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Abstract of “Methods for Identifying Combinations of Driver Mutations in Cancer”
by Mark D.M. Leiserson, Ph.D., Brown University, May 2016

Recent improvements in DNA sequencing technology have opened new paths towards
understanding cancer biology and designing personalized cancer treatments. Cancer
is caused in part by somatic mutations to the DNA of healthy cells that can be
identified with DNA sequencing technology. A major challenge in analyzing the
mutations in cancer is distinguishing the handful of driver mutations that cause
cancer from the multitude of passenger mutations that play no role in cancer. In
part to address this challenge, consortia such as The Cancer Genome Atlas (TCGA)
have generated massive catalogues of somatic mutations in thousands of tumors.

The new wealth of mutation data has shown that identifying driver mutations
is a difficult computational problem. Many driver mutations are rare, even in these
large tumor cohorts, because different combinations of mutations cause cancer in
different patients, even those of the same cancer (sub)type. Part of the reason for
this phenomenon is that driver mutations target key genetic pathways that perform
vital cell functions. Each pathway consists of a set of interacting genes, and can be
perturbed in numerous ways. Therefore, we have developed computational methods
to search for combinations of driver mutations targeting pathways.

We describe several methods for identifying combinations of putative driver mu-
tations. We first present two methods for identifying combinations of mutations that
are mutually exclusive in a cohort of tumors, a pattern expected for genetic path-
ways. We then present an algorithm to identify significant clusters of mutations in
an interaction network. We show that these algorithms outperform previous meth-
ods on simulated and real mutation data from TCGA, and identify potentially novel
combinations of mutations. We also describe the Mutation Annotation and Genome
Interpretation (MAGI) web application, which displays interactive visualizations as
well as crowd-sourced and text-mined mutation annotations in order to help pri-
oritize likely driver mutations. These methods contribute towards overcoming the
computational challenge of identifying driver mutations in cancer sequencing data.
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Chapter 1

Introduction

The recent advances in DNA sequencing technology promise to improve cancer treat-
ment radically. The cost of DNA sequencing has declined rapidly such that sequenc-
ing a cancer patient’s genome is sometimes cheaper than drug regimens. Researchers
can use this DNA sequencing data to identify the mutations in a patient’s tumor.
This has the potential to be crucial for designing better cancer therapies, as cancer
is caused in part by combinations of mutations to healthy cells that result in the
cells’ uncontrolled growth into a tumor. Biologists can use the list of mutations to
design personalized therapies that target the patient’s cancer cells.

A key challenge to realizing this goal of personalized cancer therapy is distinguish-
ing the mutations in a given tumor that drive cancer from the random mutations
that have no consequence for cancer [2]. The vast majority of mutations in most
cancers are somatic, meaning they occur during the lifetime of an individual and
cannot be passed from parent to child. The somatic mutations in a given tumor can
be broadly categorized as drivers — mutations responsible for cancer — and passengers
— mutations with no consequence for cancer [2]. Identifying the driver mutations is
a key first step in understanding the genetic mechanisms that when perturbed cause
uncontrolled cell growth, and can open avenues to improved cancer treatment [3].

The advent of cheap DNA sequencing technology has brought the research com-
munity closer to the goal of identifying driver mutations in cancer. Large consortia
such as The Cancer Genome Atlas [4] 5] 6] [7, 8, @, 10} 1], 12, [13] and International
Cancer Genome Consortium [14] have sequenced the genomes or exomes of matched
tumor-normal pairs in thousands of tumors. Researchers then ran algorithms on
these massive datasets to identify the somatic mutations in each tumor, creating a
compendium of somatic mutations.



However, despite the unprecedented size and scope of these mutation datasets,
identifying the driver mutations remains a significant computational challenge [15].
The challenge derives from two observations about driver mutations. First, driver
mutations are relatively rare compared to passenger mutations. In their review of
cancer genomics research, Vogelstein, et al. [16] estimate that a typical tumor has
3-8 driver mutations, but can have orders of magnitude more passenger mutations.
Second, there is vast inter-tumor heterogeneity, meaning that no two tumors have
the same collection of mutations [I7]. This means that there are driver mutations
that may occur only a handful of times, even in a large cohort of tumors. While
the ultimate way to determine if a mutation is a driver is to perform experiments to
characterize its function, these experiments are often expensive and time-consuming.
Furthermore, there are too many combinations of mutations to test. Consequently,
algorithms to accurately identify and prioritize driver mutations are an urgent pri-
ority.

In this thesis, I present several methods for identifying combinations of driver
mutations from a cohort of tumors. In this chapter, I present background information
on driver mutations in cancer. In Chapters 2-4, I present work on identifying groups
of mutations occurring in the same pathway, or group of genes responsible for some
cellular function. In Chapter 5, I present a web application for the visualization and
annotation of mutations in cancer genomes that seeks to reduce the computational
burden of identifying the driver mutations in a given (cohort of) tumor(s). I conclude
in Chapter 6 with a discussion and my conclusions.

1.1 Driver mutations in cancer

Mutations in cancer cause uncontrolled growth in a population of cells by targeting
genes responsible for key biological functions [I8, 2]. In the simplest case, driver
mutations either activate or inactivate a cancer gene. Activating mutations give
cells an ability required for cancer (e.g. proliferation), and inactivating mutations
turn off a function of healthy cells that keeps cell growth in check (e.g. DNA damage
repair). The genes targeted by driver mutations are often called driver genes, though
it is important to note that not all mutations in driver genes are driver mutations,
since most mutations in the genome (even in cancer genes) have no functional effect.

Thus, a key challenge in identifying driver mutations lies in predicting their ef-
fect. It is particularly difficult to predict the effect of putatively activating mutations.
In this vein, researchers have developed sophisticated methods to predict a muta-
tion’s functional impact. Given a mutation at a particular locus, algorithms such as
SIFT [19] and PolyPhen [20] predict its impact and the structural effect of the pro-
tein sequence change. MutationAssessor [21] and others predict functional impact
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by determining how conserved the locus is across related species.

A second key challenge in identifying driver mutations is that they are relatively
rare; a typical tumor generally has orders of magnitude more passenger than driver
mutations [22]. To overcome this challenge, researchers have introduced methods
to search for significantly recurrent mutations in a cohort of tumors. Most work
has focused on analyzing three types of mutations affecting genes (see details in
Section : (1) single nucleotide variants, where a single base is changed in the
genome; (2) small insertions/deletions, where few bases are added/deleted from a
gene, and, (3) copy number aberrations, where (part of) a gene is duplicated or
deleted. For example, GISTIC2 [23] and RAIG [24] look for significantly recur-
rent regions of copy number change in a cohort of tumors. Other methods look
for significantly mutated genes by evaluating all mutations that target a particular
gene. Oncodrive-FM [25] uses mutation prediction algorithms to evaluate each of
the mutations in a given gene. MuSiC [26] and MutSigCV [17] use the concept of
a background mutation rate (BMR) — the per base rate at which new mutations
occur — to compute the significance of the number of mutations in each gene. Mu-
SiC optionally uses a per sample BMR, as different tumors can have vastly different
mutation rates depending on its mutations and cancer type. MutSigCV [17] takes
this a step further, computing the BMR for a given gene and sample using covariates
(CV) that capture the replication timing or expression level of the gene.

These approaches have revealed that most cohorts of tumors tend to have rela-
tively few significantly mutated genes, with a “long tail” of rarely mutated genes [22].
The “long tail” phenomenon results from cancer’s significant inter-tumor hetero-



geneity, where different combinations of driver mutations cause cancer in different
individuals. Thus some driver mutations may occur in few tumors, even in large
tumor cohorts. One explanation for the observed inter-tumor heterogeneity is that
mutations in cancer target pathways or complexes, since genes do not act in iso-
lation and it is widely believed cancer requires mutations to multiple pathways or
hallmarks [I8]. For the purposes of this work, a genetic pathway or protein complex
is a group of proteins (each encoded by a gene) that interact to perform some func-
tion. Each of these pathways and complexes can be perturbed in numerous ways,
which is a common explanation for why each cancer has a different combination of
mutations and why there are driver mutations in the rarely mutated genes in the
“long tail.”

To identify the drivers in the “long tail”, researchers have developed methods to
identify these mutations by searching for combinations of mutations targeting path-
ways and protein complexes (Figure . Because there are too many combinations
to test, these approaches utilize different amounts of prior knowledge to constrain
the search space, and can be broken down into three general categories based on
what information they use as prior knowledge.

Known pathway or gene set databases. The approach that uses the most prior
knowledge is to test known pathway or gene set databases, such as KEGG [27], 28],
PINdb [29], or MSigDB [30], for enrichment for mutations. Each of these databases
contain on the order of ten-thousand pathways or gene sets. Gene Set Enrichment
Analysis (GSEA) [31], 30] and DAVID [32] 33] are two examples of these type of en-
richment tests. In general, these approaches are constrained by their input; they can-
not identify new pathways or crosstalk between multiple pathways, and the datasets
often include large and overlapping gene sets.

Protein-protein interaction networks. Algorithms such as HotNet [34], En-
richNet [35], and others, use prior knowledge in the form of protein-protein inter-
action networks, instead of pathway databases. This is much less prior knowledge
than the known pathway database approaches. These algorithms search for highly
mutated groups of interacting genes or proteins.

None. More recently, researchers have introduced methods to identify sets of mu-
tations that are mutually exclusive in a cohort of tumors, a pattern often observed in
pathways [30], 37]. These algorithms use no prior knowledge, but instead use the mu-
tual exclusivity pattern to restrict the search space. Algorithms such as Dendrix [38§],
MEMo [39], and RME [40] search for groups of genes with exclusive mutations. In
general cancer perturbs multiple pathways [18], and our Multi-Dendrix [I] algorithm



(a) (b) (c)

% ” Tumor sample |:> Algorithms

Reference sample

Patient cohort DNA sequencing

(e) (d)
Single nucleotide variants

Healthy/Normal ..GACGTGCATCAGC...
Tumor ..GACGTGAATCAGC...

Genes

<:| Copy number aberrations
Healthy/Norma! [N R

Deletion  Amplification

rumor - NN I

Patients/Samples

Mutation matrix A Types of variation in cancer
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was the first algorithm to search for multiple sets of mutually exclusive mutations
simultaneously, which provides advantages over searching for multiple sets iteratively.

1.2 Identifying combinations of driver mutations
from a binary mutation matrix

The problem we are concerned with in this thesis is identifying combinations of driver
mutations from the mutations in a cohort of cancer patients. For much of this work,
we will be using as input an m X n mutation matrix A, where

)1 if gene ¢ has > 1 mutation in patient j,
R otherwise,
for sets of m genes and n patients (Figure [1.2]). We construct this matrix using the
output of other algorithms for identifying two types of somatic mutations, described
in detail below.



1.2.1 Types of somatic mutations in cancer

The mutations in cancer occur at vastly different scales, from a single base in a
genome to entire chromosome arms, and can be broadly classified as single nu-
cleotide variants and small insertions and deletions (SNVs), copy number aberrations

(CNAs), and structural variants (SVs) (see Figure [1.2)).

Single nucleotide variants. At the smallest scale of mutations in cancer are
single nucleotide variants (SNVs) — where a single base is changed DNA sequence
— and small insertions or deletions (indels) — where a small sequence of DNA is
inserted or deleted in the genome. If these mutations occur in the coding region
of the genome, they can be further classified as synonymous or nonsynonymous. A
synonymous mutation is one that does not change the protein sequence encoded
by the mutated region of DNA, while a nonsynonymous mutation does cause a
protein sequence change. Nonsynonymous mutations are further classified by the
type of protein sequence change they cause. Common classifications include missense
mutations, which cause a protein sequence change and nonsense mutations, which
insert a premature stop codon into the protein sequence and are therefore putatively
inactivating. We refer to nonsynonymous SNVs and indels as SNVs throughout the
text, except where explicitly noted.

The most common way to call the SNVs in a tumor is to use next-generation
DNA sequencing technology. Most often, a matched tumor-normal pair is sequenced,
and variants that are in the tumor genome and not in the matched normal genome
are considered to be somatic. Calling somatic variants is an active area of research,
and many sophisticated methods have been introduced [41, 42 43]. In general, these
methods output variants with a minimum number of reads supporting the variant.

Structural variants and copy number aberrations. Structural variants move,
reverse, swap, copy, or delete entire regions (from hundreds of bases to whole chro-
mosome arms) of DNA. Copy number aberrations are a special type of structural
variant, and will be the only structural variant discussed in this thesis. The copy
number of a region of DNA in a healthy human cell is two, because the human
genome is diploid (has two copies of each chromosome). Copy number aberrations
(CNAs) occur when a region of DNA is either amplified (copied) or deleted, thus
changing the copy number. Copy number aberrations are also often called using
next-generation sequencing technology [44) [45], although SNP arrays were popular
until relatively recently as well [46, 47]. Because CNAs can span multiple genes,
some of these methods perform target selection to identify the gene that is the most
likely target of CNAs in a given region [23, 24].



For the purposes of this thesis, except where explicitly noted, we will use the
output of the SNV or CNA mutation calling algorithms as the input data to our
methods.

1.3 Contributions

We provide an overview of the research contributions in this thesis towards the prob-
lem of identifying combinations of driver mutations. Three of these works improve
upon the state-of-the-art in identifying mutually exclusive combinations of mutations
(Chapters 2 and 3) and identifying significantly mutated subnetworks (Chapter 4).
The fourth work is a web application that reduces the computational burden for
biologists to explore mutation data to identify combinations of driver mutations
(Chapter 5).

1.3.1 Identifying combinations of mutually exclusive alter-
ations

In Chapter 2, we present the Combinations of Mutually Exclusive Alterations (CoMEt) [48|
49] algorithm for identifying collections of sets of mutually exclusive aberrations with
no prior knowledge (de novo). CoMEt uses a novel statistical score for mutually ex-
clusivity that operates on 2 x 2 x --- x 2 = 2* contingency tables that is less biased
towards the most frequently altered genes than previous methods. CoMEt identifies
a collection of multiple sets of mutually exclusive mutations using a Markov chain
Monte Carlo (MCMC) algorithm and a novel method to summarize the posterior
distribution. We demonstrate that CoMEt outperform other methods using sim-
ulated data and mutation data from TCGA. CoMEt identifies groups of exclusive
mutations targeting well-known cancer pathways, as well as novel combinations of
mutations, in the real mutation data.

In Chapter 3, we present a weighted exact statistical test that uses per gene,
per sample alteration probabilities to score mutually exclusive mutations [50]. We
use per gene, per sample alteration probabilities because the number of mutations
per sample can vary significantly, which can confound the exclusivity signal. We
provide an exact formula and a fast and efficient approximation for the weighted
test. We analyze hundreds of colorectal and endometrial samples from The Cancer
Genome Atlas which have large variation in alteration rates. In both cancer types,
the weighted test identifies mutually exclusive alterations in cancer genes with fewer
false positives than earlier approaches.



1.3.2 Searching for significantly mutated subnetworks

In Chapter 4, we present the HotNet2 (HotNet diffusion oriented subnetworks) al-
gorithm [5] for identifying significantly mutated subnetworks in a protein-protein
interaction (PPI) network. HotNet2 uses an insulated heat diffusion process to iden-
tify subnetworks of high-scoring (i.e. recurrently mutated) nodes in a protein-protein
interaction network. The algorithm utilizes the direction of the heat, making it less
biased towards high-degree, high-scoring nodes. We demonstrate HotNet2 is su-
perior to other network and pathway analysis methods using simulated and real
mutation data. We apply HotNet2 to the TCGA Pan-Cancer [52] dataset of 3,271
tumor samples, where HotNet2 identifies subnetworks overlapping cancer pathways,
pathways and complexes with recently characterized roles in cancer, and potentially
novel groups of genes.

1.3.3 Visualization and annotation of mutations in cancer

In Chapter 5, we present the Mutation Annotation and Genome Interpretation
(MAGI; http://magi.brown.edu) web application [53]. MAGI lets users visualize,
annotate with references from the literature, and combine public and private can-
cer genomics datasets. MAGI’s visualizations and annotation platform integrates
public and private mutation data. MAGI is one of the first cancer genomics web
application to allow users to upload and combine their own cancer genomics data
with no local installation required. MAGI includes ~ 40,000 literature annotations
mined from PubMed Central (PMC), and from the Database of Curated Mutations
(DoCM; http://docm.genome.wustl.edu). MAGI’s tumor sample view shows the
mutations in individual tumor samples, combined with the mutation annotations
from MAGI’s database. The tumor sample view reveals mutations with many liter-
ature annotations (presumably drivers), as well as mutations with few annotations
that may require additional study.
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Chapter 2

Identifying Combinations of
Mutually Exclusive Alterations

In this chapter, we present the Combinations of Mutually Exclusive Alterations
(CoMELt) algorithm for identifying groups of mutually exclusive mutations, a pattern
often observed for mutations in the same pathway, from a cohort of tumor samples.
This approach is an initial step toward addressing the problem presented by the
widespread inter-tumor heterogeneity in cancer for identifying the driver mutations
responsible for cancer. One explanation for inter-tumor heterogeneity is that driver
mutations target genetic pathways, each of which can be perturbed in numerous
ways. CoMEt searches for combinations of mutations that are likely to be targeting
the same pathway.

We published most of the material in this chapter in [49] where we introduced
CoMEt, and originally presented CoMEt at the 19" Annual International Conference
on Research in Computational Molecular Biology (RECOMB) [48]. I am a co-first
author on both of these publications, and my major contributions were in developing
the exact test and MCMC summarization procedure, and performing simulation
experiments. [ also led the CoMEt analysis of somatic and germline mutations in
a pan-cancer dataset [54], and contributed to analysis with a preliminary version of
CoMELt as part of the The Cancer Genome Atlas’s acute myeloid leukemia study [5].

We apply CoMEt to simulated data, and real mutation data from The Can-
cer Genome Atlas. On glioblastoma, breast cancer, stomach cancer, and leukemia
datasets, we demonstrate that CoMEt finds collections of gene sets with mutually
exclusive mutations, including sets that sets that overlap well-known pathways with
roles in cancer, and novel sets of exclusive mutations. We emphasize that CoMEt
achieves these results solely by looking at a pattern of mutations in a cohort of
tumors, with no prior information of interactions or pathways. We also show that
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CoMEt outperforms similar methods on both simulated and real data.

2.1 Background and related work

A major goal of large-scale cancer genomics projects such as The Cancer Genome
Atlas (TCGA) [0, 7, B &8, (2L 5], the International Cancer Genome Consortium
(ICGC) [14, 56], and others is to identify the genetic and epigenetic alterations
that drive cancer development. These projects have generated whole-genome/exome
sequencing data measuring the somatic mutations in thousands of tumors in dozens of
cancer types. Interpreting this data requires one to distinguish the driver mutations
that play a role in cancer development and progression from passenger mutations
that have no consequence for cancer. Identifying driver mutations directly from
sequencing data is a significant challenge since individuals with the same cancer
type typically harbor different combinations of driver mutations [17, [57].

The observed mutational heterogeneity in cancer has motivated the development
of methods to examine combinations of mutations. Since driver mutations typically
target genes in a small number of key pathways [16], several methods have been intro-
duced to examine mutations in known pathways or networks (reviewed in [I5] 58]).
However, most pathway databases and interaction networks are incomplete, lack tis-
sue specificity, and do not accurately represent the biology of a particular cancer cell.
Thus, de novo methods for examining combinations of mutations are of particular
interest as they require no prior biological knowledge and enable the discovery of
novel combinations. Unfortunately, the number of possible combinations is too large
to test exhaustively and achieve statistically significant results. Current de novo
approaches to identify putative combinations of mutations use the observation that
mutations in the same pathway are often mutually exclusive [37]. This observation
follows from the observation that there are relatively few driver mutations in a tumor
sample, and these are distributed over multiple pathways/hallmarks of cancer [I§].

In 2011, three algorithms for identifying sets of genes with mutually exclusive
mutations were introduced simultaneously: the De Novo Driver Exclusivity (Den-
drix) [38], Recurrent Mutually Exclusive aberrations (RME) [40], and Mutual Ex-
clusivity Modules (MEMo) [39] algorithms. Dendrix and RME are both de novo
algorithms for identifying gene sets with mutually exclusive mutations, while MEMo
examines mutual exclusivity on a protein-protein interaction network. The Dendrix
algorithm identifies sets M of k genes with high coverage (many samples have a
mutation in the set) and approximate exclusivity (few samples have a mutation in
more than one gene in the set). Dendrix combines these two criteria into a weight
W (M), which is equal to the coverage of M minus the coverage overlap (co-occurring
mutations) of M. Finding the set of maximum weight is an NP-hard problem [3§].
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Dendrix uses a Markov chain Monte Carlo (MCMC) algorithm to sample high weight
gene sets; more recently other optimization methods have been used to find high
weight sets [59, 60]. Leiserson et al. [I] introduced the Multi-Dendrix algorithm to
identify multiple mutually exclusive gene sets simultaneously using an integer lin-
ear program. In contrast, RME defines the exclusivity weight as the percentage of
covered samples that contain exactly one mutation within a gene set, and uses an
online-learning linear threshold algorithm to identify groups of genes with high pair-
wise exclusivity. However, both the RME and MEMo algorithms were shown not

to scale to reasonably sized datasets [1], requiring extensive filtering of input data
[40, ©61].

One limitation of the combinatorial weight function used in Dendrix and subse-
quent algorithms is that genes with high mutation frequencies (high coverage) can
dominate the mutual exclusivity signal, thus biasing the algorithms towards identify-
ing gene sets where the majority of the coverage comes from one gene (Figure )
These observations motivated the development of probabilistic models of mutual
exclusivity. These include the Dendrix++ algorithm (an early version of the ap-
proach that we present in this paper) and the muex algorithm [62]. Dendrix-++ uses
a statistical score and was used in TCGA acute myeloid leukemia study [5]. The
muex algorithm [62] uses a generative model of mutual exclusivity and a likelihood
ratio test to score the mutual exclusivity of combinations of mutations. However, we
find that the muex score is sensitive to high frequency mutations (see section .
Moreover, both of these approaches exhaustively enumerate gene sets to find those
with high score, limiting their applicability to larger datasets. In addition, they do
not identify multiple gene sets simultaneously, a feature that has proved useful with
the Dendrix weight [I]. The mutex algorithm [63] also uses a probabilistic model
of mutual exclusivity, and was published after this manuscript was submitted. We
provide further details of mutex below. Finally, no current method identifies overlap-
ping gene setﬂ — although cancer genes have been shown to participate in multiple
pathways [6] — or considers additional sources of mutual exclusivity such as cancer
subtype-specific mutations.

'We note that while Multi-Dendrix [1I] and mutex [63] can identify overlapping gene sets, this
feature was not explored in the corresponding publications.
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Figure 2.1: (a) Alteration matrices illustrating differences between the combinatorial weight func-
tion W (M) introduced in Dendrix and the probabilistic score ®(M) used in CoMEt. Both matrices
contain 4 mutually exclusive alterations whose alteration frequencies are indicated inside each bar.
The samples without alterations are not shown in either matrix. Since both sets are exclusive and
have the same total alteration frequency, the Dendrix weight function does not distinguish between
these sets. Sets like M (blue) are common in cancer genome studies which often have a small num-
ber of recurrently mutated genes and a long tail of rarely mutated genes. The score used in CoMEt
conditions on the observed frequencies of each alteration, giving more significance to the set M’
(green). (b) An example of 2 x 2 x 2 contingency table X, for the set M = {m, ma, ms}, illus-
trating how samples are cross-classified into exclusive, co-occurring, or absent for each alteration.
The test statistic ¢(M) used by CoMEt is the sum of the highlighted exclusive cells

We introduce the Combinations of Mutually Exclusive Alterations (CoMEt) al-
gorithm to overcome the challenges outlined above. CoMEt includes the following
contributions.

1. We develop an exact statistical test for mutual exclusivity conditional on the
observed frequency of each alteration. This approach is less biased towards
high frequency alterations, and enables the discovery of combinations of lower
frequency alterations. We derive a novel tail enumeration procedure to compute
the exact test, as well as a binomial approximation.

2. CoMEt simultaneously identifies collections consisting of multiple combinations
of mutually exclusive alterations, and samples from such collections using an
MCMC algorithm. We summarize the resulting distribution by computing the
marginal probability of pairs of alterations in the same sets. This enables
CoMEt to identify sets of any size, including overlapping sets of alterations,
without testing many parameter settings.

3. Given prior knowledge of cancer-types/subtypes, CoMEt analyzes alterations
and subtypes simultaneously, allowing the discovery of mutually exclusive al-
terations across cancer types, while avoiding the identification of spurious mu-
tually exclusive sets of (sub)type-specfic mutations.

We demonstrate that CoMEt outperforms earlier approaches on simulated and
real cancer data. We apply CoMEt to acute myeloid leukemia (AML), glioblastoma
(GBM), gastric (STAD), and breast cancer (BRCA) data from TCGA, and to a
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smaller study of intracranial germ tumors. In each cancer type, we identify com-
binations of mutated genes that overlap known cancer pathways and also contain
potentially novel cancer genes including /L7R and the EphB receptor EPHBS in
STAD, and the scavenger receptor SRCRB4D in GBM. On the gastric and breast
cancer data, we demonstrate how CoMEt simultaneously identifies mutual exclusiv-
ity resulting from pathways and from subtype-specific mutations. CoMEt is avail-
able at https://github.com/raphael-group/comet and as the cometExactTest R
package available in CRAN at https://cran.r-project.org.

2.2 CoMEt: astatistical approach to identify com-
binations of mutually exclusive alterations in
cancer

2.2.1 CoMEt algorithm

We consider that a set £ of m alterations have been measured in n samples. An
alteration may be the somatic mutation of a particular gene, a specific single nu-
cleotide mutation (for example, V600E mutations in the BRAF gene), an epigenetic
change such as hypermethylation of a promoter, or a variety of other changes. We
assume that alterations are binary, such that alterations are either present or absent
in each sample. We represent the set of measured alterations with an m x n binary
alteration matrix A = [a;;], where a;; = 1 if alteration ¢ occurs in sample j, and
a;; = 0 otherwise. Our goal is to identify one or more sets My, My, ..., M; where
the alterations in each M; are surprisingly mutually exclusive across the n samples.
We introduce the CoMEt algorithm for this purpose (see Figure [2.2), a preliminary
version of which was presented at the RECOMB conference [64].

We derive a score ®(M) for a set M of k alterations using an exact test of
mutual exclusivity. Specifically, we examine a 2 x 2 x --- x 2 = 2F contingency
table X, (Figure 2.1(b)) whose entries indicate the number of samples where each
combination of alterations occurs. For example, the entry (4 of X, equals the
number of samples where the second and fourth alterations in M occur, but the first
and third alterations do not occur. The score ®(M) is the P-value of the observed
mutual exclusivity in the table X,;, where the margins of the table (determined by
the number of samples where each alteration occurs) is fixed. That is, the score
O (M) is conditional on the observed frequencies of alterations in M. This statistical
score reduces the effect of the most frequent alterations having an unduly large
contribution to the score. See section 2.2] for further details.
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CoMEt scores a collection M = (M, ..., M,;) of t alteration sets by taking the
product of the scores of each set M;:

d(M) = H@(Mi). (2.1)

This score follows from the null hypothesis that exclusivity is independent across
sets.

Since the number of possible collections of alteration sets grows exponentially
with the number of alterations, it is typically impossible to enumerate and compute
the weight of all alteration sets. We derive a Markov chain Monte Carlo (MCMC)
algorithm to sample collections M, each consisting of t sets of alterations, in pro-
portion to their significance. We summarize this distribution by computing the
marginal probability p(e,e’) for each pair of alterations in A. We summarize these
probabilities using the marginal probability graph, a complete, undirected weighted
graph G = (V, E) where V = & (the set of observed alterations) and where each
edge e € E connects a pair of vertices u, v with weight p(u,v). We identify the most
exclusive alteration sets by first removing all edges from the graph weight below a
threshold §. CoMEt outputs C(d), the connected components in the resulting graph,
which we call modules. The summarization via the marginal probability graph al-
lows CoMEt to output collections of alteration sets different in number and size than
specified by the input parameters. Further details are given in the section

Scoring mutual exclusivity CoMEt uses a novel statistical score based on an
exact test for mutual exclusivity. Figure motivates the development of the new
score, showing two sets M and M’, each with four alterations. The alterations in
both sets are perfectly exclusive (no sample has more than one alteration), and
the total number of altered samples is the same. The Dendrix weight function
W (M) introduced in [3§] (and used in later publications [59, 60, [I]) is defined as the
coverage, the number of samples with at least one mutation in M, minus the coverage
overlap, the number of samples with more than one mutation in M. In this case,
W(M) = W(M'). However, given the frequencies of each alteration, we are more
surprised to observe mutual exclusivity among alterations in the set M’, which are
each altered in 7% of samples, than we are to observe mutual exclusivity among the
alterations in set M, where a single alteration has very high frequency (25 %) and
three alterations have relatively low frequency (< 2%). Sets like M are common in
many cancer datasets where highly recurrent alterations (such as mutations in TP53
or amplification of EGFR) occur and can be combined with low frequency, spurious
alterations.

We first describe a statistical score ®(M) for a tuple M = (my, ..., my) of alter-
ations. The score measures the surprise of the observed exclusivity of these alter-
ations conditional on the rate of occurrence of each alteration. Since these rates are
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Figure 2.2: Overview of the CoMEt algorithm. First, we transform alteration data from different
measurements into a binary alteration matrix A. Second, we use a Markov chain Monte Carlo
(MCMC) algorithm to sample collections M, containing ¢ sets of k alterations, in proportion to
the weight ®(M)~ . Here we show a collection containing sets M and M’ with three and two
alterations, respectively. We identify all collections whose weight exceeds the maximum observed
in randomly permuted datasets. We summarize the alterations in these significant collections with
a marginal probability graph, whose edge weights indicate the fraction of significant collections with
the corresponding pair of alterations. Finally, we remove low-weight edges in the graph, obtaining
the output modules

generally unknown (for example, the background mutation rate for single nucleotide
mutations varies greatly across genes and samples [65]), we use the ezact distribution
obtained from the observed data as the null distribution. Under this distribution,
the status of the k alterations in n samples is described by selecting uniformly a
k x m binary alteration matrix B with the constraint that the number of 1’s in row
1 of B equals the number of 1’s in row m; of the alteration matrix A. This distribu-
tion is equivalent to the sampling distribution on 2 x 2 x --- x 2 = 2¥ contingency
tables under the hypergeometric distribution, where dimension i of the table gives
the cross-classification of the number of samples where alteration 7 occurs or not.
For example, three alterations are described by a 2 x 2 x 2 table with margins equal
to the frequency of each alteration (Figure 2.1(b)).

We introduce notation to describe the statistical test. Given a set M of alter-

ations, let x?;.) be the number of samples where alteration m; occurs. It follows

that n — xa) is the number of samples where m; does not occur. Similarly, for
v C [k] ={1,...,k}, let z, denote the number of samples where alterations only
occur in my. The values z, for all v C [k] give the entries of a 2% contingency table
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X with fixed margins x™ = (xa), . ,gc(z)). Thus, the probability of observing a

2% contingency table X, with fixed margins x* and whose sum of entries equals n
follows the multivariate hypergeometric distribution

koo o+ +
[T 2! (” B “”(j)>!
(nl)k-t va[k] Tyl

px,, = Pr(Xuy|xt, k,n) = (2.2)

To characterize the mutual exclusivity of alterations in a contingency table, we
define the test statistic as the sum of the entries in the contingency table where ex-
actly one alteration occurs, that is, T'(X,,) = Z?:l (5}, where 5y is the number of
samples where alterations occur only in m;. We compute a P-value for the observed
value T'(X)y) of the test statistic as the tail probability of observing tables with the
same margins whose exclusivity is at least as large as observed:

Pr(T > T(Xu)lx" kn) = > Pr(Yx' k,n), (2.3)

YeT(xt):
T(Y)>T(Xar)

where T (x") is the set of 2F contingency tables with margins x. Note that for k = 2,
the test statistic T'(X,) is equivalent to a one-sided Fisher’s exact test. 2 X 2 contin-
gency tables have only one degree of freedom, and thus there are essentially only two
ways in which the corresponding pair of random variables can be non-independent:
having too many co-occurrences or too much exclusivity (Figure 2.1(b)). However,
2% tables have 2¥ — k — 1 degrees of freedom and there are many ways in which the
corresponding random variables can be non-independent. The T'(X},) test statistic
measures whether the alterations are surprisingly mutually exclusive, rather than
non-independent in some other way.

We define the score ®(M) using the mid P-value [66], which is the the average
of the probability of observing a value at least as extreme as the observed value and
observing a value more extreme than observed:

d(M) = %(PT(T >T(Xun)[x", k,n) (2.4)
+Pr(T > T(Xy)|x", k,n)).

We use the mid P-value because the tail probability from exact tests is typically
overly conservative, due to the discreteness of the exact distribution [66]. Finally,
since cancer is driven by mutations in multiple pathways [18], we define a score ®(M)
for a collection M = (M, My, ..., M;) of t gene sets as ®(M) = [[_, ®(M;). The
product results from our assumption that under the null hypothesis mutations in
different sets M; are independent.
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2.2.2 Computing the mutual exclusivity score ®(M)

To compute the mutual exclusivity score ®(M), one must compute (2.3). This re-
quires computing the probability of all tables Y with the same margins as X,; and
with exclusivity statistic T(Y) at least as large as the observed value T'(X,,). Un-
fortunately, no algorithm is known to enumerate such tables. In general the problem
of counting contingency tables with fixed margins is #P-complete [67], and thus it
is unlikely they can be enumerated efficiently. Several methods have been proposed
to solve the problem of counting contingency tables, including using the network
algorithm [68, 69] for Fisher’s exact test in 7 X ¢ contingency tables, or extensions
to consider the joint effect of two contingency tables (that is, 2 x r x ¢) [70]. Branch
and bound heuristics have also been used in some specialized cases [71]. However,
these approaches still consider at most three-dimensional contingency tables, and the
problem of enumerating 2 tables does not seem to have been considered. Even for
small k the enumeration problem is intractable: the number of 2* tables with fixed
margins grows exponentially in k. The work [72] presented an exhaustive algorithm
to enumerate all 23 and 2* contingency tables with fixed margins, demonstrating
for example that for n = 36, there are > 100 million 2* tables. Randomized and
approximate counting methods for contingency tables have been developed (see, for
example, [73| [74] and references therein), although these generally do not provide a
rigorous guarantee on the error in the approximation.

We derive a novel tail enumeration algorithm to efficiently compute the tail
probability in Eq. for tables with high values of the exclusivity statistic 7. The
motivation for our approach is that the sets M of interest will have extremely high
values of T'(X,,), near the maximum possible value. For example, in the degenerate
case of perfect exclusivity (no sample with more than one alteration in M) there are
no more extreme tables to enumerate, and the algorithm needs only to evaluate the
hypergeometric probability of Eq. for this single table. Thus, if we enumerate
tables starting from the highest possible values for T', we can obtain highly accurate
P-values for the most interesting cases. Furthermore, we can stop the enumeration
procedure when the P-value becomes sufficiently large and use approximations for
these larger P-values (see below).

Algorithm [1|is the tail enumeration strategy to enumerate contingency tables in
approximate order from most to least exclusive. Briefly, let C = (v C [k] : |[v] > 2)
be the vector of co-occurring (not exclusive) cells. The basic strategy employed
by Algorithm [1] is to generate a table Y that is more exclusive than X, (that is,
T(Y) > T(Xy) by iterating through the possible values of each cell in C, using the
following facts:

e When all values in C are fixed, the other values in the contingency table are
uniquely determined (see Procedure COMPLETECONTTBL in Algorithm [1).
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e We can set and update exact upper and lower bounds for each cell in C. The
values of each cell are bounded by two values (lines 10-11 in TAILENUMERA-
TION): the first is how many more co-occurrences are allowed in the current
table (Trear) before Y is less exclusive than Xj;; the second is given by the
constrained marginal (MarRem) for that variable in X,;.

We find that Algorithm [I] performs well on real data, evaluating the test statis-
tic T'(Xp) in a few seconds for sets with £ < 7 that have a small number of co-
occurrences.

Algorithm 1 Tail enumeration for any £ > 1

Input: 2% contingency table X.
Output: Set S of contingency tables at least as exclusive as X: S =Y € T(z7) :

T(Y) > T(X).
1. S« {}
2: N < 2F
3: C«+SORTED({v C [k] : [v| >2}) > Sorted descending vector of co-occurring
cells
4: yy < 0,Vv C [K]
5: Tax < Zle mz;) > Sum of alteration frequencies
6: TAILENUMERATION(Y, C, Thax — T'(X))
7. procedure TAILENUMERATION(Y, C, Trgn) > Trey: count of allowed
co-occurrences remaining
8: v <— HEAD(C)
9: if v # NULL then
10: MarRem < mein {yi"} > Minimum margin remaining
11: for (i < L,...,min{MarRem, L%j }) do
12: Y’ + CoprY(Y)
13: Y i > Set value of cell v of Y’ to i
14: TAILENUMERATION(Y', TAIL(C), Tren — |V| X 1)
15: else > If all “co-occurring” cells have been set
16: S = SU{CoMPLETECONTTBL(Y)}
17: procedure COMPLETECONTTBL(Y) © Fill in remainder of contingency table
x/
18: for v C [k]:|v|]=1do > Tterate over exclusive cells
19: Yy — T —yd
20: Y0,0,.0 < n— Zer Yy > Fill in cell with no alterations
21: return Y

Binomial approximation. We can approximate the distribution of the exclusiv-
ity statistic using the binomial distribution, which is a well-known approximation of
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the hypergeometric distribution. Under the null hypothesis that alterations occur
independently in the samples, let p. = Z?Zl % be the probability of an exclusive
alteration; that is, a sample contains exactly one alteration in M. Given a set M of
alterations M, then the probability of observing 7'(X ;) or more exclusive alterations

in n samples is given by the binomial tail probability 1 — 37 G0~ (MpL(l = pe)m.

We find that the binomial provides a good approximation of the exact test P-
value for sets M with a large number of co-occurring mutations, and consequently
a higher P-value (see Figure . Conveniently, these are precisely the cases where
the tail enumeration algorithm is slow.

10

, .
15| X 1 o 120
, .

10

-log10 (binomial pvalue)
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o
.
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-log10 (binomial pvalue)
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Figure 2.3: Scatter plot between negative log of exact and binomial P-values for all sets of k = 3
alterations on the GBM dataset (left) and BRCA dataset (right). The color of each dot represents
the number of co-occurring alterations according to the scale at the right. Note that the P-values
for the exact test much smaller than the binomial only in cases with relatively low number of
co-occurrences. These cases are the fastest to compute with the tail enumeration algorithm.

Permutation approximation. Another approximation to the exact test is ob-
tained using a permutation test. We sample L tables with fixed margins uniformly
from the space of all tables and compute the proportion of such tables whose exclu-
sivity value T exceeds the observed value T'(X,;). Of course, sampling uniformly
from the set of tables with fixed margins is not straightforward. We use an MCMC
approach as described in [39], although we do not fix the number of alterations per
sample. Interestingly, while the MEMo algorithm [39] uses a permutation test, the
test statistic is the coverage I'(M), rather than the exclusivity 7'(M) used in CoMEt.
While these are equivalent when k = 2 (since there is only one degree of freedom),
they produce different results for & > 2. See further discussion in the section [2.2.9]

In our implementation, we use the exact test, binomial approximation, or per-
mutation approximation to compute ®(M) according to the following procedure.
First, we calculate the P-value from the binomial approximation and compute the
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number of co-occurring alterations in M. If the number of co-occurring alterations
is higher than a fixed threshold s or the binomial P-value is larger than a fixed
value ¥, we set ®(M) to be the binomial P-value. Otherwise, we perform the tail
enumeration procedure to compute the exact test P-value, stopping the enumeration
if the accumulated tail probability becomes larger than a threshold e. If we stop,
then we compute the permutation approximation with (ﬂ samples, such that we
expect to sample at least one table with 7' > T(X,;). This procedure focuses the
time to perform tail enumeration in those cases where high accuracy is needed for
small P-values.

