
Abstract of “Byzantine Computability and Combinatorial Topology”,
by Hammurabi das Chagas Mendes, Ph.D., Brown University, May 2016.

The tools and language of combinatorial topology have previously been very successful
in characterizing distributed task solvability when processes fail only by crashing. In this
work, the approach is extended to systems where processes fail arbitrarily, even maliciously,
characterizing what the literature calls “Byzantine failures”. Distributed tasks are formal-
ized in terms of a pair of combinatorial structures called simplicial complexes: one models
process inputs (the input complex), and another models process outputs (the output com-
plex). A map between the input complex and output complex defines the task semantics.
This thesis establishes necessary and sufficient solvability conditions for Byzantine tasks,
in synchronous and asynchronous systems. For asynchronous systems, a Byzantine task is
shown to be solvable if and only if a specific crash-failure task, suitably defined in terms
of the Byzantine task, is solvable as well. For asynchronous colorless tasks, an important
subclass of problems that includes consensus and k-set agreement, the above characteriza-
tion reduces to particularly succinct and elegant forms. The frontier between possible and
impossible for colorless tasks is delineated by pivotal problems such as multidimensional
ϵ-approximate agreement and barycentric agreement, for which we present protocols with
maximum resilience. For synchronous systems, the information dissemination throughout
the rounds is modeled by simplicial complexes called protocol complexes, and certain topo-
logical properties can characterize ambiguity caused by Byzantine failures. This approach
ultimately demonstrates that Byzantine processes can potentially impose one extra round
of ambiguity compared to crash-failure systems in regard to solving set agreement prob-
lems – and at most that in some settings. In essence, this work shows how the language
of combinatorial topology, when aligned with traditional algorithmic tools in distributed
computing, provides a robust framework to study task solvability not only across differ-
ent communication models, synchronous and asynchronous, but also across different failure
models, crash and Byzantine.

Byzantine Computability and Combinatorial Topology

by
Hammurabi das Chagas Mendes
Sc. M., Brown University, 2012

M. S. Universidade de São Paulo, 2008
B. S., Universidade de Brasília, 2004

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 2016

© Copyright 2016 by Hammurabi das Chagas Mendes

This dissertation by Hammurabi das Chagas Mendes is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Maurice Herlihy, Director

Recommended to the Graduate Council

Date
Anna Lysyanskaya, Reader

Brown University

Date
Sergio Rajsbaum, Reader

Universidad Nacional Autonoma de Mexico

Approved by the Graduate Council

Date
Peter Weber

Dean of the Graduate School

iii

Acknowledgments

This work is dedicated to my parents, Francisco and Berenice: you encouraged me to pursue
my dreams, and every accomplishment belongs to you. I am very grateful to my wife Carrie,
my daughter Júlia, my sisters Alda and Ana, and God. You mean everything to me – thank
you. I thank my advisor Maurice Herlihy, professors Sorin Istrail and Rodrigo Fonseca,
thesis committee members Sergio Rajsbaum and Anna Lysyanskaya, brothers-in-law Hélio
and Fabianno, and extended families in Brazil and in the United States. I am also thankful
to friends at Brown, especially Marcelo, Eduardo, Marek, Irina, and Alexander; and friends
in Brazil, especially Bruno, Marcelo, Romildo, Virgílio, Fernanda, and Diego. I am very
grateful to Brown University for the immense support throughout these years, and I will
always remember the beautiful Providence.

iv

Contents

1 Introduction 1
1.1 Processes, Failures, and Synchrony . 2
1.2 Thesis Overview . 3

1.2.1 Multidimensional ϵ-Approximate Agreement 3
1.2.2 Asynchronous Byzantine Computability 4
1.2.3 Synchronous Byzantine Computability 5

1.3 Thesis Statement . 6

2 Operational Model 7
2.1 Processes and Communication . 7
2.2 Synchrony and Failures . 8

2.2.1 Synchrony . 8
2.2.2 Failures . 9

2.3 Full Information Protocols . 10
2.4 Adversaries and Schedules . 11

3 Topological Tools 13
3.1 Basics . 13
3.2 Maps and Geometrical Realizations . 13
3.3 Boundary, Interior, and Open Star . 15
3.4 Subdivisions and Simplicial Approximation 16
3.5 Connectivity . 17
3.6 Modeling Tasks using Simplicial Complexes 19
3.7 Pseudospheres . 20
3.8 Shellability . 21
3.9 Nerves . 22

v

3.10 Protocol Complexes . 23
3.10.1 Asynchronous Systems . 23
3.10.2 Synchronous Systems . 24

3.11 Protocols and Decision . 24

4 Multidimensional ϵ-Approximate Agreement 25
4.1 Contributions Overview and Related Work 25
4.2 Operational Model . 26
4.3 Formal Definition . 27

4.3.1 On the Generalization of Approximate Agreement 27
4.4 Applications . 28
4.5 Asynchronous Communication Primitives 30

4.5.1 Reliable Broadcast . 30
4.5.2 Witness Technique . 32

4.6 The Safe Area . 33
4.6.1 Properties . 38

4.7 Necessary Condition for the Protocol . 39
4.8 Protocol . 40

4.8.1 Intersecting Safe Areas . 42
4.8.2 Convergence . 43
4.8.3 Initial Estimation of R . 45
4.8.4 Satisfaction of Requirements . 48
4.8.5 Message Complexity . 49
4.8.6 Safe Area Calculation . 49

4.9 Final Remarks . 50

5 Asynchronous Computability Conditions 51
5.1 Contributions Overview . 51

5.1.1 Related Work . 52
5.2 Operational Model . 52
5.3 Topological Model . 53
5.4 The Equivalence Theorem . 54

5.4.1 Defining the Dual Task . 56
5.4.2 Solvability Correspondence . 57

5.5 Final Remarks . 62

vi

6 Asynchronous Colorless Tasks 63
6.1 Contributions Overview and Related Work 63
6.2 Operational Model . 64
6.3 Topological Model . 64
6.4 Protocols and Complexes . 65
6.5 Barycentric Agreement via Approximate Agreement 66
6.6 A Constructive Proof . 67

6.6.1 Quorums . 67
6.6.2 Stable Vectors . 69

6.7 Solvability for Colorless Tasks . 72
6.8 Strict Colorless Tasks . 75
6.9 Final Remarks . 77

7 Synchronous Computability Conditions 78
7.1 Contributions Overview . 78

7.1.1 Related Work . 79
7.2 Operational Model . 79
7.3 Connectivity Upper Bound . 80
7.4 k-Set Agreement and Lower Bound . 85
7.5 Final Remarks . 91

8 Conclusion 93

Bibliography 97

⋆ Parts of this thesis have been previously published by ACM and Springer, co-authored
with Maurice Herlihy, Christine Tasson, Nitin Vaidya, and Vijay K. Garg.

vii

Chapter 1

Introduction

Distributed computing is a field of Computer Science concerned with computation among
autonomous, communicating computing entities. We call these entities processes, and they
interact via a communication system. A task is a distributed coordination problem in which
processes start with private inputs, taken from a finite set, communicate among themselves,
and each eventually decides on a private output, also taken from a finite set. Analogous
to how theoretical computability is concerned with languages and decidability, theoretical
distributed computing is concerned with distributed tasks and their solvability.

Processes and communication are subject to different failure and synchrony assumptions,
significant operational properties that affect our ability to solve problems. Failure and
synchrony operational settings are abstracted through models, briefly discussed here in
Sec. 1.1, but more detailed in Chap. 2.

One of the central questions in distributed computing is characterizing which tasks can
be solved in which models of computation. A protocol is a distributed algorithm that solves a
task given a model of computation. Figure 1.1 exemplifies in high-level a protocol execution
for the consensus task [18]. Informally, in the consensus task, processes propose values from
some set, say, {v0, v1, v2}, and must individually finish with a single value. The value must
have been proposed in the beginning of the protocol by some process.

This thesis focuses on the characterization of task solvability – that is, the question on
whether protocols exist – in systems where a subset of processes can behave arbitrarily, even
maliciously. This kind of failures is technically known as Byzantine failures, and contrast
with the more benign crash failures, where processes only fail by halting silently, without
previous notice.

The approach of this work is to use the tools and language of combinatorial topology

1

2

1 2

43

v0

v1

v2

v1

1 2

43

input output

v2 v2

v2 v2

v1 v1

v1 v1

Protocol

Figure 1.1: The execution of a consensus protocol: Processes input values, exchange mes-
sages via the communication channel, and finally decide on an output.

to address these questions. This technique, when well-aligned with algorithmic techniques,
provides a robust framework to study task solvability under different failure and synchrony
assumptions. This work shows that:

1. For asynchronous tasks, solvability conditions can be expressed in terms of the con-
ditions for crash-failure systems (Chap. 5);

2. For asynchronous colorless tasks, these conditions depend on the same fundamental
problems – such as barycentric agreement (Chap. 6) – as in crash-failure systems;

3. For synchronous tasks, solvability conditions can be studied using similar techniques,
and have similar lower bounds, to crash-failure systems (Chap. 7).

Informally, we can say that foundations, techniques, and results in Byzantine systems “mir-
ror”, to a certain extent, the respective concepts in crash-failure systems.

1.1 Processes, Failures, and Synchrony

Processes exchange messages via pairwise channels, denoting a complete graph where pro-
cesses are nodes and channels are edges. We assume that channels always deliver messages
sent through them, in FIFO order. This assumption is appropriate and realistic. It is appro-
priate because having channels that drop messages in an arbitrary way trivially makes most
interesting tasks unsolvable: consider simply dropping every single message. It is realistic
because this kind of channel can be implemented on top of more unreliable channels that
have at least some limited delivery guarantees – say, delivery with probability p > 0. For
more details, please refer to Chap. 2.

3

In this work, we are interested on the situations where a proper subset of processes may
be subject to failures. We say that non-faulty processes execute protocols as prescribed,
while faulty processes malfunction in different ways.

In terms failure behavior, in the crash-failure model [3, 32], faulty processes may become
permanently silent at any point in the execution of the protocol. These processes simply
halt and never send additional messages. Alternatively, in the Byzantine-failure model
[31, 3, 32], faulty processes display arbitrary behavior, including malicious collusion to
prevent the protocol to terminate correctly.

Concerning the computation and communication synchrony, we have synchronous or
asynchronous systems. In synchronous systems, communication and computation are or-
ganized in discrete rounds. In each round, any non-faulty process performs as follows, in
order: (i) sends a message; (ii) receives all messages sent in the current round by the other
processes; and (iii) performs internal computation. In asynchronous systems, processes have
different relative speeds, and message delivery is subject to unbound, finite delays.

1.2 Thesis Overview

The tools and language borrowed from combinatorial topology have been previously suc-
cessful in characterizing task solvability for synchronous and asynchronous crash-failure
systems [28]. Tasks have been formalized in terms of a pair of combinatorial structures
called simplicial complexes [37, 30], one for process inputs (called input complex I), and
one for process outputs (called output complex O). A map between the input complex and
output complex ∆ : I → O constrains the task semantics.

This thesis extends the approach of using combinatorial topology tools to character-
ize computability in Byzantine systems, synchronous and asynchronous. The results in-
clude new protocols for tasks such as the multidimensional ϵ-approximate agreement [34],
which has both theoretical and practical interest. This thesis starts discussing models
and background in Chapters 2 and 3, followed by novel computability results in Byzantine
asynchronous and synchronous systems. The next subsections overview the main results
presented here.

1.2.1 Multidimensional ϵ-Approximate Agreement

This thesis starts the discussion of the technical results mentioned above with the definition,
analysis, and solution of a task called multidimensional ϵ-approximate agreement. This
task seems to delineate the frontier between what is solvable and unsolvable for colorless

4

tasks [6, 24]. Colorless tasks form an important subclass of tasks that encompasses well-
studied problems such as consensus [18] and k-set agreement [11],

In the multidimensional ϵ-approximate agreement task, for arbitrary ϵ > 0 and d ≥ 1,
each process starts with an input value in Rd, and all non-faulty processes must choose
output values, also in Rd, such that:

1. all outputs lie within ϵ of one another; and

2. all outputs lie in the convex hull of the inputs of the non-faulty processes.

A t-resilient protocol for this task is an algorithm guaranteeing that each non-faulty process
decides on a correct output, despite the presence of up to t Byzantine processes.

This problem has a fascinating background. In the well-known consensus task, processes
start with values from an arbitrary domain, and must choose values such that: (1) all
processes decide on the same value; and (2) that value is some process’ input. That task
is impossible in the presence of even a single crash failure [18]. There are many ways to
circumvent this impossibility – such as relying on synchrony or randomization – and one is
to settle for the (unidimensional) ϵ-approximate agreement [15, 1]. In this case, non-faulty
processes start with input values in R, and must also finish with output values in R, in the
range of the non-faulty process inputs.

The multidimensional ϵ-agreement, as described before, is a non-trivial generalization
for the ϵ-approximate agreement. We design a protocol that tolerates as many failures as
possible. The protocol performance, measured in the number of messages required to be
sent, depends solely on the inputs of the non-faulty processes, and is unaffected by any
malicious behavior of the Byzantine processes.

While the problem above has clear applicability – consider autonomous robots that
can now coordinate and converge despite the influence of possible malicious entities – we
are interested in a key theoretical application that is useful to characterize task solvability
for colorless tasks. In Chap. 4, we give details on the multidimensional ϵ-approximate
agreement, providing a protocol, and discussing its properties and correctness. In Chap. 6,
after a detour characterizing solvability for general Byzantine tasks in Chap 5, we show
how the multidimensional ϵ-approximate agreement is used to solve barycentric agreement,
which is key to a more specific solvability characterization for colorless tasks.

1.2.2 Asynchronous Byzantine Computability

Chapter 5, discusses the first theorem that gives necessary and sufficient conditions for
arbitrary task solvability in Byzantine asynchronous systems. The theorem states that an

5

asynchronous Byzantine-failure task is solvable if and only if a suitably defined asynchronous
crash-failure task is solvable as well. The crash-failure task is defined in terms of the original
Byzantine-failure task. Task descriptions rely on the language of combinatorial topology
mentioned before (input/output complexes and a map linking these structures). Given that
solvability conditions have long been known for asynchronous crash-failure systems, the
previous equivalence theorem, characterizes solvability for asynchronous Byzantine systems.

As mentioned before, with help from the multidimensional ϵ-approximate agreement
protocol, the previous characterization reduces to a particularly elegant, compact form for
colorless tasks. In Chap. 6 we show how the computability conditions for colorless tasks
interrelate the number of processes, the number of failures, and the topological structure of
the task’s simplicial complexes.

These results suggests that the tools and language of combinatorial topology are indeed
a convenient and effective way to formalize and study task solvability in a range of distinct
failure models.

1.2.3 Synchronous Byzantine Computability

Chapter 7 shows that moving from crash-failure to Byzantine-failure synchronous systems
may require processes one extra round in order to solve set-agreement problems. In fact,
we see how under specific conditions (concerning the relationship between the number of
processes and the number of failures), that extra single round, when necessary, is also
sufficient in order to solve the problem.

The protocol execution is modeled by a series of simplicial complexes, each representing
all possible states of the system throughout all rounds of execution. Each of those simplicial
complexes is called a protocol complex, and our analysis relies on their k-connectivity, with
t ≥ k ≥ 1, a general notion of graph connectivity for higher dimensions.

We see how the protocol complex can remain (k − 1)-connected for ⌈t/k⌉ rounds when
processes fail arbitrarily – instead of ⌊t/k⌋ when they can fail only by crashing, where t
is an upper bound on the number of Byzantine processes and t ≥ k ≥ 1. To prove this
bound, we conceived a combinatorial operator modeling the ability of Byzantine processes
to equivocate – that is, to transmit ambiguous state information – without revealing their
Byzantine nature. We compose this operator with similar crash-failure operators, extending
the protocol complex connectivity for one extra round when t mod k ̸= 0.

Connectivity is relevant since a (k− 1)-connected protocol complex prevents important
problems such as k-set agreement from having solutions. In fact, we show that the above

6

bound is tight in certain settings by (i) defining a suitable formulation of k-set agreement
for Byzantine synchronous systems; and (ii) solving the problem in ⌈t/k⌉+ 1 rounds.

As the techniques based on combinatorial topology become applicable to synchronous
systems as well, it becomes clear that these techniques are effective not only across different
failure models, but also across different synchrony models.

1.3 Thesis Statement

This thesis develops the results outlined above and supports the following claim:

The language of combinatorial topology, aligned with algorithmic and simulation
techniques, provides a robust framework to study task solvability not only with crash
failures, but also with Byzantine failures, in synchronous and asynchronous systems.
Byzantine solvability can be expressed in terms of crash-failure solvability in asyn-
chronous systems, relies on the same fundamental problems for asynchronous colorless
tasks, and have similar adversarial bounds for set agreement in synchronous systems.

Chapter 2

Operational Model

In a distributed coordination problem, formally called a task, we have multiple processes
that start with private inputs, communicate via message-passing, and finish with outputs
consistent with the task semantics. In this chapter, we describe the operational details of
the processes and communication that define our system.

2.1 Processes and Communication

The set of processes is defined as P. Assuming n + 1 processes rather than n simplifies
the topological notation, but slightly complicates the computing notation, while choosing n
processes has the opposite trade-off. To simplify our notation in the analyses, we settle for
n (P = {P0, . . . , Pn−1}) in Chap. 4, centered on computation, and n+1 (P = {P0, . . . , Pn})
in Chapters 5, 6, and 7. We make the number of processes clear in the beginning of the
chapters.

In this work, they always communicate via message-passing, via pairwise communication
channels. These channels are reliable and FIFO: all transmitted messages are eventually
delivered, in the order they were sent. This is technically known as perfect authenticated
channels in the literature [9].

The previous assumptions are realistic and have practical relevance. Reliable FIFO
channels are customarily implemented on top of more unreliable channels, using simple
algorithmic techniques (retransmission, duplicate elimination, etc). Technically, we only
require that our underlying unreliable channels deliver messages with some probability
p > 0. The next paragraph hints how these techniques are implemented, and the details
can be found in [9].

Pairwise channels model systems where each node is always reachable from every other
7

8

one in the underlying physical network, and can be implemented via routing. Reliable
channels can be implemented by retransmitting messages, which works since the delivery
probability is assumed to be p > 0. Authenticated channels model systems where the mes-
sage sender is reliably identified, and can be implemented using cryptographic techniques,
such as message authentication codes (MACs), coupled with shared secret keys. Senders
attach a MAC to every message, accounting for the message itself, the sender, and the
receiver. Receivers only accept messages that (i) have not been accepted before; and (ii)
have the sender verified, matching the channel sender/receiver. FIFO channels can be im-
plemented as follows. Senders label the i-th locally sent message with i. Receivers only
inspect a message labeled with j > 0 after a message labeled with j− 1 has been inspected,
keeping all received messages in an internal buffer, for each possible channel. For details on
the algorithms and protocols discussed above, please refer to [9].

1 2

43

(1, 4, m, a)

Figure 2.1: A system with 4 processes with pairwise communication channels. A message
m with sender s = 1, receiver r = 4, and the message authentication a = MAC(s, r,m).

In light of the above observations, we assume perfect authenticated channels in this
work. Note that those channels guarantee delivery, but not necessarily any upper bound on
the time to deliver the message. This specific issue is related to synchrony, an important
model parameter discussed below.

2.2 Synchrony and Failures

We now define two key characteristics of our system that deeply affect our ability to solve
problems: synchrony among processes, and failure behaviors assumed in the system.

2.2.1 Synchrony

The literature usually considers two models regarding the “synchrony” of message delivery
times. In synchronous systems [3], communication takes place in multiple discrete rounds

9

numbered as 0, 1, . . . In each round, the following takes place in order:

1. All sending processes send their messages;

2. Each message sent in the current round is delivered to its specified receiver;

3. Each process performs an internal state change that may or may not depend on the
received messages.

Note that every message sent at round i is delivered in the same round i. We can therefore
understand the round structure as a global shared clock that imposes an upper bound on
message delivery time. Also, informally speaking, the round structure makes the relative
speeds of the processes uniform.

In asynchronous systems [3], we do not have such convenient structure. The message
transmissions and deliveries overlap arbitrarily, with the delivery of any message happening
after a finite, yet unbounded delay. The relative speed of processes is also unbound.

Different synchrony guarantees have deep impact on the design of our protocols. Perhaps
the most relevant effect is the interplay of synchronization and failures, discussed below.

2.2.2 Failures

In this work, we consider crash-failure systems [3], where processes fail only by permanent,
unannounced halting, or Byzantine-failure systems [31], where processes fail arbitrarily, even
maliciously. Non-faulty processes execute protocols as prescribed, while faulty processes fail
according to the adopted failure model.

A failure model specifies the nature of the failures (crash or Byzantine), as well as an
upper bound on the number of faulty processes, denoted by t. In a crash-failure system, the
faulty processes are the ones that halt at any point in the execution. In a Byzantine-failure
system, we will take a different perspective. Since Byzantine processes may introduce
spurious, incompatible, or illegitimate inputs, yet execute the protocol as prescribed, we
consider an adversary that chooses the set of faulty processes, any set of size up to t. In
our model, we assume that processes were initially correct, but the adversary gains control
of the chosen faulty processes right before the protocol starts.

The resilience is defined as the maximum amount of faulty processes divided by the
total number of processes. Systems with bigger resilience tolerate more failures in relation
to the total number of processes.

Byzantine processes may execute the protocol correctly or incorrectly, at the discretion
of the adversary. This way, Byzantine processes may execute the protocol as prescribed, yet

10

using an illegitimate, but valid input. It is tricky to characterize the inputs of Byzantine
processes in light of the issue above, which would complicate the formalization Byzantine
tasks, since they are traditionally specified in terms of the relationship between all process
inputs and non-faulty process outputs.

We are certainly concerned only with the output of non-faulty processes, but in this
work we focus on tasks where:

The outputs of non-faulty processes are constrained by the inputs of non-faulty processes
only.

In crash-failure systems, since process inputs are clearly defined, the literature usually
constrains the outputs of non-faulty processes in terms of the inputs of all processes, faulty
or non-faulty. In Byzantine-failure systems, a task definition, technically speaking, could
choose to account for Byzantine inputs, associating with them an informal “apparent input”.
In this work, we focus on strong formulations: in the arguably “true” spirit of Byzantine
resilience, tasks must tolerate spurious input changes from Byzantine processes.

Our model makes sense to many interesting, practical tasks, and has been considered
for many traditional, central problems such as consensus, set agreement, and approximate
agreement – where it is traditionally called strong validity [39, 14]. Our own multidimen-
sional ϵ-approximate agreement of Chap. 4 has a very natural application of strong validity
to multi-agent systems and robotics. Strong validity and its consequences are examined
thoroughly in Chap. 5.

In any case, note that the combination of asynchrony and failures can make it impossible
for a non-faulty process to distinguish between a faulty, halted process, from a non-faulty
process that is being subject to slow computation or communication [3].

2.3 Full Information Protocols

We model processes as state machines that execute a full-information protocol [25]. These
protocols abstract the task-specific behavior from communication with a decision function
separated from the communication structure. Each process repeatedly:

1. Sends its state to all other processes (the first state is the input value);

2. Receives the state information from other processes;

3. Concatenates the state information to its own state.

11

After completing some number of iterations (which are synchronous rounds, if the system is
synchronous), each process applies a problem-specific decision function to its current state
in order to decide an output value.

Algorithm 1 formalizes the concept. Call the input value (respectively, output value) of
a non-faulty process Pi as Ii (respectively, Oi). The initial state of a non-faulty process Pi is
its input value Ii. We write viewk

i to denote Pi’s internal state after the k-th iteration (which
are synchronous rounds, if the system is synchronous). We omit subscript or superscripts
when the process or iteration are implied or obvious. The function decided returns true
when the process is capable of deciding given its current state.

• In an asynchronous system, the function sampled returns a subset containing at least
|P| − t processes from which Pi collects messages. These processes include the first
|P| − t processes to deliver the current iteration’s messages to Pi, plus all the others
that did so before Pi checked for the current iteration’s messages.

• In a synchronous system, a process samples messages from all the other processes at
each synchronous round. When a message is absent, due to a crash or malevolent
behavior, the associated message is simply defined as ⊥.

Finally, the function δ is the decision function that abstract task semantics.

Algorithm 1 Pi.FullInformationProtocol(Ii)
1: view← Ii
2: k ← 0
3: while not decided(view) do
4: send viewk to all Pj ∈ P
5: S ← recv {viewk

j : Pj ∈ sampled(P)}
6: view← view concatenated with S
7: k ← k + 1
8: end while
9: return δ(view)

Any protocol can be implemented as a full-information protocol, and while this approach
normally increases the number and size of transmitted messages, the scenario is identical
for computability purposes.

