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We develop new algorithms for training nonparametric clustering models based on the Dirichlet

Process (DP), including DP mixture models, hierarchical Dirichlet process (HDP) topic models, and

HDP hidden Markov models. This family of models has been widely used because Bayesian non-

parametric posterior distributions allow coherent comparison of different numbers of clusters for a

given fixed dataset. The nonparametric approach is particularly promising for large-scale or stream-

ing applications, where other model selection techniques like cross-validation are far too expensive.

However, existing training algorithms fail to live up to this promise. Both Monte Carlo samplers

and variational optimization methods are vulnerable to local optima and sensitive to initialization,

especially the initial number of clusters. Our new algorithms can reliably escape local optima and

poor initializations to discover interpretable clusters from millions of training examples.

For the basic DP mixture model, we pose a variational optimization problem in which the

number of instantiated clusters assigned to data can be adapted during training. The focus of

this optimization is an objective function which tightly lower bounds the marginal likelihood and

thus can be used for Bayesian model selection. Our algorithm maximizes this objective score via

block coordinate ascent interleaved with proposal moves that can add useful clusters to escape

local optima while removing redundant or irrelevant clusters. We further introduce an incremental

algorithm that can exactly optimize our objective function on large datasets while processing only

small batches at each step. Our approach uses cached or memoized sufficient statistics to make

exact decisions for proposal acceptance or rejection. This memoized approach has the same runtime

cost as previous stochastic methods but allows exact acceptance decisions for cluster proposals and

avoids learning rates entirely.

We later extend these algorithms to HDP topic models and HDP hidden Markov models. Previ-

ous methods for the HDP have used zero-variance point estimates with problematic model selection

properties. Instead, we find sophisticated solutions to the non-conjugacy inherent in the HDP that

still yield an optimization objective function usable for Bayesian model selection. We demonstrate

promising proposal moves for adapting the number of clusters during memoized training on millions

of news articles, hundreds of motion capture sequences, and the human genome.

Finally, we show that introducing an additional sparsity constraint to the variational optimization

problem for local cluster assignments leads to speed gains without sacrificing model quality. Look-

ing forward, we anticipate possible memoized variational algorithms with adaptive proposal moves

for a broad family of Bayesian nonparametric clustering models and suggest potential theoretical

guarantees on approximation quality based on data-driven initializations of proposals.



Reliable and scalable variational inference for nonparametric mixtures, topics, and sequences

by

Michael C. Hughes

B. S., Franklin W. Olin College of Engineering, 2010

Sc. M., Brown University, 2012

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2016



© Copyright 2016 by Michael C. Hughes



This dissertation by Michael C. Hughes is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Erik B. Sudderth, Director

Recommended to the Graduate Council

Date
Benjamin Raphael, Reader

Dept. of Computer Science, Brown University

Date
Emily B. Fox, Reader

Dept. of Statistics, University of Washington

Approved by the Graduate Council

Date
Peter W. Weber

Dean of the Graduate School

iii



Vitae

Michael C. Hughes was born on August 2, 1987, in Englewood, Colorado, USA. His family moved to

Billings, Montana in 1994 and he received his entire primary and secondary education from Billings

public schools, graduating from Billings Senior High in 2006.

He attended Franklin W. Olin College of Engineering in Needham, Massachusetts, graduating

in 2010 with a B.S. in Electrical and Computer Engineering. He immediately enrolled in graduate

studies at Brown University’s Department of Computer Science. He earned his Master’s degree from

Brown in 2012 and his Ph.D. in 2016. He gratefully acknowledges funding support from the National

Science Foundation Graduate Research Fellowship.

Publications related to this thesis

Michael C. Hughes, William Stephenson, and Erik B. Sudderth. Scalable Adaptation of State Com-

plexity for Nonparametric Hidden Markov Models. Neural Information Processing Systems (NIPS),

2015.

Michael C. Hughes, Dae Il Kim, and Erik B. Sudderth. Reliable and Scalable Variational Inference

for the Hierarchical Dirichlet Process. Artificial Intelligence & Statistics (AISTATS), 2015.

Michael C. Hughes and Erik B. Sudderth. Memoized Online Variational Inference for Dirichlet

Process Mixture Models. Neural Information Processing Systems (NIPS), 2013.

Other relevant publications

Emily B. Fox, Michael C. Hughes, Erik B. Sudderth, and Michael I. Jordan. Joint Modeling of

Multiple Time Series via the Beta Process with Application to Motion Capture Segmentation. Annals

of Applied Statistics, Vol. 8(3), 2014.

Michael C. Hughes, Emily Fox, and Erik B. Sudderth Effective Split-Merge Monte Carlo Methods for

Nonparametric Models of Sequential Data. Neural Information Processing Systems (NIPS), 2012.

iv



Dedicated to my parents

For my mother, Lorie Hughes, my first teacher. She taught me how to read and

write, but also to pursue what is right, even if it means staying long after everyone

else leaves.

For my father, Gary Hughes, who was the first scientist I ever met and still the

one I look up to most. He taught me to ask questions and work hard, but also not

to take myself too seriously. Hook, you’re a codfish.

v



Acknowledgements

First and foremost, my thanks go to Erik Sudderth, who was crazy enough to take me on as an advisee

from a small school no one had ever heard of and without a lick of machine learning experience. I

could not even pronounce the word “Dirichlet” the first time I walked in his door. As a mentor, he

imparted on me the importance of pursuing elegant models and rigorous experiments. I am grateful

for his seemingly endless patience in guiding me whenever I floundered along the way. Such patience

is a rare quality in advisers with his level of brilliance. Finally, I am thankful for the work-life

balance that he modeled during my graduate career. People always say that you will become more

of an expert than your adviser on your thesis topic, but I only hope I can be half the mentor he is

someday.

Thanks go also to my readers and faculty mentors. First, thanks to Emily Fox, who offered crucial

guidance during my early years of graduate school as well as during my final year job search. It is

very rare these days – and much appreciated – to find a co-author who will print out a manuscript

and mark it up by hand. Next, thanks to Ben Raphael for suggesting the chromatin segmentation

problem and for many productive discussions at research meetings and in his seminar course. Along

with all the faculty I encountered at Brown, I’d like to give a special word of thanks to James

Hays, Stefanie Tellex, Michael Littman, Eugene Charniak, and Michael Black for discussions and

coursework that shaped how I approach research problems. Finally, thanks to Tom Ouyang and

Marc Stogaitis for a productive summer away at Google back in 2013.

I chose Brown for graduate school because I thought it had an extremely supportive community

of fellow students, and I was not disappointed. My thanks go to so many: to Soumya Ghosh who

convinced me that Erik’s group was the real deal and who was a fellow Broncos fan deep in the

heart of the empire; to Dae Il Kim for his contagious enthusiasm for topic models and for always

knowing where the party was at from Tahoe to Edinburgh; to Jason Pacheco who was always the first

person to ask about anything in machine learning and a genuine friend; to Layla Oesper who kept

me sane with homemade calzones and who knows when to say “Calamity Jane”; to Ryan Cabeen

for many discussions about research and many hours of frisbee, Jurassic Park, and beer; to Silvia

Zuffi who was the most supportive officemate I could ask for; to Anna Ritz who helped me make

important life decisions over coffee and brunch; to Zhile Ren, who always helped me think about

reaching a bigger audience, to Ben Swanson whose zany banjo antics and graphical model grafitti

convinced me to come to Brown in the first place; to Deqing Sun for showing the way in vision

vi



reading group, especially in how to give engaging talks; to Betsy Hilliard, who became a staunch

friend and confidant despite the soda explosion; to Scott Wylie, who led countless relaxing diversions

involving disc golf, rope swings, and lady ducks; and to Jesse Butterfield, who taught me to bet it

all on black and introduced me to important Providence landmarks like the GCB and Hot Club.

Finally, thanks to Andy and Kristin Loomis, Eric Sodomka, Joe Politz, Ben Lerner, Mike Bryant,

Alex Gillmor, Seth Goldenburg, Connor Gramazio and the rest of INEB reading group for helping

me de-stress every Wednesday afternoon.

Thanks also to the crew of students I had the pleasure to mentor the past few years. To Geng Ji,

who derived variational algorithms for more models in his first two years than I have in my whole

career; to Will Stephenson, who proved the HDP surrogate bound and was the first guinea pig for

my Python code; to Sonia Phene, who helped me figure out parallelization; to Leah Weiner, who

can do great things will topic models; to Gabe Hope, who bravely combined my code with Gaussian

processes; to Jake Soloff, who mastered mixture-of-Gaussian observation models; and to Alexis

Cook, who will carefully rederive any equation put in front of her. Many others deserve credit too,

including Jincheng Li, Mengrui Ni, Oussama Fadil, and Mert Terzihan. The BNPy project would

not be where it is today without them to debug my code and keep my crazy ideas in check.

Even before I made it to graduate school, I had many important teachers who taught me even

more important lessons . First, from my pre-college years, I give thanks to K. Stuart Smith, who

introduced me to computer science and taught me that good food and good conversation is the

best way to spend an evening; to Jacquie MacDonald, who taught calculus in public high school

better than anyone; to Heather Oberdeck, who helped me realize how to be an adult without losing

the best things about being a kid; to Ms. Linda Horst, who showed me in 8th grade just how far

mathematics could take me; and to Ms. Robertson, who convinced me that joining math club in

7th grade was not the end of my social life. Boy, was she right. Next, from my undergraduate days

at Olin College, I say thanks to Matthew Jadud, who taught me how to tackle research problems on

my own; to Lynn Andrea Stein, whose keen advice about graduate school helped me choose Brown

in the first place; to John Geddes, who teaches writing even better than he teaches mathematics;

and to Allen Downey, whose books continue to inspire me.

I am grateful to many personal friends for their support during the last few years and throughout

my life. There are too many to name, but I will try my best. To Kyle Bjordahl, who has been a

partner-in-crime, business co-founder, best man and brother since first grade; to Kayton Parekh and

Matt Helgeson, who know what do to when a chicken is on deck and Dutch gold is on the line; to

Marc Sweetgall, who still holds the record for most nights spent on my couch; to Mike Roenbeck,

who knows the key to graduate school stress is a crunchwrap; to Jessi Murray, who could never

resist a good pie fight; to Brian Fahrenbach, who is a fellow lifelong member of the local 316, to

Pam Heidt, who was always better than me at dodgeball; to Amanda Pratt, who put the electrical

in my ECE degree and was there to watch the sun rise on Half Dome; to Casey Canfield, who is

always there when you need her, to Katie Miller and George Sass, who have never been anything

but generous; to Ben and Karen Salinas, who do the best karaoke in town; and to Sarah and Stefan

vii



Wolpert, who know how to pack a Yeti 110 for a float down the river.

Thanks to my parents, Lorie and Gary Hughes, to whom I dedicate this thesis. Growing up, I

always wanted to go to graduate school because they made it sound so much fun. In this and so

many other things, they were right. For my older sister, Sarah, who was always helpful crafting

posters for my childhood science projects and who also made sure I didn’t turn out to be a complete

nerd. For my younger sister, Amy, who has always been there to make me laugh and helped me

navigate the grind of graduate school. You’re killing me, smalls. Next, many thanks to my newest

family members: my father-in-law Kailash Mutha, who has been a constant source of wisdom and

advice; to Sarita, who taught me the best way to celebrate is with a limosine; and to Sulochana,

who was there for many hikes and who knows the value of a good nap.

Finally, my deepest thanks to my wife and best friend, Heena. She was there at the start to

encourage me to apply to graduate school, there in the middle of it to keep me well-rounded and

well-fed, and here at the end to help me celebrate. No one has my back like she does. We’ve had

many adventures during these last six years: climbing mountains, rafting rivers, chasing sloths, and

falling into sewers. Thanks for all the love and laughter along the way. My future is yours.

viii



Contents

List of Figures xiv

List of Algorithms xvi

1 Introduction 1

1.1 Probabilistic clustering models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Topic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Bayesian nonparametric models for model selection . . . . . . . . . . . . . . . . . . . 8

1.3 Existing algorithms: challenges and opportunities . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Variational optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 MCMC sampling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Outline of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Open-source software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 15

2.1 Hierarchical directed graphical models for clustering . . . . . . . . . . . . . . . . . . 15

2.1.1 Global vs. local random variables . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Allocation model: Generating cluster assignments . . . . . . . . . . . . . . . 17

2.1.3 Observation model: Generating data from assigned clusters . . . . . . . . . . 19

2.2 Distributions from the exponential family . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Examples of exponential family likelihoods . . . . . . . . . . . . . . . . . . . 20

2.2.2 Properties of the cumulant function . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Mean parameterization and Bregman divergences . . . . . . . . . . . . . . . . 23

2.2.4 Conjugate Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Learning observation model parameters from data . . . . . . . . . . . . . . . . . . . 28

2.3.1 Sufficient statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Maximum Likelihood (ML) Point Estimation . . . . . . . . . . . . . . . . . . 29

2.3.3 Maximum a posteriori (MAP) point estimation . . . . . . . . . . . . . . . . . 30

ix



2.3.4 Posterior estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Point estimation algorithms for finite mixture models . . . . . . . . . . . . . . . . . . 32

2.4.1 Bregman k-means point estimation for finite mixture model . . . . . . . . . . 34

2.4.2 Bregman k-means++ initialization of point estimates for global parameters . 35

2.5 Posterior inference via variational optimization. . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Mean-field approximate posterior density estimation . . . . . . . . . . . . . . 37

2.5.2 Evidence lower-bound objective function . . . . . . . . . . . . . . . . . . . . . 39

2.5.3 Observation model term of the objective . . . . . . . . . . . . . . . . . . . . . 41

2.5.4 Allocation model term of the objective . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Variational inference algorithm for the finite mixture model . . . . . . . . . . . . . . 43

2.6.1 Local parameter update step . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Global parameter update step . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.3 Full-dataset optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Scalable inference for DP mixture models 48

3.1 Stick-breaking construction of Dirichlet Process . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Dirichlet processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Stick-breaking transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Dirichlet process mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Generative model for global parameters . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Generative model for local variables . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Posterior inference as a variational optimization problem . . . . . . . . . . . . . . . . 53

3.3.1 Mean-field approximate posterior . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Evidence lower-bound objective function . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Observation model term of the objective . . . . . . . . . . . . . . . . . . . . . 57

3.3.4 Allocation model term of the objective . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Update steps for variational optimization . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Global parameter update step . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Local parameter update step . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Nested truncation w.r.t. number of active clusters . . . . . . . . . . . . . . . 62

3.5 Algorithms for variational optimization . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Full-dataset block coordinate ascent algorithm . . . . . . . . . . . . . . . . . 63

3.5.2 Stochastic variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.3 Memoized variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.4 Initialization of global parameters . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.1 Clustering image patches with zero-mean Gaussian likelihoods . . . . . . . . 71

3.6.2 Clustering documents with multinomial likelihoods . . . . . . . . . . . . . . . 74

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

x



4 Proposal moves to escape local optima 78

4.1 Merge moves for DP mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Merge proposal construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.2 Evalation of merge proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.3 Scalable construction and evaluation via memoized statistics . . . . . . . . . 84

4.1.4 Selecting a pair of clusters to try merging . . . . . . . . . . . . . . . . . . . . 85

4.2 Birth moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Birth proposal construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Birth proposal evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Construction and evaluation via memoized statistics . . . . . . . . . . . . . . 91

4.2.4 Selecting clusters to target with birth proposals . . . . . . . . . . . . . . . . . 92

4.3 Delete moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Delete proposal construction of local responsibilities . . . . . . . . . . . . . . 95

4.3.2 Delete proposal construction of global responsibilities . . . . . . . . . . . . . 96

4.3.3 Scalable construction and evaluation with memoized statistics . . . . . . . . . 96

4.3.4 Selecting the target cluster to delete . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Toy example where deletes outperform merges . . . . . . . . . . . . . . . . . 97

4.4.2 Toy image patch data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.3 MNIST digit clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.4 Clustering tiny images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Scalable variational inference for HDP Topic Models 103

5.1 Hierarchical Dirichlet process (HDP) topic models . . . . . . . . . . . . . . . . . . . 104

5.2 Posterior inference as a variational optimization problem . . . . . . . . . . . . . . . . 107

5.2.1 Mean-field approximate posterior . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 Evidence lower-bound objective function . . . . . . . . . . . . . . . . . . . . . 108

5.2.3 Global term of the allocation objective, using a surrogate bound . . . . . . . 110

5.2.4 Document-specific term of the allocation objective . . . . . . . . . . . . . . . 112

5.2.5 Assignment entropy term of the allocation objective . . . . . . . . . . . . . . 113

5.3 Update steps for variational optimization . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Global parameter update step for observation model . . . . . . . . . . . . . . 114

5.3.2 Global parameter update step for allocation model . . . . . . . . . . . . . . . 114

5.3.3 Local update step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.4 Sparse restart proposals for local step . . . . . . . . . . . . . . . . . . . . . . 118

5.3.5 Specialization to bag-of-words datasets . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Algorithms for HDP topic model posterior estimation . . . . . . . . . . . . . . . . . 120

5.4.1 Full-dataset variational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.2 Stochastic variational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xi



5.4.3 Memoized variational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Variational algorithms with proposal moves that adapt the number of clusters . . . . 125

5.5.1 Merge proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5.2 Delete proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.3 Birth proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6.1 Toy bars dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6.2 Academic and news articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6.3 Image patch modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Scalable variational inference for the HDP-HMM 137

6.1 Hierarchical Dirichlet Process Hidden Markov Models . . . . . . . . . . . . . . . . . 138

6.1.1 Generative model for each sequence. . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.2 Hierarchical prior on transition probabilities via the HDP. . . . . . . . . . . . 140

6.1.3 Sticky self-transition bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Posterior inference as a variational optimization problem . . . . . . . . . . . . . . . . 141

6.2.1 Mean-field approximate posterior . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.2 Evidence lower-bound objective function . . . . . . . . . . . . . . . . . . . . . 143

6.2.3 Surrogate objective for sticky HDP-HMM . . . . . . . . . . . . . . . . . . . . 145

6.3 Update steps for variational optimization . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.1 Global parameter update step for observation model . . . . . . . . . . . . . . 147

6.3.2 Global step for allocation model . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.3 Local step to update assigned state sequence . . . . . . . . . . . . . . . . . . 149

6.4 Variational algorithms with fixed number of topics . . . . . . . . . . . . . . . . . . . 150

6.4.1 Full-dataset algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.2 Memoized variational algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Variational algorithms with proposal moves that adapt the number of clusters . . . . 152

6.5.1 Merge proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5.2 Birth proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5.3 Delete Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.6.1 Toy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.6.2 Speaker Diarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.6.3 Motion capture dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.6.4 Chromatin epigenomic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xii



7 Sparse variational posteriors for cluster assignments 163

7.1 Local step algorithms for L-sparse mixture models . . . . . . . . . . . . . . . . . . . 164

7.1.1 Local step with conventional dense responsibilities. . . . . . . . . . . . . . . . 164

7.1.2 Local step with L-sparse responsibilities. . . . . . . . . . . . . . . . . . . . . . 166

7.1.3 Related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.4 Integration with scalable and adaptive proposal algorithms . . . . . . . . . . 169

7.2 Experimental results with L-sparse mixture models . . . . . . . . . . . . . . . . . . . 169

7.2.1 Mixture models for image patches . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3 Local step algorithms for L-sparse topic models . . . . . . . . . . . . . . . . . . . . . 170

7.3.1 Mean field for the LDA Topic Model . . . . . . . . . . . . . . . . . . . . . . . 170

7.3.2 Local step of LDA Training Algorithm . . . . . . . . . . . . . . . . . . . . . . 170

7.4 Experimental results with L-sparse topic models . . . . . . . . . . . . . . . . . . . . 173

7.4.1 Topic Modeling Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8 Recommendations 178

8.1 Parallelization and other tricks for extreme scalability . . . . . . . . . . . . . . . . . 179

8.2 Approximation guarantees for variational optimization . . . . . . . . . . . . . . . . . 180

8.2.1 Distance-biased random initializations with guarantees . . . . . . . . . . . . . 180

8.2.2 Provable spectral algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.3 Extensions for semi-supervised clustering . . . . . . . . . . . . . . . . . . . . . . . . 181

8.4 Extensions with probabilistic programming . . . . . . . . . . . . . . . . . . . . . . . 184

8.4.1 A preliminary model specification language . . . . . . . . . . . . . . . . . . . 184

8.4.2 Towards general-purpose inference . . . . . . . . . . . . . . . . . . . . . . . . 185

xiii



List of Figures

1.1 Directed graphical representation of mixture, topic, and sequential models. . . . . . 2

1.2 Application: discovering expressive models for natural image patches . . . . . . . . 4

1.3 Application: discovering common topics from many Wikipedia articles . . . . . . . . 5

1.4 Application: segmentation of motion capture sensor traces of human exercises. . . . 7

1.5 Application: segmentation of human genome by regulatory patterns. . . . . . . . . . 8

3.1 Directed graphical representation of the Dirichlet Process Mixture Model . . . . . . 52

3.2 Illustration of possible learning rate schedules for stochastic variational inference. . . 66

3.3 Local optima found when clustering toy alphabet images with DP mixture models. . 72

3.4 Local optima found when clustering toy bars data with DP mixture models. . . . . . 75

3.5 Local optima found when clustering NIPS articles with DP mixture models. . . . . . 76

4.1 Illustration of merge proposal for DP mixtures. . . . . . . . . . . . . . . . . . . . . . 80

4.2 Illustration of birth proposal for DP mixtures. . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Illustration of local responsibility construction under birth proposal . . . . . . . . . . 87

4.4 Illustration of delete proposal for DP mixtures. . . . . . . . . . . . . . . . . . . . . . 94

4.5 1D Gaussian toy example where merges fail but deletes succeed . . . . . . . . . . . . 98

4.6 Comparison of scalable DP mixture algorithms on synthetic image patch dataset. . . 99

4.7 Comparison of scalable DP mixture algorithms on MNIST dataset. . . . . . . . . . . 100

4.8 Comparison of scalable DP mixture algorithms for clustering tiny images. . . . . . . 101

5.1 Directed graphical representation of hierarchical Dirichlet process topic model. . . . 105

5.2 Plots of surrogate bound needed to handle non-conjugacy of HDP topic model . . . 110

5.3 HDP model selection: point estimation vs. variational with surrogate bound . . . . . 111

5.4 Illustration of restart proposals for HDP topic model local step. . . . . . . . . . . . . 118

5.5 Practical examples of merges and deletes on topic models . . . . . . . . . . . . . . . 126

5.6 Comparison of HDP topic model inference methods on toy bars dataset. . . . . . . 132

5.7 HDP topic model results on NIPS, Wikipedia, Science, and NYTimes datasets . . . 134

5.8 Comparison of DP mixtures and HDP admixtures on 3.5M image patches . . . . . . 135

6.1 Directed graphical representation of the HDP hidden Markov model (HDP-HMM). . 139

xiv



6.2 Toy data HDP-HMM algorithm comparison, using sticky and non-sticky model. . . 160

6.3 Comparison of HDP-HMM algorithms on 21 speaker diarization sequences. . . . . . 161

6.4 Comparison of HDP-HMM algorithms on 6 motion capture sequences. . . . . . . . 161

6.5 Comparison of HDP-HMM algorithms on 124 motion capture sequences. . . . . . . 162

6.6 Comparison of HDP-HMM algorithms for chromatin segmentation of human genome. 162

7.1 Speed and accuracy of L-sparse assignment posteriors for training mixture models . 165

7.2 L-sparse mixture model results on millions of image patches. . . . . . . . . . . . . . 169

7.3 Speed and accuracy of L-sparse assignment posteriors for training topic models . . . 171

7.4 Comparison of values for sparsity-level L on topic models . . . . . . . . . . . . . . . 175

7.5 L-sparse topic model results on NIPS, Wikipedia, and NYTimes . . . . . . . . . . . 176

8.1 A probabilistic programming language for specifying clustering models . . . . . . . . 184

xv



List of Algorithms

2.1 Bregman k-means for point-estimation of finite mixture model . . . . . . . . . . . . 33

2.2 Bregman k-means++ initialization for cluster mean point estimates. . . . . . . . . . 36

2.3 Update for responsibilities given log posterior weights for mixture model. . . . . . . 45

2.4 Variational coordinate ascent for finite mixture model . . . . . . . . . . . . . . . . . 46

3.1 Variational coordinate ascent for DP mixture models . . . . . . . . . . . . . . . . . . 63

3.2 Stochastic variational coordinate ascent for DP mixture models . . . . . . . . . . . . 65

3.3 Memoized variational coordinate ascent for DP mixture models . . . . . . . . . . . . 68

5.1 Algorithm for local step under an HDP topic model . . . . . . . . . . . . . . . . . . 117

5.2 Algorithm for restart proposals used in local step of inference for HDP topic model . 119

5.3 Variational coordinate ascent for HDP topic model . . . . . . . . . . . . . . . . . . . 121

5.4 Stochastic variational coordinate ascent for HDP topic model . . . . . . . . . . . . . 122

5.5 Memoized variational coordinate ascent for HDP topic model . . . . . . . . . . . . . 123

6.1 Variational coordinate ascent for HDP-HMM . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Memoized variational algorithm for the HDP-HMM . . . . . . . . . . . . . . . . . . 159

7.1 Update for dense responsibilities given log posterior weights for mixture model. . . . 166

7.2 Update for L-sparse responsibilities given log posterior weights for mixture model. . 166

7.3 Update for document-specific responsibilities under standard topic model . . . . . . 174

7.4 Update for document-specific responsibilities under L-sparse topic model. . . . . . . 174

xvi



Reliable and scalable variational inference for nonparametric

mixtures, topics, and sequences

Michael C. Hughes

May 2, 2016



Chapter 1

Introduction

A core task of unsupervised machine learning is the problem of discovering an interpretable set of

discrete clusters from a complex dataset. For example, social scientists may wish to find thematic

word clouds for concepts like “campaign finance” or “immigration policy” from news articles and

then browse articles by concept. Biologists may want to discover groups of regulatory proteins that

lead to similar gene transcription behavior. Roboticists may wish to identify common actions like

“eat cereal” or “take medicine” from videos of daily human activities. By grouping high-dimensional

raw data into clusters, we improve our ability to explore and summarize a dataset.

In this thesis, we consider clustering methods based on an underlying probabilistic model. Spec-

ifying such a model requires first identifying the relevant random variables. We will treat both the

observed data and the data-specific cluster assignments as random variables. We will also treat the

parameters which define a cluster’s essential properties as random variables, including the appear-

ance probability of each cluster and the parameters that control each cluster-specific data-generation

process. Taking a probabilistic view of these quantities allows coherent reasoning under uncertainty.

The next step of modeling is expressing the relationships between the chosen random variables.

We will use the formal language of directed graphical models (Lauritzen, 1996; Jordan, 2004) to en-

code our assumptions about independence and dependence among random variables. Within directed

graphical models, we study hierarchical Bayesian models for clustering, especially those based on

the exponential family. The foundations of this hierarchical modeling approach are well-established

in textbooks such as Gelman et al. (2013) or Bishop (2006). This approach builds expressive models

from a set of composable primitive distributions for binary, discrete, and continuous random vari-

ables. Modular composition of these primitives can produce complex joint distributions over our

variables of interest while still ensuring that training a model from observed data is tractable.

The rest of this chapter introduces three well-known hierarchical Bayesian clustering models:

the mixture model for exchangeable datasets, the topic model for grouped data, and the hidden

Markov model for sequential data. After motivating each with a detailed intended application, we

discuss the classic model selection problem of deciding how many clusters to use for a given dataset.

We will see that there exists a Bayesian nonparametric version of each model which can solve this
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Figure 1.1: Directed graphical representation of mixture, topic, and sequential models.
Each model specifies relationships between four random variables: local observed data xn, local
cluster assignments zn, global cluster frequencies π, and global cluster shape parameters {φk}Kk=1.

model selection problem elegantly. We will then summarize the core contributions of this thesis:

devising efficient algorithms for training Bayesian nonparametric extensions of the mixture model,

topic model, and hidden Markov model that simultaneously solve the model selection problem while

scaling to large datasets.
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1.1 Probabilistic clustering models

This section provides a high-level overview of the generative models discussed in this thesis, which

are depicted as directed graphical models in Fig. 1.1. Detailed mathematical description will be

provided in Ch. 2 and later.

For now, we will treat each model as having a total ofK possible clusters, where the valueK is as-

sumed known a priori. With this assumption, we can label our clusters with integers k ∈ {1, 2, . . .K}.
Specifying K in practice leads to issues of model selection, which Bayesian nonparametric approaches

address by taking an infinite limit K →∞. We will cover this thoroughly later in Sec. 1.2.

By inspecting the graphical models in Fig. 1.1, we see they are composed entirely of four types

of variables: x, z, π, and φ. We begin by defining each of these and explaining its role in our

family of probabilistic clustering models. We then discuss each model shown in Fig. 1.1 more

concretely, explaining the crucial relationships it assumes among these variables and how these

matter in applications.

Observed data x. The entire dataset x consists of N total observations. If we assume all may be

treated independently, we write x = {x1, x2, . . . xN}. If instead we have some group structure, such as

D documents or D sequences each with Td observations, then we write x = {xd1, xd2, . . . xdTd
}Dd=1,

so that each overall observation with index n has a corresponding d, t index tuple. Generally,

each observation xn may be binary, discrete, or continuous depending on the application. In the

illustration of Fig. 1.1, we show an example where each observation xn is a vector with two real

values, specifying a point in the 2-dimensional Cartesian plane.

Assignment labels z. Throughout all the models in this thesis, we assume each model explains

the n-th observation xn by assigning it to exactly one cluster. The random variable zn ∈ {1, 2, . . .K},
which is a discrete integer, indicates the chosen cluster for observation xn.

Cluster frequencies π. Each model specifies the random variable πG, which is a length-K vector

that is non-negative and sums to one. Each entry πG
k gives the overall global probability that cluster

k is assigned to some observation. We use the superscript G to emphasize that this is a global

variable not attached to any specific data observation.

Some models specify additional vectors in the set π. Each such frequency vector πj provides an

appearance probability for each of the K clusters. Like πG, each vector πj must be non-negative

and sum to one. Some models have global frequency vectors other than πG, such as the HMM in

Fig. 1.1. Other models, such as the topic model, have local, document-specific frequency vectors πd.

Cluster shape parameters φ. The set of random variables φ contains a parameter vector for

every cluster: φ = {φk}Kk=1. Each vector φk defines the data-generating distribution of cluster

k. For example, if the chosen likelihood model is Gaussian, φk would define the associated mean

and variance parameters. If the chosen likelihood model was Multinomial, φk would provide the
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Figure 1.2: Application: discovering expressive models for natural image patches
Full-covariance Gaussian mixture models for 8x8 pixel patches from natural images. Left (a): Ex-
ample patches drawn from four clusters trained on millions of images. Each cluster may represent
smooth surfaces, detailed texture patterns, or sharp edges. Center (b): Example whole images,
along with select patches color-coded by hypothesized cluster. In the top image of an elk, yel-
low patches have strong horizontal edges while green patches represent textured grass. Right (c):
Patch-level mixture models can be used within the expected patch log-likelihood (EPLL) framework
of Zoran and Weiss (2012) to perform whole-image denoising, as well as deblurring or in-painting
(not shown).

probability of each possible discrete outcome. We will sometimes call these variables observation-

model parameters, because they define how clusters produce observed data. Throughout all the

models in Fig. 1.1, the φ variables are global variables.

1.1.1 Mixture models

The simplest hierarchical Bayesian models we consider are mixture models (Everitt, 1981). In these

models, each data observation xn, such as a text document, an image, or a gene, is assumed to be

generated independently from one assigned cluster.

Single-membership mixture models have powered many fruitful applications in domains as diverse

as medical imaging, computational biology, social science. A particular motivating application

for our work is modeling small patches (typically about 8x8 pixels in scale) from natural images.

Zoran and Weiss (2011) have shown that using a simple mixture model with full-covariance Gaussian

likelihoods, they can discover image patch clusters which are interpretable as smooth surfaces, strong

edges, or complex textures, as shown in Fig. 1.2. Furthermore, a trained Gaussian mixture model

integrated with clever whole-image reasoning can outperform several baselines for image processing

tasks such as image denoising or deblurring (Zoran and Weiss, 2011, 2012).
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Figure 1.3: Application: discovering common topics from many Wikipedia articles
Illustration of insights possible from a topic model trained many Wikipedia articles. To the model,
each document is represented as an unordered list of observed words from a fixed vocabulary, some-
times called a “bag of words” representation. The model learns a set of global clusters or topics
indexed by k where the data-generating parameters φk are probability-distributions over the pre-
defined vocabulary. For human consumption, these are often represented by short lists of the top
5 most probable words. The goal of these models is to find a set of topics φ which explain the
corpus well. For an individual document d, the model can infer the assigned labels zdt of individual
words t as well as document-specific probabilities πd over the possible topics. Each document places
probability over a sparse subset of possible topics.

1.1.2 Topic models

In several domains the singular membership assumption of mixture models may be too restrictive.

For example, many news articles discuss several thematic topics: a few sentences about campaign

finance laws may be followed by discussion of election prospects. Topic models (Blei, 2012) extend

mixture models by allowing each group or document to have a specialized mixture of clusters or

topics. Such extensions are often called mixed-membership clustering models(Airoldi et al., 2009).

The most widely-known example is the Latent Dirichlet Allocation topic model (Blei et al., 2003).

This model contains a document-specific random variable indicating the percentage of each document

which is allocated to each of the possible global clusters or topics. Words within the document

are then assumed to come from a mixture model with these document-specific cluster weights but

common global clusters.

Fig. 1.3 introduces one exciting application of topic models: summarizing many Wikipedia ar-

ticles. Topic models were popularized for text analysis tasks, but have also been successfully used

in genetics (Pritchard et al., 2000; Mimno et al., 2015), action recognition (Wang et al., 2007), and
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many other domains.

For the text domain, these models consume the bag-of-words representation of many articles. Our

goal is to discover meaningful clusters or topics of related words from a finite, predefined vocabulary.

Each global topic is intuitively a cluster of semantically-related words. More formally, the parameter

φk defining topic k specifies a sparse probability distribution over the fixed vocabulary, with “on-

topic” words given high probability. Within a single document, we estimate a mixed-membership

probability vector πd which indicates how often each topic is used in the document.

Overall, estimating this hidden topic structure can lead to improved browsing or exploration

of a large corpus. The improved representations πd for each document could potentially improve

downstream tasks like retrieval or recommendation.

1.1.3 Hidden Markov models

When modeling data with assumed sequential structure, we can replace the mixture model’s assump-

tion of independence among observations given the global clusters with more structured relationships.

For sequential data, hidden Markov models (Rabiner, 1989) specify pair-wise relationships between

the cluster assignments of neighboring data items in a sequence. This can lead to improved spatial

contuinity of learned segmentations, or alternatively to better recovery of transition patterns.

The motion capture segmentation task illustrated in Fig. 1.4 provides one motivating application

for the hidden Markov model. Our goal is to discover possible exercise motions such as running,

walking or jumping from the motion capture traces gathered from a single human actor. Observed

data consists of sensor measurements of the positions and angles of various joints on the human body.

These measurements are captured once every 100ms. Given many sequences of these snapshots from

several actors, we wish to segment all sequences jointly into continuous blocks of time labelled with

distinct exercise motions from a common global set of learned cluster labels. The possible exercise

motions are not provided to the algorithm in advance. Instead, they are learned from data.

Fig. 1.5 introduces another motivating application for sequential modeling: a computational

biology task called chromatin state discovery and segmentation. Within a single chromosome, small

functional segments of DNA are wound into bead-like structures called chromatin. Gene expression

is regulated by external proteins that bind to chromatin. The set of proteins which are present at

a given site determines transcription. Given a large dataset measuring the presence or absence of

different marker proteins across several DNA sequences, the goal is discovering a small set of states

or clusters that represent interpretable patterns of spatially co-occurring regulatory proteins. The

primary challenge is finding a compact set of states that is small enough to be interpretable, but

complex enough to explain biological nuances. Computationally, training effectively from the entire

human genome is also a paramount concern.
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Figure 1.4: Application: segmentation of motion capture sensor traces of human exercises.
Top: Skeleton visualizations of 12 possible exercise behavior types observed across all sequences.
These 12 motions exhaustively cover the motions observed by a human annotator in 6 motion capture
sequences. Middle: Segmentations z of all 6 observed sequences into the 12 possible exercises. Each
sequence was labelled by hand by the same human annotator. Bottom: Sequence 2’s observed
multivariate time series data. Motion capture sensors measure 12 joint angles every 0.1 seconds.
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Figure 1.5: Application: segmentation of human genome by regulatory patterns.
Top: Illustration of chromatin state discovery. Observed data is binary presence/absence of marker
proteins that can attach to chromatin DNA to regulate gene expression. For several human cell
types, we have one sequence of binary data for each of 23 chromosomes. The goal is to learn several
interpretable “states” which define spatially co-occuring patterns of marker proteins. Lower right:
Ernst and Kellis (2010) used an HMM model to discover 51 biologically plausible states. We show
one gene’s segmentation under their estimated model for a subset of these states, colored by post-hoc
hypothesized role in gene expression.

Other possible clustering models

Single-membership mixture models, mixed-membership topic models, and hidden Markov models

for sequences form the three basic model templates we explore in this thesis. Many other useful hier-

archical models for clustering are possible but beyond the scope of this thesis. The numerous list of

related work includes models with spatial structure for image segmentation (Bouman and Shapiro,

1994; Sudderth and Jordan, 2009), models that apply clusters to relational structures within social

networks (Wang and Wong, 1987; Kemp et al., 2006), models which use trees or grammars to es-

tablish relationships between data (Finkel et al., 2007; Liang et al., 2007), and models with notions

of multiple-membership, where each document or group could use any combination of clusters or

features without restriction (Griffiths and Ghahramani, 2007). Our hope is that our new approach

to training these three basic model templates provides a foundation which could be extended to all

related clustering models.

1.2 Bayesian nonparametric models for model selection

Across all clustering models defined above, the conventional model specification requires assuming a

fixed number of clusters K. This number determines the flexibility or capacity of the model. Larger

values of K can capture finer structure within the observed data at the cost of greater storage and

runtime requirements as well as more difficult interpretability of the resulting model. The task of

identifying a good (or good enough) value for K is called model selection.

The model selection task can often be computationally expensive and difficult in practice. For

example, early work on chromatin state segmentation using an HMM required training a model
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with K ≈ 100 states and used ad hoc post-processing to identify a promising set of K ≈ 50 states

(Ernst and Kellis, 2010). Other work assumed a fixed model with K = 25 states without rigorous

justification beyond the need for a small set of interpretable clusters (Hoffman et al., 2012).

Bayesian nonparametric (BNP) clustering models (Orbanz and Teh, 2010) are a class of hierar-

chical directed graphical models which extend the conventional mixture, topic, and sequence models

via an alternative prior over the global set of cluster random variables π, φ. In these models, the

Dirichlet process (DP) (Ferguson, 1973) prior specifies a generative process which produces a count-

ably infinite set of clusters indexed by k ∈ {1, 2, . . . k, k + 1, . . .}. Each cluster has an associated

appearance probability πk and shape parameter φk, as shown in Fig. 1.1. We formally define this

generative process in Ch. 3. For now, it suffices to realize these models hypothesize an unbounded

number of possible clusters, rather than an a priori finite set of K possible clusters. Previous work

has introduced a Bayesian nonparametric extension of each clustering model we consider. Ferguson

(1973) introduced the DP mixture model, which was later connected to an infinite limit of the finite

mixture model by Neal (1992). Later, Teh et al. (2006) introduced the hierarchical Dirichlet pro-

cess (HDP) topic model and the hierarchical Dirichlet process hidden Markov model (HDP-HMM),

improving on an earlier “infinite HMM” of Beal et al. (2001).

BNP promise powerful solutions for the model selection task because they inherit the inter-

pretability and extensibility of all hierarchical Bayesian graphical models while avoiding the need

to specify the number of clusters in advance. Instead, given a fixed observed dataset, the posterior

distribution over the assigned clusters across all N observations gives some probability to all possible

groupings or segmentations. One possible event is that a single large cluster explains every obser-

vation. Another possible event is that each observation comes from its own unique cluster. The

total number of possible partition events for a dataset of size N , known as the Bell number, grows

exponentially with N . There are 2 possible segmentations of N = 2 data items, 15 with N = 4,

4140 with N = 8 and 10480142147 with N = 16. The combinatorics of this space make it impossible

to enumerate all possible segmentations. However, BNP models allow coherent reasoning about the

posterior probability of events in this combinatorial space. Thus, the cardinality of the number of

active clusters can be learned from data using these models and need not be specified in advance.

Another advantage of the BNP approach is its natural extension to large-scale or streaming

applications. Given a trained model for N observations, the DP provides a coherent mechanism to

reuse these existing clusters to explain an additional set of N ′ observations, possibly using additional

clusters for this data as well. The DP prior induces a rich-get-richer property where the expected

number of active clusters grows logarithmically with the total dataset size. In this large-scale

regime, the automatic model selection provided by BNP models is vastly preferred to expensive

cross-validation for the number of clustersK. In theory, BNP models could be trained once on a large

dataset and deliver a useful clustering which is neither too small (missing crucial structure present

in the data) nor too large (containing redundant or irrelevant clusters). However, achieving this

automatic model selection in practice is difficult due to limitations of existing training algorithms.
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1.3 Existing algorithms: challenges and opportunities

Given a fixed dataset, training any clustering model whether finite or Bayesian nonparametric

requires deciding the goal of inference. During training, each global variable and local variable can

be treated in two possible ways: either we estimate a specific value of the random variable, producing

a point estimate, or we estimate an approximate posterior distribution for the random variable.

For example, a point estimate of the mixture model assignment variable zn would yield a specific

value in the set {1, 2, . . .K}, where K is the number of clusters in a finite model. In contrast, an

approximate posterior distribution q(zn) for variable zn could be represented in two ways. First,

as vector of probabilities rn1, . . . rnK , where rnk gives the probability that cluster k explains data

observation n. Second, we could represent the posterior via a finite set of samples, z(1), z(2), . . . z(S)

from this distribution. These samples could be used to easily compute expectations or moments of

any functions of the random variable zn via standard Monte Carlo methods (Gelman et al., 2013).

In this section, we review two prominent approaches in the literature for training clustering

models. First, optimization approaches can deliver either point estimates or approximate posterior

distributions. These methods set up an optimization problem based on either the joint likelihood

log p(x, z, φ, π) or the marginal likelihood log p(x). Defining and solving such problems tractably

requires calculus of variations, leading to the name variational optimization methods. Second, sam-

pling algorithms train models by developing Markov chain Monte Carlo (MCMC) algorithms that

deliver samples representing the posterior.

From the outset, we emphasize that our contributions will focus on variational methods that fully

instantiate approximate posterior representations for all random variables x, z, π, and φ. It is also

sometimes possible to integrate away some random variables and obtain an exact representation of

the joint density of the remaining variables. Integrating away random variables is sometimes called

collapsing or marginalization. See Ch. 8 of Bishop (2006) for basic introduction to marginalization.

When tractable, this can sometimes lead to improved posterior estimates of remaining variables due

to the Rao-Blackwell theorem (Murphy, 2012, Thm. 24.2.1), as advocated by Casella and Robert

(1996). Many collapsed MCMC samplers (Griffiths and Steyvers, 2004) and collapsed optimization

methods (Teh et al., 2008) for our family of clustering models have been successfully developed.

However, these are often difficult to parallelize due to the dependencies induced by marginialization.

Because our focus is scalability and simplicity, we will work without marginalization.

1.3.1 Variational optimization algorithms

A wide variety of possible training algorithms exist for the mixture model and its extensions. For

finite models, point estimation using a maximum likelihood optimization problem with Gaussian-

distributed observations leads in the limit to the well-known k-means algorithm (Lloyd, 1982),

which is surveyed extensively by Jain (2010). This approach estimates a single “hard assignment“

zn ∈ {1, 2, . . .K} for each observation n. Kulis and Jordan (2012) developed a variant of the hard-

assignment k-means algorithm for the Dirichlet process prior.
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In contrast to point estimation of all variables, the expectation-maximization (EM) algorithm

(Dempster et al., 1977) for maximum likelihood training estimates an approximate posterior distri-

bution q(zn) while still producing point estimates for the global variables π, φ. These zero-variance

point estimation procedures can be applied to Bayesian nonparametric models but will not be useful

for model selection, for reasons discussed in Ch. 2. It is also possible to treat global random variables

π, φ with approximate posterior distributions while using hard point estimates for the local z. This

approach is known as maximization-expectation (ME) (Kurihara and Welling, 2009).

Treating all variables π, φ, z with approximate posteriors leads to a variational EM algorithm,

where the optimization problem maximizes an objective that marginalizes rather than conditions

on these variables. This approach leads to coherent algorithms for Bayesian nonparametric models

because the objective function can be used for model selection, as we discuss in Ch. 2. Marginal likeli-

hood has long been the training objective of choice for Bayesian model selection (Jefferys and Berger,

1992; Rasmussen and Ghahramani., 2001).

As examples of previous work, Blei and Jordan (2006) introduced variational methods for DP

mixtures, with later extensions by Kurihara et al. (2007). Variational optimization algorithms for

finite hidden Markov models were first developed by Beal (2003) and MacKay (1997). Recently,

Johnson and Willsky (2014) developed some more scalable variational training for the HDP-HMM.

Variational methods for the finite topic model were first published by Blei et al. (2003) with sev-

eral extensions to the HDP topic model and other mixed-membership models (Teh et al., 2008;

Liang et al., 2007; Wang et al., 2011; Bryant and Sudderth, 2012).

All the approaches described above frame inference as an optimization problem. The objective

function is to maximize either a conditional likelihood or a marginal likelihood. This objective takes

free parameters for each random variable π, φ, z, which define either the point estimate of the variable

or its approximate posterior. For mixture models and their extensions, the optimization problem can

be solved via block coordinate ascent algorithms, which take as input some initial values of the free

parameters and then iteratively update subsets of free parameters while holding others fixed. For

all the approaches discussed here, even the simple k-means algorithm, the underlying optimization

objective function is non-convex and has many local optima. Depending on the initialization, the

final fixed point reached by the optimization may have wildly varying solution quality both in terms

of the objective function and in terms of human judgement.

This sensitivity to initialization is especially problematic for variational approaches to Bayesian

nonparametric models. Although an infinite number of clusters exists a priori, conventional opti-

mization methods like Blei and Jordan (2006) require instantiating a finite number of clusters at

initialization. This finite set is maintained throughout training, because the algorithm contains no

steps that add or remove clusters. It may be that some estimated cluster probabilities πk fall to

zero, but these clusters will still be explicitly represented in memory. The true infinite posterior

is thus truncated to a finite approximate posterior. While some theoretical arguments suggest a

large-enough truncation may be satisfactory (Ishwaran and Zarepour, 2002), in practice setting this

truncation level too large can lead to slow progress. Selecting an appropriate truncation level thus
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reintroduces the very model selection problem that BNP models promised to avoid. Without a very

clever initialization, fixed-truncation variational methods for BNP models often reach very poor

local optima. The classic advice of performing many random restarts and selecting the best requires

too much computation to be practical for large datasets.

1.3.2 MCMC sampling algorithms

Markov chain Monte carlo (MCMC) training algorithms (Andrieu et al., 2003) are widely used for

performing approximate posterior inference via sampling. These methods begin by instantiating

point-estimate samples of all variables, and then applying carefully constructed Markov transition

operators to evolve new samples which gradually approach the true posterior. After many iterations

of applying the correct transition operator, the produced samples are guaranteed to asymptotically

converge to the true posterior. Samplers have been developed for both finite and infinite ver-

sions of the mixture model (Neal, 1992; Escobar and West, 1995; Rasmussen, 1999; Walker, 2007;

Jain and Neal, 2004), the topic model (Griffiths and Steyvers, 2004; Yao et al., 2009; Teh et al.,

2006), and the hidden Markov model (Scott, 2002; Van Gael et al., 2008; Fox et al., 2011).

In practice, samplers can be slow to make large changes from their initialization. Multiple

independent runs using different initializations but applying the same transition operators may thus

reach very different regions of the sample space after generous but finite computation budgets.

Samplers for hierarchical models are often slow to mix due to the limited range of each conditional

transition operator. When holding a large set of variables and only updating a much smaller subset,

the number of random samples required to move the whole set of variables to better values may be

enormous.

Several improvements have been suggested for mixture models by including transition operators

that propose large, joint changes to the whole state space {π, φ, z}. For example, split and merge

proposals (Jain and Neal, 2004) hypothesize splitting an existing data cluster into two smaller sub-

sets or combining two existing clusters into a new larger cluster. These proposals can provide useful

improvement over the non-proposal baseline. Recent extensions for DP mixture models, HDP topic

models, and Bayesian nonparametric Markov models all report useful gains. Yet these algorithms

do not scale well to larger datasets. Furthermore, designing transition operators that maintain the

required detailed-balance constraints transition operators becomes increasingly difficult for more

complicated models, as seen in the complexity of more recent work in this area (Fox et al., 2014;

Chang and Fisher III, 2014).

1.4 Outline of Contributions

This thesis develops new and improved variational optimization algorithms for Bayesian nonpara-

metric models. We design a unified inference framework for a broad class of models including

mixtures, topics, and sequences that is both scalable to millions of examples and reliable at escap-

ing poor initialization to recover the ideal set of clusters or states. While not the first effort on
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any of these fronts, our contribution lies in our unified approach that pursues elegant optimization

problems based on marginal likelihood training objectives and is more reliable than competitors at

finding useful, interpretable clusters from uninformed initializations. The outline below specifies our

detailed contributions to the field of unsupervised machine learning, which are organized by chapter.

Ch. 2: Background. We first establish the background knowledge for our approach in Ch. 2.

This includes careful description of our modeling assumptions as well as some basic optimization

algorithms for finite mixture models.

Ch. 3: Scalable inference for DP mixtures. Next, in Ch. 3 we develop a fixed-truncation

variational inference algorithm for Dirichlet process mixture models. Building on original work from

a NIPS 2013 conference paper (Hughes and Sudderth, 2013), we define a novel optimization prob-

lem for mean-field variational inference which makes fewer restrictive assumptions than alternatives.

We then develop a block-coordinate ascent optimization algorithms which can be extended to both

stochastic and incremental (memoized) settings for processing data at scale. Our memoized algo-

rithm is shown to have the same runtime cost as stochastic but require no nuisance learning rate

parameters. We show promising results on several benchmark datasets.

Ch. 4: Reliable inference for DP mixture models via proposal moves. Next, in Ch. 4

we introduce novel proposal moves for variational inference in DP mixture models that can adapt

the number of clusters actively represented by the algorithm during training. We show that birth

moves can add new useful clusters while merge and delete moves can remove existing clusters which

are redundant or irrelevant. We show that these proposal moves are guaranteed to improve our

DP mixtures optimization objective, and that they can be deployed on millions of examples via

our memoized training algorithm. These proposals were first introduced in Hughes and Sudderth

(2013), though significant improvements have been made since.

Ch. 5: Reliable and scalable inference for HDP topic models. In Ch. 5 we develop a new

variational optimization problem for the HDP topic model. Due to the challenging non-conjugacy

of the HDP generative model, several past authors have used zero-variance point estimates to han-

dle top-level random variables π which define cluster frequencies. Building on an AISTATS 2015

conference paper (Hughes et al., 2015a), we show that these point estimates have terrible model

selection properties and suggest instead a tractable surrogate optimization objective that allows

proper Bayesian model selection. Our final optimization objective can be optimized via block coor-

dinate ascent algorithms or with stochastic or memoized scalable algorithms. We show that merge

and delete proposal moves can produce dramatic improvements in solution quality.

Ch. 6: Reliable and scalable inference for HDP hidden Markov models. In Ch. 6 we

extend our earlier results to the HDP hidden Markov model, developing improved optimization

objective functions for both the fixed-truncation and adaptive proposal cases. We show results from
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several applications, including the motion capture segmentation from Fig. 1.4 and the chromatin

state segmentation task of Fig. 1.5. These results extend those published in a NIPS 2015 conference

paper (Hughes et al., 2015b).

Ch. 7: Sparse variational posteriors for local assignments. Our final contribution in Ch. 7 is

a new framing of the variational optimization problem that allows scaling to large numbers of clusters

K as well as large datasets. Specifically, we pursue an new approximate posterior for the discrete

cluster assignment variables with sparsity constraints. Standard approaches require estimating a

probability for each and every represented cluster. However, at a given single observation only a few

clusters of the global total K will have significant explanatory power while the rest will have near

zero mass. We suggest an additional constraint: that at most L clusters in this posterior are allowed

non-zero mass. We show that this leads to algorithms for both mixtures and topic models where

moderate L values are faster to train (2-3x) than the dense baseline L = K but yield comparable

heldout predictions.