2.2.3 Sampling collections of mutually exclusive alterations
with MCMC

Our goal is to identify a collection M of ¢ alteration sets with low (highly significant)
values of ®(M). Since it is typically not possible to enumerate all such collections
(except for test datasets with small m, n, ¢, and k), we derive a Markov Chain Monte
Carlo (MCMC) approach to sample from the space of possible collections. We use
the Metropolis-Hastings algorithm [75, [76] to derive an MCMC algorithm to sample
collections M in proportion to the weight ®(IM)~*, where higher values of « increase
the sampling frequency of the most mutually exclusive sets (see Appendix for
additional details). We use oo = 2 except where noted.

Choosing values for ¢ and k£ Ideally, CoMEt should be run with the largest
values of k£ and t that are biologically meaningful for a particular dataset. If smaller
values of k and ¢ are best supported by the data, the summarization procedure will
demonstrate this. We see examples of this in glioblastoma, where the ten most
significant collections identified by CoMEt include a set with TP53, MDM2, MDM},
and one of five other alterations (Additional file 2: Table S5).

In practice, using large values of k£ and ¢ might lead to long run times and slow
convergence of the MCMC algorithm, since the space of possible collections will be
very large. Thus, an alternative approach that we use to generate results is to run
with small values of ¢ and k (for example, t = 3,4 and k = 3,4) and examine the
resulting marginal probability graph. If there are ¢ or more cliques or approximate
cliques in the graph, this suggests the use of larger values of ¢ and k. We used this
approach to find larger collections in the AML dataset (see details in section .
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2.2.4 Marginal probability graph

We now present a method to extract a collection of highly exclusive alteration sets
(with no prescribed size) from the posterior distribution obtained from the MCMC
algorithm. Typically, there are multiple collections with significant scores. This
might occur for interesting reasons such as different sets of alterations with similar
scores or alterations that appear in multiple mutually exclusive sets. However, the
reason might also be suboptimal parameter selection; for example, there may be a
significant set of k& = 3 alterations in the data, but running the algorithm with k = 4
will return many sets with the same three genes and a fourth “spurious” gene. To
distinguish such cases, we summarize the posterior distribution on collections using
a marginal probability graph G. For a pair (i, j) of alterations, let p(i,j) denote the
posterior probability that i and j are found in the same set. We compute p(i, j)
using the samples from the MCMC algorithm (see Appendix .

Let G = (V,E) be a complete, undirected weighted graph whose vertices are
the alterations and where each edge e € E connects a pair of vertices u,v with
weight p(u,v). Connected subgraphs of G with many high-weight edges are the
most exclusive alteration sets in A. We identify these most exclusive alteration sets
by first removing all edges with weight below a threshold § (see Appendix . Let
C'(9) be the connected components of size > 2 in the resulting graph. The output of
CoMEt is the C'(9) alteration sets. We choose connected components as the output
— as opposed to some other partition of the graph such as cliques — in order to
be able to identify other topologies such as overlapping pathways (alteration sets),
where two sets of alterations are connected by a cut node.

2.2.5 Statistical significance

While the score ®(M) measures our surprise of observing exclusivity within each
of the sets in M conditional on the observed frequencies of each alteration, there is
a large number of possible collections, and thus we might observe a high score by
chance. We evaluate the statistical significance of the collection M by comparing to
a null distribution of scores obtained on permuted alteration matrices A with the
sample and alteration frequencies (sums of rows and columns of A) fixed [39, [77].
Let ®* be the minimum score obtained over N permutations. We use the collections
M satisfying ®(M) < ®* (thus each such collection has P-value < %) to compute
the marginal probability graph except where noted.
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2.2.6 Simultaneous analysis of alterations and cancer sub-
types

An important confounding factor in identifying cancer pathways de movo by ana-
lyzing exclusive alterations is that certain alterations primarily occur in particular
cancer subtypes [78]. If we analyze a mixed set of samples with multiple subtypes,
these subtype-specific alterations will be mutually exclusive in the data, even if they
are not in the same biological pathway. When the subtypes are known in advance,
one solution is to analyze subtypes separately; unfortunately, this reduces sample
numbers, thus reducing power to identify combinations of alterations that are shared
across subtypes. CoMEt addresses this problem by adding one new “subtype row” to
the alteration matrix A for each subtype. This subtype row contains an alteration
in all samples ezcluding those of the given subtype. Thus, the sets of alterations
that are surprisingly exclusive with these subtype rows are the ones primarily al-
tered in that subtype. Note that when running CoMEt with subtype rows, we do
not allow multiple subtypes to be placed in the same set. Because CoMEt simul-
taneously analyzes multiple alteration sets, it can identify exclusive sets containing
subtype-specific alterations, general alterations, or any combination of these.

When analyzing the cancer dataset that included sample subtype classifications,
we perform two runs of CoMEt. First we run CoMEt on the alteration matrix A.
Then we run CoMEt on the alteration matrix with “subtype rows” as we described.
We summarize the ensemble of statistically significant collections sampled by the
MCMC algorithm in the two CoMEt runs by normalizing and combining the sam-
pling frequencies of each collection across the two runs, and then computing the
marginal probability graph on the merged collection.

2.2.7 Visualization of results

We created a web application for interactive visualization of the CoMEt results
(http://compbio-research.cs.brown.edu/comet/} see Figure[2.4)). For each dataset,
the website shows the modules in the CoMEt marginal probability graph. Users can
change the minimum edge weight parameter 9, which dynamically updates the mod-
ules. Edges in each module are labeled with the marginal probability. Users can view
the rows of the alteration matrix that correspond to a given module, and also view,
sort, and search through the collections sampled by CoMEt that include alterations

in a given module.

2.2.8 Somatic mutation datasets
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CoMEt Results
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Figure 2.4: Screenshot of the web application for interactive visualization of CoMEt results.

Acute myeloid leukemia (AML) The AML dataset contains whole-exome and
copy number array data in 200 AML patients from The Cancer Genome Atlas
(TCGA) [5]. Using the annotations in [5], we have categorized multiple genes
together based on expert knowledge, which results in 9 categories including spliceo-
some, cohesin complex, MLL-X fusions, other myeloid transcription factors, other
epigenetic modifiers, other tyrosine kinase, serine/threonine kinase, protein tyrosine
phosphatase, and RAS protein. More details are given in [5]. This results in 51 genes
and 200 patients.

Glioblastoma multiforme (GBM) We analyzed three GBM datasets:

1. TCGA GBM dataset from Leiserson et al. [I]. This dataset contains whole-
exome and copy number array data in 261 GBM patients and 398 genes from
TCGA [6]. Data preparation for GBM can be found in [I]. Note that in
section [2.3.2] we included amplifications in FGFR which were not considered
in [I]. Also, we mapped deletions in FAF1 to CDKN2C; since these genes are
adjacent on chromosome 1, and CDKN2C' is the likely target of the aberration.

2. TCGA GBM dataset from Szczurek et al. [62]. This dataset contains 83 al-
terations in 236 samples from [6], including single nucleotide variants in genes
identified as significantly mutated by MutSigCV [17] and copy number aberra-
tions caelled by GISTIC2 [23] then restricted to those with significantly con-
cordant gene expression (higher for amplifications, lower for deletions).

3. TCGA GBM dataset from the TCGA Pan-Cancer project [52]. We analyzed
the non-silent mutations (single nucleotide variants and small indels) from the
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mutation annotation format (MAF) file and focal copy number aberrations
from GISTIC2 output. This dataset contains 509 genes in 291 samples. More-
over, we removed genes with non-silent mutations in < 1% of samples and
with mutations in > 2.5 % of samples with MutSigCV [17] ¢-value > 0.1. This
dataset contains 406 genes in 291 samples.

Gastric cancer (STAD) We analyzed the non-silent mutations (single nucleotide
variants and small indels) from the MAF file in 289 gastric cancer samples. We also
included focal driver copy number aberrations from GISTIC2 output via Firehose,
fusion genes, rearrangements and splicing events [55]. We removed 74 hypermutators
and genes with non-silent mutations in < 2.5% of samples and with mutations in
> 3% of samples with MutSigCV [17] g-value > 0.25. This process results in 217
STAD patients and 397 genes with mutations. We considered four subtypes identified
by TCGA [55], including tumors positive for the Epstein-Barr virus (EBV), tumors
with high microsatellite instability (MSI), genomically stable (GS) tumors with a
low level of somatic copy number aberrations, and chromosomally unstable (CIN)
tumors with a high level of somatic copy number aberrations that were called. We
do not analyze the MSI subtype since samples in MSI are hypermutated.

Breast cancer (BRCA) The BRCA dataset contains whole-exome and copy
number array data in 507 BRCA patients and 375 genes from TCGA [§]. Data
preparation for BRCA can be found in [I]. We downloaded subtype information of
BRCA from TCGA [8]. We considered four subtypes — basal-like, HER2-enriched,

luminal A, and luminal B — that each contain at least 10 % of the total samples.

We list the barcodes of the TCGA samples in each of the datasets in Additional
file 2: Table S12.

2.2.9 Comparison to MEMo

The MEMo algorithm [39] uses a permutation test to approximate the probability
of observing exclusive mutations in a gene set M with contingency table X. The
permutation test works by permuting the rows in A corresponding to the genes in
M, and then determining if the permutation has a higher test statistic than M. This
is then repeated N times to obtain an empirical P-value.

The crucial difference between MEMo and CoMEt is that MEMo uses the cover-
age I'(M) as the test statistic, while CoOMEt uses the test statistic 7'(X). (For ease
of exposition, let T'(X) also be defined as the coverage for a contingency table X.)
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The reasoning behind using the coverage as the test statistic is the idea that a gene
set with mutually exclusive alterations will also have the highest coverage possible,
for fixed frequencies of individual alterations. While this is true for pairs of genes
(which follows from the fact that 2 x 2 contingency tables have only one degree of
freedom), when one examines three or more genes, maximizing coverage is not the
same as maximizing exclusivity. In fact, we can see that for a given contingency
table X it is possible to find another contingency table X’ with the same margins
(gene frequencies) as X, but that has:

1. Higher exclusivity (T'(X’) > T'(X)) and lower coverage (I'(X’) < I'(X)), which
could result in a deflated P-value for MEMo.

2. Lower exclusivity (T'(X’) < T(X)) but the same coverage (I'(X’) = I'(X)),
which would result in an inflated P-value for MEMoF]

See examples of both cases in Figure [2.5

2.2.10 Comparison of CoMEt and mutex methods

The recently introduced mutex [63] algorithm uses an iterative version of the one-
sided Fisher’s exact test to evaluate combinations of mutually exclusive alterations.
Thus, the tests used in mutex and CoMEt are identical when evaluating the exclu-
sivity of a pair of alterations. However, for k > 2 alterations, mutex and CoMEt are
quite different. CoMEt directly assesses the exclusivity of a 2¥ contingency table. In
contrast, mutex computes a series of 2 x 2 tests examining the exclusivity of alter-
ations in one gene compared to the alterations in all £ — 1 other genes in the set.
For a set with & > 2 genes, mutex returns the least significant (highest) P-value of
these 2 x 2 tests. While mutex’s method is faster to compute than CoMEt, it is not
as powerful at detecting mutual exclusivity in sets of £ > 2 alterations, as shown in
in section Furthermore, while mutex searches for sets with k£ > 2 genes using
a greedy approach to gradually expand mutually exclusive pairs, CoMEt uses an
MCMC algorithm to simultaneously sample a collection of mutually exclusive sets.
Searching for multiple sets simultaneously was shown to have advantages over the
greedy approach in [I]. Finally, CoOMEt summarizes the posterior distribution of the
significant collections. Typically, CoMEt output contains multiple distinct modules.
In contrast, mutex tends to produce results with many more genes, requiring prior

2We have not found a case where T(X’) < T'(X) and I'(X’) > I'(X), and conjecture that such
a case does not exist.
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Figure 2.5:
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of each gene is the
same in each table:

I'(g1) = 58
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Two cases where the MEMo permutation test statistic I" (the coverage, or number

of altered samples) deflates or inflates the P-value compared to the CoMEt test statistic T' (the
number of samples with exclusive mutations).
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knowledge in the form of an interaction network to reduce the search space.

2.2.11 Comparison of methods with and without mutation
filtering

Because CoMEt conditions on the observed alteration frequencies, we argue that it
is less biased towards genes that have high frequencies of passenger mutations, such
as long genes. To illustrate this point, we compared CoMEt, Multi-Dendrix, and
mutex on glioblastoma (GBM) data with and without the MutSigCV [17] filter that
requires that frequently mutated genes have low MutSigCV ¢-values (see sectionm
for details). We ran CoMEt with £k = 4 and ¢ = 4, ran Multi-Dendrix with its
default parameters of ¢ ranging from 2 to 4 and k ranging from 3 to 5, and ran
mutex with default parameters except that we set the maximum size of a result
group to 4 and did not include a signaling network. We used mutation data from the
TCGA Pan-Cancer dataset [52] which contains whole-exome and copy number array
data, and downloaded MutSigCV output from the corresponding Synapse repository
(syn2812925). We used different TCGA GBM datasets here than in section [2.3.2]
because of the availability of MutSigCV results on the Pan-Cancer dataset. For each
cancer, we generated two datasets. In one dataset, we applied a MutSigCV filter
to remove highly altered genes (altered in > 2.5% of samples) but insignificant by
MutSigCV (g-value < 0.1). The second dataset did not include any MutSigCV filter.

We found that CoMEt identifies the key combinations of mutated genes with
or without the mutation filtering on the GBM dataset (Table [2.1] and Figure [2.6h).
These key combinations include genes from the Rb signaling (CDK/, RB1, CDKN2A),
ph3 signaling (TP53, MDMZ2), and PI(3)K signaling (PIK3CA, PTEN, IDH1) path-
ways, as well as FGFR and NF1. The CoMEt results were also largely stable: the
core members of each module were unchanged, while four genes with less clear roles in
GBM were lost and four genes were gained when we removed the mutation filtering.

In contrast, Multi-Dendrix and mutex results change more substantially, with and
without mutation filtering. The Multi-Dendrix modules are shuffied considerably,
including the group of key GBM cancer genes (Table 7?7 and Figure 2.6(b)). In
addition, six genes are lost and seven genes are gained after we remove mutation
filtering. Furthermore, many of the genes that are added without mutation filtering
are known to have elevated mutation rates, including TTN, MUC16, and MUCY
[T7]. This demonstrates a deficiency of the Dendrix weight function, also used by
Multi-Dendrix, in that high coverage (frequently altered genes) may dominate over
mutual exclusivity. The modules output by mutex also change considerably with and
without mutation filtering (Table ?? and Figure ) Without mutation filtering,
the number and composition of each module change, and eight genes are added.
Moreover, mutex did not report the strong exclusive set from the PI(3)K signaling
pathway (PTEN, PIK3CA, IDH1) found by CoMEft.
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(a) CoMEt

(b) Multi-Dendrix

M (A)

(c) mutex

Figure 2.6: (a) CoMEt modules, (b) Multi-Dendrix consensus, and (c) Mutex groups from the
TCGA Pan- cancer GBM datasets [5] with (left) and without (right) mutation filtering with the
MutSigCV algorithm. Red and blue circles represent genes that are common and different between
the two results, respectively.
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Algorithm

Without filtering

With filtering

CoMEt

. CDKJ(A),

. IDH1, PIK3CA, PTEN,

KSR2

. MDM2(A), RPL5, STAGS,

TP53

. EGFR, NF1, CALCR,

PCDHA3, PPP1R3A

CDKN2A(D),
PTPN11, RB1, ZNF07

. CDKJ(A),

. IDH1, PIK3CA, PTEN,

DNAH11

. MDM2(A), RPL5, STAGS,

TP53, SEMAS3E

. EGFR, NF1, PKHD1,

THSD7B

CDKN2A(D),
PTPN11, RB1, ZNF07

Multi-Dendrix

. CNTNAP2, CDKN2A(D),

CDKJ(A), EGFR, IDHI,
MDM2(A), MDMJ(A),
NF1, PIKSCA, PTEN,
RB1, COL6A3, MAST/,
PCDHAS3, PCLO,
PDGFRA(A), PIK3R1

. CDKN2A(D),

. CNTNAP2, EGFR, IDHI,

MDM2(A), MDMJ (A),
PTEN, TP53, ATRX,
CHDY9, HRNR, MUC/,
MUC16, TTN

CDKJ(A),
NF1, RB1, FRG1B

mutex

. CDK/(A),  CDKN2A(D),
EHDS,  MAST/,  NFI,
PTPN11, RB1

2. MDM2(A), STAG2, TP53

. CDKJ(A),

CDKN2A(D),
EHDS, MASTY,
MDM2(A), NF1, PTPN11,
RBI1,  STAG2,  TP53,

CACNA1S, CALCR,
DGKD, EGFR,
FRG1B, PKHD1,

THSD7B, ZNF407

Table 2.1: Comparison of CoMEt, Multi-Dendrix, and mutex on the TCGA GBM dataset from
the TCGA Pan-Cancer project [52] with and without mutation filtering. The consensus modules
output by each algorithm are shown for the dataset with and without mutation filtering. Bolded
genes indicate differences in output with and without mutation filtering. The (A) and (D) following

the gene names indicate amplifications and deletions, respectively
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2.3 Results

2.3.1 Comparison to other methods on simulated data

We compared CoMEt on two simulated mutation datasets to four other published
methods for finding mutually exclusive gene sets: Dendrix [38], Multi-Dendrix [1],
muex [62], and mutex [63]. In addition, we performed a separate comparison to
MEMo [39] (see details in section [2.2.9)).

Benchmarking of methods for individual gene sets We first compared the
mutual exclusivity scores used by each of the methods on single gene sets using sim-
ulated datasets that represent key features of cancer sequencing data. In particular,
each simulated dataset contains: (1) one implanted pathway P with £k = 3 genes
that is altered in a fraction vp samples with highly exclusive mutations; (2) a set C'
of 5 highly altered genes whose alterations are not necessarily exclusive; (3) other
genes containing only passenger mutations that were altered at rate q. The set C'
models the highly recurrently altered genes that often appear in real cancer datasets,
and can confound methods for identifying exclusive mutations. Further details of the
simulation are given in Appendix

We compared CoMEt to the other methods on datasets with n = 500 samples and
with implanted pathways with coverages v ranging from 0.1 to 1.0. We ran CoMEt
with k£ = 3 for ten million iterations with 100 permutations, identifying modules in
sets with P < 0.05. We ran mutex with default parameters except with maximum
group size set to 3 and with 1,000 permutations, and reported the gene sets above
mutex’s suggested cutoff. We ran Dendrix and muex with £ = 3 and reported the
highest scoring significant (P < 0.05) set as neither algorithm outputs a consensus.
We used coverage (parameter vy in [62]) and the weight W as the score for muex and
Dendrix, respectively.

We computed the precision and recall for each algorithm across 25 simulated
datasets for each coverage v (Additional file 2: Table S1). We summarized the results
across the datasets using the F-measure, which is the harmonic mean of precision
and recall. All the methods performed poorly (F' < 0.1) with coverage v = 0.1, and
all the methods except mutex performed very well (F' > 0.9) for coverage v > 0.8
(Figure 2.7h). However, CoMEt outperformed the other methods for v = 0.2 to 0.6.
Both muex and Dendrix struggled to identify the implanted pathway (F' < 0.4) with
coverage v < 0.5. In comparison, CoMEt had F' > 0.6 for v > 0.2. While mutex’s
performance was only slightly below that of CoMEt with v < 0.5, mutex performed
poorly compared to CoMEt and the other methods with v > 0.6. Interestingly, the
reason mutex performed poorly is because it identified many false positives resulting
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in a low precision (< 0.6) even though its recall was 1.0. These false positive gene sets
often include at least one gene from C' (the set of highly altered genes), indicating a
problem with mutex’s mutual exclusivity score. These simulations demonstrate the
advantages of CoMEt’s mutual exclusivity score in identifying mutually exclusive
sets of genes (even when rarely mutated) in the presence of highly altered genes.
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Figure 2.7: Comparison of CoMEt with other methods on simulated data with n = 500 samples.
(a) The average F-measure of each method over 25 simulated datasets with varying coverage
of the implanted pathway: CoMEt (blue), mutex (black), muex (brown), and Dendrix (red). (b)
Comparison of CoOMEt and Multi-Dendrix in identifying an implanted collection containing multiple
sets of alterations. Bars indicate average of adjusted Rand index between reported and implanted
collection across 25 simulated datasets

Benchmarking identification of collections of gene sets We compared CoMEt
to Multi-Dendrix [I], an earlier method that also simultaneously finds collections con-
taining more than one mutually exclusive set. We compared these two algorithms
on two types of simulated datasets: one containing collections of gene sets with no
overlapping genes, and the other containing overlapping gene sets. We generated
simulated data using a procedure similar to that above with three important dif-
ferences. First, we implanted a collection P = (Py, P, ..., P,) of t pathways, each
with exclusive mutations with total coverage yp. Second, all genes in each implanted
pathway are mutated in the same number of samples. Third, we include m = 20, 000
genes and remove those mutated in fewer than 1% of total samples (Figure . We
generated datasets varying ¢ from 2 to 4 and k from 3 to 5 with coverages vp between
0.40 and 0.70 (Additional file 2: Table S2). We also generated datasets with over-
lapping implanted pathways with ¢t = 3, k from 3 to 5, with vp = (0.75,0.75, 0.60).

On each dataset, we ran CoMEt using k = 4,¢ = 3, and Multi-Dendrix using its
default parameters of ¢ ranging from 2 to 4, and k ranging from 3 to 5. We compared
the consensus sets output by Multi-Dendrix with the modules output by CoMEt,
using the adjusted Rand index (ARI) [79], to score how well each algorithm identified
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Figure 2.8: The distribution of the number of genes with > x mutations in simulated data. We
removed those genes mutated in fewer than 1% of mutations, i.e. genes mutated in fewer than 5
samples.

the implanted pathways. The ARI measures the agreement between two partitions,
with ARI = 1 indicating that two partitions are identical and ARI = -1 indicating
that two partitions are maximally dissimilar. CoMEt outperformed Multi-Dendrix in
11/12 simulated datasets (each containing 25 replicates) (Figure[2.7b and Additional
file 2: Table S3). CoMEt found a much larger fraction of the implanted pathways
(difference in ARI was > 0.2 for 8/12 datasets). Furthermore, CoMEt had an ARI
> (.5 for all 12 datasets, and ARI> 0.8 for 7/12 datasets. We emphasize that we ran
CoMEt with a single value of t and a single value of k over all datasets even though
the size and number of implanted pathways varied across datasets. In contrast,
Multi-Dendrix was run with a range of parameter values. This demonstrates that
CoME{ is much less sensitive to parameter choices than Multi-Dendrix.

We also compared the output of CoMEt and Multi-Dendrix using the true values
of t and k. We found that CoMEt outperformed Multi-Dendrix on 11/12 datasets
(Additional file 2: Table S3). This shows that the statistical score used by CoMEt
and the MCMC sampling are important features, even on simulated datasets where
the implanted collections are fairly strong signals in the data.
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2.3.2 CoMEt results on real cancer datasets

We ran CoMEt on four mutation datasets from TCGA: glioblastoma (GBM) [0],
breast cancer (BRCA) [§], gastric cancer (STAD) [55], and acute myeloid leukemia
(AML) [5]. We also analyzed the dataset of intracranial germ tumors from Wang et
al. [80]. Because CoMEt can analyze any type of binary alterations, we include many
types of alterations in these datasets: small indels and single nucleotide variations,
copy number aberrations, aberrant splicing events, gene fusions, and (for BRCA
and STAD) cancer subtype. See section for details on these datasets and
Appendix for details on parameters.

Acute myeloid leukemia (AML) We first ran CoMEt with ¢ = 4 alteration sets,
each of size k = 4. The CoMEt output contains four mutually exclusive modules
that include 18 alterations (Figure[2.9). These four modules are: (1) TP53, RUNX1,
NPM1, PML-RAR« (52.5% of samples); (2) KDM6A, FLT3, tyrosine kinases, RAS
proteins, serine/threonine kinases, DNMT3A, MLL-X fusions, MYH11-CBFf, and
RUNX1-RUNX1T1 fusion (70 % of samples); (3) cohesin complex, other myeloid
transcription factors, and other epigenetic modifiers (33 % of samples); (4) TET?2
and IDH2 (18.5% of samples).
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Figure 2.9: CoMEt results on AML dataset with ¢ = 4 and & = 4 in the same style as the

Figure

The recent TCGA AML publication [5] reported strong mutual exclusivity (using
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an earlier version of the CoMEt algorithm, called Dendrix++) across several expert-
defined classes. Thus, we increased the value of k to identify ¢ = 4 gene sets with
sizes k = 6,4,4,3. Because of the larger values of k, we increased the number of
MCMC iterations to 200 million (Additional file 2: Table S4). The resulting marginal
probability graph (0 = 0.179) contained four mutually exclusive modules with a total
of 19 genes (Figure [2.10)).
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Figure 2.10: CoMEt results on TCGA AML consisting of four modules. Each circle represents
the alterations in a gene or genomic region. The number in the circle indicates the number of
samples in which the alteration occurs. Black lines are edges in the marginal probability graph
with indicated probabilities. Orange polygons indicate the sets in the collection M with the most
significant value ®(M). Below each most significant set (orange) are the corresponding score ® and
coverage

The first module contains six perfectly mutually exclusive alterations. These
six alterations include: mutations in TP53, RUNX1, NPM1; PML-RARo, MYHI11-
CBFp fusion genes, and other MLL fusions, which we denote as MLIL-X fusions,
following [B]. These six alterations are known to be drivers in AML, and together
are found in 63.5 % of the samples. These fusion genes are defining aberrations for
certain subtypes of AML, as PML-RAR«, MYH11-CBFf3, and MLL fusions are asso-
ciated with acute promyelocytic leukemia, acute monoblastic or monocytic leukemia,
and acute megakaryoblastic leukemia, respectively. The second module (altered in
63 % of samples) contains receptor tyrosine kinases (RTKs) and their downstream
RAS target proteins. These include mutations in the FLTS tyrosine kinase, other
tyrosine kinases, serine/threonine kinases, and RAS proteins. Two additional genes,
DNMTS3A and KDM6A, are also included in this set. These genes are involved in
DNA /histone methylation, and their interactions with the other RTK/RAS genes in
the set are less clear. Notably, the marginal probability graph (Figure shows
that the connection between DNMTS3A and other genes in the set is largely due to
its mutual exclusivity with other tyrosine kinases, and in fact a number of samples
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have mutations in both FLT3 and DMNT3A (Figure b)). Thus, the patterns
of exclusivity /co-occurrence between alterations may be subtle, demonstrating the
advantages of CoOMEt’s approach to simultaneously examine multiple collections of

sets of alterations.
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Figure 2.11: Mutation matrices for the CoMEt results on (a) TCGA GBM, (b) TCGA AML, (c)
TCGA STAD, and (d) TCGA BRCA datasets. The matrices have alterations as rows, and samples
as columns. Each cell indicates whether or not an alteration occurred in a particular sample, where
grey indicates the sample was not altered. Samples with co-occurring alterations in the same set
are colored orange, while exclusive alterations are colored blue.

The third module (altered in 35.5 % of samples) contains genes related to chro-
matin modification and gene regulation including ASXL1I, the cohesin complex, other
myeloid transcription factors, and other epigenetic modifiers. Finally, the fourth
module (altered in 24.5% of samples) contains genes related to DNA methylation



36

including TETZ2, IDH2, and protein tyrosine phosphatases. Mutual exclusivity be-
tween TET2 and IDH2 in AML has been previously reported [81], [82], 83]. Moreover,
recent work provides a mechanistic explanation for this observed exclusivity: Figeroa
et al. [81] show that mutant IDH1 2 inhibits TET2’s function in demethylation of
5-methylcytosine. These results demonstrate that CoMEt is able to extract multiple
functional modules directly from alteration data.

Glioblastoma multiforme (GBM) We ran CoMEt on the TCGA GBM dataset
from Leiserson et al. [I] with ¢ = 4 and k = 4 (Additional file 2: Table S5). While
Leiserson et al. [1] removed amplifications in EGFR because they were so frequent it
confounded their analysis, we added these amplifications back when running CoMEt,
treating FGFR amplifications and TP53 as subtypes so they could not be sampled
in the same set (see section for details). The resulting marginal probability
graph (6 = 0.263) includes two mutually exclusive modules (Figure 2.12h).
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Figure 2.12: CoME{ results on TCGA GBM. (a) Two output modules from CoMEt are shown
in the same style as in Figure Characters in parentheses following gene name indicate copy
number aberrations: (D) is a deletion, and (A) is an amplification. (b) Different splice variants
of CDKN2A are part of both the Rb signaling (left) and p53 signaling (right) pathways. CoMEt
recovers this relationship as two separate mutually exclusive gene sets. The gene sets {RB1, CDK/ }
and {MDM?2, TP53} have a statistically significant number of co-occurring mutations (P = 6 X
10721, dotted orange line), which is much more significant than the co-occurrence between pairs of
genes in these sets (dotted red lines with corresponding P-values)

The first module includes alterations in three genes in the Rb signaling pathway
(CDKJ, RB1, CDKN2C') and in three genes in the p53 signaling pathway (7TP53,
MDM?2, and MDM}), as annotated by the original TCGA GBM publication [6].
This module also contains deletions in CDKN2A, which is a member of both the
Rb signaling and p53 signaling pathways. Indeed, it is well known that different
isoforms of the CDKN2A gene are involved in the Rb and p53 signaling pathways
(see Figure 2.12b and also [6]) and that the genomic deletion of CDKN2A affects
both isoforms. Moreover, we find that the pairs CDK4-RB1 and MDM2-TP53
have surprisingly co-occurring alterations (P = 6 x 107%!; see Figure [2.12|(b)). This
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co-occurrence is stronger than the co-occurrence of alterations in individual genes.
This pattern indicates that glioblastomas can alter the function of the Rb and p53
signaling pathways either by deleting CDKN2A, or by altering one gene in each of
the pairs (CDKY, RB1) and (TP53, MDM2). We emphasize that CoMEt identified
this overlapping module by sampling nonoverlapping exclusive sets. Finally, this
module contains alterations in three additional genes: NPASS3, VAV2, and MSLS3.
NPASS3 has been studied as a novel late-stage acting progression factor in gliomas
with tumor suppressive functions [84, R5]. VAV2 has been reported to regulate
EGFR, and knockdown of VAV2 enhanced EGFR degradation and further reduced
cell proliferation [86]. MSL3 is a member of the male-specific lethal (MSL) complex
and is thought to play a role in transcriptional regulation. As reported in [I], the
MSL complex also includes MOF', which regulates p53 in the cell cycle and may be
involved in cancer [87].

The second module includes alterations in the PI(3)K signaling pathway — in-
cluding PIK3R1, PTEN, deletion of PTEN and IDH1 — as well as amplifications
in the genes (EGFR, PDGFRA) and in a region containing PRDM2 and PDPN.
Additional genes in this module are NFI and SRCRB4D. The PI(3)K signaling
pathway genes overlap the results reported by Multi-Dendrix on this dataset in [1];
the important differences are that CoMEt includes NF1 and amplifications in EGFR
(which were not analyzed by [1]). In this module, we also found one mutually exclu-
sive gene set (from the highest weight collection) that includes EGFR, IDHI1, NF1,
and PDGFRA. Alterations in these genes have strong association with individual
subtypes in GBM [78]: EGFR amplification is associated with the Classical GBM
subtype, IDHI and PDGFRA amplification are associated with the Proneural GBM
subtype, and NF'I is associated with the Mesenchymal GBM subtype. This shows
that mutually exclusive gene sets can result from subtype-specific mutations.

Finally, SRCRB4D is a scavenger receptor with no known associations with can-
cer. However, two other scavenger receptor genes have previously reported roles in
glioblastoma. Homozygous deletions of DMBT1 were reported in glioblastomas and
astrocytomas [88], [89]. CD36 was recently reported to be involved in cancer stem
cell maintenance in glioblastoma [90].

These results show that CoMEt can automatically find large portions of the
pathways that were manually curated in TCGA GBM publication [6], including
overlapping pathways. Moreover, CoMEt identifies additional genes with putative
roles in glioblastoma and significant exclusivity with other known glioblastoma genes.

Gastric cancer (STAD) We performed two runs of CoMEt on the TCGA gastric
cancer (STAD) dataset, and then merged the runs (described in section [2.2.6). We
first ran CoMEt with ¢t = 4 and £ = 4. We then ran CoMEt on a STAD dataset that
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included sample subtype classifications. TCGA recently classified gastric cancers
into four subtypes based on integration of different molecular data [55]. To examine
the relationships between subtypes and other alterations, we introduce “subtype
alterations” for the three subtypes from [55] (we did not include the hypermutated
samples from the MSI subtype in our analysis). As described in section , these
“subtype alterations” are marked as altered in samples that are not members of
the subtype, so that mutual exclusivity between a “subtype alteration” and another
alteration indicates that the alteration is enriched in the subtype. We ran CoMEt
on the STAD dataset with subtype alterations using k& = 4 and ¢t = 3 (the number
of subtypes).

CoME}{ identified five mutually exclusive modules from the marginal probability
graph (6 = 0.132) in the STAD dataset (Additional file 2: Table S6 and Figure[2.13h).
Each of these modules includes known cancer genes and novel candidate genes. Two
modules indicate subtype-specific altered genes and pathways. The first module
(altered in 69% (150/217) of the STAD samples) includes two genes, TP53 and
PIK3CA, that are enriched for alterations in the CIN and EBV subtypes, respec-
tively. TCGA gastric study reported that 80 % of EBV tumors contain an alteration
in PIK3CA, and suggested that EBV tumors might respond to PI3-kinase inhibitors
[55]. Given this strong signal, it is not surprising that these two genes appear in
CoMEt results. However, these signals do not dominate the CoMEtWe introduce
the CoMEt algorithm for identifying collections of mutually exclusive alterations in
cancer de novo, that is, with no prior biological knowledge. CoMEt uses a novel
statistical score for exclusive alterations that conditions on the frequency of each al-
teration and thus can detect exclusivity of rare mutations. CoMEt overcomes large
computational challenges in computing the score using a new algorithm for contin-
gency table analysis, and in optimizing the score in genome-scale data using the first
Markov chain Monte Carlo (MCMC) algorithm for identifying collections of multiple
sets of exclusive alterations.

We demonstrate that CoMEt is superior to earlier de movo methods — Den-
drix [38], muex [62], Multi-Dendrix [1], and mutex [63] — on simulated and real data.
We then apply CoMEt to large mutation datasets from multiple TCGA cancer types
[0, B 8, B55]. On each dataset, CoMEt identifies significantly exclusive collections
of alterations that overlap well-known cancer pathways and also implicates novel
cancer genes. In addition, CoMEt illustrates subtle relationships between mutual
exclusivity resulting from cancer subtypes and exclusivity resulting from pathways
or protein interactions. These findings provide testable hypotheses for further down-
stream analysis or experimental validation.

The input to CoMEt is a matrix of binary alterations, and thus can be used to
analyze a variety of alterations including point mutations and indels, copy number
aberrations (amplifications and deletions) and complex rearrangements, splice-site
mutations, gene fusions, and subtype annotations. CoMEt may be useful in the
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analysis of other types of alterations, such as germline variants.

Another application for CoMEt is pan-cancer analysis, such as the recently pub-
lished TCGA study [52] and the upcoming ICGC Pan-Cancer Project. Since pan-
cancer datasets have many cancer-type-specific alterations, CoMEt’s ability to si-
multaneously analyze type-specific and other types of exclusive alterations should
prove useful for this analysis. Finally, we anticipate that the novel tail enumeration
strategy used in CoMEt may be of broader interest, both for examining mutual ex-
clusivity in other datasets, including non-biological data, as well as for adapting for
other types of exact statistics. CoMEt results, and four other interesting modules
are also output. There are six other mutated genes in this first module including
MAP2K?7, TLN1, BAT2L1, C120rf63 (recently renamed CFAP54), MYOMS3, and
PTPRJ. Given the rarity of these mutations, their significance is unclear.
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Figure 2.13: CoMEt results on (a) TCGA STAD subtypes, (b) TCGA BRCA subtypes. Style is
the same as in Figure except for the addition of subtype alterations (brown) and additional
characters in parentheses following gene name: (AS) is an alternative splicing event, and (F) is a
fusion gene. Note that an edge between a subtype (brown vertex) and an alteration indicates that
the alteration occurs frequently in the subtype

The second STAD model includes the genomically stable (GS) subtype, mutations
in CDH1, mutations in PCDHA11, ARHGAPG6-CLDN18 fusions, and amplification
of a region containing EPHB3. CDH1 somatic mutations and ARHGAP6-CLDN18
fusions were reported to be mutually exclusive and enriched in the genomically stable
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subtype in gastric cancer [55], and CoMEt recapitulates this result. FPHBS is the
member of Eph/ephrin signaling which controls the compartmentalization of cells in
epithelial tissues. A recent study [91] demonstrated EphB receptors (for example,
EPHB1 and EPHBS3) interacting with CDHI in epithelial intestinal cells which
regulates the formation of E-cadherin-based adhesions. This interaction explains the
perfect mutual exclusivity between CDH1 and EPHBS3, which to our knowledge is the
first report of this relationship. This demonstrates that mutual exclusivity between
pairs of alterations/subtypes may have subtle explanations, further underscoring the
need for analysis of collections of multiple alterations.

The third module (altered in 95/217 of samples) includes amplifications of KRAS
and FRBB2, and mutations in BTBD11. KRAS and ERBB2 are members of the
RTK/RAS signaling pathway, and their role in cancer is well-documented. Little is
known about the function of BTBD11, and thus the significance of the mutations is
unclear.

The fourth STAD module (115/217 of samples) contains three altered genes,
including amplifications of CCNFE1, mutations in SMAD/ and splice-site mutations
in MET. CCNE! is a well-known cell cycle mediator, SMAD/ is a member of the
TGF-S pathway, and MET participates in the RTK/RAS signaling pathway [55].

The fifth STAD module (79/217 of samples) contains four altered genes, in-
cluding amplifications in a region with IL7R and LIFR, deletions in a region with
HDAC10 and BRD1, mutations in ARIDIA, and mutations in CNBDI1. ARID1A is
a well-known cancer gene shown to be significantly mutated in gastric cancer [55].
Moreover, inhibition of HDAC10 has been reported to be associated with human
gastric cancer cells [92]. Gain-of-function mutations in IL7R have been reported to
be associated with childhood acute lymphoblastic leukemia [93]. Our CoMEt results
suggest that IL7R mutations may have a role in gastric cancer as well.

Breast cancer (BRCA) We performed two runs of CoMEt on the TCGA breast
cancer (BRCA) dataset, and then merged the runs. We first ran CoMEt with k£ = 4
and ¢ = 3. We then introduced subtype alterations for four subtypes from [§] (as
described in section . Breast cancers are traditionally classified into multiple
subtypes based on mRNA expression. Here we analyze four subtypes: luminal A,
luminal B, basal-like, and HER2-enriched. We ran CoMEt on a BRCA dataset
that included sample subtype classifications with & = 4 and ¢t = 4 (the number of
subtypes).

CoME{ identified three subtype-specific modules and three modules with mutated
genes (Additional file 2: Table S7 and Figure[2.13p) in the marginal probability graph
(0 = 0.287). The first module shows the strong association between amplification of
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CCND1 and the luminal B subtype as previously reported [94]. Similarly, the third
module shows the strong association between ERBB2 amplification and the HER2
(ERRB2)-enriched subtype.

The second module shows a complicated relationship between: (1) subtype-
associated alterations in the luminal A and basal-like subtypes, and (2) mutual
exclusivity resulting from alterations in the same pathway(s). This module contains
five sets of genes (highlighted in orange in Figure ) in the highest scoring col-
lection M output by CoMEt. Consistent with TCGA study [], we find that CDH1,
AKT1, and PIK3CA are associated with the luminal A subtype, and they form a
set in the CoMEt output. Similarly, TP53 and amplification of chromosome region
4q13.3 are associated with the basal-like subtype, and they also form a set in the
CoMEt output. Two of the other sets contains genes in the same pathway. PTEN
is a known inhibitor of PIK3CA, explaining the observed exclusivity between PTEN
deletion and PIK3CA mutation. Moreover, MCL1, MAP3K1, AKT1 are all part
of the PI(3)K/Akt signaling pathway. Together, these sets contain five genes that
are annotated as part of the PI(3)K/Akt signaling pathway in TCGA study [§] (red
circles in Figure [2.13p).