2.4 Adversaries and Schedules

In a synchronous system, the executions of Lines 4 to 6 in Alg. 1 follow a predefined schedule.
When executing the k-th synchronous round, Processes behave as follows in order:

12

1. All non-faulty processes first execute Line 4.

• In Byzantine systems, faulty processes send arbitrary states;

• In crash-failure systems, crashed processes send nothing.

2. All non-faulty processes execute Lines 5 and 6.

• In Byzantine systems, faulty processes receive all transmitted messages, and
perform an arbitrary state change.

• In crash-failure systems, crashed processes receive no messages and perform no
further state transitions.

If a process did not send a message for the current iteration, we associate an “empty” state
with that process, denoted by ⊥.

In an asynchronous system, we assume an adversarial scheduler that controls the instant
when messages become available to be accepted, and, in Byzantine systems, which are
the Byzantine processes, and the arbitrary behavior of the Byzantine processes. In these
systems, an action is either:

1. The sending of a message (Line 4) by one process;

• In Byzantine systems, faulty processes send arbitrary states;

• In crash-failure systems, crashed processes send nothing.

2. The delivery of a message to a process, which makes it available for reception.

3. The receipt of messages (Line 5) by one process, which is immediately followed by a
state change (Line 6);

• In Byzantine systems, faulty processes perform an arbitrary state change.

• In crash-failure systems, crashed processes receive no messages and perform no
further state transitions.

In asynchronous systems, a schedule is simply a total order of actions.

Chapter 3

Topological Tools

The use of the tools and language of combinatorial topology is central to the characterization
of task solvability in this thesis. This chapter presents the required concepts in a concise,
yet self-contained manner. For details, please refer to standard literature such as [37, 30].

3.1 Basics

A simplicial complex K consists of a finite set V along with a collection of subsets of V
closed under containment. An element of V is called a vertex of K. The set of vertices of K
is referred by V (K). Each set in K is called a simplex, usually denoted by lower-case Greek
letters: σ, τ , etc. The dimension dim(σ) of a simplex σ is |σ| − 1.

A subset of a simplex is called a face. A face τ of σ is called proper if dim(τ) =

dim(σ)− 1. We use “k-simplex” as shorthand for “k-dimensional simplex”, also in “k-face”.
The dimension dim(K) of a complex is the maximal dimension of its simplexes, and a facet
of K is any simplex having maximal dimension in K. A complex is said pure if all facets
have dimension dim(K). Please refer to Fig. 3.1.

The set of simplexes of K having dimension at most ℓ is a subcomplex of K, which is
called ℓ-skeleton of K, denoted by skelℓ(K). The set of simplexes of K having dimension
exactly ℓ is called Facesℓ(K). Please refer to Fig. 3.2. Since single simplexes are also
simplicial complexes, the concepts above apply verbatim.

3.2 Maps and Geometrical Realizations

Let K and L be complexes. A vertex map f carries vertices of K to vertices of L. If f
additionally carries simplexes of K to simplexes of L, it is called a simplicial map. A carrier

13

14

�

�µ

v0

v1 v2

v0

v1 v2

v3

v4

v6

v5

K

Figure 3.1: (Left) 2-simplex σ, 1-face τ of σ, and 0-face (vertex) µ of σ. (Right) A pure
simplicial complex K containing σ. Note that dim(K) = dim(σ) = 2.

v0

v1 v2

v3

v4

v6

v5

skel1(K)

Figure 3.2: Skeleton of K containing simplexes of dimension at most 1.

map Φ from K to L takes each simplex σ ∈ K to a subcomplex Φ(σ) ⊆ L, such that for
all σ, τ ∈ K, we have Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ). A simplicial map ϕ : K → L is carried by
the carrier map Φ : K → 2L if, for every simplex σ ∈ K, we have ϕ(σ) ⊆ Φ(σ). Figure 3.3
shows an example of a simplicial map being carried by a carrier map.

Although we defined simplexes and complexes in a purely combinatorial way, they can
also be interpreted geometrically. An n-simplex can be identified with the convex hull of
(n + 1) affinely-independent points in the Euclidean space of appropriate dimension. This
geometric realization can be extended to complexes. The point-set that underlies such
geometric complex K is called the polyhedron of K, denoted by |K|.

We can define simplicial/carrier maps between geometrical complexes. Given a simplicial

15

K L

v0

v1

v2

f

Φ({v0, v1})

Φ({v1, v2})

Figure 3.3: Simplicial map f carried by the carrier map Φ.

map ϕ : K → L (resp. carrier map Φ : K → 2L), the polyhedrons of every simplex in
K and L induce a continuous simplicial map ϕc : |K| → |L| (resp. continuous carrier
map Φc : |K| → |2L|). We say ϕ (resp. ϕc) is carried by Φ if, for any σ ∈ K, we have
|ϕ(σ)| ⊆ |Φ(σ)| (resp. ϕc(|σ|) ⊆ Φc(|σ|)). We may refer to continuous realizations of
simplicial maps and carrier maps simply as continuous maps when there is no ambiguity.

3.3 Boundary, Interior, and Open Star

Combinatorially speaking, for any simplex σ, the boundary of σ, denoted ∂ σ, is the simplicial
complex of (dim(σ) − 1)-faces of σ. Geometrically speaking, the interior of σ is formally
defined as Intσ = |σ| \ | ∂ σ|. The open star of σ ∈ A, denoted Ostσ, is the union of the
interiors of all simplices in A containing σ, including σ itself. See Fig. 3.4.

A

v

Intσ∂ σ�

Figure 3.4: The interior and boundary of a 2-simplex σ, and the open star of a 0-simplex
{v} ⊆ A.

16

3.4 Subdivisions and Simplicial Approximation

Subdivision is an important operation over simplicial complexes, transforming individual
simplexes into “finer” simplicial complexes. We formalize the concept below.

Definition 3.4.1. A subdivision of a complex A is a complex B such that:

1. for any τ ∈ B, |τ | is contained in the polyhedron of some σ ∈ A;

2. for any σ ∈ A, |σ| is the union of disjoint polyhedrons of simplices belonging to B.

We understand the subdivision as an operator Div from complexes to complexes. If we
perform N consecutive applications of Div, the composite operator is denoted by DivN .

Definition 3.4.2. A mesh-shrinking subdivision DivA of a complex A is a subdivision where,
for any 1-simplex σ ∈ skel1(A), Divσ contains at least two distinct 1-simplices.

Intuitively, we are “shrinking” the simplices. A particularly important mesh-shrinking
subdivision in this work is the barycentric subdivision (Fig. 3.5).

Definition 3.4.3. The barycentric subdivision of σ is a simplicial complex Baryσ whose
vertices are faces of σ, and every k-simplex µ ∈ Baryσ could be written as {σ0, . . . , σk},
where σ0 ⊂ · · · ⊂ σk ⊆ σ. Let

BaryK =
∪
σ∈K

Baryσ. (3.1)

Figure 3.5: Barycentric subdivision of σ = {v0, v1, v2}, highlighting one of its simplices
{{v0}, {v0, v1}, {v0, v1, v2}}.

Given any continuous map, a simplicial approximation, defined formally below, is a
“sufficiently close” combinatorial counterpart.

17

Definition 3.4.4. A simplicial map µ : K → L is a simplicial approximation of a continuous
map c : |K| → |L| if

c(| Intσ|) ⊆
∩
v∈σ

Ostµ(v) = Ostµ(σ), for all σ ∈ K.

Not every continuous map c : |K| → |L| has a simplicial approximation defined over the
same domain and range of c. However, we can always presume a simplicial approximation
defined over the domain K, sufficiently subdivided with a mesh-shrinking subdivision, and
range L. This important property is formalized below.

Theorem 3.4.5. (Simplicial Approximation, [37, 30]) For any continuous map c : |K| → |L|,
consider an arbitrary mesh-shrinking subdivision operator Div. Then, there exists an N > 0

such that c has a simplicial approximation

µ : DivN K → L.

Remark 3.4.6. The above theorem particularly applies when Div = Bary, the barycentric
subdivision operator.

The concept of simplicial approximation is important to us because simplicial approx-
imations preserve the property of being carried by carrier maps. Even when the domain
is subdivided under barycentric subdivision, a similar notion of being carried, formalized
below, applies. Consider a carrier map Φ : K → L and a continuous map c : |K| → |L|. Let
c be carried by Φ, and µ : BaryN K → L be a simplicial approximation of c. We say that µ
is carried by Φ if µ(BaryN σ) ⊆ Φ(σ) for any σ ∈ K.

Lemma 3.4.7. If a continuous map c : |K| → |L| is carried by the carrier map Φ : K → 2L,
then any simplicial approximation µ : BaryN K → L of c is carried by Φ.

Proof. Consider a vertex v of BaryN σ with σ ∈ K, and say µ(v) ̸⊆ Φ(σ), implying that
Ostµ(v)∩ |Φ(σ)| = ∅. Since µ is a simplicial approximation of c, we have c(|v|) ∈ Ostµ(v),
which now implies that c(|v|) ̸∈ |Φ(σ)| by the previous observation. This contradicts the
assumption that c is carried by Φ, so we must have µ(v) ⊆ Φ(σ), implying that µ is carried
by Φ.

3.5 Connectivity

Two geometrical objects A and B are homeomorphic if, there is a continuous map from A

into B or vice-versa [38, 37]. For any d > 0, let the d-ball Bd ⊆ Rd be the set of points with

18

distance at most 1 from the origin in Rd. Let the (d − 1)-sphere Sd−1 ⊆ Rd be the set of
points with distance exactly equal to 1 from the origin in Rd. Note the following obvious
homeomorphism:

Fact 3.5.1. [37] For any k-simplex σ, the boundary of σ is homeomorphic to a (k−1)-sphere,
and σ is homeomorphic to a k-ball.

Connectivity is a general notion of graph connectivity adapted for higher dimensions.
The concept, which is fundamental to this work, is formalized below.

Definition 3.5.2. A simplicial complex K is x-connected, for x ≥ 0, if any continuous map
f : |K′| → Sx, where K′ ⊆ K is homeomorphic to an x-sphere, can be extended into a
continuous map g : |K′′| → Dx+1, where K′′ ⊆ K is homeomorphic to an (x + 1)-ball. We
require K′ ⊂ K′′ and g(x) = f(x) if x ∈ |K′|.

In analogy, think of the extremes of a pencil as a 0-sphere, and the pencil itself as a
1-ball (the extension is possible if 0-connected); the rim of a coin as a 1-sphere, and the coin
itself as a 2-ball (the extension is possible if 1-connected); the outer layer of a billiard ball as
a 2-sphere, and the billiard ball itself as a 3-ball (the extension is possible if 2-connected).
Figure 3.6 depicts the extension from f to g, and Fig. 3.7 shows a simplicial complex that
is 0-connected but not 1-connected.

v3

v4

v6

K

v5

v0

v1 v2

f

extension of f defining g

D2

Figure 3.6: Extending a map f with range S1 to a map g with range D2. The extension is
possible because K is 1-connected.

In this text, (−1)-connected is understood as non-empty, and (−2)-connected or lower
imposes no restriction.

19

v0

v1 v2

v3 v4

v5

K

Figure 3.7: The simplicial complex K is 0-connected but not 1-connected.

3.6 Modeling Tasks using Simplicial Complexes

In this section, we see how crash-failure tasks can be formalized using tools of combinatorial
topology, as in [22]. We delay the formalization of Byzantine tasks until Chap. 5.

Recall from Chap. 2 that the set of processes is denoted by P, and the input (respectively,
the output) of process Pi ∈ P is denoted by Ii (respectively, Oi). In our model, a vertex
(Pi, Vi) represents that value Vi is attributed to Pi, and a simplex represents a global
attribution of values to processes. If Vi’s represent inputs, we are defining valid input
configurations; if Vi’s represent outputs, we are defining valid outputs configurations. Let
us formalize the concept through the following definitions.

Definition 3.6.1. A name-labeled simplex σ is a simplex where:

1. for any vertex v ∈ σ we have v = (Pi, Vi) with Pi ∈ P;

2. if (Pi, Vi) ∈ σ and (Pj , Vj) ∈ σ then Pi ̸= Pj .

A name-labeled simplicial complex K is defined to contain only name-labeled simplexes.

Definition 3.6.2. For any name-labeled simplex σ,

names(σ) = {Pi : ∃V such that (Pi, V) ∈ σ},

views(σ) = {Vi : ∃P such that (P, Vi) ∈ σ}.

Definition 3.6.3. For any name-labeled simplicial complex K,

names(K) =
∪
σ∈K

names(σ) and views(K) =
∪
σ∈K

views(σ).

20

Definition 3.6.4. A canonical simplex σ is a simplex with dim(σ) ≥ (|P| − 1)− t.

Definition 3.6.5. Two name-labeled simplices σ1 and σ2 match if

names(σ1) = names(σ2).

Definition 3.6.6. Let K and L be name-labeled simplicial complexes. We say that a carrier
map Φ : K → 2L is name-preserving if, for any σ ∈ K, also including vertices of K,
names(σ) = names(Φ(σ)).

For any task T , an initial configuration for T is σI = {(Pi, Ii) : Ii is input by Pi}, a
canonical name-labeled simplex describing a permitted input to T . A final configuration
for T is σO = {(Pi, Oi) : Oi is output by Pi}, a canonical name-labeled simplex describing
a permitted output of T . Any initial or final configuration is a canonical simplex because
at least |P| − t non-faulty processes start and finish every computation of T .

Definition 3.6.7. A crash-failure task specification is formally a triple T = (I,O,∆) such
that:

• I is the input complex. A simplex σ ∈ I if there is some σI ⊇ σ that is an initial
configuration, with dim(σI) = |P| − 1.

• O is the output complex. A simplex σ ∈ O if there is some σO ⊇ σ that is a final
configuration, with dim(σO) = |P| − 1.

• ∆ : I → 2O is a name-preserving carrier map. The simplex τ ∈ ∆(σ) if the final
configuration τ is valid given the initial configuration σ, with σ matching τ . Also,
∆(σ′) = ∅ for any non-canonical simplex σ′ of I.

If an initial configuration σ has ∆(σ) = ∅, that is, has no associated final configuration,
we effectively preclude any protocol. Therefore, interesting tasks are defined such that
∆(σ) ̸= ∅ for any initial configuration σ. We illustrate the relationship between input and
output complexes, and the map ∆, in Fig. 3.8.

In this text, when name-labeling or canonicity are obvious or irrelevant, the adjective is
omitted.

3.7 Pseudospheres

Informally, a pseudosphere is a simplicial complex formed by assigning values to processes
independently, such that a process Pi receives only values from a set Si. In many problems,
input and output complexes are pseudospheres or unions of pseudospheres.

21

(P0, v0)

(P1, v1)(P2, v2)

(P0, v3)(P1, v4)

{(P0, v0), (P1, v1), (P2, v2)}

{(P0, v1), (P1, v1), (P2, v1)}

{(P0, v2), (P1, v2), (P2, v2)}

{(P0, v3), (P1, v3), (P2, v3)}

{(P0, v4), (P1, v4), (P2, v4)}

I O∆(σ)

σ

Figure 3.8: An example of a consensus task for the initial configurations defined in I.

Definition 3.7.1. Let S = {(Pi, Si) : Pi ∈ P′}, where each Si is an arbitrary set and P′ ⊆ P.
A pseudosphere Ψ(P′,S) is a simplicial complex where, if σ = {(Pi, Vi) : Pi ∈ P′, Vi ∈ Si},
σ ∈ Ψ(P′, S).

Essentially, a pseudosphere is a simplicial complex formed by independently assigning
values to all the specified processes. If Si = S for all Pi ∈ P′, we call the resulting pseudo-
sphere a simple pseudosphere, we simply write Ψ(P′, S). Figure 3.9 gives an example of a
simple pseudosphere.

3.8 Shellability

Informally speaking, a simplicial complex is shellable if it can be built by gluing its x-
simplexes along their (x− 1) faces only. For example, the complex in Fig. 3.1 can be built
by gluing its simplexes clockwise, and every new simplex intersects the accrued construction
along its border only.

Definition 3.8.1. A pure, simplicial complex K is shellable if we can arrange the facets of K
in a linear order ϕ0 . . . , ϕt such that

(∪
0≤i<k ϕi

)
∩ ϕk is a pure (dim(ϕk)− 1)-dimensional

simplicial complex for all 0 < k ≤ t. We call the above linear order ϕ0, . . . , ϕt a shelling
order.

Note that ϕ0, . . . , ϕt is a shelling order if any ϕi ∩ ϕj (0 ≤ i < j ≤ t) is contained in a

22

(P0, v0)

(P0, v1)

(P1, v1)

(P1, v0)

(P2, v0)

(P2, v1)

Figure 3.9: A pseudosphere Ψ({P0, P1, P2}, {v0, v1}).

(dim(ϕk)− 1)-face of ϕk (0 ≤ k < j). Hence,

for any i < j exists k < j where (ϕi ∩ ϕj) ⊆ (ϕk ∩ ϕj) and |ϕj \ ϕk| = 1. (3.2)

Shellability and pseudospheres are important tools to characterize connectivity in simplicial
complexes. The following lemmas are proved in [22] and [21] (pp. 252–253).

Lemma 3.8.2. Any pseudosphere Ψ(P′, S) is shellable, for any S = {(Pi, Si) : ∀Pi ∈ P′}.

Proof. Proof in [21], pp. 252–253.

Lemma 3.8.3. For any k ≥ 1, if the simplicial complex K is shellable and dim(K) ≥ k then
K is (k − 1)-connected.

Proof. Proof in [22].

3.9 Nerves

Let K be a simplicial complex with a cover {Ki : i ∈ I} = K, where I is a finite index set.
The nerve N ({Ki : i ∈ I}) is the simplicial complex with vertexes I and simplexes J ⊆ I

whenever KJ =
∩

j∈J Kj ̸= ∅. We can characterize the connectivity of K in terms of the
connectivity of the intuitively simpler nerve of K with the next theorem.

Theorem 3.9.1 (Nerve Theorem [30, 5]). If for any J ⊆ I denoting a simplex of the nerve
N ({Ki : i ∈ I}) (thus, KJ ̸= ∅) we have that KJ is (k − |J | + 1)-connected, then K is
k-connected if and only if N ({Ki : i ∈ I}) is k-connected.

23

In the example of Fig. 3.10, subcomplexes K0, K1 and K2 are 1-connected, and its
nerve N ({K0,K1,K2}) is 0-connected, but not 1-connected. Note that every member of
the cover is 0-connected, and for every pair of members of the cover, their intersection is
(−1)-connected (that is, non-empty). Applying the above theorem with k = 0, we can
conclude that the whole complex K is 0-connected.

K

K0

K1 K2

Figure 3.10: Application of the Nerve Lemma to reason about connectivity.

3.10 Protocol Complexes

In this work, we use simplicial complexes more than just to formalize tasks in terms of their
inputs and outputs. We abstract protocols as continuous exchanges of internal states, in a
full-information fashion [25], so we can use simplicial complexes to model executions. These
complexes are called protocol complexes, which are formalized below for synchronous and
asynchronous systems.

3.10.1 Asynchronous Systems

In an asynchronous system, we are mostly interested in representing the communication
structure after the protocol finishes. For any task (I,O,∆), a protocol complex P(I) is a
simplicial complex that models the possible final states of the protocol execution for any
input configuration. The possible final states for an input configuration represented by
σ ∈ I denotes the simplicial complex P(σ) ⊆ P(I).

The protocol complex P(I) has name-labeled n-simplexes that represent all possible
global states at the end of the protocol. It is defined as follows: if σ ∈ P(I), then
σ = {(Pi, view(Pi)) : ∀Pi ∈ G}, where view(Pi) represents Pi’s view after the protocol
terminates.

24

3.10.2 Synchronous Systems

In a synchronous system, the communication structure allows the modeling of the execution
throughout the rounds. For any task (I,O,∆), a round-i protocol complex P i(I) is a
simplicial complex that models the possible states of the protocol execution for any input
configuration, at round i. The possible states for an input configuration represented by
σ ∈ I, at round i, denotes the simplicial complex P i(σ) ⊆ P i(I).

Denote the processes behaving in strict accordance to the protocol for rounds 1 up to
r (inclusive) as Gr. For convenience of notation, define a round 0 as the state just before
the beginning of the protocol, with G0 = P. The round-0 protocol complex P0(I) has
name-labeled n-simplexes σI = {(Pi, Ii) : ∀Pi ∈ G0}, representing all the possible process
inputs in the beginning of the protocol. After each round r, the round-r protocol complex
Pr(I) represents all possible global states of the system at round r. For any r ≥ 0, it is
defined as follows: if σ ∈ Pr(I), then σ = {(Pi, viewr(Pi)) : ∀Pi ∈ Gr}, where viewr(Pi)

represents Pi’s view after round r.

3.11 Protocols and Decision

Protocol complexes are important to characterize the ability of processes to decide after
the execution of the protocol. The formal definition of protocol is identical to [24], here
presented for completeness:

Definition 3.11.1. A protocol for (I,O,∆) is a carrier map P that takes σ ∈ I to a simplicial
complex denoted by P(σ). Let P(I) = ∪σ∈IP(σ).

Definition 3.11.2. A protocol P solves (I,O,∆) if there exists a simplicial map δ : P(I)→ O
carried by ∆.

Chapter 4

Asynchronous Multidimensional
ϵ-Approximate Agreement

In this chapter, we discuss a generalization of the traditional consensus [18] and approximate
agreement [15] problems in light of Byzantine failures. Informally, in our multidimensional
ϵ-approximate agreement task, for arbitrary ϵ > 0 and d ≥ 1, each process starts with an
input value in Rd, and all non-faulty processes must choose output values, also in Rd, such
that: (1) all outputs lie within ϵ of one another; and (2) all outputs lie in the convex hull
of the inputs of the non-faulty processes. We provide an optimal protocol for this problem,
in terms of resilience, for asynchronous Byzantine systems. The protocol centers around
the safe area concept, permitting processes to converge in Euclidean space of arbitrary
dimension. We use geometric arguments, such as Helly’s Theorem, to analyze and prove
the correctness of the protocol.

4.1 Contributions Overview and Related Work

Our multidimensional ϵ-approximate agreement problem has a long and fascinating back-
ground. In the consensus task [18], processes start with values from an arbitrary domain,
and must choose values satisfying:

Agreement: all processes decide on the same value; and

Validity: the decided value is some process’ input.

It is well-known that asynchronous consensus is impossible in the presence of even a single
crash failure [18], so the result naturally extends to Byzantine failures.

25

26

There are many ways to circumvent this impossibility: requiring synchrony, employing
randomization, considering weaker agreement requirements, among others. One particularly
interesting relaxation is to settle for (unidimensional) ϵ-approximate agreement, described
in [15] back in 1986. There, non-faulty processes start with input values in R, and must
also finish with output values in R, satisfying:

Agreement: all non-faulty processes decide on values that are within an arbitrary distance
ϵ ≥ 0 of each other; and

Validity: all non-faulty processes decide on values in the range of the non-faulty process
inputs.

In contrast to consensus, the unidimensional asynchronous ϵ-approximate agreement is
possible, even with (a limited number of) Byzantine failures. We can think of the protocol
geometrically: non-faulty processes start on points in R, and then converge to arbitrarily
close values in the range of their inputs, despite difficulties presented by asynchrony and
malicious behavior of a subset of processes.

Let n be the number of participating processes, and t be an upper bound on the number
of Byzantine processes. For asynchronous message-passing systems, early protocols required
n > 5t [15, 16], improved later to n > 3t [1], which is optimal in terms of resilience [17].
The optimal protocol uses reliable broadcast [3, 44, 8] to force Byzantine processes to com-
municate consistently (avoiding the situation where these tell different things to different
processes), as well as the witness technique [1] to improve data collection under failures.

4.2 Operational Model

Assuming n processes rather than n+1 simplifies the computing notation, but considerably
complicates the topological notation. Since this chapter is solely devoted to the definition
and analysis of the multidimensional ϵ-agreement task, and does not concern topological
tools:

We let number of processes be n. Define P = {P0, . . . , Pn−1}.

Processes exchange messages via pairwise distinct channels. Channels form a complete
graph, and are reliable, authenticated, and FIFO: all transmitted messages are eventually
delivered, in the order they were sent, and the sender is always correctly identified. Commu-
nication is asynchronous: the delivery of any message happens after a finite, yet unbounded

27

delay. The processes are asynchronous as well, with unbound relative speed. The reason-
ableness of this setting is discussed in Chap. 2.

Any set of up to t processes might be arbitrarily faulty, characterizing a Byzantine-failure
model [31]. Faulty processes display arbitrary, even malicious behavior, which includes
collusion to prevent the protocol to terminate correctly. Specifically, the faulty processes
are any set of no more than t processes chosen by an adversary. Byzantine processes may
execute the protocol correctly or incorrectly, at the discretion of the adversary. The set of
all processes is denoted by P, partitioned in non-faulty processes G ⊆ P and faulty processes
Ḡ = P \G.

