10a. This worker was disqualified from doing further HITs, and all their work product

was discarded.
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Figure 3.10b shows that the worker agreement for ELA HITs was much higher than for exhaustive

HITs. This is because the object-attribute pairs presented to workers in the ELA HITs were selected ex-

pressly because they are expected to have positive labels. This means the ELA HITs did not have sparse

occurrence of positive labels, and as a result worker performance improved. Improved worker agreement

numbers also makes it easier to spot poor workers like the worker who has nearly 0% agreement on their

ELA HITs in Fig. 3.10b.

(a) Agreement over Object Attributes (b) Agreement over Scene Attributes

Figure 3.11: Consensus Agreement on both Positive and Negative Labels. In both plots above, each point repre-

sents a worker who completed over 50 HITs. The above plots show how often individual workers agreed with the

consensus. Two trend lines are show, for when the consensus labels were negative and for where they were positive.

Because attributes are sparse, it is much easier for workers to agree with the consensus when the consensus is neg-

ative, i.e. if a worker labeled every attribute negative for all object, their accuracy would be very high. Interestingly,

the workers that disagree more often on negative labels have a higher rate of agreement on positive labels. This

shows that attribute labeling is subjective, and that poor workers can be identified by their rate of agreement with

the majority by comparing consensus agreement on positive and negative ground truth labels.

3.8 Conclusions from building the COCO Attributes Dataset

This chapter introduced an efficient method for labeling a large dataset. The attribute discovery process

demonstrated in this chapter, combined with the ELA, are capable of scaling up the annotation effort

to much larger dataset sizes. Further analysis of alternative selection methods could result in improved

recall for low numbers of attribute queries. The ELA also has the potential for use in other multi-label

annotation cases. This economical annotation method begs to be used on larger dataset annotation ef-

forts.



Chapter 4

Using the crowd to discover features

and train detectors

This chapter introduces two novel systems for employing a crowd to drive classifier and detector cre-

ation. Beginning in Sec. 4.1, we show how the crowd can be used to identify and train mid-level feature

detectors. In Sec. 4.3, the power of the crowd is demonstrated to an even greater effect. The crowd trains

fine-grained part and object classifiers without the benefit of a labeled dataset.

4.1 Crowd-enabled Mid-Level Feature Discovery

Recently, several publications have demonstrated state of the art performance at scene classification us-

ing discriminative patches [16, 34, 72]. These papers introduce different methods for identifying salient

visual elements in the form of mid-sized image patches, and training classifiers to detect the visual phe-

nomena observed in training patches. Singh et al. and Juneja et al. each propose pipelines for training

discriminative patch classifiers, but both employ a library of discovered patches to create “bags of parts”

for scene classification. The methods shown in [34, 72] show state of the art performance compared

to other single features on the MIT Scene 67 dataset. Doersch et al. shows impressive capability to

discriminate between the architecture of different European cities.

The insight of these papers is that scene and object categories can be separated from each other by

observing a small number of visual events that are highly discriminative. Unlike bag of words models,

not all of the locations are equally discriminative – only a sparse set of locations in an image are useful

57
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for determining the category. Detectors trained on discriminative patches can build features that are more

useful for scene classification than directly using low-level features. This would be similar to identifying

only the most discriminatively powerful visual words, and only using those words in the bag of words

codebook. Patches also have the advantage of being larger than the typical visual word, thus enabling

them to capture a visual element that could have higher-level semantic significance.

While there are several proposed methods to discover discriminative patches, [34, 72], we examine

an interesting alternative to the often time consuming methods of automatic discriminative patch dis-

covery. We directly ask non-expert humans to select visually and semantically similar image patches.

We train classifiers to recognize the human-identified visual elements. Our motivation stems from the

observation that humans are capable of rapidly discriminating scenes, and thus can be considered an

upper bound on identifying which elements of scenes are the most salient.

Other human-in-the-loop methods such as [5, 26, 37] demonstrate success at visual classification

tasks. Humans (often non-expert, crowdsourced humans) are commonly used in vision algorithms at

two stages (a) annotation time, exhaustively annotating a dataset or (b) test time, coupled with a com-

putational method to improve human accuracy and / or reduce human effort. In contrast, we put humans

in the loop at neither annotation time nor test time, but rather at “representation discovery” time. The

humans are directly telling the computer which visual elements should be discriminative. This has some

similarity to part-based annotation of visual phenomena, except that our method does not require any

explicit semantic meaning for the parts. In the experiments of Chapter 4, the humans never see entire

training images, only sets of candidate image patches. Putting humans “in the loop” at this stage in a

recognition algorithm is a novel investigation of incorporating users into the classifier creation process.

Our starting point for building human-in-the-loop patches is the automatic method presented in Singh

et al. We first find candidate patches within the 15 scene dataset [44] using the code of [16, 72]. The

algorithm selects 1200 random patches from each category and for each patch finds its 24 nearest neigh-

bors. Each random patch and its nearest neighbors are a candidate discriminative patch model. Individual

patches are 80x80 pixel windows represented as 2112 dimensional HoG features.

At this point the Singh et al. use an iterative cross-validation method to discover sets of 5 patches

that when used to train a linear SVM result in discriminatively powerful classifiers. Instead of this

computationaly expensive process, we present AMT workers with a page showing a group of 25 nearest

neighbor patches. We create a patch selection task for 400 randomly selected patch groups from each

category in the 15 scene dataset. our user interface is shown in Fig. 4.7.
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Figure 4.1: AMT patch cluster refinement interface. Users are presented with a group of 25 nearest

neighbor patches. These user-selected patches are used to train a model for a discriminative patch.

Using the interface in Fig. 4.7, we obtain 3 user responses for each nearest neighbor group. We

manually examine the user responses to this task and only observe a few spurious responses out of

thousands of HITs. This suggests that this HIT is not attractive to cheating Turkers. We discard redundant

responses where the selected patches are nearly the same and train discriminative patch models from the

remaining responses. For each discriminative patch classifier, the user selected patches are the positive

examples and a large set of randomly selected patches from other categories are the negative examples.

In the AMT UI, the image patch in the top left corner is the center of the cluster. The images patches

following in left-to-right, row-follow-row reading order are the nearest neighbors of increasing distance.

Figure 4.2 is a heat map of which grid locations were most often selected to be part of the final coherent

group. Interestingly, the first nearest neighbor is more popular than the cluster center patch. Understand-

ably, the father away neighbors make it into the final group less frequently.

We obtain consensus responses from the raw data in the following manner: if two or more users agree

that 3 or more patches are visually coherent, that group of 3 or more patches forms the training set for

a discriminative patch model. If a user selects a set of patches that intersect by 2 or fewer patches with

their colleagues’ responses, we consider that the user has identified an independent visual phenomena

and use that response to train a new discriminative patch classifier.
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Figure 4.2: Popularity of images in the corresponding positions on the UI.

In the algorithm used for automatic patch discovery in [72], the models for the discriminative patches

were trained using linear SVMs. Because the pipeline for building patch models from human responses

was hugely faster, we trained the models using linear SVM and sigmoid SVMs.

Qualitative results for the most commonly firing patch detectors for a subset of the scene categories

are show in Fig. 4.3. Subjectively speaking, it is difficult to differentiate which patch classifiers were

made automatically and which were made with the help of the crowd.

After all of the discriminative patches for one of the 15 scene categories are identified, we also use

a different method than [72] to select which discriminative patches to use in our feature library. Singh

et al. suggest ranking the output discriminative patches by the posterior probability that a given patch

will fire in the category from which it was discovered. We use this method to create the features used to

train the scene classifiers. The performance of these classifiers is shown in Fig. 4.4. Instead of ranking

the crowd discovered patches, we simply selected them at random from the available library of patches

discovered from the crowd responses. No ranking was used for the crowd patches.

4.2 Scene Classification with Discriminative Patches

Figure 4.4 shows the performance of scene classification on the 15 scene dataset using automatically dis-

covered and human-in-the-loop discriminative patch models. In the case of human-in-the-loop patches,
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Figure 4.3: Most confident detections by Discriminative Patches on a test set from the 15 scene dataset.

Each row shows the top 5 most confident detections for a discriminative patch discovered for the listed

scene category.

Figure 4.4: Scene Classification Performance of Human and Automatic Patches on the 15 scene dataset.

The training set includes 100 images from each of the 15 categories, and the test set contains 80-90

images from each category. In this plot each trend line shows the performance of a different kind of

discriminative patch. The best performing scene classifier (either �2 or L1 kernel SVMs) are shown for

each different kind of patch. The automatically generated patch models are linear SVMs (see [72]). The

human generated patch models are trained using either linear or RBF kernel SVMs.

we tried both linear and non-linear SVM patch classifiers. Each set of discriminative patch classifier

generates a “bag of parts” histogram for every image which encodes how often a particular patch was
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(a) Scene Category confusions using 150 au-

tomatically discovered patches.

(b) Scene Category confusions using 150

crowd discovered patches.

Figure 4.5: Comparison of Scene Category Confusions made by Automatic and Crowd Patch Classifiers

found. A second SVM is trained to classify images into scene categories based on these “bags of parts”.

we set a detection threshold at a confidence of -1.0, as suggested in [72]. An equal number of patches

are selected from each scene category. Fig. 4.4 shows that the patches discovered using human interven-

tion perform better than the automatically discovered patches for scene classification on the 15 scene

dataset.Overall, the sigmoid kernel crowd patch classifier achieves the best performance at 81.89% ac-

curacy; the linear kernel crowd patch classifier achieves 79.11%, and the automatic patch classifier tops

out at 71.82.