The final set in this module includes mutations in the genes TP53, CDHI,
GATAS3, and CTCF. These four genes are altered in 54.83 % (278/507) of the BRCA
samples. TP53 is a member of the p53 signaling pathway, while CDH1, GATAS3, and
CTCF all have been reported as potential driver genes in breast cancer. CDH1 is
a tumor supressor that is well-known to play multiple roles in cancer [05], including
invasion and proliferation in breast cancer [96]. GATAS is a transcription factor
that has long been known to be involved in breast cancer tumorigenesis [97]. Re-
cently, GATAS has been reported to promote differentiation, suppress metastasis,
and alter the tumor microenvironment in breast cancer [98]. As noted by Leiser-
son et al. [1], GATAS3 has also been reported to suppress tumor metastases through
inhibition of CDHI promoters [99], which suggests that the mutations in GATAS3
are an alternate way to downregulate CDHI and may explain the exclusivity of the
mutations in GATAS and CDHI1. Moreover, GATAS is enriched for mutations in
both luminal A and luminal B; that is, 32 of the 54 mutations in GATAS occur in
luminal A (P = 0.0207) and 19 of the 54 mutations in GATAS3 occur in luminal B
(P = 0.065). This might suggest that GATAS mutations mainly occur in patients
with luminal breast cancer. CTCF neighbors CDHI on chromosome 16q22.1 and
has been reported with CDH1 to be a tumor suppressor in breast cancer [100], [101].
Interestingly, both CDH1 and CTCF have most of their mutations in samples of the
luminal A subtype. CDH1 is enriched for mutations in luminal A (as reported in [§])
and 9 of the 13 mutations in CTCF occur in luminal A (P = 0.0891), suggesting that
these two genes are in a pathway specifically targeted in luminal A. Furthermore,
4 of the 9 mutations in CTCF in luminal A are missense mutations in zinc finger
domains, suggesting a possible functional role for these mutations [102].
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Together, these results demonstrate CoMEt’s ability to simultaneously identify
alterations that are mutually exclusive due to interactions between genes in pathways
or due to subtype-specific alterations. This allows a more refined interpretation of
mutually exclusive alterations than simple pairwise analyses.

Intracranial germ tumors To investigate CoMEt’s performance on a smaller
dataset that is less intensively studied than TCGA datasets, we ran CoMEt on a
dataset of somatic and germline mutations in intracranial germ cell tumors (IGCTSs)
from [80]. This dataset consists of somatic single nucleotide variants and indels in
163 genes from 53 patients (combining both the discovery and validation cohorts).
Given the small size of this dataset, we first ran CoMEt to identify ¢ = 1 set of
k = 3 genes (Additional file 2: Table S8). CoMEt found that the alterations in
the set of k = 3 genes KIT (16 mutations), KRAS (9), and NRAS (3) were the
most exclusive (& = 0.002). Wang et al. [80] identified this triple using Fisher’s
exact test comparing mutations KI7T with the union of mutations in KRAS and
NRAS (P = 0.018). Notably, the exact test gives the triple a more significant P-
value. Mutual exclusivity between these three genes is consistent with the RAS genes
being downstream of KIT in the signaling receptor tyrosine kinase (RTK) signaling
pathway.

The top-ranked KRAS, NRAS, KIT triple was closely followed by several other
gene sets including KIT, KRAS, and a third gene (FLT3, & = 0.004; KDM2A,
& = 0.004; LAMAJ, & = 0.004; SPRY/, ® = 0.004). Notably, KIT and FLTS3
(2 mutations) are both receptor tyrosine kinases (RTKs); the mutual exclusivity of
their mutations suggests that FLT3 mutations may substitute for KIT mutations in
some samples. In addition, SPRY/ is a negative regulator of RAS signaling and was
recently shown to inhibit RAS signaling in AML [103]. SPRY/ was not discussed
in the Wang et al. study, and thus is a novel discovery by CoMEt. Intriguingly, the
observed mutual exclusivity that we see in the high-scoring gene triples from CoMEt
(Additional file 2: Table S8) are similar to relationships seen between RTK and RAS
signaling in AML [5], 103].

CoMEt summarized the mutually exclusive sets into two statistically significant
modules (P < 0.01). The first module includes KIT, KRAS, NRAS, TP53, and
LAMAY (Figure[2.14), which are collectively mutated in 62 % (33) of the 53 patients.
All five of these genes were identified as containing significantly recurrent mutations
by Wang et al. The second module contains perfectly exclusive mutations in JMJD1C
and CBL, which are mutated in 30 % (16) of the 53 patients. CBL is the third most
somatically mutated gene in the Wang et al. study, and Wang et al. described a
role for CBL as a negative regulator of RTKs, including KIT. However, mutations
in CBL and KIT are not significantly exclusive (P = ® = 0.253). This is because
CBL is mutated in only six samples, one of which also has a mutation in KIT.
Furthermore, the exclusivity between mutations in the gene triple, KIT, KRAS, and
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CBL, is less significant (& = 0.023) than the mutations in the gene triple, KIT,
KRAS, and NRAS (¥ = 0.002). Interestingly, all the mutations in JMJDIC are
germline variants (Wang et al. noted a significant enrichment of germline variants in
JMJD1C). Thus, CoMEt identified mutual exclusivity between germline mutations
in JMJD1C and somatic mutations in CBL.
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3 LAMA4 (2) [ | |

KIT
Sample IDs

Coverage: 62.26% (33/53)

C (est - @:wuorc d - amuic cro) [N N Y I
)

CBL (6
Sample IDs

Coverage: 30.19% (16/53)

Figure 2.14: Statistically significant modules identified by CoMEt (with £ = 3,¢ = 1) on ICGTs
from Wang et al. [27]. (a, ¢) Marginal probability graphs of the two modules. (b, d) Mutation
matrices of the two modules. Representation as in Figure 2.10}

We further investigated these modules by running CoMEt with parameters o =
3,t = 2,k = 3 in order to to identify multiple gene sets simultaneously (Additional
file 2: Table S9). The highest scoring collections included KIT and KRAS in one
gene set, and JMJDI1C and CBL in the other. This suggests that the mutations in
these two pairs of genes co-occur, and indeed 6 samples have a mutation in either
JMJD1C or CBL and either KIT or KRAS (co-occurrence P = 0.28 by Fisher’s
exact test). With only 53 samples in this dataset, it is difficult to identify all of
the subtle relationships between mutual exclusivity and co-occurrence in larger sets
of genes. Nevertheless, these results show the advantages of CoMEt analysis over
pairwise tests of mutual exclusivity.

2.3.3 Comparisons to other methods on real data

We compared CoMEt to the Multi-Dendrix [1I] and mutex [63] algorithms on the
TCGA GBM dataset from Leiserson et al. [I] and the TCGA AML [5] dataset. We
did not compare on the TCGA BRCA or STAD datasets because CoMEt analyzes
subtype-specific mutations, while Multi-Dendrix and mutex do not. We also provide
a separate comparison to the muex algorithm [62] on GBM data in Appendix ,
as muex does not identify multiple sets of alterations simultaneously. We ran Multi-
Dendrix and mutex with default parameters, except that we set the maximum size
of the mutex result groups to 4. We compared the modules output by CoMEt with
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the consensus output by Multi-Dendrix and the default output of mutex. We list
the modules identified by Multi-Dendrix and mutex in Tables S10 and S11.

Glioblastoma multiforme (GBM) We compared CoMEt’s results to the con-
sensus modules reported by Leiserson et al. with Multi-Dendrix [I] on the TCGA
GBM dataset [6] from Leiserson et al. (Additional file 2: Table S10(a)). Both CoMEt
and Multi-Dendrix identify modules overlapping the Rb, p53, and PI(3)K signaling
pathways. However, there are several key differences. First, CoMEt correctly places
CDKN2A in a module with both the Rb and p53 signaling pathways, consistent with
the figure in the TCGA GBM publication [6], while Multi-Dendrix does not. Second,
in the module overlapping the PI(3)K pathway, CoMEt includes NF1 and amplifica-
tions in EGFR, the latter alteration not analyzed in the Multi-Dendrix publication

.

We performed two comparisons with mutex. First, we ran mutex without an
input signaling network. Mutex reported a single connected component with 125
genes (Figure and Additional file 2: Table S11(a)). Although this component
overlaps the four signaling pathways mentioned in the TCGA GBM paper [6], too
many genes are included due to pairwise exclusivity with individual genes in the
well-known signaling pathways. This makes it difficult to interpret the results. Next,
we ran mutex with its default input signaling network to see whether limiting the
search space would improve the mutex results (Figure and Additional file 2:
Table S11(b)). Again, mutex reported a single connected component, this time with
16 genes. The component contains multiple mutually exclusive relationships also
reported by CoMEt (for example, exclusivity between mutations in CDK/4, RBI,
and CDKN2A), but the CoMEt results are much easier to interpret because they
include multiple modules. Even without the prior knowledge of protein interactions,
the CoMEt results are arguably superior to those of mutex.

Figure 2.15: mutex results on the TCGA GBM dataset from Leiserson et al. [I].
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Figure 2.16: mutex results on the TCGA GBM dataset from Leiserson et al. [I] with mutex’s
default signaling network.

The comparison between CoMEt and mutex demonstrates several key advan-
tages of our approach. First, although mutex’s results were indeed improved when
using the signaling network, the massive differences between mutex’s results with
and without the network indicates that mutex relies heavily on the network for prior
knowledge. By not using prior knowledge, CoMEt can identify more novel combina-
tions of mutations. Second, mutex’s reliance on the signaling network makes it more
difficult for it to handle different types of aberrations compared to CoMEt. This
is because when using a signaling network, aberrations must be mapped to single
genes. But this is typically difficult for copy number aberrations that span a large
region containing many genes. Mapping these aberrations to a signaling network
is a difficult computational problem, and may obscure the underlying exclusivity
between these copy number aberrations and other alterations. In contrast, CoMEt
handles any types of aberrations as separate entries in the alteration matrix.

Acute myeloid leukemia (AML) We ran Multi-Dendrix and mutex on the
TCGA AML dataset [5]. We did not run mutex with a signaling network because
many of the alterations in the AML dataset are for groups of genes (for example,
protein tyrosine phosphotases; see [5]). Multi-Dendrix reports a single consensus
module that includes 19 genes (Figure and Additional file 2: Table S10(b)),
and mutex identifies a connected component with 17 genes (Figure and Ad-
ditional file 2: Table S11(c)). The size and complicated topology of these results
make them difficult to interpret, especially compared to the CoMEt results, which
include four different modules with 3 to 7 alterations each (Figure[2.10)). However, it
is clear that while both Multi-Dendrix and mutex identify mutually exclusive muta-
tions also identified by CoMEt (for example, mutual exclusivity between mutations
in PML-RAR«, NPM1, and RUNXT), they also miss key relationships (for example,
exclusivity of mutations between TET?2, IDH2, and the protein tyrosine phosphatase
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group).

Figure 2.17: Multi-Dendrix results on the TCGA AML dataset [5].

Figure 2.18: mutex results on the TCGA AML dataset [5].

2.3.4 Robustness of CoMEt results on real data

Bootstrapping We used a bootstrapping approach to determine the robustness
of the results from CoMEt. We sampled with replacement from the TCGA GBM
dataset from Leiserson et al. [I] to generate resampled datasets. For each resampled
dataset, we ran CoMEt and compared the output modules to the modules obtained
on the whole dataset. We recorded the number of genes in common and the number of
additional genes found by CoMEt in the resampled datasets (Figure 2.19h). CoMEt
recovered an average of 11 from the 17 genes in the modules from the whole dataset,
and found an average of 8 additional genes. The genes in the most exclusive triples
were recovered the most often (Figure 2.20h): CDKN2A(D)-TP53-MDM2(A) (at
least 68 % of datasets), CDKN2A(D)-CDK/(A)-RB1 (84 %), and PTEN-PTEN (D)-
IDH1 (88%).
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Figure 2.19: Robustness of CoMEt on TCGA GBM [6] datasets from Leiserson et al. [I]. Datasets
were (a) bootstrapped and (b) down-sampled to include only 50% of the samples. We ran CoMEt
on 25 such datasets, and computed the number of recovered genes (x-axis) and number of additional
genes (y-axis) compared to the CoMEt results on the full dataset. For comparison, the CoMEt
results on the full dataset included 17 genes (black line).

Downsampling We also compared the CoMEt results on TCGA GBM dataset
from Leiserson et al. [I] to the results obtained with only half the samples from this
dataset. We created 25 datasets, each containing a random selection of 131 (50%)
of the samples. For each 50% dataset, we ran CoMEt on the resampled datasets
(Figure [2.19b). Across the 25 datasets, CoMEt recovered an average of 11 from the
17 genes in the modules from the whole dataset, and found an average of 7 additional
genes. We also computed how often CoMEt recovered the pairs in the CDK/-RB1-
CDKN2A triple 84 % of the time, and the pairs in the TP53-MDM2-CDKN2A and
the PTEN-PTEN (D)-IDH1 triples 48 % of the time (Figure [2.20b). This demon-
strates that the results of CoMEt are fairly robust to changes in the number of
samples. However, the well-known cancer pathways are found less frequently than
in the bootstrapping results above, demonstrating that robust detection of mutual
exclusivity does require a sufficient number of samples. Further theoretical analyses
of the number of samples required to detect mutually exclusive sets are reported in
[104).

2.4 Discussion

We introduce the CoMEt algorithm for identifying collections of mutually exclusive
alterations in cancer de novo, that is, with no prior biological knowledge. CoME#t uses
a novel statistical score for exclusive alterations that conditions on the frequency of
each alteration and thus can detect exclusivity of rare mutations. CoMEt overcomes
large computational challenges in computing the score using a new algorithm for
contingency table analysis, and in optimizing the score in genome-scale data using
the first Markov chain Monte Carlo (MCMC) algorithm for identifying collections of
multiple sets of exclusive alterations.
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Figure 2.20: Robustness of the modules identified by CoMEt on the TCGA GBM [6] dataset
from Leiserson et al. [I]. We ran CoMEt on TCGA GBM datasets (a) bootstrapped (sampled with
replacement) and (b) down-sampled to include only 50% of the samples. Shown is the marginal
probability graph output by CoMEt on the TCGA GBM dataset. Nodes and edges are labeled
with the proportion of down-sampled datasets in which they were identified by CoMEt. The most
mutated genes in each of the Rb, p53, and PI(3)K signaling pathways were identified on at least
68% (17/25) and 80% (20/25) of the bootstrapped and down-sampled datasets, respectively.
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We demonstrate that CoMEt is superior to earlier de movo methods — Den-
drix [38], muex [62], Multi-Dendrix [1], and mutex [63] — on simulated and real data.
We then apply CoMEt to large mutation datasets from multiple TCGA cancer types
[0, B, 8, B55]. On each dataset, CoMEt identifies significantly exclusive collections
of alterations that overlap well-known cancer pathways and also implicates novel
cancer genes. In addition, CoMEt illustrates subtle relationships between mutual
exclusivity resulting from cancer subtypes and exclusivity resulting from pathways
or protein interactions. These findings provide testable hypotheses for further down-
stream analysis or experimental validation.

The input to CoMEt is a matrix of binary alterations, and thus can be used to
analyze a variety of alterations including point mutations and indels, copy number
aberrations (amplifications and deletions) and complex rearrangements, splice-site
mutations, gene fusions, and subtype annotations. CoMEt may be useful in the
analysis of other types of alterations, such as germline variants.

Another application for CoMEt is pan-cancer analysis, such as the recently pub-
lished TCGA study [52] and the upcoming ICGC Pan-Cancer Project. Since pan-
cancer datasets have many cancer-type-specific alterations, CoMEt’s ability to si-
multaneously analyze type-specific and other types of exclusive alterations should
prove useful for this analysis. Finally, we anticipate that the novel tail enumeration
strategy used in CoMEt may be of broader interest, both for examining mutual ex-
clusivity in other datasets, including non-biological data, as well as for adapting for
other types of exact statistics.



Chapter 3

A Weighted Exact Test for the
Significance of Mutually Exclusive
Mutations

In this chapter, we present a weighted test for mutual exclusivity that uses per
gene, per sample mutation probabilities. We set these mutation probabilities based
on the observed number of mutations in each gene and sample, and we apply this
weighted test to tumors from two cancer types — colorectal and endometrial — with
high and a highly variable number of mutations per sample. At the time of writing,
most of the material in this chapter is in submission at the European Conference on
Computational Biology [50]. 1 am the first author on the submission, and want to
acknowledge Matthew Reyna (a co-author on the paper) for deriving the saddlepoint
approximation presented in this chapter.

3.1 Background and related work

As we have discussed throughout the first two chapters, a key challenge in cancer
genomics is distinguishing the small number of somatic mutations that drive can-
cer from the vast majority of mutations that accumulate randomly. The ability to
distinguish these driver mutations from the random passenger mutations may lead
to better understanding of cancer biology and personalized therapies customized to
a tumor’s mutational profile. However, large scale cancer sequencing efforts such
as The Cancer Genome Atlas (TCGA) [105], 106, 107] and the International Cancer
Genome Consortium (ICGC) have shown that many driver mutations are rare across
patient cohorts and thus distinguishing the driver mutations from the passengers by
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their frequency of occurrence is a difficult problem.

Driver mutations are hypothesized to group into a small number of pathways or
hallmarks [I§], and this hypothesis is a widely accepted explanation for the observed
mutational heterogeneity of cancer [17]. Thus, researchers have developed methods
to identify combinations of mutations using varying levels of prior knowledge, from
pathway databases [108, 109, [30], protein-protein interaction networks [110, 11T
112], 113], or de novo methods that use no prior knowledge [114, [1T5] 11T, 116, 117,
118, 119, 120} 121]. De novo methods are advantageous because prior knowledge of
pathways and interactions is often noisy or unavailable.

The vast number of possible combinations of mutated genes makes complete de
novo discovery of combinations computationally and statistically intractable. Thus,
de novo methods to date rely on the observation that mutations within the same
pathway are often mutually exclusive across tumors [30, B7]. In recent years, a
number of algorithms have been introduced to search for mutually exclusive sets of
mutations. These methods differ in how they score mutual exclusivity and in how
they identifying the best scoring set(s) of mutations.

The first type of score for mutual exclusivity is a combinatorial score, such as the
scores employed in [IT4] 1T5], 116]. For example, in the Dendrix algorithm [IT5], the
score for a set M is the difference between the number of samples with a mutation
in M (coverage) and the number of mutations in M occurring in more than one
sample (coverage overlap). The advantage of a combinatorial score is that it is easy
to compute, but it was observed by [120] and others that the score is often biased
towards sets with frequently mutated genes.

The second type of score for mutual exclusivity is a statistical score [I11], 117,
118] 120l 121), 119]. A particularly useful statistical score for exclusivity is based
on exact distribution that conditions on the observed number of mutated samples
in each gene [120, 119]. For a pair of mutations, such a test is a one-sided Fisher’s
exact test [122] 120 119]. For more than two genes, [120] generalized the exact test
to multi-dimensional contingency tables, as presented in Chapter 2. They introduced
the CoMEt algorithm that computes a generalization of Fisher’s exact test for gene
sets of any size using either an exact test or approximation. They showed that
conditioning on the number of mutations in each gene reduces bias towards frequently
mutated genes compared to combinatorial scores.

Statistical scores that condition only on mutation frequencies do not account
for the variation in mutation rate among tumors. It has been observed that the
number of mutations in a tumor can vary over several orders of magnitude (e.g.,
see [16, 17, 123]). For example, colorectal tumors with microsatellite stability have
a median of 66 nonsynonymous mutations, but colorectal tumors with microsatellite
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instability have a median of 777 mutations [16]. Another example is from [106], who
classified a subset of TCGA endometrial cancers as ultramutated or hypermutated.

Another useful statistical test for mutual exclusivity conditions on both the num-
ber of mutated samples in each gene and the number of mutated genes in each
sample [111], [121]. Since computing this exact distribution is not computationally ef-
ficient, permutation tests are used. The permutation tests, which compare observed
results to a number of samples (~10%) drawn from a null distribution, are more
tractable than the exact tests on genome-scale data, but the significance of the score
is directly limited by the number of permutations. MEMo [I11] computes the sig-
nificance of the coverage (number of mutated samples) of M using this permutation
distribution for sets of any size k. MEMCover [12I] computes the significance of the
exclusivity of pairs to search for exclusivity within, between, and across cancer types.
Both MEMo and MEMCover test sets of genes that interact in a protein-interaction
network. To our knowledge, there is no method for quickly computing the signifi-
cance of mutual exclusivity conditioned on both the observed number of mutations
per gene and number of mutations per sample. Moreover, the permutation tests have
not been applied across all sets of genes, without restricting to interacting sets.

3.1.1 Contributions

We introduce a weighted exact test for exclusivity that conditions on the number
of mutations in each gene in M while incorporating the probability that each gene
is mutated in each sample. We use this model to approximate the fixed gene and
sample frequency permutation test quickly and accurately by estimating the muta-
tion probabilities from the null distribution of the permutational test. We present
a formula for computing this test exactly and derive a saddlepoint approximation
for arbitrarily sized groups of genes. We show that the saddlepoint approximation
is both fast and accurate, and can approximate the permutational distribution. We
also demonstrate that the saddlepoint approximation can be used to rapidly com-
pute the CoMEt statistical test, which is a special case of the weighted test where
the mutation probabilities for a given gene are the same in each sample.

We use the weighted exact test to identify sets of exclusive mutations in hundreds
of colorectal and endometrial cancers. Cancer of these types often have the extremely
high mutation rates (e.g., see [16]), which makes them difficult to analyze when
conditioning only on the number of mutations per gene. However, our weighted
statistical test allows us to effectively condition on the number of mutations per
sample, and we identify exclusive patterns of mutations in these cancers that were
missed by earlier approaches. We find that the weighted enrichment test identifies
more biologically interesting sets than the exact test used by CoMEt [120]. We expect
that the weighted test for mutual exclusivity will prove useful for many cancer types
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where defects in DNA damage or environmental exposures, e.g., ultraviolet light,
lead to very high mutation rates in some samples.

3.2 Methods

We observe the presence of mutations across genes in a collection of samples. For a
set M of genes, a sample s has a mutually exrclusive mutation if there exists one and
only one gene g € M with at least one mutation in s. Our goal is to identify sets
M of genes with statistically significant number of samples with mutually exclusive
mutations.

We derive a mutually exclusive mutation score W that incorporates the above
observations with a per-gene, per-sample mutation probability. For a set M of k
genes, the score W(M) computes the probability of observing at least ¢ samples with
mutually exclusive mutations given the number of mutations observed in each gene
and the probability of observing a mutation in each gene and each sample. We
derive methods for computing this tail probability exactly, and we construct a fast
and accurate saddlepoint approximation for the score.

The score V¥ is a generalization of the score ® introduced by [120]. For a set M of k
genes, the score ® (M) is equivalent to computing how often permuting the mutations
observed in each gene across other samples results in more exclusivity. We show how
our saddlepoint approximation can be used to compute accurate approximations of
®(M) much faster than the method used by [120]. We also show how to use ¥ to
approximate a variant of the permutation test described above when the number
of mutations per gene and mutations per sample is fixed, which was used by [111]
and others [I121I] but is too prohibitive to be computed exactly (e.g., both [I11), 121]
sample 10,000 permuted matrices).

3.2.1 Weighted exact test for mutually exclusivity

Let {g:}i, be a set of genes and {s;}}_; be a set of samples. For each sample, we
observe the the presence of one or more mutations in each gene, and we construct
the per-gene, per-sample binary mutation matrix A € {0,1}"*", where A = [a;;]
with a;; = 1 if gene g; has at least one mutation in sample s; and a;; = 0 otherwise.

A set of genes {g;}iem has co-occurring mutations in sample s; if every gene
is mutated in that sample, i.e., a;; = 1 for every i € M. Alternatively, a set of
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genes M has a mutually exclusive mutation in sample s; if one and only one gene
is mutated in that sample, i.e., there exists £ € M such that a;; = 1 for ¢« = £ and
a;; = 0 otherwise. Our goal is to identify sets {g; }ien of k genes with a statistically
significant number of samples with mutually exclusive mutations in A.

Let r; = 2?21 a;; be the number of samples with mutations in g;, let ¢; = Z:’il aij
be the number of mutated genes in s;, let z); be the number of samples with co-
occurring mutations in {g; }ienr, and let ¢, be the number of samples with mutually
exclusive mutations in {g; }icns-

We derive our model following [124], who developed a two-variable weighted
enrichment test for highly expressed genes. We assume that {X;;}7_; is a set of
mutually independent Bernoulli trials with success probabilities P = [p;;], i.e.,

PI'(Xij _ 8) _ {pij7 (= 17 (31)

1_p2j7 6207

where p;; is the probability that gene g; is mutated in sample s;. Let Th; be a
random variable with T, ; = 1 if s; has a mutually exclusive mutation in {g; }icm
and Ty ; = 0 otherwise. If Y; = Z?Zl X and Ty = Z?Zl T j, then we want to find
the probability of observing at least t;; samples with mutually exclusive mutations
in {g;}icnr given that g; is mutated in r; samples, i.e.,

where Y = [Yi|ienr and 7 = [1]ienr.

Note that, for any gene g;, the conditional assumption of Y; = r; implies that

by the definitions of {X;;}7_, and Y.

Computing the tail probability

Our test for exclusivity requires computing the tail probability in Eq. [3.2] which can
be computationally expensive. We compute the tail probability using two different
strategies: an exact test and a saddlepoint approximation.
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Exact test. We present an exact test for computing the conditional tail probability
in Eq. for sets M of any size k. We compute the marginal probabilities in the
denominator using dynamic programming, which is a standard method for computing
the Poisson-Binomial probability mass function [125]. We then use the following
recursive formula for computing the joint probability Pr(Ty; >ty | X = r), where

PI‘(TMth‘X:T):F(tM,’l“l,...,’l”k,n) (33)
with
F(tyxy,... x5, j) =
k
. 3.4
Z Hqijﬂ'iF(wﬂ'(t)ayfn(xl)a'"7y7rk(xk)aj - 1)a ( )
0,1}k i=1
where
Dij if £ = 1,
g = 3.5
gt {0 otherwise, (8:5)
t—1 if S =1,
wat) = 2 (36)
t otherwise,
and

T otherwise.

yz(x):{xq if0=1, 57)

The base cases for Eq. [3.4] are:

I, t=x1=--=2,=7=0,
0, min{t,zy,...,2%,7} >0o0r
t>2f:1xi or

k

F(tyzy, ... x5, j) =

Saddlepoint approximation. We derive a saddlepoint approximation [126] for
computing the conditional tail probability in Eq. This approach is similar
to [124], which use a saddlepoint approximation for a weighted enrichment test for
differentially expressed genes in Gene Ontology categories. The saddlepoint approx-
imation is specifically designed to provide a quick and accurate approximation of the
tail probability. We present the key equation in (3.9).

Pr(Tyr > tar | X = 1) ~ 1 — B() — (D) (i - %) | (3.9)

where
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® and ¢ are the cumulative distribution and density functions, respectively, of
the standard normal distribution;

e 0 is defined by

V2sgn (i1 \/ZICX () —g" (@ —2);

eM

e ¢ is defined by

yk:-i-l K (7
=2 smh >
\/HZGM Kl (2:)

e the moment generating function of {X;};cps is

Mx()\) = E[eZieM /\z‘Xz‘];

e the joint cumulant generating function of {X;};eps is

Kx(A\) = log Mx()\);

e the cumulant generating function of X; is Kx,(A);

e the gradient vector and the Hessian matrix of Cx(\) are K (A) and K% (A),
respectively;

= (r1,....re,2—3%) and § = (G1,...,Jwr1), where g is the solution to
K’ (§) = &, with g1 # 0 for (3.9) to be defined; and

A

® = (Z1,...,%,0), where Z is the solution to K’ (#;) = ;.

3.2.2 Computing per-gene, per-sample mutation probabili-
ties

Our model requires a matrix P of per-gene, per-sample background mutation prob-
abilities with Pr(X,; = 1) = p;;. We estimate P from the permutational distribution
where both the row and column sums of A are fixed. This permutational distribution
has been used to examine mutual exclusivity in multiple previous studies [ITT], T21].
Both [I11] and [121] sample N = 10* matrices to approximate tail probabilities from
this distribution. By estimating P from the permutational distribution, we can use
the weighted test to approximate the tail probability of the permutational test with
greater significance.

To estimate the probability an individual gene is mutated in a given sample,
we generate an empirical distribution of N permuted matrices with fixed row and
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column sums. We then compute p;; as the proportion of permuted matrices in which
gene g; is mutated in sample s;. In the case when a gene g; is never observed to be
mutated in sample s;, we set p;; = ﬁ so that p;; > 0 for all 4, j. In other words,

N

~ - 1

Py = [pij] = N E I, A,
=1

where II;A is a random permutation of the mutation matrix A that preserves row
and column sums of A, and

Dij, Dij >0,
P = il =
v = [P {ﬁ, otherwise.

3.2.3 Comparison to other scores

In the case when p; = -+ = p;, for each i, the weighted score W(M) is equivalent
to ®(M), the generalization of Fisher’s exact test used in CoMEt [120]. We refer to
this special case as the unweighted test.

Moreover, the weighted score W(M) with mutation probabilities Py approximates
the permutational p-value H (M) conditioned on fixed row and columns sums, where

1
H(M) = = |{B € {ILAYYL, « ) >t}
where T](\f ) is the number of samples with mutually exclusive mutations in M ac-

cording to mutation matrix B and II;A is a permutation of the mutation matrix A
that preserves row and column sums of A; see [I11), 121].

3.2.4 Searching for sets of mutually exclusive mutations

Our goal is to identify sets of mutations with significant W(M). There has been much
work on methods for optimizing scores for mutually exclusive mutations, including
Markov chain Monte Carlo methods [115], 120], integer linear programs [116] 127],
greedy algorithms [119], and others, but this is beyond the scope of this work. In-
stead, we search for mutually exclusive sets M of k genes by enumerating all combi-
nations of genes that satisfy the following basic criteria.

1. The number of samples with exclusive mutations must exceed the number of
samples with co-occurring mutations, i.e., ty; > 2.
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2. Each gene g; € M must be exclusively mutated in at least one sample.

We use the Benjamini-Hochberg procedure [128] to control the False Discovery Rate
(FDR). In practice, we limit k& and the number of genes in the datasets enough that
we can enumerate and test all combinations in a reasonable amount of time.

3.2.5 Implementation

We implemented CoMEt in C. We implemented the saddlepoint approximation in
Python with the SciPy library, which is written in Python, C, C++, and Fortran.
For the permutational test, we used the BiRewire package [77], which is implemented
in R. Our implementation of the saddlepoint approximation is available on http:
//compbio.cs.brown.edu/projects/weighted-exact-test/.

3.3 Results

We compare the results of the weighted test to both the permutational test and
CoMEt on real data, and we apply the weighted test to discover mutually exclusive
sets of mutations in thyroid, colorectal, and endometrial cancers. The rest of this
section is organized as follows. In Section [B.2] we describe the data used in our
experiments. In Section we compare the exact and saddlepoint methods for
computing the unweighted test, and we find that the saddlepoint approximation is
both accurate and fast. In Section [3.3.3] we compare the results of the weighted
exact test and saddlepoint approximation with the permutational test, and we show
that the weighted test is an accurate approximation of the permutational test. In
Section we show that the weighted test is still an accurate approximation of
the permutational test, even with mutation probabilities P estimated from orders of
magnitude fewer permuted matrices. Finally, in Sections |3.3.5| and [3.3.6] we present
the results of the weighted test on thyroid, colorectal, and endometrial cancers.

3.3.1 Data

We analyzed non-synonymous single nucleotide variants (SNVs) and small indels in
the 224 colorectal (COADREAD), 402 papillary thyroid carcinoma (THCA), and 248
uterine corpus endometrial carcinoma (UCEC) samples from The Cancer Genome

Atlas (TCGA) [105, 106, 129]. We analyzed the mutations in the COADREAD
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and UCEC samples from the TCGA Pan-Cancer project [I30] by downloading the
mutations in Mutation Annotation Format (MAF) from Synapsel] We downloaded
the mutations in THCA from Firehosd’ We also downloaded lists of hypermutator
samples for COADREAD and UCEC. We created a list of 35 hypermutator samples
in COADREAD listed in [105] in their Supplementary Table 3, and 82 hypermutator
samples in UCEC listed by [106] as samples labeled “POLE OR MSI” their Supple-
mentary Datafile S1.1. We restrict our analysis to genes mutated in at least 20, 5,
and 30 samples in the COADREAD, THCA, and UCEC datasets, leaving 76, 30,

and 62 genes in each dataset, respectively.

Type
BN Non-hypermutator

BN Hypermutator +
B
o
.
H
v ‘
s i
‘” .iil
10

COADREAD UCEC

.
.

Mutated genes

Figure 3.1: Boxplots of the number of mutated genes per sample in the THCA, COADREAD, and
UCEC datasets. The COADREAD and UCEC samples are further broken down into hypermutators
(blue) and non-hypermutators (red).

We show the distribution of the number of mutations per sample in Figure [3.1}
In general, COADREAD samples have the most mutations (median: 79), with
COADREAD hypermutators mutated in an at least an order of magnitude more
samples than non-hypermutators (median for hypermutators: 800; median for non-
hypermutators: 69). THCA samples have the fewest mutated genes (median: 12)
with no hypermutators, while UCEC samples have more mutations (median: 58) with
UCEC hypermutators mutated in approximately an order of magnitude more samples
than non-hypermutators (median hypermutators: 358.5; median non-hypermutators:

44).

For each dataset, we estimated the weights Py using the permutational procedure
described Section using N = 10® permutations. We show weights for each
dataset in Figure |3.2

"https://doi.org/10.7303/syn1710680.4
Zhttp://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/THCA/20160128/
gdac.broadinstitute.org THCA.Mutation_Packager_Calls.Level_3.2016012800.0.0.tar.

gZ
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Figure 3.2: The weights Py estimated by sampling N = 103 permuted matrices on the THCA,
COADREAD, and UCEC datasets. Samples (z-axis) are sorted by the number of mutated genes in
increasing order from left to right, with hypermutators (right) separated from non-hypermutators
(left) with a dashed line in COADREAD and UCEC. Genes (y-axis) are sorted by the number of
mutated samples in increasing order from top to bottom.

Method Minimum Median Maximum  Total
Exact test (CoMEt)  6.91E-6 7.21E-3 2.32E40  2.21E+3
Saddlepoint 3.26E-3 4.64E-2 521E-2 5.25E+2

Table 3.1: Runtimes (seconds) for 111,495 triples from the THCA, COADREAD, and UCEC
datasets for the unweighted test.

3.3.2 Comparison of methods for computing the unweighted
test on real data

First, we investigated the accuracy and speed of the saddlepoint approximation of
the unweighted test (i.e., the generalization of Fisher’s exact test). We enumerated
triples according to the procedure described in Section |3.2.4]in the THCA, COAD-
READ, and UCEC datasets, and computed the exact test — using the CoMEt soft-
ware from [I20] — and the saddlepoint approximation, assigning p;; = pi2 = **+ = pin
for all ¢ € M. We show a comparison of the p-values and runtimes given by the
two methods in Figure On these datasets, the saddlepoint approximation is
an extremely accurate approximation of the exact test (p? = 0.9999). Additionally,
while the median runtimes of the two tests are similar, the exact test is much slower
for for sets with co-occurring mutations while the saddlepoint is largely unaffected;
see Table We expect the discrepancy between runtimes to grow for sets of larger
sizes.
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Figure 3.3: Comparison of the exact test and saddlepoint approximation for computing the
unweighted p-value of the enumerated triples in THCA, COADREAD, and UCEC. (left) Scatter
plot comparing the p-values given by the exact test (x-axis) versus the saddlepoint approximation
(y-axis). (right) Distribution of the runtime (in seconds) required to compute each method on a
single triple.
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3.3.3 Comparison of methods for computing the weighted
test on real data

Next, we compared the results of methods for computing the weighted test with
the permutational test on pairs of genes from the THCA, COADREAD, and UCEC
datasets. We chose pairs instead of triples because of the prohibitive cost of com-
puting the exact and permutational tests. We considered the exact and saddlepoint
approximations of the weighted test, the permutational test with N = 10* permuta-
tions, and the CoMEt test as a control.

In Table[3.2], we see that the results of the weighted exact test and the saddlepoint
approximation are strongly correlated with the permutational test. The results of the
CoMEYt test are more weakly correlated with the permutational test, showing that
conditioning on the number of mutations in each sample changes the distribution of
mutually exclusive mutations. This discrepancy continues when we restrict ourselves
to the mode of the distributions (p > 107*), where the permutational test has more
power.

The saddlepoint approximation of the weighted test is highly correlated with the
exact test, with a Pearson’s correlation coefficient for the exact and saddlepoint p-
values of 0.996163 for all p. On the tail of the distribution for p < 1074, where the
saddlepoint approximation performs best, the correlation increases to 0.999865.

Also, in Table [3.3] we see that the runtime of the weighted exact test varies
widely because pairs with co-occurring mutations require more computation, but
the runtime of the weighted saddlepoint approximation is more consistent. As a
result, testing all pairs with the exact test requires nearly 2 hours, but testing the
same pairs with the saddlepoint approximation requires slightly over a minute.



62

Pairs CoMEt Weighted Exact Weighted Saddlepoint
All 0.722329 0.999588 0.995926
H(M)>10"* 0.683213 0.999628 0.995412

Table 3.2: Pearson’s correlation coefficient p? of the p-values of pairs of genes from the THCA,
COADREAD, and UCEC datasets of different tests with the permutational test H(M). The
correlations were computed for two sets of pairs of genes: p-values for 5,163 pairs (all) and 4,926
pairs with permutational H (M) > 1074,

Method Minimum Median Maximum Total

Exact 7.31E-2 8.89E-1 3.86E+2  6.72E+3
Saddlepoint 2.53E-3 4.63E-2 1.05E+0  6.63E+1

Table 3.3: Runtimes in seconds of methods for computing the weighted test for 5,163 pairs from
the THCA, COADREAD, and UCEC datasets.

3.3.4 Approximating the permutational test with the weighted
test

We compared the saddlepoint approximation of the weighted test to the permuta-
tional test with N = 10° permutations using gene triples from the COADREAD
dataset, again using the unweighted exact test (CoMEt) as a control. We computed
the saddlepoint approximation using Py for N = 103, three orders of magnitude
fewer permutations than we used for the permutational test. The p-values predicted
by CoMEt and the permutational test are weakly correlated in the tail (p? = 0.67
for permutational p < 0.001; see Figure ) In contrast, the saddlepoint ap-
proximation of the weighted test does provide an accurate approximation of the
permutational test. The saddlepoint approximation and permutational p-values are
highly correlated in the tail (p*> = 0.986 for permutational p-values p < 0.001; see
Figure ) Moreover, the saddlepoint approximation of the weighted test is an
accurate estimate of the permutation test to within one or more digits for most gene
triples and within a factor of two for all triples. Furthermore, despite the much
lower number of permutations used to generate Py, the saddlepoint approximation
can make more significant predictions than the permutational test, and it is orders
of magnitudes faster.

3.3.5 Mutually exclusive mutations in thyroid carcinomas

We computed the p-values for all triples of genes that were each mutated in at least
5 of the 402 thyroid carcinomas in the THCA dataset. The weighted test identifies
48 triples with significantly exclusive mutations (FDR < 0.001), while the CoMEt
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Figure 3.4: Comparison of p-values and runtimes of different statistical tests on COADREAD,
THCA, and UCEC pairs. (a-b) Scatter plots comparing the permutational test with 10 permuta-
tions against (a) Fisher’s exact test (CoMEt) and (b) the weighted exact test. (c¢) The weighted
exact test plotted against the saddlepoint approximation of the weighted test. (d) Boxplots of the
runtimes for computing the weighted exact test (red) and the saddlepoint approximation (blue) for
each pair of genes in the datasets.
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Figure 3.5: Comparison of the CoMEt (unweighted) test (left, y-axis) and the saddlepoint ap-
proximation of the weighted (right, y-axis) test to the permutational test (z-axis) on triples from
the COADREAD dataset. The saddlepoint approximation uses mutation probabilities Py esti-
mated from N = 102 permutations, while the permutational p-values were computed with N = 10°
permutations.

exact test identifies 38 triples (FDR < 0.001).