4.3 Formal Definition

Every process Pi ∈ G has an input Ii ∈ Rd and an output Oi ∈ Rd. Let IG = {Ii : Pi ∈ G}
be called non-faulty inputs. After we run the multidimensional ϵ-approximate agreement
protocol, we require the following:

Agreement: for any non-faulty processes Pi and Pj , the Euclidean distance between their
outputs Oi and Oj is at most ϵ, an error tolerance fixed a priori.

Convexity: for any non-faulty process Pi, its output Oi is inside the convex hull of the
non-faulty inputs IG.

4.3.1 On the Generalization of Approximate Agreement

The convexity requirement is the natural generalization of the 1-dimensional validity con-
dition, and it is essential to some applications, as discussed later. The convex hull of the
non-faulty process inputs is independent of the choice of coordinate system. Convexity guar-
antees that if such inputs lie in a linear subspace of Rd (say, along a line), the non-faulty
process outputs lie also in such linear subspace.

Note that our protocol performance, measured in the number of messages required to
be sent, depends only on the inputs of the non-faulty processes, and is unaffected by any
malicious behavior of the Byzantine processes.

While we converge values dimension-by-dimension in our protocol, we cannot simply
reuse the 1-dimensional protocol for that goal. Fig. 4.1 shows the problem, taking d = 2:
with the 1-dimensional algorithm used in consecutive dimensions, we may output any point
in the highlighted rectangle, but the actual allowed convex hull is strictly smaller. With
the safe area concept, however, we can make sure that all the individual convergence steps

28

maintain convexity (see Sec. 4.8). A matching lower bound for fault tolerance confirms that
the safe area concept, which is fundamental for correctness, underlies an optimally-resilient
protocol (see Sec. 4.7).

first coordinate

se
co

n
d

co
or

d
in

at
e

allowed convex hull

x

x

x

x

= Byzantine input= non-faulty input

Wednesday, October 17, 12

Figure 4.1: Performing traditional approximate agreement in separate dimensions breaks
convexity.

In this chapter, we present a t-resilient protocol for the multidimensional ϵ-agreement
problem, which is an algorithm guaranteeing that each non-faulty process decides on a
correct output, despite the presence of up to t Byzantine processes [34]. We note that
similar results were discovered independently and concurrently by Vaidya and Garg [45]. A
combined paper unifies both ideas in [35].

4.4 Applications

Besides theoretical interest, our protocol has practical applicability. We now discuss some
of those applications for the interested reader.

Robot convergence: Consider autonomous mobile entities, such as robots, that must
converge to nearby locations in the 2 or 3-dimensional space. They must do so de-
spite arbitrary behavior of a subset of robots (Byzantine failures), and unbounded
communication delays (asynchronous communication). In other words, they cannot
discern between benign and malicious robots, likewise between failed or slowly respon-
sive ones. Finally, non-faulty robots must respect convexity, and only move within
their original convex region – or they would wander through unsafe territory, say.
Byzantine robots must not have the power to influence benign robots to move outside
their original convex region.

29

Previous results in the robot network literature relate approximate agreement with
robot convergence in the real line [7, 41]. Our protocol works if the maximum number
of faulty robots, t, compared to the number of existent robots, n, is t < n/4 for
the 2-dimensional case, and t < n/5 for the 3-dimensional case. In the terminology
of Potop-Butucaru et al. [41], our protocols are fully asynchronous, cautious, non-
oblivious variants of the CORDA model presented there.

Distributed voting: Say distributed voters must choose from a number of options. Each
voter gives its relative preferences by assigning weights to options, where the weights
sum up to one. For example, for three options, a voter may give 0.3 option a, 0.6

to option b, and 0.1 to option c. A preference can be viewed as the barycentric
coordinates of a point in the triangle of Fig. 4.2.

Sunday, August 5, 12

Figure 4.2: Respecting convexity means respecting unanimity in voting systems.

As the result of the voting, each process receives a new assignment of weights to
options, and all assignments agree to within ϵ, and all lie within the convex hull of
the original votes. The convexity requirement implicates that the voting respects
unanimity: if all voters prefer c over a and b (as in Fig. 4.2), then every voter’s final
assignment also reflects that. Here, our protocol is applicable, and respects convexity
and unanimity in Byzantine asynchronous systems. Other related interpretations for
convexity exist – see Saari [42].

30

4.5 Asynchronous Communication Primitives

In this section, we review two existing communication primitives, namely the reliable broad-
cast and the witness technique. Those primitives support our main algorithmic procedure,
which is basically as follows. In multiple discrete rounds, any non-faulty processes will:

1. Broadcast its current value;

2. Receive multiple process values (including its own), never waiting for more than n− t
process values, since t processes might have crashed;

3. Update its current value to a particular point inside a “safe area” in Rd, guaranteed
to be in the convex hull of the non-faulty inputs.

The insight of our protocol lies in step (3), which, despite seemingly simplicity, curtains
elaborate combinatorial and geometric arguments for correctness and optimality. Here, we
discuss the primitives corresponding to (1) and (2).

4.5.1 Reliable Broadcast

The reliable broadcast technique avoids equivocation – the situation where Byzantine pro-
cesses convey different contents to different processes in a single round of communication.
The technique works as long as n > 3t, and it is thoroughly discussed in [3], with original
ideas due to Srikanth and Toueg [44] and Bracha [8].

The communication is organized in asynchronous rounds, and messages are decorated
with the sender identification, say p, and the current round tag, say r. So, a message with
contents c will look like M = (p, r, c). The reliable broadcast technique has the following
properties:

Non-faulty integrity: If a non-faulty process p never reliably broadcasts (p, r, c), no other
non-faulty process will ever receive (p, r, c).

Non-faulty liveness: If a non-faulty process p does reliably broadcast (p, r, c), all other
non-faulty processes eventually receive (p, r, c).

Global uniqueness: If two non-faulty processes reliably receive (p, r, c) and (p, r, c′), the
messages are equal (c = c′), even when the sender, p, is Byzantine.

Global liveness: For two non-faulty processes p and q, if p reliably receives (b, r, c), q also
reliably receives (b, r, c), even when the sender process, b, is Byzantine.

31

For formal proofs the above properties, see [3].
Algorithms 2 to 4 illustrate the technique for sender p, round r, and contents c, in terms

of messages exchanged in the raw asynchronous channels (via send and recv). In summary,
the procedure works as follows:

1. Process p broadcasts a decorated message M = (p, r, c);

2. When other processes receive M , they echo it;

3. When processes receive n− t echo messages for M , they send ready messages for M ;

4. When processes see t + 1 ready messages for M , meaning that a non-faulty process
necessarily advocates the existence of M , they also send ready messages;

5. Finally, when a process receives at least n− t ready messages, the original message is
accepted.

Algorithm 2 p.RBSend((p, r, c))
send(p, r, c) to all processes

Algorithm 3 p.RBEcho()
upon recv(q, r, c) from q do

if never sent (p, qr{echo}, ·) then
send(p, qr{echo}, c) to all processes

end if
end upon
upon recv(·, qr{echo}, c) from ≥ n− t processes do

if never sent (p, qr{ready}, ·) then
send(p, qr{ready}, c) to all processes

end if
end upon
upon recv(·, qr{ready}, c) from ≥ t+ 1 processes do

if never sent (p, qr{ready}, ·) then
send(p, qr{ready}, c) to all processes

end if
end upon

Algorithm 4 p.RBRecv((q, r, c))
recv(·, qr{ready}, c) from n− t processes
return (q, r, c)

32

In this text, p.RBSend((p, r, c)) denotes the reliable broadcast of (p, r, c) by process p, and
p.RBRecv((q, r, c)) the reliable receipt of (q, r, c) by p. Unless otherwise noted, all messages
are exchanged via reliable broadcast.

4.5.2 Witness Technique

To promote agreement, we want that the collected values of any two non-faulty processes
suitably overlap in every round. However, non-faulty processes cannot wait indefinitely for
more than n − t messages, as t processes might be crashed. If we use reliable broadcast,
which indeed never waits for more than n − t processes, any two non-faulty processes
will have n − 2t values in common after one round of communication. With the witness
technique, originally presented by Abraham et al. [1], we can make non-faulty processes
have n− t common values, which is essential for our correctness and optimality arguments.
The witness technique will only wait for messages certain to be delivered.

Algorithm 5 overviews the technique for process p and round r. First, p reliably receives
n− t messages from other processes, storing them into Val. Then, p reliably transmits its
report, which contains the n− t messages first collected in Val, and reliably receives reports
from other processes, storing them into Rep.

Algorithm 5 p.RBReceiveWitness(r)
Val,Rep,Wit← ∅
while |Val| < n− t do

upon RBRecv((px, r, cx)) do
4: Val← Val ∪ {(px, r, cx)}

end upon
end while
RBSend((p, r,Val))

8: while |Wit| < n− t do
upon RBRecv((px, r, cx)) do

Val← Val ∪ {(px, r, cx)}
end upon

12: upon RBRecv((px, r,Valx)) do
Rep← Rep ∪ {(px, r,Valx)}

end upon
Wit← {(px, r,Valx) ∈ Rep : Valx ⊆ Val}

16: end while
return Val

A witness for p is a process whose report consists of messages received by p, as seen in
Lines 4 or 10. We note that p collects reports in Rep until n − t witnesses are identified

33

in Wit. This eventually happens since we are certain to receive n − t non-faulty process
reports, and, by the global liveness of reliable broadcast, we are also certain to receive the
values received by each of them.

As witnesses are obtained via reliable broadcast, any two non-faulty processes have at
least n − 2t ≥ t + 1 witnesses in common, of which at least one is non-faulty. So, they
receive at least n− t values in common. As formally shown in [1]:

Fact 4.5.1. If n > 3t, any two non-faulty processes that obtain messages through the witness
technique in a single round r obtain n− t messages in common.

4.6 The Safe Area

In our algorithm, non-faulty processes exchange messages containing values, using reliable
broadcast. Processes exchange their “current values” (initially the input) in multiple rounds.
At the end of each round, they update their current values jumping to a safe area inside
the convex hull of the non-faulty inputs.

In each round, each non-faulty process obtains a message set, which contains messages
(Pi, r, ci), consisting on the sending process Pi, the current round r, and the message con-
tents ci (normally values in Rd). No process appears twice in a message set: for any (Pi, r, ci)

and (Pj , r, cj) in an arbitrary message set, Pi ̸= Pj . Also, if two processes obtain (Pi, r, c
′
i)

and (Pi, r, c
′′
i), we have that c′i = c′′i . In other words, the message contents are consistent

among processes, as we use reliable broadcast.
For any message set X, the contents of X is the multiset Cont(X) such that c ∈ Cont(X)

only when (p, r, c) ∈ X, for any process p and round r. If c ∈ Cont(X), we can also say
that X contains c.

Definition 4.6.1. For any message set X, if Cont(X) contains only values ∈ Rd, X is a
valued message set; otherwise, X is an unrestricted message set.

Valued message sets can alternatively be understood as multisets of values ∈ Rd (called
valued multisets). For any valued multiset C, the polytope of C, written Poly(C), is the
convex hull of points in C. Similarly, for any valued message set X, the polytope of X,
written Poly(X), is Poly(Cont(X)). Furthermore, even unrestricted message sets can al-
ternatively be understood as multisets of arbitrary contents (called unrestricted multisets).
Our definitions and theorems are given in terms of message sets, but, considering such
correspondence, they apply to multisets as well.

Consider any message set X. Note that any X ′ ⊆ X is similarly a message set. The

34

non-faulty messages of X define the set XG = {(Pi, r, ci) ∈ X : Pi ∈ G}, and the faulty
messages of X define XB = {(Pi, r, ci) ∈ X : Pi ∈ B}. We always assume |X| > t and
|XB| ≤ t. For multisets of values, the above notation is preserved. Hence, if C = Cont(X),
we define CG = Cont(XG) and CB = Cont(XB).

For any message set X, we say that any X ′ ⊆ X containing exactly |X| − t elements
is a restriction of X. The set of all possible restrictions is Restrictt(X). The safe area of
X, written Safet(X), is the intersection of the polytopes of all possible restrictions of X
(see Fig. 4.3, and the following definition). The previous concepts are defined verbatim for
multisets of values.

Definition 4.6.2. For any valued message set X, the safe area of X is

Safet(X) =
∩

X′∈Restrictt(X)

Poly(X ′).

Poly(X ′)
X ′ ∈ Restrictt(X)

Safet(X)

Figure 4.3: For Cont(X) = {v1, . . . , v5} and t = 1, we highlight Poly(X ′), for a particular
X ′ ∈ Restrictt(X), and also show Safet(X). Values are in R2.

The safe area is a convex polytope, as it is an intersection of other convex polytopes.

Lemma 4.6.3. For any valued message set X, if X ′ ⊆ X, and |X ′| ≥ |X|−t, then Safet(X) ⊆
Poly(X ′).

Proof. As defined before, Safet(X) ⊆ Poly(X ′′), taking a particular restriction X ′′ of X
such that X ′ ⊇ X ′′. Then Safet(X) ⊆ Poly(X ′′) ⊆ Poly(X ′).

35

We always consider |XB| ≤ t, so X always contains at least |X| − t values in XG. In
other words, |XG| ≥ |X| − t. From the previous lemma, taking X ′ = XG, we can conclude
the following:

Corollary 4.6.4. Safet(X) ⊆ Poly(XG).

In the following lemmas, we relate t and |X| in order to ensure the existence of the safe
area. We use the following theorem from discrete geometry [13]:

Theorem 4.6.5 (Helly’s Theorem). Consider any finite collection of closed convex sets S =

{S1, . . . , Sx} on Rd, with x ≥ d+ 1. If every subset of d+ 1 members of S intersect, then∩
Si∈S

Si ̸= ∅.

The relationship between t and |X| as it concerns the existence of the safe area is
seen in Lemmas 4.6.7 and 4.6.11. The lemma below applies to unrestricted message sets
(respectively, unrestricted multisets), while the upcoming lemmas apply to valued message
sets (respectively, valued multisets) only. Unless otherwise noted, we presume that message
sets and multisets are valued.

Lemma 4.6.6. For any X1, . . . , Xj ∈ Restrictt(X), where X is an unrestricted message set,∣∣∣∣∣∣
∩

1≤i≤j

Xi

∣∣∣∣∣∣ ≥ |X| − jf.
Proof. We prove the lemma by induction on j.

Base. For j = 1, we have that∣∣∣∣∣∣
∩

1≤i≤1

Xi

∣∣∣∣∣∣ = |X1| = |X| − t = |X| − 1t,

since X1 ∈ Restrictt(X).
Induction Hypothesis. Assume valid∣∣∣∣∣∣

∩
1≤i≤k

Xi

∣∣∣∣∣∣ ≥ |X| − kt,
for k < d+ 1. ∣∣∣∣∣∣

∩
1≤i≤k+1

Xi

∣∣∣∣∣∣ =
∣∣∣∣∣∣
 ∩

1≤i≤k

Xi

 ∩Xk+1

∣∣∣∣∣∣ (⋆)

≥ |X| − kt− t = |X| − (k + 1)t (⋆⋆).

36

(⋆) holds by associativity of ∩; (⋆⋆) happens as at most t values in ∩1≤i≤kCont(Xi) are not
in Cont(Xk+1).

Lemma 4.6.7. For any valued message set X having values in Rd, if |X| > (d + 1)t, then
Safet(X) ̸= ∅.

Proof. As |X| > (d+1)t, by definition of Restrictt(X), we know that |Restrictt(X)| ≥ d+1.
Therefore, consider any X1, . . . , Xd+1 ∈ Restrictt(X). By Lemma 4.6.6,∣∣∣∣∣∣

∩
1≤i≤d+1

Xi

∣∣∣∣∣∣ ≥ |X| − (d+ 1)t > (d+ 1)t− (d+ 1)t ≥ 1.

Any X1, . . . , Xd+1 from Restrictt(X) have a non-empty intersection. Therefore, we have
that any Poly(X1), . . . ,Poly(Xd+1) from S = {Poly(X ′) : X ′ ∈ Restrictt(X)} will have a
non-empty intersection as well. By our first observation, we know that |S| ≥ d+ 1.

Finally, as all message contents are in Rd, applying Helly’s Theorem will imply that all
subsets of S = {Poly(X ′) : X ′ ∈ Restrictt(X)} will also have a non-empty intersection, and
therefore Safet(X) ̸= ∅.

Now, we characterize special arrangements of values in Rd, used in further discussions
and proofs. Regarding notation, we denote the m-th component of a vector v as v[m].

Definition 4.6.8. Consider an arbitrary ϵ > 0. A standard basic vector em ∈ Rd is such that
em[m] = 2ϵ, for some 1 ≤ m ≤ d, and em[m′] = 0, for any m′ ̸= m. We additionally define
e0 = 0d.

For example, in R3, we have e0 = [0, 0, 0], e1 = [2ϵ, 0, 0], e2 = [0, 2ϵ, 0], and e3 = [0, 0, 2ϵ].
Note that the distance between any different standard basic vectors exceeds our threshold
ϵ in the case of multidimensional approximate agreement. These vectors might be arranged
as follows:

Definition 4.6.9. A valued message set X forms a (k, t)-simplicial state in Rd, for some
1 ≤ k ≤ d+1, when X contains k different standard basic values (which we call x0, . . . , xk−1)
in Rd such that

1. For any x ∈ Cont(X), we have that x = xm with some 0 ≤ m ≤ k − 1.

2. For any x ∈ Cont(X), we have that x appears at most t times in Cont(X).

In other words, X consists solely of k arbitrary standard basic vectors, each with at
most t appearances.

37

In a (k, t)-simplicial state, geometrically speaking, the points form a geometrical (k−1)-
simplex σ = (x0, . . . , xk−1), with x0 . . . xk−1 being different standard basic vectors in Rd. For
instance, Fig. 4.4 shows the simplex defined by a (4, t)-simplicial state, in which 4t values are
located in 4 different positions corresponding to standard basic vectors, e0, . . . , e3, having
exactly t values in a single position.

︸
︷︷

︸

� 2✏

e0 = v0 = . . . = vt−1

e1 = vt = . . . = v2t−1

e3 = v3t = . . . = v4t−1

e2 = v2t = . . . = v3t−1

Figure 4.4: v0, . . . , v4t−1 ∈ Cont(X), which configures a (4, t)-simplicial state.

Lemma 4.6.10. If the message set or multiset X configures a (k, t)-simplicial state in Rd,
for any 1 ≤ k ≤ d+ 1, then Safet(X) = ∅.

Proof. Without losing generality, say that Cont(X) consists solely of standard basic values
e0 . . . ek−1. By definition of (k, t)-simplicial state, each standard basic value appears at most
t times in Cont(X).

Define X(m) = {(p, r, ei) ∈ X : i ̸= m}, for any 0 ≤ m ≤ k − 1. This is the message set
X(m) ⊆ X excluding all messages with contents em. As discussed above, Poly(X) denotes
a geometrical simplex, say σ. Similarly, Poly(X(m)) denotes a proper face, say τm, of the
geometrical simplex σ.

Since |X(m)| ≥ |X| − t, we apply Lemma 4.6.3 for all X(m), with 0 ≤ m ≤ k − 1. We
have

Safet(X) ⊆
∩

0≤m≤k−1

Poly(X(m)) =
∩

0≤m≤k−1

|τm|,

which is empty, as it is the intersection of all the proper faces of the geometrical simplex σ.
For standard definitions on simplicial topology, see Chap. 3.

Lemma 4.6.11. In Rd, there exists a valued message set X where |X| ≤ (d + 1)t and
Safet(X) = ∅.

38

Proof. Assume Cont(X) = {x0, . . . , x(d+1)t−1}, with xi = e(i mod d+1). Hence, X configures
a (d+ 1, t)-simplicial state, so, by the previous lemma, we have that Safet(X) = ∅.

In this section, we formalized the concept of the safe area, and we showed that for any
valued message set X (respectively, valued multiset), if |X| > (d+ 1)t then its safe area is
necessarily nonempty, and if |X| ≤ (d+ 1)t then its safe area can be empty.

4.6.1 Properties

In this section, we give some important properties of the safe area, exploited later in our
algorithms. Consider a valued message set X, with |X| > t, and define a valued message as
a message containing a value ∈ Rd.

Lemma 4.6.12. Safet(X) ⊆ Safet−1(X).

Proof.

Safet(X) =
∩

X′∈Restrictt(X)

Poly(X ′)

⊆
∩

X′∈Restrictt(X)

 ∩
M∈X\X′

Poly(X ′ ∪ {M})


=

∩
X′∈Restrictt−1(X)

Poly(X ′) (⋆)

= Safet−1(X),

where (⋆) happens since ∩ is associative.

Lemma 4.6.13. For any valued message M ̸∈ X, we have that Safet(X) ⊆ Safet(X ∪ {M}).

Proof. First, we note that

Safet(X) =
∩

X′∈Restrictt(X)

Poly(X ′)

⊆
∩

X′∈Restrictt(X)

Poly(X ′ ∪ {M})

=
∩

X′∈Restrictt(X∪{M}),M∈X′

Poly(X ′) = A,

calling A the intersection of convex polytopes of |X ∪ {M}| − t members of X ∪ {M} that
include M .

39

Second, by the previous lemma, we note that

Safet(X) ⊆ Safet−1(X)

=
∩

X′∈Restrictt−1(X)

Poly(X ′)

=
∩

X′∈Restrictt(X∪{M}),M ̸∈X′

Poly(X ′) = B,

calling B the intersection of convex polytopes of |X ∪ {M}| − t members of X ∪ {M} that
exclude M . Therefore,

Safet(X) ⊆ A ∩B

=
∩

X′∈Restrictt(X∪{M})

Poly(X ′)

= Safet(X ∪ {M}),

concluding our proof.

4.7 Necessary Condition for the Protocol

In this section, we give a necessary condition to solve multidimensional approximate agree-
ment, providing a lower bound on the number of non-faulty processes in relation to the
number of Byzantine processes. We follow the argumentation of [35].

Theorem 4.7.1. The condition n > (d + 2)t is necessary to solve the multidimensional
approximate agreement on asynchronous systems.

Proof. We first consider n = (d+2)t processes, denoted by P0, . . . , P(d+2)t−1. Let the input
value of process Pi, for any 0 ≤ i < (d+1)t, be the standard basic vector e(i mod (d+1)). Call
the processes that start with input ej as Sj , and note that |Sj | ≤ t for all 0 ≤ j ≤ d. Call
the remaining processes Sd+2 = {Pi : i ≥ (d+ 1)t}.

As any correct algorithm must tolerate t failures, all non-faulty process must terminate
in every execution in which processes in Sd+2 never send any message. Suppose that all
processes are non-faulty, but processes in Sd+2 never send any message until all other
processes terminate. When an arbitrary process p ∈ Sx, for any 0 ≤ x < (d+1), terminates,
it cannot distinguish among the following scenarios:

40

• All processes in Sd+2 have crashed.

In this case, to satisfy the convexity condition, the output value of p must be in the
convex hull of the inputs of the processes in S1 ∪ · · · ∪Sd+1. That is, the output value
must be in the convex hull of

Dd+2 = {ei : 0 ≤ i ≤ d}.

• All processes in Sy, with y ̸= x and 0 ≤ y ≤ d are faulty; all process in Sd+2 have
their message delayed.

Recall that we are considering p at the time when it terminates. Since processes
in Sd+2 never send any message until p terminates, p cannot obtain any information
about the inputs of processes in Sd+2. All processes in Sy have been assumed as faulty,
so p cannot trust the input ey. Thus, to satisfy the validity condition, the decision of
process p must be in the convex hull defined below.

Dy = {ei : 0 ≤ i ≤ d and i ̸= y}.

Since Dy ⊆ Dd+2 for any 0 ≤ y ≤ d, the output value of our arbitrary process p is in∩
0≤i≤d
i̸=x

Di,

which is precisely {ex} since we assumed p ∈ Sx.
Thus, the decision of any process in Si is ei for all 0 ≤ i ≤ d. However, the input values

at each pair of processes in P0, · · · , Pd, for instance, differ by 2ϵ in at least one element.
So, the ϵ-agreement condition is not satisfied, which implies that n = (d+2)t is insufficient
to solve the problem. The case where n < (d + 2)t is similarly insufficient by an identical
argument. Therefore, having n > (d+ 2)t is a necessary condition to solve the problem in
asynchronous systems.

4.8 Protocol

We now present an algorithm for multidimensional approximate agreement over values,
originally described in [34] and presented again in [35]. The process input I ∈ Rd is passed
as argument. On Line 1, CalculateRounds takes the input and returns R, the number of
rounds needed to converge along each dimension 1 ≤ m ≤ d. The procedure also provides
the process an updated current value v ∈ Rd.

41

Note that although each process’ output value is computed dimension-by-dimension,
these computations are not really independent. First, both the number of rounds and the
starting value are computed using the procedure CalculateRounds, which operates under a
holistic approach (see Sec. 4.8.3). Most importantly, the safe area concept allows processes
to choose values always within Poly(IG).