Scene Category Confusions

As in Sec. 2.7, it is important to compare the classification confusions made by the automatically dis-

covered patches and the crowd discovered patches. Figure 4.5 shows the scene category confusions of

the two methods side by side. This figure helps to explain why the automatically discovered patches

were not as successful as the crowd patches. The patch classifiers discovered by the crowd lead to fewer

inter-category confusions. It is interesting to note that the categories most often confused by the crowd

patch classifiers are ‘open country’/‘coast’ and ‘living room’/‘bedroom’. The confusions made by these

classifiers are confusions that humans ourselves could easily make when attempting to distinguish scene

categories.

Classifier Training Costs

Interestingly, our human-in-the-loop patch discovery method is arguably cheaper to implement than the

automatic method. In our experience, it took 300 CPU hours plus 1200 AMT Human Intelligence tasks
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to discover patches for one scene category using our method. It took us roughly 6000 CPU hours to

automatically discover discriminative patches for one category. The human-generated patches method is

approximately 20x faster than the iterative cross-validation method in [72]. Using the default cost of an

Amazon AWS instance ($0.06 per instance per hour) and the cost of our AMT HITs ($0.04 per HIT), it

would cost $66 to discover the human patches and $360 to discover the automatic patches for one of the

15 scene categories. In light of the efficiency and accuracy shown by human patch discovery, we was

inspired to further investigate the use of the crowd inside the loop of classifier training. The following

sections of this chapter show another approach to employing the crowd as a crucial component of a

detection pipeline.

4.3 Tropel: Crowdsourcing Detectors with Minimal Training

Figure 4.6: Top detections from a detector created with one seed example and trained using our Tropel system.

What kind of interaction would most appeal to the budding sartorialist or amateur ornithologist? In

the example of Michelle the bird spotter from Sec. 1.3, Michelle wants to identify a bird species from

one positive example. Besides her example image, Michelle and users like her also have a wealth of

contextual knowledge and ability to train themselves to identify novel concepts. Our initial investigations

in [58, 59] suggest that untrained members of the crowd can easily identify contextually related visual

events with little filtering or quality control.

The simplest interaction for end users like Michelle would be to show the CV system their one novel

example, and in return be presented with a set of images containing ‘similar’ objects. In traditional image

retrieval, this is where the problem is solved and all interaction with the user ends. We contend that this

is only the starting point for a deep and interesting collaboration between consumer and vision system

that will provide a satisfying experience for the user. Figure 4.6 is an example of what a single user

submitted input image would generate with our proposed pipeline.

In the first presentation of detected similar images, the end user may find (1) exactly what they were

looking for among the most confident detections, (2) a small number of detections that are similar to

what they want, or (3) results that are visually similar to their search item but not contextually similar

in the way that they wanted. In this sense the initial detections are an approximation of what a set of
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crowdsourced labels would look like for the user’s search object before a strict quality control system has

been put in place to monitor the crowd annotators. At this point, the user could take from the detections

the visual information they required, or they could alter their annotation/ classifier creation pipeline in

order to produce results that are better for them. After several repetitions of this process, the end user

will posses a set of annotations that are a gold-standard ground truth for their desired visual concept,

and/ or a classifier capable of producing automatic annotations that are a sufficient approximation of

ground truth from the perspective of the end user.

We live in a heavy-tailed visual world. There are visual concepts people encounter frequently (e.g.

‘car’, ‘bird’, ‘flower’) but a long tail of items which occur rarely (e.g. ‘Caspian Tern’, ‘Louis Vuitton

handbag’, ‘abandoned steel mill’, ‘frosted graham cracker cookies’, ‘Sith Lord Halloween costume’,

‘Polynesian wedding ceremony’ etc.). For almost any object type (e.g. ’guitar’) there are hundreds of

fine-grained subtypes that are of interest to some people (e.g. ‘1943 Gibson J-45’, ‘1966 Fender tele-

caster’).

An ambition of the computer vision community is to be able to detect anything in images. This

presents the challenge of trying to collect labeled training data for every conceivable event. There exist

impressive efforts to try and exhaustively annotate everything, e.g. ImageNet [11] in the case of objects,

or to learn from the huge amount of weak supervision available on the internet, e.g. NEIL [7] and

LEVAN [15], or to empower domain experts to curate fine-grained databases, e.g. Visipedia [62].

An alternative (which we adopt) is to admit that we can’t anticipate the desires of all possible end

users and instead only collect annotations as needed for a particular classifier. In this case active learning

is the natural strategy to bypass the exhaustive annotation of a training dataset and instead iteratively

label only those instances which are predicted to be most informative to the final classifier. However,

this can still be tedious for moderately-sized datasets as a user repeatedly waits for the training and

evaluation of each intermediate classifier before offering tens or hundreds of additional annotations.

In this chapter, we examine a scenario where an end user provides what is likely the minimum

amount of supervision for non-trivial tasks – a single training example (e.g. one Puffin head to train a

Puffin head detector). While we have seen rapid increases in recognition performance in recent years,

a single training example is still grossly inadequate to train a reliable detector. On the other hand, the

human visual system is surprisingly good at learning from a single example. Our Tropel (“noisy crowd”

in Spanish) system exploits this gap. The single example provided by the end user is used to train the

crowd who in turn provide hundreds of training examples to train a detector in an active learning setting.
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For a typical detector, a dozen crowd workers will collaborate intermittently over several hours as a

computer vision system mines informative training examples and posts HITs to Amazon Mechanical

Turk to ask for training labels.

In everyday life, people can learn to recognize visual concepts from a verbal description or a single

visual example. To the authors’ knowledge, exploiting this common human ability in the crowd context

has not been addressed in the literature. In this chapter we characterize the crowd’s ability to train

classifiers for rare visual phenomena given minimal training. We create over 200 detectors using the

Tropel pipeline in several different visual domains.

With Tropel, we deliver a system that can create classifiers on demand, without a previously labeled

dataset. This lowers the bar to entry for casual end users. Without specialized knowledge of how to

design detectors for a particular visual domain (clothing, animals, architecture, etc.), users can employ

Tropel to create detectors with minimum startup requirements. With Tropel, we seek to push the limits

of what the minimum initialization can be for detector creation. We use the Tropel system to investigate

how crowd active learning enables users to create useful detectors with the minimum effort or expertise

in either computer vision or the visual domain of interest.

In order to accomplish the goals of the Tropel project, the problems before us are:

1. What is the fewest number of user-submitted training examples required to show the crowd what

they should annotate?

2. How specialized a concept can the crowd be trained to understand given the high turn over of

workers for this type of task?

3. How can the responses of workers be cheaply evaluated and combined?

4.4 Related Work

To the authors’ knowledge, this chapter explores question 1 more directly and extensively than previous

literature. Experiments with Tropel also explore questions 2 and 3 in a novel context.

Obtaining high quality image labels from crowdsourced annotators, who are often untrained and

of unknown expertise, is an open research topic [27, 46, 82]. Active learning has been used to label

objects that are easy for non-experts recognize such as pedestrians and PASCAL Visual Object Classes

[1, 9, 70, 79]. Collins et al. [9] and Vijayanarasimhan and Grauman[79] both use active learning with
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crowdsourced respondents as part of larger pipelines to create labeled datasets and detect the PASCAL

challenge object categories.

However, both of these active learning systems need upwards of a hundred labeled training examples

per category at initialization. The systems described in [1, 9, 79, 82] also require laborious attention to

the crowd workforce. The workers themselves are modeled, measured, solicited or cast out based on

analytics collected by researchers. The goal of [79] was to create detectors for the common objects

of the PASCAL dataset (’bike’, ’sheep’, ’bottle’, etc.). Crowd workers are able to identify this type of

everyday item with little or no training. We explore the broader problem of how to use a crowd to train

detectors capable of successfully identifying anything with the minimum amount of crowd training and

quality control.

Crowd workers have been incorporated in the classifier creation process before. Deng et al. demon-

strated a method for using the crowd to learn discriminative mid-level features for performing K-way

classification on the CUB 200 dataset [13]. Their approach uses a gamified interface to ask workers to

identify the distinguishing elements between two easily confused categories. Deng et al. showed how

non-technical crowd workers could be used to make fine-grained distinctions. While we also demon-

strate results on the CUB 200 dataset, we do not use the ground truth categorical labels at training time

and we are not necessarily interested in K-way image categorization – we aim simply for one detector

from one training example in any visual domain.

The Tropel pipeline employs a large number of workers to answer small, simple-for-humans ques-

tions. Crowd users simply click on images that contain the query object. We require less of the worker

than other successful active learning methods that ask uses to segment the relevant object or draw a

bounding box, such as Vijayanarasimhan and Grauman [79]. However, we are asking the worker to

concentrate on more specialized objects than the PASCAL VOC categories, as in [79].

Research into crowd micro-tasks has recently been described by [8, 18, 47]. Both Little et al. and

Dow et al. show that minimal training helps crowd workers complete tasks more successfully than they

would have been able to without training [18, 47].