The top 25 ranked triples by both tests are identical, which is not surprising since
THCA samples have low mutation rates compared to most cancer types (see [16]
and Figure . In addition, the p-values for the top ranked tripes are all within a
few orders of magnitude, demonstrating that the two tests are very similar on this
dataset.

The top triples include many known thyroid cancer genes. The top five triples
include seven genes, five of which are well-known cancer genes with known roles in
thyroid cancer [I07]: BRAF, HRAS, NRAS, EIF1AX, and ATM. The other two genes
are BDP1 and TG, both of which may play a role in cancer. [131] describe a role for
BDP1 in AKT signaling, which was also noted in TCGA thyroid publication[107]),
although BDP1 is greater than 11,000 amino acids in length so may accumulate
many passenger mutations. TG is the thyroglobulin gene, and is used as a tumor
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CoMEt rank Weighted Rank Triple ®(M) (M)
1 1 BRAF, HRAS, NRAS 1.79E-22 1.43E-27
2 p BRAF, EIFIAX, NRAS 2.27E-16 2.01E-20
3 3 BDP1, BRAF, NRAS  270E-14 4.72E-18
4 4 BRAF, NRAS, TG 3.51E-13 4.57E-17
) ) ATM, BRAF, NRAS 6.58E-13  1.63E-16

Table 3.4: Five most significant triples identified by CoMEt p-value ®(M) and the weighted test
p-value ¥(M) on the THCA dataset. Genes in bold are among the 600 longest genes (at least 9560
amino acids).

marker in papillary thyroid carcinomaP}, which is the same subtype of thyroid cancer
analyzed in TCGA.

3.3.6 Mutually exclusive mutations in colorectal cancers and
endometrial carcinomas

We expect that the difference between the CoMEt exact test and weighted test
would be more pronounced on cancer types with higher and highly variable muta-
tion rates. Thus, we computed p-values on triples of genes from colorectal cancers
(COADREAD) and endometrial carcinomas (UCEC). We find that the weighted test
predicts more biologically interesting triples than the exact test used by CoMEt. The
weighted test identifies 5,286 and 6,790 triples (many of which overlap) with signif-
icantly mutually exclusive mutations (FDR < 0.001) in the 224 COADREAD and
248 UCEC samples, respectively. In contrast, CoOMEt computes 4 and 130 triples
with significantly mutually exclusive mutations (FDR < 0.001).

Compared to the CoME#t results, the highest ranked triples by the weighted test
include fewer long genes that tend to accumulate random, passenger mutations —
especially in samples with high mutation rates (Tables 3.5 and [3.6)).

On COADREAD, the weighted test identifies ten different genes in the five most
significant triples (Table . Nine of these genes are well-known cancer genes —
BRAF, KRAS, NRAS, ACV2RA, PIK3CA, TP53, ATM, TGFBR2, and ARIDI1A —
while the tenth gene (ABCA12) is known to have an association with colorectal can-
cers [132]. The CoMEt results are similar — two of the top five triples identified by the
weighted test are in the top five triples identified by CoMEt — but CoMEt does not
identify ARIDIA, TGFBR2, KRAS, or NRAS. Further, the three additional genes
identified by CoMEt — APC, FAT2, and WDFY3 — are all in the top 600 longest

3http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/
62800
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CoMEt rank Weighted Rank Triple & (M) (M) Hypermutator mutations
1 2 ACVR2A, PIK3CA, TP53 2.65E-07 3.59E-18 31
2 31 APC, BRAF, PRDM2 5.44E-07 2.74E-13 33
2 33 APC, BRAF, WDFY3 5.44E-07 2.84E-13 32
4 3 ATM, PIK3CA, TP53 5.87E-07 1.37E-17 24
5 70 APC, BRAF, FAT2 1.93E-06  6.28E-12 35
6 1 BRAF, KRAS, NRAS 2.50E-06 7.05E-19 26
1 2 ACVR2A, PIK3CA, TP53 2.65E-07 3.59E-18 31
4 3 ATM, PIK3CA, TP53 5.87E-07 1.37E-17 24
9 4 ABCA12, TGFBR2, TP53 4.29E-06 1.65E-16 28
10 5 ARID1A, TGFBR2, TP53 5.89E-06 2.26E-16 29

Table 3.5: Five most significant triples identified by CoMEt (upper 5) and the weighted test
(lower 5) on the COADREAD dataset. Genes in bold are among 600 longest genes (at least 9560
amino acids).

CoMEt rank Weighted Rank Triple & (M) W (M) Hypermutator mutations
1 20 CACNAI1E, PTEN, TP53 3.11E-12 4.08E-30 T
2 21 LAMAZ2, PTEN, TP53 4.13E-12 5.76E-30 T
3 28 PTEN, RYR2, TP53 4.60E-12 3.29E-29 78
4 24 NBEA, PTEN, TP53 8.40E-12 2.21E-29 76
5 35 FAT4, PTEN, TP53 1.23E-11 2.04E-28 75
22 1 CTNNB1, RPL22, TP53 2.11E-10 1.34E-41 47
44 2 CTNNB1, KRAS, TP53 3.05E-09 2.21E-37 48
55 3 CTNNB1, MLL{, TP53 4.26E-08  9.99E-36 42
57 4 CTCF, CTNNB1, TP53 4.84E-08 5.94E-35 43
60 5 CTNNBI1, RYR1, TP53 1.14E-07 1.66E-34 40

Table 3.6: Five most significant triples identified by CoMEt (top 5) and the weighted test (bottom
5) on the UCEC dataset. Notation as in Table

genes in the human genome (at least 9560 amino acids). While mutations in APC
are well-known to play a role in colorectal cancers, there is currently little evidence
for the roles of FAT2 or WDFYS3 in cancer, and it is likely that these long genes
have accumulated many passenger mutations, particularly in hypermutated samples.
Also of note is the fact that the number of hypermutator samples that contain muta-
tions in the top triples from the weighted test are not appreciably different from the
number of hypermutator samples that contain mutations in the top triples from the
CoME{ test. This demonstrates that the weighted test is not systematically exclud-
ing hypermutator samples from consideration, but rather weighting the contribution
of these samples appropriately in evaluating the significance of mutual exclusivity.

On UCEC, the differences between the weighted test and CoMEt are even more
pronounced. The weighted test identifies seven genes in the top five most significant
triples (Table . These include six genes with known roles in cancer — CTTNBI,
TP53, RPL22, KRAS, C'TCF and MLL/ — with only one gene, RYRI, with likely
spurious mutations. In contrast, the top five triples ranked by CoMEt include PTEN
and TP53 — two well-known cancer genes — but also five genes with no known role
in cancer that are all longer than 11,000 amino acids: CACNAI1E, LAMA2, RYR2,
NBFEA, and FAT). Further, none of the top five triples identified by the weighted test
are in the top twenty CoMEt triples. Finally, the CoMEt triples include many more
mutations in hypermutator samples (ranging from mutations in 75 to 78 of the 81
hypermutators, versus 40 to 47 for the weighted test triples). This further demon-
strates how the results of the CoMEt test are skewed by hypermutator samples,
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while the weighted test incorporates the contribution of these samples appropriately
in evaluating the significance of mutual exclusivity.

3.4 Discussion

We introduce a weighted exact test for the mutual exclusivity of mutations in can-
cer. We use this statistical test to approximate the permutation test for exclusivity
where the number of mutations in each gene and each sample are fixed. To do so,
we estimate per-gene, per-sample mutation probabilities directly from the permu-
tational distribution. We derive an exact test and a saddlepoint approximation for
computing the tail probability using sets of any size, and we demonstrate the ac-
curacy and efficiency of the saddlepoint approximation on genome-scale mutation
datasets. Together, these contributions allow us to overcome the significant com-
putational challenge of finding highly significant sets of mutations according to the
permutational distribution.

We then demonstrate the weighted test on three datasets with hundreds of sam-
ples from TCGA, including colorectal and endometrial cancers that have high vari-
ability in the number of mutations per sample. The weighted test identifies sets of
mutually exclusive mutations including known cancer genes in each dataset, and its
results include many fewer long genes and mutations in hypermutator samples than
the results of the unweighted exact test from CoMEt [120].

There are several avenues for improving analysis with the weighted test. The
input to the weighted test is a binary mutation matrix, and while we restricted
our study to non-synonymous SNVs and indels, we may want to incorporate other
types of aberrations, such as copy number aberrations and gene fusions, into the
input to our test. We searched for mutually exclusive mutations by enumerating
sets containing the most mutated genes, but the weighted test could easily be used
in existing algorithms for optimizing mutual exclusivity scores (e.g., the MCMC
from [115] or the greedy approach from [I119]) or for searching for multiple sets si-
multaneously (e.g., from [120]). We estimated the per-gene, per-sample mutation
probability weights directly from the permutational distribution, but we also an-
ticipate alternative methods for setting the weights that incorporate different gene
or sample attributes, such as gene length, to further reduce the number of false
positives.

The weighted exact test may be of broader interest beyond searching for mutually
exclusive mutations, both in other areas of computational biology and other disci-
plines. For example, statistical tests of “presence-absence” matrices with fixed row
and column sums are a common tool in ecology for looking at species-associations,
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but can be computationally prohibitive (e.g., [I33]). The weighted exact test pre-
sented here may offer a fast, alternative approach for computing the significance of
associations within a reasonable amount of accuracy.



Chapter 4

Searching for Significantly
Mutated Subnetworks

In this chapter, we present the HotNet2 algorithm for identifying significant clusters
of mutations on a PPI network. Protein-protein interaction (PPI) networks are often
used to identify groups of functionally related genes, such as protein complexes or
pathways. PPI networks are often “small world” graphs, meaning that most nodes
remain within a few hops of every other node, even when the graph has thousands of
nodes. This complicates the problem of identifying significant clusters of mutations
on the network, as most genes are within a few hops of a frequently mutated gene.

We apply HotNet2 to The Cancer Genome Atlas’s Pan-Cancer dataset, which
includes 3,271 tumor samples from twelve cancer types. We demonstrate that Hot-
Net2 identifies subnetworks overlapping well-known cancer pathways and complexes,
as well as subnetworks overlapping complexes with potentially novel roles in cancer.
We also demonstrate that HotNet2 identifies potential cancer genes missed by single
gene tests, and outperforms related methods on both simulated and real mutation
data.

Most of the completed work in this chapter is taken from [51], on which T am a
co-first author. My major contributions to the paper were in developing the HotNet2
algorithm (with Benjamin Raphael, Fabio Vandin, and Hsin-Ta Wu) and performing
many of the experiments on real and simulated data. I applied HotNet2 as part of
the TCGA Pan-Cancer subtypes [134] and papillary kidney cancer [12] projects, in
a study of somatic and germline mutations in ovarian cancer [135], and contributed
to the HotNet2 analysis in the TCGA stomach cancer project [55]. T also note that
HotNet2 was applied as part of the TCGA adrenocortical carcinoma [4] and thyroid
cancer [13] projects.

68
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4.1 Background and related work

Recent whole-genome and whole-exome sequencing studies have provided an ever-
expanding survey of somatic aberrations in cancer, and have identified multiple new
cancer genes [8, 6l 10, 5], O] 136, 2], 11]. At the same time, these studies demonstrated
that most cancers exhibit extensive mutational heterogeneity with few significantly
mutated genes and many genes mutated in a small number of samples [16, 22]. This
“long tail” phenomenon complicates efforts to identify cancer genes by statistical
tests of recurrence, as rarely mutated cancer genes may be indistinguishable from
genes containing only passenger mutations. Even recent TCGA Pan-Cancer stud-
ies [65], 52, 18, [34] have limited power to characterize genes in the long tail leaving
an incomplete picture of the functional, somatic mutations in these samples.

A prominent explanation for the mutational heterogeneity observed in cancer is
the fact that genes act together in various signaling/regulatory pathways and protein
complexes [10, [1§]. Clustering of mutations on known pathways is illustrated in
many cancer sequencing papers [8, [6] O, [1I], but typically without a measure of
statistical significance. While statistical tests of enrichment in known pathways
or gene sets exist, such tests do not reveal novel pathways, have limited power to
evaluate crosstalk between known pathways, and generally ignore the topology of
interactions between genes.

We introduce a novel and complementary approach to identify pathways and
protein complexes perturbed by somatic aberrations. This approach combines: (1)
a new algorithm, HotNet2, for identification of mutated subnetworks in a genome-
scale interaction network; (2) a large TCGA Pan-Cancer dataset of somatic single
nucleotide variants, small indels, and copy number aberrations measured in 3,281
samples from 12 cancer types [52]. HotNet2 uses a directed heat diffusion model
to simultaneously assess both the significance of mutations in individual proteins
and the local topology of interactions among proteins, overcoming limitations of
pathway-based enrichment statistics and earlier network approaches.

Our TCGA Pan-Cancer HotNet2 analysis identifies 14 significantly mutated sub-
networks that encompass classic cancer signaling pathways, pathways and complexes
with more recently characterized roles in cancer, and protein complexes and groups
of interacting proteins with less characterized roles in cancer such as the cohesin and
condensin complexes. These latter two subnetworks — as well many of the genes in
all subnetworks — are rarely mutated in each cancer type, and thus revealed only by
the Pan-Cancer network analysis. Many of the rarely mutated genes in the subnet-
works have documented physical interactions with well-characterized cancer genes
and/or mutational patterns (e.g. clustering in protein sequence/structure or an ex-
cess of inactivating mutations) that lend additional support for their role in cancer.
Co-occurrence of mutations across these subnetworks supports the hypothesis that
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many of the subnetworks correspond to distinct biological functions.

In comparison to single-gene tests of significance, our TCGA Pan-Cancer Hot-
Net2 analysis delves deeper into the long tail of rarely mutated genes and also as-
sembles combinations of individual genes into a relatively small number of inter-
acting networks. The mutational landscape of cancer has been proposed to consist
of “mountains” of frequently mutated genes and “hills” of less frequently mutated
genes [16]. Our Pan-Cancer network approach provides a richer annotation of this
landscape, grouping individual peaks and mountains into mountain ranges and their
associated foothills, further enabling diagnostic and therapeutic approaches in cancer
care.

4.2 Results

4.2.1 HotNet2 identifies significantly mutated subnetworks

We assembled a TCGA Pan-Cancer dataset of exome sequencing, array copy num-
ber, and RNA-seq data from 3,281 samples from 12 cancer types, analyzing single
nucleotide variants (SNVs), small indels, and copy number aberrations (CNAs) in
19,424 transcripts (Figure and [1.2)). After removing hypermutated samples and
genes with low expression in all tumor types (Online Methods), the dataset contained
11,565 mutated genes in 3110 tumors. We observed that the number of samples with
a mutation in a gene varied over three orders of magnitude, from 1 to 1291 mutated
samples (Figure |4.1b). Moreover, we discovered that this broad spectrum of muta-
tional frequencies — from common to extremely rare mutations — posed a challenge
for the identification of significantly mutated subnetworks. Specifically, our goal is
to identify subnetworks according to both the frequency of somatic mutations in
individual genes/proteins and the topology of the interactions between them. How-
ever, the presence of highly mutated and highly connected genes like TP53 presents
difficulties for existing algorithms that attempt to achieve this goal; e.g. the HotNet
algorithm [34] TT5] that was used for cancer network analysis in TCGA and other
studies [10, B, 11, 137], or related network propagation approaches [I38]. In the
heat diffusion model used in HotNet genes like TP53 are extremely “hot” nodes and
propagate this heat to their neighboring nodes. The resulting “star subnetworks”
centered on the hot node (Figure Section contain many neighboring genes
that are not mutated at appreciable frequency and are of limited biological interest.

We introduce the HotNet2 (HotNet diffusion oriented subnetworks) algorithm to
address the problem of finding significantly mutated subnetworks on large, broad
mutation frequency spectrum datasets like Pan-Cancer (Figures and . Hot-



71

a. Input mutation data b. Filtered mutation data
Single nucleotide variants and small indels

3,110 les fi 12 t:
293,863 SNVs 20,473 genes samples from 12 cancer types

11,565 mutated, expressed genes

(o] L Myc
(K =7 Hot
| # P o
<
Z o cornza
(&) ERBB2
CoPy number aberrations 3,276 samples from 12 cancer types § “7 @ Pikica
19,773 CNAs in 539 genes o | :L“‘L: Cold
[ S — Remove unexpressed genes m. e s
_ —:__ Remove hypermutator samples o — Ty T T T T T T T T T ?
L — No. SNVs
a — — #
-
Chromosome Arm
c. HotNet2 algorithm d. Significantly mutated subnetworks and complexes
16 subnetworks containing 147 genes
SWI/SNF complex
[} i i : : i
e} A\ i : i
=z v i i
¢ —
Heat fot

Figure 4.1: HotNet2 Pan-Cancer analysis (a) The Pan-Cancer mutation data combines SNVs
(nsSNVs and small indels) and CNAs (amplifications and deletions) in 19,459 genes in 3,281 sam-
ples. The number of samples with SNVs/CNAs is shown for each gene, with points colored by
the total. (b) Removing hypermutator samples and genes with few RNA-Seq reads in all tumor
types leaves 11,565 genes in 3,110 samples for analysis with a wide range in the number of samples
having an SNV (x-axis) or CNA (y-axis) in these genes. (c) HotNet2 finds significantly mutated
subnetworks using a diffusion process on a protein-protein interaction network. Each node (pro-
tein) is assigned a score (heat) according to the frequency/significance of SNVs or CNAs in the
corresponding gene. Heat diffuses across edges of network. Subnetworks containing nodes that both
send and receive a significant amount of heat (outlined) are reported. (d) Subnetworks identified
by HotNet2 include genes with wide range of heat scores, including both frequently mutated, known
cancer genes (hot genes) and rarely mutated genes (cold genes) that are implicated due to their
interactions with other cancer types. Thus, HotNet2 delves into long tail of rarely mutated genes
by analysis of combinations of interacting genes.
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Figure 4.2: HotNet2 mutation data processing.
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Figure 4.3: Overview of HotNet2 algorithm and Pan-Cancer analysis. HotNet2 assigns heat
to each gene (node) in an interaction network according to a gene score encoding the frequency
and/or predicted functional impact of mutations in the gene. This heat spreads to neighboring
nodes using an insulated heat diffusion process. At the equilibrium heat distribution, the network
is partitioned into subnetworks according to the amount and direction of heat exchange between
pairs of nodes. Thus, the partition depends on both the individual genes scores and the local
topology of protein interactions. The statistical significance (p-value and FDR) for the resulting
subnetworks is computed using the same procedure on random data. In our TCGA Pan-Cancer
analysis, gene scores are computed according to single nucleotide variants, small indels, and splice
site mutations (from exome sequencing data), copy number aberrations (from SNP array data),
and gene expression (from RNA-seq data).

Net2 uses a modified diffusion process and considers the source, or directionality, of
heat flow in the identification of subnetworks (Figure 4.5). This approach reduces
the artifact of star subnetworks by more than 80%, reducing the false positive rate
and enabling the identification of more subtle subnetworks with rare mutations of
high biological relevance (see Section . We compare HotNet2 to other algorithms
(Section , and find that HotNet2 has higher sensitivity and specificity on both
real and simulated data.

We performed HotNet2 analysis using two approaches to assign heat to indi-
vidual genes according to recurrence [17], and using three different interaction net-
works [139, 140, 141], 142] with varying numbers of interactions (Section [1.4). Hot-
Net2 identified a significant number of subnetworks (P < 0.01, Supplementary Ta-
bles 1-2) for each of the two gene scores and three networks. We combined the re-
sulting subnetworks into 14 consensus subnetworks that were found across different
gene scores and networks (P < 0.004, Supplementary Table 3), plus the condensin
complex and CLASP/CLIP proteins (Figure that were significant in individual
interaction networks (Supplementary Tables 6,7). Our consensus process also iden-
tifies 13 “linker” genes that are members of more than one consensus subnetwork.
We developed an online interactive viewer (see URLs and Figure for Pan-Cancer
HotNet2 subnetworks.

The subnetworks and linker genes (Figure ) include: portions of well-known
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Figure 4.4: Comparison of directed and undirected diffusion kernels. (Left) HotNet2 identifies
strongly connected components in a directed graph with edges weighted by a directed diffusion
kernel. By using directed edges, HotNet2 will not output star graphs around a single “hot” node
(star graph), nor will it include cold nodes in larger components (connected path). (Right) HotNet
identifies connected components in an undirected graph with edges weighted by an undirected
diffusion kernel, and therefore identifies more components comprised of more cold nodes.

Figure 4.5: HotNet2 similarity between neighbors in a small graph. Node u has degree one, so
sends most of its heat to its one neighbor v. Node v has multiple neighbors, and therefore sends
less of its heat to each of its neighbors.
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Figure 4.6: The CLASP and CLIP proteins subnetwork and its mutation matrix. The mutation
matrix shows the mutations in the genes in the subnetworks, represented on the left, across the
samples with mutations in the subnetwork. The number of samples with mutations in a gene is in
parenthesis. The number of samples with mutations in any of the members of the subnetwork is
on the top. Upticks and downticks represent amplifications and deletions, respectively. Full ticks
represent SNVs, indels, and splicesite mutations. Colors reflect the cancer type of the samples.
Genes with * were significant by exactly one of MuSiC, MutSigCV, or Oncodrive, while genes with
** were not significant by any of these methods. Colors of interactions in the subnetwork represent
the interaction network where it was found. P-values for cancer type enrichment of mutations in
the genes are shown.
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cancer pathways such as TP53, PI3K, NOTCH, and receptor tyrosine kinases (RTKs;
Figure, as well as pathways and complexes that have more recently been observed
to be important in cancer such as SWI/SNF complex, BAP1 complex, NFE2L2-
KEAP1 (Figures 4.10] and [4.11)), and RUNX1-CBFB core binding complex (Fig-
ure [£.12)). The fifth most mutated subnetwork (16.9% of samples) consists of MLL2
and MLL3 and the putative interacting protein KDM6A (Figure , and was
highly mutated (28.9% of samples) in TCGA Pan-Cancer squamous integrated sub-
type25. HotNet2 identified less-characterized and potentially novel subnetworks that
may have also important roles in cancer including the cohesin and condensin com-
plexes and MHC Class I proteins. The MHC Class I subnetwork (Figure is an
example of the ability of HotNet2 ability to identify rarely mutated cancer genes;
all of the genes in the subnetwork are mutated in fewer than 35 samples (1.1%),
yet four of the five genes have recently been proposed as novel cancer genesl3. The
sections below further detail a subset of these subnetworks. Additional analyses are
in Appendix B.

Many of the subnetworks exhibit a significant enrichment for mutations in a
subset of cancer types, including many previously unreported associations (Supple-
mentary Tables 6-18). We also identify genes within these subnetworks enriched for
mutations in particular cancer types. In addition, the HotNet2 Pan-Cancer analysis
provides a clearer and more robust summary of subnetworks and novel genes than
HotNet2 analysis of individual cancer types (Supplementary Table 19).

These subnetworks and linkers include a total of 147 genes, including many well-
known cancer genes and pathways, but also including genes with mutations that are
too rare to be significant by the single-gene tests (Supplementary Table 20). In total,
92 genes in the HotNet2 subnetworks are not reported by any of five single-gene tests
(MutSigCV [17], Oncodrive-FM [25] and —CIS [143], MuSiC [26], or GISTIC2 [23])
or listed as a known driver gene in Vogelstein et al. [16], while an additional 13 genes
are reported in only one such list. Many of these genes have literature evidence
supporting a potential role in cancer, while others are in biological processes that
suggest these genes warrant further study. Table lists a subset of promising
candidates, with the full list and associated references in Supplementary Table 20.

To obtain additional support for these genes we examined whether they had either
an excess of inactivating mutations [16] or a cluster of missense mutations in protein
sequence (using NMC30) or in protein structure (using iPAC [144]; Figures and
, and Supplementary Tables 21,22). We find that genes in HotNet2 consensus
subnetworks are enriched for inactivating mutations (P < 0.0001) or mutation clus-
ters (P < 0.0001) compared to genes not in subnetworks (Supplementary Table 6-18
and Appendix . Finally, we evaluated a subset of the mutations in these genes
using RNA-Seq and whole-genome sequencing (WGS) data from the same samples,
and found RNA-Seq and/or WGS reads that validated 39 mutations in these novel
genes (Appendix and Supplementary Table 23). These genes may represent novel
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Figure 4.8: Overview of HotNet2 Pan-Cancer results. (a) Hotnet2 consensus subnetworks are
arranged near the cancer types where they are enriched for mutations using a force-directed lay-
out (BLCA=Dbladder urothelial carcinoma, BRCA=Dbreast invasive carcinoma, COADREAD=colon
adenocarcinoma and rectum adenocarcinoma, GBM=glioblastoma multiforme, HNSC=head and
neck squamous cell carcinoma, KIRC=kidney renal clear cell carcinoma, LAML=acute myeloid
leukemia, LUAD=Ilung adenocarcinoma, LUSC=lung squamous cell carcinoma, OV=ovarian serous
cystadenocarcinoma, UCEC=uterine corpus endometrioid carcinoma). Colored outlines surround-
ing each network indicate the cancer types that are enriched for mutations (corrected P < 0.05).
Interactions between proteins in a subnetwork are derived from the three interaction networks used
in our Pan-Cancer analysis. In the center, there are 13 “linker” genes that are members of more
than one consensus subnetwork; dotted lines between linkers and other consensus subnetworks indi-
cate protein-protein interactions between them. (b) Heat map of significant co-occurrence (yellow,
lower triangular) and exclusivity (blue, upper triangular) of mutations across all Pan-Cancer sam-
ples in the most frequently mutated HotNet2 Pan-Cancer consensus and condensin subnetworks
(P < 0.01, Cochran-Mantel-Haenszel test). Black outlines indicate pairs of subnetworks that have
P < 0.05 after multiple hypothesis correction. (¢) Exclusivity/co-occurrence (P < 0.01, Fisher’s
exact test) within individual cancer types using the same color scheme as part (a).
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Figure 4.9: The RTK subnetwork and its mutation matrix. The mutation matrix shows the mu-
tations in the genes in the subnetworks, represented on the left, across the samples with mutations
in the subnetwork. The number of samples with mutations in a gene is in parenthesis. The number
of samples with mutations in any of the members of the subnetwork is on the top. Upticks and
downticks represent amplifications and deletions, respectively. Full ticks represent SNVs, indels,
and splicesite mutations. Colors reflect the cancer type of the samples. Black dots corresponds to
inactivating genes, that is genes that contain at least one of the following mutations: frame shift
indels, nonsense, nonstop, and splice sites. Genes with * were significant by exactly one of MuSiC,
MutSigCV, or Oncodrive, while genes with ** were not significant by any of these methods. olors
of interactions in the subnetwork represent the interaction network where it was found. P-values
for cancer type enrichment of mutations in the genes are shown.
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Figure 4.11: The KEAPI1 structure (PDB ID: 1ZGK) color coded by segment. Residues that are
only in the iPAC most significant cluster (amino acids 480 — 524) are colored in light blue. The
residue in the NMC most significant cluster (amino acid 470) is shown in red.
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Gene SNVs CNAs Cancer Enrichment(s) Function

ADNP 21 0 Homeobox transcription factor with 9 zinc fingers found in the
SWI/SNF complex; mediates neuroprotective responses to cellular
growth, and regulates cancer cell proliferation.

ASXL2 30 0 BAPI1 complex mediated chromatin modulation and transcriptional reg-
ulation; plays an opposing role to ASXLI.

CCDC88A 38 0 Girdin family member with a key role in PI(3)K and Akt signaling
pathways that may be involved in metastasis when overexpressed.

CHDS8 49 9 DNA helicase that acts as a chromatin remodeling factor and suppresses
transcription. Suppresses TP53 and negatively regulates -catenin in
WNT signaling. CHDS8 is essential for embryonic development.

CUL9 48 0 Involved with p53 localization; critical regulator of cell cycle and qui-
escence.

ELF3 19 0 BLCA, COADREAD Transcriptional activator that binds ETS motifs. May be a downstream
effector of the ERBB2 signaling pathway.

EPHA3 50 3 Receptor tyrosine kinase with possible roles in BRCA, COADREAD,
GBM, HNSC, lung, and pancreatic cancer.

FOXK2 13 12 Forkhead transcription factor whose functions are cell cycle regulated;
recruits AP-1 and functions in DNA mismatch repair.

IWS1 16 0 Involved in transcriptional elongation and transcriptional surveillance.

JAG1I 24 0 Ligand for multiple Notch receptors and involved in the mediation of
Notch signaling. May play a role in AML, BRCA, COADREAD, GBM,
OV, and pancreatic cancer.

KDM1B 14 0 Histone demethylase that acts as a co-repressor; along with BAP1, reg-
ulates cell growth.

KLF5 12 36 BLCA, COADREAD, HNSC Kruppel-like transcriptional activation factor; regulates pluripotency
and cellular growth.

MLL5 30 0 Histone methyltransferase that acts as an important cell cycle regulator.
High MLL5 expression is associated with a favorable outcome in AML.

NCAPH2 19 0 Non-SMC Condensin II subunit; critical for mitotic chromosome assem-
bly.

NOTCHS3 93 4 ov Receptor for Jaggedl/2 and Delta 1 to regulate cell fate through tran-
scriptional activation; mutations in NOTCH3 cause CADASIL.

RNF20 27 0 E3 ubiquitin-protein ligase for H2BK120ubl; putative tumor suppres-
sor.

SHPRH 39 0 E3 ubiquitin-protein ligase for PCNA involved in DNA repair.

SMG1 51 0 mRNA surveillance through nonsense-mediated mRNA decay.

SMG7 23 0 LUSC mRNA surveillance through nonsense-mediated mRNA decay.

STAG1 31 0 Cohesin subunit involved in sister chromatin adhesion following DNA
replication.

WAC 19 0 Regulates cell cycle progression by linking transcription to

H2BK120ubl.

Table 4.1: A subset of candidate cancer genes identified by HotNet2, but not by single-gene tests
of significance (non-italicized genes are listed as a cancer driver by Oncodrive or GISTIC). For each
gene, the number of samples with at least one SNV/CNA in the gene and the cancers enriched
for mutations (P < 0.05, corrected) are listed. More information on these genes — as well as other
candidate driver genes — is in Supplementary Table 20.
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biomarkers for the classification of patients for treatment regimens.

(a)

(b)

Figure 4.15: Histograms of two groups of genes ranked by heat score: genes in blue have either a
cluster of missense mutations (NMC cluster P < 0.05) or > 20% of mutations inactivating; genes
in green have mutations that meet neither criteria. (a) Mutation frequency as heat. The two
distributions are significantly different (P < 10720, Mann Whitney U test), with higher-scoring
genes showing enrichment for mutation clustering or high percentages of inactivating mutations.
(b) MutSigCV scores as heat. The two distributions are significantly different (P = 3.09 x 1077,
Mann Whitney U test), with higher-scoring genes showing enrichment for mutation clustering or
high percentages of inactivating mutations.

4.2.2 Co-occurrence and mutual exclusivity of mutations in
subnetworks

Cancer cells are thought to harbor multiple driver mutations that perturb multiple
biological functions [I8]. Consistent with this model, we find that 4 pairs of sub-
networks, including TP53 and NOTCH signaling, TP53 and RTK signaling, PI3K
signaling and cohesin complex, and PI3K and ASCOM complex exhibit significant
co-occurrence (P < 0.05, multiple hypotheses corrected) across the Pan-Cancer co-
hort (Figure[d.8p) or in individual cancer types (Figure[£.8¢). Multiple pairs of genes
within these subnetworks show co-occurring mutations (Supplementary Table 24).
In contrast, mutual exclusive mutations are typically expected within a pathway,
and not across pathways32,33. We observe significant mutual exclusivity within 4
of our subnetworks (Supplementary Table 25). Intriguingly, the RTK signaling and
NFE2L2-KEAP1 subnetworks were the only pair with significant mutual exclusivity
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Figure 4.16: Histograms of the number of mutations per patient for two gene groups: novel genes
identified by HotNet2, and a list of known cancer or significantly mutated cancer genes. The two
distributions are not significantly different (P = 0.4, Mann Whitney U test).

across the Pan-Cancer cohort. This exclusivity was largely due to LUAD samples
with mutually exclusive EGFR and KEAP1 mutations (Figure . This observa-
tion is consistent with reports of exclusivity between EGFR mutations and NFE2L2
expression in LUAD34 and also that NFE2L2 expression is downstream of EGFR
signaling35. Examining individual cancers, we find a modest but not statistically
significant enrichment for co-occurrence or exclusivity in a few cancer types. Nei-
ther within-subnetwork mutual exclusivity nor across-subnetwork co-occurrence is
explicitly programmed into the HotNet2 algorithm. These observations support the
hypothesis that the HotNet2 subnetworks represent distinct biological functions that
are mutated in samples.
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Figure 4.17: A mutation matrix in LUAD using genes in subnetworks, ErbB signaling and
KFEAPI1, NFE2L2 and interactors.
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4.2.3 TP53, PIK3CA, and NOTCH networks

The three largest subnetworks — including a TP53 subnetwork, a PIK3CA subnet-
work, and a NOTCH subnetwork — contain many well-known cancer genes (Supple-
mentary Tables 8-10 and Figures and . Linker genes join these three sub-
networks, demonstrating the extensive crosstalk between well-annotated cancer path-
ways. Most of these linker genes encode signaling proteins that have known cancer-
related functions (e.g. WT1, NOTCH2, PIK3R1, MAP2K4, MAP3K1, HRAS, ATM,
and STK11). Taken together, 81.9% of the samples contain at least one mutation in
these three large subnetworks and linker genes.

PIK3CA, RAS, and interactors Coverage: 32.7% (1016 / 3110 samples) I =5sampie
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Figure 4.18: The PI(3)K/RAS subnetwork and its mutation matrix. Representation as in Fig-

ure @

HotNet2 Pan-Cancer analyses also revealed a number of novel genes (Supple-
mentary Table 20) within these three subnetworks. These genes have documented
interactions with well-known cancer genes and similar functions, but with some-
what lower mutational frequency (~ 1%), and were not marked as significant by
single-gene tests [17, 25 143, 26], 23]. For example, the TP53 subnetwork, includes
CUL9. CUL9 sequesters pb3 in the cytoplasm, and we find a cluster of 45 mis-
sense mutations (P = 1.32 x 1078) as well as a cluster in protein structure (FDR
= 0.025). Another gene of interest is IWS1, which is involved in transcriptional
elongation and mRNA surveillance. Half (8/16) of the mutations in this gene are
inactivating, and it also has a cluster of mutations (P = 0.013). This subnetwork
also contains CHDS8, an ATP-dependent chromatin-remodeling factor that regulates
a wide range of genes36. We find three independent signals of CHDS8 inactivation
across samples: CHD8 is deleted in 9 samples in a focal peak from GISTIC; 18/58
(31%) of its mutations as inactivating; and has a wide cluster of missense mutations
(P =6.37x107°). In the NOTCH subnetwork, we find rare mutations in JAG1 and
DLL1, which interact with the NOTCH receptors and have some reports of a role
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Figure 4.19: The NOTCH subnetwork and its mutation matrix. Representation as in Figure

in cancer [145]. Moreover, 11/24 mutations in JAG1 are inactivating. The NOTCH
subnetwork also includes SHPRH, which has a significant (P < 8 x 107°) cluster of
missense mutations (Figure [4.20)).

4.2.4 SWI/SNF complex

The sixth most mutated HotNet2 Pan-Cancer subnetwork (16.8% of samples) in-
cludes multiple members of the SWI/SNF chromatin-remodeling complex (Figure|4.21p
and Supplementary Table 12). Mutations in this complex have previously been re-
ported in several cancers [146] [147], including TCGA samples [148]. Our HotNet2
Pan-Cancer analysis demonstrates the prevalence of mutations in SWI/SNF: at least
1.5% of the samples from each of the 12 cancer types contain a mutation in this sub-
network. KIRC (P < 107%), UCEC (P =7 x 107'%), and BLCA (P = 1.8 x 107%)
were enriched for mutations in this subnetwork and several genes were enriched for
mutations in specific cancer types including PBRM1 in KIRC (P < 107'%) and
ARID1A in both BLCA (P = 4.8 x 107®) and UCEC (P < 107'%). The subnet-
work also contains ARID1B, which is reported to have somatic mutations in juvenile
neuroblastoma [149] and germline mutations in Coffin-Siris syndrome [150].

Beyond known members of SWI/SNF, the subnetwork includes ADNP. ADNP
mutations have not previously been reported in cancer and were not considered sig-
nificant by the three individual gene-scoring methods. However, ADNP has a known
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Figure 4.20: Pan-Cancer non-silent mutations in the SHPRH gene (ENSEMBL transcript
ENST00000367503). SHPRH had a significant cluster of three mutations in position 776 (P <
8 x 107°). In LUAD, GBM, and UCEC, these mutations are primarily in the helicase domain,
indicating that they are likely inactivating.

interaction with SWI/SNF [I51] and protects against oxidative stress in neuronal
cells [152], suggesting that in rare cases ADNP mutations contribute to tumori-
genesis. Thus, HotNet2 analyses broaden the view of mutations in SWI/SNF to
additional cancer types and additional interacting proteins.

4.2.5 BAPI1 complex and interactors

Another HotNet2 Pan-Cancer subnetwork (mutated in 7.1% of samples) overlaps the
BAP1 complex (Figure and Supplementary Table 13). This subnetwork in-
cludes BAP1, ASXL1, ASXL2, FOXK1, FOXK2, all members of the BAP1 core com-
plex [153], as well as two additional interacting proteins: KDM1B and ANKRD17.
Only BAP1 and ASXL1 were significant by individual gene scores — the other genes
harbored rare mutations across many cancer types — a subtle signal revealed by Hot-
Net2 Pan-Cancer analysis. This subnetwork is mutated in at least 6 samples from
each cancer type, demonstrating the breadth of mutations in the BAP1 complex.

BAP1 inactivation has been reported in several cancers [I53]. We find the sub-
network enriched for mutations in KIRC (P = 2 x 10™1), as previously reported46.
Consistent with Pea-Llopis et al. [I54], we find that mutations in the BAP1 gene
are mutually exclusive (P < 7.2 x 1073) of mutations in the PBRM1 gene in KIRC.
We find that mutations in the SWI/SNF and BAP1 complexes show even greater
mutual exclusivity (P = 9.4 x 107°) in KIRC because of mutations in additional

genes in these complexes besides BAP1 and PBRM1, respectively (Appendix [B.5.8)).
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Figure 4.21: HotNet2 Pan-Cancer subnetworks overlapping SWI/SNF and BAP1 complexes. (a)
Subnetwork containing members of the SWI/SNF complex including the BAF proteins ARID1A
and ARID1B, PBAF proteins PBRM1 and ARID2, catalytic core member SMARCA4, SMARCB1
and ADNP. (a - Top) Mutation matrix shows the samples (colored by cancer type as shown in
legend) with a mutation of the indicated type: full ticks represent SNVs, indels, and splice site
mutations; upticks and downticks represent amplifications and deletions, respectively. A black dot
corresponds to samples with an inactivating mutation in the gene, that the genes contain at least
one of the following mutations: nonsense, frame shift indels, nonstop, or splice site. The number
of samples with mutations in a gene is in parenthesis; genes with * were significant by exactly one
of GISTIC2, MuSiC, MutSigCV, Oncodrive, or the list of driver genes in [16] while genes with **
were not significant by any of these methods. (a - Bottom left) Interactions between proteins in the
subnetwork from each interaction network are colored according to mutually enriched cancer type
with corresponding P-values. (a - Bottom right) PBRMI1 protein sequence exhibited significant
clustering of missense mutations (P = 1.62107°) in a 105 amino acid bromodomain, a region that
was reported to be mutated in a different renal clear cell carcinoma cohort39, but not in TCGA
KIRC publication3. (b) Subnetwork containing members of the BAP1 complex including core PR~
DUB complex, comprised of the deubiquinating enzyme BAP1 and the polycomb group proteins
ASXL1 and ASXL2, as well as the BAP1-interacting proteins: ANKRD17, FOXK1, FOXK2, and
KDMI1B. Colors, marks, and panel organization are structured as in panel (a). (c) Inactivating
mutations across samples (columns) in the SWI/SNF and BAP1 complexes (rows) in KIRC. The
bottom row shows the mRNA expression classification of each sample.3 The mutations in these
complexes are surprisingly exclusive in KIRC (P < 3.6 x 10~*, Fisher’s exact test, corrected),
and BAP1 is significantly enriched in mutations in the third expression subtype (P < 3.4 x 1078,
Fisher’s exact test).
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This mutual exclusivity suggests that mutations in these complexes define different
subtypes of kidney cancer. Supporting this hypothesis, we observe that inactivating
mutations in the BAP1 complex are enriched (P < 3.4 x 107®) for samples in the
third mRNA expression subtype from [10] (Figure [4.21k).