For each dimension, indexed by m, we execute a number of convergence rounds, indexed
by r, until we accept > t halt messages, accumulated in H. The notation m.r in Line 6
denotes that the r-th convergence round for dimension m. A non-faulty process sends a halt
message for the current dimension after executing for R convergence rounds, as calculated in
Line 1. After deciding, non-faulty processes should still continue to broadcast their decided
values and to identify and broadcast witness reports, in order to ensure global progress.

Algorithm 6 p.AsyncAgree(I)
(R, v)← CalculateRounds(I)
for m← 1, . . . , d do

H ← ∅
r ← 1

5: while |H| ≤ t do
RBSend((p,m.r, v))
upon V ← RBReceiveWitness(m.r) do

S ← Safet(V) ▷ S(m) is the projection of S on coordinate m
v ← v ∈ S such that v[m] = Midpoint(S(m))

10: if r = R then
RBSend((p,m.r, {halt}))

end if
r ← r + 1

end upon
15: upon RBRecv((p′,m.r′, {halt})), with r′ ≤ r do

H ← H ∪ {(p′,m.r′, {halt})}
end upon

end while
end for

20: return v

On Lines 6 and 7, the process transmits its current value to other processes via reliable
broadcast, and receives the current values of other processes via the witness technique,
which updates V . In Line 8, the safe area is calculated. In Line 9, the process computes the
interval S(m), the projection of the safe area on coordinate m, then chooses a point in S such
that its m-th coordinate is in the midpoint of S(m), which updates v (see Lemma 4.8.6).
We discuss other properties of the safe area relevant to the algorithm in Sec. 4.8.1.

42

Note that a non-faulty process accepts only halt messages with an indexed round bigger
than or equal to the current round. This is essential for convergence, as seen in Sec. 4.8.2
and Sec. 4.8.3. Regarding Line 9, in Sec. 4.8.4 we show that v is well-defined at every round,
and satisfies the problem requirements at termination.

Assume we are executing our procedure for dimension m, with 1 ≤ m ≤ d. On process
Pi and round r, V r

i denotes the updated message set in Line 7, Sr
i the updated safe area in

Line 8, and vri the updated current value in Line 9. The projection of Sr
i over coordinate

m is denoted by S(m)ri . We omit subscripts or superscripts when they are irrelevant or
obvious.

The following concepts capture the range of the values present in specific coordinates of
current values across non-faulty processes:

Definition 4.8.1. For any coordinate 1 ≤ m ≤ d and round r:

1. min(m)r = min{v[m]rx : Px ∈ G};

2. max(m)r = max{v[m]rx : Px ∈ G}.

Definition 4.8.2. For any coordinate 1 ≤ m ≤ d and round r, the working range is

∆(m)r = max(m)r −min(m)r.

4.8.1 Intersecting Safe Areas

Say we are executing our procedure for dimension 1 ≤ m ≤ d. For any two non-faulty
processes Pi, Pj ∈ G and convergence round r, define the intersection of their received
message sets as Vri,j = V r

i ∩ V r
j , written simply as Vi,j = Vi ∩ Vj if r is irrelevant or obvious.

Since processes exchange values using the witness technique, we conclude the following,
from Fact 4.5.1:

Corollary 4.8.3. For any two non-faulty processes Pi, Pj ∈ G, we have that |Vi,j | ≥ n− t.

As we show next, this implies in a non-empty intersection of safe areas between any two
non-faulty processes, in every round. Formally, for any non-faulty processes Pi, Pj ∈ G, we
will have Si ∩ Sj ̸= ∅.

The reasoning is the following. Since |Vi,j | ≥ n − t, the safe area taking only values in
Vi,j = Vi∩Vj , is non-empty. We are interested, however, in the intersection of the safe areas
of Vi ⊇ Vi,j and Vj ⊇ Vi,j . In Sec. 4.6.1, we saw how adding extra values to the safe area
computation at Pi and Pj maintains a non-empty intersection between Si = Safet(Vi) and
Sj = Safet(Vj).

43

A

B CD

Tuesday, March 4, 14

Figure 4.5: Suppose Vi,j = {v1, . . . , v5}, with Vi = Vi,j ∪ {wi} and Vj = Vi,j ∪ {wj}. The
safe area only grows when we consider extra points: Safet(Vi,j) = A, Safet(Vi) = A∪B∪D,
Safet(Vj) = A ∪ C ∪D, and Safet(Vi) ∩ Safet(Vj) = A ∪D.

Lemma 4.8.4. For any non-faulty processes Pi, Pj ∈ G, and any round r, Sr
i ∩ Sr

j ̸= ∅

Proof. In every round, as processes exchange current values via the witness technique,

|Vi,j | ≥ n− t (corollary 4.8.3)

≥ (d+ 2)t+ 1− t

≥ (d+ 1)t+ 1.

By Lemma 4.6.7, we conclude that Safet(Vi,j) ̸= ∅. Furthermore, by an iterative application
of Lemma 4.6.13, if we incorporate messages besides those of Vi ∩ Vj , then the safe area for
Pi’s messages and the safe area for Pj ’s messages can possibly increase, but never decrease,
which gives that Si ∩ Sj ̸= ∅. See Fig. 4.5.

4.8.2 Convergence

Say we are executing our procedure for dimension 1 ≤ m ≤ d. If Sr
i and Sr

j intersect, they
intersect when projected in any of the m coordinates.

Definition 4.8.5. Within process Px, for coordinate m and round r, the lower limit of S(m)rx

is denoted by lo(m)rx, and the upper limit of S(m)rx is denoted by hi(m)rx.

44

We effectively consider CalculateRounds as being round 0, so v0i is v as returned by
CalculateRounds at Pi; the working range ∆(m)0 is max(m)0 − min(m)0. Between con-
secutive dimensions, however, consider the values at the end of the previous dimension as
being values of round 0.

Lemma 4.8.6. In Line 9, v is well-defined and v ∈ S.

Proof. As |V | ≥ n − t, we know that S = Safet(V) ̸= ∅, by Lemma 4.6.7. The safe area is
convex by definition.

Get two points v′ and v′′ in S with v′[m] = lo(m) and v′′[m] = hi(m). Their barycenter
is in S, because S is convex, and also satisfies the requirement of the algorithm, since
(v′[m] + v′′[m])/2 = Midpoint(S(m)).

Definition 4.8.7. The set of non-faulty values updated at round r is V r
G = {vri : Pi ∈ G}.

Lemma 4.8.8. The working range at the current dimension is halved between consecutive
rounds. So, for any 1 ≤ m ≤ d and r ≥ 1, we have ∆(m)r ≤ ∆(m)r−1/2.

Proof. Consider any two non-faulty processes Pi and Pj . Without losing generality, say
that v[m]ri ≥ v[m]rj . However, since S(m)ri ∩ S(m)rj ̸= ∅, there exists some real value
ℓ ∈ S(m)ri ∩ S(m)rj . Therefore,

v[m]ri − v[m]rj

=
lo(m)ri + hi(m)ri

2
−

lo(m)rj + hi(m)rj
2

≤ ℓ+ max(m)r−1

2
− min(m)r−1 + ℓ

2
(⋆)

=
max(m)r−1 −min(m)r−1

2
,

so ∆(m)r is at least halved between rounds. We note that (⋆) happens because both
Sr
i = Safet(V r

i) and Sr
j = Safet(V r

j) are inside Poly(V r−1
G), since V r

i and V r
j each contains

at most t values outside V r−1
G . The observation follows from Lemma 4.6.3 with X ′ = V r−1

G .
We then consider only coordinate m, and its maximum and minimum values across non-
faulty processes.

We say that 1/2 is the convergence factor of the algorithm, precisely indicating that the
working range is multiplied by 1/2 (but possibly even less) between rounds. Note that the
convergence factor is constant in relation to the number of processes n.

If we want processes values to be within ϵ of each other, it is sufficient that they be
within ϵ/

√
d of each other in every coordinate 1 ≤ m ≤ d.

45

Lemma 4.8.9. For any dimension m, after

R ≥ log2

(√
d ·max{∆(m′)0 : 1 ≤ m′ ≤ d}

ϵ

)
,

convergence rounds, the values of the processes are within distance ϵ/
√
d of each other in

that dimension.

Proof. Since

R ≥ log2

(√
d ·max{∆(m′)0 : 1 ≤ m′ ≤ d}

ϵ

)
,

we have that

2R ≥
√
d ·max{∆(m′)0 : 1 ≤ m′ ≤ d}

ϵ
⇒

ϵ√
d
≥ (1/2R) ·max{∆(m′)0 : 1 ≤ m′ ≤ d} ⇒

ϵ√
d
≥ max{(1/2R) ·∆(m′)0 : 1 ≤ m′ ≤ d} ⇒

ϵ√
d
≥ max{∆(m′)R : 1 ≤ m′ ≤ d} (⋆) ⇒

ϵ√
d
≥ ∆(m)R,

which satisfies our agreement requirement. The step (⋆) follows from Lemma 4.8.8.

Note that the number of rounds sufficient for convergence depends only on ϵ and d

(naturally), as well on ∆(m)0, for all 1 ≤ m ≤ d. The initial working range ∆(m)0 is
defined to consider non-faulty process values only. Next, we see how we run non-faulty
processes for at least R rounds guarantees convergence, even though Byzantine processes
try (unsuccessfully) to influence how many rounds we execute. In summary, the number of
rounds sufficient for convergence depends only on non-faulty inputs and problem parameters.

4.8.3 Initial Estimation of R

In the initial estimation of R, shown in Alg. 7, we use our notion of safe area extensively.
The procedure is similar to the algorithm in [1], adapted to use the concept of the safe area.
We have to make sure that Ri, the estimation of R by process Pi ∈ G, depends only on the
non-faulty inputs, or Byzantine processes could influence the communication complexity of
the protocol.

In Line 2 of Alg. 7, V is the message set received by RBReceiveWitness, and W is
a multiset containing witness reports associated with V (as seen in Alg. 5). We obtain

46

n − t witness reports W using RBReceiveWitness. For each witness report (with at most
t faulty values by definition), we calculate a safe area, bound to be inside IG, and obtain
its barycenter, defining the multiset U . Then, we calculate a safe area for U , and again its
barycenter, defining v. In fact, instead of barycenter, any deterministic computation of a
point inside the safe area is enough for the algorithm.

The range for any multiset of values C, considering the coordinate m, is defined as

δC(m) = max{|x[m]− y[m]| : x, y ∈ C}.

Algorithm 7 p.CalculateRounds(I)
RBSend((p, 0, I))
(V,W)← (Val,Cont(Wit)) from RBReceiveWitness(0)

3: U ← {barycenter of Safet(W ′) :W ′ ∈W}
v ← barycenter of Safet(U)

R←
⌈
log2(

√
d/ϵ ·max{δU (m) : 1 ≤ m ≤ d})

⌉
6: return (R, v)

In the next two lemmas, we show that the initial values are well-defined and inside the
convex hull of non-faulty inputs. We denote W and U within process Px as Wx and Ux.

Lemma 4.8.10. For any Pi ∈ G, Ui is well-defined and only contains values ∈ Poly(IG).

Proof. Consider an arbitrary W ′
i ∈ Wi. By definition, any report contains exactly n − t

values. Therefore,

|W ′
i | = n− t ≥ (d+ 2)t+ 1− t = (d+ 1)t+ 1,

which gives, by Lemma 4.6.7, that Safet(W ′
i) ̸= ∅. We then conclude that Ui is well-defined.

Now, note that W ′
i ⊆ V (by definition of witness) and that V contains at most t values

outside IG. Then, W ′
i also contains at most t values outside IG. Put in other words, W ′

i

contains a multiset W ′′
i consisting exactly of |W ′

i | − t values inside IG, so Poly(W ′′
i) ⊆

Poly(IG).
Using Lemma 4.6.3,

Safet(W ′
i) ⊆ Poly(W ′′

i) ⊆ Poly(IG),

which proves that Ui only contains values in Poly(IG).

Lemma 4.8.11. For any non-faulty process Pi ∈ G, we have that v0i is well-defined and
v0i ∈ Poly(IG).

47

Proof. Since |U | ≥ n− t, we use again Lemma 4.6.7 and see that Safet(U) ̸= ∅. Therefore,
v0i is well-defined. Also, since all values in U are in Poly(IG), then v0i ∈ Poly(IG).

In the remaining lemmas, we show that the estimation of R in any non-faulty process
guarantees convergence.

Definition 4.8.12. The minimum round estimation across all non-faulty processes is denoted
by ρ = min{Ri : Pi ∈ G}.

Lemma 4.8.13. For any two non-faulty processes Pi, Pj ∈ G, we have that |U j \ U i| ≤ t.

Proof. Non-faulty processes collect n − t witness reports in W . Moreover, reports are
transmitted via reliable broadcast, so at most t reports in Wj are not in Wi. The result
follows as Pi and Pj calculate U identically based on W .

Lemma 4.8.14. Taking any dimension d, if all non-faulty processes run for at least ρ con-
vergence rounds,

|v[m]ρi − v[m]ρj | ≤
ϵ√
d
,

for arbitrary non-faulty processes Pi and Pj .

Proof. By definition, for all Pi ∈ G, we have that Ri ≥ ρ. Consider arbitrary Pi, Pj ∈ G.
Defining Dj,i = (Uj \ Ui), we know that |Dj,i| ≤ t, by Lemma 4.8.13. Hence, |Uj \Dj,i| ≥
|Uj | − t. Using Lemma 4.6.3:

v0j ∈ Safet(Uj) ⊆ Poly(Uj \Dj,i)

= Poly(Uj \ (Uj \ Ui))

⊆ Poly(Ui).

In conclusion, for any Pi ∈ G, any Pj ∈ G is such that v0j ∈ Poly(Ui). Noting the calculation
of R in Line 5 of CalculateRounds,

Ri =
⌈
log2(

√
d/ϵ ·max{δUi(m

′) : 1 ≤ m′ ≤ d})
⌉

≥ log2(
√
d/ϵ ·max{δUi(m

′) : 1 ≤ m′ ≤ d})

≥ log2(
√
d/ϵ ·max{∆(m′)0 : 1 ≤ m′ ≤ d}), (4.1)

where the last line happens since v0j ∈ Poly(Ui) for any Pj ∈ G. Therefore, if all non-faulty
processes run for at least ρ rounds, we precisely satisfy the condition of Lemma 4.8.9, and
the result follows.

48

Lemma 4.8.15. Considering a dimension d, all non-faulty processes run for at least ρ rounds.

Proof. Any non-faulty process Px ∈ G either: (1) runs for Rx ≥ ρ rounds; or (2) sees
|H| ≥ t+ 1. If we have (2), the interesting situation, we know that Px must have received
one halt message from Py ∈ G, say (Py, d.ry, {halt}). We know that Py executed at least
ry ≥ ρ rounds. However, Px ∈ G only accepts (Py, d.ry, {halt}) if Px ran for more than ry

rounds (Line 15), which we showed to be at least ρ. As an arbitrary non-faulty process Px

either executes for Rx ≥ ρ or for ry ≥ ρ rounds, we are done.

4.8.4 Satisfaction of Requirements

In this section, we put previous lemmas together and prove the correctness of our protocol.
The set of non-faulty values at round r is called V r

G = {vri : Pi ∈ G}.

Lemma 4.8.16. For any Pi ∈ G, it is always the case that vi is well-defined and vi ∈ Poly(IG).

Proof. We proceed by induction on consecutive rounds. For simplicity, number all rounds,
even the ones across different dimensions, with consecutive numbers.

Base. Lemma 4.8.11 shows that v0i is well-defined and is in Poly(IG). As Pi ∈ G is
arbitrary, V 0

G ⊆ Poly(IG).
Induction Hypothesis. Say that V x

G ⊆ Poly(IG). By Lemma 4.8.6, we know that
vx+1
i is well-defined and vx+1

i ∈ Safet(V x+1
i).

Additionally, V x+1
i contains at most t values outside V x

G , since at most t Byzantine
processes are assumed. In light of Lemma 4.6.3 and our inductive hypothesis, we have that

Safet(V x+1
i) ⊆ Poly(V x

G) ⊆ Poly(IG).

As Pi ∈ G is arbitrary, and vx+1
i ∈ Safet(V x+1

i), as discussed before, we know that V x+1
G ∈

Poly(IG).

Theorem 4.8.17. After executing the protocol, all values in VG are within distance ϵ of one
another, all inside Poly(IG).

Proof. For each dimension, non-faulty processes run for at least ρ rounds (Lemma 4.8.15),
therefore, for any vi, vj ∈ VG, we have that |v[m]ρi − v[m]ρj | ≤ ϵ/

√
d (Lemma 4.8.14). Since

values are always maintained within Poly(IG), by the previous lemma, the result follows.

49

4.8.5 Message Complexity

In [3], it is formally shown that a single process spends O(n2) messages to reliably broadcast
a message. In our protocol, non-faulty process broadcast their values in every round, and
the witness algorithm (Alg 5) has a single extra reliable broadcast. Therefore, each round
of communication requires O(n2) messages for each non-faulty process.

As the communication channels are FIFO, any non-faulty process executes at most
rmax = max{Ri : Pi ∈ G} rounds for each dimension: before accepting the last halt message
from round rmax, all others are received, making |H| ≥ t+ 1.

For any non-faulty process Pi ∈ G,

Ri = ⌈log2(
√
d/ϵ ·max{δU (m) : 1 ≤ m ≤ d})⌉,

with Poly(Ui) ⊆ Poly(IG) (Lemma 4.8.10), which implies that

rmax ≤ log2(
√
d/ϵ ·max{δIG(m) : 1 ≤ m ≤ d}) + 1.

In conclusion, non-faulty processes run for

O(d log(d/ϵ ·max{δIG(m) : 1 ≤ m ≤ d}))

rounds, sending
O(n2d log(d/ϵ ·max{δIG(m) : 1 ≤ m ≤ d}))

messages in total.

4.8.6 Safe Area Calculation

We can think of d as constant, noting that d ≤ 3 in many practical applications. We observe
that Poly(V) and Safet(V) are the intersection of O(nd) halfspaces, as their facets in Rd

may be defined through at most d vertices, out of n possible points.
Therefore, when converging on dimension d, we can interpret the halfspaces defining

Safet(V) as linear restrictions, and solve two linear programs, one maximizing v[m], and
one minimizing v[m]. These points are in the safe area, and their barycenter, also in the
safe area, could be taken as the updated value v, according with Lemma 4.8.6. A detailed
example of linear program involving the notion of safe area has been presented in [35],
and a similar formulation would apply here: we would instead maximize and minimize a
particular coordinate over the feasible solution.

50

4.9 Final Remarks

In this chapter, we define and solve the multidimensional ϵ-approximate agreement problem:
considering arbitrary ϵ > 0 and d ≥ 1, each process starts with an input value in Rd, and
all non-faulty processes must choose output values, also in Rd, such that (1) all outputs
lie within ϵ of one another, and (2) all outputs lie in the convex hull of the inputs of the
non-faulty processes. We require that n > (d + 2)t to solve the problem, where n is the
number of processes, t is the maximum number of faulty processes, and d is the dimension
of inputs and outputs. This bound is shown to be a necessary and sufficient condition for
the solution.

The multidimensional ϵ-approximate agreement is a non-trivial generalizations of its
scalar counterpart, as the resilience depends on the dimension the input and output values
lie in. We show that the safe area concept seems to capture very well the interdependence
of dimensions, permitting a systematic convergence of values. The interdependence of
dimensions is a direct cause of the resilience decrease as the dimension increases.

Besides having a clear practical applicability, the multidimensional ϵ-agreement problem
is key to the solvability of colorless tasks, as it permits us to solve the barycentric agreement
problem. Chapter 6 provides the details. This chapter also serves as an illustration of the
kind of Byzantine tasks we are interested in: namely, those in which the outputs of the
non-faulty processes are constrained in terms of the input of the non-faulty processes only.

Chapter 5

Asynchronous Computability
Conditions

Tools adapted from combinatorial topology have been successful in characterizing task solv-
ability in synchronous and asynchronous crash-failure systems, as in [28]. We extend the
approach to tasks in asynchronous Byzantine systems. The results, which were originally
presented in [36], suggest that the language of combinatorial topology (a generalization of
the language of graphs) is a convenient and effective way to formalize a range of distinct
distributed computing models.

5.1 Contributions Overview

Our principal contribution in this chapter, presented in Sec 5.4, is to give the first theorem
with necessary and sufficient conditions to solve arbitrary tasks in asynchronous Byzantine
systems. In our approach, a Byzantine-failure task is defined in terms of a pair of combina-
torial structures called simplicial complexes [37, 30], and a map modeling task semantics.
We assume an adversary that may deem a subset of processes as faulty, and constrain the
output of non-faulty processes in terms of the input of non-faulty processes, according to
a formal specification for the task. Our theorem says that, in asynchronous systems, a
Byzantine-failure task is solvable if and only if a crash-failure counterpart task1, also ex-
pressed in terms of simplicial complexes, is solvable. Given that solvability conditions have
long been known for crash failures (see [28]), our equivalence theorem, presented in Sec. 5.4,

1 In the original publication venue of this work, this task was called “dual”.

51

52

provides for the first time solvability conditions for Byzantine failures in asynchronous sys-
tems.

5.1.1 Related Work

The Byzantine failure model was initially introduced by Lamport, Shostak, and Pease
in [31]. Most of the literature in this area has focused on the synchronous model (survey
in [19]), not on the (more demanding) asynchronous model considered here. Malkhi et
al. [33] propose several computational models in which processes communicate via shared
objects (instead of messages), and display Byzantine failures. De Prisco et al. [14] consider
the k-set agreement problem in a variety of asynchronous settings. Their notion of the
validity condition for the k-set agreement problem, however, is weaker than ours. Neiger [39]
discusses a stronger validity condition similar to the constraints used here. We use again
the reliable broadcast in our analysis, adapted from Bracha [8] and from Srikanth and
Toueg [44].

5.2 Operational Model

Assuming n + 1 processes rather than n simplifies the topological notation, but slightly
complicates the computing notation, while choosing n processes has the opposite tradeoff.
Since this chapter heavily relies on analytic tools from combinatorial topology:

We let number of processes be n+ 1. Define P = {P0, . . . , Pn}.

Any set of up to t processes might be faulty or Byzantine [31], displaying arbitrary,
even malicious behavior, at any point in the execution. The actual behavior of Byzantine
processes is defined by an adversary. Byzantine processes may execute the protocol correctly
or incorrectly, at the discretion of the adversary. The set of all processes is denoted by P,
partitioned in non-faulty processes G ⊆ P and faulty processes Ḡ = P \G.

We model processes as state machines, as seen in Sec. 2.3. The input value (respectively,
output value) of a non-faulty process Pi is written Ii (respectively, Oi), and non-faulty
process Pi has an internal state called view, which we denote by view(Pi). In the beginning
of the protocol, view(Pi) is Ii.

53

5.3 Topological Model

The formalization of crash-failure tasks using the tools and language of combinatorial topol-
ogy was illustrated in Sec. 3.6. We now illustrate how these tools model tasks in the Byzan-
tine failure model.

In this work, as discussed in Sec. 2.2.2 in Chap. 2, we only care about the relation
between inputs and outputs of the non-faulty processes. The task’s outputs should be
consistent, despite the participation (sometimes even correct) of the Byzantine processes, a
property sometimes called strong validity, as seen in [39]. We consider an adversarial model
in which any set of up to t processes may be chosen as faulty, with those processes displaying
arbitrary behavior. Regardless of which processes are faulty, any final configuration of the
non-faulty processes must be permitted in respect to the initial configuration of the non-
faulty processes. For that goal, our task specification T = (I,O,∆) constrains the behavior
of non-faulty processes only.

Consider a Byzantine-failure task, say T . A non-faulty initial configuration for T is
a canonical name-labeled simplex σI = {(Pi, Ii) with Pi ∈ G}, capturing the attribution
of inputs to non-faulty processes. Additionally, a non-faulty final configuration for T is a
canonical name-labeled simplex σO = {(Pi, Oi) with Pi ∈ G} capturing the attribution of
outputs to non-faulty processes.

In our model, we assume that processes were initially correct, but the adversary gains
control of the chosen faulty processes right before the protocol starts. Any set of no more
than t processes may be deemed as faulty, including the empty set. This perspective implies
the following property:

Property 5.3.1. If σ is a non-faulty initial configuration:

1. There exists a simplex σn ⊇ σ with dim(σn) = n where σn is a non-faulty initial
configuration;

2. For all σ′ ⊆ σ with dim(σ′) ≥ n−t, we have that σ′ is a non-faulty initial configuration.

The formal task definition for Byzantine tasks practically mirrors the definition for
crash-failure tasks, although it only constrains task semantics for non-faulty processes:

Definition 5.3.2. A Byzantine-failure task specification is formally a triple T = (I,O,∆)

such that:

• I is the input complex. A simplex σ ∈ I if there is some σI ⊇ σ that is a non-faulty
initial configuration, with dim(σI) = n.