In a rigorous investigation, Welinder et al. propose a method for accurately predicting the expertise

and bias of a crowd worker [82] for visual tasks. Unfortunately, the method introduced in [82] assumes

that a labeled validation set is available and it is possible to interact with an individual crowd worker over

a number of questions. In the scenario addressed in this chapter, the training dataset is assumed to be

unlabeled and we have no expectation of retaining a worker for long enough to confidently establish their
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expertise. We investigate several approximations of the Welinder et al. method that improve detector

accuracy over simple majority consensus among the workers. We concentrate on examining how to

exploit the human ability to learn from a small number of examples to alleviate the lack of expertise in

crowd workers.

We believe that Tropel is the first system to exploit the combined efforts of an end-user and the crowd

via active learning. In the next section, we describe the details of the Tropel system and demonstrate its

potential for easy parallelization and cost effective creation of large numbers of detectors.

4.5 Bootstrapping Classifiers

Our pipeline addresses a typical problem for end users. An end user, Jon, has access to a large set of

images. Jon wants to search these images for a specific visual event, and begins his search from a positive

example image. For example, he has a catalog picture of a jacket that he would like to buy. He wants to

search a dataset of fashion images to find outfits where other people are wearing this type of jacket.

Tropel bootstraps detector training for user-specified objects of interest. The full input to Tropel is

a single positive training example, an appropriate unlabeled database to learn from, and optionally a

text label for the concept (e.g. ‘Puffin head’ or ‘stiletto heel’). Later experiments in this section vary the

number of initialization images. Equipped with a set of test objects and corresponding example images,

the operation of the Tropel pipeline is formalized in Algorithm 2.

Input: Dataset D of unlabeled images, items to detect A
Output: Classifiers C for items A

1 A ( item . acquired through consultation with end user

2 Si ( seed exemple of A
3 NN = NearestNeighbors(Si,D) . 200 nearest neighbors of the seed example in D
4 N0, P0 = crowdQuery(NN ) . initial active query, crowd selects Nj negative and Pj positive

images from the set of the seed example’s nearest neighbors

5 C0 = svmTrain( Si [ P0,N0)

6 Dj = D \ {x : x 2 P0 [N0}
7 j = 1 . current iteration counter

8 repeat

9 Qj= sortDetections(Cj ,Dj) . get top 200 detections by Cj in Dj

10 Nj , Pj = N(j�1), P(j�1) [ crowdQuery(Qj) . crowdsourced active query

11 Cj = svmTrain( Si [ Pj, Nj)

12 Dj = Dj \ {x : x 2 Pj [Nj}
13 j+ = 1

14 until convergence()

15 return C,A
Algorithm 2: Crowd Active Learning for Fine-Grained Detectors
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To begin the training process, each classifier is seeded with one user-submitted cropped image of

the given object or part. Initially, our system only possesses the seed example and a set of millions of

training patches that have no associated class labels. In the first stage of crowd training, we ask the crowd

to annotate the first 200 nearest neighbor patches of the seed example (we do not train an initial classifier

because we have no trustworthy negative examples). These 200 nearest neighbor image patches are the

closest patches to the seed examples out of the millions of image patches extracted from all images in the

training set. The nearest neighbors are found using L2 distance in the 200-dimensional DeCAF-derived

[17] feature space used throughout the system. We make the assumption that the nearest neighbor patches

are more likely to contain true positives or negative examples that closely resemble true positives than

randomly sampled patches.

The response to this first active query provides the positive and negative training examples needed

for the first iteration of the classifier. At each iteration of the active learning pipeline we train a linear

SVM.

In the first iteration, where workers are reviewing nearest neighbor patches, and in later iterations,

where workers are evaluating the top classifier detections, we only as workers to look at a maximum of

200 images patches. We would prefer to show more images at a time to collect more training examples,

but obviously this can lead to worker fatigue if we ask them to look at too many images.

Once the first classifier is trained, the next round of active learning can begin. The first iteration

classifier evaluates all of the image patches in the original training set minus any patches that have

already been annotated. Until the detector converges to the ideal detector, the top 200 most confident

detections are likely to contain the strongest misclassifications. Thus, we ask the crowd workers to

evaluate the top 200 detections on the training set. As the iterative retraining approaches convergence,

the top detections are more likely to be correct, but in the initial stages these top detections will provide

hard negatives that rapidly shrink the version space. To easily compare detector improvement, we set

a hard limit for the convergence criteria — 5 active learning iterations. The most confident detections

for each iteration’s classifier are presented to the crowd using the user interface shown in Fig. 4.7. The

crowd we query for the following experiments is from Amazon Mechanical Turk (AMT).

Tropel is meant to be classifier agnostic. We use linear SVMs because they are lightweight to store

and train. The choice of feature or image representation likely has a bigger impact than the final classifier.

At each iteration of the active learning process, untrained crowd workers view a set of “Candidate

Images”. These are the top 200 detections from the current active learning classifier. The patches shown
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Figure 4.7: Active Query User Interface. The UI shown in this figure implements the function crowdQuery() in

Alg. 2. Users click on the image patches they believe are visually and semantically similar to the example images.

The column titled “Candidate Images” is scrollable so that users can view all 200 query images.

are pruned so that none of the patches have an overlap of greater than 0.3. The overlap ratio is defined by

the area of the intersection divided by the union of the two patches. The workers select all of the patches

that they believe match the seed example(s).

The interface in Fig. 4.7 also asks users to self-report their confidence in the accuracy of the se-

lected images patches. The informativeness of this worker-supplied meta-data will be addressed in later

sections.

Three workers independently answer each active learning query. If 2 out of 3 workers agree that a

cropped image patch is a positive or negative case, that crop is added to the positive or negative training

set for the next iteration’s classifier. Crops that are not agreed upon are returned to the set of queryable

images.

In the Performance Comparison section we compare the average precision of detectors created by a

crowd given a range of visual training examples. In the Worker Consensus Protocol Comparison section

we examine the effect of weighting the votes from different workers by several metrics. We also compare

the accuracy of individual workers to their time per hit, number of hits completed, and self-reported

confidence.
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4.6 Experimental Evaluation - CUB dataset

Figure 4.8: Example detections at different iterations of the Tropel pipeline. This figure shows the top 5 detections

of 4 bird head classifiers. The species from left to right are: Green Violetear, Vermillion Flycatcher, Sooty Albatross,

and Gray-crowned Rosy Finch. The first row in each block of images shows the seed examples used to start the

pipeline. The following rows are the top 5 most confident detections on the training set. The different rows show the

top 5 test detections from the first, second and fifth rounds of active learning.

For the purposes of investigating our pipeline, we used the head part annotations that accompany

the CUB 200 dataset [80]. All of the images in this dataset have a head location annotated by a crowd

worker. The larger part of these annotations were verified by experts. We obtained our set of example

seeds by cropping 75 ⇥ 75 pixel head patches centered on those locations. For the fashion item tests

a member of our team manually cropped 10 example patches for 10 different items of clothing and

accessories.

We use a coarse-to-fine sliding window classifier. Tropel poses queries over the set of all sliding

windows in the training set. The minimum window size is 75 ⇥ 75 pixels. Image patches are cropped

at 4 different scales, up to 200 ⇥ 200 pixels. Typical image resolution is 500 pixels per side. The set of

sliding window patches constitutes the training set for our active learning system.

We represent each patch with CNN features calculated using the pretrained DeCAF network from

[17]. This network was trained on ImageNet which contains images of both birds and clothes. None of
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the ImageNet images are in our experiment datasets, which prevents pollution of the test images with

images that were used to train the CNN. We reduce the dimensionality of the DeCAF feature by using

only the first 200 activations from the last fully connected layer as suggested by Razavian et al. [63] when

using a pretrained network on a novel dataset. This dimensionality subsampling is especially helpful for

a detection task where features are computed and stored for millions of sliding windows.

We first evaluate the ability of our system to build detectors for the heads of 200 different bird

species. We compare the performance of our crowd active learning pipeline with a baseline detector.

While our pipeline is designed to train detectors from unlabelled datasets, we use the CUB 200 [80]

dataset to quantify the accuracy of the learned detectors. We train classifiers for the heads of all 200 types

of birds in the CUB 200 dataset, which contains 11,788 images split nearly evenly between training and

test sets. The CUB 200 database contains ground truth part locations for the head of each bird. The seed

examples for each bird head classifier were randomly selected from these labeled parts. Figure 4.8 shows

the output of several bird head detectors at different stages of the Tropel pipeline, illustrating improving

detector performance as the number of training iterations increase.

Figure 4.9: Detector Average Precision at different iterations of the pipeline. Each species has approximately 28

true positives in a dataset of millions of image patches. This plot gives an impression of the improving precision

and recall with increasing iterations. Average Precision, the average value of the precision over the range of recall

from recall = 0.0 to recall = 1.0 for each detector, is used for brevity.
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The box plot in Fig. 4.9 shows the iterative improvement of all 200 bird head detectors. Iterations

2-5 are shown as no classifier is trained during iteration 1. The precision of each detector is calculated

by counting true positives in the 30 most confident detections in the CUB test set. Note that there are at

most 30 positive bird head bounding boxes for any species in the test set. Detections that overlapped by

a ratio of greater than 0.3 were removed from the set of most confident detections to eliminate multiple

detections of the same bird.

Some classifiers drastically increase in accuracy, most improve more modestly, and the bottom 25%

of detectors hardly improve. The detectors that fail to improve are often hindered because those birds

bear striking visual similarity to related species in the species taxonomy, e.g. many type of Sparrows look

strongly similar. This drift to identifying related birds, and thus similar visual phenomena, is discussed

in the Hierarchical Similarity section.