Ch. 8: Recommendations. We conclude with discussion in Ch. 8 of promising directions for

future work, especially connections to semi-supervised learning and probabilistic programming. Our

hope is that this thesis inspires optimization algorithms for a broad family of probabilistic clustering

models that can simultaneously scale to millions of observed data points and reliably avoid local

optima.

1.4.1 Open-source software

As a final contribution of this thesis, all the algorithms presented for mixture models, topic models,

and sequential models are available in a public software package called BNPy: Bayesian nonpara-

metrics for Python1. We hope this effort will aid reproducibility of our results and allow practioners

to use our final algorithms easily on their own data.

1https://bitbucket.org/michaelchughes/bnpy-dev/. Accessed May 2016.

https://bitbucket.org/michaelchughes/bnpy-dev/


Chapter 2

Background

In this chapter, we develop the foundational concepts needed to describe our chosen class of prob-

abilistic clustering models and train these models from observed data. First, we define the proba-

bilistic generative model for all random variables of interest, highlighting a useful two-stage modular

decomposition that separates each model into an allocation model p(z, π) and an observation model

p(x, φ|z). Next, we review key properties of the exponential family of distributions, showing how

the sufficient statistics, conjugacy, and information geometry in this family of distributions lead

to tractable posterior point estimation or posterior density estimation. Finally, we compare and

contrast two possible approaches for optimization-based training of a finite mixture model: poste-

rior point estimation via a k-means-like algorithm and approximate posterior density estimation via

variational methods. This background knowledge for the finite mixture model will inform how we

approach our novel variational methods for Bayesian nonparametric models in later chapters.

2.1 Hierarchical directed graphical models for clustering

In Fig. 1.1, we illustrate mixture models, topic models, and Hidden markov models as graphical

models over related sets of random variables: data x, assignments z, cluster frequency vectors π and

cluster shape parameters φ. We now establish the fundamental probabilistic relationship between

theses random variables. In this chapter, we will assume a finite known set of K clusters. In later

chapters, we will show how to easily extend these models to the Bayesian nonparametric case of

infinitely many clusters.

Across all the graphical models in Fig. 1.1, we observe that each can be decomposed into two

smaller models which generate subsets of the random variables π, φ, z, x. First, an allocation model

that allocates or assigns cluster labels to every observation in a dataset. This process generates both

the frequency vectors π and the cluster labels z. Second, the observation model generates the shape

parameters φ, and then produces the data x given fixed cluster labels z. Mathematically, this means

15
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that our chosen family of clustering models has a joint probability density tha factorizes as:

p(x, z, π, φ) = p(π)p(z|π)
︸ ︷︷ ︸

allocation model

· p(φ)p(x|z, φ)
︸ ︷︷ ︸

observation model

. (2.1)

This factorization is true for both the finite-capacity models of this chapter as well as the Bayesian

nonparametric models of later chapters. For a review of how graphical models imply factorizations

in joint density functions, see Jordan (2004) or Bishop (2006).

The differences between the mixture model, topic model, and hidden Markov model are entirely

in the form of the allocation model. The structure in Fig. 1.1 shows that all three models have the

same overall factorization assumptions for p(φ)p(x|z, φ), and thus the same observation model.

The conditional independence implied by our decomposition into allocation and observation mod-

els leads to several useful properties. For example, when the assignments z are known or observed,

then the posterior for π is independent of the posterior for φ. This conditional independence leads

to simplified update steps for all our inference algorithms. The separation of models into allocation

and observation pieces promotes code reuse and easy composibility, because individual allocation

models can be used interchangably with different observation models.

Below, we present the formal assumptions behind both allocation models and observation models,

in the context of the models from Fig. 1.1. First, we emphasize a crucial distinction between global

and local random variables.

2.1.1 Global vs. local random variables

Each random variable in our joint set x, z, π, φ can be identified as either global or local. This

terminology was introduced by Hoffman et al. (2013). We define the set of local variables as those

specific to some specific subset of the observed data. Global variables are by definition not local or

specific to any particular data.

Examples of local variables. In general, any random variable indexed by n (indicating a specific

data atom) or by d (indicating a specific document or sequence) is a local random variable. For

example, each xn is a local random variable, as are the corresponding cluster label variables zn ∈
{1, 2, . . .K}. The document-specific frequencies πd in the topic model are also local variables.

Examples of global variables. Each model has global cluster shape parameters φ = {φk}Kk=1.

Additionally, all models have a global frequency vector πG, which indicates the appearance prob-

ability of each cluster k via the value of πG
k . Both πG and φ define the complete set of global

parameters for the mixture and topic models. The HMM in Fig. 1.1 has some addition frequency

vectors {πj}Kj=0 which are global random variables. These are treated thoroughly in Ch. 6.

The distinction between global and local variables matters for several reasons. Essentially, a

model is fully-defined by concrete instantiations of each of its global variables. This set of concrete

global variables are all that we need to represent a trained model in memory or on disk. Given
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this set, we can apply a model to new, never-before-seen data x′, or even generate sample data by

running the model’s generative process forward.

2.1.2 Allocation model: Generating cluster assignments

An allocation model defines a generative model for two sets of random variables: a collection of

frequency vectors π and a set of assignment variables z. There is always one assignment variable

zn ∈ {1, 2, 3, . . .K} for each of the N data atoms. However, the size of the set π varies greatly

depending on the chosen allocation model. Within the set π, every model includes a top-level

frequency vector πG, which we call the global frequency vector. For mixture models, this is the

only member of π. More complicated models include additional frequency vectors. For example,

the topic model has one for every document: {πd}Dd=1. The HMM has one frequency vector for

every cluster: {πk}Kk=1. The inclusion of additional frequency vectors in π gives these more complex

models increased expressiveness and flexibility.

Following the factorization in Eq. (2.1), the generative process first generates π, and then con-

ditionally generates z given π. Below, we will first define the complete generative process for the

mixture model. We will later sketch the process for topic models and HMMs, defering some details

to later chapters dedicated to these more complex allocation models.

Allocation process for the mixture model

For the finite mixture model, πG is a non-negative vector of length K that sums-to-one. We denote

the space of such frequency vectors as πG ∈ ∆K , where ∆K refers to the K-dimensional simplex.

The natural probability distribution to produce the random variable πG is the Dirichlet distribution

(Bishop, 2006, Appendix B). This generative model is formalized as:

πG ∼ DirK(πG| γ
K
, . . .

γ

K
) (2.2)

The log density log p(πG) of the vector πG is

logDir(πG|γ) = log Γ(γ)−
K∑

k=1

log Γ(
γ

K
) +

K∑

k=1

(
γ

K
− 1) log πG

k (2.3)

Under this Dirichlet distribution, the expected value of this vector is the uniform distribution over

K choices:

E[πG] = [
1

K
. . .

1

K
]. (2.4)

The scalar concentration parameter γ > 0 determines the variance around this mean. Large values

γ >> K correspond to very low variance, while small values γ << K encourage very sparse outcomes

for πG with many entries close to zero.

Given the global frequency vector πG, the mixture model assumes that each data atom indexed by

n has an assigned label zn ∈ {1, 2, . . .K} drawn independently from the same categorical distribution:

zn ∼ CatK(πG
1 , . . . π

G
K) (2.5)
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Under this categorical distribution, we have p(zn = k) , πG
k . We can write the log density as

log p(zn|πG) =

K∑

k=1

δk(zn) log π
G
k , δk(zn) =







1 if zn = k

0 if zn 6= k
(2.6)

where δk(zn) is an indicator function which is one if zn = k and zero otherwise.

Allocation models for topics, sequences, and beyond.

Finite topic model. The topic model in Fig. 1.1 extends the mixture model by allowing each

document d its own custom frequency vector πd, which are tied hierarchically via the global vector

πG. Generatively, we still draw πG as in Eq. (2.2). Then, we have each document’s frequencies

drawn independently according to:

πd|πG ∼ DirK(απG
1 . . . απ

G
K) (2.7)

Then, each assignment in document d is drawn independently

zdt ∼ CatK(πd1, . . . πdK) (2.8)

Finite hidden Markov model. The HMM in Fig. 1.1 extends the mixture model by having a

custom transition vectors πk for each cluster k, and by introducing chain-graph dependencies among

the assignments zd made within each sequence d.

Generatively, we still draw πG as in Eq. (2.2). Then, for each cluster k ∈ 1, 2, . . .K as well as a

special cluster indexed by 0 for the start of each sequence, we have:

πj |πG ∼ DirK(απG
1 . . . απ

G
K) (2.9)

Then, the assignments z evolve according to a standard first-order Markov process, with the assigned

label at timestep t > 1 dependent on the previous timestep t− 1:

zd1 ∼ CatK(π01, . . . π0K), zdt|zdt−1 ∼ CatK(πzdt−11, . . . πzdt−1K) (2.10)

We assume that the first timestep in a sequence is always drawn from the same starting distribution

with frequencies π0.

Towards a general specification of allocation models. We can imagine a much broader family

of allocation models which include mixture models, topic models, sequence models, and many more.

Generally, the collection π can be seen as many frequency vectors {πj}Jj=1, whose graphical model is a

tree-like dependency structure, with each child generated by a Dirichlet distribution with mean equal

to its parent and user-supplied variance. Similarly, the collection of assignment random variables

z are generated by a graphical model where each group (document, sequence, etc.) has its own

tree. Within a given tree, each individual node zn is generated from Categorical distribution using

a specific node πj from π. The chosen node in π is specified by the parent of zn in the z graph.

Further discussion of this idea is given in Ch. 8.
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2.1.3 Observation model: Generating data from assigned clusters

The observation models we consider assume that the cluster assignments z for every data atom are

known, and must define a generative model for the pair of random variables φ, x. This pair can be

decomposed into K individual cluster shape parameters {φk}Kk=1 as well as the N observed data

atoms {xn}Nn=1. We then assume the following factorized generative model:

log p(x, φ|z) =
K∑

k=1

log p(φk) +

K∑

k=1

N∑

n=1

δk(zn) log p(xn|φk) (2.11)

We will refer to the two probability density functions in the equation above as the likelihood L and

the prior P, where

L(xn|φk) , p(xn|φk) (2.12)

P(φk) , p(φk) (2.13)

We will assume each of these distributions belongs to the exponential family, and further that the

prior P is conjugate to the likelihood L. This assumption allows us to perform efficient training under

many different observed data scenarios, including binary data, discrete count data, and real-valued

data. The next section formalizes this exponential family assumption and its consequences.

2.2 Distributions from the exponential family

By definition, a density belongs to the exponential family if we can write its log density in the form:

log p(xn|φk) = φTk s(xn)− c(φ) + h(xn) (2.14)

The vector s(xn) ∈ RA is some sufficient statistic vector. It contains all functions of the data

atom xn ∈ X necessary for computing the chosen probability density. For example, if data atom

xn is a binary variable (X = {0, 1}) and the likelihood density L is Bernoulli, then the sufficient

statistic is simply the one-dimensional vector s(xn) = [xn]. If each data atom xn is a scalar real

value and the likelihood density L is a Gaussian with unknown mean and unknown variance, then

vector s(xn) will be two-dimensional: s(xn) = [xnx
2
n]. Using these two scalars, both the same mean

and sample variance can be computred.

The vector φk ∈ Φ ⊂ RA is a natural parameter vector. Each possible instantiation of φk ∈ Φ

defines a single valid density function over the random variable xn.

The reference measure function h(xn) contains all terms in the log density that are constant with

respect to the parameter φk. It rarely plays a crucial role in learning tasks, and is needed solely to

make sure that the density L(xn|φk) integrates to one over the domain of xn ∈ X . It is frequently

either zero (e.g. h(xn) = 0) or some other constant (e.g. h(xn) = log
√
2π).

The function c(φ) is known as a cumulant function. This function plays a crucial role, much

more so than h(xn). The function c(φ) maps every natural parameter to a real scalar: Φ → R.

Specifically, the cumulant function is defined as an integral over all possible data items x ∈ X . The
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natural parameter space Φ is the set of all φk vectors for which this integral converges to a finite

value.

c(φk) , log

∫

x∈X

exp
[

φTk s(xn) + h(xn)
]

, Φ = {φk ∈ R
A : c(φk) < +∞} (2.15)

Only when φk ∈ Φ does the function p(xn|φk) define a valid probability density function that

integrates to one over its domain.

2.2.1 Examples of exponential family likelihoods

We now review several examples of exponential family likelihood distributions, contrasting the com-

mon way of writing each distribution with the natural parameterization which fits the pattern of

Eq. (2.14).

Example: Categorical likelihood

Consider a random variable xn representing a single word from a finite discrete vocabulary of V

possible word. Formally, the value of xn ∈ {1, 2, . . . V } identifies a particular index of this vocabulary.

The exponential family density which explains this data is called the categorical distribution.

Categorical: Common form. The common parameterization of the Categorical likelihood for

discrete data xn is:

log p(xn|µk) =

V∑

v=1

δv(xn) logµkv (2.16)

where the parameter vector µk ∈ ∆V is a non-negative vector of size V that sums to one. The entry

µkv defines how probable each symbol v.

Categorical: Natural exponential family form. The sufficient statistic vector s(xn) and nat-

ural parameter are both V − 1 dimensional vectors:

s(xn) = [δ1(xn)δ2(xn) . . . δV−1(xn)] (2.17)

φk = [φk1 φk2 . . . φkV −1]

Each real value φkv can be interpreted as the logarithm of an odds-ratio comparing the probability

of the v-th word in the vocabulary to the probability of the last word at index V : φkv = log µkv

p(xn=V ) .

A value near zero indicates these two words are roughly equivalent in probability. A large positive

value indicates v is more likely, while a large negative value indicates V is more likely. Generally,

the larger that φkv is relative to all other entries in φk, the more probable that we will choose word

v.
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The cumulant function c(φk) and the reference measure h(xn) are:

c(φk) = log

(

1 +

V −1∑

v=1

eφkv

)

(2.18)

h(xn) = 0

Example: Multinomial likelihood

Common form. AMultinomial density is specified by two parameters: the fixed total count C and

a probability vector µk. The random variable xn then has domain X = {xn ∈ ZV
≥0 :

∑

v xnv = C}.
That is, this density places probabilty on each possible vector xn of V non-negative integers that

sums to C.

log p(xn|µk, C) = log
C!

∏V
v=1 xnv!

+
V∑

v=1

xnv logµkv (2.19)

The parameter vector µk ∈ ∆K defines the probability of each possible word type v.

Natural exponential family form. For a Multinomial density over atoms with fixed count C,

sufficient statistic vector s(xn) and natural parameter φk are both V − 1 dimensional vectors:

s(xn) = [xn1 xn2 . . . xnV −1] (2.20)

φk = [φk1 φk2 . . . φkV −1]

As with the categorical distribution, each real value φkv can be interpreted as the logarithm of the

odds ratio of choosing word v to choosing word V . The larger that φkv is relative to other vocabulary

words, the more probable that we will choose word v.

The cumulant function c(φk) and the reference measure h(xn) are then:

c(φk|C) = C log

(

1 +

V −1∑

v=1

eφkv

)

(2.21)

h(xn|C) = log
C!

∏V
v=1 xnv!

Example: Gaussian univariate likelihood with known variance

Common form. Suppose we have a fixed variance v > 0. Then the unknown mean Gaussian

density has one parameter, mean mk. The domain of the random variable xn is all real numbers:

X = R, and the density of this real random variable is:

log p(xn|mk, v) = −
1

2
log 2π − 1

2
log v − 1

2
v−1(xn −mk)

2 (2.22)
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Natural exponential family form. The sufficient statistic vector is one-dimensional, as is the

natural parameter φk ∈ R:

s(xn) = [xn1] (2.23)

φk = [φk1]

The cumulant function c(φk) and reference measure h(xn) are defined as implicit functions of the

fixed variance v:

c(φk) =
1

2
vφ2k1 (2.24)

h(xn) = −
1

2
v−1x2n −

1

2
log v − 1

2
log 2π

Example: Gaussian univariate likelihood with known zero mean

Common form. Suppose we have a fixed mean m = 0. Then the unknown-variance form of the

Gaussian density has one parameter for each cluster k: the variance vk. The domain of the random

variable xn is all real numbers: X = R, and the density of this real random variable is:

log p(xn|vk,m = 0) = −1

2
log 2π − 1

2
log vk −

1

2
v−1
k x2n (2.25)

Natural exponential family form. The sufficient statistic vector is one-dimensional, as is the

natural parameter φk ∈ R:

s(xn) = [x2n1] (2.26)

φk = [φk1]

The cumulant function c(φk) and reference measure h(xn) are defined as:

c(φk) = −
1

2
log(−φk) (2.27)

h(xn) = −
1

2
log 2π

2.2.2 Properties of the cumulant function

The cumulant function c(φk) of any exponential family distribution satisfies several useful properties.

These facts are discussed in Proposition 2.1.1 of (Sudderth, 2006) and also (Wainwright and Jordan,

2008), but have been long known in the statistics community.

Property 1: All cumulant functions are convex functions. Convexity implies that the Hes-

sian matrix for this function ∇2
φk
c(φk) must be a positive semi-definite A×A matrix. Additionally,

convexity implies that for any two natural parameters φℓ, φm ∈ Φ and a scalar ξ ∈ [0, 1], we have:

c(ξφℓ + (1− ξ)φm) ≤ ξc(φℓ) + (1− ξ)c(φm) (2.28)

The natural parameter space Φ is also a convex space, meaning the interpolation of any two natural

parameters is also a valid natural parameter.
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Property 2: Derivatives of the cumulant function correspond to moments of the suffi-

cient statistic. That is:

∇φk
c(φk) = Ep(xn|φk) [s(xn)] (2.29)

∇2
φk
c(φk) = Ep(xn|φk)

[
s(xn)s(xn)

T
]
− Ep(xn|φk) [s(xn)]Ep(xn|φk)

[
s(xn)

T
]

This second result suggests that the Hessian of the cumulant function is interpretable as the expected

covariance matrix of the sufficient statistic vector, which agrees with our positive semi-definite result

above.

2.2.3 Mean parameterization and Bregman divergences

The natural parameterization of exponential families from Eq. (2.14) is often not the most convenient

for practical analysis. For example, from a given the parameter φk ∈ Φ it may be difficult to reason

intuitively about what data xn may be likely under the density L(xn|φk), because xn ∈ X lives in a

different space than Φ.

Here, we introduce the well-known alternative to using the natural parameter φk: the mean

parameterization, using mean vector µk ∈ M ⊂ RA. Every exponential family density admits a mean

parameterization (Wainwright and Jordan, 2008). This is due to the convexity of the function c(φk),

which implies (by Legendre duality) a one-to-one invertible transformation between the natural space

Φ and the mean spaceM. We often find the mean parameterization convenient because by definition,

every sufficient statistic s(xn) lives in the mean space M or its closure (Wainwright and Jordan,

2008).

Using the mean parameterization, we can derive a useful “distance” function between any statistic

s(xn) and any mean parameter µk. This pseudo-distance (which is not always a proper metric) is

called a Bregman divergence (Banerjee et al., 2005). Practical algorithms can work in either the

mean parameter space or the natural parameter space, allowing greater computational flexibility.

The subsections below introduce the crucial formal ideas behind the mean parameterization.

Formal definition of the mean parameter

Given a specific exponential family likelihood and its corresponding natural parameter φk ∈ Φ, there

are two complementary formal definitions of the mean parameter µk. First, we can define this vector

as the expected value of the sufficient statistic given fixed natural parameter φk:

µk , Ep(xn|φk)[s(xn)] (2.30)

This suggests that sufficient statistic vectors s(xn) and mean parameters µk live in the same mean

parameter spaceM. This makes the parameter µk often easier to interpret, because it occupies the

same space as the essential statistics of observed data.

The second definition of the mean parameter µk is perhaps more computationally intuitive: we

define µk via a one-to-one, invertible transformation from the natural parameter space Φ to the
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mean spaceM. Thus, each natural parameter φk has exactly one corresponding µk, and vice-versa

(Wainwright and Jordan, 2008; Banerjee et al., 2005). First, we can define the natural-to-mean

transformation in terms of the gradient of the cumulant function.

µk = µ(φk) , ∇φk
c(φk) (2.31)

The reverse mean-to-natural transformation is then

φk = φ(µk) , ∇µk
γ(µk) (2.32)

where the conjugate cumulant function γ(·) is the Legendre dual of the cumulant c(·). Formally,

this conjugate cumulant function γ(µk) maps input vectors from the mean parameter space to the

real line: γ(µk) :M→ R. The function is also convex and defined as:

γ(µk) , µT
k φ(µk)− c(φ(µk)) (2.33)

Every exponential family density with cumulant function c(φk) has a corresponding conjugate cu-

mulant function γ(µk).

The space M is an open set. For example, for the Bernoulli density the mean space is the

interval (0, 1), while for a univariate zero-mean Gaussian the mean space is the open interval of valid

variances, (0,+∞). For multivariate zero-mean Gaussians, the mean space is the open set of all

possible covariance matrices; that is, all D ×D symmetric, positive-definite matrices.

LetMc denote the closure of the mean parameter spaceM. That is, for our Bernoulli example

where M , (0, 1), then the closure is Mc = [0, 1]. This closure space is important because the

sufficient statistic function always lies in the closure: s(xn) ∈ Mc ⊂ RA. For example, the sufficient

statistic for a Bernoulli data atom is equal to either 0 or 1, which bookend the interval (0, 1). The

sufficient statistic for a multivariate zero-mean Gaussian, which is xnx
T
n , is a rank-one matrix that

is positive semi-definite, thus closing the set of positive-definite matrices.

Given a boundary parameter m that lies in the closure Mc but not the interior M, we can

compute functions like γ(µ) by taking the limit as we move from the interior toward the boundary

position m:

γ(m) = lim
||ǫ||→0+

γ(m+ ǫ), m ∈Mc and m+ ǫ ∈M (2.34)

Any other function that takes input from the interior of the mean parameter space can also be

computed this way. See Theorem 3.3 of Wainwright and Jordan (2008) for more details.

Bregman divergences

For any convex function γ(·) : M → R with dual function c(·) : Φ → R, we can compute a

non-negative “distance” between two elements of the mean parameter space M via the Bregman

divergence function.

Dγ(µa, µb) , γ(µa)− γ(µb)− (µa − µb)
Tφ(µb) µa, µb ∈ M (2.35)
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The journal article of Banerjee et al. (2005) provides essential coverage of the useful properties of

Bregman divergence functions. For our purposes, we emphasize that the output of this function is

a non-negative scalar: Dγ(µa, µb) ≥ 0 for all µa, µb ∈ M, with equality occuring only if µa = µb.

From the definition above, it is clear this function is assymetric, with Dγ(µa, µb) 6= Dγ(µb, µa) in

general.

The Bregman divergence function is useful because it provides a “distance” between a sufficient

statistic vector s(xn) ∈ Mc and a mean parameter µk ∈ M. While not a proper distance metric

because of its assymmetry, computing a pseudo-distance can still be useful, as we show in later

distance-biased initialization algorithms. We emphasize that computing the Bregman divergence for

sufficient vectors which lie on the closure of the open set M requires applying the same limiting

arguments from Eq. (2.34).

Aside from its utility as a pseudo-distance, we can also write our density function over random

variable xn in terms of the Bregman divergence function. First, we take definition of Dγ in Eq. (2.35)

and replace the term γ(µk) with its definition in Eq. (2.33). After canceling out the terms µT
k φ(µk)

with opposite signs, we have:

Dγ(s(xn), µk) = γ(s(xn)) + c(φ(µk))− s(xn)Tφ(µk) (2.36)

Using Eq. (2.36), we can write the log probability density function for any exponential family dis-

tribution (Eq. (2.14)) in terms of the Bregman divergence:

log p(s(xn)|φk) = −Dγ(s(xn), µ(φk)) + γ(s(xn)) + h(xn) (2.37)

This highlights the expressive power of the mean parameter transformation and the corresponding

Bregman divergence function.

Example: Bregman divergence for Multinomial likelihood

When xn is a random variable in the domain of all non-negative integer vectors that sum to C, and

we assume xn has a multinomial likelihood, then we have sufficient statistic s(xn) = xn and the

corresponding Bregman divergence is:

D(xn, µk) =

V∑

v=1

xnv log
xnv
µkv

(2.38)

where the mean vector µk must be non-negative real vector that sums to C:
∑V

v=1 µkv = C.

Example: Bregman divergence for fixed-variance 1D Gaussian

When xn is a random variable in the domain of scalar reals, and we assume xn has a Gaussian

likelihood with fixed variance v and mean parameter µk, then we have sufficient statistic s(xn) = xn

and the corresponding Bregman divergence is:

D(xn, µk) =
1

2
v−1(xn − µk)

2 (2.39)
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where the mean vector µk is any real scalar. We can recognise this divergence function as a Ma-

halonobis distance for univariate inputs. This Bregman divergence happens to be symmetric, but

symmetry does not hold in general.

Example: Bregman divergence for zero-mean, unknown-variance 1D Gaussian

When xn is a random variable in the domain of scalar reals, and we assume xn has a zero-mean

Gaussian likelihood with unknown variance µk > 0, then we have sufficient statistic s(xn) = x2n and

the corresponding Bregman divergence is:

D(s(xn), µk) = −
1

2
log

x2n
µk

+
1

2
x2n(µk)

−1 − 1

2
(2.40)

Here, the mean vector µk must be a positive real. Note that the possible edge-case input xn = 0

technically leads to an infinite divergence because of the log(xn) in the first term, but all other

inputs lie in the proper open setM.

2.2.4 Conjugate Priors

The sections above define the likelihood density p(xn|φk) = L(xn|φk) and its useful properties. We

now turn our attention to the prior density p(φk), which is the other required choice to full specify

an observation model. While any density function over the space Φ would be a valid choice for p(φk),

we constrain our attention to a specific exponential density P known as the conjugate prior to the

chosen likelihood L. We make this choice because (as we will show in later sections) it leads to a

posterior over φk that comes from the same density family P, with updated parameters. Conjugate

priors lead to closed-form expressions for the updated parameters, making algorithms simpler and

the mathematical formulas easier to understand. For a textbook introduction, see Sec. 2.4.2 of

Bishop (2006).

Log probability density function of the conjugate prior

We will write the log probability density function of the prior distribution P as:

log p(φk|ν̄, τ̄ ) = τ̄Tφk − ν̄c(φk)− cP (ν̄, τ̄) (2.41)

We can identify this density function as a member of the exponential family, with natural parameter

equal to the concatenated vector [τ̄ ν̄] and sufficient statistic equal to the concatenated vector

[φk − c(φk)].
The scalar hyperparameter ν̄ > 0 defines the effective sample size of the prior. Larger values

of ν̄ imply a highly concentrated, low-variance distribution. Small values indicate a high-variance

distribution.

The vector hyperparameter τ̄ ∈ M is understood as the aggregated mean. Dividing this

value by the effective sample size gives the prior density’s expected value for the mean parame-

ter: Ep(φ|ν̄,τ̄)[µ(φ)] =
τ̄
ν̄
.
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The prior cumulant function cP (ν̄, τ̄ ) is defined as:

cP (ν̄, τ̄ ) = log

∫

φk∈Φ

eτ̄
Tφk−ν̄c(φk)dφk (2.42)

By definition as an exponential family cumulant function, it is a convex function which can be

differentiated to compute the expected values of φk and c(φk).

Example: Dirichlet prior for Multinomial likelihood

Common form. Traditionally, assuming random variable ηk ∈ ∆V is Dirichlet distributed with

parameter λ ∈ RV
+ leads to the log density function:

log p(ηk|λ) , cDir(λ) +

V∑

v=1

(λv − 1) log ηk (2.43)

where the normalizing constant is defined as:

cDir(λ1, λ2, . . . λV ) = log Γ(
∑V

v=1 λv)−
∑V

v=1 log Γ(λv) (2.44)

Natural conjugate form. Instead, we have a density parameterized by a scalar ν̄ > 0 and a

vector τ̄ ∈ R
V −1
+ , which is constrained so that

∑

v τ̄v ≤ ν̄.
There exists a one-to-one invertible mapping between the common parameter vector λ ∈ RV

+ and

these natural parameters:

λv(τ̄ , ν̄) =







τ̄v if v < V

ν̄ −∑V−1
w=1 τ̄w if v = V

(2.45)

Now, the essential quantities for the natural parameterization of Eq. (2.41) for a Dirichlet density are

the natural likelihood parameter φk ∈ RV −1, the cumulant function c(φk), and the prior cumulant

function cP :

φk = [φk1 φk2 . . . φkV −1] (2.46)

c(φk) = log(1 +

V −1∑

v=1

eφkv )

cP (τ̄ , ν̄) =

[
V−1∑

v=1

log Γ(τ̄v)

]

+ log Γ(ν̄ −∑V −1
v=1 τ̄v)− log Γ(ν̄)

As with the natural form of the Multinomial likelihood, we interpret φk as a vector containing

logarithms of odds ratios. The larger φkv is relative to other entries in φk, the more likely word v

will be.

Under this prior density, we have the useful expectations which follow from moment-generating

properties of the prior cumulant function:

Ep(φk|τ̄ ,ν̄) [φkv ] = ∇τ̄ c
P (τ̄ , ν̄) = ψ(τ̄v)− ψ(ν̄ −

∑V −1
w=1 τ̄w) (2.47)

Ep(φk|τ̄ ,ν̄) [c(φk)] = ∇ν̄c
P (τ̄ , ν̄) = ψ(ν̄ −∑V −1

w=1 τ̄w)− ψ(ν̄)
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We can also show that under this conjugate prior, we have

Ep(φk|τ̄ ,ν̄) [µv(φk)] =
τ̄v
ν̄

(2.48)

where µv(φk) is the mean parameter at vocabulary word v. Thus, we interpret the non-negative

value τ̄v as a pseudocount at word v, and ν̄ as the total pseudocount across all words.

Example: Gaussian prior for fixed-variance Gaussian likelihood

Natural parameterization. Let scalar ν̄ > 0 define the effective-sample-size pseudocount and

scalar τ̄ define the aggregate mean. Then we have the prior cumulant function defined as an implicit

function of fixed variance parameter v:

cP (ν̄, τ̄ ) =
1

2
v−1ν̄−1τ̄2 − 1

2
log[vν̄] +

1

2
log[2π] (2.49)

Under this prior, we have the expectations:

Ep(φk|τ̄ ,ν̄) [φkv] = ∇τ̄ c
P (τ̄ , ν̄) = v−1ν̄−1τ̄ (2.50)

Ep(φk|τ̄ ,ν̄) [c(φk)] = ∇ν̄c
P (τ̄ , ν̄) = −1

2
v−1ν̄−2τ̄2 +

1

2
ν̄−1

as well as the expectations of the mean parameter:

Ep(φk|τ̄ ,ν̄) [µ(φk)] = ν̄−1τ̄ (2.51)

We can thus interpret the value τ̄ as determining the expectation of the mean parameter, while the

value ν̄ sets the variance.

2.3 Learning observation model parameters from data

The previous sections have described the generative model for data x and cluster shape parameters

φ which conditions on known cluster assignments z. We now review the two fundamental approaches

for global parameter inference of φ: point estimation and approximate posterior estimation. First,

we emphasize the simplifying role that sufficient statistics of the data x and assignments z can

play in any estimation procedure for φ. We then address maximum likelihood point estimation,

maximum-a-posterior (MAP) point estimation, and proper posterior estimation. For alternative

presentation of these concepts, see Ch. 9 of the textbook by (Murphy, 2012).
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2.3.1 Sufficient statistics

Any procedure for estimating φ from data x requires considering the aggregate likelihood for the

whole dataset: p(x|z, φ). Under our assumed exponential family likelihood, we can write the aggre-

gate log likelihood for the whole dataset as

log p(x|z, φ) =
K∑

k=1

N∑

n=1

δk(zn) log p(xn|φk) (2.52)

=
K∑

k=1

N∑

n=1

δk(zn)
[

φTk s(xn)− c(φk) + h(xn)
]

=
K∑

k=1

(

φTk Sk(x, z)−Nk(z)c(φk)
)

+
N∑

n=1

h(xn)

As a function of φk, this expression has been greatly simplified. The sum of reference measures

h(xn) is independent of φk and thus can be ignored during any estimation of φk. The remaining

sum over clusters shows that each cluster k may be treated independently.

The quantities S(x, z) and N(z) are sufficient statistics, defined as

Sk(x, z) ,

N∑

n=1

δk(zn)s(xn) (2.53)

Nk(z) ,

N∑

n=1

δk(zn) (2.54)

We can interpret Nk(z) as the total number of observations assigned to cluster k. Similarly, we

can interpret Sk ∈ RA as the aggregate data statistic across all observations assigned to cluster k.

Importantly, both statistics have dimension independent of the number of data atoms N . Evaluation

of the likelihood thus need not scale with the number of data atoms N after the statistics have been

computed.

2.3.2 Maximum Likelihood (ML) Point Estimation

We now consider the following optimization problem given data x:

φ∗k = argmax
φk

log p(x|z, φ) (2.55)

This can be interpreted as maximizing the likelihood of data x given the point estimates {φk}Kk=1.

This maximization objective function can be simplified by expanding the form of the likelihood

L(xn|φk) and dropping terms constant with respect to the vector φk:

φ∗k = argmax
φk

K∑

k=1

φTk Sk(x, z)−Nk(z)c(φk) (2.56)

Because the cumulant function c(φk) is convex, we know that φTk Sk(x, z)−Nk(z)c(φk) is a linear

function minus a convex function and therefore concave. This implies our maximization problem
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has a unique solution, which we find by taking derivatives, setting to zero, and solving for φ∗k:

0 = ∇φk

[
φTk Sk(x, z)−Nk(z)c(φk)

]
(2.57)

0 = Sk(x, z)−Nk(z)µ(φk)

Remember that the function µ(φk) is defined as the gradient of the cumulant function, and that it is

an invertible function whose inverse µ−1 is defined as the function φ(·) in Eq. (2.32) from the mean

parameter spaceM to the natural space Φ. Thus, our maximum likelihood point estimate is:

φ∗k = φ

(
Sk(x, z)

Nk(z)

)

. (2.58)

Mean parameter interpretation. By replacing the log density function log p(xn|φk) with the

equivalent density function parameterized by a Bregman divergence in Eq. (2.37) and dropping

constant terms, we have an equivalent optimization problem in terms of the mean parameter µ∗
k:

µ∗
k = min

µk∈M

N∑

n=1

Dγ(s(xn), µk) (2.59)

This optimization problem over the mean parameters has a unique solution via Theorem 1 of

Agarwal and Daumé III (2010).

µ∗
k =

Sk(x, z)

Nk(z)
. (2.60)

The optimal mean parameter is thus always the weighted sample mean across all observed sufficient

statistics, no matter what exponential family density is used for the observation model likelihood

(Gaussian, Multinomial, Bernoulli, etc.). The optimal natural parameter φ∗k is found by mapping

the optimal mean µ∗
k into the natural parameter space: φ∗k = φ(µ∗

k). Substituing µ
∗
k from Eq. (2.60)

into φ(µ∗k), we find we sensibly recover the formula for φ∗k from Eq. (2.58).

2.3.3 Maximum a posteriori (MAP) point estimation

We consider now the problem of point estimation of the parameter φk for cluster k under the joint

distribution of the likelihood L and prior P.

φ∗k = argmax
φk

log p(x|z, φ) + log(φ) (2.61)

This is equivalent to:

φ∗k = argmax
φk

K∑

k=1

φTk

(

Sk(x, z) + τ̄
)

− (Nk(z) + ν̄)c(φk) (2.62)
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Mean parameter interpretation. By rewriting the densities in terms of Bregman divergences

and simplifying, we find the equivalent problem in mean space reduces to:

µ∗
k = min

µk∈M

[

ν̄Dγ(
τ̄
ν̄
, µk) +

∑N
n=1Dγ(s(xn), µk)

]

(2.63)

This MAP optimization problem has a unique solution via Theorem 2 of Agarwal and Daumé III

(2010).

µ∗
k =

Sk(x, z) + τ̄

Nk(z) + ν̄
(2.64)

We can interpret µ∗
k as a weighted sample mean, though now the sample includes the observed

weighted dataset {xn}Nn=1 as well as the prior “pseudo-dataset”, which has an effective size of ν̄

atoms and an aggregate sufficient statistic value of τ̄ .

Again, we can find the corresponding natural parameter estimate via the mean-to-natural trans-

formation function: φ∗k = φ(µ∗
k). Thus, we have the MAP estimate:

φ∗k = φ

(
Sk(x, z) + τ̄

Nk(z) + ν̄

)

(2.65)

We emphasize that this is the MAP estimate under the joint density log p(x, φ|z). MAP estimates are

well-known to depend strongly on the choice of basis (MacKay, 1998). If some other parameterization

of the prior is used other than the natural conjugate form log p(φ|τ̄ , ν̄), the corresponding MAP

estimate will be different.

2.3.4 Posterior estimation

Consider now the problem of determining the posterior distribution p(φ|x, z). We can accomplish

this by inspecting the form of the joint distribution:

log p(φ, x|z) = log p(φ) + log p(x|z, φ) (2.66)

= const +

K∑

k=1

φTk (Sk(x, z) + τ̄ )− c(φk)(Nk(z) + ν̄)

After gather all terms constant with respect to φk, we find the remaining terms have the same

functional form as the prior P over φk. Our chosen conjugacy between the prior P and likelihood L

guarantees that the posterior also belongs to the P density family, with updated parameters:

p(φk|x, z) = P(φk|τ̂k, ν̂k) (2.67)

τ̂k = Sk(x, z) + τ̄

ν̂k = Nk(x, z) + ν̄

The posterior distribution is specified completely by the two parameters τ̂k and ν̂k.

Under our assumed conjugate exponential family observation model, the algorithmic cost of

estimating the full posterior is no greater than the cost of MAP point estimates found earlier.
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We further emphasize that this posterior is exact. If both data x and cluster assignments z

are fully observed, we can find the posterior p(φk|x, z) in closed form, with the sufficient statistics

Nk(z), Sk(x, z) representing all we need to know from x, z.

Next, we examine algorithms for the case where only the dataset x is observed, and assignments

z and shape parameters φ, and frequencies πG must be learned from data.

2.4 Point estimation algorithms for finite mixture models

Here, we consider the simplest possible probabilistic clustering model in Fig. 1.1, a finite mixture

model with K clusters. The allocation generative process is specified by a single global frequency

vector πG, which we will in this section treat as the mean parameter transformation of a random

variable ϕ ∈ RK−1 which has a (natural-form) Dirichlet distribution with effective sample-size γ

and expected mean [ 1
K
. . . 1

K
]:

log p(ϕ|γ) = const +

K−1∑

k=1

γ

K
ϕk − γ log(1 +

K−1∑

ℓ=1

eϕℓ) (2.68)

πk(ϕ) ,
eϕk

1 +
∑K−1

ℓ=1 eϕℓ

(2.69)

Under this parameterization, we have

E[πk(ϕ)] =
1

K
(2.70)

Given the fixed value for the frequency vector π(ϕ), we generate each data atom assignment zn

independently:

zn|π(ϕ) ∼ CatK(π1, π2, . . . πK) (2.71)

Then, given the observed assignments z, we have our standard conjugate-exponential-family obser-

vation model:

φk ∼ P(φk|τ̄ , ν̄), xn|zn, φ ∼ L(xn|φzn) (2.72)

Our first goal will be an algorithm for point estimation for each of the hidden global random variables

ϕ, φ and local assignments z. We will later extend this to a full variational method for approximate

posteriors.
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Algorithm 2.1 Bregman k-means for point-estimation of finite mixture model

Input:
{xn}Nn=1 : dataset with N exchangeable observations
γ > 0 : hyperparameters defining the allocation-model prior p(ϕ|γ)
τ̄ , ν̄ : hyperparameters defining the prior P(φk|τ̄ , ν̄)
{µk}Kk=1 : Initial point estimates of observation-model mean parameters, µk ∈ M
π : Initial point estimate of allocation-model frequency vector

Output:
{zn}Nn=1 : Point estimates of hard assignments
{µk}Kk=1 : Point estimates of observation-model mean parameters
π : Point estimates of allocation-model frequency vector

1: function BregmanKMeans((x, τ̄ , ν̄, γ, {µk}Kk=1, π))
2: while not converged do
3: for n ∈ 1, 2, . . .N do ⊲ Local parameter update step
4: for k ∈ 1, 2, . . .K do
5: Wnk = log πk −D(s(xn), µk) ⊲ Log posterior weight of cluster k

6: zn = argmaxk∈{1,2,...K}Wnk

7: for k ∈ 1, 2, . . .K do ⊲ Summary step
8: Sk(x, z) =

∑N
n=1 δk(zn)s(xn)

9: Nk(z) =
∑N

n=1 δk(zn)

10: for k ∈ 1, 2, . . .K do ⊲ Global parameter update step

11: µk = Sk(x,z)+τ̄

Nk(z)+ν̄

12: πk =
Nk(z)+

γ
K

N+γ

13: return z, µ

Block-coordinate ascent point estimation algorithm for mixture models. Sometimes called hard-
assignment expectation-maximization (EM).
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2.4.1 Bregman k-means point estimation for finite mixture model

Our goal is finding point estimates of ϕ, φ, z. We set up a maximum a-posteriori optimization

problem:

max
π,µ,z

J (π, µ, z, x) (2.73)

subject to π ∈ ∆K

µk ∈ M, for k = 1, 2, . . .K

zn ∈ {1, 2, . . .K}, for n = 1, 2, . . .N

where the objective function we wish to maximize is the joint log probability density over all the

variables of interest:

J (x, π, µ, z) = log p(ϕ(π)) +

K∑

k=1

log p(φk(µ)) +

K∑

k=1

K∑

n=1

δk(zn)
[

log πk + log p(xn|φk(µ))
]

. (2.74)

Crucially, we emphasize that the probability density functions used here are over the natural-form

random variables ϕ and φ. However, the variables we instantiate throughout the algorithm are the

corresponding mean parameters π (for frequency vectors) and µ (for cluster shapes).

An iterative optimization algorithm is given in Alg. 2.1, based on a similar algorithm from

Banerjee et al. (2005). This algorithm operates in the mean-parameter space, but could equivalently

be written in the natural-parameter space using appropriate transformation functionrs φ(·) :M→ Φ

from Eq. (2.32) and µ(·) : Φ→M in Eq. (2.31). We can interpret this algorithm as an extension of

the popular k-means algorithm (Lloyd, 1982; Jain, 2010) to proper mixture models with conjugate-

exponential-family observation models. Sensibly, each iteration of this method has cost that is linear

in the desired number of clusters K and the total number of atoms to cluster N .

Local step: point estimates of assignments z.

Given fixed means {µk}Kk=1 for each cluster as well as the frequency vector π, we wish to maximize

our objective J (x, π, µ, z) with respect to z. Rewriting the objective as a function of zn, we have:

Jn(xn, zn, µ, π) =
K∑

k=1

δk(zn)Wnk(µ, π) (2.75)

Wnk(µ, π) , log p(xn|φ(µk)) + log πk

= −D(s(xn), µk) + log πk

= −c(φ(µk)) + s(xn)
Tφ(µk) + log πk

Here, we can interpretWnk as the log posterior weight for assigning cluster k to data atom n. Larger

values indicate that cluster k provides a better explanation for atom n.

Note the last definition of Wnk, in terms of the cumulant c(φk) and the natural parameter, uses

the Bregman divergence definition from Eq. (2.36), simplified by dropping terms that are constant

with respect to cluster index k.



35

Applying Lagrange multiplier methods to find the optimal assignment while obeying the hard

constraint zn ∈ {1, 2, . . .K} leads to the update

z∗n = argmaxk∈1,2,...KWnk (2.76)

We can interpret this simply as choosing the cluster label k ∈ {1, 2, . . .K} which has maximum

posterior probability under the current cluster means µ and frequencies π. This update is guaranteed

to monotonically increase the objective J .

Global step: MAP point estimates of frequency vector π.

Applying the standard arguments for natural-parameter maximum-a-posteriori estimation from

Sec. 2.3.3, we have:

π∗
k =

Nk +
γ
K

N + γ
, where π∗ = argmax

π∈∆K

log p(ϕ(π)) + log p(z|π) (2.77)

It is important to realize that this natural-parameter MAP estimate exists for any value of γ ≥ 0.

In contrast, the equivalent mean-parameter optimization problem, which treats π ∈ ∆K directly

as a random variable, does not always have a MAP solution. In particular, the MAP estimate for

this parameterization is:

π∗
k =

Nk +
γ
K
− 1

N + γ −K , π∗ = argmax
π∈∆K

log p(π) + log p(z|π) (2.78)

This solution only exists when Nk + γ/K > 1. Otherwise, the MAP is undefined.

2.4.2 Bregman k-means++ initialization of point estimates for global pa-

rameters

The point estimation algorithm in Alg. 2.1 requires as input both initial cluster means {µk}Kk=1, as

well as an initial cluster frequency vector π. Because the overall objective J is non-convex, selecting

a smart initialization is important to avoid bad local optima and reach a high-quality solution.

Our inspiration for a smart initialization comes from the k-means++ algorithm introduced by

Arthur and Vassilvitskii (2007), which considers the simpler k-means optimization problem using

Euclidean distances instead of general purpose Bregman divergences. The k-means++ algorithm

first selects K distinct data atoms from the dataset x, and then uses the standard update for cluster

mean parameters given a single observation to initialize µk for each of the K clusters. The selection

of the K chosen data atoms is done in a sequential, distance-biased fashion. The first cluster µ1 is

formed from a single data atom chosen uniformly at random. Then, the atom for successive cluster k

is chosen from the remaining atoms with probability proportional to the Euclidean distance between

the atom and the closest previously-chosen mean µk. This distance-biased random sampling leads to

choosing cluster means µk which are far from one another and, if K is large enough, will with high-

probability adequately cover the space of all observed data x. Formally, Arthur and Vassilvitskii



36

Algorithm 2.2 Bregman k-means++ initialization for cluster mean point estimates.

Input:
{xn}Nn=1 : dataset with N exchangeable observations
τ̄ , ν̄ : hyperparameters defining the prior P(φk|τ̄ , ν̄)

Output:
µ : Initial point estimates of the mean parameters

1: function InitClusterMeansViaBregmanSamples((x, τ̄ , ν̄))
2: n1 ∼ UniformRandomSample({1, 2, . . .N})
3: µ1 ← s(xn1

)+τ̄

1+ν̄

4: for k ∈ 2, . . .K do
5: for n ∈ 1, 2, . . .N do
6: pn = argminℓ∈{1,2,...k−1}D(µ(s(xn)), µℓ)

7: nk ∼ CatN (p1, . . . pN )

8: µk ← s(xnk
)+τ̄

1+ν̄

9: return {µk}Kk=1

Initialization of cluster means µk using a random sampling scheme based on Bregman divergences.
Under some mild assumptions, Ackermann and Blömer (2010) show that this procedure will deliver
a solution with guaranteed multiplicative approximation ratio to the optimal objective score.

(2007) proved that the k-means++ procedure delivers an initialization µ that is already within a

multiplicative approximation factor of the optimal k-means cost function.

Ackermann and Blömer (2010) suggest extending the k-means++ initialization from Euclidean

distances to all Bregman divergences and thus all possible observation models in our probabilistic

clustering framework. Ackermann and Blömer (2010)’s procedure offers the same appealing guar-

antees: for some Bregman divergences, the cost of the initial clustering is guaranteed to be within

some constant factor of the optimal cost.

Our initialization algorithm is given in Alg. 2.2. This sequential sampling procedure selects a

single data atom to represent each cluster in a distance-biased way. At each round, we sample

each remaining atom with probability proportional to a divergence whose first argument is the

smoothed-mean estimate for the given atom, and the second is that data atom’s closest center. By

using smoothing when selecting data, we are able to both compute distance values exactly (without

taking limits) and be sure we are choosing mean vectors that are far apart, not just data atoms.

By choosing each successive cluster mean to be far from the previously-chosen means, we hope to

eventually represent all latent clusters in the dataset. Once K means are chosen, we proceed with

Alg. 2.1 until either convergence occurs or a maximum budget of iterations is reached.

2.5 Posterior inference via variational optimization.

The point estimation procedure in Alg. 2.1 is simpler to understand and implement than more so-

phisticated methods. However, the maximum likelihood or maximum-a-posteriori approach has one

key weakness when training probablistic clustering models: the maximum-likelihood pased objective

function J (x, z, π, φ) cannot be used for model selection. That is, we cannot select the right number
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of clusters K using this objective function. This is because of the inherent over-fitting property of

maximum-likelihood based approaches: for every solution with exactly K clusters, there exists a

solution with K + 1 clusters with a larger objective function score.

Beal (2003) covers this model selection issue extensively in his published dissertation, and mo-

tivates a more sophisticated approach: variational optimization of an approximate posterior distri-

bution. Rather than using maximum likelihood approaches which condition on random variables

like π or φ which grow in size with K, these variational approaches use an objective based on the

marginal likelihood log p(x), thus integrating away all random variables which scale with K. Using

the marginal likelihood is an effective, Bayesian way to do model selection (Jefferys and Berger,

1992; Rasmussen and Ghahramani., 2001).

In this section, we will walk through the defining the optimization problem, work out the closed-

form block-coordinate ascent updates, and give an algorithm for applying this technique to the same

finite mixture model we pursued earlier, to aid side-by-side comparison of algorithmic complexity.

While perhaps more complex to understand, we will show that approach has the same order-of-

magnitude runtime cost as the point-estimation algorithm. Thus, we gain the benefit of improved

model selection without substantial additional computational cost.

2.5.1 Mean-field approximate posterior density estimation

Given a dataset x, our goal is to estimate a joint posterior p(φ, π, z | x). over three variables: the

global cluster appearance probabilities π, the global shape parameters φ and the local assignment

variables z.

Finding this posterior directly is intractable. Suppose the assignments z use all K distinct

cluster labels. Then even representing the marginal posterior of the assignment variables p(z|x)
would require memory and time that scales with O(KN ), since we would need to enumerate the

probability of each possible joint configuration of the variables {zn}Nn=1 and there are KN possible

configurations.

Instead, variational inference casts approximate posterior inference as an optimization problem

(Wainwright and Jordan, 2008). This approach proceeds in three steps, which are detailed in the

sections below. First, we define a simplified family of probability distributions for our variables of

interest φ, π and z. This family of distributions is parameterized by several free variables which

control their moments. Our goal is to find the values of these free variables. Next, we define

an optimization problem whose objective is to find the free variables under which the approximate

posterior is as close as possible to the true, intractable posterior, while still remaining in the specified

simpler family. Formally, we define this “closeness” via Kullback-Liebler (KL) divergence, which is

the natural measure of distance between two probability distributions. Third, we define an algorithm

which, given input data x, delivers the free parameters that solve our optimization problem.

Let q(φ, π, z) denote our approximate posterior. As prevously discussed, without any simplifying

assumptions even enumerating all possible posterior values is infeasible for all but the smallest

datasets. To make our optimization problem computationally feasible, we assume that each of the
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assignments zn is independent of the others and each of the clusters φk is independent of the others.

That is, we can factorize the approximate density as

q(φ, π, z) =

K∏

k=1

q(φk) · q(π) ·
N∏

n=1

q(zn) (2.79)

This independence is sometimes called a mean-field assumption, after methods from statistical

physics (Parisi, 1988). We further assume each factor of the approximate posterior has a den-

sity that belongs to the exponential family, whose form naturally mimics the generative model when

appropriate. Thus, the full parameterization is:

q(φ) =

K∏

k=1

P(φk|τ̂k, ν̂k) (2.80)

q(π) = DirK(π|θ̂1, θ̂2, . . . θ̂K) (2.81)

q(z) =

N∏

n=1

CatK(zn|r̂n1, . . . r̂nK) (2.82)

Under this chosen factorization, the variables ν̂, τ̂ , θ̂, r̂ are the free parameters of our approximate

posterior. The goal of variational optimization is to find specific values of these free parameters that

make q(u, φ, z) a good approximation to the true posterior. We always denote free parameters with

hats to make clear which variables are instantiated and optimized by the algorithm.

Approximate posterior q(π) for global cluster frequencies

The vector π ∈ ∆K has an approximate posterior we assume has Dirichlet form, just like its prior.