We find that a large fraction of the mutations in BAP1, ASXL1, and ASXL2 in
different cancer types are inactivating mutations, demonstrating alternative strate-
gies for inactivation of the BAP1 complex. In addition, 6/13 missense mutations in
FOXK2 are in the forkhead transcription factor domain or forkhead associated do-
main, which may inactivate the DNA-binding properties of FOXK2. Finally, we ex-
amined the mutations in KDM1B, a gene that is involved in H3K4-methylation [155],
but not considered a core part of the BAP1 complex. We find that 12/19 mutations in
KDMI1B (including 10/16 missense mutations) fall in the C-terminal amino-oxidase
domain that is important for lysine-specific demethylation of histones [I56]. More-
over, 2 of the 3 KDM1B mutations in LUSC and LUAD are inactivating, and these
are also exclusive of BAP1 inactivating mutations, suggesting that KDM1B muta-
tions might play a role in cancer.

4.2.6 Cohesin and condensin

HotNet2 Pan-Cancer analysis identifies 4/5 members of the cohesin complex as a
significantly mutated subnetwork (7.3% of samples, Figure and Supplementary
Table 15). While named for its role in sister chromatid cohesion, the cohesin complex
has recently been implicated more broadly in gene regulation [157, 158, 159], and
its role in myeloid leukemia was only recently reported [160]. We found that cohesin
was universally mutated across cancer types (> 4% of samples in each cancer type).
Moreover, the mutations in the complex were spread uniformly across the genes
with no gene in the complex mutated in more than 1.9% of samples. This pattern of
mutations complicates the identification of recurrent mutations in individual genes,
and indeed only half of the genes in the complex (STAG2, SMC1A, and RAD21)
were significant by at least one of the three gene scores.

Mutations in some of these genes have recently been reported to be significant in
several cancers. We find enrichment for mutations in the subnetwork in BLCA (P =
7 x 107%); this enrichment derives largely from enrichment for mutations in STAG2
in BLCA (P = 0.005), which was recently reported53. STAG2 has a significantly
higher fraction of inactivating mutations than other genes in the subnetwork (53%
for STAG2 compared to 28% for the subnetwork as a whole); these inactivating
mutations are not only in BLCA, but also across multiple cancer types with multiple
inactivating mutations in LAML and COADREAD. In addition, BLCA samples
without STAG2 inactivating mutations harbor rare inactivating mutations in several
other cohesin genes. All mutations in RAD21 in LAML samples were inactivating,
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Figure 4.22: HotNet2 Pan-Cancer subnetworks overlapping the cohesin and condensin complexes.
(a) Cohesin consensus subnetwork and its mutations. Colors and marks as in Figure . None of
the genes is mutated in more than 1.9% of the samples, but the subnetwork is mutated in > 4% of
the samples in each cancer type. STAG1 exhibits significant (P < 6 x 107°) clustering of missense
mutations across 135 residues (highlighted) in the Pfam-B domain (PFAM ID: PB002581), a pattern
suggesting inactivation of the corresponding domain. (b) Condensin consensus subnetwork, its
mutations. (Top) Mutation matrix shows five genes in the condensin I and II complexes. Only
one gene, SMC4, was significant by individual gene scores. (Bottom left) A subnetwork consisting
of NCAPD2 and SMC4, both members of Condensin I, was significantly mutated in BLCA, while
a subnetwork consisting of NCAPD3, NCAPG2 and NCAPH2, all members of Condensin II, was
significantly mutated in LUAD and LUSC. At the gene level: NCAPD2 was significantly mutated in
BLCA; SMC4 was significantly mutated in BLCA and HNSC; NCAPD3 was significantly mutated
in LUAD; and NCAPG2 was significantly mutated in LUSC. (Bottom right) NCAPH2 shows a
significant (P < 2.6 x 10~%) cluster of missense mutations between R551 and S556.
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and BRCA and KIRC harbor inactivating mutations in STAG1. In addition, we
observed a significant clustering of missense mutations in STAG1 (P = 6 x 1079),
and the broad span of the cluster (135 residues) is indicative of inactivation. STAG1
has been shown to function as a transcriptional coactivator [I58, 159], and thus
mutation of STAGI1 may play another role in cancer apart from genome stability.
Together, these results show that mutational inactivation of the cohesin complex
occurs broadly across cancer types and across genes within the complex.

HotNet2 also identifies two subnetworks containing six proteins in the condensin
complex, in HotNet2 runs from individual interaction networks. The combined sub-
network is mutated in 4.2% of samples (Figure and Supplementary Table 6).
Only SMC4 was reported significant by at least one of the individual gene scores. A
subnetwork consisting of NCAPD2, SMC2, and SMC4, both members of Condensin
I form of the complex, was significantly mutated in BLCA (P = 6.2 x 107%). Con-
densin I is thought to primarily be involved in the sister chromatid condensation
during mitosis [161], [162], suggesting that these mutations promote genome instabil-
ity. In contrast, a subnetwork consisting of NCAPD3, NCAPG2 and NCAPH2, all
members of Condensin II form of the complex, was significantly mutated in LUAD
(P = 0.04) and LUSC (P = 0.002) and the majority (4/7) of NCAPG2 mutations
in LUSC are inactivating. Condensin II is generally involved in gene regulatory
processes [161], [162], suggesting a different phenotype for these mutations. In addi-
tion, we found a significant (P = 0.002) cluster of missense mutations in NCAPH2
(Figure ), implying that mutations in this region of unknown function may
be important for the deregulation of condensin. We also note that it was recently
observed that expression of NCAPD3 was positively associated with recurrence-
free survival [163]. Finally, RNA-seq and whole-genome sequencing data from the
same samples provide further validation of the somatic mutations in SMC2, SMC4,
NCAPD2, NCAPD3, NCAPH2, and NCAPG2 and show that some of these mu-
tations are expressed (Appendix and Supplementary Table 39). Our HotNet2
Pan-Cancer analysis suggests that multiple cancer types harbor rare mutations in
the cohesin and condensin complexes, supporting a proposed tumor suppressor role
for these complexes [157, 161, [162].

4.3 Discussion

We present a novel approach for identifying combinations of somatic aberrations in
different cancer types using our HotNet2 algorithm to analyze a high-quality Pan-
Cancer dataset of 3281 samples from 12 cancer types. This analysis represents the
largest network analysis of somatic aberrations across multiple cancer types. We
recover many classic cancer pathways like TP53, PI3K, NOTCH, and RTK auto-
matically from a large-scale interaction network, demonstrating the power of the
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Pan-Cancer network approach. Second, we highlight the extensive crosstalk between
these pathways, overlaps that are often overlooked in analyses that treat pathways
as distinct gene lists. Third, we find pathways and complexes whose role in cancer
was only appreciated recently such as the SWI/SNF chromatin-remodeling com-
plex [146] and BAP1 complex [153]. Fourth, we find that several pairs of HotNet2
subnetworks have co-occurring mutations, while within subnetworks mutations are
mostly exclusive. This supports the hypothesis that these subnetworks represent dis-
tinct biological functions that are mutated in samples. Finally, we identify a number
of novel mutated subnetworks with potential roles in cancer including: the cohesin
and condensin complexes [161]; MHC Class I proteins; and the telomerase complex.
These subnetworks have rare mutations in nearly all cancer types, making them
difficult to detect without a sensitive Pan-Cancer network approach that examines
combinations of genes across multiple cancer types.

The HotNet2 subnetworks contain 92 genes that are rarely mutated, both in in-
dividual cancer types and across the Pan-Cancer cohort, and are not reported as
significant by single-gene tests. Nearly all of the subnetworks contain such genes,
which are revealed by the combination of their mutations and interactions across
cancer types. Some of these rarely mutated genes are inevitably false positive pre-
dictions of the analysis, but many (including SHPRH, CUL9, CHDS, RNF20, JAGI,
ELF3, STAG1, NCAPH2, and others) exhibit either mutational clustering or protein
interactions that support a role for the observed somatic aberrations (Supplemen-
tary Tables 6-18). In addition, we find that well-characterized mutations in a single
gene in one cancer type (e.g. inactivating mutations BAP1 in KIRC) are replaced
in other cancer types by rare mutations in other members of the same complex (e.g.
inactivating mutations in ASXL1, ASXL2, FOXK2, KDMI1B). Such observations
suggest that Pan-Cancer network analyses may prove useful in translating diagnos-
tic or therapeutic approaches that were developed in one cancer type to other cancer

types.

Our analysis complements other recent Pan-Cancer analyses including studies
that analyze only one type of aberration [164] [165] [65] or restrict attention to recur-
rent aberrations [166] (Appendix and Supplementary Table 27). The HotNet2
Pan-Cancer network approach identifies combinations of rare and common muta-
tions in groups of interacting genes; combinations that were not apparent by anal-
ysis of single genes, known pathways, or single cancer types. Indeed, we observe
that many of the identified subnetworks contain genes altered by both SNVs and
CNAs, demonstrating that integrating multiple types of aberrations is beneficial
when jointly analyzing multiple cancer types that might have different mutational
landscapes. Pan-Cancer network analysis of multiple aberration types thus provides
an alternative approach to prioritize rare mutations for further experimental char-
acterization.

As with any computational approach, our findings are limited by the quality and
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quantity of input data. Further power is anticipated by including additional sam-
ples [65], additional types of genetic and epigenetic aberrations, and better interac-
tion networks. For example, structural variants, non-coding variants and methyla-
tion data were not included, the first two being unavailable for most TCGA samples.
This lack of data, plus false negatives in the analyzed data (e.g. due to difficulties in
identification of indels and subclonal variants) imply that our analysis likely underes-
timates the number and frequency of mutated subnetworks across cancer types. On
the other hand, we note that some genes that are highly significant by individual gene
scores are not reported in our network analysis; often this is due to problems with
the interaction network. Improved knowledge of the human interactome — including
more systematic efforts to record known interactions, measure additional interac-
tions, and determine the tissue specificity of interactions — are needed to increase
coverage and reduce possible ascertainment bias.

Finally, the HotNet2 algorithm introduced here is suitable for other applications,
both biological and non-biological. In particular, genome-wide association studies
(GWAS) and other studies of genetic diseases face an analogous problem of identifi-
cation of combinations of genetic variants with a statistically significant association
to a phenotype. With an appropriate gene score, the HotNet2 algorithm can be
applied to such data.

4.4 Methods

4.4.1 Somatic aberration data

SNVs, indels, and splice-site mutations were extracted from TCGA Pan-Cancer
analysis on Synapse (syn1710680), and copy number aberrations (CNAs) from GIS-
TIC2 output via Firehose. We restricted attention to the 3276 samples containing
both SNV and CNA data. We removed 71 samples identified as ultramutators in
syn1729383 and additional 95 samples with an unusually high number of aberrations
(> 400 SNVs or CNAs). We selected the threshold of 400 aberrations per sample
as the derivative of the number of mutations per sample starts increasing rapidly
beyond this value (Figure . We removed genes without CNAs that contained
SNVs in > 2% of samples but were not identified as significant (¢ < 0.05) by Mut-
SigCV20. Finally, we used only those genes that had at least 3 reads from RNA-seq
data in at least 70% of samples of at least one of the cancer types, as described
in syn1734155 (See URLs). The resulting dataset contained aberrations in 11,565
genes and 3110 samples (Figure . We used genes scores from: mutation fre-
quency and MutSigCV -logl0 ¢-values. Nonsense, frame shift indels, nonstop, or
splice site mutations were classified as inactivating following [164]. We used three
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interaction networks: HINT+HI2012, a combination of HINT network [139] and the
HI-2012 [140] set of protein-protein interactions; MultiNet [I41]; iReflndex [142].
Additional details of the datasets are in Appendix B.

120

=
o
5}

%
3

N
S

Derivative in the number of mutations per sample
@
3

N
S

0 200 400 600 800 1000 1200
SNV+CNA

Figure 4.23: The number of aberrations (SNV and CNA) in each sample. Samples with > 400
aberrations were removed.

4.4.2 HotNet2

We developed the HotNet2 (HotNet diffusion oriented subnetworks) algorithm to
identify subnetworks of a genome-scale interaction network that are mutated more
than expected by chance. While interaction networks have proven useful in ana-
lyzing various types of genomic data [167], statistically robust identification of sig-
nificantly mutated subnetworks is a difficult problem with several major challenges
(Appendix . HotNet2 addresses these challenges and identifies significantly
mutated subnetworks of a genome-scale interaction network, using an insulated heat
diffusion process that considers both the scores on individual genes/proteins as well
as the topology of interactions between genes/proteins (Figure |4.3)).

The input to HotNet2 is: a heat vector h that contains the scores (e.g., mutation
frequency) for each gene g; and a graph G = (V, E), where each node corresponds to a
gene/protein and each edge corresponds to an interaction between the corresponding
genes/proteins. HotNet2 performs the following steps:

1. Heat Diffusion. HotNet2 employs an insulated heat diffusion process [168|
169] that captures the local topology of the interaction network surrounding
a protein. At each time step, nodes in the graph pass to and receive heat
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from their neighbors, but also retain a fraction of their heat, governed by an
insulating parameter . The process is run until equilibrium; the amount of heat
on each node at equilibrium thus depends on its initial heat, the local topology
of the network around the node, and the value If a unit heat source is placed
at node j (e.g. a mutation in in one sample) then the amount of heat on node
i is given by the (7, j) entry of the diffusion matrix F' defined by:

F=pI-(1-8W)", (4.1)

where

{d%, if node 4 interacts with node j,
W,; = { degld) ' (4.2)
0 otherwise.

Thus, W is a normalized adjacency matrix of the graph G. We interpret
F(i,7) as the influence that a heat source placed on g; has on g;. The insu-
lated heat model can also described in terms of a random walk with restart
(Appendix . Note that the insulated diffusion process is generally asym-
metric, i.e. F(i,7) # F(j,7). The diffusion matrix depends only on the graph
@, and not the heat vector h. Therefore the influence (for a given 3) needs to

be computed only once for a given interaction network.

. Ezxchanged heat matriz. The insulated heat diffusion process described above
encodes the local topology of the network, assuming unit heat is placed on
nodes. To jointly analyze network topology and gene scores given by the initial
heat vector ﬁ, we define the exchanged heat matrix E:

E = FDy, (4.3)

where Dj is the diagonal matrix with entries h. E(i,j) = F(z,])fz(]) is the
amount of heat that diffuses from node g; to node g; on the network when l_i( J)
heat is placed on g;, which we interpret as the similarity of g;,¢;,. Since the
diffusion matrix F' is not symmetric and in general ﬁ(z) =+ E(j), the similarity

E(i,j) is also not symmetric (Appendix [B.1.2)).

. Identification of hot subnetworks. We form a weighted directed graph H whose
nodes are all measured genes. If E(i,7) > J, then there is a directed edge
from node j to node i of weight E(i, 7). HotNet2 identifies strongly connected
components in H. A strongly connected component C' in a directed graph is a
set of nodes such that for every pair u, v of nodes in C' there is a path from u
to v.

. Statistical test for subnetworks. HotNet2 employs a statistical test to determine
the significance of the number and size of the subnetworks determined in the
previous step. The statistical test is the same as the two-stage statistical
test introduced in the original HotNet algorithm [34) 115] (Appendix [B.1.3]
Figures |4.24] 4.25] 4.26] and 4.27, and Supplementary Table 28).
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Figure 4.24: (a-b) The distribution of sizes of subnetworks identified by HotNet2 on 1000 per-
muted datasets. (a) Datasets were generated permuting heat scores uniformly at random. (b)
Datasets were generated by permuting the top 100 highest heat scores amongst themselves, and
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Figure 4.25: The CDF of the distribution of heat (mutation frequency or MutSigCV) in each of
the three interaction networks. Using a two-sample z-test, the heat scores of genes in the network
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Figure 4.26: The correlation between heat and degree (y-axis, Spearman’s p) after removing the
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pair except Multinet-MutSigCV. The correlation statistic before removing any nodes is shown on
each plot.
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Figure 4.27: Results of HotNet2 and HotNet when applied to the N = 50 randomized MutSigCV
datasets. (a) Q-Q plots of the P-values from HotNet2 (top) and HotNet (bottom) for each k =
2 —10. (b) Violin plots of the number of subnetworks of size at least k identified by HotNet2 (left)
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algorithm.
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HotNet2 is available online (See URLS).

HotNet2 has two parameters 3 and §, and selects values for both of these param-
eters using automated procedures. [ is selected from the protein-protein interaction
network, independently of any gene scores (Appendix , Figure , and Sup-
plementary Table 29). We evaluated the sensitivity of the HotNet2 results to the
value of § and found that varying 8 4+ 10% has only a minor effect on the results,
with at most 7 genes (3.8% of total) added/removed from the subnetworks (Supple-
mentary Table 28). The value of § is chosen such that large connected components
are not found using the observed gene score distribution on random networks with
the same degree distribution as the observed network (Appendix [B.1.4] Figure [4.29]
and Supplementary Table 30). We evaluated the sensitivity of the HotNet2 results
to the value of 4, and found that varying 6 + 5% changed at most 35 genes (12.3%
of total) in the subnetworks (Supplementary Table 29).

4.4.3 Comparison of HotNet2 to other algorithms

HotNet2 extends our previous algorithm HotNet [34] 115] in several directions. First,
HotNet2 employs an insulated heat diffusion process that better encodes the local
topology of the neighborhood surrounding a protein in the interaction network. Sec-
ond, HotNet2 uses an asymmetric influence between two proteins to derive a directed
measure of similarity between them, while HotNet derives a symmetric influence.
Third, HotNet2 identifies strongly connected components in the directed graph H,
while HotNet computes connected components in an undirected graph. These dif-
ferences enable HotNet2 to effectively detect significant subnetworks in datasets in
which the number of samples is order(s) of magnitude larger than considered by
HotNet, and in which the mutational frequencies, or scores, occupy a broad range
(from very common to extremely rare). See Figure [4.4]

Expanding on this third point, when undirected diffusion algorithms like HotNet
or related network propagation algorithms [I38] are run on large datasets containing
a wide range of gene scores (e.g. the Pan-Cancer dataset), many of the resulting
subnetworks are “hot” star graphs determined by a single high-scoring node and
the immediate neighbors of this node (Figure [4.4). Star graphs, or more generally
spider graphs, have one central node connected to multiple neighboring nodes that
are not interconnected. While the hot, center node in these star graphs is typically
a significant gene, the neighboring nodes are often artifacts.

We found that HotNet2 returns > 80% fewer hot stars/spiders than HotNet on
the Pan-Cancer datasets (Supplementary Table 31). This is a major difference be-
tween the algorithms and is one of the reasons why HotNet fails to find statistically
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Figure 4.28: Distributions used to set the diffusion parameter 8. Figures in different columns and
rows represent distributions on HINT4+HI2012, iRefIndex, and MultiNet interaction networks across
B from 0.6 to 0.3 for an example gene TP53, which has high betweenness centrality. The z-axis
of each distribution represents 6, a cut off of influence. The y-axis of each distribution represents
the number of nodes in the interaction network with influence larger than 6. Respectively, black,
orange, and blue dotted circles represent the number of all nodes, level one nodes, and level two
nodes with influence larger than 6 across different §. Three red vertical lines across all distributions
in an interaction network represent the location of the inflection point in level one in the 8 we chose
for different interaction networks, i.e. HINT4+HI2012: 8 = 0.4, iReflndex: 8 = 0.45, and MultiNet:
B = 0.5. The bottom plot indicates the distribution of 6 at the inflection point in 5 from 0.05 to
0.95.
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Figure 4.29: Distributions used to set the threshold §. For each combination of interaction
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plot. Dashed lines identify the median value of §, reported in each distribution as well.
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significant results (P < 0.01 for any subnetwork size k) on three of six runs (Supple-
mentary Table 32,33), while HotNet2 finds statistically significant results on all six
runs. The HotNet2 subnetworks also have a higher fraction of interactions with pro-
teins other than a hot central node (Appendix. These differences are explained
by the undirected vs. directed heat similarity measures used in HotNet versus Hot-
Net2. We note that the goal of HotNet2 is not to eliminate hot stars/spiders, but
rather to reduce the number of such subnetworks that are false positives. We also
compared HotNet2 to HotNet on simulated data. In short, the results show that
HotNet2 achieves higher sensitivity and specificity than HotNet (Appendix

and Figure [4.30)).

(a) B Implant (55 genes) (b)
B Passenger (2945 genes)

i
)
‘
‘
. . |
- L[]
E 0.85
o] ;
i s -
E E . -+
.

- 0.70 )

aes HotNet2 065 ¢
. Lase HotNet -+
805 oor 002 003 0ot 005 006 047 008 0565 o T T o T

Heat False Positive Rate HotNet2 HotNet

Density
True Positive Rate
Youden's J Statistic
s

3 (kinz = 5, knn = 3) , 4 (kynz = 3. kun = 3) R 5 (knnz =5, kux = 3)

<

vi= S Fay =5) N S (s = 5,k = ) T0 (hrrva = 5. Fw =)
0

True
Positive
Rate

=
Ll

True
Positive

Rate
I
Ly
T

) N T4 vz = 5. Far = 0) 75 (v = 5. =)
0 ’

=

iva = 5 Fry = 1) 20 (Fraxz = LEny = 1)

True
Positive
Rate
Ny
L

True
Positive

Rate
R
T

21 (hrvz = 5, kux = 3) N 22 (Fravz = 3. iy = 5) ) 23 (Fnz = b, Fix = 5) 2 = 5 Ry = ) , 25 (Fianz = 5. iy = 3)

e

True
Positive
) Rate
ﬁ_\u

v =5 =) =S =)

True
Positive
Rate

T T T T
003 001 005 000 001 002

T T T T T T T T T T T T T
002 003 001 005 000 00 002 003 004 005 000 001 002 003 004 005 000 001 002 003 001 003

Figure 4.30: (a) Gene score (heat) distribution for a simulated dataset. The distribution was
generated using two overlapping normal distributions, where the implanted genes (red) had a higher
mean (0.05) than the mean of the background (passenger; blue) genes (0.01). (b) Scatterplot of the
false positive rate (x-axis) and true positive rate (y-axis) for HotNet2 (red circles) and HotNet (blue
triangles) for identifying the implanted subnetworks in the 30 simulated datasets. (¢) Boxplots of
HotNet2 vs. HotNet’s Youden’s J = sensitivity + specificity — 1 for identifying the implanted
subnetworks in the 30 simulated datasets. (d) ROC curves for HotNet2 (red) and HotNet (blue)
on the 30 implanted pathway simulation datasets. The true positive and false positive rates were
calculated as a function of the minimum edge weight parameter §. Also shown in the plots are the
0 values automatically selected for each dataset by the HotNet2 and HotNet algorithms.

To further demonstrate the advantages of HotNet2 on the Pan-Cancer mutation
frequency dataset, we compared HotNet2 to HotNet and to two standard tests of
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pathway enrichment, DAVID [32, B3] and gene set enrichment analysis (GSEA) [31],
30]. We find that HotNet2 provides both new insights and a simpler summary of
groups of interacting genes, and is a useful complement (or arguably a replacement
for) other pathway tests (Appendix . We also show that HotNet2 has much
higher specificity than HotNet, DAVID, and GSEA in identifying genes satisfying
the 20/20 rule [16] (Appendix [B.8.1} Figure [4.31} and Supplementary Tables 34-36).
Finally, we find that HotNet2 was more stable than HotNet in identifying 20/20

genes using cross-validation (Appendix and Figure [4.32]).
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Figure 4.31: (a-b) The receiver operator characteristic (ROC) curves for HotNet2, HotNet,
GSEA, and DAVID in finding 20/20 genes. The ROC is computed using all 11,565 genes in the
mutation frequency dataset as input to each algorithm. HotNet2 and HotNet were run on the
HINT+HI2012 network. (a) ROC restricted to FPR 0.1 (corresponding to > 1,100 false positive
predictions). (b) ROC restricted to FPR 0.3 (corresponding to > 3,300 false positive predictions).
(c-d) The receiver operator characteristic (ROC) curves for HotNet2, HotNet, GSEA, and DAVID
in finding 20/20 genes. The ROC is computed using the 6,930 genes in the mutation frequency
dataset and the HINT+HI2012 interaction network as input to each algorithm. HotNet2 and
HotNet were run on the HINT4+HI2012 network. (¢) ROC restricted to FPR, 0.1 (corresponding to
around 700 false positive predictions). (d) ROC restricted to FPR 0.3 (corresponding to around
2100 false positive predictions).

We attempted to compare HotNet2 to MEMo65, an algorithm to identify groups
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Figure 4.32: Two-fold cross-validation comparison of HotNet2 and HotNet. (a) The diagnostic
odds ratio (DOR) in finding 20/20 genes is higher for HotNet2 than HotNet. Black points indicate
DOR on 100% of mutation frequency samples; magenta/cyan points indicate DORs for HotNet
results on 50% of mutation frequency samples that were significant/not significant; green dots
indicate DORs for HotNet2 on 50% of mutation frequency samples. (b) Relative change in DOR
across two halves of mutation frequency data, showing higher that HotNet2 has higher stability
than HotNet.

of interacting genes with mutually exclusive mutations. First, we note several im-
portant difference between HotNet2 and MEMo. Namely, HotNet2 (1) analyzes the
mutations and network topology simultaneously; (2) is not restricted to analyzing
exclusive mutations and can analyze co-occurring mutations, and (3) can use input
heat scores that capture additional information (e.g. functional significance) about
the mutations. We found that MEMo was unable to run on the Pan-Cancer mutation
frequency dataset, consistent with the authors’ recommendation that MEMo should
be run only on a small number of significant mutations (details in Appendix .

4.4.4 Finding consensus subnetworks and linkers

We ran HotNet2 on each combination of gene scores (mutation frequency and Mut-
SigCV20 g-values; see Appendix and interaction networks (HINT+HI201221,22,
iRefIndex23, and Multinet24; Appendix and Figure . We derived “con-
sensus” subnetworks and “linker” genes from the HotNet2 results on the different
network and gene scores using an iterative procedure on a weighted graph. This
procedure is described in Appendix [B.1.5]

We evaluated the statistical significance of the HotNet2 consensus subnetworks
using the HotNet2 statistical test on consensus networks found in randomly per-
muted data. We generate the null distribution of consensus networks by permuting
tuples containing the mutation frequency and MutSigCV scores of genes over each
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Figure 4.33: Overlap between nodes and edges in the HINT+HI2012 [I39, [140], iRefIndex [141],
and MultiNet [I42] interaction networks. Each rectangle encloses the nodes (proteins) that are
unique to an interaction networks, shared by two interaction networks, or shared by all three net-
works (middle). Inside each rectangle is a Venn diagram of the overlap in edges in each interaction

network between nodes in the enclosing rectangle. Connections between two rectangles show the
number of edges that join nodes in the two rectangles.
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of the networks. Thus, the permutation preserves the relationship between the mu-
tation frequency and MutSigCV score. We then ran HotNet2 on the three networks
using the permuted mutation frequency and MutSigCV scores forming a “permuted
consensus” using the same consensus procedure described above. We used these
permuted consensus subnetworks to form an empirical distribution for the statistical
test. Additional details of the statistical procedure are in Appendix

4.4.5 Expression and germline filtering

Most of the subnetworks (12/14) identified by HotNet2 were also found when we
remove the requirement for RNA-Seq expression (Supplementary Table 37). This
result demonstrates the robustness and scalability of the HotNet2, as the unfiltered
mutation data includes 19,459 genes. Notable among the additional subnetworks
identified when we remove the requirement for RNA-Seq expression is a subnetwork
(Supplementary Table 25) containing members of the telomerase complex (including
TERT and TEP1) that has a well-studied role in cancer66 (Figure and Supple-
mentary Table 38). While the lack of RNA-Seq reads from these genes is a concern,
we note that the RNA-Seq expression criteria was strict enough to exclude several
bona fide cancer genes (See URLs). Thus, the lack of RNA-Seq reads should not
automatically exclude these genes from further study. We also ran HotNet2 using a
more aggressive criterion to remove potential germline mutations (See URLs). We
found only minor differences in the HotNet2 subnetworks (Supplementary Table 39),
demonstrating that our reported subnetworks are altered by somatic aberrations in
these samples.

Telomerase Complex Coverage: 8.52% (265 /3110 samples) || =5 sample

*TERT (113) " MSm—m g | L
*SMG1 (51) | [ [N | | L
~TEP1 (47) | ImEN=Em
~SMGT (25) IFf W
*+SMG5 (21) | | [ A0 |
**SMG6 (18) II I
SMG7
= LUSC: 0.03 TerT | Legend
TEP1 Cancer types | B-CA I BRCA | COADREAD | GBM [ HNSC § Mutation tvpes f inactivating SNV | SNV
~ancertypes | KRC | LAML | LuaD | Lusc | ov | ucec & . ¥ Amplification 4 Deletion
= All PPI networks
SMG6 ~ MultiNet
—— iReflndex
SMG5 HINT-+HI2012

SMG1

Figure 4.34: The telomerase complex subnetwork and its mutation matrix. Representation as in

Figure @



Chapter 5

Visualization and Annotation of
Aberrations in Cancer

The development of next-generation DNA sequencing technology has led to a super
exponential increase in the amount of cancer genomics data. In the public domain,
large consortia such as The Cancer Genome Atlas (TCGA) have made available
cancer genomics datasets from thousands of tumor samples, while at the same time
researchers are now able to sequence their own, smaller tumor cohorts. A major
challenge lies in integrating these datasets, such that follow-up studies continually
improve our understanding of the large public datasets, and such that researchers
can leverage the large public datasets in their analysis of their own cancer genomics
data.

In this chapter, we introduce the Mutation Annotation and Genome Interpretation
web application for visualization, integration, and annotation of public and private
cancer genomics datasets. MAGI creates interactive visualizations of cancer ge-
nomics data from different platforms that allow users to view their data at different
scales. We show that MAGI is distinct from existing web applications and web por-
tals, first in reducing the computational burden for users to analyze their mutation
data with large public datasets, and second in “expert-sourcing” literature annota-
tion of the large public datasets. We also present several case studies for MAGI,
demonstrating some key use cases.

The MAGI web application is available online at http://magi.brown.edu. We
published the MAGI web application in [53], and much of the material in this chapter
comes from the publication and its supplementary material.
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5.1 Overview

We introduce Mutation Annotation and Genome Interpretation (MAGI), an open-
source web application (http://magi.brown.edu/) for exploration, annotation, and
integration of public and private cancer genomics data (Figures and , and
Section . MAGTI is the first tool to support interactive, bidirectional user inter-
actions between public and private cancer genomics datasets [I70] (Table [5.1)). This
bidirectional interaction enables researchers to leverage large public datasets in the
analysis of their own cancer samples, while also facilitating the expert-sourcing of
public datasets through collaborative annotation. The software can also be installed
locally (http://magi.brown.edu/ and Section [5.2.8).

MAGTI includes several key features.

1. MAGI generates interactive visualizations of cancer genomics datasets with
real-time zooming, panning, and data filtering (Figure . Visualizations
include single nucleotide variants and small indels, copy number aberrations,
gene expression, and protein-protein interactions in a query set of genes across
samples. The MAGI web application is loaded with genomic data from the
TCGA Pan-Cancer study [52] and protein-protein and protein domain anno-
tations from various sources. MAGI also shows categorical and continuous
attributes for each sample, and is initialized with survival time, gender, and
tumor purity estimates from the Pan-Cancer dataset [52] (Figure [5.1).

2. Users may upload genomics data — including mutations, gene expression, methy-
lation, or sample attributes — directly into MAGI. This private data is available
for query, visualization, and annotation in conjunction with public datasets
(Figure . Data upload uses a simple web form with no local software in-
stallation required. MAGI automatically generates summaries of user datasets
with interactive graphs, sortable tables, and pathway analysis (Figure .

3. Annotation capabilities facilitate collaborative annotation of mutations and
protein-protein interactions in both public and private cancer genomics datasets.
Annotations include literature citations, text comments, and votes, and are
seamlessly integrated with the interactive visualizations (Figures and .
The MAGI website is initialized with 40,000 protein sequence change annota-
tions from the Database of Curated Mutations (http://docm.genome.wustl.
edu/) and from PubMed Central searches.

4. A sample view shows all sample features and annotations of aberrations in a
given (public or private) tumor sample (Figure[5.7). An annotation score prior-
itizes the display of aberrations with annotations in the MAGI database. This
view leverages information across many samples for single sample (“N=1")
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analyses. The sample view also reveals unusual samples with few known aber-
rations, encouraging further investigation and annotation of these samples.

5. Bookmarking features enable sharing of interactive views (optionally with pri-
vate data) directly with colleagues or collaborators. MAGI exports publication-
quality graphics of views.

6. A compute engine provides interactive computation of statistical tests of asso-
ciation between mutations and sample annotations for both public and user-
uploaded datasets.

We demonstrated MAGI’s features by uploading TCGA stomach adenocarcinoma
(STAD) data [55] and analyzing the STAD aberrations together with TCGA Pan-
Cancer data [52]. We identified mutations in the TGF-§ pathway that are strikingly
similar to those in TCGA colorectal (COADREAD) data [171] (Figure[5.8)) but were
not reported in either TCGA publication [171} 55] (Section [5.4)).

The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium
(ICGC) and other large-scale sequencing efforts have produced valuable datasets of
genomic aberrations in many cancers. At the same time, rapidly declining DNA se-
quencing costs now allow individual investigators to sequence cancer genomes. MAGI
reduces the barriers to combining public and private cancer genomics datasets. The
advantages of combining data flow in both directions. First, the large number of sam-
ples in public datasets can inform the analysis of private datasets; e.g. increasing
the power to identify recurrent genomic aberrations [I7] or combinations of aberra-
tions in pathways and networks [I72]. Second, private datasets can reveal additional
insights about the public datasets themselves; e.g. demonstrating a functional role
for a rare genomic aberration in TCGA samples. Using MAGI, such insights can be
linked directly to the underlying public genomics data, rather than scattered in the
literature and disconnected from the data. By connecting the information in large
public datasets with insights from smaller private datasets and the literature, MAGI
enhances the value of all data sources and improves the characterization of genomic
aberrations in individual samples.

In the remainder of this chapter, we provide more detail on MAGI. We first
provide more details on the web application and the data loaded into MAGI in
Section [5.2] We then describe several case studies in which we apply MAGI to real
data in Section We finally conclude with a short discussion in Section [5.5]
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Figure 5.1: Screenshot of the MAGI web application displaying mutations in the Notch signaling
pathway from TCGA Pan-Cancer dataset. (i) The aberrations view shows the pattern of mutations
in the gene set across tumor samples. (ii) Additional rows in the aberration and heatmap views
show attributes for each sample; displayed here are survival time, gender, and estimated tumor
purity. (iii) Users can upload and display continuous-valued data (e.g. expression or methylation
data) in a heatmap. Shown here are RNA-Seq differential expression values for TCGA Pan-Cancer

dataset. (iv) The network view shows the interactions among genes from multiple interaction
networks. (v) The transcript view shows the locations and types of the mutations in a transcript
of a given gene. (vi) The copy number aberrations view shows the amplified or deleted segments
across tumor samples in a given gene. (g) Annotations are added using a simple web form that
records mutation/interaction type, a PubMed ID (PMID), and/or free-text comment. Clicking on
an element in any of the views populates this form with the corresponding mutation or interaction,
simplifying data entry.
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Feature MAGI Cancer cBioPortal [I7T3CGWB UuCscC Can-
Regu- [174] cer Genomics
lome Browser

Allows private data (upload Yes (web up- No Yes Yes (Java Web Yes (web upload)

tool) load) Tool)

Combine private and public Yes No No Yes Yes

data

Collaborative annotation Yes No No No No

Interactive (zoom, pan, and fil- Yes No Yes No No

ter data)

Aberrations matrix Yes No Yes Yes Yes

Heatmap Yes No No No Yes

Transcript plot Yes Yes Yes Yes No

PPI networks Yes Yes Yes No No

CNA browser Yes No No Yes Yes

Sample annotations (e.g. clini- Yes No Yes No No

cal data)

Statistical tests of association Yes Yes Yes (sur- No No

vival)

Interactive linking of visualiza- Yes No No No No

tions

Table 5.1: Comparison of features offered by MAGI and similar web tools.

Welcome to MAGI

A tool for Mutation Annotation and Genomic Interpretation il
MAGI is a tool for annotating, exploring, and analyzing gene sets that may be (AL

associated with cancer, Mutation

: g ) Matri
+ View mutations in and interactions ameng sets of genes. —

= Upload your mutation data to view in combination with TCGA Pan-Cancer
data,

+ Collaboratively annotate mutations and interactions while exploring your
data.

A

Networks Transcripts

jiii Query samples Upload Your Data View Dataset Summaries
Instructions
i Al selected ~ + Select datasets from the dropdown.
+ Search by:
TCGA Publications o group name
e
TCGA Pan-Cancer ¢ public or private
+ View available datasets.
S + Uplead your own data.
+ BRCA
Gene set (25 maximum). Instructions
STAGT + Enter up to 25 genes to query.
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ii uppercase.
MC1A
EMES + Blank queries will show annotations for
RAD21 all the in the
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Example queries Click a guery name to populate the form above.
SWI-SNF / TCGA Pan-Cancer Cohesin / TCGA Pan-Cancer PI3)K and BRAF / TCGA GBM

Advanced options [+

Figure 5.2: Screenshot of the MAGI home page and query interface. (i) Users select a combination
of (public or private) datasets to query. (ii) Users can enter up to 25 genes to query at once. (iii)
Alternatively, users can view the mutations in a single sample (Figure .
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User | Logout

Upload your data.

Step 0: Upload a manifest | Step 1: Pick a cancer, name, and color. ji
You can simplify uploading data to MAGI by creating a JSON file to Cancer type (full list or add ancther) Dataset name (e.g. cancer type)
represent your data. Upload the JSON file below to populate the forms on ) ) .
this page with your data. Then all you have to do Is click "Submit” below! Acute Myaloid Leukemia (LAML) x v
See the manifests page for examples and detalls on formatting.
Color (hex; initialize randomly) Group name (optional).

#FDBFEF Enter group name (optional).

Step 2: Select data to upload. 111

MAGI will allow you to upload whatever data you want, so long as your data adheres to one of cur supported file formats (see below). For example, both methylation and expression data
can be upH as "Other A jons"or as “F aps". Any file {or URL) can be GZIP-ed.

Data type and accepted formats Flle format Flle type Flle location Additional information (case-sensitiva)
Single nucleotide variants (SNVs) iv | MAGIformat 4 UAL s http://compbio-research.ce | WA

« TCGA Mutation Annotation Format (MAF)

+ MAGI format \"
Copy number aberrations (CNAs) MAG format + Upload 4 -s.ele WA

« GISTIC2

= MAGI format
Other aberrations MAGI format Upload % Ab ti type (e.g. sil d).

+ MAGI format

Other

H (e.g. gene exp lon) MAGI format Upload Data type

» MAGI format

tega-p..on.txt Gene expression H

Sample annotations MAGI format Upload 4 N/A

+ MAGI format
Annotation color file MAGI format Upload  * m WA

« MAGI format

£\ ATTENTION: Before you upload. By uploading data to MAGI, you agree to our terms. All data uploaded to MAGI is private to your account, and will not be shared
with anyone. However, uploaded data might be subject to additional restrictions from your institution or data source. We cannot assume responsibility for violations of

these restrictions. Please be vigilant in conforming to any policies that apply to your data. If you are a member of a TCGA working group and are uploading TCGA data,
please consult the TCGA controlled-data sharing policy for cancer genomics data. If data access restrictions prevent you from uploading data to the public webserver,
we encourage you to download and create a private version of MAGI.