Performance Comparison

First, we compare Tropel to a typical computer vision approach – detectors trained only with trustworthy

annotations and no active learning. The baseline classifier is a linear SVM trained with all the positive

head patch examples in the training set and 10,000 randomly selected negatives. While we refer to these

as ‘baseline’ classifiers, they could be expected to perform better than our pipeline because they train on

crowd annotations that have been cleaned up and verified by experts. All detectors are evaluated by their

detection average precision score on the CUB test set. We calculate detection AP using the PASCAL

VOC standard, with the alteration that detections may be counted as true postives if they have an overlap

ratio of 0.3 instead of the PASCAL threshold of 0.5 [21].

The detection AP scores for the Tropel detectors are plotted against the performance of the baseline

detectors in Fig. 4.12. We also show the performance of crowd classifiers when the workers are given

slightly more training – 5 examples instead of 1. As expected, the AP scores for the detectors with

5 seed examples more closely approach the scores of the ground truth trained detectors. Overall, our

crowd active learning process seeded with one or five training examples approaches the performance

of the traditional detection pipeline. In Fig. 4.12 the average precision scores may appear low, however

it is important to notice the difficulty of this baseline as the linear SVM trained on the fully annotated

training set also has relatively low AP scores.

The points plotted in Fig. 4.12 were obtained as follows: 1) a detector for each of the 200 bird species

was trained using each of the 4 methods, 2) we calculated the average precision for all 800 detectors, 3)
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Figure 4.10: Tropel Detector Average Precision for 200 Bird Species. This plot shows all of the 200 head detectors

sorted by score for each method. Overall, this graph indicates that our methods approach the performance of ground

truth, and more training examples for the crowd leads to higher AP.

for each training pipeline, we took the 200 associated detectors and plotted their AP scores sorted from

worst-to-best performance. For each of the trend lines, the ordering of the plotted detectors is different.

We decided to plot each trend line in strictly ascending order to give the general impression for each

training pipeline of how many classifiers performed badly, average, and well.

Our overall observation is that bird detectors that succeeded had one or more of these traits: 1) the

bird had strong lines and sharp gradients in the head pattern, 2) the original example for the Turkers was

an iconic-looking, well framed image, 3) the bird had no relatives that looked nearly identical.

Figure 4.12 shows that seeding the active learning process with five examples works slightly better

than using a single example. There are two reasons for this – the candidate image patches shown to the

workers in the first iteration are more likely to have positive examples and the human workers themselves

are better able to pick out the positive examples because they have more training examples. That said, the
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difference between one and five examples ends up being fairly small (and critically they both perform

nearly as well as detectors trained on exhaustive ground truth annotations). This raises the question of

whether we could use even less supervision than a single example. Is it possible to train the crowd with

no visual examples?

In a zero example training scenario there is no visual training at all. In our case that could mean a

text label instead of a seed patch. Omitting the seed patch entirely is not viable in our current pipeline

because we would have no reasonable initialization for the active learning. We could resort to showing

random image patches, but for any given concept (e.g. ‘cardinal head’) there would likely be no positive

examples for the crowd users to select and thus it is unlikely they could improve the detector even if they

happen to know the concept.

Still, it is interesting to know what happens if we use the seed example to initialize the active learn-

ing but hide the seed example from the crowd workers. This gives us some indication for how much

‘training’ the humans are getting from a single visual example. For this experiment, we initialize our

pipeline identically to the one-example detectors – one initial seed patch was used to find nearest neigh-

bor patches for the first active query. However, the crowd never sees the seed patch. The crowd workers

are show a text description of what to look for, i.e. the species name. The UI for this zero crowd training

experiment is the UI from Fig. 4.7 with the example image removed. An example of this UI is shown in

Fig. 4.11.

The zero example detectors perform strictly worse than the one example version with the same

initialization, verifying that it was important to ‘train’ the crowd workers instead of expecting them to

know the concept already (See Fig. 4.12). Two notable outliers among the zero shot detectors are the

detectors for the Green Jay and Horned Puffin. The initialization for these birds was unusually good

(because they are distinctive birds) so it is likely that the crowd ‘learned’ what these birds looked like

just by noticing what type of bird dominated the candidate patches. The Green Jay is a particular easy

bird to guess – no other bird in the dataset has a similar distinctive neon green color, and so the workers

who simply clicked on all green birds would have been making accurate selections.

It is important to note that in many low performing cases the appearance of the bird species often

varies greatly for males, females, mating birds, etc. For example the Black Tern changes head color from

black to white with a black eye-patch when the bird enters the mating stage. We could not train workers

for this wide variety of appearance in the one example training setting. The examples for the 5 example

detectors were selected at random from the ground truth head patches, and may not have captured all
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Figure 4.11: User Interface with Zero-Shot learning instructions. This is the interface seen by workers

during the zero-shot training type of active query tasks. In order to give the worker some indication of

what to look for, we specify the species name and part of the bird that we are looking for. No visual

training examples are shown to the worker.

appearance variations.

In some cases in Fig. 4.12 the Tropel detectors seem to be out-performing the baseline (although

usually not by a large margin). To show this more clearly, Fig. 4.12 shows the difference between two

types of Tropel detectors and the baseline detector. In this plot, the difference between the AP score of

the Tropel detector and the baseline detector are plotted. The vertically aligned points are both for the

same bird species. This graph shows that about one third of the 5 example classifiers and one sixth of

the 1 example classifiers in fact have better performance than the baseline. But on average, the baseline

with ground truth training data has an AP of .157 compared to .106 for Tropel with one example.

As an additional experiment, we changed the user training examples to include negative examples.

For each of the 200 bird species, we showed the crowd workers one positive example and 3 negative

examples. The negative examples were selected from other species in the same family, so as to best

show the subtle differences that distinguish one species from its cousin species. Overall this approach

had little to no effect on the average AP score across categories. Table 4.1 shows 5 detectors where

the negative examples helped workers and 5 where the negative examples were unsuccessful. In the

cases where the negative examples didn’t improve performance the workers may have been confused
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Figure 4.12: Difference in Detector Average Precision. Y-axis is the difference in AP score between the Tropel

detector and the baseline SVM detector. The x-axis locations each represent a unique bird species. The classifiers

were sorted from worst-compared-to-baseline to best-compared-to-baseline.

by the fact that the incorrect species birds were visually similar to the correct species. Generally these

unsuccessful cases had very few new positive examples selected by workers.

Comparison to Active Learning Baseline

As an alternative baseline, we also compare Tropel to a canonical active learning pipeline. Our “Active

Learning with an Oracle” baseline uses the same active learning process as Tropel, but instead of crowd

responses uses an oracle to respond to the active queries. The oracle responses are obtained using the

ground truth labels provided with the CUB dataset.

Table 4.2 compares the active learning baseline, the linear SVM with all available labels baseline,

the Tropel detectors, and an active learning baseline where responses were random. From Table 4.2, we

can see that the crowd creates detectors that are on average slightly better than the oracle baseline. This

is likely due to human workers selecting rotated, occluded or otherwise varied examples of the initial

visual concept that are missed by only relying on the pre-existing oracle responses. Overall, the detectors

trained with all of the labeled data do significantly better. This is due to the fact that many bird species

have wide appearance variety that is difficult to capture with only one example. The next section further
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Table 4.1: Crowd Training with Negative Examples. This table compares detector average precision (AP) two types

of crowd worker training. In the left results column, the detectors were trained by workers who were shown both a

positive example of the species and 3 incorrect examples from birds of cousin-species. In the right column, workers

were only shown one positive example.

Average Precision

Bird Species
With Negative Only Positive

Crowd Training Crowd Training

Groove billed Ani 0.12 0.00

Eastern Towhee 0.10 0.01

Least Auklet 0.17 0.06

Purple Finch 0.21 0.12

Painted Bunting 0.58 0.50

Red faced Cormorant 0.00 0.25

Rhinoceros Auklet 0.02 0.13

Sooty Albatross 0.03 0.25

Brewer Blackbird 0.00 0.16

Brown Creeper 0.00 0.26

Table 4.2: Comparison to Active Learning Baseline. Averages are taken over 40 detectors for randomly selected

bird species.

Detector Type Avg. AP Score

Active Learning with Oracle 0.095

Tropel with One Example 0.106

SVM trained on Labeled Dataset 0.157

Active Learning with Random Responses 1.2e-4

Chance 3.9e-4

explores this apparent shortcoming of Tropel.

Hierarchical Similarity

One cause of detector failure on the CUB data set is classifier drift. As observed by Welinder et al. [82],

a non-expert crowd may have an incorrect preconceived notion of an attribute or object. In particular,

Welinder et al. [82] showed that AMT workers confused grebes for ducks. Figure 4.14 shows that while

a similar error is occurring with our detectors, the detection errors occur in a reasonable way. The top

detections of ‘Song Sparrow’ and ‘Caspian Tern’ shown in Fig. 4.14 include the heads of other birds in

the Sparrow and Tern families. The top detections for these two classifiers are failing in a predictable

way given the taxonomy of this problem.