The free parameter vector θ̂ has K entries that are all non-negative: θ̂k ≥ 0. Under our assumed

posterior q(π), we have the useful expectations:

Eq[πk] =
θ̂k

∑K
ℓ=1 θ̂ℓ

Eq[log πk] = ψ(θ̂k)− ψ(
∑K

ℓ=1 θ̂ℓ) (2.83)

where ψ(·) is the digamma function, defined as the first derivative of the log gamma function.

Approximate posterior q(φk) for global cluster shape

Each cluster k is given an independent posterior factor q(φk) for its shape parameter φ. Following

the analysis for the exact posterior in Sec. 2.1.3, we assume this factor comes from the conjugate

prior family P. The factor has two free parameters: pseudo-count ν̂k > 0 and vector parameter

τ̂k ∈ M which defines the cluster shape.

Local assignment factor q(zn)

Under the generative model for the finite mixture, the assigned cluster label zn for observation n

could use any of the K possible global clusters indices. Thus, for the posterior we need a categorical
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distribution over K possible discrete choices. We define free parameter vector r̂n to have K entries

that are non-negative and sum to one. We can interpret r̂nk as the posterior responsibility that

cluster k has for data atom n. Values near zero indicate that cluster k does not explain the data

well, while values closer to one indicate a good explanation. Under this approximate posterior, we

have the useful expectation Eq[δk(zn)] = r̂nk.

2.5.2 Evidence lower-bound objective function

Given the assumed factorization of q(π, φ, z) above, we now set up an optimization problem over our

free parameters ν̂, τ̂ , θ̂, r̂. The goal is to minimize the distance between the approximate posterior

q(π, φ, z) and the true posterior p(π, φ, z|x). We measure this distance via the Kullback-Liebler

divergence, which we formally define below. We then explain the derivation of an optimization

problem that minimizes the KL divergence between the approximate posterior q(π, φ, z) and the

true posterior p(π, φ, z|x).

Kullback-Liebler (KL) divergence functions

Discrete distribution KL divergence. Consider a discrete random variable Y with K possible

outcomes, each indexed by an integer in the set {1, 2, . . .K}. Let there be two possible distributions

over the variable Y , one with parameter vector P ∈ ∆K and the other with parameter Q ∈ ∆. Under

the first distribution, we have p(Y = k) = Pk, while under the second we have p(Y = k) = Qk.

Then, the KL divergence from vector Q to vector P is:

KL (Q‖P ) ,
K∑

k=1

Qk log
Qk

Pk

, Q ∈ ∆K , P ∈ ∆k, (2.84)

For discrete distributions, KL (Q‖P ) ≥ 0 always, with equality only if Qk = Pk for all outcomes

k ∈ {1, 2, . . .K}. This divergence is assymmetric: KL (Q‖P ) 6= KL(P‖Q).

Continuous distribution KL divergence. For a continuous random variable such as φk, con-

sider two alternative distributions p(φk) and q(φk). Assuming that each of these provide non-zero

probability to all elements φk ∈ Φ, we define the KL divergence as:

KL (q‖p) ,
∫

φk∈Φ

q(φk) log
q(φk)

p(φk)
(2.85)

For distributions over continuous random variables, the KL divergence is always non-negative:

KL (q‖p) ≥ 0, with equality only if q and p represent the same probability density function.

KL divergence for our approximate posterior. The KL divergence between a specific member

of our approximate posterior family q(π, φ, z) and the true posterior p(π, φ, z|x) is given by

KL (q(π, φ, z)‖p(π, φ, z)) ,
∫

π∈∆K

∫

φ1∈Φ

. . .

∫

φK∈Φ

K∑

z1=1

. . .
K∑

zN=1

q(π, z, φ) log
q(π, z, φ)

p(π, z, φ|x)dφ1dφKdπ

(2.86)
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Evalating the above function is not possible, because we do not have a closed-form expression for

the true posterior density function p(π, z, φ|x). We can alternatively write the KL divergence as an

expectation with respect to the approximate posterior q(π, φ, z):

KL (q(π, φ, z)‖p(π, φ, z)) = Eq(π,φ,z)

[

log
q(π, φ, z)

p(π, φ, z|x)

]

(2.87)

This does not make evaluation any easier, but certainly makes the mathematical notation easier to

read.

Using Bayes rule, we can rewrite the (intractable) posterior as the joint probability of all random

variables (including data x) divided by the marginal probability p(x).

p(π, z, φ|x) = p(π, φ, z, x)

p(x)
(2.88)

Our generative model specifies the functional form of the numerator. So, it is only the denominator

p(x) that we cannot compute. Substituting into our KL divergence expression, we have:

KL (q(π, φ, z)‖p(π, φ, z)) = Eq(π,φ,z)

[

log
q(π, φ, z)p(x)

p(π, φ, z, x)

]

(2.89)

= Eq(π,φ,z)

[

log
q(π, φ, z)

p(π, φ, z, x)

]

+ log p(x)

where in the second line we’ve used the fact that p(x) is a function independent of pi, φ and z to

move its term outside the expectation.

We can always compute the first additive term of this KL divergence between our approximate

posterior and true posterior, while the second is a constant independent of the approximate density

q(π, φ, z).

Minimizing KL divergence from approximate posterior to true posterior

Our training goal is to find the specific approximate posterior density q(π, φ, z) that is nearest (in

the sense of KL divergence) to the true posterior.

argmin
ν̂,τ̂ ,θ̂,r̂

KL(q(π, φ, z|ν̂, τ̂ , θ̂, r̂)||p(π, φ, z|x)) (2.90)

Using the decomposition of KL divergence from Eq. 2.89, we can derive an equivalent maximization

problem:

argmax
ν̂,τ̂ ,θ̂,r̂

L(x, ν̂, τ̂ , θ̂, r̂) (2.91)



41

The objective function L is defined as the difference between the log marginal probability of the data

log p(x) (which is a constant with respect to our free parameters) and the earlier KL divergence:

L(x, ν̂, τ̂ , θ̂, r̂) , log p(x) −KL(q(π, φ, z|ν̂, τ̂ , θ̂, r̂)||p(π, φ, z|x)) (2.92)

= log p(x) − Eq(π,φ,z)

[

log q(π, φ, z)− log p(x, π, φ, z) + log p(x)

]

= Eq(π,φ,z)

[

log p(π, φ, z, x)− log q(π, φ, z)

]

Under our chosen exponential family forms for each factor of the approximate posterior, the expec-

tations that define L lead to a closed-form function of the free parameters τ̂ , ν, θ̂, r̂. We can tractably

evaluate L and take derivatives, making optimization of the free parameters possible.

We emphasize that because the KL divergence term is always non-negative, the objective L can

be interpreted as a strict lower bound on the marginal likelihood log p(x). We thus often refer to the

function L as the Evidence Lower BOund, or ELBO. Maximizing L can be interpreted as improving

the approximate posterior’s explanation of the data.

We can write the objective L as a sum of two terms:

L(x, r̂, θ̂, τ̂ , ν̂) = Ldata(x, r̂, τ̂ , ν̂) + Lalloc(r̂, θ̂) (2.93)

These terms describe distinctly interpretable pieces of the overall model: Ldata gathers terms related

to the observation model and Lalloc gathers terms related to the allocation model. Our chosen

notation for each term of the objective highlights the variational parameters involved. For example,

Lalloc(r̂, θ̂) is independent of the observation parameters ν̂, τ̂ . These terms may also be functions of

the data x and hyperparameters H, but we omit these arguments in notation for simplicity.

This term-by-term breakdown of the objective encourages a modular implementation. Given

fixed assignments r̂, the solution to finding the optimal observation model parameters ν̂, τ̂ must be

independent of the allocation probability parameters θ̂, and vice versa. This modularization enables

our implementation to implement free parameter updates once for each possible observation model

or allocation model, and compose these modules to create an overall model.

2.5.3 Observation model term of the objective

The data term is defined by

Ldata(x, r̂, τ̂ , ν) , Eq

[

log p(x|z, φ) + log
p(φ|ν̄, τ̄)
q(φ|ν̂, τ̂)

]

(2.94)

=

N∑

n=1

K∑

k=1

r̂nkEq(φk|ν̂k,τ̂k)

[

log p(xn|φk)
]

+

K∑

k=1

Eq(φk|ν̂k,τ̂k)

[

log
p(φk|ν̄, τ̄ )
q(φk|ν̂k, τ̂k)

]

Where we have already substituted in the soft assignment free parameters: r̂nk = Eq(zn|r̂n)[δk(zn)].
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We can further simplify this objective by using the derivations from Sec. 2.1.3. We have

Ldata(x, r̂, τ̂ , ν̂) =
N∑

n=1

h(xn) +

K∑

k=1

(

cP (τ̄ , ν̄)− cP (τ̂k, ν̂k)
)

(2.95)

+
K∑

k=1

(

Nk(r̂) + ν̄ − ν̂k
)

Eq(φk)

[

− cL(φk)
]

+
K∑

k=1

D∑

d=1

(

Skd(x, r̂) + τ̄d − ν̂kd
)

Eq(φk)

[

φkd

]

Here, we define Sk(x, r̂) as the expected value of the earlier sufficient statistic Sk(x, z) from Eq. (2.53)

under q(z). Similarly, Nk(r̂) is the expected value of Nk(z) from Eq. (2.53).

Sk(x, r̂) ,

N∑

n=1

Eq(zn|r̂n)[δk(zn)s(xn)] =

N∑

n=1

r̂nks(xn) (2.96)

Nk(r̂) ,

N∑

n=1

Eq(zn|r̂n)[δk(zn)] =

N∑

n=1

r̂nk (2.97)

The remaining expectations in Eq. (2.95) are the fundamental ones of the conjugate exponential

family likelihood-prior system chosen, which have closed form.

2.5.4 Allocation model term of the objective

We write the allocation model’s contribution to the objective as:

Lalloc(r̂, θ̂) , Eq(z|r̂)q(π|θ̂)

[

log
p(z|π)
q(z|r̂) + log

p(π|γ)
q(π|θ̂)

]

(2.98)

Regrouping terms, we can separate this into an entropy term for the distribution q(z|r̂) and a term

which gathers all functions of θ̂:

Lalloc(r̂, θ̂) = Lentropy(r̂) + LDir-alloc(r̂, θ̂) (2.99)

Entropy term

The entropy of the assignments is a simple non-linear function of the responsibilities:

Lentropy(r̂) = −
N∑

n=1

Eq[log q(zn)] = −
N∑

n=1

r̂nk log r̂nk. (2.100)
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Dirichlet allocation term

Standard conjugate exponential family mathematics yields a simple expression for LDir-alloc:

LDir-alloc(r̂, θ̂) = Eq[log p(z|π) + log
p(π)

q(π)
] (2.101)

=

K∑

k=1

cDir(
γ

K
. . .

γ

K
)− cDir(θ̂) (2.102)

+

K∑

k=1

(

Nk(r̂) +
γ

K
− θ̂k

)

Eq[log πk]

Here, the expectations have closed form under the assumed distribution q(π|θ̂), and the cumulant

function of the Dirichlet distribution is

cDir(a1, a2, . . . aK) , log Γ(
∑

ℓ

aℓ)−
K∑

k=1

log Γ(ak) (2.103)

Finally, the count statistic Nk(r̂) for each cluster k is defined above in Eq. (2.96). We can interpret

Nk as the effective count of data observations assigned to cluster label k.

2.6 Variational inference algorithm for the finite mixture

model

We can now formally define the constrained optimization problem for our free parameters τ̂ , ν̂, θ̂, r̂

given an observed dataset x and hyperparameters H:

argmax
τ̂ ,ν̂,θ̂,r̂

Ldata(x, r̂, τ̂ , ν̂) + Lentropy(r̂) + LDir-alloc(r̂, θ̂) (2.104)

subject to r̂n ≥ 0 and
∑K

k=1 r̂nk = 1 for n = 1, 2, . . .N

θ̂k ≥ 0 for k = 1, 2, . . .K

ν̂k ≥ 0 and τ̂k ∈ M for k = 1, 2, . . .K

Given the internal structure of the objective, we pursue a block-coordinate ascent algorithm, which

proceeds in three steps. Each step updates the free parameters of one factor among q(z)q(u)q(φ)

while holding the other free parameters fixed. When applied iteratively, these steps are guaranteed

to monotonically improve the whole objective L until it converges to a fixed point local optima.

Below, we define the optimization problem solved by each step of the block-coordinate ascent

algorithm. We then describe detailed solutions which solve each problem below in closed-form in

the following sections.
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Local step: Update local assignment responsibilities

argmax
r̂

Ldata(x, r̂, τ̂ , ν̂) + Lentropy(r̂) + LDir-alloc(r̂, θ̂) (2.105)

subject to r̂n ≥ 0 and
∑K

k=1 r̂nk = 1 for n = 1, 2, . . .N

Global step: Update observation model global parameters

argmax
τ̂ ,ν̂

Ldata(x, r̂, τ̂ , ν̂) subject to ν̂k ≥ 0 and τ̂k ∈M for k = 1, 2, . . . (2.106)

Global step: Update allocation model global parameters

argmax
θ̂

LDir-alloc(r̂, θ̂) subject to θ̂k ≥ 0 for k = 1, 2, . . .K (2.107)

2.6.1 Local parameter update step

To solve the local step optimization problem in Eq. (2.105), we first simplify the whole objective L
by showing it as a function of the responsibilities at each observation n. We gather those terms that

do not depend on the active responsibilities r̂ for clusters k ∈ {1, . . .K} together into a constant

term:

L(x, r̂, η̂, τ̂ , θ̂) = const(x, η̂, τ̂ , ν̂) +

N∑

n=1

Ln(r̂n, xn, η̂, τ̂ , θ̂) (2.108)

Now, the objective at observation n is given by

Ln(r̂n, xn, η̂, τ̂ , ν̂) ,
K∑

k=1

r̂nk

(

Wnk(xn, θ̂, τ̂ , ν̂)− log r̂nk

)

(2.109)

Wnk(xn, η̂, τ̂ , ν̂) , Eq(φk)

[

log p(xn|φk)
]

+ Eq(π|θ̂)

[

log πk

]

(2.110)

Here, we can interpret each Wnk as the log posterior weight that cluster k has on observation n.

Larger values indicate that cluster k is more likely to explain observation n. The expectations that

define Wnk have closed form under our chosen approximate posterior family q(π)q(φ).

From the decomposition of L into a sum of independent terms for each observation, it is clear

that our objective may be optimized independently for each observation n.

r̂∗n = argmax
r̂n

Ln(r̂n, xn, η̂, τ̂ , ν̂) (2.111)

subject to r̂n ≥ 0 and
∑K

k=1 r̂nk = 1

Through standard constrained optimization methods, we find the solution for the optimal re-

sponsibility vector r̂∗n. We can compute the optimal vector in closed-form by setting each entry

k ∈ {1, 2, . . .K} to the exponentiated posterior weight eWnk and then normalizing:

r̂∗nk =
eWnk

∑K
ℓ=1 e

Wnℓ

, (2.112)
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Algorithm 2.3 Update for responsibilities given log posterior weights for mixture model.

Input: [Wn1 Wn2 . . .WnK ] : log posterior weights.
Output: [r̂n1 . . . r̂nK ] : responsibility values for each cluster
1: function RespFromWeights(Wn)
2: for k ∈ 1, . . .K do
3: r̂nk = eWnk

4: sn =
∑K

k=1 r̂nk
5: for k ∈ 1, . . .K do
6: r̂nk = r̂nk/sn

7: return r̂n

RespFromWeights delivers posterior probabilities of assigning data observation at index n to each
cluster k in the set {1, 2, . . .K}. See Sec. 2.6.1 for details.

which by inspection is guaranteed to obey the required constraints that responsibilities must be

non-negative and sum to one. By performing the update in Eq. (2.112) at each observation n

independently, we will compute the optimal responsibilities r̂ for the whole dataset.

2.6.2 Global parameter update step

Global step for observation model

As discussed in Sec. 2.1.3, the optimal observation global parameters τ̂∗k , ν̂
∗
k for every cluster k ∈

{1, 2, . . .K, . . .} which solve the optimization problem in Eq. (2.106) can be found in closed form:

τ̂∗k = Sk(x, r̂) + τ̄ (2.113)

ν̂∗k = Nk(r̂) + ν̄

These optimal values naturally satisfy the required constraints ν̂∗k ∈ R+ and τ̂∗k ∈ M, so that ν̂∗k

and τ̂∗k remain valid parameters for the density q(φk).

Simplified Ldata objective term. Substituting the optimal points τ̂∗, ν̂∗ into the original objec-

tive Ldata in Eq. (2.95) , we see that the last two lines involving the terms Nk+ ν̄− ν̂k and Sk+ τ̄− τ̂k
will evaluate two zero, leaving a greatly simplified expression:

Ldata(x, r̂, τ̂∗, ν̂∗) =
N∑

n=1

h(xn) +

K∑

k=1

(

cP(τ̄ , ν̄)− cP(τ̂∗k , ν̂∗k)
)

(2.114)

The reference measure term remains unchanged, while the sum over the cumulant functions is over

the K active clusters.

Global step for allocation model

To find the optimal values θ̂ for the optimization problem in Eq. (2.107), we can apply standard

constrained optimization techniques like Lagrange multipliers to find the closed-form solution for
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Algorithm 2.4 Variational coordinate ascent for finite mixture model

Input:
{xn}Nn=1 : dataset with N exchangeable observations
τ̄ , ν̄ : hyperparameters defining the prior P(φk|τ̄ , ν̄)
θ̂ : Initial global parameters of the allocation model
{τ̂k, ν̂k}Kk=1 : Initial global parameters of the observation model

Output:
θ̂ : Final global parameter of allocation model
{τ̂k, ν̂k}Kk=1 : Final global parameters of the observation model

1: function VariationalCoordAscentForFiniteMixtureModel

2: while not converged do
3: for n ∈ 1, 2, . . .N do ⊲ Local parameter update step
4: for k ∈ 1, 2, . . .K do
5: Cnk ← Eq[log p(xn|φk)]
6: Wnk ← Cnk + Eq[log πk]

7: r̂n = RespFromWeights(Wn)

8: for k ∈ 1, 2, . . .K do ⊲ Summary step
9: Sk(x, r̂) =

∑N
n=1 r̂nks(xn)

10: Nk(r̂) =
∑N

n=1 r̂nk

11: for k ∈ 1, 2, . . .K do ⊲ Global parameter update step
12: τ̂k ← Sk(x, r̂) + τ̄
13: ν̂k ← Nk(r̂) + ν̄

14: θ̂k ← Nk(r̂) +
γ
K

Block coordinate ascent algorithm for approximate posterior inference for the finite mixture model.
We alternate between two updates: one for the local assignment parameters r̂ given fixed global
parameters, and another for the global allocation parameters θ̂ and the global observation parameters
τ̂ , ν̂. All update steps scale linearly with the number of observations N and clusters K.

each cluster k:

θ̂∗k = Nk(r̂) +
γ

K
(2.115)

Naturally, these updates preserve the required constraints θ̂ ≥ 0.

2.6.3 Full-dataset optimization algorithm

Alg. 2.4 gives the overall algorithm for finding the optimal free parameters under our optimization

objective function L for a given dataset x. Given some initial global parameters, it iteratively cycles

between the local step for q(zn) in Eq. (2.111) and the global parameter updates. The global step is

then decomposed into an update for the observation model in Eq. (2.113) and the allocation model

in Eq. (2.115), which can be done independently once the required sufficient statistics are computed.
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2.7 Discussion

We emphasize that Alg. 2.1 and Alg. 2.4 are two possible approaches to training a finite mixture

model with K possible clusters from observed data x. The first uses a MAP point estimation

objective:

J (z, π, µ) = log p(ϕ(π)) +

K∑

k=1

log p(φk(µ)) +

K∑

k=1

N∑

n=1

δk(zn)
[

log πk + log p(xn|φk(µ))
]

(2.116)

while the variational approach optimizes a lower bound on the marginal likelihood :

L(r̂, θ̂, τ̂ , ν̂) ≤ log p(x|ν̄, τ̄ , γ) (2.117)

By inspection, we see that the steps of the full variational approach in Alg. 2.4 have almost the same

runtime complexity as the point estimation algorithm. Certainly, the global step in both algorithms

has exactly the same complexity given the sufficient statistics. Likewise, the computation of the

weight matrix W in each algorithm has the same cost. The key difference lies in representing the

point estimated integer zn vs. the approximate posterior responsibility vector r̂n. The variational

approach has the additional step of performing the RespFromWeights update, which requires

appreciable more work than simply taking the cluster index with maximum weight. However, the

modest additional cost of the full variational approach yields significant gains in model selection.



Chapter 3

Scalable variational inference for

Dirichlet process mixture models

We now consider the simplest Bayesian nonparametric model for clustering: the Dirichlet process

mixture model. Recall the finite mixture model with a fixed set of K possible clusters from Ch. 2.

One formal interpretation of the DP mixture model is the limit of the finite mixture model as the

number of clusters K → ∞. By providing an infinite number of possible clusters a-priori, the DP

mixture model provides a flexible way to avoid an overly restrictive fixed number of clusters and

easily transition from a few hundred examples to a few million examples, because the model capacity

adjusts automatically.

Both MCMC samplers (Neal, 1992; Rasmussen, 1999; Walker, 2007) and early variational opti-

mization algorithms (Blei and Jordan, 2006; Kurihara et al., 2006) are well-known for training DP

mixture models from datasets. This chapter describes and extends our earlier work described in an

NIPS 2013 conference paper co-authored with Erik Sudderth (Hughes and Sudderth, 2013), whose

fundamental contributions are:

Contribution 1: Improved approximations to the posterior via nested truncation.

While there are an infinite number of clusters available to this model under both its prior and

posterior, only a finite number of clusters can be practically represented in a computer. Previ-

ous variational approaches (Blei and Jordan, 2006; Kurihara et al., 2006) had chosen approximate

posterior distributions q(z)q(φ)q(πG) with stringent truncation assumptions that lead to modeling

artifacts. Instead, we take inspiration from Teh et al. (2008) to consider a truncation which is more

elegant yet equally fast to train.

Contribution 2: New memoized inference algorithm for scalable training from mil-

lions of examples. Inspired by the incremental expectation-maximization (EM) algorithm from

48
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Neal and Hinton (1998), we develop our own incremental algorithm for training approximate poste-

rior representations rather than point estimates. Using memoized or cached sufficient statistics, we

can process small subsets of data before each global parameter update step yet maintain. Unlike

stochastic algorithms, our memoized algorithm avoids nuisance learning rates entirely and formally

guarantees the ELBO objective function will monotonically increase after every step.

Roadmap. We first formally define the stick-breaking transformation, which we then use to define

a generative process for the DP mixture model with independently-sampled global random variables.

With the generative model in place, we develop a variational optimization problem with standard

mean-field assumptions and our chosen nested truncation for approximate posteriors for each as-

signed cluster label q(zn). Closely following the variational algorithm for finite mixture models from

Ch. 2, we develop the objective function and the relevent update steps for global and local variables.

We then develop two scalable alternatives: stochastic variational and memoized variational.

In this chapter, we focus on fixed-truncation algorithms and leave description of adaptive pro-

posals for adding and removing clusters to Ch. 4.

3.1 Stick-breaking construction of Dirichlet Process

The Dirichlet process defines a distribution over random probability measures, or equivalently func-

tions over a predefined event space that are non-negative and sum to one. Here we provide a formal

definition of this stochastic process as well as a generative construction.

3.1.1 Dirichlet processes

Suppose that Φ is a measurable event space, either real or discrete. For example, Φ could be the

set of all positive integers or the set of all real numbers. We first define a properly-normalized base

measure P over this space. For example, if Φ is the real line, then the density P could be a univariate

Gaussian distribution. Formally, we require that if Φ is a discrete space, we have
∑

φ∈Φ P(φ) = 1,

while if continuous we have
∫

φ∈Φ P(φ)dφ = 1.

Now, consider another measure R over the event space Φ. We say that R is a realization of

a Dirichlet process with base measure P, if for any complete partition of Φ into K disjoint pieces

labelled T1, T2, . . . TK we have:

[R(T1) R(T2) . . . R(TK)] ∼ DirK(γP(T1), γP(T2), . . . γP(TK)) (3.1)

Here, the scalar γ > 0 is the concentration parameter of the Dirichlet process. We write this

realization as R ∼ DP(γ,P). For further formal details of this definition, see (Sudderth, 2006,

Theorem 2.5.1).

For example, consider the event space of all countable integers Φ = {1, 2, 3, 4, . . .}. Let the base

measure P be an infinite vector of probabilities that sum to one: {Pk}∞k=1. The realization R would

also correspond to an infinite vector of probabilities {Rk}∞k=1. Suppose we partitioned the event



50

space Φ into the first two clusters T1 = {1}, T2 = {2}, and all remaining clusters T>2 = {3, 4, . . .}.
Then, we would consider R a realization of a Dirichlet process if:

[R1, R2, R>2] ∼ Dir3(γP1, γP2, γP>2) (3.2)

where the subscript >2 is defined as the infinite remaining sum of all terms beyond index 2: R>2 =
∑∞

k=3Rk.

This definition is not constructive, because it does not give us a formula for generating sample

realizations R. We develop such a construction in the next section.

3.1.2 Stick-breaking transformation

Recall that under the finite mixture model from Ch. 2, we draw the K-dimensional frequency vector

from a Dirichlet prior: πG ∼ DirK( γ
K
. . . γ

K
). Taking the infinite limit of this density as K → +∞ is

not directly tractable. We cannot generate samples from the infinite limit the same way we would

usually draw finite samples. Instead, we develop an alternative construction which lets us build

an infinite-dimensional frequency vector πG from a series of independent, identically-distributed

random variables {uk}∞k=1. Formally, there is a one-to-one invertible transformation between πG

and u called the stick-breaking transformation, which was developed by Sethuraman (1994).

Stick-breaking transformation Consider two infinite-dimensional vector spaces:

∆∞ , {π ∈ R
∞ :

∞∑

k=1

πk = 1, πk ≥ 0 ∀k} (3.3)

U∞ , {u ∈ R
∞ : uk ∈ [0, 1] ∀k}

First, the simplex ∆∞ contains normalized vectors π of positive real values that sums to one. Second,

the space U∞ contains unnormalized vectors u of real values between zero and one.

There exists a deterministic, invertible, one-to-one transformation between each normalized vec-

tor π ∈ ∆∞ and a corresponding vector u ∈ U∞, defined as:

πk(u) = uk
∏k−1

ℓ=1 (1−uℓ) uk(π) =
πk

1−
∑k−1

ℓ=1
πk

(3.4)

The transformation in Eq. (3.4) is often called the stick-breaking transformation. Because it is

invertible, we can apply it to any probability density defined over the space U∞ and obtain a

corresponding density over ∆∞

Sampling a realization via stick-breaking. Consider an infinite series of values u = {uk}∞k=1

consisting of independent draws from a Beta distribution: uk ∼ Beta(1, γ). Consider a corresponding

infinite series of values φ = {φk}∞k=1 drawn as independent samples from the base measure: φk ∼ P.

We can construct a realization of the Dirichlet process as:

R =

∞∑

k=1

πG
k (u)δ(φk), πG

k (u) = uk

k−1∏

ℓ=1

(1 − uℓ) (3.5)
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Here, the realization R is composed of infinitely-many point-masses φk, each with a frequency value

πG
k . The frequency at cluster k, denoted πG

k is the stick-breaking transform of the independent

conditional probabilities u into the simplex. This transformed vector πG satisfies the definition of

the Dirichlet process from Eq. (3.1) (Sudderth, 2006).

Stick-breaking construction is size-biased. Under the stick-breaking construction, the ex-

pected values of each entry of frequency vector πG will decrease as the index k increases:

E
uk∼Beta(1,γ)[π1(u)] =

1

1 + γ
(3.6)

E
uk∼Beta(1,γ)[π2(u)] =

1

1 + γ
· γ

1 + γ

E
uk∼Beta(1,γ)[π3(u)] =

1

1 + γ
· γ

1 + γ
· γ

1 + γ

. . . E
uk∼Beta(1,γ)[πk(u)] =

γk−1

(1 + γ)k

Thus, in general, realizations of the vector πG(u) will tend to have larger values for early indices

than later ones. We call this property size-biasedness.

This property does not exist in the finite mixture model, where we draw πG from a symmetric

Dirichlet distribution: πG ∼ DirK( γ
K
. . . γ

K
). To see the connection, we imagine drawing an infinite

vector p ∈ ∆∞ from the following limiting density

p ∼ lim
K→∞

DirK([
γ

K
. . .

γ

K
]) (3.7)

After sorting the resulting vector p in descending order, we’ll find that the distribution of the sorted

vector p is equivalent to the distribution on πG.

Alternative stochastic process priors. The Dirichlet process (DP) serves as the underlying

stochastic process for all the probabilistic clustering models we consider. Extensions to richer class

of Pitman-Yor (PY) process (Pitman and Picard, 2006) or the logistic stick-breaking process should

be possible and at least for the PY mixture model should be straightforward, but we do not explore

these here.

3.2 Dirichlet process mixture models

The Dirichlet process mixture model, often called a DP mixture model, was first introduced by

Ferguson (1973). This widely-used Bayesian nonparametric model generates an exchangeable dataset

x = {x1, . . . xN} with N total observations from a countably infinite set of clusters with labels in

the set of integers {1, 2, 3, . . . k, k + 1 . . .}. Each cluster with label k has two parameters: the

appearance probability πG
k and the cluster shape parameter φk. These are the global parameters.

Each observation n has one local unknown variable: its discrete assignment zn ∈ {1, 2, . . .}. A

directed graphical model is shown in Fig. 3.1.
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· · ·
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π
G

x1 x2 x3 xN

z1 z2 z3 zN

φk

K
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K

ûk

ω̂k

r̂1 r̂2 r̂3 r̂N

τ̂k

ν̂k

Figure 3.1: Directed graphical representation of the Dirichlet Process Mixture Model
We show the fundamental random variables (circled nodes), hyperparameters (gray), and variational
free parameters (red) of the Dirichlet process (DP) mixture model, a Bayesian nonparametric model
with K → ∞ clusters. Each cluster is defined by two global parameters: conditional probability
uk and shape parameter φk. The conditional probabilities u are deterministically mapped to global
cluster probabilities πG via the invertible stick-breaking transformation. Each of the N observed
data atoms xn has an associated local cluster assignment zn. The data is assumed to be exchangeable
and conditionally independent given the global parameters. Under our chosen nested truncation for
the approximate posterior, each q(zn) is defined by a responsibility vector r̂n which places mass only
on the first K cluster labels.

3.2.1 Generative model for global parameters

We use the earlier stick-breaking construction to generate each cluster k’s two global parameters:

the conditional probability uk and the shape parameter φk.

Allocation model prior on global cluster frequencies. We generate the conditional proba-

bility uk ∈ (0, 1) independently from a Beta distribution: uk ∼ Beta(1, γ). We interpret this as

the probability of choosing cluster k among the infinite set of cluster labels with index at least k

or larger: {k, k + 1, . . .}. From the series {uℓ}kℓ=1, we can obtain the corresponding frequency value

πG
k = πk(u) via the stick-breaking transformation. Because this transformation is invertible, any

distribution on quantity u implies a corresponding distribution on πG. We can choose to work with

either πG or u when convenient. We find that usually it is easier to work with u.
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Observation model prior on global cluster shape parameters. Specifying a DP mixture

model requires a choice for the exponential family conjugate-prior density P for observation parame-

ters {φk}∞k=1. As discussed in Sec. 2.1.3, each cluster’s parameters are drawn i.i.d. from this density:

φk ∼ P (φk|τ̄ , ν̄). Recall that hyperparameter ν̄ determines the effective-sample-size of this prior,

while τ̄ then determines then expected mean parameter: E
φk∼P[µ(φk)] =

τ̄
ν̄
.

3.2.2 Generative model for local variables

Given fixed global parameters, we sample a cluster label from the infinite set {1, 2, . . .} according to

the probability vector π(u), a deterministic function of u. Then, given the chosen cluster label zn,

we draw an observation xn from the observation model’s likelihood density with parameter φzn .

zn ∼ Cat∞(π1(u), . . . πk(u), . . .) (3.8)

xn ∼ L(φzn) (3.9)

We previously introduced the exponential family likelihood density L in Sec. 2.1.3.

The complete joint probability is then

log p(x, z, u, φ) =

N∑

n=1

∞∑

k=1

δk(zn)
(

log L(xn|φk) + log πk(u)
)

+

∞∑

k=1

log P(φk) + logBeta(uk|1, γ)

(3.10)

where by substituting in the definition πk(u) = uk
∏

ℓ<k(1 − uℓ) we have

log πk(u) = log uk +
k−1∑

ℓ=1

log(1 − uℓ) (3.11)

3.3 Posterior inference as a variational optimization problem

Given a dataset x, our goal is to estimate the posterior distribution for all latent random variables

in Fig. 3.1. That is, we’d like a joint posterior p(φ, u, z | x), over the three random variables of

interest: the global conditional appearance probabilities u (which determine π(u), the global shape

parameters φ and the local assignment variables z. As with the finite mixture model from Ch. 2, we

develop a variational optimization algorithm (Wainwright and Jordan, 2008) in three steps. First,

in Sec. 3.3.1 we define a simplified family of probability distributions for our variables of interest

z, u, and φ, which forms our approximate posterior distribution. Next, in Sec. 3.3.2 we define an

optimization problem whose objective is to find the free variables under which the approximate

posterior is as close as possible in KL divergence to the true, intractable posterior. Third, in

Sec. 3.4 we define an algorithm which, given input data x, delivers the free parameters that solve

our optimization problem.
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3.3.1 Mean-field approximate posterior

Let q(z, u, φ) denote our approximate posterior. As prevously discussed, without any simplifying

assumptions even enumerating all possible posterior values is infeasible for all but the smallest

datasets. To make our optimization problem computationally feasible, we assume that each of

the assignments zn is independent of the others, and each of the cluster parameters uk, φk are

independent of the others. That is, we can factorize the approximate density as

q(u, φ, z) =
∞∏

k=1

q(φk) ·
∞∏

k=1

q(uk) ·
N∏

n=1

q(zn) (3.12)

We further assume each independent factor of this approximate posterior has a density that belongs

to the exponential family. The form of this density is chosen to mimic the generative model:

q(φ) =

∞∏

k=1

P(φk|τ̂k, ν̂k) (3.13)

q(u) =

∞∏

k=1

Beta(uk|η̂k1, η̂k0) (3.14)

q(z) =

N∏

n=1

Cat∞(zn|r̂n1, . . . r̂nk . . .) (3.15)

Under this chosen factorization, the variables ν̂, τ̂ , η̂, r̂ are the free parameters of our approximate

posterior. The goal of variational optimization is to find specific values of these free parameters that

make q(u, φ, z) a good approximation to the true posterior. We always denote free parameters with

hats to make clear which variables are instantiated and optimized by the algorithm.

Approximate posterior q(uk) for global cluster frequencies

Each cluster k in our countably infinite set is given an independent posterior factor q(uk). Just like

its generative counterpart p(uk), we assume that the approximate posterior factor q(uk) takes the

form of a Beta distribution. Below, we discuss two possible parameterizations of a Beta approximate

posterior distribution. First, the common parameterization which is most straightforward. Second,

an alternative which specifically decouples a mean and a concentration.

Common parameterization. Let factor q(uk) takes the form of a Beta distribution with common

parameters η̂k1, η̂k0: uk ∼ Beta(uk|η̂k1, η̂k0). These free parameters η̂k1 > 0, η̂k0 > 0 are global

parameters for the allocation model. If η̂k1 >> η̂k0, then Eq[uk] ≈ 1; otherwise if η̂k0 >> η̂k1 then

Eq[uk] ≈ 0. This is why we index these free parameters with 1 and 0: they may be interpreted as

pseudo-counts for the events uk = 1 and uk = 0.
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Alternative parameterization. We can also write the approximate posterior in terms of param-

eters {ûk, ω̂k}∞k=1:

q(u) =
∞∏

k=1

Beta(uk|ûkω̂k, (1− ûk)ω̂k) (3.16)

Under this parameterization, the free parameter ûk ∈ [0, 1] exactly sets the expected value of uk:

Eq[uk] = ûk, while ω̂k > 0 controls the variance.

There is a one-to-one invertible transformation between û, ω̂ and η̂:

η̂k1 = ûkω̂k ûk(η̂) =
η̂k1

η̂k1 + η̂k0
(3.17)

η̂k0 = (1− ûk)ω̂k ω̂k(η̂) = η̂k1 + η̂k0

This alternative parameterization is useful because the expected value of πG(u) can be written

entirely in terms of û:

Eq[π
G(u)] = ûk

k−1∏

ℓ=1

(1− ûℓ) (3.18)

Approximate posterior q(φk) for global cluster shape

Each cluster k in our countably infinite set is given an independent posterior factor q(φk) for its

shape parameter φ. Following the analysis in Sec. 2.1.3, we assume this factor comes from the

conjugate prior family P. The factor has two free parameters: pseudo-count ν̂k > 0 and vector

parameter τ̂k which defines the cluster shape.

Local assignment factor q(zn)

Under the generative model, the assigned cluster label zn for observation n could use any of the

infinitely many cluster indices. Thus, we have naively written above that q(zn) defines a discrete

distribution over infinitely many clusters. We can write the free parameters for this factor as a

vector of countably infinite length with one entry per cluster: r̂n = r̂n1, r̂n2, . . . r̂nk, . . .. To be a

valid parameter for the categorical distribution, this infinite vector must obey two constraints: (1)

every entry is non-negative: r̂nk ≥ 0, and (2) the whole vector sums to unity:
∑∞

k=1 r̂nk = 1.

Intuitively, each scalar entry r̂nk ∈ [0, 1] represents the probability data xn is assigned to cluster

k under the approximate posterior. This probability value is sometimes called the responsibility.

Formally, r̂nk , Eq(z)[δk(zn)].

The problem with defining q(zn) as a distribution over an unbounded number of clusters is

that we cannot represent an infinite vector r̂n in a practical implementation. However, despite

an infinite number of clusters available a priori from a BNP model, given a finite dataset with N

atoms only a finite set of K unique cluster labels will be assigned, where 1 ≤ K ≤ N . The remaining

unassigned clusters will be conditionally independent of the data. Inspired by this fact, we introduce
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an additional constraint on the vector r̂n: only the firstK entries have non-zero values; all remaining

entries with cluster index k > K equal exactly zero.

q(zn|r̂n,K) = Cat∞(zn|r̂n1, r̂n2, . . . r̂nK , . . .) (3.19)

s.t. r̂n ≥ 0,
∞∑

k=1

r̂nk = 1,
∞∑

k=K+1

r̂nk = 0 (3.20)

Here, integer K > 0 is a fixed truncation level, which can be held constant throughout classic

inference or optimized by our proposal moves in Ch. 4.

This local truncation assumption constrains only the form of the local assignment factor q(zn). No

additional truncation assumptions are needed for either q(φ) or q(u). Instead, a direct consequence

of assuming q(zn) has positive mass only the first K clusters is that all clusters with index k > K

are conditionally independent of the observed data. We thus cannot learn anything about the free

parameters {τ̂k, ν̂k}∞k=K+1 from our data, nor the allocation parameters {η̂k}∞k=K+1. Instead, these

factors have closed-form optimal values which match the corresponding prior marginals p(uk) and

p(φk) under the generative model.

3.3.2 Evidence lower-bound objective function

Given the assumed factorization of q(u, φ, z) above, we now set up an optimization problem over our

free parameters ν̂, τ̂ , η̂, r̂. The goal is to minimize KL divergence between the approximate posterior

q and the true posterior (Wainwright and Jordan, 2008).

argmin
ν̂,τ̂ ,η̂,r̂

KL(q(u, φ, z|ν̂, τ̂ , η̂, r̂)||p(u, φ, z|x)) (3.21)

Computing this KL divergence directly is not possible. However, following the arguments from our

variational optimization problem for finite mixture models from Sec. 2.5.2, we define an equivalent

optimization problem:

L(x, ν̂, τ̂ , η̂, r̂, K) , log p(x) −KL(q(u, φ, z|ν̂, τ̂ , η̂, r̂, K)||p(u, φ, z|x)) (3.22)

= Eq(u,φ,z)

[

log p(x, u, φ, z)− log q(u, φ, z)
]

(3.23)

Under our chosen exponential family forms for each factor of q(u, φ, z), the expectations that define

L lead to a closed-form function of the free parameters τ̂ , ν̂, η̂, r̂. We can tractably evaluate L and

take derivatives, making optimization of the free parameters possible.

We emphasize that because the KL divergence term is always non-negative, the objective L can

be interpreted as a strict lower bound on the marginal likelihood log p(x). We thus often refer to the

function L as the Evidence Lower BOund, or ELBO. Maximizing L can be interpreted as improving

the approximate posterior’s explanation of the data.

We can write the objective L as a sum of two terms:

L(x, r̂, η̂, τ̂ , ν̂) = Ldata(x, r̂, τ̂ , ν̂) + Lalloc(r̂, η̂) (3.24)
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These terms describe distinctly interpretable pieces of the overall model: Ldata gathers terms related

to the observation model and Lalloc gathers terms related to the allocation model. Our chosen

notation for each term of the objective highlights the variational parameters involved. For example,

Lalloc(r̂, η̂) is independent of the observation parameters ν̂, τ̂ . These terms may also be functions of

the data x and hyperparameters H, but we omit these arguments in notation for simplicity.

This term-by-term breakdown of the objective encourages a modular implementation. Given

fixed assignments r̂, the solution to finding the optimal observation model parameters ν̂, τ̂ must be

independent of the allocation probability parameters η̂, and vice versa. This modularization enables

our implementation to implement free parameter updates once for each possible observation model

or allocation model, and compose these modules to create an overall model.

3.3.3 Observation model term of the objective

The data term is defined by

Ldata(x, r̂, τ̂ , ν) , Eq

[

log p(x|z, φ) + log
p(φ|ν̄, τ̄)
q(φ|ν̂, τ̂)

]

(3.25)

=

N∑

n=1

∞∑

k=1

r̂nkEq(φk|ν̂k,τ̂k)

[

log p(xn|φk)
]

+

∞∑

k=1

Eq(φk|ν̂k,τ̂k)

[

log
p(φk|ν̄, τ̄ )
q(φk|ν̂k, τ̂k)

]

Where we have already substituted in the soft assignment free parameters: r̂nk = Eq(zn|r̂n)[δk(zn)].

We can further simplify this objective by using the derivations from Sec. 2.1.3. We have

Ldata(x, r̂, τ̂ , ν̂) =
N∑

n=1

h(xn) +

∞∑

k=1

(

cP (τ̄ , ν̄)− cP (τ̂k, ν̂k)
)

(3.26)

+

∞∑

k=1

(

Nk(r̂) + ν̄ − ν̂k
)

Eq(φk)

[

− cL(φk)
]

+

∞∑

k=1

D∑

d=1

(

Skd(x, r̂) + τ̄d − ν̂kd
)

Eq(φk)

[

φkd

]

where we have the previously defined sufficient statistics for the expected count Nk =
∑N

n=1 r̂nk

and the expected data statistic Sk =
∑N

n=1 r̂nks(xn) for each cluster k. The remaining expectations

are the fundamental ones of the conjugate exponential family likelihood-prior system chosen, which

have closed form.

3.3.4 Allocation model term of the objective

We write the allocation model’s contribution to the objective as:

Lalloc(r̂, η̂) , Eq(z|r̂)q(u|η̂)

[

log
p(z|π)
q(z|r̂) +

K∑

k=1

log
p(uk|γ)
q(uk|η̂)

(3.27)
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Regrouping terms, we can separate this into an entropy term for the distribution q(z|r̂) and a term

which gathers all functions of η̂:

Lalloc(r̂, η̂) = Lentropy(r̂) + LDP-alloc(r̂, η̂) (3.28)

Entropy term

The entropy of the assignments is a simple non-linear function of the responsibilities:

Lentropy(r̂) = −
N∑

n=1

Eq[log q(zn)] = −
N∑

n=1

r̂nk log r̂nk. (3.29)

Because this is the entropy of a discrete random variable, by definition we known that this term will

always be positive or zero: Lentropy(r̂) ≥ 0.

Stick-breaking allocation term

Standard conjugate exponential family mathematics yields a simple expression for LDP-alloc:

LDP-alloc(r̂) = Eq[log p(z|π(u)) + log
p(u)

q(u)
] (3.30)

=
∞∑

k=1

cBeta(1, γ)− cBeta(η̂k1, η̂k0) (3.31)

+

∞∑

k=1

(

Nk(r̂) + 1− η̂k1
)

Eq[log uk]

+
∞∑

k=1

(

N>

k (r̂) + γ − η̂k0
)

Eq[log 1− uk]

Here, the expectations have closed form under the assumed Beta distribution q(uk|η̂k):

Eq[log uk] , ψ(η̂k1)− ψ(η̂k1 + η̂k0) (3.32)

Eq[log 1− uk] , ψ(η̂k0)− ψ(η̂k1 + η̂k0) (3.33)

and the cumulant function of the Beta distribution is

cBeta(a1, a0) , log Γ(a1 + a0)− log Γ(a1)− log Γ(a0) (3.34)

Finally, the summary statistics Nk(r̂) and N
>

k (r̂) for each cluster k ∈ {1, 2, . . .K, . . .} are defined as:

Nk(r̂) ,

N∑

n=1

Eq(z)[δk(zn)] =







∑N
n=1 r̂nk if k ≤ K

0 if k > K
(3.35)

N>

k (r̂) ,

N∑

n=1

∞∑

ℓ=k+1

Eq(z)

[

δℓ(zn)
]

=







∑K
ℓ=k+1Nk(r̂) if k < K

0 if k ≥ K
(3.36)

We can interpret Nk as the effective count of data observations assigned to cluster label k, and N>

k

as the effective count of observations with a label larger than k. Under the assumed truncation level
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K, for every inactive cluster label k > K we have r̂nk = 0, which implies that both counts are also

zero: Nk = 0 and N>

k = 0. Further, at the final active cluster index K, we have N>

K = 0 as well by

definition. Both quantities Nk and N>

k in Eq. (3.35) are linear functions of the responsibilities r̂.

3.4 Update steps for variational optimization

We can now formally define the constrained optimization problem for our free parameters τ̂ , ν̂, η̂, r̂

given an observed dataset x:

argmax
τ̂ ,ν̂,η̂,r̂

Ldata(x, r̂, τ̂ , ν̂) + Lentropy(r̂) + LDP-alloc(r̂, η̂) (3.37)

subject to r̂n ≥ 0 and
∑K

k=1 r̂nk = 1 for n = 1, 2, . . .N

η̂k ≥ 0 for k = 1, 2, . . .

ν̂k ≥ 0 and τ̂k ∈ M for k = 1, 2, . . .

Remember that these functions implicitly require the DP concentration hyperparameter γ > 0, as

well as the observation model hyperparameters τ̄ , ν̄, though our notation omits them for simplicity.

Given the internal structure of the objective, we pursue a block-coordinate ascent algorithm,

which proceeds in three steps. Each step updates the free parameters of one factor among q(z),

q(u), and q(φ) while holding the other free parameters fixed. When applied iteratively, these steps

are guaranteed to monotonically improve the whole objective L until it converges to a fixed point

local optima.

Below, we define the optimization problem solved by each step of the block-coordinate ascent

algorithm. We then describe detailed solutions which solve each problem below in closed-form in

the following sections.

Local step: Update local assignment responsibilities

argmax
r̂

Ldata(x, r̂, τ̂ , ν̂) + Lentropy(r̂) + LDP-alloc(r̂, η̂) (3.38)

subject to r̂n ≥ 0 and
∑K

k=1 r̂nk = 1 for n = 1, 2, . . .N

Global step: Update observation model global parameters

argmax
τ̂ ,ν̂

Ldata(x, r̂, τ̂ , ν̂) subject to ν̂k ≥ 0 and τ̂k ∈M for k = 1, 2, . . . (3.39)

Global step: Update allocation model global parameters

argmax
η̂

LDP-alloc(r̂, η̂) subject to η̂k ≥ 0 for k = 1, 2, . . . (3.40)
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3.4.1 Global parameter update step

Global step for observation model

As discussed in Sec. 2.1.3, the optimal observation global parameters τ̂∗k , ν̂
∗
k for every cluster k ∈

{1, 2, . . .K, . . .} which solve the optimization problem in Eq. (3.39) can be found in closed form:

τ̂∗k = Sk(x, r̂) + τ̄ (3.41)

ν̂∗k = Nk(r̂) + ν̄

These optimal values naturally satisfy the required constraints ν̂∗k ∈ R+ and τ̂∗k ∈ M, so that ν̂∗k

and τ̂∗k remain valid parameters for the density q(φk).

Updates for inactive clusters. For every inactive cluster k > K, we have by definition Nk = 0

and Sk = 0. Thus, the optimal points reduce to the values of the prior hyperparameters: τ̂∗k = τ̄

and ν̂∗k = ν̄. Throughout our optimization, we assume that the infinitely many inactive cluster

parameters are set this way. They need not actually be represented explicitly, because they do not

influence any of the other variational free parameters or the exact calculation of the ELBO objective

function L.

Simplified Ldata objective term. Substituting the optimal points τ̂∗k , ν̂
∗
k into the original objec-

tive Ldata in Eq. (3.26) for both active and inactive clusters, we see that the last two lines involving

the terms Nk + ν̄ − ν̂k and Sk + τ̄ − τ̂k will evaluate to zero for every cluster index k. This leaves a

greatly simplified expression:

Ldata(x, r̂, τ̂∗, ν̂∗) =
N∑

n=1

h(xn) +
K∑

k=1

(

cP(τ̄ , ν̄)− cP(τ̂∗k , ν̂∗k)
)

(3.42)

The reference measure term remains unchanged, while the sum over the cumulant functions is now

only over theK active clusters, not all countably infinite clusters. This occurs because for all inactive

clusters, we have τ̂∗k = τ̄ and ν̂∗k = ν̄, and thus the difference of cP functions at inactive clusters will

necessarily be zero without any explicit evaluation required.

Global step for allocation model

To find the optimal values η̂ for the optimization problem in Eq. (3.40), we can apply standard

constrained optimization techniques like Lagrange multipliers to find the closed-form solution for

each cluster k:

η̂∗k1 = Nk(r̂) + 1 (3.43)

η̂∗k0 = N>

k (r̂) + γ

Naturally, these updates preserve the required constraints η̂ ≥ 0.
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Update for inactive clusters. For any inactive cluster k > K, by definition Nk = 0 and N>

k = 0,

which leaves the fixed points equal to the prior hyperparameters: η̂∗k1 = 1 and η̂∗k0 = γ. Throughout

optimization, we may assume the inactive cluster parameters are set this way. They need not be

represented in memory.

Simplified LDP-alloc objective term. Substituting the optimal points η̂∗ into the function

LDP-alloc in Eq. (3.30), we find that the coefficients Nk + 1 − η̂k1 and N>

k + γ − η̂k0 will evalu-

ate to zero, leaving a simplified expression:

LDP-alloc(r̂, η̂
∗) =

K∑

k=1

cBeta(1, γ)− cBeta(η̂k1, η̂k0) (3.44)

where again, the difference in cumulant functions for k > K will always evaluate to zero under the

optimal settings of η̂∗, and thus we need not represent these inactive terms of the sum at all.

3.4.2 Local parameter update step

To solve the local step optimization problem in Eq. (3.38), we first simplify the whole objective L by

showing it as a function of the responsibilities at each observation n. We gather those terms that do

not depend on the active responsibilities r̂ for clusters k ∈ {1, . . .K} together into a constant term:

L(x, r̂, η̂, τ̂ , ν̂) = const(x, η̂, τ̂ , ν̂) +
N∑

n=1

Ln(r̂n, xn, η̂, τ̂ , ν̂) (3.45)

Now, the relevant objective function Ln, which captures all terms from Ldata,Lentropy,LDP-alloc

relevant to observation n, is given by:

Ln(r̂n, xn, η̂, τ̂ , ν̂) ,
K∑

k=1

r̂nk

(

Wnk(xn, η̂, τ̂ , ν̂)− log r̂nk

)

(3.46)

Wnk(xn, η̂, τ̂ , ν̂) , Eq(φk)

[

log p(xn|φk)
]

+ Eq(u)

[

log πk(u)
]

(3.47)

Here, we can interpret each Wnk as the log posterior weight that cluster k has on observation n.

Larger values indicate that cluster k is more likely to explain observation n. The expectations that

define Wnk have closed form when q(φk) and q(uk) come from our chosen exponential family forms.