Figure 5.3: Screenshot of MAGI data upload interface. (i) Users can choose to upload a single
JSON manifest file that includes the URLs for all the data files in a given dataset. (ii) Users select
a cancer type for their dataset either from a predefined list of TCGA/ICGC types or by adding
their own — ensuring every mutation annotation maps to a particular cancer type. (iii) Users select
the data files they want to load into MAGI. MAGI supports six different data types: SNVs, CNAs,
other aberrations, heatmap (continuous values), sample annotations, and sample annotation colors.
(iv) Users can also upload SNVs in TCGA MAF and CNAs in GISTIC2 format. (v) All data files
can be provided as URLs, or uploaded directly to MAGI.
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Figure 5.4: Summary of the glioblastoma (GBM) samples from the TCGA Pan-Cancer dataset
automatically produced by MAGI. Users can view these summary pages for public datasets or their
own uploaded private data. (i) Summary statistics for the mutation data. (ii) Plot of the number
of the mutations in each gene in the dataset. The plot is interactive, as users can zoom in and out
or scroll over points to get additional information. (iii) Users can also choose from 11 mutation
categories for the x- and y-axes (number of SNVs and number of CNAs by default) of the mutations
plot. (iv) Sortable and searchable table of the genes in the dataset. (v) Sortable and searchable
list of pathways with the most mutations in the dataset. Pathways are from the KEGG and PINdb
databases.
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Figure 5.5: Screenshot of annotation MAGI annotation interface. Annotations of (i) genes (ii)
interactions, (iii) mutated residues, and (iv) copy number aberrations are viewable as tooltips in
each view. MAGI displays annotations interactively as users mouse over different views. Users can
also upvote or downvote existing annotations in the tool tips. (v) Users can click on individual
data points (e.g. interactions in the network view) to pre-load the annotation form on the right.
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Figure 5.6: The MAGI gene annotation page shows a table listing all the annotations in a
given gene. The PubMed or PubMed Central ID, the source, and (optionally) the associated
cancer, mutation class, mutation type, and protein sequence change are shown for each annotation.
Logged-in users can upvote or downvote any of the annotations.
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Figure 5.7: MAGI’s tumor sample view. (i) The tumor sample view lists all the aberrations in the
given tumor sample in a table. The aberrations are displayed are represented by the gene, mutation
class, and locus or protein sequence change, and are ordered by the score of the annotations for
that aberration in the MAGI database. The badges next to highlighted genes/classes/loci list the
number of annotations for the gene/class/locus. (ii) Users can click on any of the badges to view
the annotations in more detail. (iii) The page also includes a table of the attributes (e.g. gender)
for the given sample.
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Figure 5.8: Transcript plots for mutations in SMAD2 (top) and SMAD4 (bottom) in the TCGA
gastric (STAD; dark green) and Pan-Cancer datasets. (top) Three of the four mutations in SMAD2
in the TCGA STAD dataset are inactivating nonsense mutations, while the fourth mutation is a
missense mutation that occurs in the same location in the MH2 binding domain as two missense
mutations in the TCGA colorectal cancer (COADREAD; light green) dataset. (bottom) All of
the mutations in SMAD4 in the TCGA gastric dataset occur in the MH2 binding domain. In
addition, 12 of the 49 mutations in SMAD4 are mutations at position 361. (Note that only 7 of
these mutations are visible in the screenshot.)
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5.2 Methods

MAGI (http://magi.brown.edu or installed locally) is a web-based platform for
creating custom interactive visualizations of cancer mutation data and enabling the
collaborative annotation of this data. The visualizations integrate mutation data
from one to thousands of tumors with publicly available annotations of genes and
proteins including protein domains and protein-protein interactions. MAGI has sev-
eral key features.

. MAGTI allows the querying of mutation data from TCGA Pan-Cancer project [52]
for any combination of genes (Figure [5.2)), detailed in Section [5.2.1]

. MAGI generates multiple visualizations of genomics data across thousands of
samples including an aberrations view, heatmap view, transcript view, network
view, and copy number aberration view. These views illustrate relationships
between mutations across multiple biological scales from genome and protein
sequence through protein domains and protein-protein interactions. The vi-
sualizations are dynamic and interactive, allowing users to explore their data
by filtering, sorting, and rescaling the visualizations. Any displayed view can
be exported in vector graphics format for subsequent presentation/publication.
Each view is described further in Section [5.2.2

. MAGI includes a straightforward system to upload mutation data from addi-
tional samples into a private database. This private data can be queried and
analyzed in combination with public data. Users can also upload additional
aberration data for TCGA samples (e.g. methylation data), and query this
data alongside TCGA and/or private mutation data. Users can share links to
views generated with public and/or private data to colleagues. This is further

detailed in Section [5.2.41

. MAGI enables collaborative annotation of aberrations in individual genes or
transcripts as well as protein interactions using an interactive, context-aware
system that makes it easy to add publication support (PubMed IDs) or free-
text annotations. This is further detailed in Section [5.2.5

. MAGTI provides a sample view that shows all sample features and annotations
of aberrations in a given (public or private) tumor sample. An annotation score
prioritizes the display of aberrations with annotations in the MAGI database.
This leverages information across many samples of “N=1" analyses. Moreover,
the view reveals unusual samples with few known aberrations, encouraging
users to further investigate and annotate these samples. This is further detailed

in Section £.2.6

. MAGI provides interactive computation of statistical tests of association be-
tween mutations and sample annotations across a combination of public and
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user-uploaded datasets, further detailed in Section [5.2.7]

Table [5.1] provides a comparison of MAGI and other cancer genomics browsers and
web applications.

MAGTI is publicly available and accessible through any modern web browser with
Javascript enabled. No local installation of software or browser plugins is necessary.
Thus, MAGI places no computational burden on its users beyond the ability to use a
web browser. MAGI generates visualizations directly in the browser using the Data
Driven Documents (D3) [176] Javascript framework in scalable vector graphics (SVG)
format. The MAGI web server is written in Node.js using a MongoDB database, with
web services provided by Nginx (See Table for additional details on the imple-
mentation). We show a schematic of how MAGI uses these technologies to respond
to queries in Figure 5.9 Using these technologies, MAGI can display mutation data
for thousands of samples for dozens of genes in under a second. The source code for
MAGTI is publicly available on GitHub (http://github.com/raphael-group/magi;
See Section [5.2). We also provide an Amazon machine image containing a pre-
configured webserver for easy deployment of private MAGI installations (Details in

Section [5.2).

Component Description Technology Framework Language
Backend Web server Node.js Express Javascript
Database MongoDB Mongoose Javascript
User authentication OAuth2 Passport.js Javascript

HTML templating Jade Express HTML, CSS
Frontend Visualizations D3 N/A Javascript
Interaction D3 N/A Javascript
jQuery N/A Javascript

Table 5.2: Technologies used by MAGI.

5.2.1 Integration of mutation and annotation data

MAGTI integrates mutation data, including non-synonymous single nucleotide vari-
ants (SNVs), small indels, copy number aberrations (CNAs) and predicted fusion
genes, and gene expression data with publicly available annotations of the genome,
transcriptome, and proteome. MAGI is initialized with two mutation datasets:

1. TCGA Pan-Cancer project [52]: 18,526 mutated genes in 3110 tumor sam-
ples from twelve different cancer types. Copy number aberrations were ex-
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Figure 5.9: Schematic of the software technologies used in MAGI. MAGI uses D3 client-side to
load the mutations and annotations from a web server running Nginx. The web server constructs
a JSON object payload using the Node.js framework, which performs the query and collates the
resulting data from MongoDB.
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tracted from GISTIC2 [23] output via FireHose, using recurrently aberrant
regions from the GISTIC2 maxpeaks. We restricted aberrations to those
within 50kb of regions with significantly recurrent aberrations in one or more
cancer types, or across cancer types. MAGI also includes expression data
from the TCGA Pan-Cancer project downloaded from synl1715753. Samples
from the TCGA Pan-Cancer dataset are annotated with clinical data (survival
time and gender) downloaded from Firehose (http://gdac.broadinstitute.
org/runs/stddata__2014_02_15/data/PANCAN12/20140215), and purity es-
timates from the ABSOLUTE algorithm [I77] downloaded from syn1710466.
TCGA breast cancer (BRCA) samples are annotated with gene expression
subtypes from [§], downloaded from http://tcga-data.nci.nih.gov/docs/
publications/brca_2012/BRCA.547.PAM50.SigClust.Subtypes.txt.

2. TCGA Gastric Cancer Project [55]: 9,316 mutated genes in 215 tumor samples.
Mutations and copy number aberrations were downloaded from syn1725886.
CNAs were extracted from GISTIC2 output. We excluded 74 tumor sam-
ples classified as hypermutators in [55]. We also downloaded clinical data
(survival time and gender) and tumor purity estimates from the ABSOLUTE
algorithm [I77] from syn1725886.

We provide these datasets online on the MAGI website (see below).

MAGI maps copy number aberrations to gene locations on the hgl9 reference
genome. Mutations in each gene were mapped to a single ENSEMBL transcript using
the vef2maf software package (https://github.com/ckandoth/vcf2maf). MAGI
includes 44 cancer type abbreviations from TCGA (https://tcga-data.nci.nih.
gov/datareports/codeTablesReport.htm) and ICGC (https://dcc.icgc.org/
projects), such that samples of the same cancer type are colored consistently across
views. Because MAGI uses standard file types (MAF files and GISTIC output) and
cancer types used in TCGA, it is easy to update the TCGA data in MAGI directly
from FireHose output.

MAGTI is pre-loaded with ~40,000 annotations of known cancer variants. Each of
these annotations maps a PubMed or PubMed Central (PMC) ID to a variant (pro-
tein sequence change). MAGI includes nearly 4,000 annotations from the Database of
Curated Mutations (DoCM; http://docm.genome.wustl.edu/). We generated the
remaining annotations by performing text searches using the PMC API for each of
the protein sequence changes in the TCGA Pan-Cancer and TCGA STAD datasets.

MAGTI also includes annotations — protein-protein interaction networks and pro-
tein domain datasets — that describe features, properties, or interactions between
genes. MAGI is initialized with interactions from four different protein-protein in-
teraction networks — HINT [139], HPRD [I7§], iRefIndex [141], and Multinet [142]
— which comprise 157,026 interactions among 16,448 proteins. MAGI also includes
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174,362 protein domains in 64,186 transcripts from the Conserved Domain [179],
PFAM [I80], and SMART [I81, 182] protein domain databases. We describe the
format of the data used by MAGI in Table [5.3]

5.2.2 Visualization components

Given a query gene set G and a collection of mutation datasets, MAGI generates
five types of visualizations, or views. The views are generated using our publicly
available GD3 library (https://github.com/raphael-group/gd3), a library of ge-
nomic visualization elements written using the D3.js library [I76]. These views are
each displayed as part of a single-page web application (Figure . The views are
interactive and linked (described further in Section [5.2.3). We describe the views in
detail below.

o Aberrations view. The aberrations view is a matrix indexed by genes (rows)
and samples (column) (Figure [5.1). The matrix displays binary aberration
data; in each sample, a gene is marked as containing an aberration or not. By
default, the aberrations view shows the SNVs and CNAs in the query gene set.
For each mutation in each gene, the corresponding cell in the aberrations ma-
trix is marked with a colored shape that indicates the type of mutation (SNV,
inactivating SNV, amplification, deletion, or fusion). Cells may be colored by
the sample type; the standard TCGA Pan-Cancer color scheme [52] is used for
these cancer types and users may define colors for their own samples. Aberra-
tion matrices that include only a single mutation dataset color the shape based
on whether or not the sample is mutated in one gene (mutually exclusive) or
more than gene (co-occurring) in G (Figure [5.10). The samples (columns) of
the aberrations view are dynamically sortable based on attributes of the genes,
the samples, and the mutations themselves. The aberrations view is interac-
tive, and supports zooming and panning such that users can view the pattern
of mutations in a gene set across thousands of tumors, or restrict their view
to the mutations in individual tumors. Users can also dynamically filter the
aberrations by toggling on and off different mutation types.

The aberrations view offers researchers the opportunity to view mutations in
any combination of genes to facilitate understanding of how the genes are
mutated within individuals and/or across cancer types. We demonstrate this
view using the mutations in eight genes of the SWI/SNF complex in the TCGA
Pan-Cancer dataset (Figure . The aberrations view generated by MAGI
demonstrates visually that this complex is enriched for mutations in kidney
cancer (KIRC); in fact, 153/592 (25%) samples with mutations in this complex
occur in KIRC (Figure [5.11). Furthermore, MAGI demonstrates that most of
the inactivating SNVs or deletions occur in KIRC, bladder, or endometrial
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Visualization Compo- Data Description Example
nent(s)
Aberrations view and SNVs and small indels Gene symbol ARIDI1A
transcript view
Sample ID TCGA-A6-2676
Transcript ID ENST00000324856
Transcript length 2285
Position 1262
Mutation type Missense
Original Amino R
Acid
New Amino Acid H
Aberrations view and CNAs Gene symbol ARIDI1A
CNA view
Sample ID TCGA-04-1367
Type (amplification DEL
or deletion)
Left point 19153764
Right point 33238714
Transcript view Protein domain annota- Dataset PFAM
tions™*
Transcript ID ENST00000324856
Domain name DUF3518
Domain start 1975
Domain end 2231
CNA view Genome annotations™® Gene symbol ARID1A
Chromosome 1
Start 27022521
End 27108601
Network view Protein-protein  interac- Source (gene sym- ARID1A
tions bol)
Target (gene sym- SMAD2
bol)
Network name iRefIndex
Heatmap view Continuous-valued data Gene ARIDI1A
(e.g. gene expression,
DNA methylation)
Sample TCGA-A6-2676
Values 0.40
Aberrations view Binary data Gene ARID1A
Sample TCGA-A6-2676
Sample annotations Categorical (e.g. expres- Sample TCGA-A6-2676

sion subtype) or continu-
ous (e.g. tumor purity)
data

Value (continuous)
Value (categorical)

0.88
HER2-Enriched

Table 5.3: Data types included in MAGI, organized by the visualization component in which the
data is used. Users can upload all data types, except those indicated with an asterisk (*).
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Figure 5.10: Aberrations view of the mutations in the CDKN2A, CDK4, and RB1 genes in
the glioblastoma tumors from the TCGA Pan-Cancer dataset. Full ticks represent SNVs while
black stripes represent inactivating SNVs, downticks represent deletions, and upticks represent
amplifications. Exclusive mutations — those that occur in only one gene in the gene set — are
colored blue, and co-occurring mutations are colored orange.

cancer (207/301 samples), which is easily accomplished by toggling off the
other cancer types.

Aberrations =
ARID1A (213) || lq“”ﬂ
Il

PBRM1 (180) |‘ I | | N
SMARCAG (89) ‘ “ | | [ i
ARID2 (87) | | \ [ AR

I
| | | |
ARID1B (67) | [T 1N \ W
SMARCC2 (41} | | | 1
SMARCCH (25} | | [
SMARCB1 (26) | | |
e TN R T S 0 0 AV R T T
Survival (days) | I | | I
ABSOLUTE Puriy | 1N SRR RN AR N 100NN OO0 R END O VL0 A IO 6 101 WA © RN AL | S NN 0 AN DR
Exprassion subtype nm | | i
Legend (mouse over) Coverage: 18.07% (592/3277)

Wsny Elinactivating SNV smDeletion ™ Amplification

Gender: Bmale Biemale

Survival (days): M 0,5295

ABSOLUTE Purity: N 0.18,1

Expression subtype: Nnul BBasa-ike BLuminal-a BHER2-enriched BLumina-B

Figure 5.11: Aberrations view of genes in the SWI/SNF complex from the TCGA Pan-Cancer
dataset. The genes are enriched for mutations in kidney cancer (KIRC, red) and endometrial cancer
(UCEC, brown). Most of the inactivating SNVs and deletions in these genes occur in the BLCA,
KIRC, and UCEC cancer types, which is easily seen in MAGI by toggling off the other cancer types
in the sample type legend on the right (not shown).

An additional use case for the aberrations view is in examining the pattern of
mutations in a gene set across a cohort of tumors (Figure. The aberrations
view makes it simple to determine visually if a set of mutations are mutually
exclusive or co-occurring. Mutually exclusive mutations may indicate that a set
of genes is in the same functional pathway [38,[39]. For example, in Figure[5.10]
mutations across 159 glioblastoma samples in three genes (CDKN2A, CDK4,
RB1) in the Rb signaling pathway are shown. Only 3/159 samples have mu-
tations in more than one gene, and indeed, these genes have been previously
shown to have significant mutually exclusive mutations in glioblastoma [I].
An alternative explanation for mutual exclusivity is that some genes are tar-
geted more often in different cancer (sub)types. This is easy to observe using
MAGI as mutations are color-coded by (sub)type, such as in Figure[5.11] where
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PBRM1 is mutated predominantly in kidney cancers (131/180 mutations).

Heatmap view. MAGI generates a heatmap view for visualizing continuous-
valued data in the query gene set across a cohort of samples (Figure . By
default, the heatmap shows gene expression data in the samples in which the
genes are mutated. The heatmap is not restricted to displaying gene expression
data; users can upload any continuous-valued data to MAGI as a matrix (e.g.
DNA methylation data).

Transcript view. MAGI generates transcript views for each transcript in each
gene in the query set G (Figure . The transcript plot shows the locations
of mutations for a given gene in the protein sequence and constituent protein
domains. The protein sequence and domains are shown in the middle of the
plot, with in-frame and missense mutations shown above the sequence and
inactivating mutations (nonsense, nonstop, splice-site, and frameshift inser-
tions/deletions) shown below. Mutations are represented by different colored
symbols, where each symbol represents a different mutation type (e.g. missense
or nonsense) and is colored by the dataset in which the mutation occurred. The
transcript plot is interactive: users can dynamically switch the protein domain
database used to annotate the protein sequence, toggle on and off different mu-
tation types, and zoom and pan along the protein sequence to view mutations
at the individual base-pair level, or across hundreds or thousands of base-pairs.

The transcript view is especially useful for addressing a common challenge in
cancer genomics: determining the functional impact of mutations. Methods to
determine the functional impact of non-synonymous SNVs fall into three cate-
gories, and involve determining (1) whether the mutations are inactivating; (2)
if there is a cluster of these mutations at a particular position, which suggests
that these mutations are activating [16]; or (3) if the mutation affected a known
protein domain. This latter method is especially useful when examining sets
of genes with the transcript view, as it is possible to determine if mutations
are targeting an (multiple) interaction domain(s) between pairs of proteins.

To demonstrate the transcript plot, we examined the mutations in BRAF
in glioblastoma tumors (GBM) from the TCGA Pan-Cancer dataset (Fig-
ure 5.12). BRAF is a well-known oncogene and the V600E mutation, a valine
to glutamic acid substitution at residue 600, is a driver mutation in multiple
cancer types, including 60% of melanomas [183] as well as in colon cancer [184].
In GBM, we find that BRAF mutations are rare with only 7/290 (2.4%) sam-
ples having a BRAF mutation. However, 5/7 (71%) of the mutations in these
samples are V60OE mutations. This demonstrates the benefits of interactive,
exploratory analysis of TCGA data.

Network view. The network view (Figure shows the interactions among
the protein products of the genes in the query gene set G. The subnetwork plot
is a multigraph, where each gene (node) is connected by one or more edges,
each edge indicating a known protein-protein interaction from one of the four
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interaction networks11-14 included in MAGI. Genes in the graph are colored
by the number of samples in which they are mutated. The networks used
in the plot can be toggled on or off by the user. The positions of nodes are
initially determined by the force-directed layout from D3 [I76] (layout based
off of [185]), but nodes can be moved and/or fixed to create custom static
layouts. Each edge is annotated with PubMed IDs (PMIDs) of publications
that support the underlying interaction.

e Copy number aberration (CNA) view. MAGI generates a copy number aberra-
tion view (Figure for each gene in G. The CNA view shows the amplified
or deleted segments adjacent to a particular gene in each sample. The middle
of the view shows all genes within 500kb of the query gene. The top (respec-
tively bottom) of the view shows the amplified (respectively deleted) segments
in each sample with at least one CNA in the region. Each segment is a rectan-
gle that spans the genomic region that is amplified or deleted, and is colored
by the dataset of the sample. The CNA view allows for zooming and panning,
such that users can determine if the amplified or deleted regions are focused
around the particular gene, or span many genes.

Transcript =
ENST0000028B8602 (6 mutations)
BRAF
Dataset: GBM
Mutation type: Missanse Mutation
Change: 600 V>E
4] 200 400 B30
Morsensa Mutation Framea Bhift Del Frama Bhift Ins Missense Mutatic
Splica Sita In Frame Dal In Frame Irs

Figure 5.12: Mutations in BRAF in glioblastoma tumors in the TCGA Pan-Cancer dataset.
Shown is the screenshot of the transcript plot of BRAF mutations in transcript ENST00000288602.
Each diamond indicates a missense mutation in an individual sample — five of six are clustered at
position 600.

Since somatic copy number aberrations often include multiple genes and typ-
ically vary greatly in size and position across different samples, it is difficult
to determine which, if any, of the genes in a copy number aberration is the
target of the aberrations. Methods such as GISTIC2 [23] identify recurrently
amplified or deleted segments of the genome, and in some cases predict the
genes that are the targets of these aberrations. The MAGI CNA view can be
useful in identifying likely targets of recurrent aberrations and rare aberrations
missed by these computational approaches:
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1. Missed targets of recurrent copy number aberrations. The MAGI CNA
view allows the user to see the entire genomic region in which a set of
CNAs occur, including the genomic neighbors of the target identified by
a computational approach. This can help users quickly identify likely
mistakes in the computational approaches method for assigning targets
to recurrent CNAs. For example, we viewed the aberrations the FGF19
gene from the TCGA STAD dataset (Figure [5.13h). GISTIC2 identified
FGF19 as the target of amplifications in 30/215 (14%) of STAD samples,
potentially a novel discovery, as amplifications in FGF19 have not been
reported in gastric cancer before. However, FGF19 is located just 44kb
from CCND1 on chromosome 11 (Figure[5.13p). CCND1 is a well-studied
cancer gene and is frequently amplified in cancer [I86], and thus seems
likely to be a target of these amplifications. Furthermore, all 12 amplifica-
tions that span FGF19 also span CCND1. MAGI makes it easy for users
to quickly identify potential missed targets of CNAs by computational
approaches.

2. Rare copy number aberrations. The MAGI CNA view allows the user
to see the size and position of copy number aberrations in each sample.
This aids in the identification of CNAs that may be significant, particu-
larly in combination with other types of mutation in the same or different
genes, shown in the other view. We viewed the CNAs in the PDGFRA
gene in the TCGA Pan-Cancer dataset (Figure [5.14). GISTIC2 identi-
fied PDGFRA as a significantly recurrently amplified gene only in GBM
tumors, but Figure |5.14] shows that PDGFRA contains less frequent am-
plifications in other cancers as well. For example, in the lung squamous
cancer (LUSC) samples in the TCGA Pan-Cancer data [52], PDGFRA
has focal aberrations in 9/178 tumors (5%). While the amplifications of
PDGFRA in LUSC are not significantly recurrent [9], they may be wor-
thy of additional investigation since similar amplifications in PDGFRA
are significantly recurrent in GBM.

5.2.3 Interactive linking of data views

The views shown in MAGI are interactively linked in two ways. First, users can
dynamically filter the data shown in all views (e.g. by toggling on or off individual
datasets). Second, when a user interacts with (i.e. moves the cursor over) a sample in
one view, all the data for that sample is highlighted in each other view (Figure [5.15).
This improves user exploration of the data in a number of ways. For example,
when a user moves the cursor over a sample (column) in the aberrations view, all
of the mutations in that sample for the transcript shown in the transcript view are
highlighted. This shows the user immediately if a sample has multiple mutations
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Figure 5.13: An example of a potential missed target of recurrent CNAs by GISTIC2 in TCGA
STAD. Shown are amplifications assigned by GISTIC2 to the FGF19 gene in the TCGA STAD
dataset. (a) View of all the amplifications in FGF19. (b) Zoomed in view of the amplifications,
where CCND1 — a well-studied gene frequently amplified in cancer [I86] — is visible. CCN D1 is
only 44kb from FGF19, and thus may also be a target of the CNAs in FGF'19.
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Figure 5.14: Copy number aberrations in PDGFRA in the TCGA Pan-Cancer dataset. Ampli-
fications in PDGF RA were identified by GISTIC2 to be significantly recurrent in GBM tumors
(green bars), although PDGFRA is also amplified in many other cancers. Vertical bar indicates
the genomic coordinates of PDGFRA gene.
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in a single sample. Additional examples of tasks enabled by linked views include
the correspondence between gene expression and mutation types (does a gene with
a deletion or inactivating mutation in a sample also have lower gene expression?), or
showing whether a sample has two hits in a gene, e.g. a deletion and inactivating
mutation.

5.2.4 Uploading private mutation datasets

With the declining costs of whole-genome/-exome sequencing, many researchers are
now sequencing their own tumor cohorts. MAGI provides a platform for these re-
searchers to analyze and explore their mutation data in concert with larger datasets
of public mutation data; e.g. from TCGA. By combining public and private mu-
tation data in this manner researchers may interactively explore hypotheses about
individual mutations or genes, and combinations thereof. For example, researchers
can quickly determine if the mutations in their dataset are present in the larger pub-
lic datasets. MAGTI is not intended to replace sophisticated algorithms to predict
driver mutations or genes in new datasets, but rather complements these approaches
by allowing researchers to quickly determine the nature of mutations in a gene or set
of genes in a particular cancer type.

MAGTI offers a tool for users to upload their own data using simple plain text tab-
separated value (TSV) formats. Users may upload files directly from their personal
machine or provide a public URL to the file (e.g. from Synapse, or a TCGA Publi-
cation Page). Users can upload SNVs using a TSV format, or the standard mutation
annotation (MAF) format used by TCGA for SNV data. Similarly, users can upload
CNAs using a TSV format, or a TAR file (http://www.gnu.org/software/tar/)
of the output of the GISTIC2 algorithm [23]. Users can also upload TSV files of
“generic” aberration data that lists the mutated genes in a set of samples to MAGI,
which can include for example gene expression or methylation data. MAGI also
offers users the ability to upload continuous-valued data (e.g. expression or methy-
lation data) which will be drawn as a heatmap. Users can annotate the samples
in each of the views by uploading a matrix of sample annotations — such as clin-
ical data or the output of an algorithm analyzing the tumor — containing contin-
uous (e.g. survival time) or categorical data (e.g. expression subtype). MAGI
supports GZIP compression (http://www.gzip.org/)) and will decompress any pro-
vided GZIP files. The file formats and specifications are available online at http:
//magi.cs.brown.edu/upload.

Alternatively, users can upload a single manifest file that includes the URLSs for
all the data files in a given dataset. As example, we have posted the data files for
the TCGA Pan-Cancer and gastric cancer datasets that are pre-loaded into MAGI
(http://compbio-research.cs.brown.edu/software/magi/data), and created man-
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ifest files for each of these datasets (http://magi.brown.edu/manifests). This
feature also makes it easy to pull the latest TCGA mutation data from Firehose
(http://gdac.broadinstitute.org/).

After the data upload is complete, MAGI annotates the mutation data using the
annotations described above, and then makes the data available to be queried by
the user. Thus, users can upload and query their own mutation data on MAGI in
seconds.

MAGI automatically generates a dataset summary page that allows users to sort
or search for mutated genes or functionally-related gene sets (from KEGG [28] and
PINdb [29]) based on their mutations in order to aid users in creating their query
gene set(s) (Figure . Both the genes and gene sets are displayed in sortable and
searchable tables that list the number of SNVs, CNAs, and mutated samples per gene
or gene set. The rows of these tables include a link to an automatically generated
MAGI query, which allows users to quickly view the mutation data of genes and
gene sets with possible driver mutations in their data. Users can also dynamically
create plots of two attributes of the mutations in each gene in a dataset (by default
the number of SNVs and number of CNAs). Users can zoom and pan these plots to
quickly identify outlier genes that may have interesting patterns of mutations.

No local software installation or browser plugins are required for a user to upload
their own data. The only requirement is that a user must login to MAGI using
an Open ID provider (http://openid.net/), including Google, Facebook, or Twit-
ter. Mutation data uploaded with MAGI is available exclusively to the user who
uploaded, but can be queried in combination with public mutation data, which fa-
cilitates comparing the mutations in a gene set from two studies (e.g. of the same
cancer type). MAGI allows users to share the results of individual queries with col-
leagues and collaborators without making their mutation data publicly available by
hashing each query to make a unique, bookmarkable link, such that only individuals
with the link can view the MAGI page generated from the query.

5.2.5 Collaborative annotation

Users who log into MAGI can record annotations for mutations and protein interac-
tions. These annotations are available to all users, enabling collaborative annotation
of public datasets. The main MAGI view includes a panel (Figure that lists the
number of annotations in the MAGI database (in the form of PubMed IDs) for the
displayed genes. Each gene links to a page that lists all the variant annotations for
each gene as well as links to the corresponding PubMed pages (Figure .
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The interface for adding annotations is integrated with each of the views, thus
reducing the effort required to add data. Clicking on a mutation or interaction in
any view populates an annotation form (Figure with information about the cor-
responding mutation or interaction (Figure . For example, clicking on an SNV
in the transcript view records the position, protein domain, mutation type (e.g. mis-
sense), and cancer type of the mutation. Users may edit this default information and
then enter one or more PubMed identifiers (PMIDs) and optionally a text comment.
Users may also upvote or downvote existing annotations. By linking the information
in the view directly with the annotation form, MAGI automates data entry thereby
encouraging users to add annotations.

MAGTI also links out to public databases to facilitate user addition of new annota-
tions. For each mutation in the transcript view, we provide a link to a PMC search
for the same protein sequence change. This simplifies the process of determining
whether a variant has been previously reported or functionally validated. For exam-
ple, examining the mutations in the SMAD4 gene in the TCGA Pan-Cancer dataset,
we see four mutations at position 537, three in colorectal cancer and one in lung
squamous cancer. The PMC searches reveal two publications for the lung squamous
variant (D537E) and two publications for one of the colorectal variants (D537Y).
These publications date to 1998, 2000, 2001, and 2004, and report functional studies
of these variants. MAGI also links the gene names in the aberrations view to the
corresponding NCBI pages to further facilitate the discovery of annotations which
the user can then add to MAGI.

For protein-protein interactions, users can annotate existing interactions or add
new interactions to a “Community” interaction database. Users may also upvote or
downvote (Figure the recorded annotations — including those that are pre-loaded
from PPI databases — so that others will know whether the community believes
the annotation to be appropriate and useful (See example below). This feature
is intended to facilitate the annotation of protein-protein interactions and correct
errors that are present in the curated databases [I87]. One example of a possible
error is in the iRefIlndex 9 [141] protein interaction network. iRefIndex 9 includes
interactions of NOTCH1 with PIK3CA, PIK3R1, PIK3CG. These interactions are
curated from [I88], which reports NOTCHI interacting with the PI3K proteins as
part of a NOTCHI1-p56lck-PI3K complex, but only p85 (PIK3R1) is specifically
listed in one of the co-immunoprecipitation experiments. MAGI is designed to help
remedy such ambiguities through collaborative annotation, and we downvoted each
of these interactions in MAGI.

By default, all annotations recorded for public data (e.g. TCGA data or protein-
protein interaction data), will be available to other users. Mutation annotations are
stored for a given gene and mutation type, with optional fields for protein sequence
change and cancer type. The votes for each annotation are stored with the user
ID of the voter, in order to ensure that the same voter cannot vote more than
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once on a given annotation. Users who login will see all contributed annotations
in the interactive views by clicking on the corresponding mutation (e.g. deletions
in ARID1A). All users can view expert-sourced interactions as a “community” PPI
network.

The annotation features in MAGI facilitate “expert-sourcing” of public datasets,
further increasing the value of these datasets by linking them directly to the scientific
literature or expert knowledge. To our knowledge, MAGI is the first web platform
to offer expert-sourcing of annotations for cancer genomics.

5.2.6 Tumor sample view

A major issue in cancer genomics is to interpret the variants in a single sample. MAGI
includes a sample view that shows the variants and sample annotation for a single
tumor sample (Figure . The view lists all the mutations in a given tumor sample,
ordering them by the annotation score of the variants in the MAGI database. Thus
mutations with more annotations — presumably the drivers — are shown near the top
of the list. As more researchers use MAGI and annotate variants, the mutations that
are supported by literature will be further separated from likely passenger mutations.

Furthermore, since MAGI allows users to upload mutation data using a simple
web form, researchers or clinicians can upload data from an individual tumor and
have the mutations prioritized by MAGI using literature annotations.

MAGI shows the tumor sample view in a separate page from the gene set visu-
alizations. For example, Figure displays a bladder urothelial carcinoma (BLCA)
tumor sample’s mutations.

5.2.7 Statistical tests of enrichment

Users can load sample annotations (e.g. sample clusters or subtypes) into MAGI —
either for public or private datasets — and test whether a group of annotated samples
is enriched for mutations (Figure [5.16). MAGI computes the enrichment by cross-
classifying samples into an contingency table, and then using Fisher’s exact test
(when r = ¢ = 2) and the x? association test. MAGI displays the enrichments for a
given query set of genes and datasets on a separate page.

We demonstrate the statistical tests using breast cancer gene expression sub-
types from TCGA [8], computing the association between ERBB2 aberrations and
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Figure 5.16: MAGI interface for computing statistical tests of association between mutation status
and sample annotations. (a) Users view enrichments for their query by following the “Enrichment
statistics” link on the view page. (b) The MAGI enrichment statistics page, shown here for the
genes PI'EN, ERBB2, and EGF R in BRCA samples annotated by the gene expression subtypes
from [§]. i) Users choose the sample annotation they want to test from a dropdown of all discrete
sample annotation categories. ii) MAGI then cross-classifies samples into a contingency table. iii)

Users view enrichments by choosing from a dropdown of statistical tests.
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the HER2-enriched subtype (Figure . ERBB2 amplifications largely define the
HER2-enriched subtype [§], and MAGI indeed finds that the HER2-enriched subtype
is enriched for aberrations (P < 107'°). Identifying associations between aberrations
and sample annotations is a very common task in cancer genomics research. MAGI
allows the user to effortlessly perform these calculations, integrating visual explo-
ration of the data with statistical analyses. To the best of our knowledge, MAGI
is the only online tool that computes statistical tests of enrichment between mu-
tations and sample annotations interactively across a combination of public and
user-uploaded datasets.

5.2.8 Software availability

o MAGI web server (https://github.com/raphael-group/magi). Git reposi-
tory including the Node.js web server used to run MAGI.

o GDS3 wisualization library (https://github.com/raphael-group/gd3). Git
repository including the Javascript library (GD3) that uses D3 to generate the
MAGTI visualizations.

e Amazon machine image (AMI ID: ami-44e4442c). Preconfigured Amazon ma-
chine image named “MAGI Web Server” that includes the MAGI web server
and all of its software dependencies. Users can clone the AMI to create their
own private version of MAGI.

5.3 Related work

MAGTI fulfills different needs from the current data portals, genome browsers and
web servers that have been developed to view and analyze genomics data. Portals
such as CBio [I73], [174] allow users to query and explore cancer genomics data, but
do not allow straightforward uploads of private data. Several systems [173, [174]
allow direct queries or bulk downloads of TCGA and/or ICGC data. With these
systems, joint analysis of public and private datasets typically requires complicated
software installation and/or bioinformatics expertise. Recently, the UCSC Genome
Browser has added data track hubs [I89] for users to upload browser tracks, but
the genome-centric analysis does not facilitate analysis of mutation combinations
in pathways/networks. In contrast, genome browsers such as the Integrative Ge-
nomics Viewer [190], UCSC Cancer Genomics Browser [191], or Galaxy [192] allow
researchers to view the genomic locations of aberrations from multiple tumor sam-
ples, but are not integrated with public datasets. Different goals are pursued by web
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servers such as IntOGen-mutations [193, 194] and others [21], that facilitate analysis
of the mutations in a cohort of tumors through a simple web interface.

Current cancer data portals and browsers [173], 174} [I75, 195] (See [170] for a
review) have limited features to facilitate a bidirectional interaction between large-
scale public and smaller scale/private datasets. In all current systems, information
flows in only one direction. There is no ability for researchers to record insights
about the public datasets, and the results of follow-up studies remain scattered in
the literature and disconnected from the datasets. These computational /software
limitations impede the scientific process and lessen the impact of these large cancer
datasets.

5.4 Case study

To demonstrate the power of using MAGI to analyze private mutation data in con-
junction with TCGA data, we uploaded mutation data from the TCGA stomach
adenocarcinoma (STAD) study, a cancer type that was not one of the 12 cancer
types in the Pan-Cancer dataset [52]. The TCGA STAD dataset [55] consists of
SNVS and CNAs in 9,326 genes in 215 samples (See Section . We queried the
TCGA STAD dataset using a list of 22 known gastric cancer genes compiled from
an earlier publication [196]. This list includes both canonical cancer genes (TP53,
ERBB2, KRAS, MYC, RB1, and PTEN), as well as genes with roles in cancer more
specific to STAD (ERBB3, EZH2, RUNX3, SMADI, SMAD2, SMAD3, SMAD4,
SMAD7, CDKN1A, CDKN1B, RELA, and TGFBR2). We found that two of the
canonical cancer genes are mutated in ;25 samples — TP53 (106 samples), MYC (57),
ERBB2 (56), and KRAS (34) — while PTEN (10) and RB1 (4) were less frequently
mutated. PTEN and RB1 each have multiple inactivating mutations consistent with
their role as tumor suppressors.

Of the remaining gastric cancer genes, CDH1 (21), SMAD4 (48) ERBB3 (10),
TGFBR2 (6), and SMAD2 (4) are the most mutated. SMAD4, TGFBR2, and
SMAD2 each have patterns of mutations that indicate a strong functional impact

(Figure [5.8).

e In SMAD4, all 19 mutations (including three frameshift insertions) are in the
MH2 binding domain, including three missense mutations and two in-frame
insertions at position 361 where mutations associated with polyposis have been
previously reported [197]. We added this publication as an annotation of the
SMAD4 mutation, thus making this information available to all users of MAGI.
SMAD4 was also deleted in 3 samples.
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e In SMAD2, three of the four mutations are inactivating nonsense mutations,
and the fourth mutation is a missense mutation in the MH2 binding domain.

e In TGFBR2, 4 of the 5 missense mutations occur in the protein kinase domain,
while the other mutation is an inactivating frameshift deletion.

The observed pattern of inactivating mutations in SMAD2, SMAD4, and TGFBR2
is particularly striking as TGFBR2 is a member of the transforming growth factor
beta (TGF-/3) signal transduction pathway. This pathway activates the SMAD fam-
ily of proteins and is known to have a key role in many cancers [19§], including
gastric cancer [199, 200].

Combining the STAD mutation data with TCGA Pan-Cancer data in MAGI
suggests a strong link between SMAD4 and SMAD2 mutations in gastric cancer and
colorectal cancer (COADREAD).

e 12 of the 49 mutations in SMAD4 in the STAD and COADREAD datasets
occur at position 361 in the MH2 binding domain. Three missense and two
in-frame insertions occur at position 361 in STAD, and six missense muta-
tions occur at position 361 in COADREAD. Furthermore, the MAGI database
includes 37 annotations for variants at position 361 in SMAD4, including 21
annotations from DoCM specifically for COADREAD. This provides further
support for a mutational hotspot at position 361.

e There are two R321Q missense mutations in SMAD2 in COADREAD, which
match the position and residue change of the single SMAD2 missense muta-
tion in STAD. While the single R321Q mutation in STAD would not stand out
among the many other mutations measured in the STAD samples, the conser-
vation of this mutation in COADREAD lends support for this mutation having
a role in cancer. Moreover, there are five nonsense mutations at position 464
in SMAD2, including two mutations in STAD and three in COADREAD.