Table 4.3 characterizes the detector drift across all bird head detectors. In the CUB 200 dataset

there are 35 families of birds, such as Sparrows, Terns, Wrens, Cuckoos, etc. All species have family

membership. Table 4.3 shows that for several families, the precision of the detector in the 30 most

confident test detections for the family is much higher than the precision for a particular species’ head
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Table 4.3: Hierarchical Similarity of Top Detections.The precision scores listed above show the ability of some

seemingly low performance detectors to do well at recognizing visually similar bird heads. Precision was calculated

as the number of true positives among the 30 most confident detections on the CUB test set. Please note that for each

species of bird there are approximately 30 true positive examples in the test set. For bird families such as the Gulls,

Sparrows, Terns, and Warblers, the precision of the individual species detectors are low because those detectors are

picking up other, similar looking members of the families. This is shown by the higher family precision scores. This

table demonstrates that when our detectors fail, they do so by drifting to detecting visually and semantically similar

phenomena.

Precision in Top 30 Detections

Bird Species Species Family

Cardinal 0.93 0.93

Green Violetear 0.80 0.87

Horned Puffin 0.77 0.80

European Goldfinch 0.70 0.73

American Goldfinch 0.67 0.67

Cape Glossy Starling 0.60 1.00

Scarlet Tanager 0.60 0.93

Purple Finch 0.57 0.80

Song Sparrow 0.30 0.60

Le Conte Sparrow 0.17 0.80

Tree Sparrow 0.17 0.63

Clay colored Sparrow 0.17 0.63

Field Sparrow 0.27 0.53

House Sparrow 0.13 0.23

White throated Sparrow 0.03 0.77

Lincoln Sparrow 0.03 0.90

Western Gull 0.40 1.00

Ivory Gull 0.43 0.80

Herring Gull 0.17 1.00

California Gull 0.10 1.00

Ring billed Gull 0.10 0.63

Heermann Gull 0.27 0.27

Glaucous winged Gull 0.10 0.83

Slaty backed Gull 0.03 0.60

Artic Tern 0.53 0.90

Elegant Tern 0.13 0.97

Caspian Tern 0.20 0.97

Forsters Tern 0.13 0.97

Least Tern 0.07 0.43

Common Tern 0.10 0.33

Prairie Warbler 0.47 0.90

Bay breasted Warbler 0.33 0.33

Prothonotary Warbler 0.43 0.97

Black and white Warbler 0.33 0.37

Golden winged Warbler 0.23 0.63

Canada Warbler 0.10 0.70

Kentucky Warbler 0.50 0.93

Yellow Warbler 0.27 0.80

Pine Warbler 0.23 0.87

Cape May Warbler 0.03 0.77

Black throated Blue Warbler 0.03 0.13

Mourning Warbler 0.07 0.30
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Figure 4.13: Classifier Drift. The two groups of images above show the seed examples and 20 most confident

detections of the classifiers trained for the heads of the ‘Song Sparrow’ and ‘Caspian Tern’. These classifiers detect

a coherent visual event, but that event is not the same as what is illustrated by the seed examples. The different

sparrows have slightly different feathering patterns and the terns have different beak coloration for example.

Figure 4.14: Classifier Drift Comparison . In this figure, the output from two detectors seeded with the same 5

examples are shown. The output of these two detectors are quite different. The works in Group A created a drifting

classifier that recognizes many different kinds of water birds. Group B created a classifier that successfully identifies

Mallards. This may be explained by the fact that Mallards are not an indigenous species to India, and a significant

number of our workers are located in India.

detector. The detectors are generalizing to a family of bird heads in the same way we would expect

a non-expert human to do. For these particularly fine-grained recognition tasks it is likely that some

domain specific instruction would need to be provided to the crowd (e.g. which key features distinguish

the Sparrow of interest). The results shown in Table 4.3 are encouraging for applications such as image

retrieval where it is important that the most confident results are all or mostly correct.
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Worker Consensus Protocol Comparison

The Tropel system is intended for use on entirely unlabeled datasets. Thus in a typical use case we do

have ground truth that is available for the CUB dataset (which we have used to evaluate the detectors).

When creating detectors with the CUB dataset, we are able to use the gold standard positives to

score the accuracy of our crowd workers. Our embedded gold standard tests include 5 ground truth

positives, all ground truth head patches for the given species, and 5 negatives, which were randomly

selected negative patches from the CUB dataset. The test image patches are randomly interspersed with

the active query images on every human intelligence task (HIT).

We found that assessing worker recall (true positives/(true positives + false negatives)) is a more

informative metric for worker behavior than precision. Selecting only correct examples was easy for

workers but finding all of the positive catch trails was hard. The catch trial recall was an average of 0.318,

and [0.264, 0.338, 0.395, 0.517] across the [25%, 50%, 75%, and 100%] quartiles. For comparison, the

recall of the author of this dissertation over 25 HITs was 0.462.

Some workers are good, some mediocre, and some apathetic in that they never identify any positive

training examples. It would be helpful if we could even approximately determine which workers to

preferentially trust. Tropel seeks to avoid the added burden of collecting extra data to generate catch

trials. Successful existing alternatives, such as Welinder et al. and Ipeirotis et al., require an extended

interaction with a crowd worker to fit parameters to accurately model the workers’ expertise and biases

[32, 82]. The simple worker consensus approaches investigated in this chapter will not lead to dramatic

improvements. However, in keeping with the low-overhead goals of Tropel, we restrict ourselves to work

with the relatively weak metadata collected through our UI without any additional instrumentation or

data collection.

We examine 3 simple mechanisms which all perform a better than simple consensus. Our workers

are ephemeral, and we typically know limited data about them. Across all experiments in this chapter

so far, the average number of unique workers that participated in creating each detector was 11, out of a

possible 12 (4 active queries, with 3 respondents each).

The data easily available to us includes the amount of time a worker spent answering an active query,

how many times that worker has worked for us before, and a self-reported confidence value. In the UI

shown in Fig. 4.7, there is a slider bar at the top of the page. Workers are asked to identify their level of

confidence about their responses by selecting a value between 1 (low) - 5 (high).

To examine how to estimate a worker’s reliability using only these metrics, we created detectors for
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20 randomly selected bird types. For these experiments we ask 9 workers (instead of 3) to respond to

each active query. The workers votes are weighted by each of the three factors or not weighted at all (the

average consensus method). For a patch to be counted as having a true or false label, the margin between

the weighted true or false votes has to be greater than 1/3 of the total of the weighted votes. Patches that

land inside that margin are discarded.

Averaged over the 20 different classifiers, considering the worker’s history with our system was

the most reliable. Considering how long a worker spent on a task and weighting by the worker’s self-

reported confidence both outperform average consensus. Of the three metrics we used, the self-reported

confidence had the strongest correlation with the workers’ own recall, although the correlation coefficient

was still a relatively weak 0.19.

Table 4.4: Weighted Response Strategies. The averaged AP scores for the four response weighting methods. Aver-

ages are taken over 20 randomly selected bird head detectors.

Weighting Strategy Average AP Score

Worker Self-Reported Confidence 0.0898

Time Spent Answering Query 0.0874

Number of Previous Tasks Completed 0.1105

Average Consensus 0.0844

Across all experiments, 1781 workers participated. Workers were from 33 countries, although 1031

were from the United States and 338 from India. On average, workers where paid approximately $2 per

hour.

Cost Comparison

A primary motivation of our pipeline is that it requires relatively few (expensive) trustworthy annota-

tions compared to traditional classifier construction. For example, the CUB dataset has full ground truth

annotations and we estimate the cost of training a classifier for a single item on the CUB training set as

approximately $60. We estimate the cost of labeling the CUB training set for one part as the number of

training images (5994), divided by the number of images shown in each labeling task (25), multiplied by

the number of repeat annotators (5) and the fee for each task ($0.05) [80]. Our estimate does not include

the cost of validating annotations and correcting errors in the CUB dataset, tasks which were completed

by experts in ornithology and trained volunteers.

The cost of training a detector with our system is $0.60, which is the number of rounds of active

queries (4), multiplied by the cost of each query ($0.05) and the number of repeat annotators (3). Note

that the cost of training a classifier with our system does not depend on the number of images in the
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training set, although a larger training set will increase computational training time. Tropel is more

computationally expensive than the baseline method, taking an average of 260 cpu hours to train one

detector. Training a single linear SVM on the CUB training set takes approximately 10 mins. on compa-

rable hardware. The calculation steps in Tropel are embarrassingly parallelizable however.

4.7 Experimental Evaluation - Fashion dataset

Using our crowd-powered Tropel system, we are able to train detectors on a fresh, unlabeled dataset.

To test our pipeline with unlabeled data, we obtain a set of unlabeled images from theSartorialist.com,

which is a website devoted to images of contemporary fashion worn on the street in New York, London,

Milan, Tokyo and Paris. We selected this set of images because they are all taken by a single professional

photographer, thus their quality is high. The environment and pose of the subjects are complex and

unpredictable. All of the images are taken of people walking the streets of the aforementioned cities.

Most pictures contain busy backgrounds and multiple subjects. People are sitting, standing, walking,

and interacting with each other without necessarily paying any attention to the photographer. This gives

us a challenging dataset with which to test our pipeline. This dataset contains 4785 images. A self-

described fashion expert on our team collected the example images for the fashion items using Google

image search.

Figure 4.15 shows the top detections of 10 fashion detectors trained using 5 iterations of our system.

In this case study, the dataset was not divided into test and train. Our goal was to create detectors using

all available data. This case study is similar to the image retrieval problem in that respect.

As the crowd workers selected positive training examples, those image patches and any patches with

an intersection over union (IoU) with the positive patch of 0.5 were removed from the pool of unlabeled

images that could be used in the next active learning iteration. Some image patches that are zoomed out

or shifted versions of the worker selected patches are left in the pool of possible training examples. Our

goal was to make it possible to get a diverse set of patches that show a given positive example at slightly

different perspectives.