From the decomposition of L into a sum of independent terms for each observation, it is clear

that our objective may be optimized independently for each observation n.

r̂∗n = argmax
r̂n

Ln(r̂n, xn, η̂, τ̂ , ν̂) (3.48)

subject to r̂n ≥ 0 and
∑K

k=1 r̂nk = 1

Through standard constrained optimization methods, we find the solution for the optimal re-

sponsibility vector r̂∗n. We can compute the optimal vector in closed-form by setting each entry
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k ∈ {1, 2, . . .K} to the exponentiated posterior weight eWnk and then normalizing:

r̂∗nk =
eWnk

∑K
ℓ=1 e

Wnℓ

, (3.49)

which by inspection is guaranteed to obey the required constraints that responsibilities must be

non-negative and sum to one. By performing the update in Eq. (3.49) at each observation n inde-

pendently, we will compute the optimal responsibilities r̂ for the whole dataset.

3.4.3 Nested truncation w.r.t. number of active clusters

One advantage of our chosen truncation scheme for q(z) is that the resulting simplified family of

approximate posterior distributions is nested across truncation levels. This means for any truncation

level K and accompanying free parameters ΨK = {r̂, η̂, τ̂ , ν̂} for active clusters, we can construct a

configuration ΨK+1 = {r̂′, η̂′, τ̂ ′, ν̂′} with truncation level K + 1 with exactly the same score under

the objective L. Here is the construction:

r̂′nk =







r̂nk if k ≤ K
0 if k = K + 1

η̂′k1 =







η̂k1 if k ≤ K
1 if k = K + 1

η̂′k0 =







η̂k0 if k ≤ K
γ if k = K + 1

(3.50)

τ̂ ′k =







τ̂k if k ≤ K
τ̄ if k = K + 1

ν̂′k =







ν̂k if k ≤ K
ν̄ if k = K + 1

Using a variational family with nested truncation has several benefits. First, it is easy to compare

alternative approximate posteriors with different values of K: whichever has the larger score under

the objective function L is the superior model. Second, we can easily construct candidate local and

global parameters that differ from some current assignments r̂ by adding or removing one cluster.

Both these properties are used in our new proposal moves that adapt the truncation K, which we

develop in Ch. 4.

Previous work on truncation. Our chosen nested truncation was previously suggested for topic

models (Teh et al., 2008; Bryant and Sudderth, 2012), and has been more recently applied to some

hidden Markov models (Johnson and Willsky, 2014). One well-known alternative is direct truncation

of the global parameters of the stick-breaking process (Blei and Jordan, 2006). This choice enforces

a more restrictive assumption about the last active index K: Eq[uK ] , 1 − ∑K−1
k=1 Eq[πk]. In

other words, the entire unit probability mass must be allocated to the first K clusters, leaving

zero probability for inactive clusters despite the DP prior always placing small positive probability

there. In addition to artificially inflating the final active cluster, this assumption leads to more

complicated updates for η̂ when the truncation level is changed. Our nested truncation is also more

more efficient and broadly applicable than the truncation suggested by Kurihara et al. (2006), which

explicitly enforces that the aggregate probability mass assigned to inactive topics matches its prior

value.



63

Algorithm 3.1 Variational coordinate ascent for DP mixture models

Input:
x : dataset
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{η̂k}Kk=1: initial global parameters of allocation model
γ: allocation model hyperparameter
τ̄ , ν̄ : observation model prior hyperparameters

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{η̂k}Kk=1: updated global parameters of allocation model

1: function VariationalCoordAscentForDPMix(x,K, η̂, τ̂ , ν̂)
2: while not converged do
3: for n ∈ 1, 2, . . .N do ⊲ Local step
4: for k ∈ 1, 2, . . .K do
5: Cnk ← Eq[log p(xn|φk)]
6: Wnk ← Cnk + Eq[log πk(u)]

7: r̂n ← RespFromWeights(Wn)

8: for k ∈ 1, 2, . . .K do ⊲ Summary step
9: Sk ←

∑N
n=1 r̂nks(xn)

10: Nk ←
∑N

n=1 r̂nk
11: N>

k ←
∑K

k+1Nk

12: for k ∈ 1, 2, . . .K do
13: τ̂k ← Sk + τ̄ ⊲ Global step for observation parameters
14: ν̂k ← Nk + ν̄
15: η̂k1 ← Nk + 1 ⊲ Global step for allocation parameters
16: η̂k0 ← N>

k + γ
return η̂, τ̂ , ν̂

Block coordinate ascent algorithm for approximate posterior inference for the DP mixture model.
Each converged solution represents a local optima of the optimization problem in Eq. (3.37).

3.5 Algorithms for variational optimization

3.5.1 Full-dataset block coordinate ascent algorithm

Alg. 3.1 defines the block-coordinate ascent update steps derived in the previous section as a coherent

algorithm. Given some initial global parameters and a dataset, it iteratively cycles between the local

step for q(zn) in Eq. (3.48) and the global parameter updates for the observation model in Eq. (3.41)

and the allocation model in Eq. (3.43).

Summary statistics for global updates

Taking a step back, we emphasize the fundamental roles that the summary statistics N and S play in

Alg. 3.1. First, they are sufficient statistics for the global updates. This means that given N and S,

we have everything we need to compute the optimal global parameters for both the allocation model
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and the observation model. Second, these quantities N and S share two key properties: scalability

and additivity.

First, a summary is scalable if its size is independent of the size of the dataset, measured by the

number of documents D or atoms N . Practically, this means it is cheap to store and manipulate

these quantities, even as the dataset grows toward infinite size. Performing any global update will

always be a constant-time operation with respect to the number of documents or atoms, once the

summary statistics are computed.

Second, we say a summary is additive if it is computable by summing over independent terms,

where each term comes from either one data atom or one document (group). Additivity means that

if we want to summarize a large dataset x with N total atoms, we could first divide it into two

disjoint pieces x1 and x2, with N1 and N2 atoms each, satisfying N1 +N2 = N . Given summaries

for the separate pieces S1k and S2k, we can compute the summary for the whole dataset simply:

SG
k = S1k + S2k. Throughout, we will use the superscript G notation for whole-dataset summaries,

like NG or SG, to differentiate these from summaries for subsets of the data. When summaries are

additive, both parallel and online processing becomes possible, allowing variational inference for DP

mixture models and extensions to scale to large datasets.

Summaries for computing the objective L

For all observation models, we assume that the observation-model objective Ldata is a purely linear

function of the summaries N and S, as defined in Eq. (3.26). In contrast, the allocation-model

objective Lalloc for DP mixture models has a non-linear function of r̂: the entropy term Lentropy(r̂)
in Eq. (3.29). We can create a summary statistic H , a vector with an entry for each active cluster,

for calculating this entropy:

Hk(r̂) , −
N∑

n=1

r̂nk log r̂nk (3.51)

Then, we simply compute Lentropy =
∑K

k=1Hk. The summary H has the properties of scalable size

and additivity, just like the others N and S.

Given a set of possible assignment responsibilities r̂ for data x, we can compute the summaries

{S,N,H} , discard r̂ afterwards, and have everything we need to find the optimal global parameters

and compute the resulting objective score L.

Towards scalable algorithms

The variational optimization algorithm in Alg. 3.1 is sometimes called a full-dataset algorithm or

a batch algorithm, implying it performs a local step for every observation in the dataset before

each global step update. If the number of observations N in the dataset is large, for example in

the hundreds of thousands or more, this algorithm will be slow to propagate information between

the local updates and the global parameters. A natural idea is to perform global updates at more

frequent intervals, after processing a small subset or batch of data. In the sections below, we will
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Algorithm 3.2 Stochastic variational coordinate ascent for DP mixture models

Input:
x : dataset
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{η̂k}Kk=1: initial global parameters of allocation model
γ: allocation model hyperparameter
τ̄ , ν̄ : observation model prior hyperparameters
Nb : integer, desired size of each minibatch
δ : positive real, “delay” in learning rate schedule
κ : value in (0.5, 1.0], controls rate of learning rate decay

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{η̂k}Kk=1: updated global parameters of allocation model

1: function StochasticVariationalForDPMix(x,K, η̂, τ̂ , ν̂)
2: for iteration t ∈ 1, 2, . . . do
3: Dt ← SampleWithoutReplacement({1, 2, . . .N}, Nb) ⊲ Sample current minibatch
4: for n ∈ Dt do ⊲ Local step
5: for k ∈ 1, 2, . . .K do
6: Cnk ← Eq[log p(xn|φk)]
7: Wnk ← Cnk + Eq[log πk(u)]

8: r̂n ← RespFromWeights(Wn)

9: for k ∈ 1, 2, . . .K do ⊲ Summary step
10: Stk ←

∑

n r̂nks(xn)
11: Ntk ←

∑

n r̂nk

12: ξt = (δ + t)−κ ⊲ Update step size
13: for k ∈ 1, 2, . . .K do

14: τ̂k ← (1− ξt)τ̂k + ξt

(

τ̄ + N
Nb
Stk

)

⊲ Global step for observation parameters

15: ν̂k ← (1− ξt)ν̂k + ξt

(

ν̄ + N
Nb
Ntk

)

16: η̂k1 ← (1− ξt)η̂k1 + ξt

(

1 + N
Nb
Ntk

)

17: η̂k0 ← (1− ξt)η̂k0 + ξt

(

γ + N
Nb

∑K
ℓ=k+1Ntℓ

)

return η̂, τ̂ , ν̂

Stochastic block coordinate ascent algorithm for solving the optimization problem in Eq. (3.37). At
each iteration, the algorithm first samples a small batch of documents and then executes local and
global optimization steps. The global step differs from the full-dataset algorithm by involving a
learning rate ξ and a natural gradient step.

describe two common methods for scaling variational coordinate ascent to large datasets: stochastic

variational inference and memoized variational inference.

3.5.2 Stochastic variational inference

Stochastic variational inference (SVI) was first introduced for topic models by Hoffman et al. (2010)

and later described more comprehensively in Hoffman et al. (2013). SVI scales to a large dataset
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Figure 3.2: Illustration of possible learning rate schedules for stochastic variational inference.
We set the learning rate ξt at update step t to be ξt = (δ + t)−κ, where the delay parameter δ ≥ 0
downweights early iterations at larger values, and the exponential decay parameter κ determines how
fast the rate decays to zero. To obtain the Robbins-Munroe guarantees, we require that κ ∈ (0.5, 1].

of N observations by performing two conceptual steps at each iteration t: First, a local step to

find the optimal responsibilities for a small subset or batch of data. Second, a global step which

stochastically updates the global parameters to minimize L via a noisy gradient step computed using

only the current batch. Each iteration’s batch of data is sampled uniformly at random from the

whole dataset. The complete algorithm for our DP mixture model optimization problem is specified

in Alg. 3.2, and the relevant steps are detailed below. The usual formulation assumes that the whole

dataset has a finite total number of atoms N that is known in advance, but later work has extended

this to never-ending data streams (Theis and Hoffman, 2015).

SVI local step. The local step of SVI is unchanged from the full-dataset algorithm, except that

it only processes a subset of data at every iteration. Denote the subset of data indices selected at

iteration t as Dt ⊂ {1, 2, . . .N}. This set is chosen uniformly at random without replacement at

every iteration. The size of this set, which we denote Nb = |Dt|, must be pre-specified and obey

the constraints 1 ≤ Nb ≤ N . Once the set Dt is chosen, the local step update occurs: for every

data index n in the current batch, we compute the optimal responsibilities r̂∗n for the approximate

posterior factor q(zn) via Eq. (3.48). We emphasize that these updates exactly optimize the single

observation objective Ln. Aggregating over all observations in the set Dt, we can produce summaries

for the effective counts Ntk and effective data-statistic Stk for each active cluster in the batch at

iteration t.

SVI global step. The global step update for SVI is noticeably different from that in Alg. 3.1. As

a gradient descent algorithm, the value of a global parameter at iteration t depends on the value at

iteration t−1. For example, global parameter τ̂k will start at some initial value τ̂1k and then proceed

through a sequence of values τ̂2k , . . . , τ̂
t
k, τ̂

t+1
k . . . as more batches are seen. The value at iteration

t depends on a learning rate ξt, a positive scalar that decays over iterations. The larger ξt is, the

more “forgetful” the algorithm is of previous iterations.

For global variables with exponential family conditionals, Hoffman et al. (2013) recommend using
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the natural gradient global step at each batch. This is the gradient under the natural parameteriza-

tion, not the mean parameterization, of the relevant exponential family density. Natural gradients

yield closed-form computations that share much in common with full-dataset updates. For each

global parameter, the natural gradient update has three steps, which we walk through below for the

data shape parameter τ̂k.

First, create a noisy estimate of the full-dataset summary statistic Sk ≈ N
Nb
Stk. Here, the

amplification factor N
Nb
≥ 1 scales up the current batch’s statistic to have the effective size of the

full dataset. Next, using this estimated summary to perform a global step, creating a batch-specific

global parameter τ̂tk ≈ τ̄ + N
Nb
Sbk. Finally, interpolate between the batch-optimal value and the

previous global value with the current learning rate ξt.

τ̂k = ξt

(

τ̄ +
N

Nb

Stk

)

+ (1− ξt)τ̂k (3.52)

When the learning rate decays according to the Robbins-Munro conditions, the stochastic vari-

ational algorithm provably converges to a local optimum of the whole-dataset objective function

L (Hoffman et al., 2013). Hoffman et al. (2013) suggest defining the learning rate decay schedule

such that ξt = (δ+ t)−κ, where the parameter δ ≥ 0 acts as a delay where larger values downweight

the impact of early iterations, and parameter κ ∈ (0.5, 1] is a decay factor that determines how fast

the step size ξt approaches zero as t increases. See Fig. 3.2 for a visualization of how the learning

rate ξt decays as the number of iterations t grows for a variety of possible decay schedules.

SVI has several advantages over full-dataset inference, including much faster propagation between

local and global updates and a potential for the random gradient steps to help escape very shallow

local optima that might trap the full-dataset method. However, performance is extremely sensitive

to the how aggressively the step size ξt decays as more updates occur. The decay schedule for this

parameter often has nuisance parameters that must be tuned for ideal performance, which can be

prohibitively expensive. Performance can also be sensitive to chosen batch size Nb.

When conditional distributions do not come from the exponential family, we may still perform

stochastic updates by computing the gradient of the objective L with respect to the global parameter

of interest. However, this can require costly derivation effort by the practioner.

3.5.3 Memoized variational inference

Memoized variational inference (MVI) is an alternative to SVI that is just as scalable but avoids

the nuisance of learning rates and derivation complexities altogether. MVI was first introduced in

Hughes and Sudderth (2013) and inspired by the incremental expectation-maximimization algorithm

of Neal and Hinton (1998). With just one batch, MVI is exactly equal to whole-dataset inference.

However, if the dataset is divided into B smaller batches, MVI can be much more scalable than the

full-dataset algorithm.

Like SVI, each update iteration consists of a local step at a single batch followed immediately by

a global step. Unlike SVI, each global update uses aggregated summaries that represent the whole

dataset, not just the current batch. These whole-dataset summaries are incrementally updated at
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Algorithm 3.3 Memoized variational coordinate ascent for DP mixture models

Input:
x : dataset, divided into B fixed batches
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{η̂k}Kk=1: initial global parameters of allocation model
γ: allocation model hyperparameter
τ̄ , ν̄ : observation model prior hyperparameters

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{η̂k}Kk=1: updated global parameters of allocation model

1: function MemoizedVariationalForDPMix(x,K, η̂, τ̂ , ν̂)
2: NG, SG ← 0 ⊲ Initialize global statistics
3: for batch b ∈ 1, 2, . . . B do
4: Nb, Sb ← 0 ⊲ Initialize batch statistics

5: for lap ℓ ∈ 1, 2, . . . Lmax do
6: for batch b ∈ Shuffle(1, 2, . . . B) do
7: for n ∈ Db do ⊲ Local step for batch b
8: for k ∈ 1, 2, . . .K do
9: Cnk ← Eq[log p(xn|φk)]

10: Wnk ← Cnk + Eq[log πk(u)]

11: r̂n ← RespFromWeights(Wn)

12: SG ← SG − Sb ⊲ Decrement previous batch statistics
13: NG ← NG −Nb

14: for k ∈ 1, 2, . . .K do ⊲ Summary step for batch b
15: Sbk ←

∑

n∈Db
r̂nks(xn)

16: Nbk ←
∑

n∈Db
r̂nk

17: SG ← SG + Sb ⊲ Increment new batch statistics
18: NG ← NG +Nb

19: for k ∈ 1, 2, . . .K do
20: τ̂k ← SG

k + τ̄ ⊲ Global step for observation parameters
21: ν̂k ← NG

k + ν̄
22: η̂k1 ← 1 +NG

k ⊲ Global step for allocation parameters

23: η̂k0 ← γ +
∑K

ℓ=k+1N
G
ℓ

return η̂, τ̂ , ν̂

Block coordinate ascent algorithm for solving the optimization problem in Eq. (3.37). Assumes data
is divided into a fixed set of B batches before processing begins. At each batch, we perform a local
optimization step and a global optimization step. For the DP mixture model, this algorithm is
guaranteed to monotonically increase the ELBO objective function L after every step once the first
lap through the data is completed.

each batch. With a modest cost of additional memory required for tracking batch-specific summaries

that enable these incremental updates, we can perform noise-free global steps that exactly optimize
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the full-dataset objective L. The target application of MVI is datasets of large but finite size through

which we can afford to make dozens but maybe not thousands of update iterations. Variants of MVI

easily generalize to streaming settings, but our experiments show that when it is affordable to do

so, making dozens of repeated passes through a dataset yields substantially better results.

MVI for fixed-size datasets. Given a fixed dataset of D total documents, we must divide it into

B distinct batches before memoized inference can begin. Any assignment of documents to batches

may be used; random assignment is effective but not necessary. We need only require that the same

batches are used throughout the algorithm, as we make repeated passes through the dataset. We

denote the set of atom indices n assigned to batch b as Db.

Alg. 3.3 provides the formal steps of the standard memoized training algorithm for our DP

mixture model. The algorithm completes many passes through the complete dataset, processing

one batch at a time. We call each pass through the dataset a lap. In each lap, we visit each batch

exactly once. Any ordering is allowed so long as all batches are visited evenutally. As a default, we

recommend a different random order for each lap.

When visiting batch b, MVI first performs a local step to obtain batch specific summaries

Nb, Sb, Hb. These fresh values are then used to incrementally update whole-dataset summaries

NG, SG, HG, where again the superscript G indicates the summary value is a global aggregation

of all batch values. During the first visit to batch b, each global summary is simply incremented:

NG
k = NG

k + Nbk. On later visits, each global summary update requires adding the new batch-

summary and subtracting the previous batch-specific value: NG
k = NG

k +Nbk−Nmemory
bk . After every

incremental update of a global summary, we rewrite the memoized value for batch b: Nmemory
bk = N b

k.

After each batch-specific local step and resulting incremental summary step, the global summaries

NG, SG are fully consistent with the most recent assignments to all batches. We may thus use these

summaries in a global step to obtain optimal global parameters, just as in the standard full-dataset

algorithm.

Overall, memoized inference has the same per-batch run-time complexity as stochastic variational

inference. However, it does have modest additional storage cost that grows linearly with the number

of batches B and number of clusters K – O(BK) – due to required storage for Nmemory
bk and other

memoized batch summaries. Importantly, this storage requirement does not need to scale directly

with the number of documents or data atoms, only the number of batches.

Memoized inference is advantageous because each global step delivers global parameters that are

optimal under the whole-dataset objective, avoiding the noisiness inherent in stochastic updates and

the complexities of selecting a learning rate. Furthermore, during MVI inference we can exactly

evaluate the whole-dataset objective L at any point after the first complete lap. This allows the

design of birth and merge proposal moves that are checked exactly against the whole-dataset objec-

tive, and only accepted if they improve the L score. This guaranteed improvement makes our merge

moves more reliable than earlier work that made decisions about removing components based on a

noisy objective estimate based only on a single batch (Bryant and Sudderth, 2012).
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Memoized algorithm and monotonicity guarantees

For the DP mixture model, the memoized algorithm is guaranteed to monotonically improve the

objective L at every iteration. Crucially, this can be done without storing the complete responsiblities

r̂ for the full dataset, and instead only computing the per-batch responsibilities r̂b on demand. The

reason is that the local step objective for r̂b in Eq. (3.38) is convex and therefore has one universal

optimum given fixed global parameters τ̂ , ν̂ and η̂.

The guaranteed increase of the objective function L provides a useful practical test to verify the

correctness of any implementation. Any implementation which yields a non-monotonically increasing

L trace must have a bug. No such simple test exists for stochastic variational methods.

Memoized algorithm for streaming

It is straightforward to apply the ideas behind memoized inference to applications that require

learning from a never-ending stream of data. At more data arrives, we may simply visit each never-

before-seen batch b, execute a local step that outputs batch-specific summaries like Nbk, and use an

incremental update NG
k = NG

k + Nbk to obtain whole-dataset statistics exactly consistent with all

data seen thus far. The aggregated summaries can be used in standard global step to deliver global

parameters that are optimal given the local assignments from all previously-visited batches. This

procedure is equivalent to a synchronous version of streaming variational inference presented in Alg.

3 of Broderick et al. (2013). Broderick et al. (2013) also present a version of the algorithm which

iterates at each batch b through many local-then-global steps until convergence. If a batch is never

visited more than once, no memory for per-batch summaries is needed.

3.5.4 Initialization of global parameters

Our iterative optimization algorithm requires an initialization of the global variational parameters

for the observation model ν̂, τ̂ and allocation model η̂. Any initialization that provides parameter

values in the correct domain is valid, but some are better than others as later experiments will show.

To initialize all variational training algorithms for DP mixtures, we recommend using the Breg-

man k-means++ procedure from Alg. 2.1. This algorithm applies to the entire class of exponential-

family observation models and yields solutions for which some formal approximation ratios have

been proved for simpler but related objectives.

Many alternatives to initialize these global cluster parameters could exist. For example, Future

work could investigate the alternative choice of using a small-variance asymptotics algorithm like

DP-means, which can also handle all exponential family (EF) observation models (Jiang et al., 2012).

Initializing MVI. Initializing MVI requires specifying global parameter vectors ν̂, τ̂ , and η̂. These

are all we need to perform a local step at the first batch. However, during the first lap each global

step uses summaries aggregated only from visited data batches, not the entire dataset. For example,

after the first batch the summaries provided to the global step represent only |D1| observations,
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not all N observations. Consequently, after seeing only one batch, the global step is optimizing the

global parameters only for the terms in the objective related to contents of one batch, not the full

dataset. Every global step update during the first lap optimizes a different, but related, objective.

This evolving objective converges to the full-dataset objective after the completion of the first lap.

Consider the case of trying to initialize MVI using a smart, data-informed guess for global param-

eters. Perhaps this guess comes from running MVI on a related dataset, or uses some hypothesized

“ground-truth” parameters. The data in the first few batches may not be completely representative

of the clusters present this initialization. Not every batch will contain many examples of useful but

rare clusters. Thus, naively employing the global step during the first few batches can yield new pa-

rameters that are quite far from our smart initial guess. If some initial cluster that is useful for later

batches does not appear in the first batch, it will be completely erased after batch one and never be

recovered by later batches. The greedy nature of the few global steps of MVI can yield parameters

that underperform on the full-dataset objective when unseen batches are taken into account.

We first and foremost hope that our birth proposal moves fix this problem by creating new, useful

clusters as needed. However, if birth moves are unavailable and an informative initialization is used,

we recommend delaying any global steps until sufficiently many batches are seen, perhaps even the

full dataset if it is small enough. Until the total number of units processed exceeds a user-specified

threshold, at each batch we perform local steps and increment global summaries, but simply keep

the global parameters at their initial values. However, without proposal moves we find this delay

strategy can often dramatically improve performance.

3.6 Experimental results

In this section, we demonstrate the basic behavior of our full-dataset variational training algorithm

on several toy datasets. Our goal is to help the reader understand how performance varies with

initialization, with the number of initial clusters K, and with the choice of the observation model

(“likelihood”). A specific take-away from all the experiments below should be that these algorithms

are highly-vulnerable to local optima, even when using data-driven initialization techniques and

large values for the number of initial clusters K. We hope this motivates the exploration of proposal

moves in Ch. 4 that make large changes by adding or removing clusters.

Several experiments with the scalable memoized or stochastic algorithms are available in the

experiments section of Ch. 4, where we explore how these training methods perform with and

without our new proposal moves.

3.6.1 Clustering image patches with zero-mean Gaussian likelihoods

Motivated by success of Gaussian mixture models for image patches by (Zoran and Weiss, 2011),

as illustrated earlier in Fig. 1.2, we consider training DP mixture models with zero-mean Gaussian

likelihoods.
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Figure 3.3: Local optima found when clustering toy alphabet images with DP mixture models.
Dataset: 50000 synthetic images generated from 26 true clusters (one for each letter of the English
alphabet: A, B, C, ... Z). We compare initializations for the variational inference algorithm in
Alg. 3.1 and expose local optima problems. Left column: random initialization, which chooses
K initial images uniformly at random without replacement to initialize K clusters. Right column:
Bregman k-means++ initialization, which choosesK initial documents as cluster centers via Alg. 2.2.
Bottom Row: Best, median, and worst of 25 runs, as ranked by L, from K = 100 initial clusters.
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First, we consider a synthetic dataset with a set of K = 26 true clusters, each one generating

8x8 pixel image patches which show a single image from the English alphabet (“A”, “B”, “C”, etc.).

Each true cluster is defined by a covariance matrix φk over the image patch space, as well as a

frequency πG
k , which we set to be monotonically decreasing with a letter’s index in the alphabet, so

A is most common and Z is least common. Each successive letter has 95% of the probability mass

of the previous letter.

After randomly generating N = 50, 000 distinct observations from this model, we observed 3695

“A“ patches, 3272 “B” patches, and 4929 “C” patches. Among the least common letters, we observed

955 “X” patches, 771 “Y“ patches, and 529 “Z“ patches. Fig. 3.3 shows the results of extensive local

optima experiments on the task of clustering this synthetic dataset. We consider several factors

governing the initialization: the number of initial clusters and the cluster selection procedure. As

a baseline, we consider a random example initialization, where K distinct data observations are

selected uniformly at random without replacement from the index set {1, 2, . . .N}, and these K

choices are used to initialize separate clusters. In contrast, we consider the Bregman k-means++

procedure in Alg. 2.2, which selects K observations in a data-driven fashion which tends to find

K observations far from each other using the Bregman divergence that comes from our chosen

zero-mean Gaussian likelihood.

Our conclusions are listed below:

Rich-get-richer prior bias lets some initial clusters decay to zero usage. To understand

what happens here, in the second row of Fig. 3.3 we plot the number of effective clusters for each

method, which is defined as the number of active clusters assigned to at least 1 data atom across the

entire dataset: Keff = |{k : Nk(r̂) ≥ 1}. We see that even with over 100 initial clusters actively used

after the first few steps, the updates of Alg. 3.1 enforce the rich-get-richer prior bias of the Dirichlet

process prior and gradually favor only a small subset of the total number of initial clusters while

letting the rest decay to zero usage. The original number of clusters is still actively represented in

memory, just with some parameters set for zero usage.

Initializations with near the true number of clusters rarely do well. Using many more

clusters is consistently better. Across all initializations, using a large number of initial clusters

K > 100 relative to the true number of clusters K = 26 leads to much better ELBO scores than say

K = 40 or K = 60. For an initialization with 30 clusters to do well at capturing the ground-truth

trends, it must adequately represent all 26 true clusters. This requires a very lucky selection of

examples for the initialization, even for the data-driven Bregman++ procedure. We see in practice

that until we have over 100 clusters, we do not reliably recover the true clusters even in the best

of 25 initializations. Using a large initialization hugely increases the chances that an initial cluster

representing each of the true clusters will be selected.

The number of initial clusters matters more than the initialization procedure. Com-

paring the local optima plots (top row) for both random initialization and Bregman k-means++
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initialization, we see the same dominant trend in both plots: using a large initial number of clus-

ters leads to reliably good performance. Any differences between these procedures is of secondary

importance.

Bregman k-means++ initialization shows modest improvement over random initializa-

tion. Consider the top row of Fig. 3.3, which shows the final training ELBO value found from each

of 25 independent initializations across many different initial number of clusters. Looking closely at

K = 40 or K = 80, we see that the Bregman++ initialization has much lower variance than the

random example initialization, consistently yielding larger ELBO values. We might have expected

a larger difference, but the data-driven method does indeed offer visibly better performance.

3.6.2 Clustering documents with multinomial likelihoods

We now consider the task of clustering data observations which represent entire text documents.

Using the DP mixture model, we might hope to learn informative single-membership partitions of

news articles which might be post-hoc interpreted as “political news” or “economics” or “film.”

Here, we take each observation xn to be a bag-of-words vector. That is, xn ∈ RV is a vectors of

non-negative integer word counts from a predefined vocabulary. We use a multinomial likelihood

model with corresponding Dirichlet prior.

Toy Bars experiments

We first consider a “toy bars” experiment, inspired by Griffiths and Steyvers (2004). We arrange the

900-word vocabulary into a 30x30 grid, where each word represents one image pixel. Each cluster

has a strong probability of producing words from one horizontal or vertical stripe or “bar” on this

grid. There are 10 true bar clusters. We generate documents xn directly from the finite mixture

generative model, with roughly equal probability for each bar.

Fig. 3.4 shows the results of extensive local optima experiments on the task of clustering this

synthetic dataset. Like the earlier experiments, we compare the impact of the number of initial

clusters and the chosen initialization procedure. Our conclusions are:

For multinomial likelihoods, local optima prevent rich-get-richer prior bias from en-

couraging cluster usage decay. In Fig. 3.4 for zero-mean Gaussian likelihoods, we saw that

large K initializations have many clusters with usage dropping to zero. In contrast, here in Fig. 3.4

we see that K = 40 initializations with 4x the number of true clusters consistently see no cluster

that becomes zeroed out across many runs. Because the multinomial likelihood is very flexible, it

can exactly match the relevant mean of any member document and thus discourage usage dropping

to zero.

Too many clusters incur substantial penalty in ELBO. Results with K = 40 initial clusters

doubtlessly include multiple copies of all 10 true bars. These runs achieve ELBO values which are
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Figure 3.4: Local optima found when clustering toy bars data with DP mixture models.
Dataset: 100 synthetic documents generated from 10 true bars topics via a true finite mixture
model. We compare various initializations for the variational inference algorithm in Alg. 3.1 with
the goal of exposing local optima problems. Left column: random initialization, which chooses K
initial documents uniformly at random without replacement to initialize K clusters. Right column:
Bregman k-means++ initialization, which choosesK initial documents as cluster centers via Alg. 2.2.

roughly half-way between the best score of the ideal K = 10 clusters and using only K = 5 clusters.

Thus, the DP mixture prior leads to harshly penalizing redudant and irrelevant active clusters, even

if the update steps of the algorithm cannot escape such local optima.
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Figure 3.5: Local optima found when clustering NIPS articles with DP mixture models.
Dataset: 1392 articles published in the proceedings of the Neural Information Processing Systems
(NIPS) academic conference. We compare various initializations for the variational inference algo-
rithm in Alg. 3.1 with the goal of exposing local optima problems. Left column: random initializa-
tion, which chooses K initial documents uniformly at random without replacement to initialize K
clusters. Right column: slightly-better Bregman k-means++ initialization, which chooses K initial
documents as cluster centers via Alg. 2.2.

Data-driven Bregman initialization yields slightly better results than random. Com-

paring the top row plots of Fig. 3.4 shows a noticeably reduced spread in ELBO performance for

Bregman k-means++ initialization compared to random initialization across runs no matter what

initial number of clusters is used.

NIPS experiments

Fig. 3.5 shows the results of extensive local optima experiments on the task of clustering articles

from the proceedings of the Neural Information Processing Systems (NIPS) conference. This is a

popular benchmark dataset among topic modelers. Our conclusions are:

For this dataset, hundreds of clusters seem useful. Across both initialization methods, the

best scores are achieved with nearly 300 or 400 active clusters at initialization.

For multinomial likelihoods, local optima prevent rich-get-richer prior bias from en-

couraging cluster usage decay. Looking at the number of effective topics plots in the second
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row of Fig. 3.5, we see that across 10 runs the number of topics assigned to at least one observation

never decreases from its initial value. This confirms our earlier toy data experiment.

Data-driven Bregman++ initialization does not seem visibly better than random.

Somewhat surprisingly, except when the number of clusters is very small (K = 50), the set of

final ELBO values across multiple initializations does not seem to differ in spread or mean between

the two methods.

3.7 Discussion

Our full-dataset variational algorithm from Alg. 3.1 and its two more scalable alternatives, stochastic

(Alg. 3.2) and memoized (Alg. 3.3) represent promising training algorithms when given a reasonable

initialization. However, our experiments here demonstrate that achieving good initializations can

actually be surprisingly complicated and that as long as the number of clusters K remains fixed

these algorithms are sorely limited in their ability to escape from a poor initialization. In the next

section, we show that additional proposal moves that add and remove clusters during training lead

to greatly improved performance.



Chapter 4

Proposal moves to escape local

optima for DP mixture models

Both standard full-dataset variational inference and scalable variants like stochastic (SVI) and mem-

oized (MVI) can get stuck in poor local optima, as shown in the experiments of Sec. 3.6. This can

occur in part because each local or global step only updates a limited subset of the variational

parameters. To escape the current basin of attraction for better regions of the parameter space, we

need proposal moves that can change all free parameters jointly, making bigger changes than the

coordinate ascent steps of local and global updates. In this chapter, we describe several possible

proposals moves specifically for the Dirichlet process (DP) mixture model. In later chapters, we will

discuss how these moves might change for more complex models.

We consider three possible proposal moves to escape local optima, some that remove clusters

and others that add clusters. First, merge moves eliminate redundancy by combining two current

clusters into a single combined cluster. Second, birth moves try to introduce new clusters in data-

informed fashion to improve the explanation of the data. Finally, delete moves remove a single junk

cluster by reassigning its mass across many remaining clusters. Each proposal move is executed by

first transforming some original configuration of variational parameters into a candidate new config-

uration, and then deciding whether this new state improves the variational optimization objective

L. The correctness of these moves follows simply from the fact that they are not accepted unless

the objective L improves.

Several previous efforts (Ueda et al., 2000; Bryant and Sudderth, 2012) employ similar pro-

posal moves to escape local optima for specific Bayesian models within optimization-based al-

gorithms. Ueda et al. developed split and merge moves for Baysian finite mixture models for

an expectation-maximization algorithm (Ueda et al., 2000) as well as a full variational algorithm

(Ueda and Ghahramani, 2002). Beal and Ghahramani (1999) provided a variational algorithm for

training mixtures of factor analyzers which could add new clusters, albeit without any formal guar-

antees about improving the objective function. While interesting, these foundational efforts had

78
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several limitations: they examined finite mixture models rather than Bayesian nonparametric mod-

els, they did not pursue scalable algorithms at all, and did not include anything like a delete proposal.

In contrast, we make scalable construction and evaluation a priority, and also show that additional

delete moves are required to escape some local optima.

Among stochastic variational methods, Bryant and Sudderth (2012) developed split and merge

moves for stochastic variational inference of topic models. While these moves are somewhat effective,

we find again that our delete move is crucially more powerful than these approaches. Furthermore,

as shown later in our study of topic models in Ch. 5 using proposals with SVI can yield pathological

uncontrolled growth in the number of clusters due to the lack of rigorous guarantees about improving

the objective function L. Our approach leads to much more reliable behavior.

Finally, a thread of research has used split and merge proposals within MCMC sampling training

algorithms. Jain and Neal (2004) were the first to deploy split and merge moves, while recent work

has seen many specialized proposals for DP mixtures (Chang and Fisher III, 2013) and HDP topic

models (Chang and Fisher III, 2014). The requirement of maintaining detailed-balance within the

Markov chain of posterior samples can often hinder the design of sampler-based split and merge

moves for new models. Furthermore, these proposals are also difficult to scale to large datasets,

though Chang and Fisher III (2014) have invested some laudable implementation effort in paral-

lelization and other improvements.

To summarize, our goal is to develop proposal moves that can be constructed and evaluated

using minimal computation in a batch-by-batch processing fashion, have a unified framework across

several Bayesian nonparametric models, and preserve some guarantees about monotonic increase

in the optimization objective L when possible. Preliminary versions of proposal moves for the DP

mixture model were presented in our NIPS 2013 conference paper (Hughes and Sudderth, 2013).

However, we have since made several improvements, such as formal guarantees of ELBO objective

score improvement when a birth is accepted.

4.1 Merge moves for DP mixture models

The goal of the merge proposal is to create a candidate set of the variational free parameters

r̂′, η̂′, τ̂ ′, ν̂′ which modifies the current state r̂, η̂, τ̂ , ν̂ by combining two chosen clusters kA and kB

into a single cluster. As shown in Fig. 4.1, this can remove redundant clusters and lead to more

compact models that are simpler to interpret and faster to train (because algorithm runtime scales

linearly with K).

4.1.1 Merge proposal construction

Consider a current model with truncation level K. Let integers kA and kB be the labels of the pair of

clusters we wish to try mergin. Formally, we have 1 ≤ kA < kB ≤ K. We will assemble the proposed

set of variational free parameters r̂′, η̂′, τ̂ ′, ν̂′ in two steps. First, we create r̂′ via a deterministic

merge step from the original responsibilities r̂. This new set of clusters will only have K−1 clusters.
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Figure 4.1: Illustration of merge proposal for DP mixtures.
Top: Holistic view of merge proposal construction. We start with an existing model with 4 active
clusters. This original state is captured by the local assignment responsibilities r̂, the cluster fre-
quency parameters û, ω̂, and the observation model parameters τ̂ , ν̂. The first step is a deterministic
construction of new assignment responsibilities r̂′, where the values for red and purple clusters are
combined. The second step is construction of new global parameters τ̂ ′, ν̂′, û′, ω̂′ given the respon-
sibilities r̂′. The complete model has only 3 active clusters. Bottom detail: Example deterministic
construction of merged responsibilities. Any responsibility mass originally cluster labels kA (red)
and kB (purple) is merged via addition into a single entry of the new responsbility vector.
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Second, we use the closed-form global parameter updates to arrive at the corresponding global

parameters. That is, we find the optimal allocation parameters η̂′ via Eq. (3.43), and the optimal

observation parameters τ̂ ′, ν̂′ via Eq. (3.41).

Merge construction for local responsibilities

Our chosen rule for constructing candidate r̂′ from the existing responsibilities r̂ is simply to take

any posterior mass in q(z) assigned to cluster kB and reassign this mass to the cluster kA, while also

retaining any existing mass on cluster kA. This effectively combines these two clusters into a single

cluster with label kA. To deal with the removal of the cluster label kB , we shift all larger cluster

indices k > kB down by one. This leaves an effective set of new responsibilities r̂′ with truncation

level K − 1.

for k ∈ 1, 2, . . .K − 1 : r̂′nk =







r̂nkA
+ r̂nkB

if k = kA

r̂nk else if k < kB

r̂nk+1 else if k ≥ kB

(4.1)

Merge construction of summary statistics for local responsibilities

Given proposed responsibilities r̂′ for K − 1 clusters, we need to compute the summary statistics

S(r̂′, x), N(r̂′) defined in Eq. (3.35). These statistics play a fundamental role in later global parame-

ter updates and ELBO objective evaluation for our proposed configuration. Because these statistics

are linear functions of the responsibilities r̂′, they need not be computed directly from the new re-

sponsibilities r̂′ via Eq. (3.35), which would require O(NK) operations. Instead, they can be directly

computed from the existing summary statistics S(r̂), N(r̂) for each of the K original clusters:

for k ∈ 1, 2, . . .K − 1 : Nk(r̂
′) =







NkA
(r̂) +NkB

(r̂) if k = kA

Nk(r̂) else if k < kB

Nk+1(r̂) else if k ≥ kB

(4.2)

for k ∈ 1, 2, . . .K − 1 : S′
k(r̂

′, x) =







SkA
(r̂, x) + SkB

(r̂, x) if k = kA

Sk(r̂, x) else if k < kB

Sk+1(r̂, x) else if k ≥ kB

This direct construction from existing summaries requires only one sum operation for each of N(r̂′)

and S(r̂′, x), which is an O(1) operation independent of the number of observations N . Thus, it is

much more efficient than the O(NK) cost of evaluating Eq. (3.35).

Merge construction of entropy statistics for local responsibilities

Unlike the statistics above, the entropy statistic Hk(r̂
′) defined in Eq. (3.29) is a non-linear function

of r̂. Thus, while some entries of the original entropy statistic vector H(r̂) can be reused after ap-

propriate index shifting, the entry corresponding to the newly-merged cluster kA must be computed
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anew from the corresponding column of r̂′.

for k ∈ 1, 2, . . .K − 1 : Hk(r̂
′) =







∑N
n=1−r̂′nk log r̂′nk if k = kA

Hk(r̂) else if k < kB

Hk+1(r̂) else if k ≥ kB

(4.3)

Computing the exact value of Lentropy(r̂′) thus requires O(N) work for each merge pair. We stress

that this value is not needed to create a valid set of proposed free parameters r̂′, η̂′, τ̂ ′, ν̂′. However,

it is needed to evaluate the entropy term Lentropy(r̂′) of the objective function L(r̂′, η̂′, τ̂ ′, ν̂′), which
is used to decide if the proposed set of free parameters improves over the current set.

Merge construction of observation model global parameters

Given a concrete set of responsibilities r̂′, or equivalently the summary statistics N(r̂′) and S(r̂′, x),

we can obtain proposed values for the observation model global parameters τ̂ ′, ν̂′ via the standard

global update step in Eq. (3.41). This produces values τ̂ ′k, ν̂
′
k for each cluster k in the set of the K−1

active clusters. By definition, this global step update solves the optimization problem of maximizing

Ldata(r̂′, τ̂ ′, ν̂′) given fixed r̂′.

For original cluster labels k not involved in the merge – that is, k /∈ {kA, kB} – there will

be new parameters equal to the original parameters τ̂k, ν̂k, though perhaps reindexed due to the

label-shifting operation required to remove the cluster kB. Thus, savvy implementations need not

recompute these values and can instead just reindex the original parameters.

Merge construction of DP-allocation-model global parameters

For the DP mixture model, we can find the optimal global allocation parameters η̂′ given r̂′ via the

update in Eq. (3.43). Any cluster with index k < kA in the original model will be unchanged after

this update. However, all clusters k ∈ [kA, kB] will have new values after this merge update. This is

due to the dependence of the updates on the effective count statistic N>, which after a merge may

be computed as:

for k ∈ 1, 2, . . .K − 1 : N>

k (r̂
′) =







∑K
ℓ=k+1Nk(r̂

′) if kA ≤ k < kB

N>

k (r̂) if k < kA

N>

k+1(r̂) if k ≥ kB

(4.4)

4.1.2 Evalation of merge proposals

We represent the existing state of the DP mixture variational approximate posterior with K active

clusters via the full set of free parameters r̂, η̂, τ̂ , ν̂. After a merge of kA and kB, we have a fully-

constructed candidate state with K − 1 active clusters: r̂′, η̂′, τ̂ ′, ν̂′. We decide whether to accept or

reject this proposal by comparing the ELBO objective scores for both states. If our merge candidate

state improves the ELBO score, we accept it. Otherwise, we reject it.
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The acceptance score is defined as:

L(x, r̂′, η̂′, τ̂ ′, ν̂′)− L(x, r̂, η̂, τ̂ , ν̂) , Ldata(x, r̂′, τ̂ ′, ν̂′)− Ldata(x, r̂, τ̂ , ν̂) (4.5)

+ Lentropy(r̂′)− Lentropy(r̂) + LDP-alloc(r̂
′, η̂′)− LDP-alloc(r̂, η̂)

Below, we discuss crucial simplifications for each of the Ldata term, the Lentropy term, and the

LDP-alloc that make rapid evaluation possible.

Simplification of data term. First, we evaluate the relative improvement in the Ldata term. We

assume that each state has constructed its global parameters optimally given the local responsibili-

ties. That is, for each existing cluster k, we have τ̂k = Sk(r̂, x)+ τ̄ and ν̂k = Nk(r̂)+ ν̄ via Eq. (3.41).

Likewise, τ̂ ′, ν̂′ are functions of (statistics of) r̂′. Then the slack-term simplifications of Ldata kick

in and we have

Ldata(x, r̂′, τ̂ ′, ν̂′)− Ldata(x, r̂, τ̂ , ν̂) = cP (τ̂ ′kA
, ν̂′kA

)− cP (τ̂kA
, ν̂kA

)− cP (τ̂kB
, ν̂kB

) (4.6)

= cP (SkA
(r̂′, x) + τ̄ , NkA

(r̂′) + ν̄)

− cP (SkA
(r̂, x) + τ̄ , NkA

(r̂) + ν̄))

− cP (SkB
(r̂, x) + τ̄ , NkB

(r̂) + ν̄))

Thus, accepting a merge sensibly requires only terms related to clusters involved in a merge. Any

other existing cluster k /∈ {kA, kB} has no impact on the acceptance decision.

Simplification of entropy term. Assuming that r̂′ was constructed from r̂ via Eq. (4.1), and

consequently H(r̂′) is defined as in Eq. (4.3), we have:

Lentropy(r̂′)− Lentropy(r̂) =
K−1∑

k=1

Hk(r̂
′)−

K∑

k=1

Hk(r̂) (4.7)

= HkA
(r̂′)−HkA

(r̂)−HkB
(r̂)

Again, this sensibly only involves terms related to the pair of clusters kA, kB being merged. This

simplified difference-of-entropies will always be negative for any merge pair, because by definition

HkA
(r̂′) ≤ HkA

(r̂)−HkB
(r̂).

Simplification of DP-allocation term. Assuming that both the current parameters η̂ and pro-

posed parameters η̂′ were computed by applying the update of Eq. (3.43) using the correponding

counts N(r̂) and N(r̂′), we can find similar simplifications for the allocation model objective, which

is given by

LDP-alloc(r̂
′, η̂′)− LDP-alloc(r̂, η̂) =

K−1∑

k=1

(

cBeta(η̂
′
k1, η̂

′
k0)− cBeta(1, γ)

)

(4.8)

−
K∑

k=1

(

cBeta(η̂k1, η̂k0)− cBeta(1, γ)
)
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After substituting in Eq. (4.4) and simplifying, we have:

LDP-alloc(r̂
′, η̂′)− LDP-alloc(r̂, η̂) = cBeta(1, γ)− cBeta(η̂kB1, η̂kB0) (4.9)

+

kB−1∑

k=kA

cBeta(η̂
′
k1, η̂

′
k0)− cBeta(η̂k1, η̂k0)

= cBeta(1, γ)− cBeta(η̂kB1, η̂kB0)

+ cBeta(η̂kA1 +NkB
, η̂kA0 −NkB

)− cBeta(η̂kA1, η̂kA0)

+

kB−1∑

k=kA+1

cBeta(η̂k1, η̂k0 −NkB
)− cBeta(η̂k1, η̂k0)

Here, this involves not only the clusters kA, kB directly involved in the merge, but all clusters with

indices between kA and kB. This is due to the adjusted value of N> at those in-between indices in

Eq. (4.4).

4.1.3 Scalable construction and evaluation via memoized statistics

For large datasets, the simplified decision rules above suggest that we need not directly instantiate

the whole N×K−1 responsibilities matrix r̂′ to accept or reject a candidate merge of clusters kA and

kB. Instead, in the next pass through the full dataset we need only track the typical whole-dataset

summary statistics NG, SG, HG of our memoized algorithm in Alg. 3.3 as well as the merged entropy

scalar HkA
(r̂′). From these statistics alone, we can directly create all candidate global summaries

N
′G, S

′G, H
′G for the merged configuration.

Thus, before a full pass through the dataset, we only need to decide on a pair kA, kB to consider

(see Sec. 4.1.4 for this decision process). Then, we proceed with normal memoized updates at each

batch, with the one additional requirement of computing Hb,kA
(r̂′) =

∑

n∈Db
(r̂nkA

+r̂nkB
) log(r̂nkA

+

r̂nkB
). That one extra scalar at each batch is all that is needed beyond the original fixed-truncation

algorithm. After the full pass, we can then use the simplified acceptance rules from the previous

section to decide whether to accept or reject the merge.

We emphasize that these simplified construction rules apply because both statistics N,S are

linear functions of r̂. Given current assignment summaries NG, SG, we can always construct a

candidate observation model N
′G, S

′G, ν̂′, τ̂ ′ for any valid merge pair and evaluate this candidate’s

objective score in Eq. (4.6) in time independent of the dataset size and without any additional local

inference steps.

Accepting multiple merge proposals

Suppose that before the start of a lap we have a list of M candidate merge pairs: {kmA, kmB}Mm=1,

where for each pair indexed by m we have kmA < kmB. Then, during a pass through each batch b of

a dataset, we compute the merge entropy Hbm(r̂′), and aggregate these to a global quantity HG
m(r̂′)

for each pair of clusters m. After visiting all batches, we can then sequentially evaluate each of the

M possible merge pairs one-by-one, accepting or rejecting each according to whether it improves the
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objective L and updating the “existing” set of whole-dataset sufficient statistics NG, SG, HG after

every acceptance.

The above greedy evaluation procedure allows us to accept many merge proposals after a single

pass through the dataset, so long as each accepted pair involves a distinct set of clusters. That is, if

the first pair (m = 1) with cluster indices (1, 2) was accepted already, then the pair (1, 3) appearing

later in the list of possible candidates must be rejected without evaluation. This is because its

entropy term Hm(r̂′) was computed using an old value of responsibilities for cluster 1 that does

not include the recently accepted merge of cluster 1 and 2. Again, it is only the non-linear entropy

term that creates this complication. Overall, we are free to consider many candidate pairs during a

single pass of the data, but each original cluster k can appear in at most one of the (shorter) list of

accepted pairs. This still allows up to K/2 acceptances in every pass through the dataset.

4.1.4 Selecting a pair of clusters to try merging

Even with the simplified evaluation terms above, computing the entropy terms for all K(K−1)
2 possible

merge pairs would have runtime cost of O(NK2), which is prohibitively expensive. Instead, we

recommend a selection step at the beginning of each lap through the dataset which identifies at

most M candidate pairs to consider, where M is specified by the user as a maximum budget.

To rank possible candidates, we suggest using a score function based on the subset of the sim-

plified acceptance criteria:

m-score(kA, kB) = Ldata(x, r̂′, τ̂ ′, ν̂′)− Ldata(x, r̂, τ̂ , ν̂), (4.10)

+LDP-alloc(r̂
′, η̂′)− LDP-alloc(r̂, η̂)

where we create the candidate local parameters r̂′ by merging clusters kA, kB and we compute these

terms via their simplified forms in Eq. (4.6) and Eq. (4.8). These terms can be evaluated exactly from

the existing global summaries NG, SG and parameters τ̂ , ν̂, η̂. Computing the difference of LDP-alloc

terms has cost which is O(K) at worst, when kA = 1 and kB = K. Computing the difference of

Ldata terms always has cost independent of K and N .

For the DP mixture model, the value of the m-score for a given pair kA, kB is a strict lower bound

of the actual difference of L values used to accept or reject the merge pair. Any pair with m-score

below zero will certainly be rejected once the difference-of-Lentropy terms are accounted for, because

this term is always negative. Thus, at the end of the selection step we retain only set of candidate

cluster pairs kA, kB with positive scores. This is the set of candidate merge pairs we track during

all local steps in the current lap.

4.2 Birth moves

The goal of a birth proposal is to create a candidate set of variational parameters r̂′, τ̂ ′, ν̂′, η̂′ which

modifies the current state r̂, τ̂ , ν̂, η̂ by splitting an existing cluster j into two or more new clusters.
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Figure 4.2: Illustration of birth proposal for DP mixtures.
Holistic view of birth proposal construction. We start with an existing model with 3 active clusters.
This original state is captured by the local assignment responsibilities r̂, the cluster frequency
parameters û, ω̂, and the observation model parameters τ̂ , ν̂. We select the orange cluster to target
with a birth proposal. The first step is the construction of new assignment responsibilities r̂′ where
an mass previously assigned to orange is now distributed across several new clusters, shown here
in blue and green. The second step is construction of new global parameters τ̂ ′, ν̂′, û′, ω̂′ given the
responsibilities r̂′. The complete proposal now has 5 active clusters, including the original, now-
empty orange cluster. This could be discarded immediately, but we show it here for later connections
to multi-batch proposals.
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Figure 4.3: Illustration of local responsibility construction under birth proposal
Details of Step 1 from Fig. 4.2. Step 1A: Given the original responsibilities and a chosen cluster
(orange) to target, we first create a subsampled dataset. Step 1B: We use the Bregman k-means
algorithm from Alg. 2.1, with distance-biased initialization from Alg. 2.2, to create point estimates
for the global parameters of each new cluster, represented by φ̃ and π̃. Variables denoted with ˜
have dimension corresponding to the number of newborn clusters. Step 1C: We perform a restricted
local step to obtain proposed responsibilities r̂′. There is one r̂′n vector for each data atom n in the
original dataset.
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That is, we take a model with active truncation level K, and produce a model with truncation level

K + J ′, where J ′ ≥ 2 is the total number of new clusters created by the birth proposal.