54

• O is the output complex. A simplex σ ∈ O if there is some σO ⊇ σ that is a non-faulty
final configuration, with dim(σO) = n.

• ∆ : I → 2O is a name-preserving carrier map. The simplex τ ∈ ∆(σ) if the non-
faulty final configuration τ is valid given the non-faulty initial configuration σ, with
σ matching τ . Also ∆(σ′) = ∅ for any non-canonical simplex σ′ of I.

The map ∆ could in principle be other than a carrier map. However, for the sake
of studying task computability, it is enough to assume ∆ as being a carrier map. Con-
sider the following scenario, where ∆(σ1 ∩ σ2) ̸⊆ ∆(σ1) ∩∆(σ2), for σ1, σ2 ∈ I. Consider
also an asynchronous protocol, with names(σ1 ∩ σ2) representing all non-faulty processes,
and names(σ1 \ σ2) as well as names(σ2 \ σ1) representing faulty processes. In such case,
the adversary can suitably delay the faulty processes so that non-faulty processes cannot
discern if the non-faulty initial configuration was σ1, σ2, or (σ1 ∩ σ2). Since we assumed
an asynchronous protocol, a decision must be made, and it should be inside ∆(σ1 ∩ σ2) in
order to cover all possibilities.

With that in mind, take a Byzantine task T1 = (I,O,∆), with ∆ being an arbitrary
map, and another task T2 = (I,O,∆′), identical to T1 except that ∆′ ⊆ ∆ is a carrier map:
∆′(σ1∩σ2) ⊆ ∆′(σ1)∩∆′(σ2) for any σ1, σ2 ∈ I. Assume that ∆′ is maximal, that is, there
is not another carrier map ∆′′ such that ∆′ ⊆ ∆′′ ⊆ ∆. As we have seen, the unrestricted
task T1 is solvable only if its constrained task T2 is solvable. In addition, if the constrained
task is solvable, then clearly the unconstrained task is solvable. Therefore, for the sake of
studying task solvability, the map in the Byzantine task definition is simply a carrier map.

5.4 The Equivalence Theorem

In this section, we will present our main theorem. We show that, in asynchronous t-resilient
systems, a task Tb = (I,O,∆) is solvable in the Byzantine failure model if and only if its
crash-failure counterpart task Tc = (Ĩ, Õ, ∆̃) is solvable in the crash failure model, with Ĩ,
Õ, and ∆̃ suitably and respectively defined in terms of I, O, and ∆. We call the task Tb
the Byzantine counterpart of Tc. This general strategy is illustrated on Fig. 5.1.

The use of reliable broadcast avoids the equivocation problem – the situation where
Byzantine processes deliberately send conflicting information to different processes. How-
ever, Byzantine processes can still introduce a false input and execute the protocol correctly,
yet selectively delaying or omitting certain messages. Each non-faulty process must choose
a correct output even though a Byzantine process is indistinguishable from a non-faulty

55

�̃

�

Ĩ Õ

respecting �̃

I O

inputs outputs

task semantics

solvable if � continuous map f

one is solvable iff the other one is solvable⇔
Figure 5.1: The Byzantine task (I,O,∆) is solvable if and only if the crash-failure counter-
part task (Ĩ, Õ, ∆̃) is solvable. The solvability of the latter is characterized by the existence
of a continuous map from Ĩ to Õ carried by ∆̃.

process having an authentic input. Moreover, if the input complex is not a simple pseu-
dosphere, a Byzantine process can introduce a valid input that is incompatible with the
other values input by non-faulty processes. Each non-faulty process must decide correctly,
without necessarily detecting which, if any, of the incompatible inputs was indeed authen-
tic. Our crash-failure counterpart task essentially addresses the two issues above, which we
identify as the main vectors for the introduction of ambiguity by Byzantine processes.

(P0, v0)

(P1, v1)

(P2, v2)

(P3, v3)

?

?

Figure 5.2: Suppose P0, P1, P2 are non-faulty processes. If, say, only three value are allowed
in the input, and the Byzantine process P3 runs “correctly” with an extra input value v3, a
non-faulty process cannot be sure about which inputs come from non-faulty processes only.

56

5.4.1 Defining the Dual Task

We now formally define the crash-failure counterpart task Tc = (Ĩ, Õ, ∆̃) in terms of the
Byzantine task Tb = (I,O,∆).

Definition 5.4.1. An initial configuration of Tc is a name-labeled simplex σI ∈ Ĩ such that
it contains a canonical name-labeled simplex σG ∈ I, with views(σI) ⊆ views(I).

Definition 5.4.2. A final configuration of Tc is a name-labeled simplex τO ∈ Õ such that it
contains a canonical name-labeled simplex τG ∈ O, with views(τO) ⊆ views(O).

Definition 5.4.3. Given a Byzantine task Tb = (I,O,∆), its counterpart crash-failure task
Tc = (Ĩ, Õ, ∆̃) is such that:

• Ĩ is the input complex. A simplex σ ∈ Ĩ if there is some σI ⊇ σ that is a possible
initial configuration of Tc, with dim(σI) = n.

• Õ is the output complex. A simplex σ ∈ Õ if there is some σO ⊇ σ that is a possible
final configuration of Tc, with dim(σO) = n.

• ∆̃ : Ĩ → 2Õ is a name-preserving carrier map specified in Definition 5.4.4.

Particularly, if I (respectively O) is a simple pseudosphere with dimension n, then Ĩ = I
(respectively O = Õ).

Definition 5.4.4. The map ∆̃ is a name-preserving carrier map where:

1. The map ∆̃ satisfies the original Byzantine specification for any possible choice of
non-faulty processes:

∆̃(σ) = {τ ∈ Õ : ∀ canonical σ′ ⊆ σ with σ′ ∈ I,

∃ matching τ ′ ⊆ τ with τ ′ ∈ O and τ ′ ∈ ∆(σ′)}; (5.1)

2. The map ∆̃ is defined as a carrier map:

∆̃(σ1 ∩ σ2) ⊆ ∆̃(σ1) ∩ ∆̃(σ2) (5.2)

for any σ1, σ2 ∈ Ĩ. Also, ∆̃(σ′) = ∅ for any non-canonical simplex σ′ of Ĩ, satisfying
the final constraint on ∆̃ imposed by crash-failure tasks.

57

5.4.2 Solvability Correspondence

Given an algorithm for Tc, we construct an algorithm for Tb, showing that, in asynchronous,
t-resilient systems, if we solve the crash-failure Tc = (Ĩ, Õ, ∆̃) then we also solve its Byzan-
tine counterpart Tb = (I,O,∆). In Algorithm 8, we describe the protocol solving Tb, as run
by non-faulty processes. The parameter Ii is Pi’s input, and P is a crash-failure protocol
for Tc, which is identical across non-faulty processes. The protocol runs in “asynchronous
rounds” via the reliable broadcast protocol, similarly to the multidimensional ϵ-approximate
agreement in the previous chapter.

Each non-faulty process Pi will maintain a table Ti. The table has one entry for each
combination of process and round: for process p ∈ P and round r ≥ 1, the contents of the
corresponding entry at Ti is denoted as Ti(p, r). An unfilled entry has contents ⊥.

In the first round, non-faulty processes exchange values in views(I). For any non-faulty
processes Pi ∈ G and Pj ∈ P, the entry for Ti(Pj , 1) contains (Pj , v) only if (Pj , v) ∈ V (I).
Note that Ti(Pi, 1) = (Pi, Ii), representing the process’ own input (Lines 2-3). For any
process set S, let Ti(S, r) be the set containing Ti(p, r) if and only if p ∈ S.

Definition 5.4.5. A starting process set S ⊆ P for Pi ∈ G is a set where the simplex
σ = {e : e ∈ Ti(S, 1)} is an initial configuration of Tc.

In subsequent rounds, non-faulty processes exchange sets of size at least (n + 1) − t.
Such sets satisfy some requirements at the (non-faulty) sender, before being transmitted,
and at the (non-faulty) receiver, before being accepted. More specifically, consider Pi ∈ G.
The entry for Ti(Pi, r) is set to (Pi, V) as soon as the predicate Vali(Pi, r, V) becomes true.
Then, the corresponding message for Ti(Pi, r), namely (Pi, r, V), is sent (Lines 6-7). More-
over, if some Pj ∈ P sends (Pj , r, V), as soon as the message reaches Pi and the predicate
Vali(Pj , r, V) becomes true, the message is accepted by Pi. Then, the corresponding entry
for (Pj , r, V), namely Ti(Pj , r), is set to (Pj , V) (Lines 9-10).

Definition 5.4.6. The predicate Vali(p, r, V) evaluates to true only if :

1. If r = 1, then (p, V) ∈ V (I);

2. If r > 1, then

(a) |V | ≥ (n+ 1)− t;

(b) Ti(p, r − 1) ∈ V ;

(c) V ⊆ Ti(S, r − 1), for some starting process set S for Pi.

58

The loop at Line 4 runs until a particular set, an Ri-consistent process set Ci, is found.
The definition follows below.

Definition 5.4.7. An R-consistent process set S ⊆ P for Pi ∈ G is one where

1. S is a starting process set;

2. Ti(p, r) ̸= ⊥ for all p ∈ S and 1 ≤ r ≤ R;

3. Pi ∈ S.

By definition, for any R-consistent process set S, we have that σ = {e : e ∈ Ti(S, 1)} is
an initial configuration of Tc, with |S| ≥ (n+1)− t and all messages accepted and validated
up to the asynchronous round R. A decidable R-consistent process set S is one where P, if
simulated only with entries of Ti(S, 1 . . . R) = {Ti(S, r) : 1 ≤ r ≤ R} returns an output.

Algorithm 8 Pi.ConstrainedExecution(Ii,P)
1: By default Ti(p, r)← ⊥ for all p ∈ P and r ≥ 1
2: Ti(Pi, 1)← (Pi, Ii)
3: RBSend((Pi, 1, Ii))
4: while ̸ ∃ decidable Ri-consistent process set Ci do
5: upon First V with Vali(Pi, r, V) and r > 1 do
6: Ti(Pi, r)← (Pi, V)
7: RBSend((Pi, r, V))
8: end upon
9: upon RBRecv((Pj , r, V)) with Vali(Pj , r, V) do

10: Ti(Pj , r)← (Pj , V)
11: end upon
12: end while
13: simulate P using only entries of Ti(Ci, 1 . . . R)
14: return own decision value from the above execution

We also assume that non-faulty processes keep processing messages as in Lines 5 to 10
even after exiting the loop of Line 4. This can be seen as a kind of background service
interleaved with the steps of the protocol, similar to [2]2

Lemma 5.4.8. If some Pi ∈ G fills Ti(p, r) with (p, V), then any other Pj ∈ G eventually
fills Tj(p, r) with (p, V).

Proof. By induction on r.
2 If P is not compatible with messages from decided processes, it can simply ignore their messages as soon
as it becomes apparent that they have reached Line 13 – possibly through a “decided” flag appended to
messages.

59

Base: r = 1. If Pi fills Ti(p, 1) with (p, V), then Vali(p, 1, V) is true, implying that
(p, v) ∈ V (I), by (1) in Definition 5.4.6. By the liveness properties of the reliable
broadcast, the corresponding message (p, 1, V) eventually reaches any other Pj ∈ G,
and Valj(p, 1, V) will be true for identical reason, filling Tj(p, 1) with (p, V).

IH: Assume that for all r′ < r, if some Pi ∈ G fills Ti(p, r′) with (p, V), then any other
Pj ∈ G eventually fills Tj(p, r

′) with (p, V). If Pi fills Ti(p, r) with (p, V), then
Vali(p, r, V) is true. Hence, Pi filled all entries Ti(S, r − 1), considering S as the
set in (2)-(c) on Definition 5.4.6. By the induction hypothesis, all those entries are
eventually filled in any other Pj ∈ G, which eventually makes Valj(p, r, V) to be
true. By the liveness properties of the reliable broadcast, the corresponding message
(p, r, V) eventually reaches Pj , filling Tj(p, r) with (p, V).

The entries in the tables on non-faulty processes represent an asynchronous, t-resilient,
crash-failure execution schedule for P. Crash failure processes execute the full-information
protocol described in Sec. 2.3. For any asynchronous round r > 0, we interpret Ti(Pj , r) =

(Pj , V), as the scenario where Pj ∈ P broadcasts (Pj , r, V) and Pi ∈ G receives (Pj , r, V).
By the previous lemma, if a message is received by some non-faulty process, it is eventually
received by any other non-faulty process. Moreover, by the validation predicate, Ti(Pj , r) ̸=
⊥ implies in Ti(Pj , r − 1) ̸= ⊥ for all r > 1. An empty entry in Ti represents the inherent
inability of a crash-failure processes Pi to discern between a failed process and a sender
whose message is delayed.

Lemma 5.4.9. Any non-faulty process Pi ∈ G eventually reaches Line 13, and its simulation
returns an output.

Proof. We show that G is bound to be recognized as an r-consistent process set at Pi for
any r ≥ 1 if no other process is. We proceed by induction on r.

Base: r = 1. Non-faulty processes execute the protocol correctly, so, by the previous
lemma, Ti(G, 1) is eventually filled.

IH: Now assume that Ti(G, r − 1) is totally filled. By the previous lemma, all non-faulty
process Pj ∈ G at least will have Valj(Pj , r, Tj(G, r − 1)) as true, sending a message
(Pj , r, V) for some V , although not necessarily with V = Tj(G, r − 1). All those
messages are eventually delivered and accepted by Pi, again by the previous lemma,

60

and Ti(G, r) is eventually filled. We conclude that G is bound to be recognized as an
r-consistent process set at Pi for any r ≥ 1 if no other process is.

If Pi considers solely the entries of an r-consistent process set to simulate an execution
of P, r ≥ 1, we actually denote a valid t-resilient, asynchronous, crash-failure schedule for
P. This simulates an initial configuration of Tc, under the perspective of Pi, up to the
asynchronous round r. Hence, there exists a concrete Ri > 0 such that Pi reaches Line 13
with some decidable Ri-consistent process set Ci, although not necessarily Ci = G, with P
returning an output. Figure 5.3 illustrates this idea.

a b c d

abc abc abc

process #

ro
un

d
#

P0 ETTPMIW � P1 ETTPMIW �

a b c d

bcdabc abc

process #

ro
un

d
#

Figure 5.3: (Left) Partial view of the execution by process P0. (Right) The same for process
P1. As we have a protocol P for Tc, there exists a round in which processes can decide.

Lemma 5.4.10. If an asynchronous, t-resilient crash-failure protocol P solves the task Tc =
(Ĩ, Õ, ∆̃), then Algorithm 8 solves its Byzantine counterpart Tb = (I,O,∆).

Proof. Take some Pi ∈ G, calling Ri = r. We say that p1 ∈ P is seen by Pi on its execution
of P at Line 13 if there is a sequence p1 . . . pr such that (pℓ, Vℓ) in Ti(pℓ+1, ℓ + 1) for all
1 ≤ ℓ < r, and pr ∈ Ci. Let σi = {Ti(p, 1) : p is seen byPi} be the input observed by Pi on
its execution of P at Line 13.

A Byzantine process Pb such that (Pb, v) ∈ σi for some Pi ∈ G is said to have apparent
input v. As all messages are validated through the validation predicate, we have that
v ∈ V (I), in light of (2)-(1) in Definition 5.4.6.

The non-faulty inputs define σG ∈ I, and the non-faulty plus apparent inputs define

σA =
∪

Pp∈G
σp.

61

The input observed by Pi, σi, is an initial configuration of Ĩ including Pi, by Definitions 5.4.7
and 5.4.5. Therefore, the simulation of P at Line 13 produces an output in ∆̃(σi) ̸= ∅ for
all Pi ∈ G. In addition, σG ⊆ σA, by definition of σA, and apparent inputs are in V (I), as
discussed before. Then, σA is an initial configuration of Tc as well, and ∆̃(σA) ̸= ∅.

By the previous lemma, recalling our assumption that P is a crash-failure protocol for Tc,
any non-faulty process Pi ∈ G will reach Line 13, producing an output Oi such that

(Pi, Oi) ∈ τi ⊆ τ , (5.3)

with τi ∈ ∆̃(σi) and τ ∈ ∆̃(σA).
Because the simulations in Line 13 run with partial views of a global asynchronous,

t-resilient, crash-failure schedule for P, the decisions are consistent among non-faulty pro-
cesses – or we contradict the fact that P solves Tc in asynchronous, t-resilient, crash-failure
systems. More technically, we must have (Pj , Oj) ∈ τj ⊆ τ , with τj ∈ ∆̃(σj) and with the
same τ as in (5.3), above. In other words,

τG = {(Pi, Oi) : Pi ∈ G} ⊆ τ ∈ ∆̃(σA),

with τG ∈ ∆(σG), by definition of ∆̃. As the choice of non-faulty process is totally arbitrary,
the protocol solves Tb.

Theorem 5.4.11. In asynchronous, t-resilient systems, the task Tb = (I,O,∆) is solvable in
the Byzantine failure model if and only if the task Tc = (Ĩ, Õ, ∆̃) is solvable in the crash
failure model.

Proof. Tb implies Tc. Consider an execution of Tb where Byzantine processes may only fail
by crashing, having inputs in views(I). Non-faulty and apparent inputs, those pertaining
to Byzantine processes, define σ ∈ Ĩ.

At least one canonical simplex having values in I exists by definition of Ĩ. Given a
protocol for Tb, for any canonical simplex σ′ ⊆ σ with σ′ ∈ I, effectively representing non-
faulty processes, their outputs τ ′ are such that τ ′ ∈ ∆(σ′), in order to satisfy any adversarial
definition of non-faulty processes. Of course, τ ′ matches σ′, and the protocol is actually
computing ∆̃ across non-faulty processes. The implication follows because any Byzantine
protocol is also a crash protocol.
Tc implies Tb. Follows from Lemma 5.4.10.

62

5.5 Final Remarks

In this chapter, we presented novel necessary and sufficient conditions for task solvability
in asynchronous Byzantine systems. While analogous results have long existed for crash-
failure systems [28], we provide solvability conditions for arbitrary Byzantine tasks for the
first time. We presume a model in which any set of up to t processes could be deemed faulty,
and be subject to control by an adversary just before the protocol starts. Independently of
which processes are deemed faulty, any final configuration of the non-faulty processes must
be permitted in respect to the initial configuration of the non-faulty processes, according
to a formal task specification.

This chapter essentially demonstrates how the language and techniques of combinatorial
topology can produce novel results in asynchronous systems, facilitating existential argu-
ments while avoiding complicated, model-specific argumentation. In the next chapter, we
present applications of our Equivalence Theorem to the context of colorless tasks – tasks
totally defined in terms of the input and output sets of values. For that specific subclass
of tasks, solvability can be expressed in terms of the relation between t, n, and the task’s
simplicial complexes.

Chapter 6

Asynchronous Colorless Tasks

In this section, a specific application of the equivalence theorem of the previous chapter
gives novel, model-specific computability results for asynchronous colorless tasks – tasks
completely specified in terms of the input and output value sets, and not concerning the
attribution of those values to processes.

Task specifications can be simplified and specialized for asynchronous colorless tasks,
and we then express computability results in a more concise and elegant language. This
chapter describes this work, also originally presented in [36].

6.1 Contributions Overview and Related Work

Colorless tasks [24, 6] form an important class of problems where tasks are totally defined
in terms of the input and output sets of values, not the particular attribution of values
to processes. These tasks encompass well-studied problems such as consensus [18], k-set
agreement [11], and approximate agreement [15, 34]. Set agreement problems have been
studied under different validity conditions in [39, 14].

In this chapter, we provide additional characterizations for asynchronous colorless tasks
capturing the relation between the number of processes, the number of failures, and the
topological structure of the task’s simplicial complexes. We also show that, for some col-
orless tasks, the resilience depends directly on the input complex dimension. Our results
demonstrate an application of the equivalence theorem of Chap. 5, and are expressed in a
a concise, elegant, and model-specific way for this important subclass of problems.

63

64

6.2 Operational Model

We assume the same operational constraints as in the previous chapter. Since this chapter
also relies on analytic tools from combinatorial topology:

We let number of processes be n+ 1. Define P = {P0, . . . , Pn}.

The model for Byzantine failures is identical: any set of up to t processes might be
deemed faulty by the assumed Byzantine adversary.

For colorless tasks, input and output simplices represent sets of input and output values
permitted in the initial/final configurations. Such sets are closed under inclusion, that is,
if S represents a valid initial (resp. final) input (resp. output) set, so is any S′ ⊆ S. The
admissible sets of output values depend solely on the set of input values taken by processes.
Importantly, for any set of values, any particular attribution of those values to processes is
valid.

A classical example of colorless task is k-set agreement [11]. Say that processes start
with input values from a finite set V . In crash-failure systems, informally speaking, a
protocol solves k-set agreement if outputs satisfy:

Agreement: no more than k different outputs exist; and

Validity: any output was proposed in the input.

In Byzantine systems, a natural variation under our model is called strong k-set agreement:
processes decide on values proposed by non-faulty processes only.

6.3 Topological Model

In this section, we give simpler task specification for colorless tasks. Initially, we consider
crash failures, following the model in [23]. The Byzantine specification will essentially mirror
the approach of Sec. 5.3.

A colorless task is a triple (I∗,O∗,∆∗), where I∗ is the colorless input complex, O∗ is
the colorless output complex, and ∆∗ : I∗ → 2O

∗ is the colorless carrier map. Each vertex
in I∗ (resp. O∗) is a possible input (resp. output) value, and each simplex is a possible
initial input (resp. output) set. Given an initial input set, ∆∗ specifies which final output
sets are legal. Colorless tasks can of course be expressed in the general model (I,O,∆), as

65

seen in [23]:

σ∗ ∈ I∗ (resp. O∗) ⇔ Ψ(P, σ∗) ⊆ I (resp. O) (6.1)

τ ∈ ∆(σ)⇔ views(τ) ∈ ∆∗(views(σ)) (6.2)

For instance, for the (t+1)-set agreement, the map ∆∗ is the skeleton operator skelt as
output values must be chosen among at most t+ 1 different values. Figure 6.1 exemplifies
the strong 2-set agreement task.

v1
v1

I∗ O∗

∆∗ = WOIPk−1

1

7MQTPI\IW�SJ HMQ � 1

v0

v2

v3

v0

v2

v3

Figure 6.1: A strong 2-set agreement task formalization in the colorless model.

With Byzantine tasks, I∗ (resp. O∗) refers to non-faulty input (resp. output) sets only.
Since the adversary may choose any set with up to t processes as Byzantine (including
the empty set), the following relation remains valid: σ∗ ∈ I∗ (resp. O∗) if and only if
Ψ(P, σ∗) ⊆ I (resp. O). The map ∆∗ is defined as in Equation 6.2, which now conditions
non-faulty output sets to non-faulty input sets only.

6.4 Protocols and Complexes

Given a model for communication and failures, we can define a protocol complex P(I∗)
for any task (I∗,O∗,∆∗) modeling the possible final states of the protocol execution for
any input. The possible final states for an input configuration represented by σ denotes the
simplicial complex P(σ). A vertex in v ∈ P(I∗) is a tuple with a non-faulty process identifier
and its final state. A simplex σ = {(Q1, s1), . . . , (Qx, sx)} in P(I∗) indicates that, in some
execution, non-faulty processes Q1, . . . , Qx finish with states s1, . . . , sx, respectively. The
same concept is valid for P(σ) with σ ∈ I∗, but the execution is restricted to the ones where
the input was σ. The formal definition of protocol is identical to the definition presented in
Sec. 3.11.

66

6.5 Barycentric Agreement via Approximate Agreement

The barycentric subdivision of simplex σ is constructed, informally speaking, by subdi-
viding σ along the barycenters of its faces. The concept is formalized in Def. 3.4.3, and
illustrated in Fig. 3.5 in Chap. 3. In this section, we see how to transform a protocol for the
multidimensional ϵ-approximate agreement problem, as described in Chap. 4, into a task
called barycentric agreement.

In the barycentric agreement task, non-faulty processes start on vertices of a simplex σ
and halt on vertices of a simplex in Baryσ. Formally:

Definition 6.5.1. The barycentric agreement is a triple (I∗,Bary(I∗),Bary). In other words,
for each σ ∈ I, we have that ∆(σ) = Baryσ.

We now outline a non-constructive proof for a protocol solving barycentric agreement.
In the next section, we provide a constructive proof solving the problem.

The point-set occupied by I is compact, and the open stars of the vertices of Bary I
form an open cover of I (see Fig. 6.2).

Figure 6.2: The open cover of vertexes {v0} and {v0, v1} in Bary{v0, v1, v2}

Any of those covers has a Lebesgue number λ > 0 [37], such that every set of diameter
less than λ is contained in at least one member of the cover.