Figure 4.15 shows the incremental improvement of several fashion classifiers trained using our sys-

tem. As fashion concepts are more commonly know than fine-grained bird attributes, we observe classi-

fier drift in a larger percentage of the fashion classifiers. In Fig. 4.15, the leggings classifier also returns

skinny jeans, the notch collar classifier returns a peak collar, and the boots classifier returns other types

of shoes in the top 5 detections.
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Figure 4.15: Example detections at different iterations of the pipeline. This figure shows the top 5 detec-

tions of our fashion dataset. Incremental results for the following classifiers are shown: ‘pocket square’,

‘leggings and opaque stockings’, ‘high heel’, and ‘boots and booties’. The first row in each block of im-

ages shows the seed examples used to start the pipeline. The following rows are the top 5 most confident

detections on the held out test set. The rows show the top 5 test detections from the first, fifth, tenth and

final rounds of active training.

Figure 4.16 shows that the most confident detections are quite similar to the worker selected pos-

itives. Where the detectors fail, it is because the dataset didn’t contain many examples of the desired

item, for example women’s shorts or epaulet.

Fig. 4.17a shows a detector that is not particularly successful. We can see that while the most confi-

dent detections for the ‘glasses’ detector does find a number of glasses, many of confident detections are

wrong. The training set for this detector, which contains hundreds of image patches containing glasses,

none the less has many images that are not well aligned and at different magnification levels. This con-

tributes to the glasses classifier performing less well. Basically, the humans did their job well here and
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Figure 4.16: Example detections from 5 fashion concepts. This figure shows the 5 most confident detections of

on our fashion dataset. Results for the following classifiers are shown: glasses, men’s blazer, watch, jacket, strappy

heels, trench coat, women’s shorts, boots, men’s loafers, and epaulet. On the far right, 5 randomly sampled worker

selected positive patches are shown. If the workers selected fewer than 5 positive training examples, all of the

positives are shown. The results of the watch and epaulet detectors are especially interesting as those items are

physically small, thus making them a much harder detection challenge.

the computer vision and learning techniques did not. However, Fig. 4.17b shows a detector that performs

very well. In this example the worker selections are all similarly aligned and cropped. This results in a

detector that has accurate and well-aligned top detections.



85

(a) Detector for ‘Glasses’, trained on fashion image dataset.

(b) Detector for Scissor-tailed Flycatcher, trained on CUB200 dataset.

Figure 4.17: Comparison of Worker selected training examples and detector output.

Runway Fashion

For a comparison of the visual complexity of different attributes, we train our fashion classifiers on

another set of images. our second fashion dataset is 20,000 images, split evenly into test and train sets,

obtained from the New York Times repository of runway images from the major Fashion Weeks of 2012-

2014. The set of images from theSartorialist.com had a large percentage of menswear, and the images

were taken outside in cities. The NYT runway dataset contains proportionately more womenswear, and

the images have simpler backgrounds. Fig. 4.18 shows two cases where classifiers trained on these two

fashion datasets had disparate success. Fig. 4.18 indicates that our method, like any supervised training
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pipeline, is subject to the size and bias of the training set.

Note that for the classifiers illustrated in Fig. 4.18, the classifiers are trained and tested separately

on each dataset. The classifiers trained on the street style images are not tested on the runway images or

vice versa.

(a) Crew Neckline. (b) Notched Collar.

Figure 4.18: Top 20 detections of classifiers trained on two different datasets. The top row of images are

the seed examples for the ‘crew neckline’ (left) and ‘notched collar’ (right) classifiers. The left block of

images contains detections from the classifier trained and tested on the Sartorialist dataset (street style

images). The right block contains detections from the classifier trained and tested on the NYT Runway

dataset (runway fashion images). The ‘crew neckline’ classifier has better performance on the runway

dataset because the runway images contain more examples of that attribute without coats, scarves, or

other layered clothing obstructing the neckline, as is the case with the street style images. The ‘notched

collar’ classifier has better performance on the street style dataset because the Sartorialist dataset has a

focus on menswear.

We have shown that the crowd is surprisingly capable of training detectors after they are exposed

to our one-shot learning method. An end user can spend minimal effort to provide one or five training

examples which, by themselves, are not capable of generating an accurate detector. The crowd can learn

from these few examples to build a high precision detector.

The linear SVM classifier and CNN image features selected for these experiments likely underper-

form domain specific detection strategies and fine-tuned deep networks. Still, our active learning system

can create successful detectors in two disparate visual domains. our work shows that by appreciating hu-

man one-shot learning it is possible to bootstrap classifiers that approach the performance of traditional

baselines yet are still inexpensive in both time and capital investment.

4.8 Detecting difficult to name concepts

Another advantageous property of Tropel is that it can train detectors for concepts that aren’t easy to

name. For instance, what if a user wants to detect architectural elements similar to the Parisian bridge

span shown in Fig. 4.19? There exists no annotated dataset to train such a detector. We use an unlabeled
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Figure 4.19: Seed Patch Selection. A user selects the region which will seed the crowd active learning of a detector.

dataset of 70 thousand Paris photos from flickr.com for the active learning process. Figure 2.14 shows

the top 5 most confident detections for five distinctive building elements from Paris street scenes. These

five examples were identified by Tropel users using the selection tool show in Fig. 4.19.

The detectors shown in Fig. 2.14 are qualitatively similar to the discriminative patch detectors found

automatically by Doersch et al. in “What makes Paris look like Paris?” [16] by mining a collection of

Paris and non-Paris photographs. Our scenario is different in that a user directs which concept should be

detected.

The pipeline presented in Doersch et al. automatically discovers discriminative architectural details

from an unlabeled dataset of street view images from Paris. Our pipeline gives users the opportunity

to identify architectural details they find discriminative or important, and directly create classifiers for

those often unnamable things. To the authors’ knowledge, active learning has not been employed in the

literature to create classifiers for non-nameable visual events. Figure 4.19 shows how a user could select

a tricky to describe visual element to seed the detector creation process.

Tropel also makes it possible to dynamically create a multi-detector search. In Figs. 4.22, 4.23,

and 4.24, we search for matching scenes by identifying a small number of discriminative visual elements.

For example in Fig. 4.22, the bell tower and large stained-glass window are identified as discriminative

of that particular cathedral. We create two Tropel detectors, one for each item. Then we evaluate all

images in our GPS tagged dataset of Paris to select the images for which these two detectors fire most

strongly. The matching images, as identified by our multi-detector search, are shown on the right side of

Fig. 4.22. The top detection is the same cathedral from a different vantage point.
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Figure 4.20: Example detections at all iterations of the pipeline: Architecture. The top 5 detections in

our unlabeled dataset for the architectural element identified in Fig. 4.19. Iterations 2 - 4 are interesting

because the crowd corrects the detectors from initially fixating on metal bridges to instead detect stone

bridges.

4.9 Omitting the Crowd: Detectors created by End-Users Only

The central question examined by the previous sections was whether it was possible to drastically reduce

the supervision required from an end user and still get a viable detector. The one-shot crowd active

learning is an alternative to having an end user perform the potentially tedious active learning process

themselves. But how much are we losing by relying on the crowd?

This question is difficult to answer because it depends on the particular end-user. A domain expert

could probably do better than the crowd. However, the results of a comparison experiment shown in

Fig. 4.25 illustrate that it is surprisingly hard to beat the crowd. In this experiment, a volunteer end-user

with a reasonable level of bird species knowledge trained 20 detectors by answering all active queries

in the training pipeline. The end-user created classifiers are compared to classifiers created by the crowd

that are initialized with the same seed patches. The crowd workers are not individually particularly

accurate, but Fig. 4.25 shows that the consensus of three or more workers is hard to beat.

In a few cases (Boat-tailed Grackle, Pine Grosbeak, Worm-eating Warbler), the end-user was able

to exploit her specialized knowledge to distinguish these birds from visually similar birds to make a
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Figure 4.21: Example detections for 5 architectural concepts. While these are distinctive architectural

elements (from top to bottom: Catherine windows, exterior wrought iron balustrades, cupula lanterns,

Mansard-roofed apartment buildings, and Parisian urban canyons) the end user and the crowd didn’t use

these names or have architectural expertise.

Figure 4.22: Multi-Detector Search: Cathedral. In this multi-detector search, we created Tropel detectors

for a bell tower and stained-glass window.
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Figure 4.23: Multi-Detector Search: Bridge. In this multi-detector search, we created Tropel detectors

for a bridge arch and two buildings with mansard roofs.
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Figure 4.24: Multi-Detector Search: Fruit Stand. In this multi-detector search, we created Tropel detec-

tors for a produce stand, a restaurant black board, and a wrought iron balcony railing.
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Figure 4.25: Detection AP. Comparison of the detection AP for classifiers created by the crowd and by

a single end user. The average AP among these birds is 0.095 for end user only detectors and 0.11 for

crowd trained classifiers.

better classifier. These birds are particularly tricky to distinguish. They are evenly colored black, red,

and speckled brown respectively, but otherwise have similar shape and feathering. These species each

have several other bird species that they can be easily confused with. However, the crowd was able to

create equally or better performing classifiers for most of the other 17 randomly selected species.