Like the merge move, a birth move proceeds in three steps. First, we create candidate responsi-

bilities r̂′ from the existing set r̂. This leads immediately to the corresponding summary statistics

N(r̂′), S(r̂′), H(r̂′). Second, we create the associated global parameters τ̂ ′, ν̂′, η̂′ via the global up-

date step, so they achieve optimal values under the proposed responsibilities r̂′. Finally, we decide

to accept or reject the proposed approximate posterior, based on whether it improves the overall

objective.

We first discuss these steps in detail for the simpler case of a single-batch dataset. We later

discuss handling proposals for large-scale, multi-batch memoized evaluation.

4.2.1 Birth proposal construction

To create a birth proposal under our DP mixture model, we require as input a chosen active cluster

index ktarget satisfying 1 ≤ ktarget ≤ K. Index ktarget specifies our target cluster, which we will

propose breaking up into two or more subclusters. In this section, we discuss how to create the

candidate parameters given this choice. Selection of ktarget is described later in Sec. 4.3.4.

Given the chosen cluster ktarget, we need to create local responsibilities r̂′ and global parameters.

We first construct the responsibilities r̂′ for the dataset under this proposal. This construction is

done in two stages: we first create temporary global parameters for the assigned clusters, and then

we use these temporary parameters to construct r̂′. Later, we create the proposed values η̂′, τ̂ ′, ν̂′ of

the global parameters via a global optimization step r̂′.

Birth construction of initial global clusters

Given the whole dataset x and current responsibilities r̂, we identify a targeted subset x′ which

is primarily assigned to cluster ktarget by selecting those atoms with responsibility values over a

threshold. That is, x′ = {xn : r̂nktarget
> ǫ}, where ǫ ≈ 0.1 in practical implementations. Using

this subset, we can quickly identify a set of J ′ initial cluster shape parameters by running the

InitClusterMeansViaBregmanSamples algorithm from Alg. 2.2. This yields a set of mean

parameters {µ′
j}J

′

j=1. Further iterations of the Bregman k-means algorithm in Alg. 2.1 from this

initialization produces a set of point estimates µ′, π′ which are likely to explain the target dataset

x′ well. The cost of each iteration of this creation step is linear in the size of the target dataset,

not the whole dataset. The cost is also linear in the new cluster label space J = {1, 2, . . . J ′}, which
could be much smaller than the original label space of all K active clusters.

Using these point estimates, we have defined a finite mixture model over the newborn clusters

in J which has a point-estimate for the cluster frequency parameter π̃ (a vector of size J ′ that

sums-to-one) and a cluster mean parameter µ̃j for each newborn cluster. Let Ñj

We can further combine this model over the newborn clusters with our current model over the

existing clusters to create a candidate expanded model with a point estimated frequency probability
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πk for each cluster k ∈ 1, 2, . . .K + J ′.

πk =







Eq[πk] if k ≤ K, k 6= ktarget

0 if k = ktarget

Eq[πktarget
]π̃(k−K) if k > K

(4.11)

Birth construction of local responsibilities

We now need to use these new clusters to form responsibility parameters r̂′ for all clusters (including

the original K clusters and the J ′ new clusters) which are consistent with the whole dataset. As

illustrated in Fig. 4.2, we will do this by conceptually reassigning probability mass from the original

target cluster ktarget to the new clusters at indices {K+1,K+2, . . .K+J ′, while leaving all mass at

other non-target clusters alone. This mass transfer operation for creating each atom’s responsibility

vector r̂′n from r̂n obeys the original constraints on this vector: it must be non-negative and sum-

to-one.

Under these constraints, we can effectively reparameterize the full vector r̂′n into a deterministic

function of the original vector r̂n and a smaller vector p̃n = [p̃n1 . . . p̃nJ ] of length J
′. We interpret

each entry p̃nj as the fraction of the original mass on cluster ktarget that is transfered to new cluster

j. This mass transfer vector is non-negative and sums-to-one. Using this reparameterization, we

have:

for k ∈ 1, 2, . . .K,K + 1, . . .K + J ′ : r̂′nk =







r̂nk if k ≤ K, k 6= ktarget

0 if k = ktarget

r̂nktarget
p̃n,(k−K) if k > K

(4.12)

This construction by definition satisfies the desired sum-to-one constraints on r̂′n.

Restricted local step. The creation step above provides concrete values for the initial global

parameter estimates {τ̃j , ν̃j , and π̃j} for the set of new clusters labels J. Given these, we’d like

to find optimal responsibilities r̂′n for each data atom n under our local assignment objective from

Eq. (3.46). As a function of r̂′n, the objective is:

Ln(xn, r̂′n) =
∑

k=1

r̂′nkWnk − r̂′nk log r̂′nk (4.13)

which we can decompose into a sum over the original clusters and a sum over the newborn clusters

in label space J:

=
K∑

k=1

r̂nkWnk − r̂nk log r̂nk +
J∑

j=1

r̂nktarget
p̃njW̃nj − r̂nktarget

p̃nj log[r̂nktarget
p̃nj ] (4.14)

where the posterior weights for new clusters are given by:

W̃nj(xn, τ̃ , ν̃, π̃) = Eq(φj |ν̃j ,τ̃j)[log p(xn|φj)] + log π̃j (4.15)



90

which as a function of the reassignment probabilities p′n simplifies to

Ln(xn, r̂n, p′n) = r̂nktarget

[ J∑

j=1

p̃njW̃nj − p̃nj log p̃nj
]

(4.16)

Given the posterior weights W̃ for the new clusters, we can find the optimal reassignment probabil-

ities by using p̃∗n = RespFromWeights(W̃n). This delivers a vector of size J ′ that sums-to-one, as

required by our constraints.

Thus, we may compute the optimal reassignment probabilities via a version of the local update

step from Eq. (3.48) which is restricted to the new label space J. This restricted local step will be

much more affordable in general than computing r̂′ for many new clusters.

The runtime cost of the restricted local step scales linearly with the number of new states J ′ and

remains independent of the total number of states K. This keeps proposal construction manageable

even for large numbers of clusters. The cost is, however, linear in the total number of atoms N ,

which may be slow. To make costs more manageable, we can focus on the subset of atoms with

significant mass on the targeted cluster ktarget: Dn = {n : r̂nktarget
≥ ǫ}. We may perform restricted

local steps only on these atoms, and for any others use a deterministic rule where p̃n is set to an

indicator vector for the newborn cluster with maximum weight, or the closest cluster in the newborn

set.

Birth construction of sufficient statistics

After computing the reassignment vector p̃n for each new cluster, we can immediately compute the

effective count statistic N ′
k at each cluster index in the proposed model k ∈ {1, 2, . . .K + J ′}:

Nk(r̂
′) =







Nk(r̂) if k ≤ K, k 6= ktarget

0 if k = ktarget
∑N

n=1 r̂nktarget
p̃n(k−K) if k > K

(4.17)

Similarly, we compute the cluster shape sufficient statistic S′
k at each cluster index in the proposed

model k ∈ {1, 2, . . .K + J ′}:

Sk(r̂
′, x) =







Sk(r̂, x) if k ≤ K, k 6= ktarget

0 if k = ktarget
∑N

n=1 r̂nktarget
p̃n(k−K)s(xn) if k > K

(4.18)

Finally, for the entropy statistic at each cluster index k ∈ {1, 2, . . .K + J ′}:

Hk(r̂
′) =







Hk(r̂) if k ≤ K, k 6= ktarget

0 if k = ktarget
∑N

n=1 r̂nktarget
p̃n(k−K) log[r̂nktarget

p̃n(k−K)] if k > K

(4.19)
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Birth construction of global parameters

After the above restricted local step, we have a candidate set of responsibilities r̂′ for the expanded

model with K +J ′ clusters, as well as the appropriate sufficient statistics NG, SG, HG summarizing

these assignments.

The next step is to obtain corresponding global free parameters for our DP mixture model. That

is, we need observation model parameters {τ̂k, ν̂k}K+J′

k=1 for each of the K original clusters and J ′

new clusters. We also need allocation parameters η̂k for this expanded set of clusters.

Birth proposal global step for observation model. Eq. (3.41) gives a closed-form expression

for the parameters τ̂ ′k, ν̂
′
k given the summary statistics NG

k (r̂′), SG
k (r̂′). We need to do this explicitly

only for the newborn clusters at indices K + 1, . . .K + J ′. Other indices will have the same global

parameters as before, so for these values we can simply copy the original state: for k ≤ K, k 6= ktarget,

we have ν̂′k = ν̂k and τ̂ ′k = τ̂k. Finally, our proposal assigns zero mass to the target cluster, so its

optimal global parameters will match prior hyperparameters: ν̂′ktarget
= ν̄ and τ̂ ′ktarget

= τ̄ .

Birth proposal global step for allocation model. Eq. (3.43) gives a closed-form update for

the parameters η̂′ given fixed r̂′. Like the merge proposal, this construction will change not only the

target cluster and the newborn clusters, but any non-target cluster in the set {ktarget + 1, ktarget +

2, . . .K}. This is due to inserting the newborn cluster indices after the original set of cluster labels

in stick-breaking order.

4.2.2 Birth proposal evaluation

As with merge proposals, we accept a candidate state r̂′, η̂′, τ̂ ′, ν̂′ using the decision score in Eq. (4.5).

Several terms like the differences of Ldata terms and LDP-alloc terms can be simplified using similar

analysis as in the derivation of the corresponding merge terms. The Ldata term simplifies to:

Ldata(r̂′, τ̂ ′, ν̂′)− Ldata(r̂, τ̂ , ν̂) =
K+J′

∑

k=1

(
cP (τ̂ ′k, ν̂

′
k)− cP (τ̄ , ν̄)

)
−

K∑

k=1

(
cP (τ̂k, ν̂k)− cP (τ̄ , ν̄)

)
(4.20)

= cP (τ̄ , ν̄)− cP (τ̂ktarget
, ν̂ktarget

) +

J′

∑

j=1

(
cP (τ̂ ′K+j , ν̂

′
K+j)− cP (τ̄ , ν̄)

)

This can be interpreted as a log ratios of cluster-specific marginal likelihoods, which is sensible given

that our overall objective L is interpreted as a lower bound of marginal likelihood.

4.2.3 Construction and evaluation via memoized statistics

When the full-dataset is divided into many batches B > 1, we do not want to wait until visiting

all batches before accepting a potential birth proposal. Accepting a proposal as soon as possible,

even after trying it on only one of the B batches, will reduce extra computation and propagate

useful changes quickly. However, this introduces some complications in the memoized tracking of
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batch-specific summaries. After an accepted birth proposal at batch b that adds J ′ new clusters,

the new batch-specific summaries Nb, Sb, Hb will have larger truncation level K + J ′, while other

batches remain with only K active clusters.

We need to be sure we can track whole-dataset summaries that exactly summarize all visited

batches even if they have different truncation levels. For the DP mixture model, our nested trun-

cation means that at every batch b we can always insert empty clusters to the assignment statistics

without changing the optimization objective function score L. Thus, after a birth of J ′ new clusters

at some batch is accepted, we can effectively update every other batch b by inserting J ′ zeros to

each summary vector. For example, for the new count statistic N ′
b we have:

N ′
b(r̂) = [Nb1(r̂) Nb2(r̂) . . . NbK(r̂) 0, 0 , . . . 0] (4.21)

Inserting zeros allows on-demand expansion of any batch-specific summary vector from original

trunction K to any desired larger truncation K + J ′ where only the first K clusters are assigned to

data.

Using these zero-expanded batch-specific statistics, we can then aggregate whole-dataset statistics

NG, SG which accurately represent the entire dataset’s assignment to the active set ofK+J ′ clusters.

After a birth at batch b′ only, we can create the new candidate value N
′G for the whole dataset

from the original values NG via:

N
′G
k =







NG
k −Nb′ktarget

if k = ktarget

NG
k else if k ≤ K

N ′
b′k else if k > K

(4.22)

Similar incremental updates can be used for whole-dataset cluster shape summaries S
′G and entropies

H
′G.

Importantly, we can compute the whole-dataset statistics without requiring an expansion at

every batch first. We can thus perform expansion at other batches lazily after an accepted birth,

waiting until the next visit to batch b before applying Eq. (4.21) to its cached values of Nb, Sb, Hb.

4.2.4 Selecting clusters to target with birth proposals

We could attempt a birth at every cluster, but this would be expensive. To save time, we often wish

to prioritize some clusters before others and perhaps limit ourselves to a fixed budget of the number

of births we can attempt at each batch.

When visiting each batch, we need to determine which cluster k ∈ {1, 2, . . .K} to target with a

birth move, if any. We suggest an approach that accounts for two distinct cues: (1) how well each

cluster represents or fits its assigned data, and (2) how well each cluster has performed in past birth

moves. To quantify the model-fit criterion, we measure the following score function at each cluster
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k:

b-score(k) =
1

Nk

Ldata(N,S, ν̂, τ̂ , k) (4.23)

=
1

Nk

N∑

n=1

rnkE[log p(xn|φk)] (4.24)

Intuitively, this score is an average log probability. Large-magnitude negative values indicate clusters

whose assigned data are poorly predicted on average. At every batch, we greedily choose to target

the clusters with the lowest measured b-score value.

In addition to modeling quality, we also track for each distinct cluster how often we have tried

a birth in the past, and how often these tries have succeeded. We always prioritize births that

have never failed before, and only try a cluster that has failed before if (a) the cluster has changed

considerably since its last failure, (b) the current batch has more atoms assigned to the target than

our last birht attempt, or (c) all clusters have at least one failure, so we must choose a last-resort

option.

Finally, when choosing a cluster to target for birth moves, we also account for several practical

constraints. For example, we always skip any cluster that does not have adequate size (as measured

by the summary Nbk) in the current batch, because we cannot learn a refined clustering from only a

few data atoms. Typically, this threshold is very small, on the order of 3-50. Furthermore, we always

skip any cluster that is currently a target for merge or delete moves. Only one type of proposal

move can be accepted at each cluster in a given lap.

Trying multiple births at each batch. Under our proposed construction of candidate states,

a birth targeting cluster k never impacts the assignments of a non-involved original cluster j 6= k.

We may thus consider creating and evaluating multiple birth moves at once, so long as each targets

a distinct cluster.

4.3 Delete moves

The goal of a delete proposal move is to create a candidate set of variational parameters r̂′, τ̂ ′, ν̂′, η̂′

with one fewer cluster than the current state. Merge moves can remove a cluster only by reassigning

its mass to one other existing state. Deletes are designed to be more flexible, because they can

redistribute the target cluster’s assignments across many other clusters. However, this flexibility

comes with an increased runtime cost, since it is more expensive to infer how to redistribute among

multiple clusters than to use a deterministic formula to reassign responsibility mass.

A delete proposal begins by selecting a single cluster index, denoted ktarget, to target for deletion.

Without loss of generality, we will assume that the target cluster is last in stick-breaking order:

ktarget = K. This allows the indices of remaining clusters to be the same in the current and

proposed states.
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Figure 4.4: Illustration of delete proposal for DP mixtures.
Holistic view of delete proposal construction of candidate state. We start with an existing model with
6 active clusters in the original state, which is defined by the local assignment responsibilities r̂, the
cluster frequency parameters û, ω̂, and the observation model parameters τ̂ , ν̂. We select the orange
cluster to target with a delete proposal as well as several overlapping clusters as the designated
absorbing set. The first step is the construction of new assignment responsibilities r̂′ where any
mass previously assigned to orange reassigned among the absorbing set, adding to any preexisting
mass already on these clusters. The second step is construction of new global parameters τ̂ ′, ν̂′, û′, ω̂′

given the responsibilities r̂′. The complete candidate state has only K = 4 active clusters, having
deleted the original orange cluster.
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Next, we select a subset of other clusters A ⊂ {1, 2, . . .K} that will absorb the mass from the

target cluster. If we select only one absorbing cluster, the resulting delete proposal will be the

equivalent to a merge proposal. Selecting more than one absorbing cluster leads to potentially

larger changes. Once the target cluster and its absorbing set are chosen, the move proceeds through

the standard steps of creating a proposed state and then deciding whether to accept or reject it.

4.3.1 Delete proposal construction of local responsibilities

A delete proposal consists of new local assignments r̂′n for each data atom in the entire dataset.

Within the proposed assigment vector r̂′n, all mass formerly on the target cluster is reassigned

among the absorbing set A.

As usual, the candidate responsibility vector r̂′n for data atom n must obey the non-negativity

and sum-to-one constraints of any categorical distribution parameters. We further assume that all

clusters not involved in the absorbing set remain at their previous values in r̂. Thus, like birth moves

we can parameterize the delete in terms of a reassignment probability vector p̃n over the |A| entries
of the absorbing set.

for k ∈ 1, 2, . . .K − 1 : r̂′nk =







r̂nk if k /∈ A
(r̂nktarget

+
∑

ℓ∈A r̂nℓ)p̃n,j if k = Aj

(4.25)

Again, the vector p̃n has |A| non-negative entries and sums to one. The construction of r̂′n above is

completely determined by the original vector r̂n and the reassignment probabilities p̃n.

Restricted local step for p̃n. Like the birth move, our delete move proceeds by estimating the

best reassignment probabilities p̃n for each data atom n via a restricted local step.

We first imagine creating a finite mixture model for the restricted subset of |A| absorbing clusters

from our current DP mixture model. This limited model has point-estimates π̃ for each of the

absorbing clusters:

π̃j = Eq[πk], k = Aj (4.26)

as well as observation model parameters {τ̃j , ν̃j} copied directly from the corresponding absorbing

cluster indices within the complete original set {τ̂k, ν̂k}Kk=1.

Given these global parameters, we can compute posterior weights for each cluster in the absorbing

set:

for j ∈ 1, 2, . . . |A| : W̃nj = log π̃j + Eq[log p(xn|φj)] (4.27)

After computing the weights, we set reassignment probabilities via p̃n ← RespFromWeights(W̃n).

This gives a procedure for constructing r̂′ given the current assignments r̂ and the global parameters

η̂, τ̂ , ν̂ which has runtime that scales with the size of the absorbing set, not the total number of

clusters.
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4.3.2 Delete proposal construction of global responsibilities

A delete proposal’s local construction delivers proposed assignments r̂′ for the K − 1 remaining

clusters, as well as corresponding sufficient statistics. We can construct the global parameters via

the standard global optimization steps.

4.3.3 Scalable construction and evaluation with memoized statistics

For large datasets with B > 1 batches processed one batch at a time via our memoized algorithm,

we can still successfully construct and evaluate delete proposals where candidates are consistent

representations of the entire dataset. The basic template is much like the merge move, where at the

beginning of each pass through the dataset we identify the target cluster and the absorbing set. In

the first batch, we construct the proposed local parameters r̂′b and save the corresponding statistics

Ñb, S̃b, H̃b for all involved clusters. Each of these tracked values scales with the number of absorbing

clusters |A|, which could be much less than the total number of active clustersK. At each subsequent

batch, we perform similar tracking and aggregate the proposed statistics. Finally, after seeing all

batches, we can construct the relevant whole-dataset statistics N
′G, S

′G, H
′G, which represent in

aggregate the proposed assignments r̂′ across all batches. Finally, these summary statistics are fed

into the standard global step to obtain candidate global parameters and we can evaluate the resulting

candidate.

Extensions to multiple delete proposals. There are two ways to think about performing delete

proposals for multiple clusters. First, we could consider performing 2 separate delete proposals for

two candidate clusters j and k. Each proposal would be constructed and evaluated independently.

As with merge and birth proposals, we cannot simultaneously accept proposals which involve the

same clusters, either as the target or in the absorbing set. However, we can consider multiple such

proposals and only accept the one which is best. If the total involved sets of clusters in two or moves

are disjoint, we can accept both.

The second way to think about multiple proposals is to imagine removing two or more clusters

at the same time and redistributing their mass among the remaining clusters. This is certainly

possible, but risks combinatorial explosion in the number of possible pairs or triples of clusters with

the number of absorbing sets.

4.3.4 Selecting the target cluster to delete

Two key choices are required in the specification of a delete move: the targeted cluster ktarget and

the absorbing set of clusters A ⊂ {1, 2, . . .K}. We first discuss the choice of ktarget, and later the

choice of A.

We can systematically try all possible values of ktarget in each lap, but this may be expensive

since we can accept only one option at a time. Instead, we recommend first tracking which clusters

have failed attempts at deletion in the past. After a cluster has failed more than a prescribed number
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of proposal attempts, it should not be tried again. Among the remaining clusters, we might use a

size bias (preferring to try to delete small but non-zero clusters) or choose them at random. As a

practical concern, we avoid trying to simultaneously target a cluster for birth, merge, and deletion.

If speed is not a concern, the absorbing set may be chosen simply as all clusters except ktarget.

This will provide the greatest chance of acceptance, but has cost that scales with O(K − 1). When

K is in the hundreds or thousands, tracking such a large absorbing set may be problematic. Instead,

we can more cleverly identify a much smaller set of 2 to 10 “nearest neighbors” to the chosen

target cluster ktarget. One option would be to choose the closest clusters in the sense of Bregman

divergence from the current target’s mean parameters. Another option might be to examine the

pair-wise cooccurance within the responsibilities r̂ and choose potential absorbing clusters this way.

4.4 Experimental results

4.4.1 Toy example where deletes outperform merges

To illustrate the practical benefits of our delete move, we consider the task of training a DP mixture

model on a synthetic dataset with N = 25, 000 observations all drawn from a single Gaussian cluster

with mean 0 and variance 1. We consider only the full-dataset training algorithm here with different

possible proposal moves, to focus on the question of how well the different moves help us recover the

true cluster. For hyperparameters, we set γ = 10 and the observation model’s prior variance to 1.

The resulting inference task is very simple: recover the single true cluster. Ideally, every training

algorithm could find the single true cluster from any initialization, regardless of how many clusters

we start with. However, we will see in practice that this is not the case.

Fig. 4.5 shows what happens when training a model fromK = 5 initial clusters with merge moves

only. Early on, the merge moves remove two clusters and identify a K = 3 model. However, this

represents a tricky local optima, where no further merge move is accepted. The standard coordinate

ascent iterations have not strictly converged but change very slowly. After hundreds of iterations

from this fixed point, the ELBO score changes imperceptably.

Although further merge moves are attempted, no merge of the remaining three clusters (illus-

trated as red, yellow, and blue in Fig. 4.5) improves the ELBO objective. Some merges (such as red

and blue) result in small but noticeable ELBO drops, while a merge proposal combining blue and

yellow sensibly leads to a much bigger drop due to the much worse configuration that yields.

In contrast to merges, delete moves are more flexible. Delete proposals involve iterations that

improve on all proposed responsibilities in the absorbing set, while merges by definition deliver a

single fixed set of responsibilities. Even in this simple case, the iterative nature of delete proposals

leads to much better candidate models, as the ELBO traces in Fig. 4.5 illustrate. Of course, we note

that we need to run the delete proposal for sufficiently many iterations. It can be difficult to know

on arbitrary datasets how long is required.
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Figure 4.5: 1D Gaussian toy example where merges fail but deletes succeed
Example of poor local optima on simple dataset of 1D samples from single Gaussian cluster with
mean 0 and variance 1. Using an initialization with 5 clusters, training with merge moves only leads
to a fixed point with 3 clusters which persists for hundreds of iterations. A merge proposal for any
pair of clusters leads to lower ELBO score and thus rejection. However, the more flexible delete
proposal is accepted. Top left: histogram of raw dataset. Top right: training ELBO vs. iterations for
the merge-only training run, as well as example results of merges and deletes performed at iteration
200. Middle: Illustrations of the optimal cluster (used to generate the data) as well as the current
local optima. Bottom: Illustrations of proposed models trying to escape from the K = 3 current
local optima. The delete move is accepted, while the merge is rejected.
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Figure 4.6: Comparison of scalable DP mixture algorithms on synthetic image patch dataset.
Results on toy dataset where generated 5x5 patches represent strong edges and corners, inspired
by samples from a “dead leaves” model (Zoran and Weiss, 2012). Top: Trace of ELBO during
training across 10 runs. Stochastic (SO) algorithm compared with different learning rates a,b,c.
Memoized algorithm with birth and merge moves (MO-BM) uses original birth proposals from
(Hughes and Sudderth, 2013) which are not guaranteed to improve the objective, but nevertheless
consistently find high-quality solutions. Bottom Left: Example patch generated by each of the
K = 8 true clusters. Bottom Center: Illustration of the covariance matrices for the trained clusters
discovered by one run of each inference method, aligned to the 8 true clusters. “X” indicates no
comparable component found. Each covariance matrix has its global appearance probability πG

k

listed below. The true probabilites are 0.125 for each of the 8 clusters.

4.4.2 Toy image patch data

We now compare algorithms for learning DP-Gaussian mixture models (DP-GMM), using our own

implementations of full-dataset, stochastic online (SO), and memoized online (MO) inference, as

well as our new birth-merge memoized algorithm (MO-BM). To examine SO’s sensitivity to learning

rate, we use a recommended Hoffman et al. (2013) decay schedule ξt = (t+ d)−κ with three diverse

settings: a) κ = 0.5, d = 10, b) κ = 0.5, d = 100, and c)κ = 0.9, d = 10.

For some experiments, we also compare against Kurihara’s public implementation of full-dataset

split-move variational inference Kurihara et al. (2006). Hyperparameters were chosen for each

dataset in an empirical Bayes manner.

We first study N = 100000 synthetic image patches generated by a zero-mean GMM with 8

equally-common components. Each one is defined by a 25 × 25 covariance matrix producing 5 × 5

patches with a strong edge. We investigate whether algorithms recover the true K = 8 structure.

Each fixed-truncation method runs from 10 fixed random initializations with K = 25, while MO-BM

starts at K = 1. Online methods traverse 100 batches (1000 examples per batch).

Fig. 4.6 traces the training-set ELBO as more data arrives for each algorithm and shows estimated

covariance matrices for the top 8 components for select runs. Even the best runs of SO do not recover

ideal structure. In contrast, all 10 runs of our birth-merge algorithm find all 8 components, despite

initialization at K = 1. The ELBO trace plots show this method escaping local optima, with slight
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Figure 4.7: Comparison of scalable DP mixture algorithms on MNIST dataset.
Results on MNIST dataset. Top: Comparison of final ELBO for multiple runs of each method,
varying initialization and number of batches. Stochastic online (SO) compared at learning rates
a,b,c. Bottom left: Visualization of cluster means for MO-BM’s best run. Bottom center: Evaluation
of cluster alignment to true digit label. Bottom right: Growth in truncation-level K as more data
visited with MO-BM.

drops indicating addition of new components followed by rapid increases as these are adopted. They

further suggest that our fixed-truncation memoized algorithm competes favorably with full-data

inference, often converging to similar or better solutions after fewer passes through the data.

The fact that our MO-BM algorithm only performs merges that improve the full-data ELBO

is crucial. Fig. 4.6 shows trace plots of GreedyMerge, a memoized online variant that instead uses

only the current-batch ELBO to assess a proposed merge, as done in Bryant and Sudderth (2012).

Given small batches (1000 examples each), there is not always enough data to warrant many distinct

25×25 covariance components. Thus, this method favors merges that in fact remove vital structure.

All 5 runs of this GreedyMerge algorithm ruinously accept merges that decrease the full objective,

consistently collapsing down to just one component. Our memoized approach ensures merges are

always globally beneficial.

4.4.3 MNIST digit clustering

We now compare algorithms for clustering N = 60000 MNIST images of handwritten digits 0-9.

We preprocess as in Kurihara et al. (2006), projecting each image down to D = 50 dimensions

via PCA. Here, we also compare to Kurihara’s public implementation of variational inference with

split moves Kurihara et al. (2006). MO-BM and Kurihara start at K = 1, while other meth-

ods are given 10 runs from two K = 100 initialization routines: random and smart (based on

k-means++ Arthur and Vassilvitskii (2007)). For online methods, we compare 20 and 100 batches,

and three learning rates. All runs complete 200 passes through the full dataset.
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Figure 4.8: Comparison of scalable DP mixture algorithms for clustering tiny images.
Observed data: 32x32 color images from SUN dataset, projected via PCA so each observation xn
has dimension 50. Left: ELBO during training. Right: Visualization of 10 of 28 learned clusters for
best MO-BM run. Each column shows two images from the top 3 categories aligned to one cluster.

The final ELBO values for every run of each method are shown in Fig. 4.7. SO’s performance

varies dramatically across initialization, learning rate, and number of batches. Under random initial-

ization, SO reaches especially poor local optima (note lower y-axis scale). In contrast, our memoized

approach consistently delivers solutions on par with full inference, with no apparent sensitivity to

the number of batches. With births and merges enabled, MO-BM expands from K = 1 to over 80

components, finding better solutions than every smart K = 100 initialization. MO-BM even outper-

forms Kurihara’s offline split algorithm, yielding 30-40 more components and higher ELBO values.

Altogether, Fig. 4.7 exposes SO’s extreme sensitivity, validates MO as a more reliable alternative,

and shows that our birth-merge algorithm is more effective at avoiding local optima.

Fig. 4.7 also shows cluster means learned by the best MO-BM run, covering many styles of each

digit. We further compute a hard segmentation of the data using the q(z) from smart initialization

runs. Each DP-GMM cluster is aligned to one digit by majority vote of its members. A plot of

alignment accuracy in Fig. 4.7 shows our MO-BM consistently among the best, with SO lagging

significantly.

4.4.4 Clustering tiny images

We next learn a full-mean DP-GMM for tiny, 32 × 32 images from the SUN-397 scene categories

dataset (Xiao et al., 2010). We preprocess all 108754 color images via PCA, projecting each example

down to D = 50 dimensions. We start MO-BM at K = 1, while other methods have fixed K = 100.

Fig. 4.8 plots the training ELBO as more data is seen. Our MO-BM runs surpass all other algorithms.

To verify quality, Fig. 4.8 shows images from the 3 most-related scene categories for each of

several clusters found by MO-BM. For each learned cluster k, we rank all 397 categories to find

those with the largest fraction of members assigned to k via r̂·k. The result is quite sensible, with

clusters for tall free-standing objects, swimming pools and lakes, doorways, and waterfalls.
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4.5 Discussion

Across many applications of the DP mixture model, we see clear gains from our adaptive proposal

moves compared to fixed-truncation baselines. The merge moves are particularly effective at se-

lecting promising pairs of clusters and successfully merging them without too much additional cost

over the standard fixed-truncation algorithm. When possible, using moves that provably increase

the objective L makes the process both easier to debug and more reliable when applied to new

applications.



Chapter 5

Scalable variational inference for

HDP Topic Models

Ch. 1 motivated topic models (Blei, 2012) as a flexible extension of mixture models which allow each

group or document d to have its own specific mixture weights πd. Teh et al. (2006) introduced the

hierarchical Dirichlet process (HDP) as a Bayesian nonparametric prior for these document-specific

random variables πd, which leads to improved statistical strength in estimating these values and

generalizing to novel documents.

We now develop algorithms for scalable training of approximate posterior representations of the

hierarchical Dirichlet process (HDP) topic model. This chapter describes and extends earlier work

described in an AISTATS 2015 conference paper, with collaborators Dae Il Kim and Erik Sudderth

(Hughes et al., 2015a). The fundamental contributions here identified below:

Contribution 1: New optimization problem for topic models with model selection capa-

bility. First, we set up a novel optimization problem for inference which learns approximate pos-

teriors, not point estimates, for all global random variables u, φ as well as all local random variables

{πd, zd}. We show that this approach leads to beneficial model selection properties, while the point

estimation strategy for πG (equivalently for u) used in previous approaches (Bryant and Sudderth,

2012; Liang et al., 2007) has problems. Achieving this requires a careful surrogate bound to deal

with non-conjugacy in the HDP.

Contribution 2: Improved local step single-document inference, with applications to

finite and HDP topic models. When visiting a single document, the problem of updating the

posteriors for local random variables q(zd) and q(πd) in any mean-field approach is non-convex with

abundant local optima. We first bring attention to this problem by characterizing the practical

issues on real data. We then develop novel restart proposals to mitigate this issue.

103
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Contribution 3: Scalable memoized training algorithm for HDP topic model. Until

recently, only stochastic variational algorithms were known for training the finite LDA or infinite

HDP topic models. We have developed a memoized algorithm with the same per-batch runtime cost

and modest storage. Due to non-convexity in the local update step, the algorithm for any topic

model lacks monotonicity guarantees but we find in practice that it performs well.

Contribution 4: Birth, merge, and delete proposals to escape local optima. We finally

develop proposal moves to escape local optima by adding or removing active clusters. We show that

the topic model with multinomial likelihoods is vulnerable to especially cruel local optima, but our

moves can often escape from these.

Roadmap. After fully specifying the model, we identify our chosen family of approximate posterior

distributions and corresponding free parameters, define the optimization problem’s objective function

under this chosen family, and derive the basic coordinate ascent updates. Next, we describe scalable

versions of our algorithms and discuss the details of proposal moves for the HDP topic model

optimization problem.

5.1 Hierarchical Dirichlet process (HDP) topic models

Topic models, also called admixture models, explain datasets which are partitioned into D exchange-

able groups x = {x1 . . . xD}. We will often refer to each group as a document, because text modeling

is a primary application. However, the notion of grouping may apply equally well to observations

from different images, or different hospitals, or any similar application.

Each group or document d contains Td observations, denoted xd = {xd1, . . . xdTd
}. In text

analysis, each xdt might represent an individual word from a predefined vocabulary. In image

analysis, each xdt might represent the real pixel values of the t-th patch from the d-th image.

Remember that we can also index observations without the document structure using the index n,

and the total number of observations N is equal to
∑D

d=1 Td.

Our goal in analyzing the dataset x is to identify a common set of clusters or topics common

across all groups, while allowing each group to have variability in topic usage. Teh et al. (2006)

introduced the hierarchical Dirichlet process (HDP) topic model illustrated in Fig. 5.1 as a natural

model for this goal. The HDP is a hierarchical extension of the Dirichlet process mixture model.

It explains the data with an infinite set of possible clusters, {φk}Kk=1, but allows each group or

document to have a specific set of appearance probabilities πd.

Generative model

Like the DP mixture model, in the HDP topic model each topic k is defined by two global variables:

the data-generating cluster shape parameters φk, and a conditional cluster frequency uk. As in

Sec. 2.1.3, we will assume each cluster shape parameter is independently drawn from some prior
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ûk

ω̂k

τ̂k

ν̂k

Figure 5.1: Directed graphical representation of hierarchical Dirichlet process topic model.
The diagram shows the fundamental random variables (circled nodes), hyperparameters (gray), and
variational free parameters (red) of the hierarchical Dirichlet process (HDP) topic model. This
Bayesian nonparametric model generates a countably infinite number of clusters under the prior, of
which some number K ≤ N are assigned to data. Each cluster is defined by two global parameters:
conditional probability uk and shape parameter φk. The conditional probabilities u are determin-
istically mapped to global cluster probabilities πG via the invertible stick-breaking transformation.
The dataset x consists of D groups or documents, and is assumed to be within-group exchangeable.
In addition to the local cluster assignments zdt for each observation in the document, we also assume
local document-specific frequency vectors πd.

distribution φk ∼ P. Our focus will be on the generative model for cluster frequencies, because the

HDP introduces a more flexible model for this case.

Let each scalar 0 < uk < 1 define the conditional probability of sampling topic k given that

the first k − 1 topics were not sampled. That is, the probability of selecting label k among the

infinite set {k, k + 1, k + 2, . . .}. Each value uk is sampled independently from a beta distribution:

uk ∼ Beta(1, γ).

Using the stick-breaking transformation (Sethuraman, 1994; Blei and Jordan, 2006), we can de-

terministically produce a vector πG of global cluster probabilities given the vector u.

πG
k (u) , uk

∏k−1
ℓ=1 (1−uℓ). (5.1)

We interpret the scalar πG
k as the global probability of topic k appearing in any document. Unlike

the vector u, the vector πG will sum to one by construction.

Next, each group or document has a uniquely-specified topic frequency vector πd. This vector
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has infinitely many entries and will sum-to-one. As a more tractable representatation, we can write

this as a finite vector of size K + 1, where the first K entries represent the first K cluster indices in

stick-breaking order and the final entry represents the aggregate mass of all entries beyond index K.

πd = [πd1 πd2 . . . πdK πd>K ], πd>K ,=
∞∑

ℓ=K+1

πdℓ (5.2)

Given this finite partition of the infinite set of clusters, we define the generative model for the

document-specific vector πd given the global vector πG:

[πd1 . . . πdK πd>K ] ∼ Dir(απG
1 , . . . απ

G
K , απ

G
>K). (5.3)

This generative distribution implies the mean of the document-specific probability πdk is the global

probability πG
k . Each document can fluctuate around this mean with variance determined by the

concentration parameter α > 0.

We complete the generative model by describing the token creation process. First, we sample

the t-th observed token’s assigned cluster label zdt ∈ {1, 2, . . .K . . .} from a categorical distribution

with parameter πd:

zdt ∼ Cat∞(πd1, πd2, . . . πdK . . .) (5.4)

Finally, like the mixture model we generate each token’s data xdt from the chosen likelihood model:

xdt ∼ L(xdt|φzdt) (5.5)

where again we assume the likelihood density L belongs to the exponential family, as described in

Sec. 2.1.3.

Interpretation: Document-specific mixture with hierarchically-related frequencies

When studying the model described above and illustrated in Fig. 5.1, we emphasize a specific in-

terpretation: each document’s exchangeable observations are generated from a document-specific

mixture model. This mixture model is generated by a hierarchical chain of Dirichlet process realiza-

tions. First, we draw cluster frequencies and shapes {πG
k , φk}∞k=1 from the root or global Dirichlet

process. Second, we draw for each document a set of frequency-shape pairs {πdk, φk}∞k=1, where the

the shape parameters are common across all documents but the frequencies are document-specific

random variables related by a common mean vector πG.

Global and local variables

By inspection of Fig. 5.1, we recognize two global parameters for the HDP topic model: the cluster

frequency parameters uk and cluster shape parameters φk. We then have two sets of local variables

at each document: the document-specific probability vector πd and the discrete assignments zd =

{zd1, zd2, . . . zdTd
}.
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5.2 Posterior inference as a variational optimization problem

Our goal in performing posterior inference for an HDP topic model is to estimate the joint posterior

p(φ, u, {πd, zd}Dd=1|x) given observed documents x = {x1, . . . xD}. As in DP mixture models, esti-

mating the joint posterior directly is intractable, so we set up a variational inference optimization

problem instead. The approach described fully below was first given in our earlier conference paper

(Hughes et al., 2015a).

5.2.1 Mean-field approximate posterior

Let q(φ, u, {πd, zd}Dd=1) denote our approximate posterior. We will make the standard mean-field

simplifying assumptions about factorizing q. That is, each document d has independent factors πd

and zd, while each global cluster k has independent factors for uk and φk. That is, we can factorize

the approximate density as

q(φ, u, {πd, zd}Dd=1) =
∞∏

k=1

q(φk) ·
∞∏

k=1

q(uk) ·
D∏

d=1

q(πd) ·
D∏

d=1

Td∏

t=1

q(zdt) (5.6)

We further assume each factor of the approximate posterior has a density that belongs to the

exponential family, whose form naturally mimics the generative model when appropriate. The full

parameterization is given here:

q(φ) =

∞∏

k=1

P(φk|τ̂k, ν̂k) (5.7)

q(u) =

∞∏

k=1

Beta(uk|ûkω̂k, (1 − ûk)ω̂k) (5.8)

q(π) =

D∏

d=1

DirK+1(πd|θ̂d1 . . . θ̂dK θ̂d>K) (5.9)

q(z) =

D∏

d=1

Td∏

t=1

Cat∞(zdt|r̂dt1, . . . r̂dtk . . .) (5.10)

The goal of variational optimization is to find specific values of these free parameters that make

q(u, φ, {πd, zd}Dd=1) a good approximation to the true posterior. For each factor, we denote the free

parameters with hats to make clear which variables are instantiated and optimized during inference.

Below, we discuss the free parameters in each factor in detail.

Global allocation model free parameters

In Eq. 5.8, we define q(uk) as a Beta distribution with two parameters: ûk ∈ [0, 1] defines the

mean value of uk, while ω̂k > 0 defines the variance of uk. Under this distribution, we have the

expectations:

Eq[uk] = ûk Eq[1−uk] = 1−ûk
Eq[π

G
k (u)] = ûk

∏k−1
ℓ=1 (1 − ûℓ)

Eq[log uk] = ψ(ûkω̂k)− ψ(ω̂k)

Eq[log 1− uk] = ψ((1 − ûk)ω̂k)− ψ(ω̂k)
(5.11)
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Global observation model free parameters

For each cluster k, we have an independent posterior q(φk) over the cluster shape parameter φk. The

definition of q(φk) in Eq. 5.7 follows the standard procedure from Sec. 2.1.3 using free parameters

ν̂k and τ̂k. There is nothing new here compared to the version of q(φk) used for the DP mixture

model in Ch. 3.

Local parameters for document-specific cluster assignments

As with the DP mixture model, we have a non-negative responsibility vector r̂dt for each observation

t in document d. We can interpret the scalar value r̂dtk ∈ [0, 1] as the probability of assigning this

observation to cluster k. To be a valid parameter of a categorical distribution, we have the constraint

that the vector r̂dt must be non-negative and sum to one. To gain tractability, we follow the methods

in Sec. 3.3.1 and truncate r̂dt so that only the first K entries may have positive probability mass.

All inactive clusters k > K are constrained by assumption so that r̂dtk = 0.

Local parameters for document-specific cluster frequencies

The factor q(πd) has the free parameter θ̂d ≥ 0, which is a vector of size K+1 whose entries are non-

negative. The first K entries of θ̂d can be interpreted as a pseudocount of the total assigned mass

for the first K active clusters within document d. The remaining final entry defines the aggregate

mass of all inactive clusters. Here are useful expectations for active clusters k ≤ K:

Eq[πdk] =
θ̂dk

θ̂d>K +
∑K

k=1 θ̂dk
Eq[log πdk] = ψ(θ̂dk)− ψ(θ̂d>K +

∑K
k=1 θ̂dk) (5.12)

And for the remaining aggregate mass, we have the expectations:

Eq[πd>K ] =
θ̂d>K

θ̂d>K +
∑K

k=1 θ̂dk
Eq[log πd>K ] = ψ(θ̂d>K)− ψ(θ̂d>K +

∑K
k=1 θ̂dk) (5.13)

5.2.2 Evidence lower-bound objective function

Given the assumed factorization of q(u, φ, {πd, zd}Dd=1) above, we now set up an optimization prob-

lem over our free parameters, just like we did for the DP mixture model in Sec. 3.3.2. The

goal is to minimize KL divergence between the approximate posterior q and the true posterior

(Wainwright and Jordan, 2008).

argmin
τ̂ ,ν̂, û,ω̂, θ̂,r̂

KL(q(u, φ, {πd, zd}Dd=1|τ̂ , ν̂, û, ω̂, θ̂, r̂)||p(u, φ, {πd, zd}Dd=1|x)) (5.14)

Computing this KL divergence directly is not possible. However, standard arguments yield an

equivalent maximization problem

argmax
τ̂ ,ν̂, û,ω̂, θ̂,r̂

L(x, τ̂ , ν̂, û, ω̂, θ̂, r̂) (5.15)
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where the objective function L is defined as:

L(x, τ̂ , ν̂, û, ω̂, θ̂, r̂) , log p(x)−KL(q(u, φ, π, z|τ̂ , ν̂, û, ω̂, θ̂, r̂)||p(u, φ, z|x)) (5.16)

= Eq(u,φ,π,z)

[

log p(x, u, φ, π, z)− log q(u, φ, π, z)
]

(5.17)

Under our chosen exponential family forms for each factor of the approximate posterior q, the

expectations that define L are computable as closed-form functions of the free parameters. We can

tractably evaluate L and take derivatives with respect to the free parameters, making optimization

possible.

As in Eq. 2.93 for DP mixtures, we can write the objective L for HDP topic models as a sum of

two terms:

L(x, r̂, η̂, τ̂ , ν̂) = Ldata(x, r̂, τ̂ , ν̂) + Lalloc(r̂, θ̂, û, ω̂) (5.18)

These terms describe distinctly interpretable pieces of the overall model: Ldata gathers terms related

to the observation model and Lalloc gathers terms related to the HDP topic allocation model. These

terms may also be functions of the hyperparameters γ, α, τ̄ , ν̄, but we omit these arguments in

notation for simplicity.

This term-by-term breakdown of the objective encourages a modular implementation. Given

fixed assignments r̂, the solution to finding the optimal observation model parameters ν̂, τ̂ must be

independent of the allocation probability parameters, and vice versa. This modularization enables

our implementation to implement free parameter updates once for each possible observation model

or allocation model, and compose these modules to create an overall model.

Observation model term of the objective

The term Ldata for HDP topic models is no different from the same term for DP mixture models. We

thus refer to the original expression in Eq. 2.95, which can be evaluated given valid free parameters

r̂, τ̂ , ν̂ as well as data x. This expression does not rely on any document-specific quantities, so

we use the single-level data index n to identify responsibilities r̂n and data xn, rather than the

corresponding two-level document-token index d, t.

Allocation model term of the objective

For the HDP topic model, we write the allocation model’s contribution to the objective as:

Lalloc(r̂, θ̂, û, ω̂) ,
D∑

d=1

Eq(zd)q(πd)q(u)

[

log
p(zd|πd)
q(zd|r̂d)

+ log
p(πd|α, πG(u))

q(πd|θ̂d)

]

(5.19)

+

∞∑

k=1

Eq(u)

[

log
p(uk|γ)
q(uk|û, ω̂)

]

Regrouping terms, we can separate this into an entropy term for the distribution q(z|r̂), a term

which gathers any document-specific quantities, and a term for the remaining global quantities:

Lalloc(r̂, η̂) = Lentropy(r̂) + LHDP-doc(r̂, θ̂, û) + LHDP-top(û, ω̂) (5.20)
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Figure 5.2: Plots of surrogate bound needed to handle non-conjugacy of HDP topic model
Left: Illustration of the bound − log Γ(x) ≥ log(x) for x ∈ [0, 1], which inspired our surrogate bound.
Right: Illustration of the exact log Dirichlet cumulant function cDir(αb1, αb2, . . . αbK+1) (Eq. (5.22),
solid black) as a function of the number of active clusters K, for various α > 0. At each value of K,
we set the vector b = [b1 b2 . . . bK b>K ] so its active entries are equal to bk = 1

1+γ

∏

ℓ<k
γ

1+γ
, which is

the prior mean of the global probability vector πG, and the final entry b>K is set so the vector sums
to one. We show along side each exact evaluation our proposed surrogate bound (Eq. (5.23), dashed
red), which this plot shows to be very tight across a range of practical α values. Topic models are
typically trained with 0 < α < 1 to encourage sparsity.

The specific mathematical forms of each of these terms are given in the sections below.

5.2.3 Global term of the allocation objective, using a surrogate bound

To define the global allocation term, we have gathered all terms that depend only on the global free

parameters û and ω̂.

LHDP-top(û, ω̂) , Eq(u)[log
p(uk)

q(uk)
] +DEq(u)[cDir(απ

G(u))] (5.21)

These expectations have no dependencies on any local free parameters {θ̂d, r̂d}Dd=1. We have included

the Dirichlet cumulant function that appears in the expectation of Eq[logDir(πd|απG)], because this

expectation is purely a function of û, ω̂.

Under the chosen form of q(u), we have closed-form expressions for the expectations of log p(uk)

and log q(uk) in Eq. 5.21. However, the term Eq[cDir(απ
G(u))] is problematic: there is no closed-form

expression for this expectation.

To see this, recall that cDir is the cumulant function of the Dirichlet distribution. It takes two

parameters: a positive scalar α > 0 and a nonnegative vector b of length K + 1 that sums to one.

The function is then defined as:

cDir(αb1, . . . αbK , αbK+1) , log Γ(α)−
K+1∑

k=1

log Γ(αbk) (5.22)

The difficulty is that the expected value of log Γ(απG
k (u)) when uk is a beta random variable has no

known closed form. To avoid this problematic expectation of log Gamma functions, we introduce a
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Figure 5.3: HDP model selection: point estimation vs. variational with surrogate bound
We consider several possible algorithms for estimating top-level conditional probabilities u from
fixed set of observed assignments z. To assess model selection capability, we consider a fixed set of
assignments z with K = 10 active clusters, as well as a the same assignments with K = 11, 12, 13
active clusters. That is, the later models are simply inserting extra clusters with no assigned obser-
vations. In this plot, for each method we show the change in its optimization objective function (the
evidence lower bound, or ELBO) from the value with no extra empty topics. We seek a method whos
optimization objective function prefers no empty topics to all other cases. Algorithms: First, we
consider point estimation of û directly, which solves the optimization problem argmaxu,θ̂ log p(z, u).
Second, approximate posterior estimate, which seeks the parameters û, ω̂ which define the distribu-
tion q(u) =

∏K
k=1 q(uk) = Beta(mean=ûk, scale=ω̂k) which best approximates the true (intractable)

posterior p(u|z). The optimization problem here is argmaxû,ω̂,θ̂ L(û, ω̂, θ̂, z). Conclusions: Our new
surrogate bound sensibly prefers models without empty topics, while using point estimation yields
undesired preference for including empty topics that do not explain any data.
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novel lower bound for the cumulant function cDir. Given a positive scalar α > 0 and a nonnegative

vector [b1, b2, . . . bK , bK+1] of size K + 1 which sums to one, we have:

cDir(αb1, αb2, . . . αbK , αbK+1) ≥ K logα+
∑K+1

k=1 log bk (5.23)

To deal with our intractable expectation Eq[cDir(απ
G(u))], we can substitute πG(u) in for the vector

b in the above bound and apply the expansions πG
k = uk

∏

ℓ<k(1 − uℓ) and πG
>K =

∏

ℓ≤K(1 − uℓ).
After simplifying, we have

cDir(απ
G(u)) ≥ K logα+

∑K
k=1 log uk +

∑K
k=1(K + 1− k)[log 1− uk] (5.24)

Under our chosen beta distribution for q(uk), both expectations required by this lower bound,

Eq[log uk] and Eq[log 1− uk], have closed form.

Thus, we can define a surrogate objective term Lsurrogate-HDP-top which is a tight lower bound

on LHDP-top. That is, LHDP-top(û, ω̂) ≥ Lsurrogate-HDP-top(û, ω̂) for all values of the parameters û, ω̂

and all hyperparameters α > 0, γ > 0. This surrogate objective term can be derived by combining

the bound in Eq. 5.24 with the expanded terms in Eq. (5.21):

Lsurrogate-HDP-top(û, ω̂) = DK logα+

K∑

k=1

cBeta(1, γ)− cBeta(ûkω̂k, (1 − ûk)ω̂k) (5.25)

+

K∑

k=1

(D + 1− ûkω̂k)Eq [log uk]

+

K∑

k=1

(D(K + 1− k) + γ − (1− ûk)ω̂k)Eq [log 1− uk]

5.2.4 Document-specific term of the allocation objective

The term LHDP-doc of our overall objective Lalloc gathers any remaining terms not included in Lentropy
or LHDP-top. Standard conjugate exponential family mathematics yields an expanded expression:

LHDP-doc(r̂, θ̂, û) =

D∑

d=1

Eq

[

log p(zd|πd) + log
p(πd)

q(πd)

]

−DEq[cDir(απ
G(u))] (5.26)

=
D∑

d=1

−cDir(θ̂d) (5.27)

+

D∑

d=1

K∑

k=1

(

Ndk(r̂) + απG
k (û)− θ̂dk

)

Eq(πd|θ̂d)
[log πdk]

+

D∑

d=1

(

απG
>K(û)− θ̂d>K

)

Eq(πd|θ̂d)
[log πd>K ]

Here, we define Ndk(r̂) =
∑Td

t=1 r̂dtk, which is interpreted as the effective count of assignments to

cluster k in document d. We have also substituted πG
k (û) , Eq(u)[π

G
k (u)] in the sum over active

clusters, and πG
>K(û) = Eq(u)[π

G
>K(u)] in the last line, where we remember that scalar uk is an
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unknown random variable while ûk is a free parameter which defines its approximate posterior mean.

All expectations taken with respect to q(πd) are defined in Eq. (5.12) and Eq. (5.13) as digamma

functions of θ̂. Finally, the function cDir is the Dirichlet cumulant defined earlier in Eq. (5.22).