Suppose the non-faulty processes start at the vertices of an input simplex σ. Using
(λ/2)-approximate agreement, each non-faulty process pi chooses a point inside σ, the
convex hull of the inputs, such that the distance between any pair of points is less than
λ/2. Equivalently, each open ball of radius λ/2 around vi contains all values chosen by the
approximate agreement protocol. Because the diameter of this set is less than the Lebesgue

67

number λ, there is at least one vertex ui in Bary I such that B(vi, λ/2) lies in the open star
around ui. Let each Pi choose any such ui.

We must still show that the vertices ui that were chosen by the processes Pi lie on a
single simplex of Baryσ. Note that ui, uj are vertices of a common simplex if and only if the
open star around ui intersects the open star around uj . By construction, vj ∈ B(vi, λ/2),
which is in the open star around ui, and vj is in the open star around uj , hence ui, uj are
vertices of a single simplex (see Fig. 6.3).

Figure 6.3: A point in the intersection of two open stars makes processes decide vertices of
a single simplex.

Note that the procedure shown above requires that n + 1 > t ·max {3,dim(I∗) + 2}, a
requirement that follows from the multidimensional ϵ-approximate agreement.

6.6 A Constructive Proof

While the previous section shows how we can solve barycentric agreement via the multi-
dimensional ϵ-approximate agreement, it does not denote a constructive proof since the
Lebesgue number is not necessarily known a priori. In this section, we describe a protocol
using two well-known constructions from prior work: reliable broadcast [44, 8], also described
in Sec. 4.5.1 of Chap. 4, and stable vectors [2], introduced here.

6.6.1 Quorums

LetMr be the set of all messages reliably broadcast by all processes during a discrete round
r, and let M r

i ⊆ Mr be the subset reliably received by a non-faulty process Pi. By the

68

global uniqueness of the reliable broadcast, if (P, r, c) and (P ′, r′, c′) are distinct messages
in M r

i then the senders are distinct: P ̸= P ′. Furthermore, by definition of M r
i , we have

that r = r′. If a process receives (P, r, c), we can also say that it received c from process
P . Let Good(Mr) denote the set of distinct message contents in Mr that were reliably
broadcast by the non-faulty processes.

Definition 6.6.1. We say that a content c has a quorum in M r
i , written c ∈ Quorum(M r

i),
if c was reliably received in M r

i from t+ 1 or more different processes.

For any M ⊆ Mr, we know that Quorum(M) ⊆ Good(Mr): if Pi obtained a quorum
for c, Pi becomes aware that c was sent by a non-faulty process. Conversely, any content
received from less than t+ 1 processes cannot be “trusted” – recall that non-faulty process
outputs must depend only on non-faulty process inputs.

Algorithm 9 shows the procedure by which non-faulty processes obtain a set of messages
containing a quorum in a communication round r. The procedure works as long as:

n+ 1 > t ·max {3,dim(I∗) + 2}.

We denote by M r
i the set M received by process Pi at round r.

Algorithm 9 P.RecvQuorum(r)
1: M← ∅
2: while |M| < (n+ 1)− t or Quorum(M) = ∅ do
3: upon RBRecv((Q, r, c)) do
4: M← M ∪ {(Q, r, c)}
5: end upon
6: end while
7: return M

Informally, the procedure eventually finishes since all (n + 1) − t non-faulty processes
eventually show up, and, since (n+ 1)− t > t · (dim(I∗) + 1), some value will appear t+ 1

or more times.

Lemma 6.6.2. If n + 1 > t ·max {3,dim(I∗) + 2}, then RecvQuorum(r) eventually returns,
and, for any non-faulty process Pi,

|M r
i | ≥ (n+ 1)− t and Quorum(M r

i) ̸= ∅.

Proof. Let n + 1 > t · max {3,dim(I∗) + 2}. Since n + 1 > 3t, the processes can perform
reliable broadcast. Note that the (n+ 1)− t messages sent by the non-faulty processes can
be grouped by their contents:

(n+ 1)− t =
∑

c∈Good(Mr)

|{(P, r, c) : (P, r, c) ∈Mr, P is non-faulty}|.

69

If every content c in Good(Mr) was reliably broadcast by at most t non-faulty processes,
we would have (n + 1) − t ≤ |Good(Mr)| · t ≤ (dim(I∗) + 1) · t, which contradicts the
hypothesis. Hence, at least one content in Good(Mr) was reliably broadcast by more than
t+1 non-faulty processes. By the non-faulty liveness of the reliable broadcast, such content
will eventually be reliably received by all non-faulty processes.

Lemma 6.6.3. After RecvQuorum(r), for any two non-faulty processes Pi and Pj , we have
that |M r

i \M r
j | ≤ t.

Proof. If |M r
i \M r

j | > t, then M r
j missed more than t messages inMr, the messages reliably

broadcast in round r. However, this contradicts the fact that |M r
j | ≥ (n+ 1) − t with M r

j

being obtained by reliable broadcast.

6.6.2 Stable Vectors

Algorithm 9 ensures that any two non-faulty processes Pi and Pj collect at least n+ 1− 2t

messages in common. Indeed, |M r
i | ≥ (n + 1) − t by Lemma 6.6.2 and |M r

i \M r
j | ≤ t by

Lemma 6.6.3, therefore |M r
i ∩M r

j | ≥ (n+ 1)− 2t.
In Algorithm 10, we adapt the stable vectors technique presented in [2] to ensure that

the two non-faulty processes Pi and Pj have (n + 1) − t messages in common in M r
i and

M r
j , with a common value in Quorum(M r

i ∩M r
j) and with sets of messages totally ordered

by containment. Since we use the RecvQuorum() procedure, it requires that

n+ 1 > t ·max {3,dim(I∗) + 2}.

The technique works as follows.

1. P uses RecvQuorum() to obtain a set of messages M with Quorum(M) ̸= ∅.

2. P reliably transmits its report, containing those messages.

3. Any further message reliably received in M causes P to reliably broadcast an updated
report of M.

4. P keeps reliably receiving reports, stored in a vector R, until it identifies (n+ 1)− t
buddies in B, where a buddy is a process Pj whose last report Rj is M.

5. P decides, but keeps updating M and sending updated reports in the background
(Algorithm 11).

70

Algorithm 10 P.RecvStable(r)
1: M,B← ∅
2: R[x]← ∅ for all 0 ≤ x ≤ n
3: M← RecvQuorum(r)
4: RBSend((P, r{report},M))
5: while |B| < (n+ 1)− t do
6: upon RBRecv((Pj , r, c)) do
7: M← M ∪ {(Pj , r, c)}
8: RBSend((P, r{report},M))
9: end upon

10: upon RBRecv((Pj , r{report}, Rj)) do
11: R[j]← Rj

12: end upon
13: B← {Px : R[x] = M, 0 ≤ x ≤ n}
14: end while
15: return M ▷ while activating RSEcho(M, r)

Algorithm 11 P.RSEcho(M, r)

1: upon RBRecv((Q, r, c)) do
2: M← M ∪ {(Q, r, c)}
3: RBSend((P, r{report},M))
4: end upon

The following lemmas show that the procedure terminates, and give the stable vector
properties. Intuitively, any two non-faulty processes identify a common non-faulty buddy,
which reliably broadcasts monotonically increasing reports, guaranteeing the properties.

Lemma 6.6.4. For any non-faulty process Pi, the sequence of transmitted reports is mono-
tonically increasing. All other non-faulty processes receive those reports in such order.

Proof. First, note that the set M of Pi is monotonically increasing, so the sequence of
transmitted reports is also monotonically increasing. As we assume FIFO channels, any
other non-faulty process Pj receives those reports in the same order.

Lemma 6.6.5. RecvStable(r) eventually returns.

Proof. Consider S, the set of all messages reliably received by at least one non-faulty process.
By the non-faulty liveness of the reliable broadcast, all non-faulty processes will eventually
obtain M = S, which is never expanded, or we would contradict the definition of S. All
non-faulty processes then send reports R = S, which are final, for the same reason as before.

71

Again, by the non-faulty liveness property of the reliable broadcast, all these processes
will eventually receive (n + 1) − t reports R. By the monotonicity of received reports
(Lemma 6.6.4) and FIFO message delivery, those reports are not overwritten, matching the
local M = S. All non-faulty processes then return from RecvStable().

Lemma 6.6.6. After RecvStable(r), any two non-faulty processes Pi and Pj satisfy the
following:

1. |M r
i ∩M r

j | ≥ (n+ 1)− t;

2. Quorum(M r
i ∩M r

j) ̸= ∅; and

3. M r
i ⊆M r

j or M r
j ⊆M r

i .

Proof. Call Br
i the set of buddies whose reports are stored in R, for process Pi and round

r, right before it decides. Since all reports are transmitted via reliable broadcast, and every
non-faulty process collects (n+ 1)− t reports, |Br

i \Br
j | ≤ t with |Br

i | ≥ (n+ 1)− t, which
implies that |Br

i ∩ Br
j | ≥ n+ 1− 2t. In other words, any two non-faulty processes identify

n+1−2t > t+1 buddies in common, including a non-faulty process Pk. Therefore, M r
i = R′

k

and M r
j = R′′

k, where R′
k and R′′

k are reports sent by Pk at possibly different occasions.
Since the set M r

k is monotonically increasing, either R′
k ⊆ R′′

k or R′′
k ⊆ R′

k, guaranteeing
property (iii). Both R′

k and R′′
k contain Rk, the first report sent by Pk, by Lemma 6.6.4.

Finally, |Rk| ≥ (n+1)−t and Quorum(Rk) ̸= ∅, by Lemma 6.6.2, which guarantee properties
(i) and (ii).

Algorithm 12 shows a barycentric agreement protocol, with the same resilience as the
multidimensional ϵ-approximate agreement protocol, and the barycentric agreement proto-
col implemented using the latter: n+ 1 > t ·max {3,dim(I∗) + 2}.

Algorithm 12 P.BaryAgree(v)
1: RBSend((P, 1, {v}))
2: M ← RecvStable(1)
3: return Quorum(M)

Theorem 6.6.7. Algorithm 12 solves the barycentric agreement problem for Byzantine asyn-
chronous systems.

Proof. By Lemma 6.6.6, for any two non-faulty processes Pi and Pj , we have that Mi ⊆Mj

or Mj ⊆Mi, and also that Quorum(Mi ∩Mj) ̸= ∅. Therefore, Quorum(Mi) ⊆ Quorum(Mj)

72

or Quorum(Mj) ⊆ Quorum(Mi), implicating that the decided values, which are faces of σ,
are totally ordered by containment.

6.7 Solvability for Colorless Tasks

In this section, we explore our colorless model and the concepts above to obtain computabil-
ity conditions specific to colorless tasks. We start with an interesting consequence of having
an asynchronous Byzantine protocol.

Theorem 6.7.1. If a colorless (I∗,O∗,∆∗) has a t-resilient protocol in asynchronous Byzan-
tine systems, there exists a continuous map f : | skelt(I∗)| → |O∗| carried by ∆∗.

Proof. Assuming a protocol, we argue by reduction to the crash-failure case, and then
proceed similarly to [23]. First, note that any t-resilient Byzantine protocol is also a t-
resilient crash-failure protocol. From [22, 25]1, for any σ ∈ I∗, the protocol complex P(σ)
is (t− 1)-connected in the crash-failure model, so, in light of the previous observation, it is
also (t−1)-connected in the Byzantine-failure model, where processes fail only by crashing.
Denote the appropriate protocol complex P(I), as usual. This implies that skelx(P(σ)) is
(x−1)-connected for 0 ≤ x ≤ t. We will then inductively construct a sequence of continuous
maps gx : | skelx(I∗)| → |P(skelx(I∗))|, for 0 ≤ x ≤ t, mapping skeletons of I∗ to skeletons
of P(I∗) as in [23].

Base. Let g0 map any vertex v ∈ σ to any vertex v′ ∈ P(v), which exists because
skel0(P(v)) is (−1)-connected by hypothesis. We just constructed

g0 : | skel0(I∗)| → |P(skel0(I∗))|.

Induction Hypothesis. Assume

gx−1 : | skelx−1(I∗)| → |P(skelx−1(I∗))|,

with x ≤ t, which sends the geometrical boundary of a x-simplex σx in skelx(I∗) to
|P(skelx−1(σx))|. In other words, we have gx−1(| ∂ σx|) ⊆ |P(skelx−1(σx))|. By hypoth-
esis, P(σx) is (x− 1)-connected, so the continuous image of the (x− 1)-sphere | ∂ σx| could
be extended to a continuous x-ball |σx|, defining gx such that gx(|σx|) ⊆ |P(skelx(I∗))|. As
all such maps agree on their intersections, we just constructed

gx : | skelx(I∗)| → |P(skelx(I∗))| ⊆ |P(I∗)|.
1 These papers characterize connectivity in terms of the minimum core size c, as defined by Junqueira
and Marzullo [29]. For t-resilient tasks in the crash-failure model, t = c+ 1.

73

As we assumed a protocol for (I∗,O∗,∆∗), we must have δ∗ : P(I∗)→ O∗, a simplicial
map carried by ∆∗ (given by Definition 3.11.2). Our new map f is defined as the composition
δ∗c ◦ gt, where the continuous map δ∗c is induced by the simplicial map δ∗.

Colorless tasks have varying requirements in terms of the number of processes required
for solvability. Consider strong (t + 1)-set agreement. If dim(I∗) ≤ t (which includes the
case when dim(I∗) = 0), each process can simply decide on its input, without any com-
munication. For non-trivial cases, the protocol requires n + 1 > t(dim(I∗) + 2), shown
in Lemma 6.7.2. The result follows as an application of our Equivalence Theorem (Theo-
rem 5.4.11).

Lemma 6.7.2. The strong (t+1)-set agreement task T = (I∗,O∗, skelt) has a t-resilient pro-
tocol in asynchronous Byzantine systems if and only if n+1 > t(dim(I∗)+2) or dim(I∗) ≤ t.

Proof. (⇐) If dim(I∗) ≤ t, a k-set agreement protocol is trivial, as non-faulty processes
already start with at most t + 1 distinct values in I∗. Otherwise, in the situation where
(n+ 1)− t > t(dim(I∗) + 1), consider Alg. 13. Assuming for contradiction that each of the
dim(I∗) + 1 input values is chosen by at most t different non-faulty processes, we would
have that (n + 1) − t ≤ t(dim(I∗) + 1). Therefore, at least t + 1 non-faulty processes
in fact input an identical value v, and non-faulty processes can wait for such occurrence,
eventually deciding on a value inside I∗. Also, as (n + 1) − t messages are received via
reliable broadcast, at most t values are missed, so at most t+ 1 values are decided, solving
the problem.

Algorithm 13 Pi.KSetStrictAgree(Ii)
1: if dim(I∗) ≤ t then return Ii
2: end if
3: Get (n + 1) − t messages with values in I∗ via reliable broadcast, with some value

appearing t+ 1 times
4: return Oi = the smallest value received

(⇒) If T is solvable, then T ′ = (σ∗, σ∗, skelt) is similarly solvable, taking an arbitrary
d-simplex σ∗ = {v0, . . . , vd} in I∗ with d = dim(I∗). By our equivalence theorem, and
considering the relations in (6.1) and (6.2), we must be able to solve

T ′′ = (Ψ(P, σ∗),Ψ(P, σ∗), s̃kelt), (6.3)

74

where, for any canonical name-labeled σ, τ ∈ Ψ(P, σ∗):

τ ∈ s̃kelt(σ)⇔ ∀ canonical σ′ ⊆ σ,∃ matching τ ′ ⊆ τ

with views(τ ′) ∈ skelt(views(σ′)). (6.4)

Assume a protocol for T ′′, and for contradiction, assume that (n+1)−t ≤ t(dim(I∗)+1).
Consider an execution where:

1. all processes behave correctly or crash;

2. all processes in S = {P0, . . . , Pn−t} terminate without receiving any message from any
process in T = {Pn+1−t, . . . , Pn};

3. each process Pi ∈ S starts with input Ii = vi mod d+1.

In this case, define
Sx = {p ∈ S : p has input vx}. (6.5)

Note that (n + 1) − t ≥ d + 1, as I∗ contains only inputs chosen by non-faulty processes
and d = dim(I∗) by assumption. Consequently, since (d+ 1) ≤ n+ 1− t ≤ t(d+ 1), and in
light of (6.5),

0 < |Sx| ≤ t for all 0 ≤ x ≤ d.

Regarding notation, we define σx = {(Pi, Ii) : Pi ∈ Sx} and σ−x = {(Pi, Ii) : Pi ∈ S \ Sx},
concerning the inputs; also τx = {(Pi, Oi) : Pi ∈ Sx} and τ−x = {(Pi, Oi) : Pi ∈ S \ Sx},
concerning the outputs.

In order to satisfy s̃kelt, given that all processes in S decide, and that the values of the
processes in T are unknown, we must have:

views(τ−x) ∈ skelt(views(σ−x)) = skelt(σ∗ − {vx}).

Therefore,

views(τx) ⊆
∩
y ̸=x

skelt(views(σ−y))

=
∩
y ̸=x

skelt(σ∗ − {vy})

⊆ {vx},

for any 0 ≤ x ≤ n−t. In conclusion, each process decides its own input, and the decision fails
to solve the problem unless d+1 ≤ t+1, which implies dim(I) ≤ t. In the latter situation, the
protocol is trivial: each process can choose its own input without any communication.

75

The previous requirement on the number of processes, although not a necessary condition
for the solvability of all colorless tasks, is part of an interesting sufficient condition for
solvability. We shall consider the interesting cases where dim(I∗) > 0.

Theorem 6.7.3. For any colorless T = (I∗,O∗,∆∗), if

1. n+ 1 > t(dim(I∗) + 2); and

2. there exists a continuous map f : | skelt(I∗)| → |O∗| carried by ∆∗,

then we have a t-resilient protocol in asynchronous Byzantine systems for T .

Proof. By the simplicial approximation theorem [37, 30] (also refer to Theorem 3.4.5 and
Remark 3.4.6), f has a simplicial approximation

ϕ : BaryN skelt(I∗)→ O∗,

for some N > 0, also carried by ∆∗. The Byzantine-failure protocol for non-faulty processes
is shown below, presuming that n+ 1 > t(dim(I∗) + 2) with dim(I∗) > 0.

1. Execute the Byzantine strong (t+1)-set agreement protocol (Algorithm 13), choosing
vertices on a simplex in skelt(I∗).

2. Execute N times the Byzantine barycentric agreement protocol, choosing vertices on
a simplex in

BaryN skelt(I∗).

For simplicity of presentation, we assume the approach described in Sec. 6.5, based
on [34].

3. Apply ϕ : BaryN skelt(I∗)→ O∗ to choose vertices on a simplex in O∗.

As ϕ and f are carried by ∆∗, non-faulty processes starting on vertices of σI ∈ I∗ finish
on vertices of σO ∈ ∆∗(σ). Furthermore, since 1 ≤ dim(σI) ≤ dim(I∗), by definition, the
preconditions are satisfied for calling the protocols in steps (1) and (2).

6.8 Strict Colorless Tasks

In fact, the Equivalence Theorem can imply even more general results, for strict colorless
tasks, formally defined below.

76

Definition 6.8.1. A colorless task (I∗,O∗,∆∗) is strict if

∆∗(σ1 ∩ σ2) = ∆∗(σ1) ∩∆∗(σ2)

for any σ1, σ2 ∈ I∗.

Theorem 6.8.2. If a strict colorless task T = (I∗,O∗,∆∗) with n+ 1 ≤ t(dim(I∗) + 2) has
an asynchronous Byzantine protocol, there is a simplicial map δ : I∗ → O∗ carried by ∆∗.

Proof. If T is solvable, then T ′ = (σ∗,∆∗(σ∗),∆∗) is similarly solvable, taking an arbitrary
d-simplex σ∗ = {v0, . . . , vd} in I∗ with d = dim(I∗). By our equivalence theorem, and
considering the relations in (6.1) and (6.2), we must be able to solve

T ′′ = (Ψ(P, σ∗),Ψ(P,∆∗(σ∗)), ∆̃∗), (6.6)

where, for any canonical name-labeled σ, τ ∈ Ψ(P, σ∗):

τ ∈ ∆̃∗(σ)⇔ ∀ canonical σ′ ⊆ σ,∃ matching τ ′ ⊆ τ

with views(τ ′) ∈ ∆∗(views(σ′)). (6.7)

Assume a protocol for T ′′, and also that (n+1)−t ≤ t(dim(I∗)+1). Consider an execu-
tion where: (i) all processes behave correctly or crash; (ii) all processes in S = {P0, . . . , Pn−t}
terminate without receiving any message from any process in T = {Pn+1−t, . . . , Pn}; (iii)
each process Pi ∈ S starts with input Ii = vi mod d+1. In this case, define

Sx = {P ∈ S : P has input vx}. (6.8)

Note that (n + 1) − t ≥ d + 1, as I∗ contains only inputs chosen by non-faulty processes
and d = dim(I∗) by assumption. Consequently, since (d+ 1) ≤ n+ 1− t ≤ t(d+ 1), and in
light of (6.8),

0 < |Sx| ≤ t for all 0 ≤ x ≤ d.

In terms of notation, define σx = {(Pi, Ii) : Pi ∈ Sx} and σ−x = {(Pi, Ii) : Pi ∈ S with Pi ̸∈
Sx} regarding inputs, as well as τx = {(Pi, Oi) : Pi ∈ Sx} and τ−x = {(Pi, Oi) : Pi ∈
S with Pi ̸∈ Sx} regarding outputs.

In order to satisfy ∆̃∗, given that all processes in S decide, and that the values of the
processes in T are unknown, we must have:

views(τ−x) ∈ ∆∗(views(σ−x)) = ∆∗(σ∗ − {vx}).

77

Therefore,

views(τx) ⊆
∩
y ̸=x

∆∗(views(σ−y))

=
∩
y ̸=x

∆∗(σ∗ − {vy})

⊆ ∆∗({vx}),

for any 0 ≤ x ≤ n− t. Considering Def. 6.8.1, note that ∆∗(v1) ̸= ∆∗(v2) for v1 ̸= v2 with
v1 ∈ σ∗ and v2 ∈ σ∗. We fail to solve the problem (and incur into contradiction) unless
τ∗ = {∆∗(v) : v ∈ σ∗} ⊆ ∆∗(σ∗), so there must exist a simplicial map from σ∗ to τ∗ carried
by ∆∗, considering the previous observation. Because σ∗ was chosen arbitrarily, we must
also have a simplicial map δ : I∗ → O∗ carried by ∆∗.

With strict colorless tasks, a simplicial map δ from I∗ to O∗, allows processes to decide
their outputs without communication: they simply apply the function δ to their input and
decide. Informally speaking, a solvable, strict colorless task with n+1 ≤ t(dim(I∗) + 2), is
trivial in that sense.

6.9 Final Remarks

In this section, a specialized, more fitting model permits us to express slightly more specific
conditions for solvability. In particular, we show that the strict k-set agreement requires
a certain number of processes, except in trivial cases. Furthermore, we show that a col-
orless Byzantine protocol for any task (I∗,O∗,∆∗), in asynchronous systems, implies the
existence of a continuous map f : | skelt I∗| → |O∗| carried by ∆∗. We also show that
n+1 > t(dim(I∗)+ 2) is enough to solve an arbitrary colorless task when such map indeed
exists. If the number of processes is less than t(dim(I∗) + 2) + 1, and ∆∗ is a strict carrier
map, processes cannot identify a non-faulty process input besides its own. The task becomes
unsolvable unless processes can decide based solely on their own input, which requires no
communication. In addition to solvability conditions, we present protocols for the barycen-
tric agreement problem that seem to delineate what is possible and impossible in terms of
computability on colorless tasks.

Chapter 7

Synchronous Computability
Conditions

In this chapter, we use topology notions to analyze the combinatorial structure of infor-
mation dissemination in a Byzantine synchronous protocol. The structure of information
dissemination is modeled by protocol complexes, and the ambiguity that arises from failures,
both crashing or malicious, is modeled by protocol complex connectivity.

In this chapter, we see how Byzantine failures can impose us one extra synchronous
round to deal with information ambiguity, yet, in specific settings, described in Sec. 7.4,
at most that. In terms of solvability vs. number of rounds, we see how the penalty for
moving from crash to Byzantine failures, modeled as (k − 1)-connectivity in the protocol
complex, can be quite limited in synchronous systems, particularly when n is relatively
large compared to t.

7.1 Contributions Overview

The first contribution of this chapter comes in Sec. 7.3. We show that, in a Byzantine
synchronous system, the protocol complex can remain (k − 1)-connected for ⌈t/k⌉ rounds,
where (k − 1)-connectivity is a general notion of graph connectivity for higher dimensions,
and t is an upper bound on the number of Byzantine processes. This is potentially one more
round than the upper bound in crash-failure systems (⌊t/k⌋, shown in [12]). Technically, we
conceive a combinatorial operator modeling the ability of Byzantine processes to equivocate
– i.e., to transmit ambiguous state information – without revealing their Byzantine nature.