These results show that not only are the SMADs mutated in both STAD and
COADREAD, but particular mutations in SMAD2 and SMAD4 are common to
these two cancer types. In addition, mutations in TGFBR2 and more generally in
the TGF- pathway are well-known in colon cancer [201, 202], and mutations in
the TGF-§ pathway were discussed in the TCGA COADREAD publication [I71].
However, none of these particular mutations were discussed in either the COAD-
READ [I71] or STAD publications [55], nor were the similarities between the mu-
tations in these cancer types reported. The interactive visualizations generated by
MAGTI led immediately to these discoveries.
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5.5 Discussion

We demonstrate MAGI’s functionality using cancer mutation data. However, the
software is not limited to the display and annotation of cancer data. The aber-
rations view in MAGI could equally be used to display germline variants or other
transcriptomic, genomic, or proteomic data across samples. Similarly, the network
view can display other types of interactions between genes, proteins, protein domains,
or individual residues. Any of these can then be annotated interactively, enabling
collaborative annotation of a wide variety of datasets. Individual researchers, teams
of researchers, or international collaborations may create custom MAGI installations
to leverage other public and private datasets and engage different communities of
researchers in annotation of these datasets.



Chapter 6

Conclusions

Cancer remains one of the most common and deadly diseases in the United States
despite the significant resources invested in cancer research. According to the Na-
tional Cancer Institute, an estimated 1.6 million people will be diagnosed with and
nearly 600 thousand will die from cancer in 2016[T] In addition to the untold human
cost, 125 billion dollars will be spent on cancer care. Amid these grim numbers there
are signs of progress, as cancer mortality dropped 1.4-2% from 2003-2012. Part of
this progress is due to the billions of dollars invested in cancer research every year,
which have led to better understanding of cancer biology and new therapeutics.

The precipitous decline in the cost of DNA sequencing offers a promising new
path to therapies personalized for the mutations in a given patient’s cancer cells. As
the cost of sequencing has dropped to around one-thousand dollars per genome it
has become routine to sequence tumor samples, and public consortia have assembled
datasets with the sequence of tens of thousands of tumors. Researchers have begun
analyzing this data and leveraging the large sample sizes in their private studies.
However, these datasets are large (hundreds of gigabytes per genome) and cancer is
a family of complex genetic diseases with many factors contributing to both onset and
prognosis, and requires sophisticated computational methods to prioritize testable
hypotheses.

In this thesis, we have presented methods for identifying combinations of driver
(causal) mutations in large tumor cohorts. Three of these methods (COMEt, the
weighted test for mutual exclusivity, and HotNet2) search for combinations of mu-
tations targeting the genetic pathways that are perturbed in cancer. The output of
these methods are prioritized and testable predictions of the mutations responsible
for cancer in a cohort of tumors. The fourth method (MAGI) is a web application

thttp://www.cancer.gov/about-cancer /what-is-cancer /statistics
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biologists can use to search mutation data for combinations of driver mutations.
We applied all of these approaches in collaboration with biologists on datasets of
hundreds to thousands of tumors.

We have learned many lessons during the years of work represented in this the-
sis, but two general lessons stand out in particular. First, there is a key tradeoff
in prior knowledge and the number of hypotheses being tested when searching for
combinations of driver mutations. Methods that use no prior knowledge, such as
our CoMEt algorithm for searching for mutually exclusive mutations, are less biased
and easier to apply, but require more sophisticated approaches and assumptions to
account for bias in the data. Second, biological experts are a valuable resource that
can be leveraged through computational approaches. We introduced a web appli-
cation to help biologists with no computational expertise identify driver mutations,
and we anticipate that researchers will develop more “human-in-the-loop” methods
for cancer genomics in the near future.

Much work remains to achieve personalized therapy for cancer. One pressing issue
is to analyze somatic mutations in the non-coding regions that make up ~99% of the
genome. All the work in this thesis was restricted to mutations in the coding sequence
of genes, but projects such as ENCODE [203] have demonstrated the functional and
regulatory importance of elements in these non-coding regions. In that vein, several
recent efforts have begun to shed light on non-coding mutations in cancer [204]
205, 200, 207]. Multiple studies have identified recurrent mutations in the TERT
promoter [204], 205], and [205] validated the functional impact of these mutations in
cancer cell lines. More recently, researchers have begun to systematically search for
recurrent non-coding mutations in cancer [206], 207], which is an important step in
analyzing whole cancer genomes. Despite these efforts, the significance of non-coding
mutations in cancer remains relatively unexplored, and is an important direction for
future research.



Appendix A

CoMEt

A.1 Results

A.1.1 Comparison to muex on real data

We compared CoMEt to muex [62] using two different versions of the TCGA glioblas-
toma (GBM) dataset: (1) the dataset from Leiserson et al. [I] containing 398 al-
terations and 261 samples; (2) the dataset from Szczurek et al. [62], containing 83
alterations and 236 samples (See Section [2.2.8). There are 184 samples in both the
Multi-Dendrix GBM and muex GBM datasets. Besides the samples, the main dif-
ference between these two datasets is that the muex dataset is restricted to only 83
significantly recurrent alterations.

Since the muex score is for single alteration sets, we ran muex iteratively to
identify collections of alteration sets. That is, we run muex to find the top scoring
alteration set, remove those alterations, and repeat t — 1 times. We ran muex with
the parameters used in [62], restricting to alteration sets with coverage at least 0.3,
impurity lower than 0.5, and a significance cutoff of 0.05. On the muex GBM dataset,
we ran CoMEt and muex with £ = 4 and ¢t = 3 to match the parameters used in
[62]. On the Multi-Dendrix GBM dataset, we ran CoMEt and muex with & = 3 and
t = 3, since muex aborted with an out-of-memory error for £ = 4 on this dataset.

On both GBM datasets, CoMEt identifies collections with much more significant
exclusivity. Moreover, more of the genes in the CoMEt collections are known cancer
genes (according to the COSMIC Cancer Census [208]) compared to the genes in
the muex collections (Table S13). On the Multi-Dendrix GBM dataset, CoMEt
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identifies three collections that overlap the Rb (CDK/, CDKN2A, RB1), p53 (TP53,
MDM2, CDKN2A), and PI(3)K (PTEN, IDH1) signaling pathways. Each of these
sets include surprisingly exclusive alterations, with ® (M) ranging from 1078 to 10719,
and all the alterations are in cancer genes. In contrast, muex identifies sets with lower
coverage and less surprising exclusivity, with ®(M) > 1073 for each set, and three
of the alterations are not in known cancer genes.

On the muex GBM dataset, CoMEt again identifies more exclusive alteration
sets that overlap more known cancer genes, while muex reports few known cancer
genes with most having an uncertain association with cancer. In general this dataset
seems to include more spurious alterations, as both algorithms identify less exclusive
sets with fewer cancer genes than on the Multi-Dendrix GBM dataset. This might
be a result of the different handling of copy number aberrations in the two papers
(see [1] and [62]).

A.2 Methods

A.2.1 MCMC Algorithm

We define a Markov chain whose states ) are possible collections M and where
transitions between states (collections) are defined such that the chain is ergodic.
Finite and ergodic Markov chains converge to a unique stationary distribution. In
this case, because we want to sample from collections M in proportion to their
weights

oM) = [] @),

MeM

our desired stationary distribution is

ey
Mo ZM’GQ (I)<M/>_a.

Note that we use (M)~ so more exclusive collections have higher weights. The
Metropolis-Hastings algorithm [75] [76] is a method for defining transition probabil-
ities for an irreducible Markov chain such that the modified chain is ergodic and
has a desired stationary distribution. A Metropolis-Hastings algorithm to sample
collections M according to this stationary distribution is as follows:

(A.1)

Initialization. Choose tk genes uniformly at random from £, and assign k genes at
random to initialize M = My, ..., M,.
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Iteration. For N =1,2,..., obtain My, from My as follows:

1. Select a gene ¢ uniformly at random from &.

2. Define the proposed collection My as follows:
i) If g ¢ My, then choose uniformly at random gene ¢’ € M;, and replace
g’ with g.
ii) Else, choose uniformly at random gene ¢ € M;, and swap genes g and

g'. Note that if g, ¢' € M;, then M; will be unchanged.
: B(My)®
3. Let P(My, M/y) = min{1, (DEM,Z;@}.

4. With probability P(My, M), My = My, else My = My.

It is easy to see that this chain is ergodic (it is possible to reach any state
(collection) from any other state (collection), it is finite, and it is not bipartite) and
thus it converges to our desired stationary distribution. We use the parameter a to
increase/decrease the difference between ®(M'y) and ®(My) (we used av = 2 except
where noted). Also, in the second step of the algorithm, we ensure that the number
of exclusive alterations is larger than the number of co-occurring by checking that
the Dendrix weight W (M) > 0. This is to avoid examining sets alterations with high
coverage (e.g. altered over 90% of samples) that may have significant exclusivity even
though relatively few samples harbor exclusive alterations. We assess convergence
of the MCMC algorithm by calculating total variation distance of the the sampling
distributions from multiple chains with different initializations (details below).

Convergence of MCMC from different initial gene sets We assessed the
convergence of the MCMC algorithm by comparing the sampling distributions from
multiple chains initialized at different starting states. The rationale is that if the
multiple chains have converged (i.e. are sampling from the posterior distribution)
then the sampling distributions obtained from the different initializations should be
very similar. Conversely, if the sampling distributions are different, then one or more
of the chains has failed to converge. We computed the distance between the sampling
distributions of chains C' with different initializations as follows. First, let P.(M) be
the proportion of iterations in which collection M € €2 was sampled in chain ¢ € C.
We compute the total variation distance [209] between the distribution P. for each
chain ¢ to the distribution P,(IM), where u is a chain formed by concatenating the
chains in C', defined as

[1Fe = Pullrv = max [[Pe(s) — Pu(s)]]. (A.2)

A small total variational distance implies that the chain ¢ has converged. We take
the mean of the total variation distance across chains.
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To implement the above procedure, we ran CoMEt with 5 to 10 different initial-
izations. For one of these initializations, we used the collection output by Multi-
Dendrix [I] (using the same values of the parameters ¢ and k as in CoMEt). The
remaining initializations were random collections. We start CoMEt with 100 million
iterations for each of these initializations. If after the 100 million iterations the mean
total variation distance is smaller than 0.005, then we consider the chains to have
converged. Otherwise, we increase the number of iterations by a factor of 1.5, or
stop the process if the number of iterations reaches 1 billion. The output of the
MCMC algorithm is the the union of the sampling distributions from the different
initializations. As an example, Figure shows the results of this procedure on
AML mutation data for t = 3 and k = 4, after 1 million and 10 million iterations.
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Figure A.1: Plots of the total variation distance distribution in each iteration for an MCMC run
with 1M iterations (left) and an MCMC run with 10M iterations (right) on AML mutation data
for t =3 and k = 4.

A.2.2 Parameter selection

We select 0 with the following heuristic procedure. When we run CoMEt with ¢
sets in the collection, ideally we should obtain ¢ cliques in the marginal probability
graph. To find the best ¢ that fulfills the expectation, we search for an “L-corner”
in a graph of the number of edges in the marginal probability graph as a function of
the edge weight.

More precisely, we first plot a log-log distribution with the number of edges in the
marginal probability graph with edge weight > p against edge weight p (Figure .
We choose § starting from the minimum edge weight p,,;, that contains at least
t X (’;) edges in the marginal probability graph. e.g. the yellow horizontal line in
Figure shows the number of edges in GBM with £ = 3 and t = 3. We identify
a value 0 where the number of edges increases dramatically after this value as the
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probability threshold decreases. To find this value, for each value x we perform a
linear regression of two best-fit lines (using root mean squared error) before and after
this value. We the first p > p,.in that forms a “L-corner”, i.e. the slope of the two
best-fit lines changes from a smaller negative value to a larger negative value as the
value z decreases (e.g. moving leftward in Figure[A.2)).

10°

10!

Log (No. Edges with Weight > p)

107° 1072 107! 10°
Log (Marginal Probability p)

Figure A.2: The distribution of the number of edges with weight > p in GBM with k£ = 3 and
t = 3 in log-log scale. The red dot indicates the first hitting edge weight where the change in
slope is negative (when moving leftward) such that the number of edges in the subgraph is at least

t x (g) =9 (as the horizontal yellow line).

For each TCGA dataset, we ran CoMEt with o = 2, £ = 4 and 100 million
iterations using 5 to 10 random initializations. We used ¢ = 3 for BRCA and t = 4
for AML, GBM, and STAD. For BRCA and STAD with subtypes, we ran CoMEt
with k£ = 4 and t equal to the number of pre-defined subtypes (4 and 3, respectively),
and 100 million iterations using 10 random initializations. See Appendix and
Appendix for additional details.

A.3 Data

A.3.1 Simulated data

We generated simulated datasets using the following approach. Recall C is a set of
highly altered genes whose alterations are not necessarily exclusive.
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1. Select k genes to form an “implanted pathway” P.

2. Let vp be the fraction of mutated samples in P. Select vp X n samples to be
exclusively mutated in P, where the proportion of mutations in each gene in
P is given by the tuple up = (c1,...,cx).

3. Randomly select samples to be mutated in each gene in C, where the fraction
of mutated samples per gene is given by 7c.

4. For each of the n samples s in each of the m genes ¢ (including the implanted
and cancer genes), mutate g in s with fixed probability ¢. This step introduces
noise into the dataset.

We used m = 100, n = 500, £k = 3, up = (0.5,0.35,0.15), |C| = 5, 7¢ =
(0.67,0.49,0.29,0.29,0.2), and ¢ = 0.0027538462@ We removed alterations that
occurred in fewer than 5 alterations (resulting in the average number of genes of
276.44). We ran CoMEt 100 million iterations from 3 random initial starts.

"'We chose values for C and g using values calculated from real data. We choose C' to match
the mutation frequencies of the five most mutated genes in the TCGA glioblastoma dataset. We
calculated ¢ empirically from the TCGA breast cancer mutation matrix.



Appendix B

HotNet?2

B.1 HotNet2 algorithm

B.1.1 Motivation

We developed the HotNet2 (HotNet diffusion oriented subnetworks) algorithm to
identify subnetworks of a genome-scale interaction network that are mutated more
than expected by chance (Figure . Standard computational approaches to an-
alyze mutations on pathways and protein complexes are severely limited by the
statistical requirement of defining a priori a reasonable number of gene sets, or com-
binations of genes to evaluate. This imposes multiple undesirable constraints. First,
gene sets often contain dozens of genes, reducing the power to identify a smaller sub-
set containing a few directly interacting proteins. Second, there is typically extensive
overlap between annotated gene sets, complicating the interpretation of analyses that
report tens to hundreds of “significant,” but overlapping, pathways. Third, by ignor-
ing the topology of interactions, gene-set analyses have reduced ability to identify
crosstalk between pathways. Finally, a priori definition of gene sets prevents the
discovery of novel combinations of mutations.

While interaction networks have proven useful in analyzing various types of ge-
nomic data [34] 1T5], statistically robust identification of significantly mutated sub-
networks is a difficult problem with three major challenges. First, the number of
subnetworks is too large to test exhaustively in a computationally efficient and sta-
tistically rigorous manner; e.g. > 10** subnetworks of > 8 proteins in a medium-size
human interaction network. Second, the topology of biological interaction networks
is heterogeneous; many proteins, and in particular many cancer-related proteins,
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have a large number of neighbors. Third, both the frequency of somatic mutations
in individual genes/proteins and the topology of the interactions between proteins
determine the significance of a subnetwork. While approaches have been introduced
to find network modules [34] [IT5], rank gene sets, or prioritize disease-related genes
[210] these approaches consider only network topology and not also the scores of
individual genes.

B.1.2 Insulated heat diffusion as a random walk

HotNet2 uses an insulated heat process (See Section that can also be described
in terms of a random walk with restart. The random walk starts from a protein g,
and at each time step ¢ moves to one of the neighbors (chosen uniformly at random)
of the current node g; with probability 1 — 8 (0 < g < 1), while the walk restarts
from g with probability 8. This process is defined by a transition matrix W:

—_— {@ if node ¢ interacts with node 7,

. (B.1)
0 otherwise.

where deg(7) is the number of neighbors (i.e., the degree) of protein g; in the inter-
action network. The locality of the walk — and therefore the insulated heat diffusion
process — is governed by the parameter (3, representing the probability with which
the walk starting at g; is forced to restart from g;. Assuming the graph is connected
(in practice we restrict attention to the largest connected component) the Ergodic
Theorem guarantees that the random walk starting at protein g; reaches a stationary
distribution described by the vector §;:

S =B —(1- W) e, (B.2)

where €; is the vector with a 1 in position ¢ and 0’s in the remaining positions. The
j-th entry §;(j) of §; gives the probability that, in the limit, the random walk starting
at node g; is at node g;. We define the diffusion matrix I for a graph G as

F=8(I-(1-8W)™" (B.3)

Note that 5; is the i** column of F.

Asymmetry of heat diffusion

Any clustering algorithm — whether on a graph or not — depends on a notion of
distance, or oppositely similarity, between points. Distances are by definition sym-
metric; however similarity might not be symmetric. For example, some models of
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protein sequence similarity are non-symmetric [211]. In the case of HotNet2, similar-
ity is non-symmetric for two reasons: first, the local topology of a pair of nodes u and
v in the network which is encoded in the heat diffusion process — is not symmetric.
A simple example is shown in Figure [£.5} a node u of degree 1 sends all its heat
to its neighbor v, but v sends heat to many nodes, including u. Thus, u might be
“closer” to v than v is to u. Second, the score on node u and the score on node v
are typically different.

B.1.3 Statistical significance

We evaluated the statistical significance of HotNet2 subnetworks and the HotNet2
consensus using the two-stage statistical test introduced in the original HotNet al-
gorithm [34 T15]. In brief, the first stage is to compute a P-value for the statistic
Xk, the number of subnetworks of size > k reported by HotNet2. We compute the
empirical distribution of X} by running HotNet2 on random data where we permute
the heat scores on genes, restricting the permutation to the genes that are in the
network and not removed by the expression filter. Although this permutation does
not preserve any correlation between a gene’s heat and its network topology, we
found that a more restricted permutation test did not substantially change the em-
pirical distribution (Appendix and Figure . For the HotNet2 consensus,
we permuted data preserving the relationship between the mutation frequency and

MutSigCV score (See Section 4.4.2]).

The second stage computes the False Discovery Rate for the set of significant
subnetworks identified, as described in HotNet [34], [115]. In this analysis we used

1
P)/’L' = 27:717
for the set of subnetworks of size 7, for i = 2,...,8, and
1
Y=1-> 5
i=2

since we considered only subnetworks of size between 2 and 9. (We note that the
parameter v was called /5 in the HotNet publication [34] 115].)
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B.1.4 Parameter selection

Insulated heat-diffusion: f

The HotNet2 parameter 3 is chosen for a given protein-protein interaction network,
and remains fixed for different heat datasets.We chose § to balance the amount of
heat that diffuses from a protein to its immediate neighbors and to the rest of the
network. This was done by computing the amount of heat retained in the neighbors
of vertices (“source proteins”) with different network centrality. In particular, we
computed the betweenness centrality for each protein v, the number of shortest paths
between all pairs of proteins that pass through v. We then picked five source proteins
from the interaction network; those with the minimum, 25% quantile, median, 75%
quantile, and maximum betweenness centrality. We examine vertices with different
network centrality in order to choose diffusion parameter 3 such that all proteins re-
tain most of their heat in their immediate neighbors. To determine whether the heat
from each source protein v was retained in v’s neighbors N (v) or spread throughout
the network for a given (3, we compared the influence each source protein had on
three sets of proteins: N(v), all nodes distance 2 from v, and all other nodes in the
network. We compared the three sets by counting the number of proteins in each
set on which v had at least 6 influence. We considered the 20 distributions with
£ = 0.05,0.10,...,1. From these distributions we chose [ such that each source
protein had most of its heat concentrated in its neighbors. As f decreases from 1
(the maximum restart probability), the amount of heat on N (v) increases as less and
less heat is retained in v. However, there is an inflection point at which the amount
of heat on N(v) will decrease, as more and more heat will reach the neighbors of
N(v). We choose [ as the minimum [ before this inflection point. For example,
in Figure [4.28, we can see the inflection point near § = 0.4 for HINT+HI2012. We
used § = 0.4 for the HINT4+HI2012 network, § = 0.45 for the iRefIndex network,
and § = 0.50 for the Multinet network (see below).

We evaluated the sensitivity of the HotNet2 results to the value of parameter
£ by comparing subnetworks reported by HotNet2 on the HINT+HI2012 network
and mutation frequency scores (See below), varying 5 +10% from the value 0.40
determined by the automated procedure. We found that changing [ has only a
minor effect on the results, with at most 7 genes (3.8% of total) added/removed
from the subnetworks (See Supplementary Table 29).

Minimum edge weight: ¢

We choose the edge weight parameter § such that HotNet2 will not find large sub-
networks using random data. Specifically, for each mutation dataset and interaction
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network, we generated 100 random networks with the same degree distribution as the
original network by performing @ x | F| connected edge swaps (E is the set of edges in
the interaction network), ensuring that each node retains the same degree as in the
original network and that the resulting network is connected, setting @ = 100 [212].
For each permuted network, we identified the minimum ¢ such that all strongly con-
nected components found by HotNet2 have size < L.y, for L., = 5,10, 15,20.
For each L., we report the median of these values of § across the 100 permuted
networks (Figure [£.29). For each run, we selected the smallest § with the most
significant (P < 0.05) subnetwork sizes k.

We evaluated the sensitivity of the HotNet2 results to the value of the parameter
0 by comparing subnetworks reported by HotNet2 on the HINT+HI2012 network
and mutation frequency scores (See below) varying § £+ 5% from the value 0.000496
determined by the automated procedure. We found that varying ¢ changed at most
35 genes (12.3% of total) in the subnetworks (See Supplementary Table 30).

B.1.5 Consensus over multiple networks and gene scores

We derive “consensus” subnetworks from HotNet2 runs on different networks and/or
gene scores using the following iterative procedure on a weighted graph. We built a
complete, weighted graph G with genes on the vertices, and an edge between a pair of
genes (g, ¢') weighted by the number of networks in which HotNet2 reports g, ¢’ in the
same subnetwork (independent of the scores used). We then identified the consensus
subnetworks from G as follows. First, we initialized the consensus subnetworks C' as
the connected components of G when restricting attention to edges with weight = 3
(i.e. pairs of genes found in the same subnetwork by HotNet2 in all three interaction
networks). Then, we extended each consensus subnetwork S € C by adding each
gene ¢ such that all g’s weight two edges end in S. We then extended the consensus
subnetworks once more using the same procedure but restricting to only weight one
edges. We call genes “linkers” if they have weight two edges in multiple consensus
subnetworks.

B.2 Data

B.2.1 Somatic aberration data

The somatic aberration data downloaded from Synapse and Firehose consists of
SNVs in 20,472 genes from 3,281 samples, and CNAs in 720 genes from 4,334 sam-
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ples. We describe the sources and our pipeline for processing somatic mutation data
in Section4.4.1]and Figure4.2| The dataset after processing consists of somatic aber-
rations in 19,459 genes from 3,110 samples, and after applying the gene expression
filter includes somatic aberrations in 11,565 genes in 3,110 samples.

B.2.2 Gene scores

Many factors determine the significance of mutations in individual genes, including
the frequency of recurrence across samples, gene length, mutation context, regional
variation in mutation rates, etc. Several approaches have been introduced to ac-
count for these factors [17), 25, [143], 26]. We performed HotNet2 analysis using two
approaches to assign heat to individual genes according to recurrence and predicted
functional impact.

Mutation frequency Also used by Vandin et al. in HotNet [34]. We computed
the mutation frequency for each gene as the number of samples with at least
one SNV or CNA in that gene. After processing the dataset contains somatic
aberrations in 19,459 genes from 3110 samples. See Figure 4.2

MutSigCV ¢-values MutSigCV [I7] computes the statistical significance of muta-
tions in genes across a cohort of samples. MutSigCV first estimates a per-gene
BMR, and then computes the probability of observing the given number of
mutations in each gene given its BMR. We used the —log,, of the MutSigCV
g-values for all 18,371 genes.

We use these two scoring schemes because they are at opposite extremes in terms
of stringency. The mutation frequency scores provide an opportunity for higher
sensitivity, particularly for rarely mutated genes or genes primarily mutated by copy
number aberrations. MutSigCV assesses the statistical significance of individual
genes, and identifies only 175 genes with ¢ < 0.05 in the dataset, which we expect
to result in high specificity.

B.2.3 Expression filtering

We downloaded a list of expressed genes from syn1734155. This list includes 12,081
genes with at least 3 RNA-Seq reads per sample in at least 70% of samples, as used

in [164]. We restricted HotNet2 scores to these expressed genes plus a list of 18
well-known cancer genes (AR, CDH4, EGFR, EPHAS, ERBB4, FGFR2, FLT3,


https://www.synapse.org/#!Synapse:syn1734155
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FOXA1, FOXA2, MECOM, MIR1/2, MSH4, PDGFRA, SOX1, SOX9, SOX17,
TBX3, WT1) that have low transcript detection levels. After expression filtering,
the input datasets to HotNet2 consisted of the following:

e somatic aberrations in 11,565 genes from 3,110 samples;

e MutSigCV g-values for 11,215 genes.

When we restrict these genes to those also in one of the three protein interaction
networks, the somatic aberration data includes 10,208 genes and the MutSigCV
g-values include 10,215 genes.

B.2.4 Copy number calling and target selection

We determined targets of copy number alterations and performed copy number call-
ing by the following two steps. First, we downloaded GISTIC2 results for individual
cancer types and Pan-Cancer (Pan12) from Firehose. For the Pan-Cancer GISTIC2
dataset, we selected target genes in each maxpeak by checking whether the peak con-
tains genes from [165]. For the individual cancer type GISTIC2 datasets, we selected
target genes in each maxpeak by checking whether the peak contains cancer genes
defined by The Sanger Institute Gene Census [208]. For max peaks that did not have
target genes, we picked a max peak as a target gene if the peak contains only one
gene. Second, to determine if each sample had a copy number aberration in a given
target gene, we extracted discretized copy number amplifications and deletions from
focal copy number binary table provided by GISTIC2 with log, ratio value above
0.9 and below —0.9, respectively (Figure [4.2)).

B.2.5 Protein-protein interaction networks

To date there is no single database of human protein-protein interactions with high
sensitivity and specificity. We used three interaction networks with varying numbers
of interactions to allow for different false positive and false negative interactions in
the analysis: (1) HINT4+HI2012, a combination of high-quality protein-protein in-
teractions from HINT [I39] and the recent HI-2012 [I40] (See URLs) set of protein-
protein interactions; (2) MultiNet [142] a network that integrates multiple types of
interactions from different databases; (3) iReflndex [141], an integrated network from
multiple data sources. These three interaction networks have different trade-offs in
sensitivity vs. specificity that would not be represented by simply merging the three
networks. Figure [4.33] shows the overlap between these networks. Unfortunately,
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a simple merge of networks will create a highly-connected network of 16,843 nodes
and 180,271 edges. While such a network might have higher sensitivity for pairwise
protein-protein interactions than individual networks, it will have very low speci-
ficity: the merged network will contain all false positive interactions from individual
networks. Such a network is not expected to be a reasonable representative of the un-
derlying biology. Moreover, a merged interaction network will have different network
properties than the the individual interaction networks (e.g. the average pairwise
distances between genes are 3.302 on the merged network compared to 4.087, 3.644,
and 3.394 on HINT+HI2012, iReflndex, and Multinet, respectively). Changes in
topology may have large effects for HotNet2 which analyzes network topology (not
just nearest neighbors of a protein). Rather than creating a merged network, we run
HotNet2 on the individual network individually and then form a consensus across
the three networks from the HotNet2 runs (See Section [4.4.4)). This procedure is in
effect giving greater weight to the interactions that are common among the three
networks, while also accounting for the topology of each individual network.

We provide details of our processing of each of the three networks below.

iRefIndex. We downloaded iRefIndex version 9.01 and constructed an interaction
network using all interactions except colocalizations and genetic interactions,
including disulfide bond, ubiquitination, palmitoylation, deacetylation, sumoy-
lation, physical interaction, methylation, hydroxylation, phosphorylation, ag-
gregation, adp ribosylation, physical association, enzymatic reaction, covalent
binding, phosphotransfer, deubiquitination, cleavage, acetylation, deneddyla-
tion, genetic inequality, demethylation, protein cleavage, glycosylation, dephos-
phorylation, neddylation, and direct interaction. The iReflndex network con-
sists of 91,872 interactions among 12,338 proteins.

HINT+HI2012. We created HINT+HI2012 protein interaction network by con-
sidering two interactome databases: HI-2012 prepublication data in human
HI2 Interactome databaseﬂ (HI2012) and high-quality interactomes databaseﬂ
(HINT). We merged HI-2012 and the binary and co-complex interactomes in
HINT to create the HINT+HI2012 protein-protein interaction network. The
HINT+HI2012 network consists of 40,783 interactions among 10,008 proteins.

MultiNet. We downloaded MultiNeﬂz_f], and constructed a interaction network us-
ing the entire set of interactions, including protein-protein, phosphorylation,
metabolic, signaling, genetic, and regulatory interactions from multiple databases.
The MultiNet network consists of 109,597 interactions among 14,445 proteins.

"http://irefindex.uio.no/wiki/Sources_iRefIndex_9.0
?http://interactome.dfci.harvard.edu
3http://hint.yulab.org/batch.html
“http://homes.gersteinlab.org/


http://irefindex.uio.no/wiki/Sources_iRefIndex_9.0
http://interactome.dfci.harvard.edu
http://hint.yulab.org/batch.html
http://homes.gersteinlab.org/
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We removed self-loop interactions and multiple edges between interactions in
all three networks. We restricted our HotNet2 analysis to the largest connected
component consisting of the vast majority of genes and interactions in each network:
91,808 interactions among 12,128 proteins in iReflndex; 40,704 interactions among
9,858 proteins in HINT+HI2012; and 109,569 interactions among 14,398 proteins in
MultiNet.

B.2.6 Germline variants

To identify potential germline mutations, we compared the mutations used in our
HotNet2 analysis to the ones identified using more stringent germline filtering (See
syn1729383). This more stringent germline filtering removes variants that are com-
mon in NHLBI exomes or 1000 Genomes data (global minor allele frequency > 0.1%).
However, this more stringent filtering removes some bonafide somatic mutations.

We ran HotNet2 on this strictly filtered set of SNVs. We found 13 subnetworks
in the strictly filtered consensus, 12 of which were also found in the original Hot-
Net2 consensus (Supplementary Table 39). The only subnetworks that were missing
were the RTK subnetwork and the BOC-CDON subnetworks. The strictly filtered
consensus included an additional subnetwork not included in the HotNet2 consensus
that consists of the ANK1, SPTB, and ITPR3 genes. We note that we still identify
the MHC Class I subnetwork using the strictly filtered dataset, emphasizing that
there are bonafide somatic mutations driving the subnetwork even though many of
its genes are known to have germline mutations.

B.3 Statistical test to evaluate HotNet2 Pan-Cancer
results

B.3.1 Finding positional and structural clusterings: NMC
and iPAC algorithms

We tested whether genes in subnetworks identified by HotNet2 had either significant
clusters of missense mutations or at least 20% inactivating mutations (defined as
nonsense, nonstop, splice-site, and frameshift insertions and deletions). These two
mutational signals are the “20/20 Rule” that is hypothesized to distinguish cancer
genes [16]. We use the NMC [213] algorithm to test for non-random clustering of
missense mutations in the protein sequence, and the iPAC [144] algorithm to test for


https://www.synapse.org/#!Synapse:syn1729383
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non-random clustering in the protein structure. We ran the NMC Algorithm [213]
on genes with missense mutations. We matched the ENSEMBL transcript ID to the
corresponding protein sequence. We used only those mutations for which there was
concordance between the missense mutation and the amino acid at the appropriate
position in the FASTA-format protein sequence. We applied the NMC algorithm
with Bonferroni correction and reported the genes with at least one mutated amino
acid cluster that had a P-value smaller than the significance threshold of o < 0.05.
Similarly, we applied the iPAC [144] algorithm on a subset of the above data to iden-
tify non-random somatic mutational clusters while taking into account the protein
tertiary structure via Multidimensional Scaling (MDS). We only used genes with a
defined protein structure in the PDB.

B.3.2 Cancer type specificity test

We annotated the subnetworks output by HotNet2 on each interaction network by
determining which subnetworks are enriched for mutations from a specific cancer
type. For a subnetwork S and cancer type 7, we calculated the following statistic.
Let N, be the number of samples of type 7, and let T'(S) be the set of samples with
at least one mutation in a gene in S. Let C.(S) = |{p|p € I'(S), type(p) = 7}, i.e.
the number of mutated samples from S of type 7. We calculate the enrichment of
subnetwork S for mutations of cancer type 7 conditioning on the number of mutations
in the subnetwork, and the number of samples of type 7. The enrichment statistic is
calculated using Fisher’s exact test of the 2 x 2 contingency table having as categories
the mutation status of a sample (‘Mutated’ if the sample has a mutation in the
subnetworks, ‘Not mutated’ otherwise) and the cancer type of the sample (‘In 77 if
the sample is in type 7, ‘Not in 77 otherwise). The entries of the contingency table
are (in row-wise order): C7(S); Nr — Cr(S); 32,1, C(S) 5 220y Nov — Cr(S). We
correct the P-value from Fisher’s exact test using the Bonferroni correction, where
the number of hypotheses is the product of the number of cancer types and the
number of genes in the consensus, and only report the corrected P-values.

We also tested each gene in each subnetwork identified by HotNet2 for enrichment
for mutations from a particular cancer type. We test this by conditioning on the
number of observed mutations for the gene, regardless of the number of mutations
in the subnetwork, by using Fisher’s exact test for the 2 x 2 contingency table with
categories the mutations status of the (‘Mutated’ if the sample has a mutation in the
gene, ‘Not mutated’ otherwise) and the cancer type of the sample (‘In 7" if the sample
is in type 7, ‘Not in 7’ otherwise). Again, we correct the P-value from Fisher’s exact
test using the Bonferroni-correction, where the number of hypotheses is the number
of cancer types, and only report the corrected P-values.
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B.3.3 Statistical approach to evaluate exclusivity and co-
occurrence of mutations

We assessed the statistical significance of the mutual exclusivity or co-occurrence of
mutations in subnetworks identified by Hotnet2 using a one-sided Fisher’s exact test
on a 2 x 2 contingency table. In particular, let x be a 2 X 2 contingency table, each
cell x;,;, denotes the count of samples corresponding to the mutation status (not
mutated (0) or mutated (1)) of the pair of subnetworks, e.g. xj is the number of
samples with mutations in one subnetwork(i; = 1) and without mutations in another
subnetwork (i, = 0). To test the exclusivity of a contingency table, we use as a test
statistic T, = x10 + To1.

Since P-values from exact tests like Fisher’s exact test are typically overconser-
vative, we use the mid P-value instead [66]. The mid P-value is the average of the
probability of a value at least as extreme as the observed value and the probability
of a value more extreme than observed. In our case, the mid P-value is defined as

%(P(T >T,)+P(T>T,) = %P(T =T1.)+ P(T > Ty).

We assess the statistical significance of the mutual exclusivity or co-occurrence on
each cancer type using the above method. To assess on the whole Pan-Cancer data,
we performed the Cochran-Mantel-Haenszel test to test for independence across the
contingency table of each cancer type.

B.4 Website

By default, the HotNet2 software package outputs an interactive website that in-
cludes visualizations of each component identified by HotNet2. These visualizations
incorporate protein-protein interaction network and mutation data (See example in

Figure .

The Pan-Cancer HotNet2 results are available online at http://compbio.cs.
brown.edu/pancancer/hotnet2/. This website includes visualizations for each sub-
network which incorporate protein-protein interaction network, mutation, gene tran-
script, and protein domain data (See example in Figure .


http://compbio.cs.brown.edu/pancancer/hotnet2/
http://compbio.cs.brown.edu/pancancer/hotnet2/
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B.5 HotNet2 Pan-Cancer results

We ran HotNet2 for each combination of interaction network and score. HotNet2
identified a number of significant subnetworks (Supplementary Tables 1-2) in all six
runs. Below we describe some of the subnetworks identified using the consensus
procedure (Supplementary Table 3-5), as well as other subnetworks (Supplementary
Table 6-18). Supplementary Tables 6-18 report the cancer type enrichments P-
value and the NMC and iPAC clustering P-values for the subnetworks in the main
text. Most of the subnetworks identified by HotNet2 are not identified by standard
pathways enrichment analysis (Supplementary Table 35) and also contain genes not
reported as significantly or recurrently mutated by MuSiC [26] or MutSigCV [17]
or Oncodrive [25 143] (Supplementary Table 20). The subnetworks identified by
HotNet2 show cancer type enrichments in mutations and genes in the subnetworks
show enrichments for mutations in different cancer types (Supplementary Tables 6-
18). Genes in the subnetworks also show significant position or structure clustering.

B.5.1 Genes with positional and structural clusters

We found that high scoring genes in our data were enriched for both positional
and structural clusters of mutations (P < 1072°, details below). We find sequence
and structural clustering for 100 and 16 genes, respectively, in the subnetworks
(Supplementary Table 6-18). In addition, we find 25 genes mutated in > 1% of
samples that have at least 20% inactivating mutations. Overall, genes in the HotNet2
consensus subnetworks are enriched for NMC clusters (P < 0.0001, Appendix [B.5.1)
or 20% inactivating mutations (P < 0.0001, Appendix compared to genes not
in subnetworks.

Contingency tests for genes with NMC clusters

One method to distinguish driver mutations from passenger mutations is to look for
positional clustering of mutations in genes across patient samples [16]. We used an
implementation of the NMC algorithm to look for clusters of missense mutations [213]
in genes that have mutation heat in any of the three PPI networks used for Hotnet2
runs. We then classified these 10,478 genes based on whether they have a significant
clustering of missense mutations (NMC corrected P < 0.05), are found in a consensus
subnetwork, are neither, or are both. Using a x? test with Yate’s correction, we
find that genes with significant clusters of missense mutations were significantly
(P < 0.0001, x? = 42.23) overrepresented in consensus subnetworks for Hotnet2 (See
Supplementary Table 21). Specifically, we found: there were 5,467 genes that do
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not have either an NMC cluster or were in a Hotnet2 consensus subnetwork; there
were 4,886 genes that have an NMC cluster and were not in a consensus subnetwork;
there were 29 genes which were in a Hotnet2 consensus subnetwork and did not have
an NMC cluster; and there were 96 genes that had an NMC cluster and were found
in a Hotnet2 consensus subnetwork.

Contingency tests for genes with inactivating mutations

One method for discovering driver mutations in genes is to look at the frequency at
which inactivating mutations occur in a gene across patient samples. Inactivating
mutations are those which would cause aberrant transcription (splice site muta-
tions), translational frameshift (frameshift indels), or premature translational stop
(nonsense mutations). A proposed threshold for distinguishing driver mutations from
passenger mutations is to look for genes whose inactivation frequency across patients
samples is > 20% [16]. To classify a gene as being inactivated by the proposed 20/20
rule, we only considered genes that were mutated in > 1% of patients to reduce
false positives from the high number of genes that have an inactivating mutation in
only 1 or 2 samples. Using a x? test with Yate’s correction, we find that genes with
inactivating mutations were significantly (P < 0.0001, x? = 280.86) overrepresented
in consensus subnetworks for Hotnet2 (See Supplementary Table 22). Specifically,
we found: there were 10,221 genes that were not inactivated in > 20% of samples or
were in a Hotnet2 consensus subnetwork; there were 132 genes that were inactivated
in > 20% of patient samples and were not in a consensus subnetwork; there were 100
genes which were in a Hotnet2 consensus subnetwork and were not inactivated in
> 20% of patient samples; and there were 25 genes that were inactivated in > 20%
of patient samples and were found in a Hotnet2 consensus subnetwork.