4.10 Assessing Worker Performance

We implement catch trials for our bird and fashion attribute classifiers. Our catch trials were generated

by the author of this dissertation. She labeled dozens of birds and fashion items with ground truth labels

that were secretly added to the active query items in hundreds of Tropel HITs. For each HIT that included

a catch trial, five positive items and five negative items where randomly placed in the display of query

patches. The negative patches were randomly selected from all of the patches in the dataset. Figs. 4.26

and 4.27 show the catch trial performance the AMT workers for fashion attributes. Overall, the annota-

tors are more reliable and accurate for the fashion concepts. This could be because these attributes are

more commonly found in daily life.

During our experiments with Tropel, we compared weighting worker query responses in order to ob-

tain more accurate consensus responses. Reducing worker labeling noise is difficult in the Tropel context

because ground truth labels are unknown and workers are ephemeral. For our experiments involving the
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(a) Labeling Accuracy of Expert per Detector. (b) Labeling Accuracy of Crowd per Detector.

(c) Overall Labeling Accuracy of each Crowd

Worker.

Figure 4.26: Bird Annotator Accuracy. The plots above show that the accuracy of the crowd annotators is similar

to that of the expert, except in the cases of ‘leg’, ‘tail’, ‘wing’, and ‘forehead’. Despite the lower crowd accuracy,

the classifiers for those attributes perform similarly to or better than the expert trained version in Fig. 4.26a. In

Fig. 4.26c the large majority have similar or slightly less accuracy than an expert annotator.The ‘Expert’ worker for

this experiment was an undergraduate researcher at Brown University.
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(a) Labeling Accuracy of Expert per Detector. (b) Labeling Accuracy of Crowd per Detector.

(c) Overall Labeling Accuracy of each Crowd

Worker.

Figure 4.27: Fashion Annotator Accuracy. The plots above show that the accuracy of the crowd annotators is higher

and similar across more categories than for the bird-related detectors. The ‘Expert’ worker for this experiment was

an undergraduate researcher at Brown University.
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CUB dataset, we were able to measure the recall for the workers who participated in HITs for Tropel.

Recall is highly important in this active learning setting because positive instances of a given visual

event are rare. In Fig. 4.28 we compare how different worker meta-data are correlated to a worker’s

recall. Ultimately, none of the meta-data variables – self-reported confidence, HIT completion time, or

number of HITs submitted – were strongly correlated with recall, which reflects our earlier evaluation

in this chapter that consensus weighting strategies did not strongly improve Tropel detector AP scores.

(a) Recall vs. Self-Reported Confidence (b) Recall vs. Number of HITs completed

(c) Recall vs. Average Completion Time (d) Precision Recall per AMT Worker

Figure 4.28: Annotator Recall. Data for approximately 250 randomly selected workers are shown in the above

graphs. Each green dot in each graph represents a unique Tropel worker.
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4.11 Conclusions from building the Tropel System

We have shown that the crowd is surprisingly capable of training detectors for specific, fine-grained

visual phenomena. An end user can spend minimal effort to provide one or five training examples which,

by themselves, are not capable of generating an accurate detector. The crowd can learn from these

few examples to build a high precision detector. Our investigations into the hierarchical similarity of

the Tropel detectors’ output showed how fine-grained a detector it is possible to obtain with limited

instructions. The more limited the instructions to the crowd, the more the crowd generalizes to high

level concepts.

Tropel is biased towards high-precision rather than complete recall. It may be possible to change the

active query strategy to achieve better recall. In this chapter, we opted not to investigate alternative active

query strategies to limit the scope of our experimentation. However, improving recall is an important next

step.

The linear SVM classifier and CNN image features selected for these experiments likely underper-

form domain specific detection strategies and fine-tuned deep networks. Still, our active learning system

can create successful detectors in three disparate visual domains. Our work shows that it is possible to

bootstrap classifiers from a single visual example that approach the performance of traditional baselines

yet are still inexpensive in both time and capital investment.



Chapter 5

Conclusion

At the beginning of this dissertation, we set out to show the utility of incorporating a crowd workforce

into the computer vision pipeline. In Chapter 2 the crowd helped us to discover discriminative visual

attributes and label a large dataset. In Chapter 3 we changed the role of the crowd from annotation

engine to annotation-bootstrapping pipeline. The crowd helped us both to label visual events and to

figure out which visual events were most likely to occur in an image, thus decreasing the number of

items to label. We were able to show the crowd to be a useful tool for raw knowledge acquisition and for

intelligent annotation protocol.

Chapter 4 demonstrated the usefulness of the crowd in a much different role. In Chapters 2 and 3 the

crowd provided training data for automated systems. In Chapter 4 the crowd was an integral component

in the computer vision pipeline. The systems presented in Chapter 4, the Tropel system in particular,

show how the crowd could be used to enable end-users to have more control over creating fine-grained

object detectors.

Ultimately, this dissertation is proof of the usefulness of the crowd for computer vision. Each one of

the experiments contained in this document could be extended or executed on a larger scale, revealing

even more about the nature of the crowd workforce as a computational aid. There is still an unknown

number of ways the crowd could help bring computer vision closer to natural image understanding and

bring computer vision into the daily lives of users.
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Appendix A

Nationalities of the Mechanical Turk

Workforce

Thousands of Amazon Mechanical Turk (AMT) workers contributed to the experiments presented in

this dissertation. The following figures provide a broad description of the geolocaiton and work product

of our AMT workforce. We recorded IP addresses for all of the workers for the MS COCO Attributes

Dataset project (Chapter 3) and the Tropel project (Chapter 4). Figures A.1 and A.2 plot the locations of

workers on the globe, while Tables A.1 and A.2 list that data in table format.
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(a) Geolocation for MS COCO Attributes Workers

(b) Number of HITs submitted by Region for MS COCO Attributes Workers

Figure A.1: MS COCO Attributes Worker Information The two figures above characterize the COCO At-

tributes workforce by GPS location and HITs submitted. The first sub-figure represents each worker with

a dot for the location corresponding to their IP address. There is one dot for each worker. The second

sub-figure aggregates the number of HITs submitted in a particular region. Lager dots correspond to

more HITs submitted by workers in the municipality where the dot is centered.
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Table A.1: COCO Attributes Worker Nationality

Country Number of Number of

HITs Submitted Workers

India 109872 831

United States 60442 4794

Kenya 4129 5

Romania 1307 6

Pakistan 1174 7

United Arab Emirates 568 6

Macedonia 518 6

Ireland 325 3

Oman 235 5

Dominican Republic 108 3

Canada 103 18

Philippines 79 15

Australia 55 5

Mexico 32 11

United Kingdom 28 14

Jamaica 25 4

Kuwait 24 2

Italy 18 4

Viet Nam 17 4

Morocco 17 4

Chile 16 5

Belize 15 2

Tunisia 15 2

South Africa 13 2

New Zealand 13 4

Bangladesh 13 3

Japan 13 4

Germany 13 9

Puerto Rico 11 3

Austria 11 4

Serbia 10 1

Costa Rica 10 3

Greece 9 2

Qatar 8 3

Croatia 8 3

Trinidad and Tobago 8 2

Israel 8 2

Colombia 8 3

Venezuela 7 3

Country Number of Number of

HITs Submitted Workers

Ukraine 6 2

Singapore 6 3

Indonesia 6 3

Hungary 6 4

Turkey 6 3

Czech Republic 5 2

Brazil 5 2

Korea, Republic of 5 2

Thailand 5 3

Poland 5 3

France 5 5

Netherlands 4 2

Sri Lanka 4 3

Spain 4 4

Saint Kitts and Nevis 3 1

Virgin Islands, U.S. 3 1

Finland 3 2

Nicaragua 2 1

Honduras 2 1

Guyana 2 1

Denmark 2 1

Norway 2 1

Barbados 2 1

Malaysia 2 2

Albania 1 1

Botswana 1 1

Jordan 1 1

China 1 1

Saudi Arabia 1 1

Estonia 1 1

Portugal 1 1

Egypt 1 1

Belgium 1 1

Gibraltar 1 1

Slovenia 1 1

Ecuador 1 1

Argentina 1 1

Nepal 1 1

Chad 1 1

Hong Kong 1 1
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(a) Geolocation for Tropel Workers

(b) Number of HITs submitted by Region for Tropel Workers

Figure A.2: Tropel Worker Information The two figures above characterize the Tropel workforce by GPS

location and HITs submitted. The first sub-figure represents each worker with a dot for the location

corresponding to their IP address. There is one dot for each worker. The second sub-figure aggregates

the number of HITs submitted in a particular region. Lager dots correspond to more HITs submitted by

workers in the municipality where the dot is centered.
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Table A.2: Tropel Worker Nationality

Country Number of HITs Submitted Number of Workers

India 10502 341

United States 6604 1045

Romania 48 4

Canada 32 6

Italy 20 2

United Kingdom 12 3

Venezuela, Bolivarian Republic of 9 3

Spain 8 2

Philippines 6 2

Turkey 5 1

Kenya 4 1

Australia 3 1

France 3 1

Panama 3 1

Nigeria 3 2

United Arab Emirates 2 1

Argentina 2 1

Hong Kong 2 1

Pakistan 2 1

Belize 2 1

Saudi Arabia 2 1

Macedonia, Republic of 2 2

Mexico 2 2

Slovakia 1 1

Ukraine 1 1

Jamaica 1 1

Belgium 1 1

Lithuania 1 1

Puerto Rico 1 1

Croatia 1 1

Sweden 1 1

Germany 1 1

Netherlands 1 1



Appendix B

Extended Results

The three figures included in this appendix extend or better explain several of the figures in Chapter 3.