78

79

We compose this operator with regular crash-failure operators, extending the protocol com-
plex connectivity for one extra round. Connectivity is relevant since a (k − 1)-connected
protocol complex prevents important problems such as k-set agreement [11, 14] from having
solutions.

The second contribution of this chapter comes in Sec. 7.4. We show that the above
connectivity bound is tight in certain settings (described in Sec. 7.4), by (i) defining a
strong validity formulation of k-set agreement for Byzantine synchronous systems; and (ii)
solving the problem in ⌈t/k⌉ + 1 rounds. We do so with a full-information protocol that
assumes n suitably large compared to t (hence, mainly of theoretical interest). Nevertheless,
the protocol suits well our purpose of tightening the ⌈t/k⌉ bound, and also exposes very
well the reason why ⌈t/k⌉+ 1 rounds is enough.

7.1.1 Related Work

The Byzantine failure model was initially introduced by Lamport, Shostak, and Pease [31].
The use of simplicial complexes to model distributed computations was introduced by Her-
lihy and Shavit [27]. The asynchronous computability theorem for general tasks in [28]
details the approach for wait-free computation, recently generalized by Gafni, Kuznetsov,
and Manolescu [20]. Computability in Byzantine asynchronous systems, where tasks are
constrained in terms of non-faulty inputs, was recently considered in [36].

The k-set agreement problem was originally defined by Chaudhuri [11]. Alternative
formulations with different validity notions, or failure/communication settings, are discussed
in [39, 14]. A full characterization of optimal translations between different failure settings
is given in [4, 40], which requires different number of rounds depending on the relation
between the number of faulty processes, and the number of participating processes.

The relationship between connectivity and the impossibility of k-set agreement is de-
scribed explicitly or implicitly in [12, 28, 43]. Recent work by Castañeda, Gonczarowski,
and Moses [10] considers an issue of chains of hidden values, a concept loosely explored here.
The approach based on shellability and layered executions for lower bounds in connectivity
has been used by Herlihy, Rajsbaum, and Tutte [26, 25, 22], assuming crash-failure systems,
synchronous or asynchronous.

7.2 Operational Model

In this section, we also call the number of processes n+1 instead of n, for identical reasons
as in our asynchronous setting: choosing n+1 processes simplifies the topological notation,

80

which we prefer for compatibility with prior work. Formally:

We let number of processes be n+ 1. Define P = {P0, . . . , Pn}.

Similar to the asynchronous setting, any set of at most t processes can be faulty or
Byzantine [31], and may display arbitrary, even malicious behavior, at any point in the
execution. We again assume that an adversary defines the actual behavior of Byzantine
processes. Processes behaving in strict accordance to the protocol for rounds 1 up to r

(inclusive) are called non-faulty processes up to round r, and are denoted by Gr. Also,
faulty processes up to round r are denoted by Br = P \Gr. A non-faulty process up to any
round r ≥ 1 is called simply non-faulty or correct, which we denote by G.

We model processes as state machines, as seen in Sec. 2.3. The input value (respectively,
output value) of a non-faulty process Pi is written Ii (respectively, Oi), and non-faulty
process Pi has an internal state called view, which we denote by view(Pi).

For simplicity of notation, we define a round 0 where processes are simply assigned
their inputs. Without losing generality, all processes are assumed non-faulty up to round
0: G0 = P and B0 = ∅. For any round r ≥ 0, a global state formally specifies: (1) the
non-faulty processes up to round r; and (2) the view of all non-faulty processes up to round
r.

Let viewr(Pi) denote Pi’s view at the end of round r. In the beginning of the protocol,
view0(Pi) is Ii.

7.3 Connectivity Upper Bound

Say that non-faulty processes start the computation with inputs in V = {v0, . . . , vd}, with
some d ≥ k and t ≥ k ≥ 1. In order to prove our upper bound, we consider the following
admissible execution imposed by the adversary.

Let r = ⌊t/k⌋ and m = t mod k. We have r crash rounds, where each round consists
of k processes failing by crashing. If m > 0, we have an extra equivocation round, where a
single Byzantine process sends different views to different processes, causing extra confusion.
This scenario defines a sequence of protocol complexes K0, . . . ,Kr+1, and carrier maps
Ci : Ki−1 → 2K

i , for 1 ≤ i ≤ r, and E : Kr → 2K
r+1 .

K0 C1−−−−→K
1 . . . Cr−−−−→K

r E−−−→K
r+1︸ ︷︷ ︸

only if m > 0

. (7.1)

81

In each of the first r rounds, exactly k processes are failed by the adversary. The crash-
failure operator represents each of such round schedules, and is defined as follows [22, 21]:

Definition 7.3.1. For any 1 ≤ i ≤ r, the crash-failure operator Ci : Ki−1 → 2K
i is such that

Ci(σ) =
∪

τ∈Facesn−ik(σ)

Ψ(names(τ); [τ : σ]) (7.2)

for any σ ∈ Ki−1, with [τ : σ] denoting any simplex µ where τ ⊆ µ ⊆ σ.

Definition 7.3.2. A q-connected carrier map Φ : K → 2L is a strict carrier map such that,
for all σ ∈ K, dim(Φ(σ)) > q − codimK(σ) and Φ(σ) is (q − codimK(σ))-connected.

Definition 7.3.3. A q-shellable carrier map Φ : K → 2L is a strict carrier map such that, for
all σ ∈ K, dim(Φ(σ)) > q − codimK(σ) and Φ(σ) is shellable.

After r rounds, note that Kr only contains simplexes with dimension exactly n − rk.
In [22, 21], the following lemmas are proved:

Lemma 7.3.4. For 1 ≤ i ≤ r, the operator Ci : Ki−1 → 2K
i is a (k−1)-shellable carrier map.

Proof. Proof in [22].

Lemma 7.3.5. If M1, . . . ,Mx are all q-shellable carrier maps, and Mx+1 is a q-connected
carrier map, the composition M1 ◦ . . .Mx ◦ Mx+1 is a q-connected carrier map, for any
x ≥ 0.

Proof. Proof in [22].

After the crash-failure rounds, if m > 0 the adversary picks one of the remaining pro-
cesses to behave maliciously at round r+ 1. This process, say Pb, may send different views
to different processes (which is technically called equivocation), but, informally speaking,
all views are “plausible”. For example, Pi and Pj in Gr+1 (i.e., two correct remaining pro-
cesses) can be indecisive on whether the global state at round r is σ1 or σ2 in Kr, while Pb

(a Byzantine process) sends a state corresponding to σ1 to Pi, and a state corresponding to
σ2 to Pj in round r+1. The process Pb does not reveal its Byzantine nature, yet it promotes
ambiguity in the state information diffusion.

When a non-faulty process receives a state, it must decide assuming that one process
has failed. So, if a process can receive states σ1 and σ2, with dim(σ1 ∩σ2) = n− rk− 1, the
interpretation of the message with a state σ1 is the same as the message with a state σ2.
We capture this notion using the equivocation operator, described below, together with an
associated interpretation operator Interp such that Interp(σ1) = Interp(σ2) for processes in
names(τ), where τ = σ1 ∩ σ2 with dim(τ) = n− rk − 1. Formally:

82

Definition 7.3.6. For any σ1 and σ2 in K, with dim(K) = n − rk, let (Pi, Interp(σ1)) =

(Pi, Interp(σ2)) if and only if

1. σ1 = σ2; or

2. Pi ∈ names(τ) where τ = σ1 ∩ σ2 and dim(τ) = n− rk − 1.

Definition 7.3.7. For any pure simplicial complexes K and L with dim(K) ≤ n − rk and
K ⊇ L, the K-equivocation operator EK is

EK(L) =
∪

τ∈Facesn−rk−1(L)

Ψ(names(τ); {Interp(σ∗) : σ∗ ∈ K, σ∗ ⊃ τ})). (7.3)

For convenience of notation, define EK(K) = E(K).

Note that EK(L) = ∅ whenever dim(L) < n− rk − 1 or dim(K) < n− rk, and also that

EK(σ) =
∪

τ∈Facesn−rk−1(σ)

Ψ(names(τ); Interp(σ)) (7.4)

for any σ ∈ K with dim(σ) = n− rk.

Lemma 7.3.8. For any pure, shellable simplicial complex with dim(K) ≤ n − rk, the K-
equivocation operator EK is a carrier map.

Proof. Let τ ⊆ σ ∈ K. We show that EK(τ) ⊆ EK(σ). If dim(τ) < n−rk−1 then EK(τ) = ∅
and EK(τ) ⊆ EK(σ) for any σ ⊇ τ ∈ K. Otherwise, if dim(τ) = dim(σ) then τ = σ and
EK(τ) = EK(σ) as we assumed that σ ⊇ τ ∈ K. Therefore, dim(τ) = n − rk − 1 and
dim(σ) = n− rk, which makes EK(τ) ⊆ EK(σ) in light of Definition 7.3.7.

Let (Cr ◦ E) be the composite map such that (Cr ◦ E)(σ) = ECr(σ)(Cr(σ)). While, for
an arbitrary complex K, EK is not a strict carrier map per se, we show in the following
lemmas that (Cr ◦ E) is a (k − 1)-connected carrier map. Lemma 7.3.9 shows that (Cr ◦ E)
is a strict carrier map, and Lemma 7.3.10 shows that for any σ ∈ Kr−1, (Cr ◦ E)(σ) is
((k − 1)− codimKr−1(σ))-connected.

Lemma 7.3.9. (Cr ◦ E) is a strict carrier map.

Proof. Consider σ, τ ∈ Kr−1, with L = Cr(σ) and M = Cr(τ). Both L and M are pure,
shellable simplicial complexes with dimension n − rk (Definition 7.3.1 and Lemma 7.3.4).
Therefore, both the L-equivocation and M-equivocation operators are well-defined.

Furthermore, Cr is a strict carrier map, hence L∩M = Cr(σ)∩Cr(τ) = Cr(σ∩ τ). Note
that L∩M = Cr(σ∩τ), if not empty, is a pure, shellable simplicial complex with dimension
n− rk. Therefore, the (L ∩M)-equivocation operator is well-defined.

83

First, we show that E(L) ∩ E(M) ⊆ E(L ∩ M), which implies one direction of our
equality:

E(Cr(σ)) ∩ E(Cr(τ)) ⊆ E(Cr(σ) ∩ Cr(τ)) = E(Cr(σ ∩ τ)).

For clarity, let F (K) = Facesn−rk−1(K). Then,

E(L) ∩ E(M) =
∪

µ∈F (L)

EL(µ) ∩
∪

ν∈F (M)

EM(ν) =
∪

µ∈F (L)
ν∈F (M)

EL(µ) ∩ EM(ν).

For arbitrary µ ∈ F (L) and ν ∈ F (M), if EL(µ) ∩ EM(ν) ̸= ∅, consider two cases:

1. µ and ν are in ϕ ∈ (L ∩M). In this case,

EL(µ) ∩ EM(ν) = Ψ(names(µ) ∩ names(µ); Interp(ϕ)),

which is inside EL∩M(ϕ) ⊆ EL∩M(L ∩M).

2. µ ∈ ϕ1 ∈ L and ν ∈ ϕ2 ∈M. In this case,

EL(µ) ∩ EM(ν) = Ψ(names(µ) ∩ names(ν); Interp(ϕ1) ∩ Interp(ϕ2)).

By Definition 7.3.6, the above is non-empty only when Interp(ϕ1) = Interp(α) with
α ∈ L, Interp(ϕ2) = Interp(β) with β ∈M, and there exists a non-empty set P′ such
that P′ ⊆ names(µ)∩names(ν) ⊆ names(γ), where γ = α∩β with dim(γ) = n−rk−1.
Let P′′ be a maximal P′ satisfying such condition. Note that γ ∈ (L ∩M).

Since (L ∩M) is non-empty, it is pure, shellable with dimension n − rk, there must
exist a simplex γ′ ⊃ γ with dimension n − rk. Moreover, Interp(γ′) = Interp(ϕ1) =
Interp(ϕ2) for processes in names(γ), given the definition of Interp. This way,

ϕ = Ψ(P′′; Interp(ϕ1))

= Ψ(P′′; Interp(ϕ2))

= Ψ(P′′; Interp(γ′))

⊆ Ψ(names(γ); Interp(γ′)),

which is inside EL∩M(γ′) ⊆ EL∩M(L ∩M).

In the other direction,

E(L ∩M)
def
= EL∩M(L ∩M) ⊆ EL(L ∩M) ⊆ EL(L)

def
= E(L).

This holds because (i) EL∩M(X) ⊆ EL(X) for any X ⊆ L ∩M (Definition 7.3.7); and (ii)
EL is a carrier map (Lemma 7.3.8). The same argument proves that E(L ∩M) ⊆ E(M),
and therefore E(L ∩M) ⊆ E(L) ∩ E(M).

84

Lemma 7.3.10. For any σ ∈ Kr−1, E(Cr(σ)) is ((k − 1)− codimKr−1(σ))-connected.

Proof. Throughout the proof, consider a simplex σ ∈ Kr−1 with codimKr−1(σ) ≤ k. By
Lemma 7.3.4,M = Cr(σ) is a pure, shellable simplicial complex with dim(M) = n−rk = d.
By Definition 7.3.7, E(M) is well-defined and dim(E(M)) = n − rk − 1 = d′. Note that
d′ ≥ n− t ≥ 2t ≥ 2k, since n+ 1 > 3t and t ≥ k.

First, we show that E(M) is “highly-connected” – that is, (2k − 1)-connected. We
proceed by induction on µ0 . . . µℓ, a shelling order of facets of M.

Base. We show that EM(µ0) is (2k − 1)-connected. Considering Definition 7.3.7, we have
that EM(µ0) = EM(τ0) ∪ . . . ∪ EM(τd), with τ0 . . . τd being all the proper faces of µ0.

Consider the cover {EM(τi) : 0 ≤ i ≤ d} of EM(µ0), and its associated nerve
N ({EM(τi) : 0 ≤ i ≤ d}). For any index set J ⊆ I = {0 . . . d}, let

KJ =
∩
j∈J
EM(τj) = Ψ(

∩
j∈J

names(τj); Interp(µ0))

For any J with |J | ≤ d, we have ∩j∈J names(τj) ̸= ∅, making KJ a non-empty
pseudosphere with dimension d′−|J |+1 ≥ 2k−|J |+1. So, KJ is ((2k−1)−|J |+1)-
connected by Lemmas 3.8.2 and 3.8.3. The nerve is hence the (d − 1)-skeleton of I,
which is (d − 2) = (d′ − 1) ≥ (2k − 1)-connected. By the Nerve Theorem, EM(µ0) is
also (2k − 1)-connected.

IH. Assume that Y = ∪0≤y<xEM(µy) is (2k − 1) connected, and let X = EM(µx). We
must show that Y ∪X = ∪0≤y≤xE(µy) is (2k− 1)-connected. Note that X is (2k− 1)-
connected by an argument identical to the one above for the base case EM(µ0).

Furthermore,

Y ∩ X =

 ∪
0≤y<x

EM(µy)

 ∩ EM(µx) =
∪

0≤y<x

(EM(µy) ∩ EM(µx))
⋆
=
∪
i∈S
EM(τi),

where i ∈ S indexes faces τi ∈ µx such that for every 0 ≤ y < x (µy ∩ µx) ̸= ∅ ⇒
(µy ∩ µx) ⊆ τi for i ∈ S. This set is well-defined because M is shellable.

The step (⋆) holds as EM(µy)∩EM(µx) ̸= ∅ only if ψ = Ψ(names(µy∩µx); Interp(µx))
exists, the latter inside ψ′ = Ψ(names(τj); Interp(µx)), for some j ∈ S, given the
observation in the previous paragraph. Using an argument identical to the one for
EM(µ0), yet considering the cover {EM(τi) : i ∈ S}, its nerve is either the (d − 1)-
skeleton of S (if S = {0 . . . d}) or the whole simplex S (otherwise). In either case, the
conclusion is the same, by the Nerve Theorem: ∪i∈SEM(τi) is (2k − 1)-connected.

85

Once again, using the Nerve Theorem, since Y is (2k − 1)-connected, X is (2k − 1)-
connected, and Y ∩X is (2k−1)-connected, we have that Y ∪X is (2k−1)-connected.

While the equivocation operator yields high connectivity (2k−1) in the pseudosphere Cr(σ),
the composition of Cr and ECr(σ)(Cr(σ)) limits the connectivity to (k − 1), since the former
map is only defined for simplexes with codimension ≤ k. Formally, as Cr(σ) ̸= ∅ for any
simplex σ ∈ Kr−1 with codimKr−1(σ) ≤ k, we have that E(Cr(σ)) is ((k−1)−codimKr−1(σ))-
connected.

From Lemmas 7.3.9 and 7.3.10, we conclude the following.

Corollary 7.3.11. (Cr ◦ E) is a (k − 1)-connected carrier map.

Theorem 7.3.12. An adversary can keep the protocol complex of a Byzantine synchronous
system (k−1)-connected for ⌈t/k⌉ rounds.

Proof. If m = 0, t mod k = 0, and the adversary runs only the crash rounds failing k

processes each time, for r = ⌊t/k⌋ = ⌈t/k⌉ consecutive rounds. We have the following
scenario:

(C1 ◦ . . . ◦ Cr)(σ).

Since Ci : Ki−1 → 2K
i is a (k − 1)-shellable carrier map for 1 ≤ i ≤ r (Lemma 7.3.4),

the composition (C1 ◦ . . . ◦ Cr) is a (k − 1)-connected carrier map for any facet σ ∈ I
(Lemma 7.3.5).

If m > 0, the adversary performs r crash rounds (failing k processes each time), followed
by the extra equivocation round. We have the following scenario:

(C1 ◦ . . . ◦ Cr−1 ◦ (Cr ◦ E))(σ). (7.5)

Since Ci : Ki−1 → Ki is a (k− 1)-shellable carrier map for 1 ≤ i ≤ r− 1 (Lemma 7.3.4), and
(Cr ◦ E) is a (k− 1)-connected carrier map (Corollary 7.3.11), we have that the composition
above (C1 ◦ . . . ◦ Cr−1 ◦ (Cr ◦ E)) is a (k − 1)-connected carrier map for any facet σ ∈ I
(Lemma 7.3.5).

7.4 k-Set Agreement and Lower Bound

The k-set agreement problem [11], is a fundamental task having important associations with
protocol complex connectivity. In Byzantine systems, it can be difficult to characterize the
input of a faulty process, since a process can ignore its “prescribed” input and behave as

86

having a different one. This intrinsically leads to many alternative formulations for the
problem in Byzantine systems [14].

Here, we adopt a formulation that is intended both to make sense in practice, and to
have implications on our connectivity arguments discussed before. Each non-faulty process
Pi starts with any value Ii from V = {v0, . . . , vd}, with d ≥ k as well as t ≥ k ≥ 1, and
finishes with a value Oi from V , respecting:

Agreement. At most k values are decided: |{Oi : Pi ∈ G}| ≤ k.

Strong Validity. For any non-faulty process Pi, the output Oi is the input value of a
non-faulty process.

Termination. The protocol finishes in a finite number of rounds.

Definition 7.4.1. A Byzantine, synchronous k-set agreement task is a triple (I,O,∆) where

1. I is a pseudosphere Ψ(P, V), with V = {v0, . . . , vd}, representing the input of the
non-faulty processes. We have dim(I) = n since, for any input assignment, we have
an admissible execution where all processes are benign.

2. O is ∪V ′⊆V Ψ(P, V ′) where |V ′| ≤ k, representing the output of the non-faulty pro-
cesses. We have dim(O) = n since, for any output assignment, we have an admissible
execution where all processes have been benign.

3. ∆ : I → O where if τ ∈ ∆(σ), then dim(σ) ≥ n − t, views(τ) ⊆ views(σ), and
| views(τ)| ≤ k.

The k-set agreement and connectivity are closely related. Lemma 7.4.2 shows that no
solution is possible for k-set agreement with a (k − 1)-connected protocol complex, which,
as seen in Sec. 7.3, can occur at least until round ⌈t/k⌉.

Lemma 7.4.2. If, starting σ ∈ I, the protocol complex P(σ) is (k − 1)-connected, then no
decision function δ solves the k-set agreement problem.

Proof. Consider a k-simplex α = {u0, . . . , uk} ⊆ {v0, . . . , vd} with k + 1 different inputs.
Let Iβ = Ψ(P, β) for any β ⊆ α, and Ix =

∪
β∈skelx(α)Ψ(P, β). We construct a sequence

of continuous maps gx : | skelx(α)| → |Kx| where Kx is homeomorphic to skelx(α) in
| skelx(P(Ix))|.

Base. Let g0 map any vertex v ∈ α to a vertex in Kv = P(I{v}). We know that Kv

is k-connected since dim(I{v}) = dim(I) and P is a k-connected carrier map. We just

87

constructed
g0 : | skel0(α)| → |K0|,

where K0 is isomorphic to a skel0(α) in | skel0(P(I0))|.
Induction Hypothesis. Assume gx−1 : | skelx−1(α)| → |Kx−1| for any x ≤ k, where

Kx−1 is isomorphic to skelx−1(α) in | skelx−1(P(Ix−1))|. For any β ∈ skelx(α), we have that
skelx(P(Iβ)) is (x−1)-connected, hence the continuous image of the (x−1)-sphere in P(Iβ)
can be extended to the continuous image of the x-ball in skelx(P(Iβ)). We just constructed

gx : | skelx(α)| → |Kx|,

where Kx is isomorphic to skelx(α) in | skelx(P(I0))|. In the end, we have gk : |α| → |Kk|
where Kk is isomorphic to α in skelk(P(Ik)).

Now suppose, for the sake of contradiction, that k-set agreement is solvable, so there
must be a simplicial map δ : P(I) → O carried by ∆. Then, induce the continuous map
δc : |Kk| → |α| from δ such that δc(v) ∈ | views(δ(µ))| if v ∈ |µ|, for any µ ∈ Kk. Also, note
that the composition of gk with the continuous map δc induces another continuous map
|α| → | ∂ α|, since by assumption δ never maps a k-simplex of Kk to a simplex with k + 1

different views (so δc never maps a point to | Intα|). We built a continuous retraction of
α to its own border ∂ α, a contradiction (please refer to [37, 30]). Since our assumption
was that there existed a simplicial map δ : P(I)→ O carried by ∆, we conclude that k-set
agreement is not solvable.

We now present a simple k-set agreement algorithm for Byzantine synchronous systems,
running in ⌈t/k⌉ + 1 rounds. The procedure requires quite a large number of processes
compared to t – we require n + 1 ≥ kt(d + 2) + k – and was designed with the purpose
of tightening the connectivity lower bound, favoring simplicity over the optimality on the
number of processes,

Non-faulty processes initially execute a gossip phase for ⌈t/k⌉ + 1 rounds, followed by
a validation phase, and a decision phase, where the output is chosen. Define R = ⌈t/k⌉,
and consider the following tree, where nodes are labeled with words over the alphabet P.
The root node is labeled as λ, which represents an empty string. Each node w such that
0 ≤ |w| ≤ R has n + 1 child nodes labeled wp for all p ∈ P. Any non-faulty process p
maintains such tree, denoted Tp.

All nodes w are associated with the value Contp(w), called the contents of w. The
meaning of the trees is the following: after the gossip phase, if node w = p1 . . . px is such
that Contp(w) = v, then px told that px−1 told that … p1 had input v to p. The special

88

value ⊥ represents an absent input. We omit the subscript p when the process is implied or
arbitrary. We divide the processes into k disjoint groups: P(g) = {Px ∈ P : x = g mod k},
for 0 ≤ g < k. For any tree T , we call T (g) the subtree of T having only nodes wp ∈ T
such that p ∈ P(g).

In the validation phase, if we have a set Q containing (n + 1) − t processes that ac-
knowledge all messages transmitted by process p (making sure that p ∈ Q), at every
round 1 ≤ r ≤ R, we call such set the quorum of p, denoted Quorum(p). Formally,
Quorum(p) = Q ⊆ P such that p ∈ Q, |Q| ≥ (n+1)− t, and q ∈ Q whenever Cont(wp) = v

implies Cont(wpq) = v, for any w such that 0 ≤ |w| < R. It should be clear that every
non-faulty process has a quorum containing at least all other non-faulty processes. If a
process p has a quorum in process Pi ∈ G, we say that wp has been validated on Pi for any
0 ≤ |w| < R (particularly, p has been validated on Pi). Note that in our definition either
all entries for process p are validated, or none is. Lemma 7.4.3 shows that validated entries
are unique across non-faulty processes.