Correlation between heat and mutation clusters and inactivating muta-
tions

We evaluated whether hotter genes had more clustering of missense mutations or
> 20% of mutations as inactivating. We indeed find that hotter genes (according
to mutation frequency) are enriched for these two properties (P < 1072° by Mann-
Whitney U test). We performed a similar analysis for MutSigCV scores finding
P =3.09 x 1077, See Figure [4.15]
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B.5.2 Sample mutation rates in novel genes

We compared the mutation rates of samples that have a mutation in at least one
of the 80 novel genes found by HotNet2 but no mutations in the 139 known cancer
genes (reported in |16} 164 165], or by MutSigCV or Oncodrive) to the mutation
rates of samples with at a mutation in at least one of the 139 known cancer genes,
but no mutations in the 80 novel genes. We found no significant difference in these
rates (mean of 32.26 mutations per sample for novel genes, versus 32.30 mutations
per sample for known genes, P-value = 0.4 by Mann-Whitney U test), showing that
mutations in the novel genes are not restricted to those samples with large numbers
of passenger mutations (See Supplementary Figure .

B.5.3 Heat scores in the network

The null hypothesis tested by HotNet2 is that the heat scores on genes are indepen-
dent of the network topology. Two issues that confound this analysis are:

1. The distribution of scores for genes in the network is different from the distri-
bution of heat scores not in the network. We find that this is the case. We
performed a two-sample z-test to determine if the heat scores in genes in or
out of the PPI network were significant. We repeated this experiment for the
mutation frequency and MutSigCV datasets for each of the HINT+HI2012,
iRefIndex, and Multinet PPI networks. For each dataset and network combi-
nation, the distributions were statistically significantly different, with genes in
the network having higher overall heat. We show the CDF's of each distribution,
including Z-scores and P-values, in Figure 4.25]

We address this concern by using the score distribution for genes in the network;
i.e. our permutation test is restricted to genes in the network.

2. There is a correlation between gene score and degree in the network. We com-
puted the correlation between degree and heat scores. We find the correlation
ranges between p = 0.09 and p = 0.15 across the three interaction networks
and two heat scores (MutSigCV and mutation frequency). However, we found
that this correlation was primarily due to the top 100 highest scoring genes
in the network. Supplementary Figure [4.26| shows a plot of the correlation as
we remove the N highest-scoring genes from each network. After N = 100,
the correlation has dropped below p = 0.05 for each network-score pair except
Multinet-MutSigCV.

To assess the effect of the degree-heat correlation on the HotNet2 permuta-
tion test, we computed the number of subnetworks found by HotNet2 on the
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HINT+HI2012 network, using a permutation test that preserves the correlation
between degree and heat. Specifically, we permute the scores of 100 highest
scoring genes amongst themselves, and permute the scores of the remaining
genes amongst themselves. We generated 1000 such datasets. This permu-
tation test maintains the correlation between degree and heat (Figure [1.24k).
The sizes of subnetworks found by HotNet2 were very consistent with those
from the original permutation test that permuted heat scores across the nodes
uniformly at random (See Figure [£.24h-b). We compared the distributions of
the number of components of size at least 3 for both permutation methods, and
found that while the permutation method that does not preserve degree pro-
duces significantly more components using a t-test (P = 0.02), the difference
between the distributions is tiny (permuted mean: 25.375, degree permuted
mean: 25.294).

B.5.4 TP53, PI(3)K, and NOTCH subnetworks

We show mutation matrices for the PI(3)K, and NOTCH subnetworks in Figures [4.18§]
and [4.19] The mutation matrix for the TP53 subnetwork is too large to fit in one
page, but is viewable in the online browser of the HotNet2 Pan-Cancer results (Ap-
pendix. These subnetworks include genes that were not marked as significant by
individual gene scores. For example, in the TP53 subnetwork, mutations in EPHAS3
have been reported in several cancers; we find a cluster of 6 mutations (P = 0.001)
in a domain that has been shown to significantly reduce the catalytic activity of

EPHAS3 [214].

B.5.5 RTK subnetwork

HotNet2 Pan-Cancer analysis found a subnetwork containing several receptor tyro-
sine kinases (RTK) that have important roles in the development of multiple cancer
types, which includes EGFR, ERBB2 and FRBB/ (Figure and Supplementary
Table 11). The RTK subnetwork also contains ELF3, a gene involved in cell growth
that was recently identified by [65] as a promising candidate cancer gene. FELF3
is mutated in 19 samples, 11 (58%) of which have inactivating mutations, and is
enriched for mutations in BLCA (P < 3 x 107°) and COADREAD (P < 0.02).
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B.5.6 ASCOM complex and interactors

The fifth most mutated consensus subnetwork (16.9% of all samples) contained the
ASCOM complex (MLL2 and MLLS), the putative ASCOM-interacting protein en-
coded by KDMG6A, as well as E2F3, N/JBP2 and PROSER1 (Figureand Supple-
mentary Table 16). The interaction between these latter two genes and KDM6A was
reported in a mass spectrometry screen [215], and thus is less characterized than the
other interactions. The ASCOM complex and KDM6A are involved in coordinate
deposition of histone modifications that promote transcription. This subnetwork is
mutated in at least 5 samples from each cancer type, and is enriched for mutations
in BLCA, HNSC, and LUSC. At the individual gene level, we identified a number
of enrichment for mutations in different cancer types, including the association of
KDMG6A mutations with BLCA (P < 107%), and the association of MLLS muta-
tions with BLCA (P =5 x 107°)). Both MLL3 and KDMG6A have been previously
reported to be associated with transitional cell carcinoma of the bladder[216]. MLL2
is enriched for mutations in BLCA (P = 7.5 x 10~"), HNSC (P =5 x 107'*), and
LUSC (P = 1.8 x 107%). MLL3 and PROSERI1 show significant (P < 107'* and
P < 3x107%, respectively) clustering of missense mutations. MLLS mutations are
clustered in the zinc-finger domain.Thus HotNet2 identifies novel cancer type speci-
ficities for mutations in the ASCOM complex and interactors, as well as some of
the recently reported associations for their mutations. KDMG6A showed significant
clustering of mutations (FDR < 0.1 from iPAC) in its protein structure.

B.5.7 SWI/SNF complex

The SWI/SNF subnetworks consist of two consensus subnetworks. One includes the
core members SMARCA4 and SMARCB1 of SWI/SNF complex, while the other
includes SWI/SNF members ARID1A, ARID1B, ARID2, PBRM1 plus ADNP. We
jointly analyze these subnetworks as many individual HotNet2 runs report them
together and they are members of the same protein complex. Supplementary Table
12 shows the enrichments for mutations for the subnetworks as a whole as well as for
the single genes in the SWI/SNF complex subnetwork. See main text for discussion
of this subnetwork.

B.5.8 BAP1 complex

Supplementary Table 13 show the enrichments for mutations for the subnetworks as
a whole as well as for the single genes in the BAP1 complex subnetwork (Figure 3b).
The subnetwork is enriched for mutations in BLCA (P = 0.01), KIRC (P = 0.00023),
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and LUSC (P = 0.006). KIRC enrichment was driven mostly by BAP1, while LUSC
enrichment was due mostly to mutations in ASXLI and ASXL2. BAPI showed
significant (P < 9 x 1079) clustering of missense mutations in the N-terminal region
where mutations have been observed to be associated with mesothelioma [217] and
have been shown to inhibit the nuclear localization and deubiquitinase functions
of BAP1 [218]). FOXK1, FOXK2, and KDMI1B were the genes in the subnetwork
with lowest mutation frequencies. FOXK2, a putative member of the BAP1 core
complex [I53], is a transcription factor whose phosphorylation results in apoptosis
[219]. None of the mutations in FOXKZ2, were within these critical phosphorylation
residues [219], suggesting that they are not perturbing this interaction; however most
of the missense mutations in FOXK2 (6/13) were found in the forkhead transcription
factor domain and forkhead associated domain, which may be inactivating the DNA-
binding properties of FOXK2. With a few exceptions [220, 221) 222], many of these
associations are novel.

Mutual exclusivity between BAP1 and SWI/SNF complexes

We find that the mutations in the BAP1 and SWI/SNF subnetworks display strong
mutual exclusivity (P = 9.4 x 107°) due to 12 mutually exclusive mutations in the
BAP1 complex and 21 mutations (20/21 mutually exclusive) in SWI/SNF complex.
These include rare mutations in ASXL1, ASXL2, ANKRD17, FOXKI1, and FOXK2
in BAP1 complex (2 of which are inactivating) and ARIDIA, SMARCA/, ARID2,
ARID1B and SMARCBI in the SWI/SNF complex (8 of which are inactivating),
consistent with the inactivation of BAPI or PBRM1. We observe that 26 of the 42
KIRC samples with BAPI mutations have inactivating mutations. Moreover, 12 of
the 16 KIRC samples with missense mutations have these mutations in the Pepti-
dase_C12 domain (P < 3 x 107%), and thus we classify such missense mutations as
inactivating. Using this classification, we observe that 5/10 of mutated samples in
BRCA, GBM, HNSC and LUAD are inactivating, suggesting that BAP1 inactivation
also occurs in these samples. ASXL1 mutations are common in LAML [82] and we
observe that 5/5 mutations in LAML are inactivating mutations. In addition 6/9
ASXL1 mutations in HNSC are inactivating, while 3/7 ASXL2 mutations in BRCA
are inactivating. These ASXL1 and ASXL2 mutations are exclusive of BAPI inac-
tivation, demonstrating alternative strategies for inactivation of the BAP1 complex.

B.5.9 Core-binding factors

HotNet2 identifies a consensus subnetwork containing RUNX1, CBFB, and ELF}
mutated in 2.8% of samples (Figure and Supplementary Table 14). The sub-
network is enriched for mutations in LAML (P = 4.6 x 107%) and BRCA (P =
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9.9 x 107°), which is largely driven by RUNX! and CBFB mutations that are en-
riched in BRCA (respectively P = 2 x 107%, P = 9 x 1077). We observed 16/17
of missense mutations clustered in the Runt-homology domain (RHD) of RUNX1
(P = 2 x 107°%), which is required for DNA binding as well as interaction with
CBFB [223], and with the exception of one missense mutation outside of the RHD,
all other mutations in RUNX1 were inactivating. RHD mutations have been associ-
ated with development of LAML [224] and our analysis suggests that abrogation of
DNA-binding capabilities of RUNX! through mutation of RUNX1-RHD or CBFB
may be a critical step in breast cancer progression [225]. Further, the mutations in
RUNX1 that occur in BLCA, COADREAD and HNSC patients were located in the
RHD. In addition, each of the mutations in CBFB that occur in BLCA, LAML, and
UCEC samples were located in the domain that is critical for interaction between
CBFB and RUNX1 or were inactivating. These observations suggest that members
of the core-binding complex are inactivated by somatic mutations in cancers other
than BRCA and LAML, although perhaps only in rare cases. Thus, the HotNet2
Pan-Cancer analysis further characterizes the pattern of mutation in core binding
factors across BRCA, AML, and other cancer types.

B.5.10 Cohesin complex

Supplementary Table 15 show the enrichments for mutations for the subnetworks
as a whole as well as for the single genes in the cohesin complex subnetwork. We
identified gene-specific enrichments for STAG2 in BLCA (P = 0.005). In STAGI,
we found three significant clusters of missense mutations that together encompass 28
total mutations. All of the genes in the subnetwork have > 79% of their mutations
as missense, with the exception of STAG2 and RAD21 (57% and 69% respectively).
Interestingly, all of the 8 mutations in these two genes in LAML were not missense (3
nonsense for STAG2; 2 nonsense, 2 frame shift insertions, and 1 frame shift deletion
for RAD21), suggesting that these genes are inactivated by mutation in LAML and
other cancer types.

B.5.11 Condensin complex

HotNet2 Pan-Cancer analyses on the MultiNet and iRefIndex networks identified
two subnetworks containing six proteins in the condensin complex, which together
were mutated in 4.2% of samples. Supplementary Table 6 show the enrichments
for mutations for the subnetworks as a whole as well as for the single genes in the
condensin complex subnetwork. See main text for discussion of this subnetwork.
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B.5.12 KFEAP1, NFE2L2, and interactors

The seventh most mutated consensus subnetwork (8.5% of all samples) includes
KEAPI1, NFE2L2, CHDG6, WAC, and PTMA (Figure [4.10]and Supplementary Table
18). This subnetwork is mutated in at least 10 samples of each cancer type with the
exception of GBM (3 mutated samples) and LAML (3 mutated samples). NFE2L2 is
a transcription factor that modulates the response to oxidative stress and is normally
sequestered in the cytoplasm by KEAPI1 [226]. The subnetwork was enriched for
mutations in BLCA (P = 0.04), HNSC (P = 0.0004), LUAD (P = 4 x 107%),
and LUSC (P < 107'%). We find enrichment for mutations in KEAPI in LUAD
(P < 107%), and in LUSC (P = 8 x 107%), and enrichment for NFE2L2 mutations
in HNSC (P = 2 x 107°) and LUSC (P = 9 x 107'3), consistent with previous
reports [0, 227, 228]. Missense mutations in KEAP1 and NFE2L2 were clustered in
their respective protein structures (P < 4 x 107> and P < 107! respectively from
NMC analyses, and @ < 0.025 for KEAP1 from iPAC analysis). The 4 clustered
mutations for KEAP1 were all in the position of the NFE2L2 binding Kelch domain
[229], and were in different cancer types (2 in LUSC, 1 in LUAD, and 1 in HNSC),
suggesting mutation of this domain is important as it is targeted in multiple types.
The 36 significantly clustered mutations of NFE2L2 are in the N-terminal region of
the protein.

B.5.13 MHC Class I proteins

HotNet2 identified a significantly mutated subnetwork (3.1% of samples) contain-
ing five genes — HLA-A, CD1D, HLA-B, B2M, and PH4TM — with HLA-A and
HLA-B of which are from the major histocompatibility complex (MHC) Class I
(Figure and Supplementary Table 17). Two of these genes were previously
reported to harbor somatic mutations: HLA-A in squamous lung cancer [9] and
B2M in colon cancer [230]. However, we find that the mutations in LUSC are dis-
tributed throughout the subnetwork, while BLCA mutations are concentrated in
HLA-A (P =0.001). We find that the genes in this subnetwork harbor many inac-
tivating mutations (41/97 samples), with B2M (7/17), HLA-A (19/34), and HLA-B
(10/20) harboring the most. We also find a significant cluster of missense muta-
tions in B2M'’s first amino acid residue (P = 1.53 x 107Y), suggesting that different
cancers utilize different mechanisms for inactivation of B2M. Finally, since HLA-
A and HLA-B are highly polymorphic [230], we used more stringent filtering (See
https://www.synapse.org/#!Synapse:syn1729383) to remove potential germline
variants. This procedure classified 14/34 samples with HLA-A mutations and 11/21
samples with HLA-B mutations as probable germline variants. These results demon-
strate that different somatic aberrations, and possibly a combination of germline and
somatic aberrations, perturb this subnetwork in different cancer types.
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B.5.14 Telomerase complex and interactors

HotNet2 identified a significantly mutated subnetwork (8.5% of samples) containing
two members of the telomerase complex, telomerase reverse transcriptase (TERT)
and telomerase-associated protein 1 (TEP1), as well as SMG1, SMG5, SMG6, and
SMG7 (Figure and Supplementary Table 38). HotNet2 identified this subnet-
work in the consensus of the runs where no expression filter was applied to the
mutation frequency or MutSigCV genes (Appendix [B.2.3). The subnetwork is en-
riched for mutations in LUAD (P = 0.004) and LUSC (P = 0.0009), and SMG7 is
itself enriched for mutations in LUSC (P = 0.03).

B.5.15 CLASP and CLIP proteins

HotNet2 identified a significantly mutated subnetwork (2% of samples) containing
the linker protein CLIP2 and the CLIP associated proteins CLASP1 and CLASP2
(Figure and Supplementary Table 7). HotNet2 identified this subnetwork on the
Multinet network using mutation frequency gene scores. The CLASP1/2 proteins
have been shown to be involved in cellular migration [231], and LOH in the chro-
mosomal region of CLASP2 is associated with non-small cell lung cancer [232]. The
association with lung cancer is supported by the mutations in this subnetwork, as the
subnetwork (P = 0.0001) and both CLASP1 (P = 0.01) and CLASP2 (P = 0.008)
are enriched for mutations in LUSC. Furthermore, 7/12 LUSC samples with a mu-
tation in this subnetwork have an inactivating mutation.

B.6 Mutation validation

To provide further support for a subset of novel cancer genes identified in the HotNet2
subnetworks, we examined RNA-Seq and whole-genome sequencing (WGS) data
from the same TCGA samples, data that was generated independently from the
whole-exome sequencing data that was used to call the somatic mutations. We
focused our analysis on rare mutations in the condensin complex, which was one of
the novel discoveries of our analysis (Figure , as well as genes that were not
identified by other methods (marked by “**’ in the figures).

Examination of reference and variant allele counts in the RNA-Seq and WGS
data validated 39 somatic mutations. These include a total of 12 non-silent muta-
tions in condensin genes using RNA-Seq, 9 non-silent mutations using WGS, and
one mutation using both data types. These mutations occur in condensin genes
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SMC2, SMCY, NCAPD2, NCAPD3, NCAPH2, and NCAPGZ2. In the larger set of
novel genes, we have validated 8 non-silent mutations using RNA-Seq, 14 non-silent
mutations using WGS, and 3 non-silent mutations using both types of data. These
include mutations in the cohesin subunit STAGI, and the BAP1 complex subunit
ASXL2, among others.

Supplementary Table 23 provides the read counts of validated mutations (green
rows for RNA-Seq, yellow for WGS, and orange for both), with missing data indicated
by -1. This analysis demonstrates that several of the novel genes identified by the
HotNet2 analysis contain bonafide somatic mutations, and provide promising targets
for further functional characterization.

B.7 Comparison of HotNet2 to HotNet

B.7.1 Stars and spider graphs in Pan-Cancer data

We compared the proportion of subnetworks returned by HotNet and HotNet2 on the
Pan-Cancer mutation data that are star/spider graphs dominated by a hot, central
node. We say that a subnetwork S is a hot spider/star graph if the center (root)
node u € S contains > 50% of the heat in S. A star graph of n > 2 nodes is a tree
where the root has degree n — 1 and all other nodes have degree one. A spider graph
of n > 3 nodes is a tree where the root has degree of at least three and all other
nodes have degree of at most 2. Note that any star graph of at least 4 nodes is also
a spider graph, and that we restrict our analysis to subnetworks of at least 3 nodes
as star/spider graphs are defined for subnetworks of at least 3 nodes.

Because HotNet2 uses non-symmetric edge weights to identify strongly connected
components, we hypothesized that HotNet2 would identify fewer hot star/spider sub-
networks than HotNet. Indeed, HotNet2 returned only 12/90 hot spider/star graphs
(13%) compared to 67/94 hot spider/star graphs (71%) returned by HotNet across
the three PPI networks and two gene scores (Supplementary Table 31). Thus, Hot-
Net2 returns > 80% fewer hot stars/spiders than HotNet. This is a major difference
between the algorithms and is one of the reasons why HotNet fails to find statisti-
cally significant results (P < 0.01 for any subnetwork size k) on three of six runs
(Supplementary Table 32,33), while HotNet2 finds statistically significant results on
all six runs.

The difference is explained by the undirected vs. directed heat similarity mea-
sures used in HotNet vs. HotNet2. In HotNet (undirected heat), placing a high heat
score on a node with relatively low-degree is likely to result in a hot star/spider.
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Thus, we find hot stars/spiders frequently in randomly permuted data, meaning
that the number and size of subnetworks found in real data will not be significant.
In contrast, in HotNet2 (directed heat), a single high heat score placed on a random
node will not result in a hot star spider. Consequently, by accounting for the direc-
tion of heat flow, HotNet2 returns fewer hot stars/spiders on both real and random
data, and thus the number and size of subnetworks found in real data is significant.

We note that the goal of HotNet2 is not to eliminate hot stars/spiders, but
rather to reduce the number of such subnetworks that are false positives. Due to
the incomplete and noisy PPI networks, there are true positive subnetworks that are
stars/spiders; e.g. the three most mutated members of the BAP1 complex — BAP1,
ASXL1, ASXL2 — are a hot star in the iReflndex PPI network. Restricting atten-
tion to the statistically significant subnetworks identified by each algorithm: only
2/36 (5%) of the significant subnetworks reported by HotNet2 are hot stars/spiders,
compared to 15/35 (43%) of the significant subnetworks reported by HotNet. Fur-
thermore, only 4/399 (1%) of protein-protein interactions within the HotNet2 sub-
networks occur in hot spiders/stars, while 45/245 (18%) of interactions within the
HotNet subnetworks occur in hot spiders/stars. It is difficult to determine which, if
any, of these stars/spiders are false positives. However, this analysis demonstrates
that hot stars/spiders are a much smaller proportion of HotNet2s subnetworks. This
results in HotNet2 having higher statistical power and returning subnetworks that
have a higher fraction of interactions with proteins other than a hot central node.

B.7.2 Simulated data

We performed three different simulations comparing HotNet2 and HotNet with: (1)
randomized datasets; (2) highly connected subnetworks; (3) implanting highly con-
nected groups of known cancer genes from [16]. The results of (1) show that neither
algorithm identifies significantly mutated subnetworks in randomized datasets. The
results of (2) and (3) show that HotNet2 achieves high sensitivity and specificity,
and outperforms HotNet.

Randomized datasets

We evaluated whether HotNet2 and HotNet identify significant subnetworks on ran-
domized datasets by permuting the MutSigCV heat scores 50 times and running
both algorithms on the HINT+HI2012 network. For each run, we chose the smallest
0 value for the run with lowest P-value across any subnetwork size k. On these sim-
ulations, we find that the P-values for different subnetwork size k are approximately
uniformly distributed (Figure and Supplementary Table 28), and even appear



166

to be overly conservative for larger subnetwork sizes. On 450 total subnetwork sizes
(9 sizes x 50 runs), HotNet2 found only 3 subnetwork sizes with P < 0.01 (com-
pared to 4 for HotNet). The P-values for HotNet and HotNet2 are deflated (more
conservative) only at larger P-values and for k£ > 6, and thus would not result in
false negatives. Moreover, we note a larger deflation for HotNet (Figure bot-
tom) compared to HotNet2 (Figure [£.27|(a) top), demonstrating one advantage of
the newer algorithm.

The observed deflation of larger P-values is a result of the discreteness of the
distribution of our test statistic X;(= number of subnetworks of size at least k) for
large values of k (Figure —c). In particular, on the 50 randomized datasets,
we have that for large values of k (e.g., k > 6) the test statistic X} assumes an
integer value z* within a limited range (e.g. for HotNet2, X} takes values between
0 and 3 for k = 7 (Figure [£.27c) and k = 8, and between 0 and 2 for £ = 9 and
k = 10 - see Supplementary Table 37). This implies that if z* is the number of
subnetworks of size > k on a randomly selected dataset, then for large k, zx = 0
with high probability; e.g. for k = 7 we have Pr|xx = 0] ~ 0.75 for HotNet. On
such a dataset, it follows that the tail probability Pr[X) > x| = 1, resulting in the
deflated p-values seen on the Q-Q plot for larger P-values and large k.

Highly connected subnetworks

We evaluated the performance of HotNet2 and HotNet in the ideal case where the
highest heat scores are placed on genes that each algorithm considers “most con-
nected” in the HINT4+HI2012 interaction network. We identified the components to
implant by running HotNet and HotNet2 with uniform heat scores on all genes in the
network that passed the gene expression filter. We then selected the resulting com-
ponents of size at least 10, giving us 16 components to implant for each algorithm.
These components consisted of 203 genes for HotNet and 214 genes for HotNet2.
We then randomly assigned the top mutation frequency scores to the genes in these
selected components and randomly assigned the remaining scores to the rest of the
genes in the network that had mutation frequency scores and passed expression fil-
tering. HotNet2 returns 16 components of size at least 10 with a P < 0.01. These
16 components consist of 223 genes and contain all 214 implanted genes, giving a
sensitivity of 100% and a specificity of 96.0%. Furthermore, all genes that are in
the same implanted component are in the same recovered component. HotNet, by
contrast, performs poorly. It recovers only 12 components of size at least 10 with
P < 0.01. These 12 components consist of 206 genes of which only 151 are implanted
genes, giving a sensitivity of 74.4% and a specificity of 73.3%. HotNet does recover
some additional implanted genes in smaller components, but many of these compo-
nents are of a size that does not achieve statistical significance. Even if we consider
the best case for HotNet without regard to statistical significance, it only achieves
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sensitivity of 92.6% and specificity of 76.7%.

Highly connected cancer genes

We compared HotNet2 and HotNet on simulated mutation data where subnetworks of
known cancer genes from [16] were mutated randomly in samples according to a spe-
cific driver mutation probability and other genes were mutated randomly in samples
according to a passenger mutation probability. The passenger mutation probability
was lower than the driver mutation probability, but these probabilities were chosen
so that the distributions of the number of mutations in cancer genes and passenger
genes overlapped (Figure ) We selected subnetworks to implant by greedily
adding the highest weight edges from the diffusion matrix F' of the HINT+HI2012
interaction network to identify all non-overlapping subnetworks of size at most 15
that include multiple cancer genes from [16]. We used the subnetworks with at
least four genes, resulting in implanted networks of 50 genes in six subnetworks.
We also chose 5 known cancer genes that were not part of the implanted networks
to have scores from the driver distribution with the hypothesis that HotNet would
identify these subnetworks as hot stars/spiders. We then generated 30 simulated
datasets by assigning heat scores from overlapping normal distributions for the 50
implanted (mean: 0.05, std: 0.01) and 2945 passenger (mean: 0.01, std: 0.01) genes
(Figure ) We then compared HotNet2 and HotNet on these datasets.ﬂ

Across the 30 datasets, both HotNet2 and HotNet identify statistically signifi-
cant subnetworks that overlap the implanted subnetworks with high sensitivity and
specificity (Figure [4.30b-c). HotNet2 achieves a better balance in the tradeoff of
sensitivity vs. specificity, as summarized by the Youden’s index [233] which has
a mean value of 0.86 for HotNet2 versus 0.76 for HotNet (difference is significant:
P =42x 107" by t-test).

In order to determine if the relative advantage of HotNet2 compared to HotNet
came from its selection of the parameter §, we created ROC curves for each of
these datasets varying 6. The ROC curves show that the performance of HotNet2
dominates HotNet with average area under the curve (AUC) = 0.998 for HotNet2 and
0.947 for HotNet. These results demonstrate that HotNet2 has consistently better
performance than HotNet over a range of § values and hence p-value thresholds.

We note that in practice HotNet2 chooses the value of the § parameter auto-

SRunning HotNet2 and HotNet on simulated datasets requires an automated procedure for
choosing which subnetworks to report, which is dependent both on the minimum edge weight §
and the minimum component size k. For each run, we chose the delta with the largest number
of k with P < 0.05, and chose the k with P < 0.05 with the maximum Youden’s index [233]
(J = sensitivity + speci ficity — 1).
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matically using randomized networks (See Section [4.4] and Appendix [B.1.4)). This is
to avoid testing numerous ¢ values which can result in overfitting to the data. The
ROC curves in Figure show that the ¢ values automatically chosen by HotNet2
(dots) provide a reasonable balance between sensitivity and specificity.

B.7.3 Cross-validation

We compared the performance and stability of HotNet2 and HotNet using two-fold
cross-validation. We repeatedly split the Pan-Cancer mutation dataset in two halves,
by randomly selecting half of the samples from each cancer type. We ran HotNet2
(respectively HotNet) on the first half, finding the value of the parameter ¢ and the
subnetwork size k that gave the smallest P-value under the HotNet2 (respectively
HotNet) statistical test. HotNet2 returned significant subnetworks (P < 0.05, after
multi-hypothesis correction for § and k values) for all 15 cross-validation datasets,
while HotNet had returned significant subnetworks for only 3 out of the 15 datasets.
This result demonstrates that HotNet2 has higher power to detect mutated subnet-
works with fewer samples.

Next, we compared the performance of HotNet2 and HotNet in detecting putative
cancer genes (genes satisfying the “20/20 Rule”; See Appendix using only
50% of the samples. We summarized the tradeoff in sensitivity vs. specificity of each
method using the diagnostic odds ratio (DOR):

TP/FN sensitivity X speci ficity

DOR = =
FP/TN (1 — sensitivity) x (1 — speci ficity)

We found that the DORs for the subnetworks found by HotNet2 were significantly
higher than those found by HotNet: 14.93 4+ 2.81 for HotNet2 vs. 7.09 + 1.08
for HotNet (Figure |4.32n), demonstrating that HotNet2 maintains a performance
advantage using only 50% of the samples. Moreover, for HotNet2 the DOR was
typically much lower when using 50% of the samples than using 100% of samples,
demonstrating HotNet2’s improved performance with more data. In contrast, the
DOR’s for HotNet on 50% of samples (including those DORs from runs that were not
significant according to HotNet’s statistical test) fluctuate around the DOR for 100%
of samples, showing that HotNet does not show consistent gains in performance with

more data. We suspect that the reason is because the benefits of additional data are
outweighed in HotNet (See Section |4.4.3]).

Finally, we performed two-fold cross validation on the DOR. We repeatedly com-
puted the values of the parameters ¢ and the subnetwork size k from one half of the
data (training set) and then used this values of § and k to compute subnetworks
in the other half of the data (test set). We found that the relative change in DOR
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(Figure [4.32b) was much smaller for HotNet2 (-0.0078 & 0.257) compared to HotNet
(-0.481 £ 0.814) demonstrating that HotNet2 is more stable than HotNet.

B.8 Comparison of HotNet2 to other approaches

B.8.1 Pathway and gene set analysis

We performed a comparison of the HotNet2 results with standard pathway-based
enrichment analyses. Specifically, we used the DAVID [32, 33] and GSEA [311, 30]
tools to analyze the genes input to HotNet2 for enrichment in known pathways and
gene sets.

These comparisons show that pathway and gene set enrichment approaches pro-
duce results that are both qualitatively and quantitatively very different from Hot-
Net2. HotNet2 reports a small number of subnetworks of interacting genes, while
gene set methods report large numbers of overlapping and redundant gene sets. The
resulting gene sets are difficult to interpret and also do not contain some of the
well-known and novel protein complexes identified by HotNet2. The pathway per-
mutation test results also show that many of the subnetworks identified by HotNet2
are significantly enriched for overlap with known pathways/complexes more often
than expected by chance. This suggests that HotNet2 provides new insights and is a
useful complement (or arguably a replacement for) other pathway tests. We provide
details of the pathway and known gene set analysis below.

DAVID analysis

We first analyzed all 11,565 mutated genes in the mutation frequency dataset to
HotNet2 using DAVID to search for functional enrichment in pathways from the
BBIDF| BioCARTA[] and KEGG [27, 234] databases (Supplementary Table 35(a)).
DAVID reported 31 of the tested pathways were enriched with FDR < 0.05, 5 of
which include “cancer” in their name. These pathways overlapped considerably: the
31 pathways contained 1484 distinct genes, with each gene being contained in an
average of 1.6 pathways. We repeated this analysis with the top 200 most mutated
genes and DAVID reported 20 of the tested pathways were enriched. These 20
pathways contained only 46 distinct genes, with each gene being contained in an
average of 6.4 pathways. Furthermore, none of the pathways found with either

Shttp://bbid.grc.nia.nih.gov/
"http://www.biocarta.com/genes/index.asp
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gene list overlap some of the subnetworks (complexes and pathways) discovered by
HotNet2 with known (or posited) roles in cancer. For example, the pathways include
no genes from the BAP1, condensin, or SWI/SNF complexes.

GSEA analysis

We also used the GSEA algorithm [31], 30] to identify known gene sets with an over-
representation of highly mutated genes. We applied GSEA to the list of 11,565 genes
in the mutation frequency dataset to HotNet2 ranked by their mutation frequency,
and searched the MSigDB curated gene sets [30]. We restricted the analysis to the
9,270 gene sets of sizes 5-200 that included genes in the input list. GSEA identified
190 enriched gene sets with FDR < 0.05, 17 of which included “cancer” in their
name (Supplementary Table 35(b)). The significant gene sets overlap considerably,
as they include 2028 distinct genes with an average of 2.5 pathways per gene. While
the significant gene sets are more comprehensive than the pathways identified by
DAVID in terms of the subnetworks (complexes and pathways) identified by Hot-
Net2, they still do not include well-known cancer genes such as ARID1A, MDM}, or
MLL2, and completely miss HotNet2 subnetworks such as the ASCOM complex.

Pathway permutation test

We compared the functional enrichment of HotNet2 subnetworks to that of random
subnetworks as measured by overlap with known pathways and protein complexes.
We computed pathway/complex enrichment using KEGG pathways and PINdb [29]
complexes. We call a subnetwork “enriched” if it has a corrected hypergeometric P-
value less than 0.05 for any pathway/complex, where we Bonferronni-correct by the
product of the number of tested pathways and number of tested subnetworks. We
tested each subnetwork identified by HotNet2 for enrichment against each complex
and pathway. We find that 15/30 subnetworks are enriched (Supplementary Table
36). The 15 subnetworks without enrichment were mostly small subnetworks (13/15
had size < 7) where enrichment with large pathways is difficult. We then com-
puted an empirical P-value for each of these enriched subnetworks by comparing the
minimum corrected P-value (over all tested pathways) for a subnetwork against the
minimum corrected P-value (over all tested pathways) of 1000 random subnetworks
of the same size drawn from the same protein-protein interaction network in which
HotNet2 identified the subnetwork. We find that 14/15 of the enriched subnetworks
have an empirical P-value of less than 0.05.
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Identifying putative cancer genes

We compared the performance of HotNet2 in identifying putative cancer genes to
the performance of HotNet and two pathway-based approaches, GSEA and DAVID.
Because there is not a comprehensive list of cancer genes to use as a gold-standard,
we constructed a list of putative cancer genes following the “20/20 Rule” recently
proposed by Vogelstein, et al. [I6]. The 20/20 rule posits that cancer genes con-
tain either a surprising cluster of missense mutations or enrichment for inactivating
mutations. We constructed a list of 278 such “20/20” genes from the genes in the
mutation frequency dataset that were mutated in > 1% of TCGA samples. The
list was constructed in two steps. First, we identified 155 genes with significant
(P < 5x107°) clusters of missense mutations using the NMC algorithm [213]. Next,
we identified 123 additional genes that have > 20% of their mutations as inactivating
(nonsense, frame shift indels, nonstop, or splice site mutations).

We compared the sensitivity and specificity of HotNet2, HotNet, DAVID, and
GSEA in identifying these 278 20/20 genes. Note that we did not include gene-centric
methods such as MuSiC, MutSigCV, or Oncodrive in this comparison, because these
methods use clustering of missense mutations and/or enrichment of inactivating mu-
tations in deriving their gene scores. In contrast, HotNet2, HotNet, and pathway-
based approaches do not consider these signals, and thus the 20/20 gene list provides
an independent evaluation of these methods.

We compared the output of HotNet2 and HotNet on the mutation frequency
dataset and HINT+HI2012 network to the results of the GSEA and DAVID algo-
rithms applied to the 11,565 genes in that dataset. We found that HotNet2 had a
false positive rate (FPR) that was 52%, 61%, 83% lower than HotNet, GSEA, and
DAVID, respectively, at equal sensitivity (Supplementary Table 34(a)). To evalu-
ate the performance of each method over a range of sensitivities/specificities, we
computed the receiver operator characteristic (ROC) curves for each method by
varying the parameter § for HotNet and HotNet2, and the FDR for DAVID and
GSEA (Figure [4.31h). The ROC curves demonstrate that HotNet2 dominates the
other approaches in the range of low FPR (FPR < 0.1) that is typically used in
the identification of cancer genes [18]. At higher FPR, the HotNet algorithm begins
to outperform the other approaches (Figure [£.31p). However, this result should be
viewed with caution for two reasons: (1) FPR > 0.1 corresponds to more than 1100
false positive genes; (2) these results will not be significant according to HotNet’s
statistical test.

The ROC curves provide a comprehensive comparison of the tradeoff in sensitivity
vs. specificity of the different methods; summarizing this tradeoff in a single number
entails some loss of information [235]. Nevertheless, to provide such a number,
we computed the partial area under the curve (pAUC), a standard measure for
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summarizing the ROC curve in a reduced FPR range. We computed the pAUC up
to FPR = 0.1 and standardized the pAUC so that it is 1 for a perfect predictor
and 0.5 for a random predictor as in [236]. HotNet2 has an 4%, 4%, and 13%
higher standardized pAUC (Supplementary Table 34(b)) than HotNet, GSEA, and
DAVID, respectively, demonstrating the advantages of HotNet2 over HotNet and
pathway based methods for predicting cancer genes and their combinations.

We also test whether HotNet2’s advantage over DAVID and GSEA was due solely
to HotNet2’s (and HotNet’s) restriction to genes only in the HINT+HI2012 PPI
network. We compared HotNet2, HotNet, DAVID, and GSEA on the reduced set of
6930 genes in HINT+HI2012 that mutated in at least one sample in the mutation
dataset. HotNet2 again outperformed the other algorithms, with a false positive
rate (FPR) that was 52%, 46%, and 55% lower than HotNet, GSEA, and DAVID,
respectively, at equal sensitivity (Supplementary Table 38 (a)). The ROC curve for
HotNet2 dominated other methods, both at FPR < 0.1 (Figure [4.31¢) and FPR
< 0.3 (Figure [4.31d). For FPR < 0.1, HotNet2’s pAUC was 4%, 2%, and 8% higher
than HotNet, GSEA, and DAVID, respectively (Supplementary Table 34 (b)).

B.8.2 Comparison to MEMo

We attempted to run MEMo [39] on the 3110 samples in the Pan-Cancer dataset
using SNVs and CNAs from the mutation frequency dataset. However, MEMo was
not able to run on a dataset this large. In particular, MEMo reported that it was
using 11,179 genes after filtering, but terminated with a heap error after 6 minutes
on a large memory machine. We note that the challenge of running MEMo on large
datasets is reported by the authors who recommend “that the list of recurrently
altered genes be kept below 100 [for optimal results]” [61].

B.8.3 Comparision to Ciriello et al. and Lawrence et al.

We compare our analysis to the Pan-Cancer study from Ciriello et al. [166]. We
emphasize that our study and Ciriello et al. have very different goals. Ciriello et
al. focus on the clustering of samples in the Pan-Cancer dataset according to the
presence/absence of individually significant mutations. While Ciriello et al. manu-
ally annotate a few known pathways, they do not assess the clustering of mutations
in these pathways, nor do they attempt to identify novel combinations. Specifically,
Ciriello et al. limit attention to 479 significant mutation events. Only 209 of these
events are single gene mutations (or promoter methylation) with the remainder being
copy number aberrations that affect many genes. In addition, 36 of the 479 events
do not occur in any of the 3299 samples analyzed in Ciriello et al., according to
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their mutation matrix. Finally, the clustering of samples further restricts attention
to only those events that appear in > 1% of the samples; this implies that only 164
events are used in the first stage of the clustering when all samples are considered.
While the mutations considered in Ciriello et al. are useful for clustering samples,
Ciriello et al. do not claim that they form a complete list of driver mutations in
these samples.

We also note that Ciriello et al. analyze a slightly different dataset than the
dataset analyzed by us and several other TCGA Pan-Cancer projects. In particular,
compared to the official TCGA Pan-Cancer data freeze [52], Ciriello et al. analyze:

o 284 fewer BRCA samples;
e 268 more COADREAD samples; and,

e 131 more OV samples

with other cancers having smaller discrepancies. 2639 samples are common to the
datasets.

We also compare our study to Lawrence et al. [65], who also recently performed
a Pan-Cancer study. Lawrence et al. predict cancer genes from somatic SNVs — not
including any CNAs — in a larger cohort of samples from 21 cancer types, containing
more than 2,000 tumors outside of the TCGA Pan-Cancer cohort. Similar to our
analysis, Lawrence et al. identify both known and novel cancer genes, and there is
overlap between the novel genes identified by both approaches (e.g. ELF3, HLA-A,
ARID2, and ASXL2). Notably, since HotNet2 analyzes combinations of mutations,
we identify these genes as significant using fewer samples. We also identify additional
candidate cancer genes not reported in Lawrence et al., but with supporting evidence
of their function in cancer from protein interactions and mutation clustering.
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