5.2.5 Assignment entropy term of the allocation objective

The entropy of the assignments is a simple non-linear function of the responsibilities:

Lentropy(r̂) = −
D∑

d=1

Td∑

t=1

Eq[log q(zdt)] = −
N∑

n=1

r̂dtk log r̂dtk. (5.28)

We emphasize that no document-specific indexing is required here. Thus, we may replace the two-

level document-token indices d, t with the global data index n, which always have a one-to-one

invertible relationship. Written using the global indices n for each data observation, this entropy

expression is no different than the corresponding entropy term for DP mixture models.

5.3 Update steps for variational optimization

Now, given the objective functions defined above, we can write down the the constrained optimization

problem for our free parameters τ̂ , ν̂, û, ω̂, θ̂, r̂ given an observed dataset x and hyperparameters H:

argmax
τ̂ ,ν̂,û,ω̂,θ̂,r̂

Ldata(x, r̂, τ̂ , ν̂) + Lentropy(r̂) + LHDP-doc(r̂, θ̂, û) + Lsurrogate-HDP-top(û, ω̂) (5.29)

where the required constraints on the local free parameters for document d are:

r̂dt ≥ 0 and
∑K

k=1 r̂dtk = 1 for t = 1, 2, . . . Td (5.30)

θ̂dk ≥ 0 for k = 1, 2, . . .K,K + 1

and the required constraints on global free parameters are

ûk ∈ [0, 1] and ω̂k ≥ 0 for k = 1, 2, . . . (5.31)

ν̂k ≥ 0 and τ̂k ∈ M for k = 1, 2, . . .

Given the internal structure of the objective, we pursue a block-coordinate ascent algorithm, which

proceeds in two steps, a local step and a global step. The local step updates the free parameters

r̂d, θ̂d for each document d while holding global parameters fixed. The global step updates the global

free parameters given fixed (summary statistics of) local parameters.

Below, we define the optimization problem solved by each step of the block-coordinate ascent

algorithm. We then describe detailed solutions which solve each problem below in closed-form in

the following sections.
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Key differences from coordinate ascent for DP mixtures

We stress two key differences from the DP mixture model optimization procedure of Ch. 3. These

are useful to have in mind from the outset, to properly understand why the HDP training problem

may be more complex than the DP training problem even beyond the fact that there are simply

more latent variables.

The first key difference is the DP training algorithm had an objective function which was exactly

equal to log p(x)−KL (q‖p). In contrast, the HDP training objective LHDP is a lower bound of this

quantity. We need this surrogate bound for tractability, but its consequence is that more complex

models are penalized more sharply than in the DP case.

The second key difference lies in the guarantees. The DP training algorithm guaranteed mono-

tonic increase of the objective function L, we can only make this guarantee for the HDP topic model

under some costly assumptions: the vector θ̂d is always stored for each document.

5.3.1 Global parameter update step for observation model

Consider the optimization problem:

argmax
τ̂ ,ν̂

Ldata(x, r̂, τ̂ , ν̂) subject to ν̂k ≥ 0 and τ̂k ∈ M for k = 1, 2, . . . . (5.32)

The optimization problem in Eq. (5.32) is the same as for the observation model in the DP mixture

model, found in Eq. (3.39). This, we can apply the solution from (3.41) without complication.

τ̂∗k = Sk(x, r̂) + τ̄ (5.33)

ν̂∗k = Nk(r̂) + ν̄

These optimal values naturally satisfy the required constraints ν̂∗k ∈ R+ and τ̂∗k ∈ M, so that ν̂∗k

and τ̂∗k remain valid parameters for the density q(φk).

5.3.2 Global parameter update step for allocation model

The allocation model global step solves the following optimization problem:

argmax
û,ω̂

LHDP-doc(r̂, θ̂, û) + Lsurrogate-HDP-top(û, ω̂) (5.34)

subject to ûk ∈ [0, 1] for k = 1, 2, . . . (5.35)

ω̂k ≥ 0 for k = 1, 2, . . . (5.36)

Due to non-conjugacy in the generative model’s specification that πd ∼ Dir(απG(u)), the global

step update for q(u) does not have closed form. However, we can evaluate the objective function of

the problem in Eq. (5.34) given any valid free parameters û, ω̂. This suggests a numerical optimiza-

tion approach based on L-BFGS or similar modern gradient descent algorithms.
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Gradient descent update for mean parameter û

Writing the complete objective from the optimization problem in Eq. (5.34) as a function of û, we

have:

f(û) = −
K∑

k=1

cBeta(ûkω̂k, (1− ûk)ω̂k) (5.37)

+

K∑

k=1

(D + 1− ûkω̂k)[ψ(ûkω̂k)− ψ(ω̂k)]

+

K∑

k=1

(D(K + 1− k) + γ − (1− ûk)ω̂k)[ψ((1 − ûk)ω̂k)− ψ(ω̂k)]

+ απG
>K(û)P>K(θ̂) + α

K∑

k=1

πG
k (û)Pk(θ̂)

where we define the summary statistics:

Pk(θ̂) ,

D∑

d=1

Eq[log πdk] =

D∑

d=1

ψ(θ̂dk)− ψ(
∑K+1

ℓ=1 θ̂dℓ) (5.38)

P>K(θ̂) ,

D∑

d=1

Eq[log πd>K ] =

D∑

d=1

ψ(θ̂d>K)− ψ(∑K+1
ℓ=1 θ̂dℓ)

The function f(û) and its gradient (which is easily computed either by hand or with autodifferen-

tiation code packages) are all that is needed to perform optimization to find the best value û∗. As

before, we need only focus on the first K indices of vector û∗, since the any inactive cluster k > K

will be optimally set to the prior mean: û∗k = 1
1+γ

for k > K.

Heuristic update for variance parameter ω̂

Close inspection reveals a possible simplification: the free parameter vector ω̂, which determines the

variance of q(uk) at each active cluster, only impacts the term Lsurrogate-HDP-top defined in Eq. (5.25).

After inspecting the optimal global step update for the similar q(u) of the DP mixture model in

Eq. (3.43), he structure of Eq. (5.25) suggests that a useful “rule-of-thumb” update for ω̂ is:

ω̂∗
k =







D(K + 1− k) +D + 1 + γ for k ≤ K
1 + γ for k > K

(5.39)

Recall that the larger ω̂k is, the less variance exists in the distribution q(uk). Intuitively, because

index k of vector πG(u) is determined by the first k indices of vector u, the estimated certainty of

q(uk) should sensibly be highest for index 1 and slowly decay as the index gets larger.

Using the heuristic closed-form update for ω̂∗
k above, we can save considerable cost in estimat-

ing ω̂∗
k at each iteration of any algorithm while still reaping the benefits of representing a proper

approximate posterior distribution for q(u) rather than a point estimate.
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5.3.3 Local update step

Given fixed values of the global observation parameters τ̂ , ν̂ and allocation parameters û, ω̂, the

required optimization problem at each document d is to find responsibilities r̂d which define q(zd)

and pseudo-counts θ̂d which define q(πd).

argmax
r̂d,θ̂d

Ldata(xd, r̂, τ̂ , ν̂) + Lentropy(r̂) + LHDP-doc(r̂, θ̂, û) (5.40)

subject to r̂dt ≥ 0 and
∑K

k=1 r̂dtk = 1 for t = 1, 2, . . . Td

θ̂dk ≥ 0 for k = 1, 2, . . .K + 1

(5.41)

Unlike DP mixture models, this problem does not have a closed-form solution. The objective in

Eq. (5.40) is non-convex and has many local optima. However, we can apply a block coordinate

ascent algorithm to iteratively estimate the best r̂ given fixed θ̂, then the best θ̂ given fixed r̂, and

so on until convergence.

Local substep for assignment responsibilities

Fixing θ̂d, the objective for token a in document d reduces to an objective similar to the per-token

objective L for DP mixtures in Eq. (3.46).

Ldt(xdt, r̂dt, τ̂ , ν̂, θ̂) ,
K∑

k=1

r̂dtk

(

Wdtk(xdt, τ̂ , ν̂, θ̂)− log r̂dtk

)

(5.42)

Wdtk(xdt, τ̂ , ν̂, θ̂) , Eq(φk)

[

log p(xdt|φk)
]

+ Eq(πd)

[

log πdk

]

(5.43)

Just as with the DP mixture problem, we can use the RespFromWeights procedure to find the

optimum of Eq. (5.42):

r̂∗dtk =
eWdtk

∑K
ℓ=1 e

Wdtℓ

(5.44)

Local substep for doc-topic pseudo-counts

Next, we consider finding the optimal θ̂d for document d, given the requisite constraints and fixed

assignments r̂d. Using Lagrange multiplier methods applied to the objective term LHDP-doc, we find

a closed-form optimum. For each active cluster k ≤ K, we have:

θ̂∗dk = Ndk(r̂d) + απG
k (û) (5.45)

while for the aggregate index >K representing all inactive clusters, we have

θ̂∗d>K = απG
>K(û) (5.46)
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Algorithm 5.1 Algorithm for local step under an HDP topic model

Input:
α : positive real, document-topic smoothing scalar
{πG

k (û)}Kk=1 : expected probability of active topic k under q(u|û, ω̂)
πG

>K(û) : expected probability of aggregate inactive topics.

{{Cdtk}Kk=1}Td

t=1 : expected log probability of data atom xdt under topic k
Cdtk , Eq[log p(xdt|φk)]

Output:
r̂d : responsibilities for doc d
[θ̂d1 . . . θ̂dK θ̂d>K ] : topic pseudo-counts for doc d

1: function LocalStepForDoc(Cd, α, û)
2: for t = 1, . . . Td do ⊲ Initialize responsibilities r̂d
3: for k = 1 . . .K do
4: Wdtk ← Cdtk + log(πG

k (û))

5: r̂dt ← RespFromWeights(Wdt)

6: while not converged do ⊲ Iterate between updating θ̂ and r̂
7: for k = 1, 2 . . .K do
8: Ndk ←

∑Td

t=1 r̂dtk
9: θ̂dk ← Ndk + απG

k (û)

10: Pdk ← ψ(θ̂dk) ⊲ Log prior probability E[log πdk]

11: for t = 1, 2 . . . Td do
12: for k = 1, 2 . . .K do
13: Wdtk = Cdtk + Pdk

14: r̂dt = RespFromWeights(Wdt)

15: θ̂d>K ← απG
>K(û) ⊲ Set inactive term

16: return r̂d, θ̂d

This algorithm solves the optimization problem defined in Eq. (5.40), producing optimal document-

specific responsibilities r̂d defining the assignment posterior q(zd|r̂d) and pseudocounts θ̂d defining

the topic frequency posterior q(πd|θ̂d).



118

Ndk
doc-topic counts 
 for select topics 

89.5 64.8  0    0    0 
 

90.8 64.2  8.4  0    0 
 

89.8 62.4  8.1  8.1  0 
 

88.7 61.6  7.2  7.1  5.5 

   0 50 100 150 200
num E step iters

-6.3

-6.2

-6.1

si
n
g
le
 d
o
c 
E
LB

O

0 20 40 60 80 100
num pass thru data

−7.35

−7.30

−7.25

−7.20

E
LB

O
 o

b
je

ct
iv

e

MOfix+SpRestarts

MOfix

Figure 5.4: Illustration of restart proposals for HDP topic model local step.
Sparsity-promoting restarts for local update steps on the Science corpus with K = 100. Left:
Example fixed points of the document-topic count summary statistic Ndk for a single document in
the Science corpus. We show only select topic indices out of all K = 100. Center: Trace of a single
document’s objective L during the local step inference for 50 random initializations (dashed lines).
The solid lines show one run with sparsity-promoting moves enabled. This run climbs through the
color coded fixed points in the left plot. Right: Trace plot of the whole-dataset objective L across
many passes through the whole Science corpus. Using sparsity-promoting restarts yields noticeable
improvements in model quality.

Iterative algorithm for joint local step update

To find an ideal joint configuration r̂∗d, θ̂
∗
d, we iterate between the updates above until convergence.

An algorithm describing the required iterations is given in Alg. 5.1. This algorithm includes our rec-

ommended heuristic initialization (discussed below) and delivers a final value for the responsibilities

r̂∗d. From this converged value, we can easily compute the required θ̂∗d.

Local step initialization. To initialize the update cycle for a document, we recommend visiting

each token and updating it with initial weight W ′
dtk = Eq[log p(xdt|φk)] + log πG

k (û). This initializa-

tion lets the likelihood drive the initial assignments while still incorporating the current best estimate

of the global topic probabilities πG(û). We then alternate updates to r̂ and θ̂ until either a maximum

number of iterations is reached (typically 100) or the maximum change of all document-topic counts

Ndk falls below a threshold (typically 0.05).

5.3.4 Sparse restart proposals for local step

When visiting document d, the joint inference of θ̂ and r̂ can be challenging due to the non-convexity

of the joint inference problem in Eq. (5.40). Many local optima exist even for this single-document

task, as shown Fig. 5.4. A common failure mode occurs when a few tokens are assigned to a rare

“junk” topic. Reasignment of these tokens may not happen during the standard coordinate ascent

updates due to a valley in the objective between keeping the current junk assignments and setting

the junk topic to zero.

To more adequately escape local optima, we develop sparsity-promoting restart moves which

take a final document-topic count vector [Nd1 . . .NdK ] produced by coordinate ascent, propose an

alternative which has one entry set to zero, and accept if this improves the ELBO after further
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Algorithm 5.2 Algorithm for restart proposals used in local step of inference for HDP topic model

Input: α : document-topic smoothing scalar
{{Cdtk}Kk=1}Td

a=1 : expected log probability of token d, t under topic k
Cdtk , Eq[log p(xdt|φk)]

r̂d : initial responsibilities for doc d
[θ̂d1 . . . θ̂dK θ̂d>K ] : initial topic pseudo-counts for doc d

Output:
r̂d : responsibilities for doc d
[θ̂d1 . . . θ̂dK θ̂d>K ] : topic pseudo-counts for doc d

1: function RestartProposalsForDoc(r̂d, θ̂d)
2: for k = 1, . . .K do
3: Ndk ←

∑Td

t=1 r̂dtk
⊲ Initial usage counts.

4: Ad ← {k : Ndk > 0.1}
5: for j ∈ Ad do
6: r̂′d ← Copy(r̂d)
7: for t = 1, 2, . . . Td do
8: r̂′dtj ← 0

⊲ Propose sparser q(πd) by setting count to zero
9: while not converged do

10: for k = 1, . . .K do
11: N ′

dk ←
∑Td

t=1 r̂
′
dtk

12: θ̂′dk ← N ′
dk + απG

k (û)

13: P ′
dk ← ψ(θ̂′dk)

14: for t = 1, 2, . . . Td do
15: for k = 1, 2, . . .K do
16: W ′

dtk ← Cdtk + P ′
dk

17: r̂′dt ← RespFromWeights(W ′
dt)

18: if Ld(r̂′d, θ̂′d) > Ld(r̂d, θ̂d) then ⊲ Keep proposal if document score improves
19: r̂d ← r̂′d
20: θ̂d ← θ̂′d
21: return r̂d, θ̂d

Restart proposals attempt to find better local optima of the variational optimization objective
function in Eq. (5.40). Based on the heuristic that the document-topic prior prefers sparsity, this
procedure repeatedly proposes alternative local parameters where one currently used topic has its
usage forced to zero. This procedure is guaranteed to monotonically improve the document-specific
objective function.
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ascent steps. In practice, the acceptance rate varies from 30-50% when trying the 25 smallest non-

zero topics. We observe huge gains in the whole-dataset objective due to these restarts, as shown in

Fig 5.4, while without them we sometimes even observe decreasing of the overall objective on repeat

visits to the same document.

5.3.5 Specialization to bag-of-words datasets

Several aspects of the algorithm can be simplified or clarified for the popular use-case of training

on discrete bag-of-words datasets. Let each document xd consist of observed word tokens from a

fixed vocabulary of V word types. We can represent xd in two ways. First, as a dense list of the Td

word tokens in document d: xd = {xdt}Td

n=1. Each value xdt ∈ {1, . . . V } identifies the type of the

t-th word in the document. Second, we can use a memory-saving sparse histogram representation:

xd = {vdu, cdu}Ud

u=1, where u indexes the set of word types that appear at least once in the document,

vdu ∈ {1, . . . V } gives the integer id of word type u, and cdu ≥ 1 is the count of word type vdu in

document d. Naturally,
∑Ud

u=1 cdu =
∑Td

t=1 xdt = Td.

Sharing parameters by word type. Naively, tracking the assignments for document d requires

explicitly representing a separate K-dimensional distribution q(zdt) for each of the Td tokens. How-

ever, we can save memory and runtime by recognizing that given a specified document-topic ap-

proximate posterior q(πd|θ̂d), the corresponding update for the assignment posterior q(zdt) will have

shared structure for any tokens of the same type. That is, if there exist two token indices s and

t in document d such that xds = v and xdt = v, then by definition after a local update their re-

sponsibilities will be exactly the same: r̂ds = r̂dt. We can thus share parameters with no loss in

representational power. Instead of Td total responsibility vectors, we need only Ud distinct vectors,

one for each unique vocabulary word appearing at least once in the document. This leads to sub-

stantial savings in required storage as well as required computation, because frequently Ud << Td

for real text data due to word burstiness.

5.4 Algorithms for HDP topic model posterior estimation

5.4.1 Full-dataset variational

When the whole dataset can fit in memory, a complete algorithm for estimating the global parameters

of the HDP topic model from data is given in Alg. 5.3. The algorithm alternates between the local

step for each document (a subprocedure specified in Alg. 5.1) and the global step, which updates

both the allocation parameters û, ω̂ and observation parameters τ̂ , ν̂. Generally, this procedure is

run to convergence at a fixed point local optima. One useful criteria for judging convergence is to

monitor the assignment counts Nk for each active cluster over many iterations. Convergence can

be measured by checking whether the maximum absolute change in any entry of this vector drops

below a small threshold.
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Algorithm 5.3 Variational coordinate ascent for HDP topic model

Input:
{xd}Dd=1 : dataset with D documents
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{ûk, ω̂k}Kk=1: initial global parameters of allocation model
γ, α: allocation model hyperparameters
τ̄ , ν̄ : observation model prior hyperparameters

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{ûk, ω̂k}Kk=1: updated global parameters of allocation model

1: function VariationalCoordAscentForHDPTopic(x,K, τ̂ , ν̂, û, ω̂)
2: while not converged do
3: for d ∈ 1, 2, . . .D do ⊲ Local step at document d
4: for t ∈ 1, 2, . . . Td do
5: for k ∈ 1, 2, . . .K do
6: Cdtk ← Eq[log p(xdt|φk)]
7: r̂d, θ̂d ← LocalStepForDoc(Cd, α, û)

8: r̂d, θ̂d ← RestartProposalsForDoc(r̂d, θ̂d, Cd, α, û)

9: for k ∈ 1, 2, . . .K do ⊲ Summary step
10: Sk ←

∑D
d=1

∑Td

t=1 r̂dtks(xdt)

11: Nk ←
∑D

d=1

∑Td

t=1 r̂dtk
12: Pk ←

∑D
d=1 ψ(θdk)− ψ(

∑K+1
ℓ=1 θ̂dℓ)

13: P>K ←
∑D

d=1 ψ(θd>K)− ψ(∑K+1
ℓ=1 θ̂dℓ)

14: for k ∈ 1, 2, . . .K do ⊲ Global step for observation parameters
15: τ̂k ← Sk + τ̄
16: ν̂k ← Nk + ν̄

17: û← argmaxû f(û, ω̂, P (θ̂), α, γ) ⊲ Global step for allocation parameters, via L-BFGS
return τ̂ , ν̂, û, ω̂

Full dataset algorithm for approximate posterior inference for the HDP topic model in Fig. 5.1. For
the LocalStepForDoc procedure, see Alg. 5.1.

5.4.2 Stochastic variational

The application of stochastic variational inference (Hoffman et al., 2013) to our direct assignment

HDP topic model optimization problem in Eq. (5.29) is almost straightforward. The natural gradient

update for the observation model parameters τ̂ , ν̂ applies without change from the DP mixture model

case due to conditional conjugacy. However, the non-conjugate relationship between q(u) and q(πd)

does not allow the direct application of the natural gradient update. Nevertheless, we develop a

modified stochastic algorithm given in Alg. 5.4.

5.4.3 Memoized variational

A memoized algorithm for the HDP topic model variational optimization problem is in Alg. 5.5.
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Algorithm 5.4 Stochastic variational coordinate ascent for HDP topic model

Input:
{xd}Dd=1 : dataset with D documents
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{ûk, ω̂k}Kk=1: initial global parameters of allocation model
γ, α: allocation model hyperparameters
τ̄ , ν̄ : observation model prior hyperparameters

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{ûk, ω̂k}Kk=1: updated global parameters of allocation model

1: function StochasticVariationalForHDPTopic(x,K, τ̂ , ν̂, û, ω̂)
2: for iteration i ∈ 1, 2, . . . do
3: Di ← SampleWithoutReplacement({1, 2, . . .D}, D/B)
4: for d ∈ Di do ⊲ Local step at current batch
5: for a ∈ 1, 2, . . . Ad do
6: for k ∈ 1, 2, . . .K do
7: Cdtk ← Eq[log p(xdt|φk)]
8: r̂d, θ̂d ← LocalStepForDoc(Cd, α, û)

9: r̂d, θ̂d ← RestartProposalsForDoc(r̂d, θ̂d, Cd, α, û)

10: for k ∈ 1, 2, . . .K do ⊲ Summary step at current batch
11: Sk ←

∑

d∈Di

∑Td

t=1 r̂daks(xda)

12: Nk ←
∑

d∈Di

∑Td

t=1 r̂dak

13: Pk ←
∑

d∈Di
ψ(θdk)− ψ(

∑K+1
ℓ=1 θ̂dℓ)

14: P>K ←
∑

d∈Di
ψ(θd>K)− ψ(∑K+1

ℓ=1 θ̂dℓ)

15: ξi ← (δ + i)−κ ⊲ Update learning rate
16: for k ∈ 1, 2, . . .K do

17: τ̂k ← (1− ξi)τ̂k + ξi

(

τ̄ + D
|Di|

Stk

)

⊲ Global step for observation parameters

18: ν̂k ← (1− ξi)ν̂k + ξi

(

ν̄ + D
|Di|

Ntk

)

19: ûi ← argmaxû f(û, ω̂,
D

|Di|
P (θ̂), α, γ) ⊲ Global step for allocation parameters

return τ̂ , ν̂, û, ω̂

Stochastic variational algorithm for approximate posterior inference for the HDP topic model in
Fig. 5.1. For the LocalStepForDoc, see Alg. 5.1.
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Algorithm 5.5 Memoized variational coordinate ascent for HDP topic model

Input:
{xd}Dd=1 : dataset with D documents
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{ûk, ω̂k}Kk=1: initial global parameters of allocation model
γ, α: allocation model hyperparameters
τ̄ , ν̄ : observation model prior hyperparameters

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{ûk, ω̂k}Kk=1: updated global parameters of allocation model

1: function MemoizedVariationalForHDPTopic(x,K, τ̂ , ν̂, û, ω̂)
2: SG, NG, TG ← 0 ⊲ Initialize global statistics
3: for batch b ∈ 1, 2, . . . B do
4: Sb, Nb, Tb ← 0 ⊲ Initialize batch statistics

5: for lap ℓ ∈ 1, 2, . . . do
6: for batch b ∈ Shuffle({1, 2, . . .B}) do
7: for doc d ∈ Db do ⊲ Local step at current batch
8: for t ∈ 1, 2, . . . Td do
9: for k ∈ 1, 2, . . .K do

10: Cdtk ← Eq[log p(xdt|φk)]
11: r̂d, θ̂d ← LocalStepForDoc(Cd, α, û)

12: r̂d, θ̂d ← RestartProposalsForDoc(r̂d, θ̂d, Cd, α, û)

13: SG ← SG − Sb ⊲ Decrement previous batch statistics
14: NG ← NG −Nb

15: TG ← TG − Tb

16: for k ∈ 1, 2, . . .K do ⊲ Summary step at current batch
17: Sbk ←

∑

d∈Db

∑Ad

a=1 r̂dtks(xda)

18: Nbk ←
∑

d∈Db

∑Ad

a=1 r̂dtk

19: Pbk ←
∑

d∈Db
ψ(θdk)− ψ(

∑K+1
ℓ=1 θ̂dℓ)

20: Pb>K ←
∑

d∈Db
ψ(θd>K)− ψ(∑K+1

ℓ=1 θ̂dℓ)

21: SG ← SG + Sb ⊲ Increment new batch statistics
22: NG ← NG +Nb

23: TG ← TG + Tb

24: for k ∈ 1, 2, . . .K do
25: τ̂k ← τ̄ + SG

k ⊲ Global step for observation parameters
26: ν̂k ← ν̄ +NG

k

27: û← argmaxû f(û, ω̂, P
G, α, γ) ⊲ Global step for allocation parameters, via L-BFGS

return τ̂ , ν̂, û, ω̂

For the LocalStepForDoc, see Alg. 5.1. Memoized algorithm for approximate posterior inference
for the HDP topic model in Fig. 5.1.
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Memoized algorithm and monotonicity guarantee

In general, the objective function L is guaranteed to monotonically increase after any global step, but

not after the local step. This occurs because the local step requires jointly estimating the assignment

responsibilities r̂d and document-topic probability pseudo-counts θ̂d from scratch when visiting a

document d. Because this local step problem is non-convex even given fixed global parameters, we

cannot guarantee that on subsequent visits to a document d we will always improve the objective.

Instead, it may be the case that even after restart proposals, the fixed point r̂d, θ̂d leads to a drop

in the L score. We find that this is rare, but it can happen.

Without a procedure to always deliver a guaranteed global optima to the local step problem,

the only way to guarantee monotonic increase of L is to warm-start the local step iterations at a

previous value of r̂d or θ̂d stored from a previous visit to the document d. However, this requires

tremendous memory. For example, we’d need to store the value of θ̂dk for all K active topics and D

documents. With thousands of topics and millions of documents, this becomes infeasible.

Memoized evaluation of the objective

As in DP mixture models, after completing the first epoch or lap of memoized inference in Alg. 5.5,

the global statistics NG, SG, TG accurately represent every document in the dataset and thus we

can compute the score of the whole objective L at any point beyond lap ℓ = 1. We do need several

auxiliary statistics, defined below.

Entropy statistic for ELBO computation. Like in DP mixture models, we require tracking the

assignment entropy of each active topic in each batch. LetHbk define the sum of assignment entropies

within batch b for topic k. Then given the whole-dataset aggregated entropy values HG
k =

∑

bHbk,

we can easily evaluate Lentropy from Eq. (5.28) as:

Lentropy(r̂) =
K∑

k=1

HG
k (r̂), HG

k =

B∑

b=1

Hbk, Hbk(r̂) , −
∑

d∈Db

∑

t

r̂dtk log r̂dtk. (5.47)

Document-specific statistics for ELBO computation. The document-specific term of the

allocation model LHDP-doc in Eq. (5.26) can be rewritten using the statistic vector Q defined below:

LHDP-doc(r̂, θ̂, û) = QG
0 (θ̂) +QG

>K(θ̂) +

K∑

k=1

QG
k (r̂, θ̂) +

K∑

k=1

απG
k (û)Pk(θ̂) (5.48)

QG
0 ,

∑

b

Qb0, Qb0 =
∑

d∈Db

log Γ(
∑K+1

ℓ=1 θ̂dℓ)

∀k ∈ {1, 2, . . .K} QG
k ,

∑

b

Qbk, Qbk =
∑

d∈Db

− log Γ(θ̂dk) + (Ndk(r̂)− θ̂dk)[ψ(θ̂dk)− ψ(θ̂d·)]

QG
>K ,

∑

b

Qb>K , Qb>K =
∑

d∈Db

− log Γ(θ̂d>K)− θ̂d>K [ψ(θ̂d>K)− ψ(θ̂d·)]
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Thus, with modest storage for Qb (a K + 2 dimensional vector) and Hb (a K dimensional vector)

required at each batch b, we can compute the whole dataset objective L exactly despite processing

data one batch at a time.

5.5 Variational algorithms with proposal moves that adapt

the number of clusters

We now develop a framework for merge, birth, and delete proposal moves for the HDP topic model,

building on our earlier efforts for the DP mixture model. Previous efforts for MCMC sampling

inference using transition operators that explicitly modify the number of clusters include the split-

merge proposal methods of Wang and Blei (2012b), as well as the more recent split-merge sampler

by Chang and Fisher III (2014). Among previous methods that adaptively add or remove clusters

within a variational framework, two lines of work stand out. First, Wang and Blei (2012a) used a

Gibbs sampler inner-loop for the local step, which could add or remove clusters but will generally

be slower to make large changes that well-designed explicit proposals. Second, Bryant and Sudderth

(2012) offer an approach similar to ours: explicit split and merge proposals which are either accepted

or rejected based on improvements to the optimization problem’s objective function. However,

by using stochastic variational inference, they cannot make accept or reject decisions which are

consistent with the entire dataset. Our approach can simultaneously make bigger changes than the

Gibbs-within-variational inference methods while offering guarantees of improved model quality not

possible with stochastic methods.

5.5.1 Merge proposals

Each merge proposal transforms a current variational posterior r̂, θ̂, û, ω̂, τ̂ , ν̂ into a candidate with

one fewer cluster by combining two chosen topics kA, kB into a single merged topic. These moves can

eliminate redundant topics and improve the final model’s interpretability. Accepted merge proposals

also make subsequent iterations of our algorithm faster by reducing the number of active topics, since

all steps of inference scale linearly with K.

Merge proposal construction

Just like with DP mixture models, given a pair of clusters kA, kB to merge, we create the candidate

state in two steps. First, we create the local parameters r̂′, θ̂′ and their accompanying sufficient

statistics. Second, we instantiate values for the candidate global parameters, which are optimal

under our objective given the proposed local parameters. A fully-constructed proposal can then be

checked by the objective L to decide acceptance or rejection.
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Figure 5.5: Practical examples of merges and deletes on topic models
Top Left: Anchor topics (Arora et al., 2013) can be improved significantly by variational updates.
Top Right: Topic pairs accepted by merge moves during run on Wikipedia. Combining each pair into
one topic improves our objective L, saves space, and removes redundancy. Bottom Row: Accepted
delete move during run on Wikipedia. Red topic is rarely used and lacks semantic focus. Removing
it and reassigning its mass to remaining topics improves L and interpretability.

Local construction. We use the deterministic addition in Eq. (4.1) for creating r̂′ from r̂. Simi-

larly, we have a deterministic addition for creating θ̂′ from θ̂. For each document d, we have:

for k = 1, 2, . . .K − 1 : θ̂′dk =







θ̂dkA
+ θ̂dkB

if k = kA

θ̂dk else if k < kB

θ̂dk+1 else if k ≥ kB

(5.49)

We also keep the pseudo-count value for the inactive topics θ̂d>K the same.

Summary statistic construction. As in DP mixture models, the statistics Nk(r̂
′) and Sk(r̂

′, x)

can be constructed easily given their original values, as in Eq. (4.2). We also must compute the

entropy of the assignment posterior H(r̂′), which again is the same computation as the DP mixture

model.
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The summary statistics of θ̂, such as the aggregate log probabilities P (θ̂) used for the global step

and the terms Q(θ̂) needed for the evaluation of LHDP-doc, need to be computed specifically for each

merge pair kA, kB, because these are non-linear functions of θ̂.

Global construction. As in DP mixtures, given the summary statistics for the merged local

parameters, we can create proposed global parameters simply by executing the appropriate global

parameter optimization steps.

Selecting candidate cluster pairs to try merging

Past work (Bryant and Sudderth, 2012; Hughes et al., 2015a) suggests that one viable way to select

candidate pairs is to use the empirical correlation of two candidate topics across all document-specific

count vectors {Nd}Dd=1.

score(kA, kB) = Corr(N:kA
, N:kB

), − 1 < score < 1. (5.50)

Large scores identify topic pairs frequently used in the same documents, which may be a useful

signal for potential merges.

While useful, we now recommend a version of the selection score used for DP mixture models,

which uses information about the change in Ldata under a proposal to suggest which terms to track.

5.5.2 Delete proposals

Delete moves provide a more powerful alternative to merges for removing rarely used “junk” top-

ics. For an illustration of an accepted delete proposal in the context of training a topic model on

Wikipedia data, see Fig. 5.5. After identifying a candidate topic with small mass to delete, we

reassign all its tokens to the remaining topics. This move can succeed when a merge would fail

because each document’s tokens can be reassigned in a customized, document-specific fashion, as

shown in Fig. 5.5.

Our first work on deletes for topic models was published in an AISTATS ’15 conference paper

(Hughes et al., 2015a). We reproduce the ideas from that paper on delete proposals here. First, we

outline how a delete move would work if we could afford explicitly updating all documents in the

dataset. Next, we describe how deletes work in our memoized framework, where we use a heuristic

delete proposal in the sense that it did not construct valid parameters r̂′, θ̂′ which represented the full

dataset, or evaluate a whole-dataset objective function. Nevertheless, we find decent performance

in practice.

Whole-dataset delete construction

Delete moves remove some topic, indexed by j, from a current set of parameters and sufficient

statistics of size K+1. For simplicity, this explanation assumes j is last in index order, but in fact j

can be at any position. The move constructs new parameters and new sufficient statistics S′, N ′ of
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size K, where any mass assigned to topic j has been reallocated among the other topics. Here, unlike

the merge move, we have no one-step rule for constructing the candidate local parameters. Instead,

we use a heuristic initialization followed by refinement coordinate ascent updates. We initialize

sufficient statistics by simply removing any entries associated with topic j.

Original: N = [N1 . . . NK Nj ] (5.51)

Candidate Init: N ′ = [N1 . . . NK ]

Given these initial summaries, we take a global step to create K candidate global parameters. The

main paper’s Fig. 1 reviews the big picture for how summary statistics lead to global parameter

updates. After creating the candidate global parameters, we realize that τ̂ ′ will have exactly the

same first K topics as the original model. For ρ̂′, ω̂′, the resulting E[β] will be similar, too. Next, a

local step reassigns all tokens (including those ignored) among the K remaining topics. After one

more global step, we have a viable candidate model q′ representing the whole dataset. This model

can be compared to the original, and kept if the objective improves.

Memoized delete construction

For large datasets, it is infeasible to perform several local/global update cycles for all documents

just to evaluate one candidate move. A more scalable delete move is possible because we assume

junk topic j has only a small subset of documents with appreciable mass, while most documents

assign Ndj ≈ 0. Thus, only the small set satisfying Ndj > ǫ need to be edited explicitly, where we

set ǫ = 0.01.

The memoized delete move happens in three steps. First, we gather all documents satisfying this

threshold test into a target dataset during a standard pass of the dataset. Second, we construct the

delete candidate model q′ from the target set, performing the simple construction described above

while holding the non-target sufficient statistics fixed. That is, for each additive sufficient statistic

vector N,S, T in the previous model, we create candidates N ′, S′, T ′ that satisfy the following

relation:

N ′
k = Nk −N before

k +Nafter
k , k ∈ {1 . . .K} (5.52)

Here, N before
k is the statistic for topic k on the target set before removing j, and Nafter

k is the

computed statistic on the target set after removing j and performing the several updates.

For the specific case of the token count statistic N ′ on the target set, we know that Nǫ +
∑K

k=1N
′
k = Nj +

∑K
k=1Nk where Nǫ represents the small mass assigned to j from documents that

did not pass the threshold test. If accepted, sufficient statistic vector N ′ will soon accurately reflect

all data (including the small discarded mass) after a complete pass of local and global steps at all

batches.

To determine acceptance, we evaluate the objective L(·) using candidate global parameters

û′, ω̂′, τ̂ ′, ν̂′, which are obtained via direct updates from N ′, S′, P ′. For the local arguments to

L(·), we use the inferred parameters r̂d, θ̂d from documents in the target set.
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If the candidate model improves this objective, we accept it. After accepting, we need to adjust all

stored batch-specific summaries to reflect the new model. Otherwise, our new aggregate summaries

will not be consistent with the sum of stored batch summaries, and subsequent incremental updates

will be invalid. We thus edit the stored statistics for each batch to reflect the final state of the

target-set documents from that batch.

Immediately after a delete move, we do not have the required ELBO summaries to exactly

compute the bound after visiting the next batch. However, after completing a complete lap through

all batches, the relevant summaries will be refreshed and the ELBO computable.

Selecting topics to delete

Delete move costs scale with the number of documents in the target set. We specify a maximum

cap for the total documents we can afford to process as a target set as 500. Any topic occuring in

fewer than 500 documents is eligible for deletion. We select among this eligible set as many topics as

possible until the total cap is reached, and build the target set as the union of all documents passing

the threshold test for any selected topic. This allows potentially multiple topics to be deleted in one

pass through the data, each one considered independently, while never exceeding the specified cap

on target set size.

5.5.3 Birth proposals

HDP topic models have two sets of local parameters that come from every proposal: assignments

r̂′, which has one vector per data atom, and probability pseudo-counts θ̂′, which has one vector

per document d. As in DP mixtures, we can easily handle create coherent summaries N(r̂), S(r̂) of

assignments across batches with different truncation levels by inserting zeros. However, each batch

requires a summary P (θ̂) which is a non-linear function of the pseudo-count local parameters:

Pdk(θ̂) = Eq[log πdk] = ψ(θ̂dk)− ψ(θ̂d·), Pbk =
∑

d∈Db

Pdk (5.53)

Each entry Pbk can be interpreted as an aggregated log probability. If topic k is popular across

batch b, the value of Pbk will be a small magnitude negative number, while as topic k becomes more

rare, the value of Pbk will grow toward negative infinity.

To build intuition for birth proposals with an HDP allocation model, we consider an example for

the d-th document. Below, we show possible before and after values for four interrelated variational

parameter vectors: the expected global topic probabilities πG, aggregated assignment counts N(r̂d),

variational parameters θ̂d, and log probabilities Pd. We assume the original model has 3 active

clusters, and the proposal splits the third cluster into two new active clusters, which are placed last
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in stick-breaking order.

BEFORE : πG = [ 0.4, 0.3, 0.2], 0.1 (5.54)

N(r̂d) = [10.0, 50.0, 5.0]

θ̂d = [10.4, 50.3, 5.2], 0.1

P (θd) = [ -1.889, -0.274, -2.633]

U(θd) = [ 0.000, 0.000, -14.606]

AFTER : π
′G = [ 0.4, 0.3, 0.02, 0.09, 0.09], 0.1

N(r̂′d) = [10.0, 50.0, 0.00, 3.00, 2.00]

θ̂′d = [10.4, 50.3, 0.02, 3.09, 2.09], 0.1

P (θ′d) = [ -1.889, -0.274, -54.727, -3.224, -3.703]

U(θ′d) = [ 0.000, 0.000, 0.000, 0.000, -14.606] (5.55)

The first step of constructing this proposal is creating a temporary value for probability vector πG.

Our current variational state defines an approximate posterior q(u) which implies a distribution on

πG. We begin by setting πG to its expected value under this posterior. This gives us a concrete

vector of size K, with one entry for each of the active clusters. Remember that we also have one

extra entry that aggregates the mass of all inactive clusters. Next, we create an expanded vector π
′G

of size K + J ′ by copying πG but redistributing the original target cluster mass uniformly among

the new J ’ clusters. The proposed value for π
′G leaves only a small fraction ǫ of mass at the target

cluster, and keeps the inactive mass unchanged.

Next, we provide this specific π
′G as input to the Bregman k-means++ and restricted local step

process, which delivers specific values for assignments r̂′d at each data unit and their associated

per-document summaries N(r̂′d). Given specific values of N(r̂′d) and π
′G, the local parameter vector

θ̂′d has a closed-form optimal value via the local-step formula: θ̂′dk = N ′
dk + απ

′G. In the example

above, we assumed α = 1. Both summary vectors P ′ and U ′ are easily computed given θ̂′.

We may run this proposal process at every document d inside a batch b. This yields the summaries

N ′
b, S

′
b, P

′
b, U

′
b which then naturally can be aggregated and used to construct the global parameters

via Step 2 of Fig. 4.2.

Multi-batch summary tracking for HDP topic models. With more than once batch B > 1,

we need to effectively track the whole-dataset summaries PG, UG that represents batches at different

truncation levels. We cannot simply insert zeros to the vector PG, because these vectors represent log

probabilities, not counts. In fact, there is no finite constant that we can insert in the log probability

domain to represent unassigned mass.

Rather than perform an operation to expand vectors to one consistent truncation level, we

instead embrace the idea that different truncation levels can exist at different data units or batches

simultaneously. We assign all data units in batch b to the same truncation Kb. We find we can

represent this via coherent whole-dataset statistics PG and UG, each a vector of size K = maxbKb.
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The vector PG represents active log probabilities, and UG tracks the inactive log probability mass.

They are formally defined as:

PG =
∑

b:Kb≥k

Pbk(θ̂) =
∑

d:Kd≥k

ψ(θ̂dk)− ψ(θ̂d:) (5.56)

UG =
∑

b:Kb=k

Ubk(θ̂) =
∑

d:Kd=k

ψ(θ̂d,>k)− ψ(θ̂d:) (5.57)

The aggregated vector U: will have non-zero entries at each unique truncation level existing in some

current batch. After a proposal at batch b that transforms Pbk into P ′
bk, we can create the new

whole-dataset vector P ′
: using the following updates for each possible cluster index k ∈ 1, . . .K+J ′:

P ′
:k =







P:k − Pbk + P ′
bk if k = ktarget

P:k else if k ≤ K
P ′
bk else if k > K

U ′
:k =







U:k − Ubk + U ′
bk if k = ktarget

U:k else if k ≤ K
U ′
bk else if k > K

(5.58)

Together, the proposal vectors P
′G, U

′G accurately represent the truncation status of every batch in

the entire dataset. As usual, these vectors are sufficient statistics for a global update for allocation

model parameters.

5.6 Experimental results

Our experiments compare inference methods for fitting HDP topic models. For our new HDP

objective, we study stochastic with fixed K (SOfix), memoized with fixed K (MOfix), and memoized

with deletes and merges (MOdm). For baselines, we consider the collapsed sampler (Gibbs) of

Teh et al. (2006), the stochastic CRF method (crfSOfix) of Wang et al. (2011), and the stochastic

split-merge method (SOsm) of Bryant and Sudderth (2012). For each method, we perform several

runs from various initial K values.

For each run, we measure its predictive power via a heldout document completion task, as in

Bryant and Sudderth (2012). Each model is summarized by a point-estimate of the topic-word

probabilities φ. For each heldout document d we randomly split its word tokens into two halves:

x′d, x
′′
d . We use the first half to infer a point-estimate of πd, then estimate log-likelihood of each

token in the second half x′′d .

heldout-lik(x|φ) =
∑

d∈Dtest
log p(x′′d |πd, φ)

∑

d∈Dtest
|x′′d |

(5.59)

Hyperparameters. In all runs, we set γ = 10, α = 0.5 and topic-word pseudocount τ̄ = 0.1.

Stochastic runs use the learning rate decay recommended in Bryant and Sudderth (2012): κ =

0.5, δ = 1.
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Figure 5.6: Comparison of HDP topic model inference methods on toy bars dataset.
Comparison of inference methods on toy bars dataset from Sec. 5.6.1. Top row: Word count images
for 7 example documents and the final 10 estimated topics from MOdm. Each image shows all 900
vocabulary types arranged in square grid. Middle row: Final estimated topics from Gibbs sampler
and fixed truncation memoized (MOfix). We rank each algorithm’s final set of topics from most to
least probable in terms of global appearance probability πG

k , and show the topics ranked 1-15 and
25-30. Bottom row: Trace plots of the number of topics K and heldout likelihood during training.
Line style indicates number of initial topics: dashed is K = 50, solid is K = 100.
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5.6.1 Toy bars dataset

We study a variant of the toy bars dataset of Griffiths and Steyvers (2004), shown in Fig. 5.6. There

are 10 ideal bar topics, 5 horizontal and 5 vertical. The bars are noisier than the original and cover

a larger vocabulary (900 words). We generate 1000 documents for training and 100 more for heldout

test. Each one has 200 tokens drawn from 1-3 topics.

Fig. 5.6 shows many runs of all algorithms on this benchmark. Variational methods initialized

with 50 or 100 topics get stuck rapidly, while the Gibbs sampler finds a redundant set of the ideal

topics and is unable to effectively merge down to the ideal 10.

In contrast, our MOdm method uses merges and deletes to rapidly recover the 10 ideal bars

after only a few laps. Without these moves, MOfix runs remain stuck at suboptimal fragments of

bars. Furthermore, our MOdm method initialized with the sampler’s final topics (fromGibbs) easily

recovers the ideal bars.

5.6.2 Academic and news articles

Next, we apply all methods to papers from the NIPS conference, articles fromWikipedia, and articles

from the journal Science (Paisley et al., 2011), with 80%-20% train-test splits. Online methods

process each training set in 20 batches. Trace plots in Fig. 5.7 compare predictive power and model

complexity as more data is processed. We summarize conclusions below.

Anchor topics are good; variational is better. Using the anchor word method (Arora et al.,

2013) for initial topic-word parameters yields better predictions than random initialization (rand).

However, our methods can still make big, useful changes from this starting point. See Fig. 5.5 for

some examples.

Deletes and merges make big, useful changes. Across all 3 datasets in Fig. 5.7, merges

and deletes remove many topics. On Wikipedia, we reduce 200 topics to under 100 while improving

predictions. Similar gains occur from the final result of the Gibbs sampler.

Competitors get stuck or improve slowly. The Gibbs sampler needs many laps to make

quality predictions. The CRF method gets stuck quickly, while our methods (using the direct

assignment representation) do better from similar initializations. The stochastic split-merge method

(SOsm) grows to a prescribed maximum number of topics but fails to make better predictions.

This indicates problems with heuristic acceptance rules, and motivates our moves governed by exact

evaluation of a whole-dataset objective.

Next, we analyze the New York Times Annotated Corpus: 1.8 million articles from 1987 to 2007.

We withhold 800 documents and divide the remainder into 200 batches (9084 documents per batch).

Fig. 5.7 shows the predictive performance of the more-scalable methods.

For this large-scale task, our direct assignment representation is more efficient than the CRF

code released by Wang et al. (2011). With K = 200 topics, our memoized algorithm with merge

and delete moves (MOdm) completes 8 laps through the 1.8 million documents in the amount of

time the CRF code completes a single lap. No deletes or merges are accepted from any MOdm run,
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Figure 5.7: HDP topic model results on NIPS, Wikipedia, Science, and NYTimes datasets
Trace plots of predictive performance and number of topics K from Sec. 5.6.2.
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(c) (b) (a) 

(d) (e) (f) 

Figure 5.8: Comparison of DP mixtures and HDP admixtures on 3.5M image patches
(a-b) Trace plots of number of topics and heldout likelihood. (c) Patches from the top 4 estimated
DP clusters. Each column shows 6 stacked 8 × 8 patches sampled from one cluster. (d-f) Patches
from 4 top-ranked HDP clusters for select test images from BSDS500 (Arbelaez et al., 2011). See
Sec. 5.6.3 for details.

likely because 1.8M documents require more than a few hundred topics. However, the acceptance

rate of sparsity-promoting restarts is 75%. With a more efficient, parallelized implementation, we

believe our variational approach will enable reliable large-scale learning of topic models with larger

K.

5.6.3 Image patch modeling

Finally, we study 8 × 8 patches from grayscale natural images as in Zoran and Weiss (2012). We

train on 3.5 million patches from 400 images, comparing HDP admixtures to Dirichlet process (DP)

mixtures using a zero-mean Gaussian likelihood. The HDP model captures within-image patch

similarity via image-specific mixture component frequencies. Both methods are evaluated on 50

heldout images scored via Eq. (5.59).

Fig. 5.8 shows merges and deletes removing junk topics while improving predictions, justifying

the generality of these moves. Further, the HDP earns better prediction scores than the DP mixture.

We illustrate this success by plotting sample patches from the top 4 topics (ranked by topic weight π)

for several heldout images. The HDP adapts topic weights to each image, favoring smooth patches

for some images (d) and textured patches for others (e-f). The less-flexible DP must use the same

weights for all images (c).
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5.7 Discussion

Variational inference for the HDP topic model faces numerous challenges not present in the DP

mixture model: the non-conjugacy in the model requires our new surrogate optimization objective,

while the presence of multiple random variables r̂d, πd in every document d leads to harsh local

optima problems even when the global parameters are known. We have developed a full-dataset

inference algorithm which can be scaled up with both memoized and stochastic techniques. Our

birth, merge, and delete proposals offer ways to escape some bad local optima and deliver more

reliable clustering results.

Several issues remain open for the topic model, including the best way to initialize multinomial

topic models and removing some of the slow information propagation between document-level fre-

quency posteriors q(πd) and the overall top-level frequency posterior q(πG(u)). We hope our work

is a first step toward reliable large-scale training of topic models.



Chapter 6

Scalable variational inference for

HDP hidden Markov models

The hidden Markov model (HMM) (Rabiner, 1989) has long been a fundamental building block of

modern unsupervised learning for sequential data, such as the motion capture segmentation task of

Fig. 1.4 or the chromatin segmentation task of Fig. 1.5. Here, we consider a Bayesian nonparametric

version of the hidden Markov model, with a hierarchical prior which shares statistical strength across

the transition parameters πk specific to each cluster k.

Beal et al. (2001) introduced an early version of this model called the “infinite HMM”, which

was later formalized with the hierarchical Dirichlet process as the HDP-HMM by Teh et al. (2006).

Later, Fox et al. (2011) developed the “sticky” parameterization of the HDP-HMM, which encour-

ages models to have larger self-transition probabilities to better match empirical data. Recently,

(Johnson and Willsky, 2014) developed a stochastic variational inference algorithm for HDP-HMMs,

as well as more complex models with. However, while scalable, this approach did not investigate

proposal moves that adapt the number of clusters and used a point estimate for some top-level

allocation model parameters.

In this chapter, we expand on earlier work published with collaborators William Stephenson and

Erik Sudderth in the NIPS 2015 conference (Hughes et al., 2015b). In particular, the contributions

of this work are:

Contribution 1: New optimization problem for the HDP-HMM with model selection ca-

pability. The sticky parameterization of the HDP-HMM results in a required additional surrogate

bound beyond that used for the HDP topic model in Ch. 5. Previous work (Johnson and Willsky,

2014) used a point estimation strategy for πG (equivalently for u) which is problematic for model

selection. In contrast, by placing proper approximate posterior distributions on all random variables,

our surrogate bound yields effective model selection as we demonstrate in experiments.

137
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Contribution 2: Scalable memoized algorithm for the HDP-HMM. Previously, only

stochastic algorithms existed for this model. Our memoized approach offers a useful alternative

which avoids the sensitivity to learning rate schedules required by the stochastic approach.

Contribution 3: Birth, merge, and delete proposals to escape local optima. We show

that adaptive proposals which add or remove clusters offer improvements in both model quality

(as measured by our objective function) and in application-specific metrics like Hamming distance.

Our extensive experiments show promising results across speaker diarization, motion capture, and

epigenomic segmentation tasks.

Roadmap. We first specify the model, focusing on the interesting model features relative to the

HDP topic model: the sequential structure of p(z|π) and the sticky parameterization of the hierarchy

of transition probabilities. Next, we set up the variational optimization problem and derive complete

expressions for the objective function. Later, we give complete descriptions of coordinate ascent

updates as well as both full-dataset and memoized algorithms. We follow with experimental results

applying these training algorithms on several datasets, and conclude with discussion of open problems

of interest to future work.

6.1 Hierarchical Dirichlet Process Hidden Markov Models

We wish to jointly model data from D separate sequences, where sequence d has data xd =

[xd1, xd2, . . . , xdTd
] and observation xdt is a vector representing some measurement at timestep

t. We assume that these timesteps occur at regular intervals. For example, vector xdt could be the

spectrogram of an instant of audio, or the sensed joint positions of a human subject during a 100ms

interval of the motion capture application illustrated in Fig. 1.4.

The HDP-HMM explains this data by assigning each observation xdt to a single hidden state zdt.

The chosen state comes from a countably infinite set of possible cluster labels k ∈ {1, 2, . . .}. How-
ever, the states at neighboring timesteps are not drawn independently. Instead, we assume that the

whole sequence zd = [zd1zd2 . . . zdt . . . zdTd
] is generated via first-order Markovian dynamics. These

are parameterized by initial state probabilities π0 and transition probabilities {πk}∞k=1. These global

parameters themselves have a common prior distribution, which means they are related hierarchi-

cally. The entire graphical model of directed dependence relationships between hidden variables is

shown in Fig. 6.1.