Lemma 7.4.3. If p has been validated on non-faulty processes Pi and Pj , then Conti(wp) =
Contj(wp) for any 0 ≤ |w| < R.

Proof. If p has been validated on Pi ∈ G, then Conti(wp) = v implies Conti(wpq) = v

for (n + 1) − t different processes q ∈ Qi, and Contj(wp) = v implies Contj(wpq) = v for
(n+1)− t different processes q ∈ Qj , for any 0 ≤ |w| < R. As we have at most t non-faulty
processes and n+1 > 3t, |Qi∩Qj | ≥ (n+1)−2t > t+1, containing at least one non-faulty
process that, by definition, broadcasts values consistently in its run. Hence, Conti(wp) and
Contj(wp) must be identical.

In the decision phase, if we see t processes without a quorum, we have technically
identified all non-faulty processes B. In this case, we fill R-th round values of any b ∈ B
using the completion rule: we make Cont(wb) = v if we have (n+ 1)− 2t processes G′ ⊆ G
where Cont(wbq) = v for any q ∈ G′ and |w| = R− 1. If a process p has its R-round values
completed as above in process Pi ∈ G, we say that wp has been completed on Pi for any
|w| = R − 1. Lemma 7.4.4 shows that completed entries are identical and consistent with
validated entries across non-faulty processes. (Intuitively, the completion rule was done
over identical values from correct processes.)

Lemma 7.4.4. If wp has been completed or validated on a non-faulty process Pi, and wp

has been completed on a non-faulty process Pj , then Conti(wp) = Contj(wp).

89

Proof. If wp has been validated on Pi, Conti(wp) = v implies Conti(wpq) = v for (n+1)− t
different processes q ∈ Q. When Pj applies the completion rule on wp, then Contj(wpq) = v

for (n+ 1)− 2t different processes q ∈ G, as we have at most t faulty processes. Therefore,
Conti(wp) = Contj(wp).

If wp has been completed on all non-faulty processes, they all have identified t faulty
processes, and the completion rule is performed over identical entries associated with non-
faulty processes. Therefore, Conti(wp) = Contj(wp) as well.

We have two possible cases:

1. there is a subtree T (g) with less than ⌈t/k⌉ non-validated processes – call such subtree
pivotal; or

2. no such tree exists, in which case we apply the completion rule to R-round values in
T (0), and define T (0) as our pivotal subtree instead.

Now, any sequence of non-validated and non-completed nodes p1, (p1p2), . . . , (p1p2 . . . px),
with p1 ̸= . . . ̸= px, has size x < R = ⌈t/k⌉, allowing us to suitably perform consensus over
consistent values (see below).

Denote the set of processes in the word w as SetProc(w). For any non-validated wp

with b ∈ P(g) in a pivotal subtree T (g), where 1 ≤ |wp| < R, we establish consensus on
Cont(wb). We apply the consensus rule: Cont(wb) = v if the majority of processes in
P(g) \ SetProc(wb) is such that wbp = v. This rule is applied first to entries labeled wp

where |wp| = R − 1, and then moving upwards (please refer to Alg. 14). Lemma 7.4.5
shows that the consensus rule indeed establishes consensus across non-faulty processes that
identify T (g) as the pivotal subtree. Essentially, we are separating the possible chains of
unknown values across disjoint process groups, which either forces one of these chains to
be smaller than R = ⌈t/k⌉, or reveals all faulty processes, giving us the ability to perform
the completion rule. This fundamental tradeoff underlies our algorithm, and ultimately
explains why the ⌈t/k⌉ connectivity bound is tight.

The decision is based on values resulting from consensus on T (g), taking the minimum el-
ement appearing at least t+1 times. Define the multiset Cg = Multiset(Cont(p) : p ∈ T (g))
after applying the consensus rule. Let Decision(Cg) = min{v : v ∈ Cg with cardinality ≥
t+1}. Lemma 7.4.6 shows that since |P(g)| > t(d+2), such value exists, and we can decide
on a value that has been necessarily input by a non-faulty process.

Lemma 7.4.5. For any two-non-faulty processes Pi and Pj that applied the consensus rule
on a pivotal subtree T (g), with 0 ≤ g < k, we have that Conti(p) = Contj(p) for any

90

p ∈ P(g).

Proof. Let SetCons(w) = P(g) \SetProc(w) for any w ∈ T (g) with |w| ≤ R. If wp has been
validated at Pi with Conti(wp) = v, at most t values from Si = Multiset(Conti(wpq) : q ∈
SetCons(wp)) will be different than v. Since we have at most t faulty processes, at most 2t

values from Sj = Multiset(Contj(wpq) : q ∈ SetCons(wp)) will be different than v. As we
assume d ≥ k ≥ 2 (or we are executing the consensus algorithm), we have that |P(g)| > 4t

because each P(g) contains at least t(d+2)+1 processes. Therefore, the majority of values
in Sj is v, making Conti(p) = Contj(p).

If all non-faulty processes did not validate wp, they apply the consensus rule consistently,
over the same values in Multiset(Cont(wpq) : q ∈ SetCons(wp)), also making Conti(p) =

Contj(p).

Lemma 7.4.6. For any two-non-faulty processes Pi and Pj that decide based on a pivotal
subtree T (g), with 0 ≤ g < k, the decision value (i) is well-defined; and (ii) is an input
value of a non-faulty process.

Proof. By Lemma 7.4.5, every process Pi from P(g) will have an associated value Ci resulting
from the consensus rule, and this value is consistent across non-faulty processes that decide
based on T (g). If Pi ∈ G, Ci must be Pi’s input Ii, as Pi is necessarily validated. Since we
have at most t faulty processes and |P(g)| > t(d+2), more than t(d+1) values are inputs of
non-faulty processes, and since we have at most d+ 1 input values, one value must appear
t+ 1 times. Therefore, our decision function is well-defined.

Since non-faulty processes that decide on T (g) decide consistently on a multiset of
consistent values, the decision is identical across those processes. Also, any value appearing
at least t + 1 times must have been input by a non-faulty process, as we have at most t
faulty processes.

Theorem 7.4.7. Algorithm 14 solves k-set agreement in ⌈t/k⌉+ 1 rounds.

Proof. Termination is trivial, as we execute exactly R = ⌈t/k⌉+1 rounds. By Lemma 7.4.5,
each pivotal subtree yields a unique decision value. As we have at most k pivotal subtrees
identified across non-faulty processes, up to k values are possibly decided across non-faulty
processes. Finally, by Lemma 7.4.6, the decision value is an input value of some correct
process.

91

Algorithm 14 Px.Agree(I)
1: if k = 1 then
2: return Decision(Multiset(Cont(p) : p output by consensus algorithm))
3: end if
4: Cont(w)← ⊥ for all w ∈ T
5: Cont(λ)← I ▷ Gossip
6: for ℓ : 1 to ⌈t/k⌉+ 1 do
7: sendSℓ−1

x = {(w,Cont(w)) : w ∈ T ℓ−1}
8: upon recvSℓ−1

y = {(w, v) : w ∈ T ℓ−1, v ∈ V ∪ {⊥}} from Py do
9: Cont(wPy)← v for all (w, v) ∈ Sℓ−1

y

10: end upon
11: end for
12: P′ ← {Pi : Pi has a quorum} ▷ Validation
13: if |P′| = (n+ 1)− t then
14: Apply completion rule for all wb where b ∈ P \ P′ and |wb| = ⌈t/k⌉
15: end if
16: g ← any g such that T (g) is pivotal ▷ Decision
17: for ℓ : ⌈t/k⌉ − 1 to 1 do
18: Apply consensus rule for all non-validated wb where b ∈ P(g) and |wb| = ℓ
19: end for
20: return Decision(Multiset(Cont(p) : p ∈ T (g)))

7.5 Final Remarks

In Byzantine synchronous systems, the protocol complex can remain (k − 1)-connected for
⌈t/k⌉ rounds, potentially one more round than the upper bound in crash-failure systems. We
conceive a combinatorial operator modeling the ability of Byzantine processes to equivocate
without revealing their Byzantine nature, just after ⌊t/k⌋ rounds of crash failures. We
compose this operator with the regular crash-failure operators, extending the connectivity
bounds up to ⌈t/k⌉. We tighten this bound, at least when n is suitably large compared to t,
via a full-information protocol that solves a strong validity formulation of k-set agreement.
We did not attempt to maximize the protocol resiliency – we leave this as an open question
– but evidence suggests n+ 1 > t(d+ 1) is enough to solve the problem when k = t (check
by using our protocol without lines 16 to 18).

Byzantine failures can impose us one extra synchronous round to address information
ambiguity, and, in specific settings, at most that. In terms of solvability vs. number of
rounds, the penalty for moving from crash to Byzantine failures can thus be quite limited.
There is an intuitive sense in that result when we realize that

1. in synchronous systems with large enough resilience, we can detect crash failures with

92

a 1-round delay [4]; and

2. techniques similar to the reliable broadcast of [8, 44] deal with the problem of equiv-
ocation, also with a 1-round delay.

The final component of the puzzle seems to be separating the chains of unresolved values
such that we suitably limit their size, or force the adversary to reveal the identity of all faulty
processes. We did use those ideas in our protocol, yet the prospect of an algorithm that
applies the same ideas, however with better resilience, is a thought-provoking perspective
for future work.

Chapter 8

Conclusion

“Quem com esforço vence,
com prazer triunfa.”

Heard from my father a long time ago…

In this thesis, we present task solvability conditions for Byzantine systems, synchronous
and asynchronous, using the tools and language of combinatorial topology. While the
approach has been successful before in characterizing solvability for crash-failure tasks, this
thesis provides novel solvability characterizations that, in many ways, are intuitively related
to the well-established crash-failure characterizations.

In Byzantine systems, it can be difficult to characterize the input of a faulty process,
since a faulty process with input v1 can behave as a correct process with input v2 ̸= v1. We
are however interested in tasks where the outputs of the non-faulty processes are constrained
solely in terms of the input of the non-faulty processes, so the concept of “Byzantine input”
is avoided – together with many trivial impossibility results. This approach makes sense as
it focus on strong problem formulations: in the arguably “true” spirit of Byzantine resilience,
tasks must tolerate spurious input changes from Byzantine processes.

The journey of this work started with a non-trivial generalization of ϵ-approximate
agreement, called multidimensional ϵ-approximate agreement. Non-faulty processes start
with inputs in Rd, and they must choose finish with outputs in Rd such that (1) all outputs

93

94

are within ϵ of each other; and (2) all outputs lie in the convex hull of the non-faulty process
inputs. The generalization is non-trivial, and has direct impact on resilience: we show that
n > t(d + 2) is necessary and sufficient to solve the problem, where n is the number of
processes, t is the maximum number of faulty processes, and d is the dimension in which
inputs and outputs lie. We rely on algorithmic techniques, such as the reliable broadcast
and the witness technique, as well as geometric results, such as the Helly’s Theorem, to
develop a protocol solving the problem as long as n > (d+ 2)t, matching the lower bound
on the number of processes. Our protocol is centered across the concept of “safe area”, a
concept that captures very well the interdependence of dimensions, and permits a systematic
convergence of values.

Despite obvious applicability to robotics and multi-agent computing, the initial inter-
est on the multidimensional ϵ-approximate agreement was due to its ability to solve the
barycentric agreement problem in asynchronous Byzantine systems, which has implications
to the solvability of colorless tasks in those systems. This work formalizes colorless tasks
as triples (I∗,O∗,∆∗) where I∗ is the colorless input complex (a simplicial complex rep-
resenting the possible inputs), where O∗ is the colorless output complex (the analogous
concept for outputs), and a carrier map ∆∗ : I∗ → 2O

∗ . We then show that a colorless
Byzantine protocol under asynchronous systems implies the existence of a continuous map
f : | skelt I∗| → |O∗| carried by ∆∗, and that n+ 1 > t(dim(I∗) + 2) is enough to solve an
arbitrary colorless task when such map indeed exists. Notation-wise, n + 1 represents the
number of processes, t is the maximum number of faulty processes, and dim(I∗) is the input
complex dimension. Note the match between the resilience bounds for the multidimensional
ϵ-approximate agreement and for the sufficient conditions for colorless task solvability. This
is not mere coincidence: if the number of processes is less than t(dim(I∗) + 2) + 1, a pro-
cess trying to solve colorless tasks with strict carrier maps ∆∗, suffering from the inherent
inability to distinguish faulty from correct processes, cannot identify a non-faulty process
input besides its own, which makes the task impossible unless the process can decide based
solely in its own input.

The natural next step in the journey was establishing necessary and sufficient solvabil-
ity conditions for any Byzantine asynchronous task in which the non-faulty process outputs
are constrained in terms of the non-faulty process inputs. This work gives the first such
theorem. We formalize Byzantine asynchronous tasks as triples (I,O,∆), where I rep-
resents the inputs of the non-faulty processes, O represents the outputs of the non-faulty
processes, and ∆ : I → 2O constrains task semantics in terms of non-faulty inputs/outputs
only. We assume an adversarial context where any set of no more than t processes could be

95

deemed faulty. Our main equivalence theorem says that a Byzantine-failure task (I,O,∆)

is solvable if and only if a specific crash-failure task (Ĩ, Õ, ∆̃), constructed in terms of
the Byzantine task above, is solvable. Given that solvability conditions have long been
known for crash-failure tasks, our theorem establishes such conditions for Byzantine-failure
tasks in asynchronous systems for the first time. Our theorem is based on a well-known
algorithmic technique in distributed computing technically known as “simulation”. We see
how the language and techniques of combinatorial topology, when well-aligned with tra-
ditional simulation techniques, can produce novel results in distributed computing, across
different failure models, facilitating existential arguments and avoiding more complicated,
model-specific arguments.

The last step in the journey was considering Byzantine synchronous systems, establishing
solvability lower bounds akin to crash-failure results. We model the structure of information
dissemination as protocol complexes, and study the ambiguity that arises from failures,
both crashing or malicious, by looking at protocol complex connectivity. Specifically, we
see how the protocol complex in Byzantine systems can remain (k− 1)-connected for ⌈t/k⌉
synchronous rounds, where (k−1)-connectivity is a general notion of graph connectivity for
higher dimensions, t is the maximum number of faulty processes, and t ≥ k ≥ 1. The bound
was previously known for crash-failure systems (⌊t/k⌋ rounds), so Byzantine processes can
introduce ambiguity for possibly one extra round. We prove this result by conceiving a
combinatorial operator that models the ability of Byzantine processes to equivocate – that
is, tell different things to different processes – without revealing their Byzantine nature,
just after ⌊t/k⌋ rounds of crash failures. We compose this operator with the regular crash-
failure operators, extending the connectivity bounds up to ⌈t/k⌉. The Byzantine bound is
tightened, at least when n is suitably large compared to t, via a full-information protocol
– once again an example of algorithmic technique – that solves an appropriate formulation
of k-set agreement. We conclude that Byzantine failures can introduce one extra round
of confusion, but, in specific settings, at most that. In a pure computability mindset, the
penalty for moving from crash to Byzantine failures can be quite limited in this context.

As the techniques based on combinatorial topology become applicable to synchronous
systems as well, it becomes clear that, when aligned with traditional algorithmic tools in
distributed computing, including simulations, these techniques are effective not only across
different failure models – crash and Byzantine – but also across different synchrony models
– synchronous and asynchronous.

∴

96

In light of the previous results, this thesis finishes by recapitulating its statement:

The language of combinatorial topology, aligned with algorithmic and simulation
techniques, provides a robust framework to study task solvability not only with crash
failures, but also with Byzantine failures, in synchronous and asynchronous systems.
Byzantine solvability can be expressed in terms of crash-failure solvability in asyn-
chronous systems, relies on the same fundamental problems for asynchronous colorless
tasks, and have similar adversarial bounds for set agreement in synchronous systems.

Hammurabi das Chagas Mendes,
August of 2015.

Bibliography

[1] I. Abraham, Y. Amit, and D. Dolev. Optimal resilience asynchronous approximate
agreement. In T. Higashino, editor, Principles of Distributed Systems, volume 3544
of Lecture Notes in Computer Science, pages 229–239. Springer Berlin / Heidelberg,
2005.

[2] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asyn-
chronous environment. Journal of the ACM, 37(3):524–548, July 1990.

[3] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley Interscience, 2nd edition, March 2004.

[4] R. A. Bazzi and G. Neiger. Simplifying fault-tolerance: Providing the abstraction of
crash failures. Journal of the ACM, 48(3):499–554, May 2001.

[5] A. Björner. Topological methods. In R. L. Graham, M. Grötschel, and L. Lovász, edi-
tors, Handbook of Combinatorics, volume 2, pages 1819–1872. MIT Press, Cambridge,
MA, USA, December 1995.

[6] E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG distributed simulation
algorithm. Distributed Computing, 14(3):127–146, 2001.

[7] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Optimal Byzantine-resilient con-
vergence in uni-dimensional robot networks. Theoretical Computer Science, 411(34-
36):3154–3168, 2010.

[8] G. Bracha. Asynchronous Byzantine agreement protocols. Information and Computa-
tion, 75(2):130–143, November 1987.

[9] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Dis-
tributed Programming. Springer, 2 edition, February 2011.

97

98

[10] A. Castañeda, Y. A. Gonczarowski, and Y. Moses. Brief announcement: Pareto optimal
solutions to consensus and set consensus. In Proceedings of the 2013 ACM Symposium
on Principles of Distributed Computing, PODC ’13, pages 113–115, New York, NY,
USA, 2013. ACM.

[11] S. Chaudhuri. More choices allow more faults: set consensus problems in totally asyn-
chronous systems. Information and Computation, 105(1):132–158, July 1993.

[12] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle. Tight bounds for k-set
agreement. Journal of the ACM, 47(5):912–943, September 2000.

[13] L. Danzer, B. Grünbaum, and V. Klee. Helly’s theorem and its relatives. In V. L. Klee,
editor, Proceedings of the seventh Symposium in Pure Mathematics, volume 7, pages
101–180. American Mathematical Society, 1963.

[14] R. de Prisco, D. Malkhi, and M. Reiter. On k-set consensus problems in asynchronous
systems. IEEE Transactions on Parallel and Distributed Systems, 12(1):7–21, January
2001.

[15] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl. Reaching approximate agree-
ment in the presence of faults. Journal of the ACM, 33(3):499–516, May 1986.

[16] A. Fekete. Asynchronous approximate agreement. In Proceedings of the sixth annual
ACM symposium on principles of distributed computing (PODC), pages 64–76, New
York, NY, USA, 1987.

[17] M. Fischer, N. Lynch, and M. Merritt. Easy impossibility proofs for distributed con-
sensus problems. Distributed Computing, 1(1):26–39, 1986.

[18] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[19] M. J. Fischer. The consensus problem in unreliable distributed systems (a brief survey).
Technical Report YALEU/DCS/TR-273, Yale University, Department of Computer
Science, 2000.

[20] E. Gafni, P. Kuznetsov, and C. Manolescu. A generalized asynchronous computability
theorem. In Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, pages 222–231, New York, NY, USA, 2014. ACM.

99

[21] M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinato-
rial Topology. Morgan Kaufmann, December 2013.

[22] M. Herlihy and S. Rajsbaum. Concurrent computing and shellable complexes. In
N. Lynch and A. Shvartsman, editors, Distributed Computing, volume 6343 of Lecture
Notes in Computer Science, pages 109–123. Springer Berlin / Heidelberg, 2010.

[23] M. Herlihy and S. Rajsbaum. The topology of shared-memory adversaries. In Pro-
ceedings of the 29th ACM SIGACT-SIGOPS symposium on principles of distributed
computing, PODC ’10, pages 105–113, New York, NY, USA, 2010.

[24] M. Herlihy and S. Rajsbaum. Simulations and reductions for colorless tasks. In Pro-
ceedings of the 2012 ACM symposium on Principles of distributed computing, PODC
’12, pages 253–260, New York, NY, USA, 2012.

[25] M. Herlihy, S. Rajsbaum, and M. Tuttle. An axiomatic approach to computing the
connectivity of synchronous and asynchronous systems. Electronic Notes in Theoretical
Computer Science, 230(0):79 – 102, March 2009.

[26] M. Herlihy, S. Rajsbaum, and M. R. Tuttle. Unifying synchronous and asynchronous
message-passing models. In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’98, pages 133–142, New York, NY,
USA, 1998. ACM.

[27] M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient
tasks. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Com-
puting, STOC ’93, pages 111–120, New York, NY, USA, 1993. ACM.

[28] M. Herlihy and N. Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, November 1999.

[29] F. Junqueira and K. Marzullo. Designing algorithms for dependent process failures. In
A. Schiper, A. Shvartsman, H. Weatherspoon, and B. Zhao, editors, Future Directions
in Distributed Computing, volume 2584 of Lecture Notes in Computer Science, pages
24–28. Springer Berlin Heidelberg, 2003.

[30] D. N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and Com-
putation in Mathematics. Springer, 1st edition, October 2007.

100

[31] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans-
action on Programming Languages and Systems, 4(3):382–401, July 1982.

[32] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, March 1996.

[33] D. Malkhi, M. Merritt, M. K. Reiter, and G. Taubenfeld. Objects shared by Byzantine
processes. Distributed Computing, 16(1):37–48, February 2003.

[34] H. Mendes and M. Herlihy. Multidimensional approximate agreement in Byzantine
asynchronous systems. In Proceedings of the 45th annual ACM Symposium on Theory
of Computing, STOC’13, pages 391–400, New York, NY, USA, 2013. ACM.

[35] H. Mendes, M. Herlihy, N. Vaidya, and V. Garg. Multidimensional agreement in
Byzantine systems. Distributed Computing, pages 1–19, 2015.

[36] H. Mendes, C. Tasson, and M. Herlihy. Distributed computability in Byzantine asyn-
chronous systems. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC ’14, pages 704–713, New York, NY, USA, 2014. ACM.

[37] J. Munkres. Elements of Algebraic Topology. Prentice Hall, 2nd edition, January 1984.

[38] J. Munkres. Topology. Pearson, 2nd edition, January 2000.

[39] G. Neiger. Distributed consensus revisited. Information Processing Letters, 49(4):195–
201, February 1994.

[40] G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of distributed
algorithms. Journal of Algorithms, 11(3):374 – 419, 1990.

[41] M. Potop-Butucaru, M. Raynal, and S. Tixeuil. Distributed computing with mobile
robots: An introductory survey. In 14th International Conference on Network-Based
Information Systems, NBiS’11, pages 318 –324, September 2011.

[42] D. Saari. Basic Geometry of Voting. Springer, September 1995.

[43] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology
of public knowledge. In Proceedings of the Twenty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’93, pages 101–110, New York, NY, USA, 1993. ACM.

[44] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2(2):80–94, June 1987.

101

[45] N. Vaidya and V. K. Garg. Byzantine vector consensus in complete graphs. In Pro-
ceedings of the 2013 ACM symposium on Principles of Distributed Computing, PODC
’13, New York, NY, USA, 2013. ACM.

	Introduction
	Processes, Failures, and Synchrony
	Thesis Overview
	Multidimensional -Approximate Agreement
	Asynchronous Byzantine Computability
	Synchronous Byzantine Computability

	Thesis Statement

	Operational Model
	Processes and Communication
	Synchrony and Failures
	Synchrony
	Failures

	Full Information Protocols
	Adversaries and Schedules

	Topological Tools
	Basics
	Maps and Geometrical Realizations
	Boundary, Interior, and Open Star
	Subdivisions and Simplicial Approximation
	Connectivity
	Modeling Tasks using Simplicial Complexes
	Pseudospheres
	Shellability
	Nerves
	Protocol Complexes
	Asynchronous Systems
	Synchronous Systems

	Protocols and Decision

	Multidimensional -Approximate Agreement
	Contributions Overview and Related Work
	Operational Model
	Formal Definition
	On the Generalization of Approximate Agreement

	Applications
	Asynchronous Communication Primitives
	Reliable Broadcast
	Witness Technique

	The Safe Area
	Properties

	Necessary Condition for the Protocol
	Protocol
	Intersecting Safe Areas
	Convergence
	Initial Estimation of R
	Satisfaction of Requirements
	Message Complexity
	Safe Area Calculation

	Final Remarks

	Asynchronous Computability Conditions
	Contributions Overview
	Related Work

	Operational Model
	Topological Model
	The Equivalence Theorem
	Defining the Dual Task
	Solvability Correspondence

	Final Remarks

	Asynchronous Colorless Tasks
	Contributions Overview and Related Work
	Operational Model
	Topological Model
	Protocols and Complexes
	Barycentric Agreement via Approximate Agreement
	A Constructive Proof
	Quorums
	Stable Vectors

	Solvability for Colorless Tasks
	Strict Colorless Tasks
	Final Remarks

	Synchronous Computability Conditions
	Contributions Overview
	Related Work

	Operational Model
	Connectivity Upper Bound
	k-Set Agreement and Lower Bound
	Final Remarks

	Conclusion
	Bibliography