These supplemental figures include a plot of the population for each attribute, the recall of the ELA

method for each attribute, and the results of a multilabel classification experiment that tests classification

AP for all MS COCO attributes.
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(a) Attributes 1-49

(b) Attributes 50-98

(c) Attributes 99-147

(d) Attributes 148-196

Figure B.1: Attribute Population In the figure above, we plot the population of each attribute in the MS

COCO Attributes dataset. The population number is counted across object categories, thus the popula-

tion of the ‘standing’ attribute comes from the number of times ‘standing’ occurred in all instances of

people, animals, etc. Both plots have a log-scale y-axis. The attributes are sorted by population. This fig-

ure highlights both the amount of attribute instances and the wide range from common to rare attributes

present in this dataset.
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(a) Attributes 1-98 (b) Attributes 99-196

Figure B.2: Mean Recall Across all Categories for all Attributes. This plot shows the recall of the ELA-

Distance method for annotating all attributes from the full set of 196. The recall is calculated across

all instances of the exhaustively labeled test set. The attributes are sorted by their popularity in the

exhaustively labeled training dataset. This figure is an expansion of Fig. 3.3 in Chapter 3. This figure

shows that generally, more popular attributes are recovered in the first 20 iterations of the ELA method,

but rare attributes are also frequently recovered. At a higher number of iterations, 50 or 100 queries

which is still only 25% and 50% of the entire dataset respectively, the ELA method has high recall with

rare attributes. Only a few attributes are almost never recovered by the ELA, for example ‘digital’. These

attributes were among the rarest in the dataset.
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Figure B.3: Average Precision vs. Chance. This figure is the full length version of Fig. 3.7 in Chapter 3. Perfor-

mance is shown for all 196 MS COCO attributes. Attribtues are sorted in descending order by their population in

the dataset. Each yellow square represents an SVM that was trained to recognize that particular attribute. All SVM

training and test sets are composed of consensus AMT labels. A positive attribute label occurs when 2/3 AMT

workers voted ‘true’ for the presence on a given attribute and 0 workers voted for false. Thus, the training and test

sets for each attribute SVM are a different size. Each blue triangle represents the AP for that attribute calculated

on the full multi-label test set predictions of our CNN. The objects in the training set for all classifiers shown are

members of the MS COCO ‘train2014’ set, and test instances are members of the ‘val2014’ set. The ratio of train

to test for each SVM is approximately 2-to-1. For the multi-label CNN, the train/test set sizes were 27k/18k.



Appendix C

Choosing a Title

Picking a thesis title can be a bit of a fussy problem. Selecting the perfect set of words to describe the

content of a thesis at a high level can be additionally difficult for the person who has had their nose in a

project for the last several years. We decided instead to let the crowd create our thesis title for us.

Our thesis title creation process began by asking a personally engaged crowd, our Facebook friends,

to suggest titles. Our friends took zealously to the task, and over the course of two hours submitted the

list of titles in Table C.1. These titles were ingenious and delightful, but it was too hard for us to pick

the best one. We decided to crowdsource that task as well.

We created an AMT HIT to vote for the best title and suggest changes and main title, subtitle combi-

nations. The HIT consisted of a one paragraph description of the research in this dissertation, examples

titles from successful PhD thesis in Computer Vision, and instructions to vote on the list of existing titles

and suggest new ones. The AMT votes for the original Facebook titles are also listed in Table C.1. The

suggested improved titles from AMT are listed in Table C.3. Ultimately, the winner was a combination

of an AMT submission for title and a Facebook submission for subtitle. We picked the winner by our

own personal preference.

Because the AMT workers are essentially anonymous, we asked the workers to report their level of

education. The population of the different degree levels is reported in Table C.2. Many of the workers

had completed a Bachelor’s degree, which we found to be a surprisingly high level of education for such

an economical workforce. Table C.3 lists the education of the worker along with their submitted title.

The quality of the submitted title did not appear to be correlated with the worker’s level of education.

The largest percentage of workers, 20%, spent between 40sec - 1min to complete the voting and
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Table C.1: Titles contributed on Facebook and the corresponding number of votes for each title from AMT.

Facebook Submitted Titles Votes from AMT Workers

The Democracy of Vision 10

Peering into the Crowd 9

Mob Mentality and Pixel Perception 6

Crowd-driven Image Understanding 6

Groupsight 5

To See or Not to See 4

Crowdconomics 3

The In Crowd: It’s All Relative 3

Hive Mind 2

Multitudes of Insight 2

Crowded 1

Crowdocracy 1

Crowdrophenia 1

The Human Crowd Affair 1

Crowds Will Be Crowds 1

The Colloquial Hive 1

Crowd-Sourced Internet Colloquialism 0

Peer Pressure 0

Crowdsourcing Images 0

Crowding 0

Crowd Control 0

From the Crowd 0

Table C.2: Self-reported education level of AMT workers in title generating experiment.

Education Level Number of AMT Workers

Some High School 2

Bachelors degree 26

Graduate degree (Masters, Doctorate, etc.) 4

Some college, no degree 18

Associates degree 6

new title suggestion HIT. An other 13% took up to 1.5mins, and 18% more took up to 2.5mins. This

demonstrates that the workers put a reasonable amount of thought into their suggestions. The worker

who submitted the winning title spent 15mins on their hit. They suggested a set of four distinct titles,

shown in the final row of Table C.3.

Table C.3 lists all suggested titles submitted by the AMT workers. Of the 56 workers that participated

in this endeavor, 54 submitted title. Several workers submitted multiple titles. Although many of the titles

were not accurate representations of the contents of this dissertation, many were clever and interesting.

In the end, we were very happy using this process to generate our title. The total cost to create the final

title “Collective Insight: Crowd-driven Image Understanding”, was $0.55 per HIT (AMT fee included)

for 56 unique HITs, which comes to $30.80.
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Table C.3: All Titles Submitted via AMT

AMT Submitted Titles Elapsed Time (mins:secs) Education Level of Worker

Do you like what you see? 1:02 Some college, no degree

Perceptual Democratization 3:08 Graduate degree (Masters, Doctorate, etc.)

Hive Thrive 1:52 Some college, no degree

The Vision of the Crowd 0:51 Bachelors degree

See the People 1:54 Bachelors degree

Crowdamaniacs 0:14 Bachelors degree

Eye of the Crowd 2:19 Some college, no degree

Through the eyes of the ’crowd’ - Understanding Images 5:43 Graduate degree (Masters, Doctorate, etc.)

Crowdsight 2:33 Bachelors degree

Understanding Images From The Human Crowd’s Point of View 0:41 Some college, no degree

Insights From Many Angles 4:32 Some college, no degree

Crowding Images from Clouds 5:17 Bachelors degree

Crowds: Going beyond what you see. 1:30 Associates degree

AllSight 37:08 Graduate degree (Masters, Doctorate, etc.)

The Science of GroupThink 29:20 Bachelors degree

Hive Mind and Vision, Peering Peers 3:05 Bachelors degree

Peering into Pixels 4:46 Some college, no degree

Human Vision 1:02 Bachelors degree

Seeing from the Human Point of View 5:49 Bachelors degree

Crowdientfication 2:07 Bachelors degree

Seeing it all 1:25 Some college, no degree

Visuals and Humans 1:04 Bachelors degree

Many Eyes 0:55 Some college, no degree

Compelling the Eye 1:34 Bachelors degree

Rose Tinted Crowds. Crowded shaded image perception 1:20 Bachelors degree

human minds contect 2:39 Some High School

Matrixity 4:09 Associates degree

A Democratic Vision 1:25 Some college, no degree

Crowd Hive 0:46 Bachelors degree

Mass perception of images 3:16 Bachelors degree

peoples perception 4:18 Bachelors degree

human perceptive of computer imagery 15:22 Bachelors degree

Peer Control 1:16 Some college, no degree

The More the Merrier 2:09 Associates degree

Crowdvision 0:55 Bachelors degree

You could shorten it to ”Peer into the crowd” or ”From the eye of the crowd” 0:58 Some college, no degree

Games of Crowds 5:33 Bachelors degree

The Crowd Mind 1:26 Some college, no degree

Open mind 13:34 Bachelors degree

In the Public Eye 3:35 Graduate degree (Masters, Doctorate, etc.)

Collecting the Crowd 1:59 Some college, no degree

Crowdology 0:54 Bachelors degree

Crowdology 4:01 Bachelors degree

CrowdNow 25:00 Bachelors degree

Crowded Vision 2:07 Some college, no degree

Crowdsourced 3D Scene Matching 4:39 Bachelors degree

Behind The Crowd: What Appeals To You? 2:13 Some High School

Group In-’sight’ 1:04 Some college, no degree

Crowd Vision 0:47 Associates degree

Ode to the Rolling Stones Theis Titile-

I said, ”Hey (hey), you (you). Get off of my crowd.”
2:43 Associates degree

Peering into the Crowd:

How Group Perceptions on Beauty Help to Understand Compelling Imagery
46:36 Some college, no degree

See through the eyes of the crowd; by the crowd, for the people;

Crowdgazing: how we see what we all see
4:52 Associates degree

Mob Mentality and Pixel Perception:

A Deeper Look at the Visually Compelling
3:19 Bachelors degree

Crowd-based Identification, Collective Insight,

Multi-human Visual Processing Unit, Identification Through Group Consensus
15:04 Bachelors degree
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