6.1.1 Generative model for each sequence.

To generate each sequence, we require two sets of global variables. First, the global cluster shape

parameters {φk}∞k=1 of the observation model, which we assume come from their common prior

in Sec. 2.1.3. Second, the Markovian transition parameters, whose generative story we provide in

Sec. 6.1.2.
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Figure 6.1: Directed graphical representation of the HDP hidden Markov model (HDP-HMM).
The diagram shows the fundamental random variables (circled nodes), hyperparameters (gray), and
variational free parameters (red) of the hierarchical Dirichlet process (HDP) hidden Markov model
(HDP-HMM). This Bayesian nonparametric model generates a countably infinite number of clusters
under the prior, of which some number K ≤ N are assigned to data. This model has the same
global parameters for cluster conditional probabilities u and shape parameters φ as the mixture
model, as well as a additional transition probabilities πk and starting-state probabilities π0. The
conditional probabilities u are deterministically mapped to top-level global cluster probabilities πG

via the invertible stick-breaking transformation. The dataset x consists of N total observations
divided into D sequences, and within a sequence we assume Markovian structure exists among the
assigned label sequence zd1, zd2, . . . zdT . Our variational representation captures this with pair-wise
joint probabilities ŝdt for each timstep.

Given these global parameters, we allocate the state sequence zd by first drawing its first

timestep’s assignment from the initial distribution π0, and then recursively using the transition

distribution specified by each chosen cluster at timestep t− 1 to determine the cluster at timestep t:

zd1 ∼ Cat∞(π0), zd2|zd1 ∼ Cat∞(πzd1), zdt|zdt−1 ∼ Cat∞(πzd,t−1
). (6.1)

Given the assigned cluster label zdt at timestep t, we then draw the observed data xdt independently
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of any other variable in the sequence using a cluster-specific likelihood:

xdt|zdt = k ∼ L(xdt|φk) (6.2)

where L is our general exponential family likelihood distribution from Sec. 2.1.3.

First-order autoregressive models. As a small extension, we can allow the observation at

timestep t to depend on the observation from timestep t−1. This first-order auto-regressive behavior
is formally defined as:

xdt|zdt = k ∼ N (xdt|Akxdt−1,Σk) (6.3)

Such autoregressive likelihoods belong to the exponential family, admit conjugate priors, and are

amenable to all our inference techniques. See Fox (2009) for a detailed discussion of these auto-

regressive models, as well as MCMC training algorithms for these models. Bayesian posterior analysis

of such autoregressive processes goes back at least to Quintana and West (1987). While the graphical

model in Fig. 6.1 does not depict auto-regressive behavior explicitly, our inference procedure easily

supports this extension.

6.1.2 Hierarchical prior on transition probabilities via the HDP.

Under the HDP-HMM prior and posterior, the number of clusters or states is unbounded. Each

cluster k has its own infinite transition probability vector πk = [πk1 πk2 . . .], which must be non-

negative and sum-to-one. Without careful regularization, the sheer number of parameters in the

infinite transition matrix π makes it very possible to overfit to training datasets. We impose such

regularization by having each transition vector πk share a common prior.

As in the HDP topic model, let πG define a global probability vector over the infinite state space.

We can write this quantity as finite vector representing K active topics and the aggregate mass of

all inactive topics with index larger than K: πG = [πG
1 π

G
2 . . . π

G
Kπ

G
>K ]. Then, given this common set

of probabilities, we generate the transition vector πk for cluster k as:

πk ∼ Dir(απG
1 , απ

G
2 , . . . απ

G
K , απ

G
>K) (6.4)

This regularizes the vector πk by setting its mean to πG but allowing some flexibility governed by

the concentration α > 0. Any setting of α < K will typically encourage the vector πk to be sparse,

with only a few entries with mass significantly greater than zero. Typically, we set α ≈ 0.5.

A similar prior is given to the starting state distribution π0:

π0 ∼ Dir(α0π
G
1 , α0π

G
2 , . . . α0π

G
K , α0π

G
>K) (6.5)

We generally set α0 >> α because very few starting states are observed and thus a smaller variance

(greater concentration) is needed. Typically, we have α0 ≈ 10.

This hierarchical relationship between the top-level probabilities πG and the cluster-level proba-

bilities πk is formally a realization of the hierarchical Dirichlet process (Teh et al., 2006). The HDP
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prior specification is complete by defining the stick-breaking prior on πG. Given independent stick-

breaking weights uk ∼ Beta(1, γ), for each cluster, we use the stick-breaking transform of Eq. (3.4)

to completely determine the K active entries of πG:

πG
1 (u) = u1, πG

k (u) = uk

k−1∏

ℓ=1

(1− uℓ). (6.6)

6.1.3 Sticky self-transition bias.

In many applications of clustering for time-series or sequential data, we expect assigned clusters to

persist for many timesteps. For example, a human may walk for several minutes before switching to

another activity, or the genome may exhibit long inactive segments in between transcription sites.

The “sticky” parameterization of the HDP-HMM introduced by Fox et al. (2011) places extra mass

on each cluster’s self-transition probability πkk compared to the conventional prior:

[πk1 . . . πk>K ] ∼ Dir(απG
1 , . . . , απ

G
k−1, απ

G
k + κ, . . . απG

>K) (6.7)

Here, the scalar hyperparameter κ > 0 controls the degree of self-transition bias. Choosing κ >> 1

allows the model to place much higher probability on long periods of high self-transitions in observed

sequences. Alternatives that use explicit duration distributions or related semi-Markovian models

have been thoroughly discussed in Johnson and Willsky (2014), but we find the sticky parameteri-

zation to be effective while also affordable.

Global and local variables

By inspection of Fig. 6.1, the only local (data-attached) hidden variables in this model are the

sequence of assignments zd for every sequence d. We recognize several global parameters for the

HDP-HMM. First, the cluster shape parameters {φk}Kk=1 remain the obvious global parameters of

the observation model, just like in the HDP topic model. Second, the allocation model includes

several global parameters: the top-level conditional probabilities {uk}Kk=1 as well as the Markovian

dynamics probabilities: starting vector π0 and transition vectors {πk}Kk=1.

6.2 Posterior inference as a variational optimization problem

6.2.1 Mean-field approximate posterior

Our ideal goal in posterior inference is to estimate the joint distribution p(u, π, φ, {z}Dd=1|xDd=1) given

D observed sequences. However, because this joint posterior is intractable we appeal to mean-field

variational methods to find the closest member of the factorized family:

q(u, π, φ, z) =
∞∏

k=1

q(uk) · q(π0) ·
∞∏

k=1

q(πk) ·
∞∏

k=1

q(φk) ·
D∏

d=1

q(zd) (6.8)
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q(φ) =
∞∏

k=1

P(φk|τ̂k, ν̂k) (6.9)

q(u) =

∞∏

k=1

Beta(uk|ûkω̂k, (1− ûk)ω̂k) (6.10)

q(π0) = Dir(π0|θ̂01, θ̂02, . . . θ̂0K , θ̂0>K) (6.11)

q(πk) = Dir(πk|θ̂k1, θ̂k2, . . . θ̂kK , θ̂k>K) (6.12)

q(z) =

D∏

d=1

Cat∞(zd1|r̂d1)
Td∏

t=2

Cat∞(zdt|ŝzdt−1
) (6.13)

Our chosen factorization for q is similar to Johnson and Willsky (2014), but includes a proper

approximate posterior for q(u) rather than a point-estimate. Just like our earlier methods for the

DP mixture and HDP topic model, we do not require any truncation assumption beyond that for

q(z) detailed below.

Approximate posterior factor for each state sequence

Our choice for the assignment sequence approximate posterior q(z) is not a full mean-field approach,

but rather keeps the Markov structure of each sequence d:

q(zd) ,

[
∞∏

k=1

r̂
δk(zd1)
d1k

]
Td−1∏

t=1

∞∏

k=1

∞∏

ℓ=1

[
ŝntkℓ
r̂ntk

]δk(znt)δℓ(zn,t+1)

(6.14)

This factor is defined by two related free parameters. First, free parameter ŝdt defines the joint

assignment probabilities for each pair of assignments zdt, zd,t+1 at adjacent timesteps. Formally,

ŝdtkℓ , q(zd,t+1 = ℓ, zdt = k). Thus, the parameter ŝdt has infinitely many rows and columns, but

its entries are all non-negative and must sum to one.

Next, the parameter vector r̂dt defines the marginal probability of assignment at each timestep

t. That is: r̂dtk , q(znt = k). To form a valid probability distribution for the whole sequence, q(zd),

both r̂d and ŝd vector must obey several constraints. First, at each timestep t ∈ 1, 2, . . . Td − 1 the

adjacent pair joint probabilities must obey a sum-to-one constraint and non-negativity constraint:

∞∑

k=1

∞∑

ℓ=1

ŝdtkℓ = 1, ŝdtkℓ ≥ 0 for all (k, ℓ) ∈ {1, 2, . . .} × {1, 2, . . .} (6.15)

Second, the marginal vector r̂dt at each timestep t = 1 . . . Td must obey similar constraints, as well

a direct constraint that entry k of r̂dt equals the sum over row k in the joint probability matrix ŝdt:

∞∑

k=1

r̂dtk = 1, r̂dtk ≥ 0 for all k ∈ 1, 2, . . . (6.16)

r̂dtk =

∞∑

ℓ=1

ŝntkℓ for all k ∈ 1, 2, . . .
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Truncation to K active clusters.

Just like in HDP topic models and DP mixture models, we enforce the assumption that only the first

K active clusters have any non-zero probability. All remaining inactive clusters with index k > K

must have zero mass and thus need not be explicitly represented. Thus, at each timestep t we need

to specify the K ×K matrix ŝdt and the K-length vector r̂dt.

Approximate posterior q(φk) for global cluster shape

Like every other model we’ve discussed, each cluster k in our countably infinite set is given an

independent posterior factor q(φk) for its shape parameter, which has form given by the conjugate

prior density P and two global free parameters: pseudo-count ν̂k and shape parameter τ̂k. For more

information, see Sec. 2.1.3.

Approximate posterior q(uk) for global cluster frequencies

As in HDP topic models, each cluster k in our countably infinite set has an independent posterior

factor q(uk). We give q(uk) a Beta distribution, parameterized so ûk gives the mean value of uk and

ω̂k gives the variance, just as in the HDP topic model from Ch. 5, especially Sec. 5.2.1.

Approximate posterior q(πk) for transition probabilities.

Each cluster k has a global parameter πk indicating how probable a transition from k to any other

cluster is. We learn an approximate posterior for πk which is Dirichlet with K + 1 parameters

θ̂k1, . . . θ̂kK , θ̂k>K . We interpret each θ̂kℓ as a non-negative pseudo-count of how often we will tran-

sition from k to state ℓ. The starting state probability vector π0 also has a similar K + 1-length

vector named θ̂0.

Under this chosen approximate posterior, we have the expectations:

Eq[πkℓ] =
θ̂kℓ

∑K+1
j=1 θ̂kj

, Eq[log πkℓ] = ψ(θ̂kℓ)− ψ(
∑K+1

j=1 θ̂kj) (6.17)

6.2.2 Evidence lower-bound objective function

Given the assumed factorization over the global random variables φ, u, {πk}∞k=0 and the local random

variables z, we now set up an optimization problem to find the free parameters whose implied

factorized posterior minimizes the KL divergence to the true posterior.

argmin
τ̂ ,ν̂, û,ω̂, θ̂, ŝ

KL
(

q
(

φ, u, {πk}Kk=0, {zd}Dd=1 | τ̂ , ν̂, û, ω̂, θ̂, ŝ
)∥
∥
∥p
(

φ, u, {πk}Kk=0, {zd}Dd=1 | x
))

(6.18)
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Following the standard logic used in deriving the tractable optimization problems in Ch. 3 and Ch. 5,

we have an equivalent optimization problem:

argmax
τ̂ ,ν̂, û,ω̂, θ̂, ŝ

L(x, τ̂ , ν̂, û, ω̂, θ̂, ŝ) (6.19)

L(x, τ̂ , ν̂, û, ω̂, θ̂, ŝ) , log p(x)−KL
(

q(φ, u, π, z|τ̂ , ν̂, û, ω̂, θ̂, ŝ)
∥
∥
∥p(φ, u, π, z|x)

)

(6.20)

= Eq(φ,u,π,z)

[

log p(x, φ, u, π, z)− log q(φ, u, π, z)
]

(6.21)

Under our chosen factorized posterior q, the expectation that defines L in the last line is computable

via closed-form functions of the free parameters. This makes optimization possible.

Remembering that the marginal responsibilities r̂ can be found as a deterministic function of the

pairwise joint responsibilities ŝ, we can write this objective as a sum of two terms:

L(x, τ̂ , ν̂, û, ω̂, θ̂, ŝ) = Ldata(x, τ̂ , ν̂, r̂(ŝ)) + Lalloc(û, ω̂, θ̂, ŝ) (6.22)

The data term Ldata is computed just as it was for HDP topic models and DP mixture models in

Eq. (2.95). We need not reproduce it here.

We will focus on evaluating the allocation model term. This term itself decomposes into three

interpretable pieces:

Lalloc(û, ω̂, θ̂, ŝ) = Lentropy(ŝ) + LHDP-trans(ŝ, θ̂, û) + Lsurrogate-HDP-top(û, ω̂) (6.23)

We now briefly define each term via expectations.

Entropy term of the assignment posterior q(z)

The entropy term is a simple function of the joint timestep probabilities ŝ.

Lentropy(ŝ) , −
∑D

d=1 Eq [log q(zd)] (6.24)

=

D∑

d=1

K∑

k=0

K∑

ℓ=1

Hdkℓ(ŝ),

where for each state index k = {0, 1, . . .K} and receiving state index ℓ = {1, 2, . . .K,K + 1} we

have:

Hdkℓ(ŝd) =







−r̂dt1k log r̂dt1ℓ, if k = 0

−∑Td−1
t=1 ŝdtkℓ log

ŝdtkℓ∑
K
j=1

ŝdtkj
if k = 1, 2, . . .K

(6.25)
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Transition-specific term

The HDP-HMM has a term similar to Lalloc which aggregates all pieces of the objective that are

functions of θ̂. This term is:

LHDP-trans(ŝ, θ̂, û) = Eq

[

log p(z|π) +
K∑

k=0

log
p(πk)

q(πk)

]

−
K∑

k=0

E[cDir(αkπ
G(u))] (6.26)

=
K∑

k=0

−cDir(θ̂k1 . . . θ̂kK θ̂k>K)

+

K∑

k=0

K+1∑

ℓ=1

(

Mkℓ(ŝ) + αkπ
G
k (û) + κδk(ℓ)− θ̂kℓ

)

Eq[log πkℓ]

where cDir is the cumulant function of a Dirichlet distribution in Eq. (5.22), the expectation of

log πkℓ is given in Eq. (6.17), and we define the transition count summary statistic Mkℓ to given the

total number of expected transitions from cluster k to cluster ℓ:

Mkℓ(ŝ) =







∑D
d=1 r̂dt1ℓ if k = 0

∑D
d=1

∑Td−1
t=1 ŝdtkℓ if k ∈ {1, 2, . . .K}

(6.27)

Surrogate lower bound for top-level term.

As in the HDP topic model, computing the expected value of Eq(u)[cDir(π
G(u))] under the chosen

beta distribution form for q(u) has no known closed form. We thus use the surrogate bound from

Eq. (5.24) to write this term as a tractable function of u. Substituting this lower bound in and

assuming a non-sticky HDP prior with κ = 0, we have:

Lsurrogate-HDP-top(û, ω̂) ≤ Eq

[

log
p(u)

q(u)

]

+

K∑

k=0

Eq

[
cDir(αkπ

G(u))
]

(6.28)

Lsurrogate-HDP-top(û, ω̂) = K logα0 +K2 logα

+

K∑

k=1

cBeta(1, γ)− cBeta(ûkω̂k, (1− ûk)ω̂k)

+

K∑

k=1

(

(K+1) + 1− ûkω̂k

)

Eq[log uk]

+

K∑

k=1

(

(K+1)(K+1−k) + γ − (1− ûk)ω̂k

)

Eq[log 1− uk]

This surrogate function can be evaluated in closed-form given û, ω̂ free parameters and the hyper-

parameters α, α0, γ. For sticky values κ > 0, we need an alternative expression, which is derived in

the next section.

6.2.3 Surrogate objective for sticky HDP-HMM

To consider the sticky parameterization of the HDP prior on the transition parameters {πk}Kk=0

given the global probabilities πG(u), a small change to the top-level surrogate term is required.
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Previously, we had:

cDir(απ
G(u)) ≥ K logα+

K+1∑

ℓ=1

log πG
ℓ (u) (6.29)

Now, when we compute the cumulant function of the vector απG(u) plus an extra point mass κ on

the k-th entry of the vector. In the supplement of (Hughes et al., 2015b), we establish the following

bound for any κ > 0, α > 0:

cD(απG(u) + κδk) ≥ K logα− log(α + κ) + log(απG
k (u) + κ) +

∑K+1
ℓ=1 ℓ 6=k log(π

G
ℓ (u)). (6.30)

The term log(απG
k (u)+κ) still has no tractable expectation under q(u), so we apply a further bound

given the concavity of the log function:

log(απG
k (u) + κ) ≥ πG

k (u) log(α+ κ) + (1− πG
k (u)) log κ. (6.31)

= log κ+
(

log(α+ κ)− log κ
)

πG
k (u) (6.32)

Combining Eqs. (6.30) and (6.31), then unpacking the vector πG(u) into a pure function of the u

variables, and computing the whole expectation of
∑K

k=0 cDir(αkπ
G(u) + κδk), we have:

Lsurrogate-HDP-sticky-top(û, ω̂) ≤ Eq

[

log
p(u)

q(u)

]

+ Eq

[
cDir(α0π

G(u))
]
+

K∑

k=1

Eq

[
cDir(αkπ

G(u) + κδk)
]

Lsurrogate-HDP-sticky-top(û, ω̂) = K logα0 +K2 logα+K
(
log(κ)− log(α+ κ)

)
(6.33)

+

K∑

k=1

cBeta(1, γ)− cBeta(ûkω̂k, (1− ûk)ω̂k)

+
(

log(α+ κ)− log(κ)
)
∑K

k=1 π
G
k (û)

+

K∑

k=1

(

K + 1− ûkω̂k

)

Eq[log uk]

+

K∑

k=1

(

K(K + 1− k) + γ − (1− ûk)ω̂k

)

Eq[log 1− uk]

Directly cross-referencing the non-sticky surrogate term in Eq. (6.28) and the sticky surrogate term

in Eq. (6.33) shows that not much has changed and the overall complexity of evaluating the surrogate

top-level objective remains the same.

6.3 Update steps for variational optimization

Using the objective functions defined above, we can write down the the constrained optimization

problem for our free parameters τ̂ , ν̂, û, ω̂, θ̂, ŝ given an observed dataset x and hyperparameters H:

argmax
τ̂ ,ν̂,û,ω̂,θ̂,ŝ

Ldata(x, τ̂ , ν̂, r̂(ŝ)) + Lentropy(ŝ) + LHDP-trans(ŝ, θ̂, û) + Lsurrogate-HDP-sticky-top(û, ω̂)

(6.34)
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where the required constraints on the local free parameters for document d are:

ŝdt ≥ 0 and
∑K

k=1

∑K
ℓ=1 ŝdtkℓ = 1 for t = 1, 2, . . . Td (6.35)

and the required constraints on global free parameters are

ûk ∈ [0, 1] and ω̂k ≥ 0 for k = 1, 2, . . . (6.36)

ν̂k ≥ 0 and τ̂k ∈M for k = 1, 2, . . .

θ̂jk ≥ 0 for j, k ∈ {0, 1, 2, . . .} × {1, 2, . . .}

As with earlier models, we pursue a block-coordinate ascent algorithm, which proceeds in two steps,

a local step and a global step. The local step updates the free parameters ŝd for each sequence d

while holding global parameters fixed. The global step updates the global free parameters given

fixed (summary statistics of) local parameters. When applied iteratively, these steps are guaranteed

to monotonically improve the whole objective L until it converges to a local optima. We emphasize

again that due to the required surrogate bound term, which is Lsurrogate-HDP-top when κ = 0 or

Lsurrogate-HDP-sticky-top for κ > 0, the objective function L we are optimizing is a strict lower bound

of log p(x)−KL(q||p).
Below, we define the optimization problem solved by each step of the block-coordinate ascent

algorithm. We then describe detailed solutions which solve each problem below in closed-form in

the following sections.

6.3.1 Global parameter update step for observation model

Consider the optimization problem:

argmax
τ̂ ,ν̂

Ldata(x, τ̂ , ν̂, r̂) subject to ν̂k ≥ 0 and τ̂k ∈ M for k = 1, 2, . . . . (6.37)

Where we remember that for the HDP-HMM, the responsibilities r̂ at each timestep are a determin-

istic function of the pair-wise responsibilities ŝ. The optimization problem in Eq. (5.32) is the same

as for the observation model in the DP mixture model, found in Eq. (3.39). This, we can apply the

solution from Eq. (3.41) directly.

τ̂∗k = Sk(x, r̂) + τ̄ (6.38)

ν̂∗k = Nk(r̂) + ν̄

6.3.2 Global step for allocation model

The allocation model global step involves two substeps: (1) finding the optimal top-level parameters

û, ω̂, and (2) finding the optimal transition parameters θ̂. Below, we describe our solutions to each

of these subproblems, and an approach to the complete problem.
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Global step for transition parameters

We now consider finding the optimal θ̂ parameters for the problem: Consider the optimization

problem

argmax
θ̂

LHDP-trans(ŝ, θ̂, û) (6.39)

subject to θ̂jk ≥ 0 for j = 0, 1, 2, . . .K, k = 1, 2, . . .K + 1

Using standard exponential family mathematics, we find a closed-form solution for any value of

κ ≥ 0:

θ̂∗jk =Mjk(ŝ) + απG
k (û) + κδj(k) (6.40)

which naturally shares much in common with the update for document-level θ̂ parameters from

the HDP topic model, but differs in the use of the pair-wise count statistics Mjk(ŝ) and the sticky

hyperparameter κ.

Global step for top-level parameters

Consider the optimization problem

argmax
û,ω̂

LHDP-trans(ŝ, θ̂, û) + Lsurrogate-HDP-top(û, ω̂) (6.41)

subject to ûk ∈ [0, 1] for k = 1, 2, . . . (6.42)

ω̂k ≥ 0 for k = 1, 2, . . . (6.43)

Due to non-conjugacy, we cannot update û, ω̂ in closed form. However, we can apply the same

strategies as in the HDPTopicModel. First, we have a heuristic update for ω̂, which follows the

same derivation pattern as the similar update in Eq. (5.39)

ω̂k =







(K + 1)(K + 2− k) + 1 + γ if k ≤ K and κ = 0

K(K + 2− k) + 1 + γ if k ≤ K and κ > 0

1 + γ if k > K

(6.44)

Second, we have a numerical optimization update for û. The objective changes slightly depending

on whether we have a non-sticky model with κ = 0 or a sticky state transition model with κ > 0.

For both cases, we provide the exact objective needed below. These functions can be provided to

any numerical optimization technique to find an optimal û∗ within the constraint set.
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Function for û with non-sticky model κ = 0:

f(û, ω̂, T (θ̂), α, α0, γ) = −
K∑

k=1

cBeta(ûkω̂k, (1− ûk)ω̂k) (6.45)

+
K∑

k=1

(K+1 + 1− ûkω̂k)[ψ(ûkω̂k)− ψ(ω̂k)]

+

K∑

k=1

((K+1)(K+1−k) + γ − (1− ûk)ω̂k)[ψ((1 − ûk)ω̂k)− ψ(ω̂k)]

+

K∑

j=0

αj

K+1∑

k=1

πG
k (û)Pjk(θ̂)

where we define the K + 1-dimensional log probability statistic Pj for the starting state (j = 0) as

well as each active state 1 ≤ j ≤ K:

Pjk(θ̂) , Eq[log πjk] = ψ(θ̂jk)− ψ(
∑K+1

ℓ=1 θ̂jℓ) (6.46)

Function for û with sticky model κ > 0:

f(û, ω̂, P (θ̂), α, α0, κ, γ) = −
K∑

k=1

cBeta(ûkω̂k, (1− ûk)ω̂k) (6.47)

+

K∑

k=1

(K + 1− ûkω̂k)[ψ(ûkω̂k)− ψ(ω̂k)]

+

K∑

k=1

(K(K+1−k) + γ − (1− ûk)ω̂k)[ψ((1 − ûk)ω̂k)− ψ(ω̂k)]

+

K∑

j=0

αj

K+1∑

k=1

πG
k (û)Pjk(θ̂)

+ (log(α+ κ)− log κ)
(
∑K

k=1 π
G
k (û)

)

Complete global step for allocation model

Updating û requires the statistics P (θ̂), while updating θ̂ requires the quantity πG(û). Because

of the interdependence of these updates, we recommend that if possible they be iterated several

times during the complete global step to improve convergence. That is, given updated values of the

assignments ŝ, we first update θ̂ via Eq. (6.40), and then alternate between û and θ̂ until convergence.

6.3.3 Local step to update assigned state sequence

The update for assignment resposibility parameters ŝd for each sequence d can be processed inde-

pendently. However, within a sequence d we need to find a jointly optimal value across all timesteps

{ŝdt}Td

t=1 via dynamic programming (Beal, 2003). The forward-backward algorithm (Rabiner, 1989)

takes two input parameters. First, for the d-th sequence we compute a matrix Cd which has Td rows
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andK columns. Each entry defines the expected likelihood of the data xdt at timestep t under cluster

k: Cdtk = Eq[log p(xdt | φk)]. Second, we require the log transition probability vector {Pj(θ̂)}Kj=0 for

each possible active cluster as well as the starting state (j = 0). Given these values, the algorithm

produces the optimal probabilities ŝd for the sequence under the objective in Eq. (6.48).

argmax
ŝd

Ldata(xd, τ̂ , ν̂, r̂d(ŝd)) + Lentropy(ŝd) + LHDP-trans(ŝd, θ̂, û) (6.48)

subject to
∑

k,ℓ

ŝdtkℓ = 1 and ŝdt ≥ 0 for t = 1, 2, . . . Td

From ŝd, we can easily compute the marginal responsibilities r̂d via summation.

Runtime cost. The dynamic programming required here has cost O(TdK2) for the d-th sequence,

where K is the number of active clusters and Td is the number of timesteps in the sequence. For

efficiency, multiple sequences can be processed in parallel.

6.4 Variational algorithms with fixed number of topics

6.4.1 Full-dataset algorithm

A complete full dataset coordinate ascent algorithm is given in Alg. 5.3. It alternates between

visiting all D sequences in the local step and then updating all the global free parameters in the

global step. The runtime cost is dominated by the local step, where each dynamic programming has

cost O(TdK2).

6.4.2 Memoized variational algorithm

The full dataset algorithm can be easily extended to process one small batch of sequences Db during

each local step instead of all D sequences. Assuming that all D sequences have been divided into B

total batches before iterations begin, we can apply the memoized algorithm in Alg. 5.5.

Memoized algorithm and monotonicity guarantee

The memoized algorithm for training the HDP-HMM in Alg. 6.2 is guaranteed to monotonically

increase the objective function L after both the global step and the local step. This is because

unlike HDP topic models, which have multiple local variables, the HDP-HMM has only the local

pairwise responsibilities ŝ. The forward-backward algorithm delivers optimal values for the local

parameter ŝ under a fixed set of global parameters. Thus, the local step is guaranteed to improve

the objective L.

Memoized evaluation of the objective

As in DP mixture models or HDP topic models, we can compute the objective score L for the

current configuration of global parameters and global statistics of local parameters after visiting
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Algorithm 6.1 Variational coordinate ascent for HDP-HMM

Input:
{xd}Dd=1 : dataset with D sequences, each of length Td
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{ûk, ω̂k}Kk=1: initial global parameters of allocation model defining q(u)

{{θ̂jk}K+1
k=1 }Kj=0: initial global parameters defining Markov transition probabilities

γ, α, α0: allocation model hyperparameters
τ̄ , ν̄ : observation model prior hyperparameters

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{ûk, ω̂k}Kk=1: updated global parameters of allocation model

{{θ̂jk}K+1
k=1 }Kj=0: updated global parameters defining Markov transition probabilities.

1: function VariationalCoordAscentForHDPHMM(x,K, τ̂, ν̂, û, ω̂, θ̂)
2: while not converged do
3: for d ∈ 1, 2, . . .D do ⊲ Local step at document d
4: for t ∈ 1, 2, . . . Td do
5: for k ∈ 1, 2, . . .K do
6: Cdak ← Eq[log p(xda|φk)]
7: ŝd, r̂d ← FwdBwdAlgForSeq(Cd(τ̂ , ν̂), P (θ̂))

8: for k ∈ 1, 2, . . .K do ⊲ Summary step
9: Sk ←

∑D
d=1

∑Td

t=1 r̂dtks(xdt)

10: Nk ←
∑D

d=1

∑Td

t=1 r̂dtk
11: M0k ←

∑D
d=1

∑Td

t=1 r̂d1k
12: for j ∈ 1, 2, . . .K do
13: Mjk ←

∑D
d=1

∑Td

t=1 ŝdtjk

14: for k ∈ 1, 2, . . .K do ⊲ Global step for observation parameters
15: τ̂k ← Sk + τ̄
16: ν̂k ← Nk + ν̄

17: while not converged do
18: for j ∈ 0, 1, 2, . . .K do ⊲ Global step for transition parameters
19: for k ∈ 1, 2, . . .K + 1 do
20: θ̂jk ←Mjk + αjπ

G
k (û) + δkκ

21: for k ∈ 1, 2, . . .K + 1 do
22: Pjk ← ψ(θ̂jk)− ψ(

∑K+1
ℓ=1 θ̂jℓ)

23: û← argmaxû f(û, ω̂, P (θ̂), α, γ, κ) ⊲ Global step, via L-BFGS

return τ̂ , ν̂, û, ω̂, {θ̂}Kj=0

Full-dataset algorithm for approximate posterior inference for the HDP hidden Markov model shown
in Fig. 6.1.

every batch at least once. This corresponds to completing the first epoch or lap of memoized

inference. For this computation, the only auxiliary statistic we need is the entropy statistic of the

pair-wise responsibilities ŝ.
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Entropy statistic for ELBO computation. At batch b, let Hbjk define the sum of assignment

entropies related to the transition between clusters j and k across all sequences in the batch:

Lentropy(ŝ) =
K∑

j=0

K∑

k=1

HG
jk(ŝ), HG

jk =

B∑

b=1

Hbjk, Hbjk(ŝ) ,
∑

d∈Db

Hdjk(ŝ) (6.49)

where the scalar entropy statistic Hdjk for the assignment posterior q(zd) of sequence d is defined

in Eq. (6.25). We compute this scalar for each possible source cluster j ∈ {0, 1, 2, . . .K}, including
the starting state label j = 0, and for every possible destination cluster k ∈ {1, 2, . . .K}. Again, our
assumed truncation directly prevents any transition to clusters beyond index K. These infinitely

many inactive clusters all have zero probability mass and thus zero entropy.

6.5 Variational algorithms with proposal moves that adapt

the number of clusters

6.5.1 Merge proposals

Merge proposals try to find a less redundant but equally expressive model. Each proposal takes a

pair of existing states i < j and constructs a candidate model where data from state j is reassigned

to state i. Conceptually this reassignment gives a new value ŝ′, but instead statistics M ′, S′ can be

directly computed and used in a global update for candidate parameters τ̂ ′, ν̂′, û′, ω̂′, θ̂′.

S′
i = Si + Sj , M ′

:i =M:i +M:j, M ′
i: =Mi: +Mj:, M ′

ii =Mii +Mjj +Mji +Mij .

While most terms in L are linear functions of our cached sufficient statistics, the entropy Lentropy
is not. Thus for each candidate merge pair (i, j), we use O(K) storage and computation to track

column H ′
:i and row H ′

i: of the corresponding merged entropy matrix H ′. Because all terms in the

H ′ matrix of Eq. (6.24) are non-negative, we can lower-bound Lentropy by summing a subset of H ′.

This allows us to make coherent accept or reject decisions for multiple pairs, while guaranteeing

that we never accept a merge unless the resulting configuration of global and local parameters would

yield an improved objective function value. The only caveat is that, like DP mixtures or HDP topic

models, we can only accept merge pairs i, j where both cluster indices have not been involved in any

previous accepted merges during that pass. Because many entries of H ′ are near-zero, our bound

is very tight, and in practice enables us to scalably merge many redundant state pairs in each lap

through the data.

Selecting candidate merge pairs.

Before a single pass through the dataset, we examine all pairs of states and keep those pairs i, j

which improve a score function similar to that used for DP mixture models in Sec. 4.1.4. That is, we

use all terms of the objective L for which a candidate value for pair i, j can be constructed directly

from global sufficient statistics and global parameters.
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6.5.2 Birth proposals

Our birth moves for the HDP-HMM can create many new states at once while maintaining the

monotonic increase of the whole-dataset objective, L. Each proposal happens within the local step

by trying to improve q(zd) for a single sequence d. Given current assignments ŝd with truncation K,

the move proposes new assignments ŝ′d that include the K existing states and some new states with

index k > K. This procedure is detailed below. Next, we combine the proposed value of ŝ′d with

the existing summary statistics for other sequences to obtain valid candidate summary statistics

M
′G, N

′G, S
′G for the whole dataset. Given these global summaries, we can compute candidate

global parameters û′, ω̂′, θ̂′, τ̂ ′, ν̂′ via the standard global coordinate ascent step updates. Finally,

we can compute L′ for the candidate value, and compare it to the original configuration’s objective

function score L. If L improves under the proposal, we accept and use the expanded set of states

for all remaining updates in the current lap.

Constructing proposed assignments ŝ

The proposal for expanding the pair-wise assignments ŝ′d for sequence d with new states can flexibly

take any form, from very näıve to very data-driven. For data with “sticky” state persistence, we

recommend randomly choosing one interval [t, t+δ] of the current sequence to reassign when creating

ŝ′d, leaving other timesteps fixed. We split this interval into two contiguous blocks (one may be

empty), each completely assigned to a new state. This search finds the cut point that maximizes the

observation-model objective Ldata. Other proposals such as sub-cluster splits Chang and Fisher III

(2014) could be easily incorporated in our variational algorithm, but we find this simple interval-

based proposal to be fast and effective.

6.5.3 Delete Proposals

Our proposal to delete a rarely-used state j begins by dropping row j and column j fromM to create

M ′, and dropping Sj from S to create S′. Using a target dataset of sequences with non-trivial mass

on state j, x′ = {xn :
∑Tn

t=1 r̂ntj > 0.01}, we run global and local parameter updates to reassign

observations from former state j in a data-driven way. Rather than verifying on only the target

dataset as in Hughes et al. (2015a), we accept or reject the delete proposal via the whole-dataset

bound L. To control computation, we only propose deleting states used in 10 or fewer sequences.

Candidate selection. Deletes are more flexible than merges at reassigning mass but require

expensive local steps on the target data. To keep costs affordable, before each lap we find a group

of L states whose unified target set is at most 10 sequences, prioritizing states that have not been

attempted before. We then collect the unified target set and try all L deletes one at a time. If no

group can be found (L = 0), no move is performed.
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6.6 Experimental Results

In this section, we present results from several experiments comparing various training algorithms

for the HDP-HMM. We consider two variants of our scalable memoized algorithm with adaptive

proposals: one with all three proposal moves (birth, merge, and delete) and one with only proposal

moves that remove clusters (merge, delete).

As a baseline, we consider two scalable algorithms that also optimize the same objective L: a

fixed-truncation memoized algorithm and a fixed-truncation stochastic algorithm. We further com-

pare to the blocked Gibbs sampler for the HDP-HMM (Fox et al., 2011) that was previously shown

to mix faster than slice samplers (Van Gael et al., 2008). These baselines (including the blocked

sampler) maintain a fixed number of states K, though some states may have usage fall to zero as

training proceeds. We start all fixed-K methods (including the sampler) from matched initializa-

tions, so comparisons are fair. See the original paper (Hughes et al., 2015b) and its supplement for

futher discussion and all details needed to reproduce these experiments. Our publically released

Python source code can be found online1.

Learning rate schedule. For all datasets, we set the learning rate ρt for stochastic variational at

update iteration t to ρt = (1+ t)0.51. This is a fairly aggressive schedule, recommended in past work

by Bryant and Sudderth (2012). Future work could tune this specifically for each dataset, but we

chose to simplify the comparisons here. Note that under this setting, SVI reaches noticeably better

objective scores than the fixed-truncation memoized algorithm on the chromatin experiments, but

performs worse on the larger-scale motion capture experiments.

Initialization. Across all experiments, we used the same procedure to initialize algorithms given

the provided data sequences and a specific number of clusters K. We call this procedure ”random-

contiguous-blocks”, since it selects subwindows of data sequences at random and uses these to create

the global likelihood parameters (via the standard global step).

We found this worked well with all datasets here. To generalize to a new dataset, though, it is

often advantageous to define the window length used as longer or shorter than our default, since

some datasets have much longer segments than others. Also, higher-dimensional datasets can benefit

from using more data in initialization. Of course, if the dataset has very little self-transition (lots

of fast-switching states), another type of initialization may be preferred.

6.6.1 Toy Data

In Fig. 6.2, we study 32 toy data sequences generated from 8 Gaussian states with sticky transi-

tions. This simple toy dataset was suggested by previous work on scalable hidden Markov models

(Foti et al., 2014) as a simple check of algorithm quality. From an abundant initialization with 50

1http://www.bitbucket.org/michaelchughes/bnpy-dev/

http://www.bitbucket.org/michaelchughes/bnpy-dev/
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states, the sampler and non-adaptive variational methods require hundreds of laps to remove redun-

dant states, especially under a non-sticky model (κ = 0). In contrast, our adaptive methods reach

the ideal of zero Hamming distance within a few dozen laps regardless of stickiness, suggesting less

sensitivity to hyperparameters.

This toy dataset has 32 sequences divided into B = 8 batches. Each sequence has length

T = 1000. Each observation is a 2D real vector xnt ∈ R2. We use a full-covariance Gaussian for

likelihood L and a corresponding Wishart distribution for the prior P. When we show segmentations

in Fig. 6.2, we always show segmentations for sequences 1, 3, 5, and 7, which together contain at

least 50 timesteps representing each of the 8 true states.

In Fig. 6.2, we show trace plots that compare the progress of various algorithms under two set-

tings: non-sticky dynamics (κ = 0) and sticky dynamics (κ = 50). Comparing non-sticky and sticky

models, we see that the sticky model generally encourages faster convergence for all algorithms. In

particular, for the Gibbs sampler of Fox et al. (2011), the non-sticky sampler takes thousands of laps

through the dataset for Hamming distance to drop near zero, but it does reach that configuration,

as illustrated by the segmentations in the bottom row. In contrast, the sticky sampler reaches this

ideal by around 200 laps according to the trace plots. Thus, the performance of the sampler can

be quite sensitive to the value of the provided sticky hyperparameter. We thank an anonymous

reviewer for suggesting this detailed analysis.

Note that across Fig. 6.2 in both sticky and non-sticky cases, our adaptive algorithms with

birth/merge/delete proposals eliminate the redundant states more quickly than non-adaptive com-

petitors. Our proposal moves enable fast convergence regardless of the hyperparameter values,

suggested that algorithms with greater power to escape local optima can avoid some sensitivity

exhibited by more limited methods.

6.6.2 Speaker Diarization

We study 21 unrelated audio recordings of meetings with an unknown number of speakers from the

NIST 2007 speaker diarization challenge NIST (2007). The sticky HDP-HMM previously achieved

state-of-the-art diarization performance Fox et al. (2011) using a sampler that required hours of

computation. We ran methods from 10 matched initializations with 25 states and κ = 100, com-

puting Hamming distance on non-speech segments as in the standard DER metric. Fig. 6.3 shows

that within minutes, our algorithms consistently find segmentations better aligned to true speaker

labels.

There are N = 21 sequences, which have no overlap in terms of common speakers. Thus,

we process each one independently. This makes “memoized” inference equivalent to full-dataset

inference because there is only one batch. It also makes stochastic inference irrelevant, so we only

compare to the sampler as a baseline method. We use a full covariance Gaussian likelihood with

corresponding Wishart prior.

For Hamming distance computations on this dataset, we utilize the provided annotations of

each sequence into “background” (non-speech) and “foreground” (speech) states. We only count
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timesteps labeled as foreground in the distance computation, and ignore any assignments to timesteps

labelled background. Our dataset clearly marks background labels with negative integer labels, while

foreground states have non-negative labels {0, 1, ...}.

6.6.3 Motion capture dataset.

Labelled 6-sequence motion capture dataset. Next, we consider the task of unsupervised

discovery of activity types from motion capture sensor data captured over time. Fox et al. (2014)

presented a benchmark dataset with 6 total sequences, each labelled at every timestep as one of 12

exercise types, such as jogging and jumping-jacks. The raw sensor data as well as the labels provided

by a human annotator are illustrated in Fig. 1.4. Each sequence has 12 joint angles (wrist, knee,

etc.) captured at 0.1 second intervals. To model this data, we use a first order auto-regressive (AR)

Gaussian likelihood with the corresponding matrix-Normal-Wishart conjugate prior. For online

algorithms, we process each of the 6 sequences as its own batch.

Fig. 6.4 shows that non-adaptive methods struggle even when initialized abundantly with 30

(dashed lines) or 60 (solid) states, while our adaptive methods reach better values of the objective

L and cleaner many-to-one alignment to true exercises. It seems the 30 state models are slightly

preferred (especially for the sampler). However, for our adaptive models with deletes and merges

(red curves) and with births (purple), the number of states in the initialization does not seem to

matter too much.

Large 124-sequence motion capture dataset. Next, we apply scalable methods to the 124

sequence dataset of Fox et al. (2014). Again, we use first-order auto-regressive (AR) likelihoods

with the corresponding conjugate priors. For this larger dataset, we process all 124-sequences as 20

distinct batches, each containing about 6 sequences.

Fig. 6.5 shows deletes and merges making consistent reductions from abundant initializations

and births growing from K = 1. Fig. 6.5 also shows estimated segmentations for 10 representative

sequences, along with skeleton illustrations for the 10 most-used states in this subset. These segmen-

tations align well with held-out text descriptions of the raw sensor sequences, which are found on

the source website. We lack ground truth exercise labels at each timestep, but these whole-sequence

labels provide a proxy for judging the resulting segmentation. Scripts for visualizing the skeleton

trace of a specific data segment can be found in an open-source code repository available online2.

For non-adaptive methods on the 124-sequence dataset, we compare each algorithm initialized

from abundant initializations of 100 (dashed) and 200 (solid) states. For the stochastic method (SVI,

yellow curves), under all initializations we see a rapid drop in the number of states used during the

first lap. To explain this, remember that with 20 batches for 124 sequences, each batch will have

around 6 sequences. From the segmentation figure, it is clear that state usage patterns have lots of

variety across sequences, which each sequence only using a handful of states. The aggressive learning

rate we use in the first lap will tend to severely downweight any initial states not used in the first few

2http://github.com/michaelchughes/mocap6dataset/

http://github.com/michaelchughes/mocap6dataset/
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batches, which explains the rapid drop. In contrast, the memoized method (blue) is designed to use

global information for each parameter update, not just the current batch. We further enforce this

by delaying the first global update until at least 50 sequences are seen. This makes the memoized

results a large improvement on the stochastic results for this dataset.

Furthermore, using delete and merge moves only (red) shows that we can reduce down to about

30 states and reach even higher levels of performance. Similarly, starting from 1 state with birth

moves (purple), we can grow to nearly comparable levels of performance. We hope to answer why

the purple curves do not quite reach the performance of the red curves in future work. Regardless,

the set of adaptive methods reach high objective scores much more consistently than non-adaptive

methods.

6.6.4 Chromatin epigenomic dataset

Finally, we study segmenting the human genome by the appearance patterns of regulatory proteins

Hoffman et al. (2012). This problem of chromatin segmentation was motivated earlier in Ch. 1 and

illustrated in Fig. 1.5.

We observe 41 binary signals from Ernst and Kellis (2010) at 200bp intervals throughout a white

blood cell line (CD4T). Each binary value indicates the presence or absence of an acetylation or

methylation that controls gene expression. Such binary observations are naturally explained by a

Bernoulli likelihood with a conjugate Beta prior. We set our prior to Beta(0.1, 0.3), which favors

clusters with extreme probabilities (nearly 0 or nearly 1).

We divide the whole epigenome into 173 sequences (one per batch) with total size T = 15.4

million. Some efforts choose to process each chromosome as one very long sequence, but we elected to

test the ability of our algorithms to handle many batches. To split up each chromosome, we searched

for intervals with at least 50 consecutive all-zero observations, which are somewhat common. We

picked division points in the middle of these empty segments to use to split up into more manageable

size sequences, while avoiding artifacts at the starts of each sequence as much as possible. In the

end, we obtained 173 sequences, ranging in size from T = 10000 to T = 200, 000 timesteps.

Fig. 6.6 shows our adaptive proposal optimization algorithms can grow from 1 state to 70 states

and compete favorably with non-adaptive competitors even on genome-scale datasets. Even when

fixed truncation algorithms are given 100 initial clusters, they do not achieve ELBO scores as high

as the nearly 75 clusters discovered by our method.

Fig. 6.6 also demonstrates that parallel processing of distinct sequences in the local step can

produce useful speed improvements. Using 64 cores working in parallel on a K = 50 cluster problem,

we can complete the fixed-truncation local step 25x times faster than a serial implementation. This

lowers the time required to complete a local step on the entire dataset (173 sequences totalling 15

million observations) from over an hour to less than 2 minutes. This practical speed gain makes

large-scale analysis with our HDP-HMM optimization algorithms possible.
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6.7 Discussion

Extension of our previous methods to the HDP hidden Markov model required further technical in-

novation to derive a surrogate optimization problem for the sticky HDP as well as several innovations

to make the proposal moves (birth, merge, delete) apply to sequential data.

Among open issues, we note that the primary obstacle to large-scale scalability of these methods

is the O(K2Td) of the local step at each sequence d. This quadratic dependence on the number

of active clusters K makes training with many clusters very slow even with the parallelization we

have developed. Finding slightly different models or inference assumptions which would improve

this scaling to nearly-linear in K could make it possible to train effectively on millions of sequences

and thousands of hidden states or clusters.



159

Algorithm 6.2 Memoized variational algorithm for the HDP-HMM

Input:
{xd}Dd=1 : dataset with D sequences, each of length Td
K: truncation level
{τ̂k, ν̂k}Kk=1: initial global parameters of observation model
{ûk, ω̂k}Kk=1: initial global parameters of allocation model defining q(u)

{{θ̂jk}K+1
k=1 }Kj=0: initial global parameters defining Markov transition probabilities

γ, α, α0: allocation model hyperparameters
τ̄ , ν̄ : observation model prior hyperparameters

Output:
{τ̂k, ν̂k}Kk=1: updated global parameters of observation model
{ûk, ω̂k}Kk=1: updated global parameters of allocation model

{{θ̂jk}K+1
k=1 }Kj=0: updated global parameters defining Markov transition probabilities.

1: function MemoizedCoordAscentForHDPHMM(x,K, τ̂ , ν̂, û, ω̂, θ̂)
2: for lap l ∈ 1, 2, . . . do
3: for batch b ∈ Shuffle({1, 2, . . .B}) do ⊲ Local step at batch b
4: for d ∈ Db do
5: ŝd, r̂d ← FwdBwdAlgForSeq(Cd(τ̂ , ν̂), P (θ̂))

6: SG ← SG − Sb ⊲ Decrement global statistics
7: NG ← NG −Nb

8: MG ←MG −Mb

9: for k ∈ 1, 2, . . .K do ⊲ Summary step at batch b
10: Sbk ←

∑D
d=1

∑Td

t=1 r̂dtks(xdt)

11: Nbk ←
∑D

d=1

∑Td

t=1 r̂dtk
12: Mb0k ←

∑D
d=1

∑Td

t=1 r̂d1k
13: for j ∈ 1, 2, . . .K do
14: Mbjk ←

∑D
d=1

∑Td

t=1 ŝdtjk

15: SG ← SG + Sb ⊲ Increment global statistics
16: NG ← NG +Nb

17: MG ←MG +Mb

18: for k ∈ 1, 2, . . .K do ⊲ Global step for observation parameters
19: τ̂k ← Sk + τ̄
20: ν̂k ← Nk + ν̄

21: while not converged do
22: for j ∈ 0, 1, 2, . . .K do
23: for k ∈ 1, 2, . . .K + 1 do ⊲ Update global transition probabilities q(πj)

24: θ̂jk ←Mjk + αjπ
G
k (û) + δkκ

25: for k ∈ 1, 2, . . .K + 1 do
26: Pjk ← ψ(θ̂jk)− ψ(

∑K+1
ℓ=1 θ̂jℓ)

27: û← argmaxû f(û, ω̂, P (θ̂), α, γ, κ) ⊲ Update global top probabilities q(πG)

return τ̂ , ν̂, û, ω̂, {θ̂}Kj=0

Memoized coordinate ascent algorithm for approximate posterior inference for the HDP-HMM.
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Figure 6.2: Toy data HDP-HMM algorithm comparison, using sticky and non-sticky model.
Algorithm comparison on toy dataset, using a non-sticky state transition model with κ = 0 (top
row) and sticky model with κ = 50 (middle row). Left column: Objective function L as more
training data is seen. Middle column: Number of effective states K (states with Nk ≥ 1) as more
data is seen. Right column: Hamming distance between aligned segmentations and the ground
truth segmentation. All non-birth algorithms are initialized using a common set of over-complete
segmentations, with either K = 50 (dashed lines) or K = 100 states (solid lines). The sticky model
encourages faster convergence for all algorithms. The non-sticky sampler takes thousands of laps
through the dataset for Hamming distance to drop near zero, but it does reach that configuration, as
illustrated in the segmentations in the bottom rows. In contrast, the sticky sampler reaches this ideal
by around 200 laps according to the middle trace plots. Both sticky and non-sticky models clearly
prefer the ideal segmentation, but algorithm convergence is sensitive to the sticky hyperparameter,
especially the fixed-truncation variational algorithms. In contrast, our adaptive methods reach ideal
configurations within 20 laps regardless of whether the model is sticky or not.
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Figure 6.3: Comparison of HDP-HMM algorithms on 21 speaker diarization sequences.
Method comparison on speaker diarization from common K = 25 initializations (Sec. 6.6.2). Left:
Scatterplot of final Hamming distance for our adaptive method and the sampler. Across 21 meetings
(each with 10 initializations shown as individual dots) our method finds segmentations closer to
ground truth. Right: Traces of objective L and Hamming distance for meetings representative of
good, average, and poor performance.
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Figure 6.4: Comparison of HDP-HMM algorithms on 6 motion capture sequences.
Comparison on 6 motion capture streams (Sec. 6.6.3). Top: Our adaptive methods reach better L
values and lower distance from true exercise labels. Bottom: Segmentations from the best runs of
birth/merge/delete (left), only deletes and merges from 30 initial states (middle), and the sampler
(right). Each sequence shows true labels (top half) and estimates (bottom half) colored by the true
state with highest overlap (many-to-one).
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Figure 6.5: Comparison of HDP-HMM algorithms on 124 motion capture sequences.
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more data is seen. Solid lines have 200 initial states; dashed 100. Top Right: Final segmentation of
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10 most used states are shown in color, the rest with gray. Bottom: Time-lapse skeletons assigned
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Figure 6.6: Comparison of HDP-HMM algorithms for chromatin segmentation of human genome.
Segmentation of human epigenome: 15 million observations across 173 sequences (Sec. 6.6.4). Top
Row: Adaptive runs started at 1 state grow to 70 states within one lap and reach better L scores
than 100-state non-adaptive methods. Each run takes several days. Bottom Row: Wallclock times
and speedup factors for a parallelized fixed-truncation local step on 1/3 of this dataset. 64 workers
complete a local step with K = 50 states in under one minute.
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Chapter 7

Sparse variational posteriors for

cluster and topic assignments

In this chapter, our overall goal is to improve scalability of training algorithms by reducing the

runtime cost of the most expensive step in our earlier coordinate ascent optimization algorithms:

the local step. Just as our earlier memoized algorithms helped us scale to large dataset sizes N , we

now wish to improve scaling with larger numbers of clusters or topics K.

Towards this end, we investigate alternative posterior approximations for the local assignment

variables z in mixture models and topic models. Our previous efforts for these models in Ch. 3 and

Ch. 5 used a conventional approximate posterior q(z) which explicitly represented the probability

of each data token being assigned to each of the K active clusters. Here, we propose a constrained

family of sparse variational distributions that allow at most L < K non-zero entries in the learned

resposibility parameter vector for each local assignment, where the user-specified threshold L trades

off speed for accuracy. Setting L = K recovers the dense representation of our earlier conven-

tional approaches, while the other extreme of setting L = 1 yields a “hard“ or “winner-take-all”

assignments. We will show that moderate values such as L ≈ 4 can produce significant speed gains

compared to dense L = K conventional representations when K >> 100, while still producing

similar-quality heldout predictions. Our approach fits into any variational algorithm for parametric

or nonparametric models regardless of whether global parameters are inferred by point estimates

(as in EM) or given full approximate posteriors. Furthermore, our approach easily integrates into

existing frameworks for large-scale streaming data analysis (Hoffman et al., 2013; Broderick et al.,

2013), and is easy to parallelize.

At the time of publication, the work in this chapter is under review for a machine learning

conference. To summarize, the core contributions are:

Contribution 1: New variational algorithm for mixture models with user-specified L-

sparse assignments. Our approach is the first to use O(L) memory to represent the assignment

163
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posterior q(zn) for data token n. Hard assignment algorithms with L = 1 have long been known

in the literature, but no procedure to coherently optimize an L-sparse q(zn) for 1 < L < N was

previously known to our knowledge. Algorithms like sparse EM (Neal and Hinton, 1998) allow the

update to q(zn) to process fewer than K indices of the corresponding responsibility vector during an

update, but must represent all K entries in memory. In contrast, our approach requires less storage

and less processing time, especially for computing summary statistics.

Contribution 2: New variational algorithm for topic models with user-specified L-sparse

assignments. We present a similar algorithm for topic models, for which hard assignments via

MCMC sampling had been the most prominent previous way to attain L = 1 sparsity in q(zn)

(Mimno et al., 2012).

Contribution 3: Experimental evidence that moderate L values offer good speed-

accuracy tradeoff. We often find it favorable to choose moderate values of L larger than the

winner-take-all baseline but much smaller than the total number of active clusters K. Our later

experiments show that the hard assignment condition L = 1 often leads to pathological behavior,

especially in topic models.

7.1 Local step algorithms for L-sparse mixture models

In this section, we focus our attention on the local step of the coordinate ascent algorithm for

the finite mixture model presented in Ch. 2. We begin by reviewing the conventional local step

update that produces dense responsibility vectors, which was first presented in Sec. 2.6.1. Later,

we introduce our new sparse variational approximate posterior q(zn), which adds an additional

constraint to the conventional dense formulation and derive the appropriate coordinate ascent update

for this new approximation. We emphasize that while we’ve chosen to present the material here for

the finite mixture model for simplicity, the parallels to the local step for DP mixture models in Ch. 3

are straight-forward.

7.1.1 Local step with conventional dense responsibilities.

The local step of inference computes a new assignment vector r̂n for each observation n which

optimizes L while holding global parameters fixed. Under either the approximate posterior treatment

of global parameters in Eq. (2.93) or ML estimates of Eq. (2.73), the optimal updates have closed

form, which we derive by expanding the expectations that define L and dropping terms independent

of r̂n. After simplification, we have

Ln(xn, r̂n) =
∑K

k=1 r̂nkWnk(xn)− r̂nk log r̂nk, (7.1)

Wnk(xn, θ̂, τ̂ , ν̂) , Eq[log πk] + Eq[log p(xn|φk)].
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Figure 7.1: Speed and accuracy of L-sparse assignment posteriors for training mixture models
Impact of sparsity-level L on different substeps of estimating local assignments for a mixture model.
L defines the number of non-zero entries in the posterior responsibility vector r̂n for each observation
n. For these experiments, we use a minibatch of N = 36,000 8x8 image patches and a pretrained
mixture model with zero-mean Gaussian likelihood, as described in Sec. 7.2.1. Left: Comparison of
methods from Alg. 2.3 for computing optimal responsibilities r̂n given fixed log posterior weights
Wnk for each cluster. When L = K we use DenseRespFromWeights while for L < K we find
TopLRespFromWeights is much faster. Center: Given fixed assignments r̂, the summary step
computes the per-cluster sufficient statistics {Nk, Sk}Kk=1 defined in Eq. (7.3). Here, we measure
the time required for this computation for our minibatch of 8x8 patch data, where the observation
statistic s(xn) = xnx

T
n is 64x64. Right: Comparison of variational distance between optimal dense

responsibilities and those from TopLRespFromWeights across various L values. We show the
cumulative density function across all patches in our minibatch, using the pretrainedK = 200 model
published online by Zoran and Weiss (2012). Moderate values L ≈ 8 are almost indistinguishable
from the dense solution.

We interpretWnk ∈ R as the log posterior weight that cluster k has for observation n. Larger values

imply that cluster k is more likely to be assigned to observation n. For ML or MAP learning, the

expectations defining Wnk are replaced with point estimates.

Our goal is to find the cluster responsibility vector r̂n that optimizes Ln in Eq. (7.1), subject to

the constraint that the entries of r̂n are non-negative and sum to one:

r̂∗n = argmax
r̂n

Ln(xn, r̂n) s.t. r̂n ≥ 0,
∑

k r̂nk = 1. (7.2)

The optimal solution is simple: exponentiate each weight and then normalize the resulting vector.

The function DenseRespFromWeights in Alg. 7.1 details the required steps. The runtime cost

is O(K), dominated by K required evaluations of the exp function.

Summary statistics. Given fixed assignments r̂, the global step computes the optimal values

of the global free parameters under L. Whether doing point estimation or approximate posterior

inference, this update requires only two finite-dimensional sufficient statistics of r̂, rather than the

complete r̂ matrix. For each cluster k, we must compute the expected count Nk ∈ R+ of its

assigned observations and the expected data statistic vector Sk. These summary statistics were first

introduced in Eq. (2.96), and are defined again here for convenience:

Nk(r̂) =
∑N

n=1 r̂nk, Sk(x, r̂) =
∑N

n=1 r̂nks(xn). (7.3)
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Algorithm 7.1 Update for dense responsibilities given log posterior weights for mixture model.

Input: [Wn1 . . .WnK ] : log posterior weights.
Output: [r̂n1 . . . r̂nK ] : resp. values for each cluster
1: function DenseRespFromWeights(Wn)
2: for k ∈ 1, . . .K do
3: r̂nk = eWnk

4: sn =
∑K

k=1 r̂nk
5: for k ∈ 1, . . .K do
6: r̂nk = r̂nk/sn

7: return r̂n

DenseRespFromWeights is the conventional method for solving the optimization problem in
Eq. (7.2). It delivers a dense vector r̂n of K non-zero entries, satisfying non-negativity and sum-to-
one constraints. The runtime cost requires K evaluations of the exp function, K summations, and
K divisions. For large K, can be expensive, especially because the resulting vector r̂n often has a
vast majority of entries indistiguishable from zero.

Algorithm 7.2 Update for L-sparse responsibilities given log posterior weights for mixture model.

Input: [Wn1 . . .WnK ] : log posterior weights.
Output: {r̂nℓ, inℓ}Lℓ=1 : top L values and indices
1: function TopLRespFromWeights(Wn, L)
2: in1, . . . inL = SelectTopL(Wn)
3: for ℓ ∈ 1, . . . L do
4: r̂nℓ = eWninℓ

5: sn =
∑L

ℓ=1 r̂nℓ
6: for ℓ ∈ 1, . . . L do
7: r̂nℓ = r̂nℓ/sn

8: return r̂n, in

TopLRespFromWeights optimizes the same objective as RespFromWeights, subject to the
additional constraint that at most L clusters can have non-zero posterior probability in r̂n. The
L-sparse optimization problem this procedure solves is in Eq. (7.4). To tractably solve this problem,
an O(K) introspective selection algorithm (Musser, 1997) first identifies the indices of the L largest
values of the weight vector. After this, we can find the optimum with L evaluations of the exp
function, L summations, and L divisions. This cost can be substantially less than the cost of dense
procedure RespFromWeights, as shown in Fig. 7.1.

These sums have cost linear in the number of observations N . The required work is O(NK) for

the count vector and O(NKD) for the data vector, where D is the dimension of the data statistic

vector: s(xn) ∈ RD.

7.1.2 Local step with L-sparse responsibilities.

To speed up the local steps above, we recognize that much of the runtime cost comes from rep-

resenting r̂n as a dense vector. Although there are K clusters, for any observation n only a few

entries in r̂n will have appreciable mass while the vast majority are close to zero. We thus introduce

an additional constraint to our optimization problem: that at most L entries are non-zero, where
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1 ≤ L ≤ K. The formal problem is:

r̂∗n = argmaxr̂nLn(xn, r̂n) (7.4)

s.t. r̂n ≥ 0,
∑K

k=1 r̂nk = 1,
∑K

k=1 1(r̂nk > 0) = L.

This constrained optimization problem has a simple solution, given by the function TopLRe-

spFromWeights in Alg. 7.1. First, we identify the indices of the top L values of the weight vector

Wn in descending order. Let in1, . . . , inL denote these top-ranked cluster indices, each one a distinct

value in {1, 2, . . . ,K}. Given this active set of clusters, we simply exponentiate and normalize only

at these indices.

r̂∗nk =







eWnk/
∑L

ℓ=1 e
Wninℓ if k ∈ in1, . . . , inL

0 otherwise.
(7.5)

As shown in Alg. 7.1, we can represent this solution as an L-sparse vector, with L real values

r̂n1, . . . , r̂nL and L integer indices in1, . . . , inL. Solutions may not be unique if the posterior weights

Wn contain duplicate values. We handle these ties arbitrarily, since swapping duplicate indices leaves

the objective unchanged.

Proof of optimality. We offer a proof by contradiction that TopLRespFromWeights solves

the optimization problem in Eq. (7.4). Suppose that r̂′n is optimal, but there exists a pair of clusters

j, k such j has larger weight but is not included in the active set while k is. This means Wnj > Wnk,

but r̂′nj = 0 and r̂′nk > 0. Consider the alternative r̂∗n which is equal to vector r̂′n but with entries

j and k swapped. After substituting into Eq. (7.1) and simplifying, we find the objective function

value increases under our alternative: L(xn, r̂∗n) − L(xn, r̂′n) = r̂′nk · (Wnj −Wnk) > 0. Thus, the

optimal solution must include the largest L clusters by weight in its active set.

Runtime cost. ComparingDenseRespFromWeights and TopLRespFromWeights side-by-

side yields pertinent insights to the runtime cost. The former requires K exponentiations, K addi-

tions, andK divisions to turn weights into responsibilities. In contrast, given the active set of cluster

indices in our procedure requires only L of each operation. Furthermore, finding the active indices in

can be done in O(K) via selection algorithms. Thus, for L≪ K we find TopLRespFromWeights

to be much faster, as shown empirically in Fig. 7.1.

Selection algorithms (Blum et al., 1973; Musser, 1997) are designed to find the top L values in

descending order within an array of size K. These methods use divide-and-conquer strategies to

recursively partition the input array into two blocks, one with values above a pivot and the other

below. Musser (1997) introduced a selection procedure which uses introspection to smartly choose

pivot values and thus guaranteeO(K) worst-case runtime. This procedure is implemented within the

C++ standard library as nth element, which we use for SelectTopL in practice. This function

operates in-place on the provided array, rearranging its values so that the first L entries are all

bigger than the remainder. Importantly, there is no internal sorting within either partition. We use

nth element to find the top indices, not values, by defining a custom comparator.
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Advantages of L−sparse responsibilities. The sparsity parameter L provides a practioner

with a natural way to tradeoff between execution speed and training accuracy. When L = K,

we recover the original problem in Eq. (7.2), while L = 1 leads to assigning each observation to

exactly one cluster, as in k-means or maximization expectation (ME, Kurihara and Welling (2009))

algorithms. We call this L = 1 case “hard” assignment or “winner-take-all” assignment. Our

focus is on modest values of 1 < L ≪ K. As shown in Fig. 7.1, when the number of clusters K

measures in the hundreds or larger, with moderate L values we find that TopLRespFromWeights

is significantly faster than DenseRespFromWeights. We find that the dense method’s required

K exponentiations dominates the cost of the O(K) introspective selection procedure.

With L−sparse responsibilities, computing the summary statistics in Eq. (7.3) scales linearly with

L rather than K. This gain is noticeable for Gaussian mixture models with unknown covariances,

which require a D ×D sufficient statistic s(xn) = xnx
T
n . Fig. 7.1 shows that the cost of a typical

minibatch summary step for image patch modeling with a published model with K = 200 total

clusters drops from over 10 seconds for the dense L = K procedure to less than a second for L = 4.

In addition to the speed gains in Fig. 7.1, we also expect that sparsity may improve the overall

convergence rate of training across many global and local steps. Finally, we hope that L−sparse
responsibilities are more interpretable due to the lack of small-but-non-zero values.

7.1.3 Related work.

Using “hard” cluster assignments instead of “soft” probabilities is well-known way to balance accu-

racy for speed. K-means and its Bayesian nonparametric extension DP-means (Kulis and Jordan,

2012) justify L = 1 sparsity via small-variance asymptotics. Viterbi training (Juang and Rabiner,

1990), and maximization-expectation algorithms (Kurihara and Welling, 2009) both use L = 1 hard

assignments. However, we expect L = 1 to be too coarse for many applications.

Few published methods allow any tuning of the sparsity-level L. Neal and Hinton (1998) intro-

duced sparse EM, a method intended for datasets where all local parameters fit into main memory.

The algorithm maintains a dense parameter vector r̂n for each observation n, but only edits a subset

of this vector during each local step. The edited subset may consist of the L largest entries or all

entries above some threshold. Any inactive entries are “frozen” to small but non-zero values, and

newly edited entries are normalized such that the whole vector r̂n preserves its sum-to-one constraint.

This approach is effective for small datasets (Ng and McLachlan, 2004), but the large memory re-

quirement limits scalability. In contrast, our approach stores only L values at each observation.

More recently, several efforts have used MCMC samplers to approximate the local step within a

larger variational algorithm (Mimno et al., 2012; Wang and Blei, 2012a). They estimate an approx-

imate assignment posterior by averaging over many samples, where each sample is an L = 1 hard

assignment. The number of finite samples S is a crucial choice which balances accuracy and speed.

We think selecting an L value via our approach is more intuitive than choosing an S for the same

problem. Furthermore, our method provides an exact, monotonically increasing way to optimize L
while sampling improves L only in expectation.
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Figure 7.2: L-sparse mixture model results on millions of image patches.
Impact of sparsity on training zero-mean Gaussian mixture model on 3.6 million 8x8 pixel image
patches using stochastic and memoized variational inference. Training data comes from 400 total
images processed 4 images at a time. Each panel shows heldout prediction scores over time for
several training runs at a fixed number of clusters K. In all cases, runs with small L values match
or exceed the prediction quality of the dense baseline L = K in far less time. Moderate L = 4 or
L = 16 can outperform L = 1 hard assignments, as shown in the K = 200 and K = 1600 panel.

7.1.4 Integration with scalable and adaptive proposal algorithms

Our proposed L-sparse assignment algorithm for mixture models easily fits into the scalable vari-

ational algorithms we have discussed in detail in previous chapters. Both stochastic variational

(Hoffman et al., 2013) and memoized variational algorithms (Hughes and Sudderth, 2013) from

Ch. 3 can use TopLRespFromWeights as a drop-in replacement for DenseRespFromWeights

without any other required changes except a summary step which takes advantage of the sparsity

to gain speed.

7.2 Experimental results with L-sparse mixture models

7.2.1 Mixture models for image patches

We now consider applying mixture models to natural images, inspired by Zoran and Weiss (2012).

We train a model for 8x8 image patches taken from overlapping regular grids of stride 4 pixels.

Each observation is a vector xn ∈ R64, preprocessed to remove its mean. We then apply a mixture

model with concentration α = 10, using a zero-mean, full-covariance Gaussian likelihood function

with corresponding conjugate Wishart prior.

To evaluate, we track the log-likelihood score of heldout observations x′ under our trained model:

score(x′n) = log
∑K

k=1 π̂kN (x′n|0, Σ̂k). (7.6)

Here, π̂k = Eq[πk] and Σ̂k = Eq[Σk] are point estimates computed from our trained global parameters

using standard formulas. The function N is the probability density function of a multivariate normal.

Fig. 7.2 compares stochastic and memoized implementations of our algorithm on 3.6 million

patches from 400 images. The algorithms process 100 minibatches each with N = 36816 patches.

First, we confirm clear speed gains. With K = 800 clusters, we can process all 3.6 million patches

in about 8100 seconds with L = 4, while the dense procedure takes 27000 seconds (over 7 hours).
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Second, these speed gains do not sacrifice prediction quality. Across many values of K, we see that

sparse runs with L < K reach similar heldout scores as the dense baselines, and often much better

values as shown in the K = 800 or K = 1600 panels.

7.3 Local step algorithms for L-sparse topic models

Next, we apply our sparse approximate posterior idea to topic models. Again, for simplicity we

focus on a finite topic model known as latent Dirichlet allocation (Blei et al., 2003), but extensions

to our Bayesian nonparametric HDP topic model from Ch. 5 are quite straightforward.

7.3.1 Mean field for the LDA Topic Model

Our sparsity-level constraint naturally applies to topic models, which are hierarchical mixtures

applied to data from D documents, x1, . . . xD containing words from a finite vocabulary of size

V . The Latent Dirichlet Allocation (LDA) topic model (Blei et al., 2003) generates a document’s

observations from a mixture model with common topics {φ}Kk=1 but document-specific frequencies

πd. This is the finite version of the infinite model presented in Fig. 5.1, though with a different,

non-hierarchical prior for p(πG).

Each topic φk ∼ DirV (λ̄), where φkv is the probability of type v under topic k. The document-

specific frequences πd are drawn from a symmetric Dirichlet DirK( α
K
. . . α

K
), where α > 0 is a scalar.

Tokens are generated:

zdn ∼ CatK(πd), xdn ∼ CatV (φzdn). (7.7)

The goal of posterior inference is to estimate the common topics as well as the frequencies and

assignments in any document. The standard mean-field approximate posterior over these quantities

is specified by:

q(zd) =
∏Nd

n=1 CatK(zdn|r̂dn1, . . . r̂dnK), (7.8)

q(πd) = DirK(πd|θ̂d1, . . . θ̂dK),

q(φ) =
∏K

k=1 DirV (φk|λ̂k1, . . . λ̂kV ).

Under this factorized approximate posterior, we can again set up a variational optimization objective:

L(x, r̂, θ̂, λ̂) = log p(x)−KL(q||p) (7.9)

= Eq[log p(x, z, π, φ)− log q(z, π, φ)]

7.3.2 Local step of LDA Training Algorithm

Here, we derive an interative update algorithm for estimating the assignment factor q(zd) and the

frequencies factor q(πd) for a document d. Alg. 5.1 gives the conventional local step algorithm, while

Alg. 7.4 gives our novel algorithm for L−sparse assignment posteriors.
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Figure 7.3: Speed and accuracy of L-sparse assignment posteriors for training topic models
Influence of sparsity-level L on the different substeps of training a topic model from one mini-batch
of 1000 NY Times articles. L defines the number of non-zero entries in the assignment vector
r̂dn for each observation n in document d. Panel a: Timings for the local step of the LDA topic
model run for a maximum of 100 iterations at each document. With K = 500 topics, moderate
sparsity L = 8 gives a throughput of over 100 documents per second, while the dense approach can
process only 30 documents per second. Panel b: Same as a, but with additional restart proposals.
Panel c: Timings for the summary step of the topic model, which computes the effective count of
each word type in each topic. Even though this step takes little time, our sparse representations
can speed it up. Panel d: Define the empirical topic distribution of document d by normalizing
the count vector [Nd1 . . . NdK ]. For each document in the minibatch, we compute the variational
distance between the empirical distribution produced byTopLRespForDoc at a given L to that
produced by DenseStepForDoc. This plots shows the empirical CDF of this distance across all
1000 documents.

Updating θ̂d, which defines q(πd). We have a closed-form update for the document-topic pseu-

docounts θ̂d given fixed assignments r̂dn.

θ̂dk = Ndk(r̂d) + α/K (7.10)
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Here, Ndk ,
∑N

n=1 r̂dnk counts the number of tokens assigned to topic k in document d.

Updating r̂dn, which defines q(zdn). Under the usual dense representation, the optimal update

for the assignment vector of token n has a closed form like the mixture model, but with document-

specific weights:

r̂dn ← RespFromWeights ([Wdn1 . . .Wdnk]), (7.11)

Wdnk(xdn, θ̂, λ̂) , Eq[log πdk + log φkxdn
],

Eq[log πdk] , ψ(θ̂dk)− ψ(
∑K

ℓ=1 θ̂dℓ).

We can easily incorporate our sparsity-level constraint to enforce at most L non-zero entries in r̂dn.

TopLRespFromWeights still provides the optimal solution in this case.

Sharing parameters by word type. Naively, tracking the assignments for document d requires

explicitly representing a separate K-dimensional distribution for each of the Nd tokens. However,

we can save memory and runtime by recognizing that for a token with word type v, the optimal

value of Eq. (7.11) will be the same for all tokens in the document with the same type. We can

thus share parameters with no loss in representational power, requiring Ud separate K-dimensional

distributions, where r̂dn , r̂dudn
.

Iterative joint update for q(πd) and dense q(zd). When visiting a new document, we must

infer both q(πd|θ̂d) and q(zd|r̂d). Following standard practice for dense assignments, we use an block-

coordinate ascent algorithm that iteratively loops between Eq. (7.10) and Eq. (7.11), as shown in

Alg. 5.1. When computing the log posterior weightsWduk, two easy speed-ups are possible: First, we

need only evaluate Cvk = Eq[log φkv] once for each word type v and topic k and reuse the value across

iterations. Second, we can directly compute the effective log prior probability Pdk , Eq[log πdk]

during iterations, and instantiate θ̂ after the algorithm converges.

To initialize the update cycle for a document, we recommend visiting each token n and updating

it with initial weight W ′
dnk = Eq[logφkxdn

]. This lets the topic-word likelihoods drive the initial

assignments. We then alternate between Eq. (7.11) and Eq. (7.10) until either a maximum number

of iterations is reached (typically 100) or the maximum change of all document-topic counts Ndk

falls below a threshold (typically 0.05).

Each iteration updates Pdk with cost O(K), and then performs Ud evaluations of the token-

specific responsibility update RespFromWeights, each with dense cost O(K). On most datasets,

we find local iterations are the dominant computational cost, exceeding 90% of the runtime.

Iterative joint update with sparsity. Under the constraint that each responsibility vector has

at most L non-zero entries, we can use an alternative iterative algorithm we call TopLRespForDoc

in Alg. 5.1. This procedure has several advantages overDenseRespForDoc. First, we have already

shown in Fig. 7.1 that the cost of the subprocedure TopLRespFromWeights is much less than
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RespFromWeights. Second, we further assume that once a topic’s mass Ndk decays near zero, it

will never rise again. With this assumption, at every iteration we identify the set of active topics

(those with non-neglible mass) in the document: Ad , {k : Ndk > ǫ}. Only these topics will have

weight large enough to be chosen in the top L for any token. Thus, throughout TopLRespForDoc

we need only loop over the active set, and each iteration costs O(|Ad|) instead of O(K).

Discarding topics whose mass within a document drops below ǫ is justified by previous empirical

observations of the so-called “digamma problem” described in Mimno et al. (2012): for topics with

negligible mass, the expected log probability term becomes vanishingly small. For example, ψ( α
K
) ≈

−200 for α ≈ 0.5 and K ≈ 100, and gets smaller as K increases.

In practice, after the first few iterations the active set stabilizes and each token’s top L topics

rarely change while the relative responsibilities continue to improve. In this regime, we can amortize

the cost of TopLRespForDoc by avoiding selection altogether, instead just reweighting each to-

ken’s current set of top L topics. We perform selection for the first 5 iterations and then only every

10 iterations, which yields large speedups without loss in solution quality.

Fig. 7.3 compares the runtime of TopLRespForDoc across values of sparsity-level L against a

heavily-optimized version of DenseRespForDoc, which includes precomputing the exponentiated

conditional likelihoods and uses optimized dense-matrix multiplication routines. For small numbers

of topics K < 100, our gains are modest at best. However, for K ≫ 100 our sparsified algorithm

can process 1000 documents at least three times faster, with relative speed increasing with K.

Restart proposals. Our previous work in Sec. 5.3.4 (Hughes et al., 2015a) introduced restart

proposals, a post-processing step to single document inference that can dramatically improve perfor-

mance. Given the output count vector Nd from Alg. 5.1, the restart proposal constructs a candidate

N ′
d by setting an active entry of Nd to zero and then running two iterations forward. We then

accept the new count vector if it improves the objective L. We find these proposals are crucial

to escape local optima, so we always include them. A side-by-side comparison of costs with and

without restarts is in Fig. 7.3.

7.4 Experimental results with L-sparse topic models

7.4.1 Topic Modeling Experiments

We train topic models at several sparsity-levels using Memoized and Stochastic algorithms. We

compare to the fast-yet-exact SparseGibbs (sometimes called SparseLDA) sampler of Yao et al.

(2009) and the sampler-inside-stochasticGibbsInSVI method of Mimno et al. (2012). These exter-

nal methods use Java code available in Mallet (McCallum, 2002). External methods use the default

Mallet initialization, while we use AnchorWords (Arora et al., 2013) to initialize q(φ).

Sparsity Hyperparameters. Our primary goal is quantifying how our performance varies with

the sparsity-level L. GibbsInSVI allows control of the number of samples S used to approximate
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Algorithm 7.3 Update for document-specific responsibilities under standard topic model

Input:
α : document-topic smoothing scalar
{{Cvk}Kk=1}Vv=1 : log prob. of word v in topic k

Cvk , Eq[log φkv]
{vdu, cdu}Uu=1 : word type/count pairs for doc. d

Output: r̂d : dense responsibilities for doc d
1: function DenseRespForDoc(C,α, vd, cd)
2: for u = 1, . . . U do
3: r̂du = RespFromWeights(Cvdu)

4: while not converged do
5: for k = 1, 2 . . .K do
6: Ndk =

∑

u cdur̂duk , Pdk = ψ(Ndk +
α
K
)

7: for u = 1, 2 . . . U do
8: for k = 1, 2 . . .K do
9: Wduk = Cvduk + Pdk

10: r̂du = RespFromWeights(Wdu) ⊲ See Alg. 7.1

11: return r̂d

Algorithm for computing responsibilities for a single document given fixed topics for a multinomial
likelihood and bag-of-words data. Without sparsity constraints, each step scales with O(K).

Algorithm 7.4 Update for document-specific responsibilities under L-sparse topic model.

Input:
α : document-topic smoothing scalar
{{Cvk}Kk=1}Vv=1 : log prob. of word v in topic k

Cvk , Eq[log φkv]
{vdu, cdu}Uu=1 : word type/count pairs for doc. d

Output: r̂d : L−sparse responsibilities for doc d
1: function TopLRespForDoc(C,α, vd, cd, L)
2: for u = 1, . . . U do
3: r̂du = TopLRespFromWeights(Cvdu , L) ⊲ See Alg. 7.2

4: while not converged do
5: for k ∈ Ad do
6: Ndk =

∑U
u=1 cdur̂duk

7: Ad = {k ∈ Ad : Ndk > ǫ}
8: for k ∈ Ad do
9: Pdk = ψ(Ndk +

α
K
)

10: for u = 1, 2 . . . U do
11: for k ∈ Ad do
12: Wduk = Cvduk + Pdk

13: r̂du = TopLRespFromWeights(Wdu, L)

14: return r̂d

Algorithm for computing responsibilities for a single document given fixed topics for a multinomial
likelihood and bag-of-words data. Accomplishes the same goal as RespForDoc but forces each
observation to use at most L topics. This change, plus tracking only the active topics in a document
Ad leads to much faster iterations than the conventional RespForDoc.
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Figure 7.4: Comparison of values for sparsity-level L on topic models
Analysis of 1392 NIPS articles (left) and 7961 Wikipedia articles (right). These trace plots of heldout
likelihood over time represent an internal comparison of different possible L values for memoized
inference. We find that hard L = 1 assignments can plauteau early or fail catastrophically due to
the many local optima in multinomial topic models. In contrast, moderate L values like 4 or 16
produce the same high-quality predictions as dense L = K representations in a fraction of the time
(note the log-scale of the x-axis).

q(zd). We consider S = {5, 10}, always discarding half of these samples as burn-in. SparseGibbs

has no sparsity parameter.

Nuisance Hyperparameters. For all methods, we set document-topic smoothing α = 0.5 and

topic-word smoothing λ̄ = 0.1. We set the stochastic learning rate at iteration t to ρt = (δ + t)−κ.

We use grid search to find the best heldout score on validation data, considering delay δ ∈ {1, 10}
and decay κ ∈ {0.55, 0.65}.

We evaluate all methods on two key metrics: wallclock time and predictive power. Following

Wang et al. (2011), we measure heldout performance via a document completion task. Given a

heldout document xd, we divide its words at random by type into two pieces: 80% in xAd and 20%

in xBd . We use subset A to estimate the document-specific probabilities π̂d, and then evaluate the

predictions of this estimate on the remaining words in B. Throughout, we point estimate each topic

k to the trained posterior mean φ̂k = Eq[φk]. Across many heldout documents, we measure the

following score:

score(xA, xB , φ̂) =

∑

d

∑|xB
d |

n=1 log
∑

k π̂dkφ̂kxB
dn

∑

d |xBd |

For all algorithms, we fix a point estimate of topics φ̂ from training and then estimate π̂d in the same

way: finding the optimal q(πA
d ) and q(z

A
d ) for the words in the first piece xAd by using DenseResp-

ForDoc. Finally, we take π̂d = Eq[π
A
d ] and compute the heldout likelihood of xBd .

We first conduct careful comparisons on datasets which are small enough for all algorithms to

make many complete laps (effective passes through the dataset). The first two rows of Fig. 7.5 show

performance on 1392 NIPS articles and 7961 Wikipedia articles. The final row shows performance

for the much larger New York Times Annotated Corpus: 1.8 million articles from 1987 to 2007, with

9000 documents per batch (200 batches total). Across all datasets, we reach the same conclusions:
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Figure 7.5: L-sparse topic model results on NIPS, Wikipedia, and NYTimes
Analysis of 1392 NIPS articles (top row), 7961 Wikipedia articles (middle), and 1.8 million New
York Times articles (bottom). We use 5 batches for the small datasets, and 200 batches for NY
Times. Each panel plots heldout scores (higher is better) over time for sparse and dense versions of
our algorithms and external baselines. The number of clusters K varies from left to right.
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Moderate sparsity is best. Throughout Fig. 7.5, we see that runs with sparsity-levels of L = 4,

L = 8, or L = 16 under both memoized and stochastic algorithms converge several times faster than

L = K but yield indistinguishable predictions.

Hard L = 1 assignments can be pathological. As shown in Fig. 7.4, running memoized

inference with L = 1 may either plateau early at noticeably worse performance (e.g. the left panel

plot using the NIPS dataset) or fall into progressively worse local optima (e.g. the right panel plot

using the Wiki dataset). Remember, neither memoized nor stochastic inference for LDA topic models

has a monotonicity guarantee because both q(zd) and q(πd) are re-estimated from scratch each time

we visit a document. When L = 1 hard assignments, the local step inference can have a strong

tendency to use many different topics to explain a document given a likelihood-first initialization

of the local coordinate ascent iterations. This can explain the pathological behavior of L = 1

assignments.

External methods converge slowly. Throughout Fig. 7.5, no run of SparseGibbs or Gibb-

sInSVI reaches competitive predictions in the allowed time limit (3 hours for NIPS and Wiki, 2 days

for NYTimes). GibbsInSVI benefits from more samples (S = 10 > S = 5) only on NYTimes. More

than 10 samples did not improve performance further. Mimno et al. (2012) also found diminishing

returns from tuning the number of MCMC samples S used to estimate expectations.

7.5 Discussion

In this chapter, we have introduced a simple sparsity constraint on the parameters of a variational

posterior which leads to faster training times, equal or better predictive power, and more intuitive

interpretation. Our algorithms can be dropped-in to any ML, MAP or full-posterior variational

clustering objective and are simple to parallelize and scale to millions of examples.

We anticipate further research in adapting L > 1 sparsity to sequential models like HMMs,

which might lead to a dynamic programming algorithms for sequential models that might scale

quadratically with L rather than K. This would speed up the largest existing bottleneck in using

the training algorithms from Ch. 6.

We also anticipate applying these ideas to other factors in the approximate posterior. For exam-

ple, for multinomial topic models we might directly constrain the shape parameters q(φk) so that

at most W vocabulary words have non-zero probability. We could also maybe encode some relax-

ation of an anchor-word assumption (Arora et al., 2013). These kinds of constraints could improve

interpretability as well as speed.



Chapter 8

Recommendations

Throughout this thesis, we have presented a unified framework for training Bayesian nonparametric

probabilistic models models via variational optimization algorithms. In this chapter, we discuss

four possible extensions to our work which would make it applicable to a much broader family of

modeling scenarios and improve overall effectiveness. We review each recommendation for future

work below, with further detailed discussion in later sections.

Sec. 8.1: Parallelization for extreme scalability. Scaling our optimization algorithms up

to billions of examples presents several technical challenges. Several of our baseline algorithms

for fixed-truncation inference are “embarrassingly” parallelizable. Creating parallelized implemen-

tations of birth, merge, and delete proposal moves remains an engineering challenge, though the

general task seems feasible. We hope that parallel implementations together with possible feed-

forward approximations to the local step provide a path to reliable clustering on huge datasets that

can still adequately solve the model selection problem.

Sec. 8.2: Approximation-quality guarantees for variational optimization. Both the Breg-

man divergence k-means++ initialization algorithm in Alg. 2.2 (Ackermann and Blömer, 2010) and

the original k-means++ algorithm of Arthur and Vassilvitskii (2007) offer approximation-quality

guarantees relative to the globally-optimal clustering which are quite good. Spectral methods have

also recently drawn attention as provable methods for point estimation in related clustering problems

(Hsu et al., 2012). To our knowledge, no work exists in examining whether these guarantees would

apply for the type of variational optimization objectives we explore in this thesis. Providing such

a guarantee for either some initialization procedure, or more ideally for some proposal procedures,

could make our optimization approach much more attractive.

Sec. 8.3: Semi-supervised clustering. Many clustering applications come with some additional

side information, such as the five-star ratings that accompany Yelp reviews or the low-level and

high-level action labels from motion capture datasets. We envision coherent methods for training

178
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large-scale BNP models from the union of small curated datasets with supervised labels and millions

of unlabeled data observations.

Sec. 8.4: Extension to probabilistic programming. The adaptive-proposal optimization

methods we have presented for mixture, topic, and hidden Markov model should be extensible

to a broad family of Bayesian nonparametric clustering models. We envision a model specification

language for this family as well as automatic inference in the spirit of probabilistic programming. We

hope our practical BNPy software could evolve into this system, supporting a narrower set of models

than alternatives like Stan (Carpenter et al., 2015) but offering scalable and reliable inference for

this specialized family.

8.1 Parallelization and other tricks for extreme scalability

Two possible ways to speed up our variational optimization for Bayesian nonparametric clustering

models for scaling to billions of examples are: finding faster algorithms (in terms of order-of-growth

runtime as well as practical speed) and deploying these algorithms in parallelized hardware. For

example, the L-sparse approximations from Ch. 7 led to much faster algorithms by reducing some

substeps from O(K) runtime cost to O(L). We first discuss parallelized implementation of our ex-

isting algorithms, identifying bottlenecks and opportunities. We later mention some approximations

we can make to the local step of optimization which may yield substantial speed improvements.

Taking advantage of parallelization is a must for an algorithm to gain traction on industry-

scale applications. We have preliminary success scaling our existing fixed-truncation algorithms

for topic models and hidden Markov models to the single-machine, multiple-cores setting. Fig. 6.6

shows over 25x speed improvement when using 64 cores on data at the scale of the human genome.

We are excited about performing adaptive birth, merge, and delete proposals inference in a truly

distributed setting, with dozens of parallel workers each creating new clusters from disjoint batches

and integrating them into a coherent centralized model. Some early work on merge proposals in

this multiprocessor setting has been done by Campbell et al. (2015) for an alternative variational

approach to HDP topic models. Implementing such parallelization into BNPy would make our

clustering methods accessible to many industry-scale applications.

Procedurally, the bottleneck of inference across all our models is the runtime cost of the “lo-

cal” step, where we assign data to clusters. Rosenbaum and Weiss (2015) studied the image patch

modeling application from Fig. 1.2 and showed that applying a pre-trained Gaussian mixture model

to test images can be dramatically accelerated by a feed-forward approximation of the local step.

Other recent approaches (Mnih and Gregor, 2014) combine the fast, feed-forward properties of neu-

ral networks during training itself, optimizing the feed-forward network as part of the the Bayesian

variational optimization problem. By training a feed-forward network to approximate the local pos-

terior of q(zn), as done by Gan et al. (2015), these methods use information from previous examples

to cluster new data faster. With some of these tricks, our memoized algorithm could train models
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with thousands of clusters and billions of examples.

8.2 Approximation guarantees for variational optimization

8.2.1 Distance-biased random initializations with guarantees

Our Bregman k-means++ initialization in Alg. 2.2 is motivated by the k-means++ algorithm

Arthur and Vassilvitskii (2007), with the extension to Bregman divergences motivated by Theo-

rem 1 of Ackermann and Blömer (2010). Formally, Ackermann and Blömer (2010) prove that if a

dataset satisfies basic separability conditions and the Bregman divergence function can be bounded

by a Mahalonobis distance, then a k-means++ initialization yields a constant-factor approximation

to the solution quality with probability 2−O(K). Some of this work appears in an earlier confer-

ence paper (Ackermann and Blömer, 2009). Developing extensions that justify this procedure for all

Bregman divergences, not just those for which the Mahalonobis distance bound applies, is of great

interest.

Acharyya et al. (2013) show how to generalize any Bregman divergence to a “general symmetric”

divergence function that is symmetric and obeys the triangle inequality. They prove kmeans++

style guarantees for this class of “general symmetric” divergences. This generalization voids the

interpretation of our procedure in Alg. 2.2 as solving a MAP estimation problem for exponential

families. However, such general properties may prove useful for achieving formal guarantees.

More scalable guarantees

The k-means++ initialization requires K total passes through the full dataset, or whatever subset

is used for initialization. In each pass, exactly one additional cluster mean is chosen. Each step

is conditioned on results of the previous pass, so the procedure isn’t easily parallelized. When the

number of clusters K is large, in the hundreds or thousands, this can be quite expensive.

Bahmani et al. (2012) presents an alternative initialization algorithm with similar performance

guarantees but much cheaper initialization. Their procedure requires only a small constant (≈ 5)

number of passes through the dataset in practice, instead of K total passes. The basic idea is that

we commit to doing R passes, and at each round we select each data observation xn as a possible

cluster center with probability:

pn ∝ LD(xn, µn) (8.1)

where L is a user defined positive scalar. After all the R rounds, the total number of chosen clusters

will be a random variable, though its expected value can be controlled by the parameter L as detailed

in Bahmani et al. (2012). If exactly K clusters are needed, we can apply post-processing heuristics

to select these.

This sampling technique is easy to generalize to our Bregman divergences case in practice. Show-

ing that the guarantees apply requires sophisticated theoretical arguments to get around the triangle

inequality.
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8.2.2 Provable spectral algorithms

Another prominent line of recent research are so-called spectral methods. These approaches exist

for finite mixture models, topic models (Arora et al., 2013), hidden Markov models (Hsu et al.,

2012), and probabilistic context-free grammars (Cohen et al., 2014). The primary advantage of these

methods is that they deliver very fast point estimates of global parameters. Often such methods

come with formal guarantees of solution quality, but these require two assumptions. First, they

assume infinitely many training examples. Second, they assume that the data is truly generated

by the underlying likelihood model. Guarantees like those in Arora et al. (2013) do note exploit

regularization from the prior or give any quality guarantees when the model is an approximation of

the true generating process. Nevertheless, finding ways to more closely connect these methods with

our Bayesian nonparametric approach could yield promising theoretical results, and we have found

such procedures useful as initializations for our methods in practice.

8.3 Extensions for semi-supervised clustering

In many applications, supervised information like the number of stars accompanying an online review

or the number of links to some Wikipedia article may be of interest. Often, supervised information

is expensive to obtain, so we seek approaches that can easily handle joint learning of latent cluster

representations when only a subset of the data has observed response variables. This can include

cases where every data token has a response we’d like to predict, or cases where groups of tokens

have a single response (such as labels for whole documents or entire sequences).

Throughout this section, we’ll make discussion concrete by fixating on a particular example:

prediction of document-level labels via a HDP topic model. Here, each document d has one observed

response variable yd. The response yd may be binary, multi-class, or real-valued in practice, though

each choice requires slightly different inference machinery. We’ll take it to be real-valued throughout

this running example, which implies our intended task is regression rather than classification. Our

goal is to find clusters or topics that predict both the observed data xd and this document-level

response variable yd.

We consider two conceptual approaches for achieving our goal of finding latent clusters that

predict response variables. The first conceptual approach comes from prediction-focused generative

models. This tradition treats response variables like any other random variable in the graphical

model. For our target task of document-level regression, the most prominent example is sLDA –

supervised Latent Dirichlet Allocation (Mcauliffe and Blei, 2008) – which models response variable

yd as a child of topic indicators zd. Extensions have modified this parametric model to a proper

BNP model via the HDP (Zhang et al., 2013) using fixed-truncation variational inference.

The second conceptual tradition ismaximum entropy discrimination (MED). This approach takes

a more purely discriminative view that integrates topic models with the machinery behind support

vector methods, which are widely used for classification and regression. MED methods define specific

margin constraints which a proposed cluster-to-response prediction model must satisfy. For the topic
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modeling problem, these constraints force the hidden clusters to predict the response yd within some

tolerance, and encourage big changes to the topic assignments of any documents that violate these

constraints. Zhu et al. (2012) proposed a supervised topic model in this tradition called MED-

LDA, inspired by Jebara’s earlier work with more general prediction problems (Jebara, 2001). The

original MED-LDA used variational inference, while recent efforts have developed a data-augmented

Gibbs sampler for parametric topic models (Zhu et al., 2013) and Bayesian nonparametric HMMs

(Zhang et al., 2014). Below, we show how both the sLDA and MED-LDA variational approaches

are special cases of a loss-augmented version of our original variational objective L. This view allows

us to compare and contrast the two approaches more closely.

Alternative upstream generative approaches are not considered here. These methods do not align

with our focus on predictive performance, but still pursue label-informed clustering for text data

(Mimno and McCallum, 2008; Lacoste-Julien et al., 2009), relational models (Kim et al., 2012), and

visual scene categorization (Li et al., 2009). Upstream models tell a generative story in which labels

yd are the parents of topic assignments zd, rather than the opposite story told by downstream models

like sLDA. Simply put, these models are not set up for predicting labels. In fact, under these models

both imputing or marginalizing away missing labels can be computationally difficult. Nevertheless,

these models offer interesting ways to inform latent representations when metadata is available, and

could be a direction for future work.

Possible variational optimization objectives for supervision

Adding supervision to the topic model from Ch. 5 requires specifying the prediction rule for producing

response variable yd from the assignments zd. Following Mcauliffe and Blei (2008), we choose a

simple linear prediction rule given approximate posterior q(zdt) at each token t in document d

parameterized by responsibility vector r̂dt.

yd = wT
E[z̄d], where E[z̄d] ,

1
Td

∑Td

n=1[r̂dt1 r̂dt2 . . . r̂dtK ] (8.2)

Here, z̄d is a K-length vector of empirical topic frequencies in document d. Each vector zd has

positive entries that sum to one. The parameter w describes a linear transformation from vector z̄d

to scalar yd, where w is a K-length vector of weight coefficients.

Extending our general unsupervised objective L for topic models from earlier chapters to incor-

porate this prediction model for response variables yd, we arrive at the following general form:

Ls(w, r̂, θ̂, τ̂ , ν̂, û, ω̂) = Lalloc(r̂, θ̂, û, ω̂) + Ldata(x, r̂, τ̂ , ν̂) +R(w) −∑D
d=1 Loss(yd, w

TE[z̄d]) (8.3)

We still seek to maximize this general supervised objective Ls by finding the ideal free parameters

r̂, θ̂, τ̂ , ν̂, û, ω̂ as before. However, by incorporating supervised labels this optimization now requires

finding cluster indicators that explain the data x and minimize the loss in predicting the responses yd

at each document via the cluster indicators. Now, specifying our objective requires both a concrete

loss function Loss and a choice of regularization R on the weight vector. Both sLDA and MED-LDA

are special cases of this objective, each with a specialized choice of loss function.
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sLDA objective. Prediction-focused generative models specify a loss function for the response

variable yd. When yd is real-valued, a natural model is a simple Gaussian yd ∼ N (wTE[zd], λ
−1),

which implies the following form of the loss function

LosssLDA(yd, w
T
E[zd]) , − log p(yd|w, zd) =

λ

2
(yd − wT

E[zd])
2 (8.4)

Here, λ > 0 is a scalar precision: larger values imply more precise estimates of yd.

The major problem with this objective is that it forces learned clusters to explain both the

observed data xd and the response yd, with no clear encoding of how to manage the tradeoff. When

the number of observed tokens Td in a document is large, this can be problematic. The learned

topics must provide good explanations for Td tokens and predict yd with precision λ. Without

carefully setting λ, the clusters can easily favor configurations that explaing the tokens well but not

the response, since the objective weights tokens over response predictions by a factor of (roughly)

Td/λ. Thus, tuning the parameter λ requires careful attention for good performance.

MED-LDA objective. For regression, MED-LDA employs an ǫ−insensitive loss function:

LossMED−LDA(yd, w
T
E[zd]) , Cmax(0, |yd − wT

E[zd]| − ǫ) (8.5)

Here, ǫ is a free parameter that specifies tolerance to error. Setting ǫ = 0.1 on the Yelp example

would encode that errors of less than 0.1 on the 5 star scale should not be penalized. No such free

parameter exists in the sLDA objective. C > 0 is a scalar cost parameter. Like λ above, it must be

tuned carefully during training.

We can alternatively express the unconstrained objective Ls for MED-LDA as a constrained

optimization problem, with a constraint for every document requiring that that |yd − wTE[z̄d]| ≤
ǫ + ξd. This constraint enforces the predictions to lie within tolerance ǫ. Slack variables ξd allow

some predictions to exceed this desired tolerance since a perfect model may not be possible, but

penalize this transgression via increased loss.

Comparing the MED-LDA objective with sLDA, we see that the MED-LDA approach more

naturally lends itself to the goal of strong predictions. Both MED-LDA free parameters ǫ and C are

directly interpreted as a desired tolerance and a penalty for violating this tolerance. In particular,

this conceptual view has no trouble with tuning C differently as more data arrives. However,

with sLDA the idea of tuning λ to match predictive performance runs contrary to the generative

approach. Furthermore, the generalization performance associated with the MED machinery brings

further potential benefits.

Inference for the MED-LDA objective above is quite tractable. The updates to all our earlier

variational free parameters do not change at all, except for the cluster indicator parameters r̂d.

Finding the optimal weight vector w can seen as a solution to a quadradic program when function

R(w) encodes an L2 penalty. Numerical solvers for these kind of QPs are well-studied. For improved

regularization, we may seek free parameters for an propor variational distribution q(w), rather than

a simple point estimate of w. This is the approach taken by Zhu et al. (2012) and will be essential

for properly comparing models of different truncation levels.
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Figure 8.1: A probabilistic programming language for specifying clustering models
Our compositional view of clustering models. Col. A: Generative model for one data token xn.
Col. B: Possible dependency graphs for cluster probability vectors π: DP (top), HDP (middle), and
dependent DPs (bottom). Col. C: Possible graphs for cluster indicators z.

The experiments of Zhu et al. (2012) clearly indicate the need for a method that can adapt the

truncation level. Several experiments studying predictive performance as a function of the number

of topics show unsurprisingly that using too few topics can severely handicap predictions, while

too many topics can cause slightly worse predictions while requiring more computation. Methods

which can reliably explore the combinatorial space of clusterings via non-local changes will be quite

important for finding interpretable models that have good predictive power.

8.4 Extensions with probabilistic programming

A prominent trend in modern machine learning research is the development of powerful, general-

purpose representation languages called probabilistic programming languages (PPLs) These lan-

guages allow the user to specify complex probabilistic models as a generative processs, and then auto-

matically perform inference for the specified model given data. PPLs such as Stan (Carpenter et al.,

2015), WebPPL (Goodman and Stuhlmüller, 2014), and Venture (Mansinghka et al., 2014) vary in

the domain of possible models but generally use a version of MCMC sampling or particle methods

to perform inference. CrossCat (Mansinghka et al., 2015) is a recent example of using probabilistic

programming for Bayesian nonparametric models of data tables.

We have a vision for a PPL specific to a broad family of clustering models which includes mixtures,

topic models, and hidden Markov models as well as many more possibilities.

8.4.1 A preliminary model specification language

Our preliminary model specification language is illustrated in Fig. 8.1. As in the models discussed

in this thesis, the unifying property of all models our language supports is that each data token xn
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is generated from a single cluster indicated by discrete variable zn ∈ {1, 2, . . .K, . . .}. The chosen

cluster zn = k specifies the observation model for data xn. If zn = k, we draw xn from an exponential

family (EF) likelihood density with natural parameter φk: p(xn|φk) ∝ exp[s(xn)
Tφk], where s(xn)

is a sufficient statistic for the observation model, as detailed in Ch. 2.

Specifying an allocation model. The allocation of cluster assignments z requires a set of fre-

quency vectors π and indicators z. The number of assignment variables zn is exactly equal to the

number of data tokens. The number of πj variables varies from model to model, with each vector πj

a non-negative vector that sums to unity with an entry for each cluster. By choosing a fixed graph

structure for π and z, we encode structural assumptions into the model, as shown in Fig. 8.1.

Each assignment zn is drawn from a frequency distribution over clusters defined by exactly one

πj node. The value of the parent of node zn in the z graph determines which πj variable is used to

generate zn:

p(zn = k|zpa(n) = j) = πjk (8.6)

This requires each zn variable to have exactly one parent, so the topology of the z graph must be

restricted to trees (or multiple trees). However, the π graph may be any directed a-cyclic graph.

Our framework defines a single allocation model by combining fixed graph structures for π, z

from columns B and C. Each model can be either parameteric or nonparametric, based on the

prior distribution of the top-level πG. The pair (B1,C1) yields mixture models (Blei and Jordan,

2006), while (B2, C2) gives topic models (Blei et al., 2003; Teh et al., 2006), and (B2, C3) gives

hidden Markov models (Beal et al., 2001). The pair (B2, C4) yields hidden Markov trees used for

multi-scale image modeling (Crouse et al., 1998; Kivinen et al., 2007) and text parsing (Finkel et al.,

2007; Liang et al., 2007). B3 and C2 could yield a topic model where frequencies vary over time, as

in (Blei and Lafferty, 2006). This framework also extends to relational block models (Airoldi et al.,

2009; Kemp et al., 2006), hierarchical hidden Markov models (Heller et al., 2009), and spatial models

for image segmentation (Sudderth and Jordan, 2009).

8.4.2 Towards general-purpose inference

As a long-term goal, we wish to develop more general-purpose inference methods. Our current code

base requires custom implementation of each allocation model (combination of π and z graphs),

which makes reusing pieces more difficult than we would like. Therefore, we will investigate de-

veloping general-purpose inference algorithms that are modular with respect to the compositional

structure of Fig. 8.1, developing a message-passing framework that can handle general π graphs and

z trees.

One considerable challenge here is developing scalable and adaptive inference methods that are

more general purpose. For example, we might wish to handle a desired likelihood p(xn|φk) that

does not belong to the exponential family. Toward this end, general purpose “black-box” varia-

tional methods (Kucukelbir et al., 2015; Ranganath et al., 2014) could inspire new solutions when
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combined with the adaptive proposals from this work. There are also possible connections to recent

work on variational auto-encoders (Kingma and Welling, 2014). These methods are possible even

with models for which the usual mean-field variational objective function is intractable to compute.

We are optimistic that with significant research investment, we could develop reliable and scalable

general-purpose inference for a wide range of possible Bayesian nonparametric clustering models.
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M. R. Ackermann and J. Blömer. Bregman clustering for separable instances. In Proceedings of the 12th

Scandinavian conference on Algorithm Theory (SWAT), 2010.
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